TWI517345B - Apparatus and method for a fast recovery rectifier structure - Google Patents
Apparatus and method for a fast recovery rectifier structure Download PDFInfo
- Publication number
- TWI517345B TWI517345B TW102139696A TW102139696A TWI517345B TW I517345 B TWI517345 B TW I517345B TW 102139696 A TW102139696 A TW 102139696A TW 102139696 A TW102139696 A TW 102139696A TW I517345 B TWI517345 B TW I517345B
- Authority
- TW
- Taiwan
- Prior art keywords
- epitaxial layer
- layer
- doped
- trenches
- well
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
Description
本發明之實施例係關於整流器領域。更特定而言,本發明之實施例係關於一種快速回復整流器結構。 Embodiments of the invention relate to the field of rectifiers. More particularly, embodiments of the invention relate to a fast return rectifier structure.
有關開關電源之效率的一項重要因素在於此類電路中所用之二極體的效能。更特定而言,此種二極體之逆向回復可降低此類電源中之電晶體開關的接通損耗。舉例而言,在開關之接通期間,一逆向回復電流暫態表現為一額外電流分量,因此相比不存在此種逆向回復分量的情況而言開關的接通損耗顯著較高。因此,減少二極體逆向回復電荷(Qrr)對於改良開關電源之效率很重要。 An important factor in the efficiency of a switching power supply is the performance of the diodes used in such circuits. More specifically, the reverse recovery of such a diode reduces the turn-on loss of the transistor switch in such a power supply. For example, during the turn-on of the switch, a reverse recovery current transient appears as an additional current component, so the turn-on loss of the switch is significantly higher than in the absence of such a reverse recovery component. Therefore, reducing the reverse charge recovery (Qrr) of the diode is important for improving the efficiency of the switching power supply.
然而,不幸的是,若逆向回復太突變,則電壓將經歷不當振盪。此類振盪可導致(例如)低效率電源操作、不良雜訊輸出(例如電源波紋及/或電磁干擾),及/或極高且可能有破壞性之電壓尖峰。 However, unfortunately, if the reverse recovery is too sudden, the voltage will experience improper oscillations. Such oscillations can result, for example, in low efficiency power operation, poor noise output (such as power ripple and/or electromagnetic interference), and/or extremely high and potentially damaging voltage spikes.
因此,極度需要一種具有減少之逆向回復電荷的保持軟性回復特徵之快速回復整流器結構。進一步需要以一種使用較小幾何形態渠槽形成之快速回復整流器結構滿足先前指出的需要。另外還需要以一種與習知半導體製造製程及設備相容且互補之方式滿足先前指出的需要。 Therefore, there is a great need for a fast return rectifier structure that maintains a soft recovery characteristic with reduced reverse recovery charge. It is further desirable to meet the previously noted needs with a fast return rectifier structure formed using trenches of smaller geometry. There is also a need to meet the previously identified needs in a manner that is compatible and complementary to conventional semiconductor fabrication processes and equipment.
因此,本發明之各種實施例揭示一種用於快速回復整流器結 構的裝置及方法。本發明之實施例能夠減少逆向回復電荷且同時維持一軟性回復特徵。同樣,本發明之實施例揭示一種基於矽之快速回復整流器結構,其涉及產生與JFET通道區域串聯之蕭特基二極體,或一合併式PiN蕭特基(MPS)二極體結構。例如在一實施例中,MPS二極體結構由於幾何形態較小而致能蕭特基與PiN之較高比率,且由於減少前向傳導期間電洞注入之井區域之間的N型摻雜而致能減小之通道電阻。 Accordingly, various embodiments of the present invention disclose a fast return rectifier junction Apparatus and method. Embodiments of the present invention are capable of reducing reverse recovery charge while maintaining a soft recovery feature. Likewise, embodiments of the present invention disclose a germanium-based fast recovery rectifier structure that involves generating a Schottky diode in series with a JFET channel region, or a combined PiN Schottky (MPS) diode structure. For example, in one embodiment, the MPS diode structure enables a higher ratio of Schottky to PiN due to the smaller geometry and reduces N-doping between well regions implanted during hole conduction during forward conduction. And it can reduce the channel resistance.
具體而言,該整流器結構包括一具有一第一類型摻雜劑的基板。以該第一類型摻雜劑輕度摻雜之第一磊晶層耦接至該基板。一第一金屬層相鄰該第一磊晶層而安置。複數個溝槽凹陷至該第一磊晶層中,其中每一者皆耦接至該金屬層。該設備亦包括複數個各以一第二類型摻雜劑摻雜的井,該複數個井之每一者彼此間隔開,且其中該複數個井之每一者形成於該複數個溝槽中的一對應溝槽下方且與之相鄰。複數個氧化層形成於一對應溝槽之壁及一底部上,以使得一對應井與該對應溝槽電絕緣。以該第一類型摻雜劑摻雜之複數個通道區域於來自該複數個井中的兩個對應井之間形成於該第一磊晶層內部,且其中該複數個通道區域之每一者以該第一類型摻雜劑較該第一磊晶層更重度地摻雜。 In particular, the rectifier structure includes a substrate having a dopant of a first type. A first epitaxial layer that is lightly doped with the dopant of the first type is coupled to the substrate. A first metal layer is disposed adjacent to the first epitaxial layer. A plurality of trenches are recessed into the first epitaxial layer, each of which is coupled to the metal layer. The apparatus also includes a plurality of wells each doped with a second type of dopant, each of the plurality of wells being spaced apart from one another, and wherein each of the plurality of wells is formed in the plurality of trenches Below and adjacent to a corresponding groove. A plurality of oxide layers are formed on a wall and a bottom of a corresponding trench such that a corresponding well is electrically insulated from the corresponding trench. A plurality of channel regions doped with the dopant of the first type are formed within the first epitaxial layer between two corresponding wells from the plurality of wells, and wherein each of the plurality of channel regions is The first type dopant is more heavily doped than the first epitaxial layer.
本發明之實施例亦描述一種形成快速回復整流器結構的方法。該方法包括於一基板上沈積以一第一類型摻雜劑摻雜之第二磊晶層。該基板以該第一類型摻雜劑重度摻雜。亦即,該基板較該第二磊晶層更重度地摻雜。該方法亦於該第二磊晶上沈積一以該第一類型摻雜劑輕度摻雜的第一磊晶層。該第二磊晶層較該第一磊晶層更重度地摻雜。蝕刻複數個溝槽至第一磊晶層中。於該複數個溝槽之每一者的壁及底部上形成複數個氧化物閘極界定隔片。植入複數個井以接近該複數個溝槽之每一者的一底部。該複數個井之每一者以第二類型摻雜劑摻雜,且彼此間隔開。亦即, 該複數個井之每一者與一對應溝槽電絕緣。於該磊晶層上沈積一第一金屬層。 Embodiments of the invention also describe a method of forming a fast return rectifier structure. The method includes depositing a second epitaxial layer doped with a dopant of a first type on a substrate. The substrate is heavily doped with the dopant of the first type. That is, the substrate is more heavily doped than the second epitaxial layer. The method also deposits a first epitaxial layer that is lightly doped with the first type dopant on the second epitaxial layer. The second epitaxial layer is more heavily doped than the first epitaxial layer. A plurality of trenches are etched into the first epitaxial layer. A plurality of oxide gate defining spacers are formed on the walls and the bottom of each of the plurality of trenches. A plurality of wells are implanted to access a bottom of each of the plurality of grooves. Each of the plurality of wells is doped with a second type of dopant and spaced apart from each other. that is, Each of the plurality of wells is electrically insulated from a corresponding trench. A first metal layer is deposited on the epitaxial layer.
100‧‧‧整流器結構 100‧‧‧Rectifier structure
110‧‧‧第二金屬層 110‧‧‧Second metal layer
120‧‧‧基板 120‧‧‧Substrate
130‧‧‧第二磊晶層 130‧‧‧Second epilayer
140‧‧‧第一磊晶層 140‧‧‧First epitaxial layer
150‧‧‧通道區域 150‧‧‧Channel area
160‧‧‧井 160‧‧‧ Well
165‧‧‧矽化鈦層 165‧‧‧Titanium telluride layer
170‧‧‧氧化層 170‧‧‧Oxide layer
175‧‧‧溝槽 175‧‧‧ trench
180‧‧‧蕭特基障壁金屬 180‧‧‧Schottky barrier metal
185‧‧‧蕭特基障壁 185‧‧‧ Schottky barrier
190‧‧‧第一金屬層 190‧‧‧First metal layer
200‧‧‧超快回復整流器結構 200‧‧‧Ultra-fast return rectifier structure
215‧‧‧陽極金屬層 215‧‧‧Anode metal layer
220‧‧‧基板 220‧‧‧Substrate
230‧‧‧第一磊晶層 230‧‧‧First epitaxial layer
240‧‧‧第二磊晶層 240‧‧‧Second epilayer
260‧‧‧p型井 260‧‧‧p well
265‧‧‧矽化鈦層 265‧‧‧Titanium telluride layer
270‧‧‧氧化層 270‧‧‧Oxide layer
275‧‧‧溝槽區域 275‧‧‧groove area
280‧‧‧障壁金屬 280‧‧‧Baffle metal
310‧‧‧接觸 310‧‧‧Contact
375‧‧‧溝槽 375‧‧‧ trench
395‧‧‧蕭特基二極體 395‧‧‧Schottky diode
400‧‧‧流程圖 400‧‧‧ Flowchart
500‧‧‧回復特徵 500‧‧‧Response characteristics
510‧‧‧回復特徵 510‧‧‧Response characteristics
520‧‧‧回復特徵 520‧‧‧Response characteristics
530‧‧‧回復特徵 530‧‧‧Response characteristics
圖1說明根據本發明之一實施例之超快回復二極體的側面剖視圖。 1 illustrates a side cross-sectional view of an ultrafast recovery diode in accordance with an embodiment of the present invention.
圖2為根據本發明之一實施例之圖1之超快回復二極體沿p型井之中平面所截得的截面圖。 2 is a cross-sectional view of the ultrafast recovery diode of FIG. 1 taken along a plane in a p-type well, in accordance with an embodiment of the present invention.
圖3為根據本發明之一實施例之快速回復二極體的俯視圖。 3 is a top plan view of a quick return diode in accordance with an embodiment of the present invention.
圖4為說明根據本發明之一實施例之製造蕭特基與PiN比率大於1之超快回復二極體之方法之步驟的流程圖。 4 is a flow chart illustrating the steps of a method of fabricating an ultrafast recovery diode having a Schottky to PiN ratio greater than one, in accordance with an embodiment of the present invention.
圖5為說明根據本發明之一實施例之電流相對時間之例示性回復特徵的圖。 5 is a diagram illustrating exemplary recovery characteristics of current versus time in accordance with an embodiment of the present invention.
現將詳細參考本發明之較佳實施例,亦即,一種快速回復整流器結構及一種製造該結構的方法,其實例在附圖中加以說明。儘管本發明關聯較佳實施例加以描述,但應瞭解該等較佳實施例並非意欲將本發明限制為此等實施例。相反地,本發明意欲涵蓋可包括於如附隨申請專利範圍所界定之本發明之精神及範圍內的替代物、修改及等效物。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments embodiments of the invention While the invention has been described in connection with the preferred embodiments, the preferred embodiments Rather, the invention is intended to cover alternatives, modifications, and equivalents of the invention.
此外,在本發明之以下詳細描述中闡述若干特定細節以便提供對本發明之詳盡瞭解。然而,熟習此項技術者應瞭解可在並無此等特定細節的情況下實施本發明。在其他情況下,並未詳細描述熟知方法、程序、組件及電路以免不必要地模糊本發明之態樣。 In addition, certain specific details are set forth in the following detailed description of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known methods, procedures, components, and circuits are not described in detail to avoid unnecessarily obscuring aspects of the invention.
出於清晰及瞭解之目的,將本發明之實施例描述為在n型基板中具有p型井的整流器。然而,應理解本發明之其他實施例良好地適用於 利用與本文所描繪之極性相反之極性的材料之構造,例如在p型基板中具有n型井的整流器。此種替代實施例應視為屬於本發明之範疇。 For purposes of clarity and understanding, embodiments of the invention are described as a rectifier having a p-type well in an n-type substrate. However, it should be understood that other embodiments of the invention are well suited for use in A configuration of a material having a polarity opposite to that described herein, such as a rectifier having an n-type well in a p-type substrate. Such alternative embodiments are considered to be within the scope of the invention.
圖1為根據本發明之一實施例之快速回復整流器設備100的側面剖視圖。如圖1所示,可在一半導體基板中重複整流器設備100以完成一或多個整流器設備100。該整流器包括一第一金屬層190及一第二金屬層110。舉例而言,第一金屬層190用作一陽極,且第二金屬層110用作一陰極。如圖1所描述之整流器結構能夠產生額定擊穿電壓在150伏特至1200伏特範圍內的設備。 1 is a side cross-sectional view of a quick return rectifier device 100 in accordance with an embodiment of the present invention. As shown in FIG. 1, rectifier device 100 can be repeated in a semiconductor substrate to complete one or more rectifier devices 100. The rectifier includes a first metal layer 190 and a second metal layer 110. For example, the first metal layer 190 functions as an anode and the second metal layer 110 functions as a cathode. The rectifier structure as depicted in Figure 1 is capable of producing devices having a rated breakdown voltage in the range of 150 volts to 1200 volts.
整流器設備100包括一以第一類型摻雜劑摻雜之重度摻雜基板120。在一實施例中,如圖1所示,第一類型摻雜劑為n型摻雜劑。如此而言,基板120經摻雜達濃度n+。 Rectifier device 100 includes a heavily doped substrate 120 doped with a first type of dopant. In one embodiment, as shown in FIG. 1, the first type dopant is an n-type dopant. As such, the substrate 120 is doped to a concentration of n + .
在一實施例中,第二金屬層相鄰基板120而安置。亦即,如圖1所示,整流器100之陰極金屬耦接至n+基板。 In an embodiment, the second metal layer is disposed adjacent to the substrate 120. That is, as shown in FIG. 1, the cathode metal of the rectifier 100 is coupled to the n + substrate.
安置於n+基板120上的是一第一磊晶層140,該第一磊晶層140以磊晶方式沈積且以第一類型(諸如n型)摻雜劑輕度摻雜。亦即,n-第一磊晶層或n-漂移區域之摻雜劑濃度小於n+基板120的之摻雜劑濃度。另外,在一實施例中,第一磊晶層140耦接至基板。 Disposed on the n + substrate 120 is a first epitaxial layer 140 deposited in an epitaxial manner and lightly doped with a first type (such as an n-type) dopant. That is, the dopant concentration of the n - first epitaxial layer or the n - drift region is less than the dopant concentration of the n + substrate 120. In addition, in an embodiment, the first epitaxial layer 140 is coupled to the substrate.
在一實施例中,第一金屬層190相鄰第一磊晶層140而安置。在某些實施例中,第一金屬層190通常包含鋁,且可進一步包含約百分之一的矽。亦即,在一實施例中,第一金屬層190包含一以矽摻雜之單鋁層。在另一實施例中,第一金屬層190包含一以矽摻雜之複合鋁層。 In an embodiment, the first metal layer 190 is disposed adjacent to the first epitaxial layer 140. In certain embodiments, the first metal layer 190 typically comprises aluminum and may further comprise about one percent germanium. That is, in one embodiment, the first metal layer 190 comprises a single aluminum layer doped with antimony. In another embodiment, the first metal layer 190 comprises a composite aluminum layer doped with antimony.
安置於n+基板120與第一磊晶層140之間的是一以第一類型(諸如n型)摻雜劑摻雜的第二磊晶層130。n型第二磊晶層130之摻雜劑濃度小於n+基板120之摻雜劑濃度。又,n型第二磊晶層130之摻雜劑濃度高於n-第 一磊晶層140之摻雜劑濃度。 Disposed between the n + substrate 120 and the first epitaxial layer 140 is a second epitaxial layer 130 doped with a first type (such as an n-type) dopant. The dopant concentration of the n-type second epitaxial layer 130 is less than the dopant concentration of the n + substrate 120. Moreover, the dopant concentration of the n-type second epitaxial layer 130 is higher than the dopant concentration of the n - first epitaxial layer 140.
在整流器100之雙磊晶層結構中,第二磊晶層130用作一耗盡終止層。亦即,在第二磊晶層130中,電場能夠在達到n+基板120之前降低至零。因此,在添加第二磊晶層130的情況下,第一磊晶層140可製得較薄。 In the dual epitaxial layer structure of the rectifier 100, the second epitaxial layer 130 functions as a depletion stop layer. That is, in the second epitaxial layer 130, the electric field can be reduced to zero before reaching the n + substrate 120. Therefore, in the case where the second epitaxial layer 130 is added, the first epitaxial layer 140 can be made thinner.
整流器結構100包括複數個溝槽175,其每一者凹陷至第一磊晶層140中。另外,該複數個溝槽175之每一者電耦接至第一金屬層190(未圖示)。在一實施例中,以未經摻雜之矽或未經摻雜之多晶矽填充該複數個溝槽之每一者。 The rectifier structure 100 includes a plurality of trenches 175, each of which is recessed into the first epitaxial layer 140. Additionally, each of the plurality of trenches 175 is electrically coupled to a first metal layer 190 (not shown). In one embodiment, each of the plurality of trenches is filled with undoped germanium or undoped polysilicon.
在一實施例中,溝槽175具有約300奈米至700奈米之例示性深度尺寸。另外,溝槽175具有約0.4μm至0.5μm之例示性寬度尺寸。應理解,根據本發明之實施例良好地適用於其他尺寸。 In an embodiment, the trench 175 has an exemplary depth dimension of between about 300 nanometers and 700 nanometers. Additionally, trench 175 has an exemplary width dimension of between about 0.4 [mu]m and 0.5 [mu]m. It should be understood that embodiments in accordance with the present invention are well suited for other sizes.
在複數個溝槽175底部的是複數個井160。亦即,在複數個溝槽175之每一者之底部的是一淺井160。因此,複數個淺井160之每一之者形成於複數個溝槽175中的一對應溝槽175下方且與之相鄰。該複數個井之每一者以第二類型(諸如p型)摻雜劑摻雜。如圖1所示,該複數個p型井160之每一者彼此間隔開。 At the bottom of the plurality of trenches 175 are a plurality of wells 160. That is, at the bottom of each of the plurality of trenches 175 is a shallow well 160. Thus, each of the plurality of shallow wells 160 is formed below and adjacent to a corresponding one of the plurality of trenches 175. Each of the plurality of wells is doped with a second type (such as a p-type) dopant. As shown in FIG. 1, each of the plurality of p-wells 160 are spaced apart from one another.
在一實施例中,p型井160以硼原子摻雜。舉例而言,此區域中之硼的濃度為每立方公分約1x 1018個原子。另外,在另一實施例中,p型井之接面深度約0.2μm至0.3μm。又,p型井窗之尺寸約150奈米至200奈米。 In an embodiment, the p-well 160 is doped with boron atoms. For example, the concentration of boron in this region is about 1 x 10 18 atoms per cubic centimeter. Additionally, in another embodiment, the junction depth of the p-type well is between about 0.2 [mu]m and 0.3 [mu]m. Also, the size of the p-type well window is about 150 nm to 200 nm.
在本發明之一實施例中,實施少數載子生命期壓製技術來減少整流器結構100之逆向回復期間載子進行重組的時間。 In one embodiment of the invention, a minority carrier lifetime compression technique is implemented to reduce the time during which the carrier undergoes recombination during reverse recovery of the rectifier structure 100.
亦如圖1所示,整流器100包括複數個氧化層170。該複數個氧化層170之每一者形成於一對應溝槽之壁及底部上。舉例而言,在一實施例中,由二氧化矽絕緣薄膜170覆蓋溝槽175之每一者。在一實施例中,以 未摻雜之多晶矽填充溝槽175的剩餘部分。 As also shown in FIG. 1, rectifier 100 includes a plurality of oxide layers 170. Each of the plurality of oxide layers 170 is formed on a wall and a bottom of a corresponding trench. For example, in one embodiment, each of the trenches 175 is covered by a hafnium oxide insulating film 170. In an embodiment, The undoped polysilicon fills the remainder of the trench 175.
因此,井160之每一者藉由氧化層170而與對應溝槽175絕緣。亦即,第一金屬層190電耦接至填充有多晶矽的未摻雜溝槽175。然而,第一金屬層190並未經由溝槽區域175而電耦接至p型井160。亦即,處於溝槽175之底部及垂直側上的絕緣二氧化矽氧化層170起作用以使p型井160經由溝槽175與第一金屬層190電絕緣。然而,如下文參將看圖2及圖3描述,井160經由遠距離定位之接觸區域(未圖示)而電耦接至第一金屬層190。 Thus, each of the wells 160 is insulated from the corresponding trench 175 by the oxide layer 170. That is, the first metal layer 190 is electrically coupled to the undoped trenches 175 filled with polysilicon. However, the first metal layer 190 is not electrically coupled to the p-well 160 via the trench region 175. That is, the insulating ceria oxide layer 170 on the bottom and vertical sides of the trenches 175 acts to electrically insulate the p-well 160 from the first metal layer 190 via the trenches 175. However, as will be seen below with reference to Figures 2 and 3, well 160 is electrically coupled to first metal layer 190 via a remotely located contact region (not shown).
如圖1所示,複數個通道區域150形成於井160之每一者之間。亦即,井160之間的區域以第一類型摻雜劑(例如n型摻雜劑)摻雜,且其形成於第一磊晶層140內部。亦即,每一通道區域150定位於兩個對應井160之間。通道區域150之摻雜劑濃度高於第一磊晶層140之摻雜劑濃度。 As shown in FIG. 1, a plurality of channel regions 150 are formed between each of the wells 160. That is, the regions between the wells 160 are doped with a first type of dopant (eg, an n-type dopant) and are formed inside the first epitaxial layer 140. That is, each channel region 150 is positioned between two corresponding wells 160. The dopant concentration of the channel region 150 is higher than the dopant concentration of the first epitaxial layer 140.
根據本發明之實施例,p型井160之間的區域150包含n型摻雜且稱作"n型通道增強"層150。n型通道增強150包含每立方公分約1.0 x 1015至2.0x 1016個原子的例示性摻雜。在一實施例中,通道區域150以磷摻雜。應理解,此摻雜程度通常高於n-第一磊晶層140之摻雜程度。 In accordance with an embodiment of the invention, region 150 between p-type wells 160 includes an n-type doping and is referred to as an "n-type channel enhancement" layer 150. The n-type channel enhancement 150 comprises an exemplary doping of about 1.0 x 10 15 to 2.0 x 10 16 atoms per cubic centimeter. In an embodiment, the channel region 150 is doped with phosphorus. It should be understood that this degree of doping is generally higher than the degree of doping of the n - first epitaxial layer 140.
整流器結構100亦包括一導電矽化鈦(TiSi2)層165,其安置於複數個井160之每一表面上。舉例而言,矽化鈦層165產生於p型井160之表面上以降低p型井160之側向電阻。 Rectifier structure 100 also includes a conductive titanium silicide (TiSi 2) layer 165, which is disposed on each surface of the plurality of wells 160. For example, titanium telluride layer 165 is produced on the surface of p-well 160 to reduce the lateral resistance of p-well 160.
一蕭特基障壁金屬180在整流器100中展示為安置於第一金屬層190下方。蕭特基障壁金屬180間隔開第一金屬層190與第一磊晶層140及溝槽175。蕭特基障壁金屬180包含一與第一磊晶層140、氧化層170及溝槽175中之多晶矽區域緊密接觸的障壁金屬,諸如鉬、鎢或鉑。 A Schottky barrier metal 180 is shown in the rectifier 100 to be disposed below the first metal layer 190. The Schottky barrier metal 180 is spaced apart from the first metal layer 190 and the first epitaxial layer 140 and the trenches 175. The Schottky barrier metal 180 includes a barrier metal, such as molybdenum, tungsten or platinum, in intimate contact with the polycrystalline germanium regions of the first epitaxial layer 140, the oxide layer 170, and the trenches 175.
一蕭特基障壁185形成於陽極金屬190與n-磊晶層140之間n第一磊晶層140之凸台區域中。n-第一磊晶層140之凸台區域形成於溝槽175 之間。在一實施例中,凸台區域具有約0.45μm至0.65μm的尺寸。另外,蕭特基障壁185可由(例如)鄰近n-磊晶層而安置之固有鋁特徵(例如,包含鄰近n-磊晶層140而安置之鋁的陽極金屬190)而形成。 A Schottky barrier rib 185 formed in the anode metal 190 and the n - n epitaxial layer of the first protrusion 140 of the land area 140 between the epitaxial layer. The land region of the n - first epitaxial layer 140 is formed between the trenches 175. In an embodiment, the land region has a size of between about 0.45 [mu]m and 0.65 [mu]m. Further, Schottky barrier rib 185 may be (e.g.) adjacent the n - epitaxial layer and disposed of aluminum inherent characteristics (e.g., comprising adjacent the n - 140 and disposed in the epitaxial layer of the aluminum anode metal 190) is formed.
應理解,在逆向偏壓的情況下,蕭特基二極體通常容易洩漏。然而,根據本發明之實施例,在逆向偏壓的情況下,p型井160夾斷(例如,一耗盡區域形成於p型井160之間),以此方式確保整流器100之所要擊穿電壓及低洩漏。有利地,整流器結構100之n型通道特徵將導致改良之逆向回復。用於此種改良逆向回復的一種機制歸因於抑制自p型井160之少數載子注入。 It should be understood that in the case of reverse bias, Schottky diodes are generally susceptible to leakage. However, in accordance with an embodiment of the present invention, in the case of reverse bias, the p-well 160 is pinched off (e.g., a depletion region is formed between the p-wells 160) in such a manner as to ensure that the rectifier 100 is to be broken down. Voltage and low leakage. Advantageously, the n-type channel features of the rectifier structure 100 will result in improved reverse recovery. One mechanism for such improved reverse recovery is due to the suppression of minority carrier injection from p-well 160.
根據本發明之一實施例,將整流器100理解為包含一或多個蕭特基二極體(其每一者與一接面場效電晶體(JFET)通道串聯),及一P intrinsic N(PiN)二極體的基極區。亦即,一p型井160、一n-第一磊晶層140及一n+基板形成一PiN二極體,且每一PiN二極體之間是一蕭特基二極體。用來自JFET之閘極的少數載子之注入來傳導式地調變PiN二極體。 In accordance with an embodiment of the present invention, rectifier 100 is understood to include one or more Schottky diodes (each in series with a junction field effect transistor (JFET) channel), and a P intrinsic N ( PiN) The base region of the diode. That is, a p-well 160, an n - first epitaxial layer 140, and an n + substrate form a PiN diode, and each PiN diode is a Schottky diode. The PiN diode is modulated in a conductive manner by injection of a minority carrier from the gate of the JFET.
利用相對精細之製程幾何形態來建構整流器結構100。在本發明中,整流器結構100展現蕭特基障壁185與PiN區域之尺寸比率大於或等於1。特定而言,上文所描述之整流器結構100的幾何形態包括約0.45μm至0.65μm的n-凸台區域、約0.4μm至0.5μm的溝槽寬度區域、約300nm至700nm的溝槽深度、約150nm至200nm的p型井窗尺寸及約0.2μm至0.3μm的p型井深度。此等幾何形態得出一大於1之蕭特基與PiN比率。 The rectifier structure 100 is constructed using relatively fine process geometries. In the present invention, the rectifier structure 100 exhibits a ratio of the size of the Schottky barrier 185 to the PiN region that is greater than or equal to one. In particular, the geometry of the rectifier structure 100 described above includes an n - land region of about 0.45 μm to 0.65 μm, a trench width region of about 0.4 μm to 0.5 μm, a trench depth of about 300 nm to 700 nm, A p-type well window size of about 150 nm to 200 nm and a p-type well depth of about 0.2 [mu]m to 0.3 [mu]m. These geometries yield a Schottky to PiN ratio greater than one.
歸因於整流器100之蕭特基與PiN的高比率及n型通道區域150,整流器100展現出改良之逆向回復特徵。在一實施例中,蕭特基比率為蕭特基障壁185之尺寸與p型井160之寬度的比率。 Due to the high ratio of Schottky to PiN of the rectifier 100 and the n-type channel region 150, the rectifier 100 exhibits an improved reverse recovery characteristic. In one embodiment, the Schottky ratio is the ratio of the size of the Schottky barrier 185 to the width of the p-well 160.
另外,在一實施例中,較之對應於較大製程幾何形態之較大 溝槽下方之p型井的摻雜,精細製程幾何形態之構造將提供顯著更易的置於溝槽下方之p型井160的摻雜。 In addition, in one embodiment, it is larger than the geometry corresponding to the larger process. The doping of the p-type well below the trench, the construction of the fine process geometry will provide significantly easier doping of the p-well 160 placed under the trench.
現將就功能性描述整流器結構100。一JFET通道形成於複數個p型井160之間。在前向偏壓情況下,p型井注入電洞至JFET通道中。此等額外電洞降低JFET通道的電阻,從而增強整流器結構100之蕭特基區域的前向傳導。處於蕭特基障壁185與n-磊晶140之間的蕭特基二極體的特徵在於具有相比對應PiN二極體之約0.3伏特的較低前向電壓降。當JFET兩端的電壓降至接近0.6伏特時,p型井開始注入電洞。 The rectifier structure 100 will now be described functionally. A JFET channel is formed between the plurality of p-wells 160. In the case of forward bias, the p-well is injected into the JFET channel. These additional holes reduce the resistance of the JFET channel, thereby enhancing the forward conduction of the Schottky region of the rectifier structure 100. The Schottky diode between the Schottky barrier 185 and the n - epitaxial 140 is characterized by a lower forward voltage drop of about 0.3 volts compared to the corresponding PiN diode. When the voltage across the JFET drops to near 0.6 volts, the p-well begins to fill the hole.
具有金屬/半導體接面之蕭特基二極體展現出整流特性(例如,電流以一極性通過結構時易於另一極性)。本實施例之蕭特基二極體可用於高頻及快速開關應用中。蕭特基二極體以多數載子運作。以導帶電子重度佔據金屬區域,且輕度摻雜n型半導體區域。 Schottky diodes with metal/semiconductor junctions exhibit rectifying properties (eg, currents tend to be the other polarity when passing through a structure with one polarity). The Schottky diode of this embodiment can be used in high frequency and fast switching applications. The Schottky diode operates on most carriers. The metal region is heavily occupied by the conduction band electrons, and the n-type semiconductor region is lightly doped.
n型通道增強區域150降低JFET通道的電阻,從而延遲p型井160之前向偏壓情況之起始。在此種情況下,大多數電流流經JFET通道。較少少數載子將導致可有益地改良逆向回復裝置之效能的少數載子的密度降低。 The n-type channel enhancement region 150 reduces the resistance of the JFET channel, thereby delaying the initiation of the forward biasing of the p-well 160. In this case, most of the current flows through the JFET channel. A smaller number of carriers will result in a decrease in the density of minority carriers that can beneficially improve the performance of the retro-recovery device.
在逆向偏壓情況下,一耗盡區域圍繞p型井160而形成。最終,此等耗盡區域彼此重疊,從而導致JFET通道的"夾斷"。 In the case of reverse bias, a depletion region is formed around the p-well 160. Eventually, these depletion regions overlap each other, resulting in a "pinch-off" of the JFET channel.
有利地,根據本發明之實施例之特徵的很大部分由裝置幾何形態而非摻雜製程所控制。一般而言,摻雜製程產生摻雜劑密度的不同分佈,而幾何形態製程通常更精確。 Advantageously, a significant portion of the features in accordance with embodiments of the present invention are controlled by device geometry rather than doping processes. In general, the doping process produces different distributions of dopant densities, while the geometry process is generally more accurate.
應理解,根據本發明之實施例良好地適用於經由多種熟知技術的效能調整,包括(例如)縮短少數載子生命期(例如包括電子輻射、氬、氦或氫植入),或者單獨地或以多種組合方式擴散重金屬(例如鉑或金)。 It will be appreciated that embodiments in accordance with the present invention are well suited for performance adjustment via a variety of well known techniques including, for example, shortening minority carrier lifetimes (eg, including electron radiation, argon, helium or hydrogen implantation), or separately or Heavy metals (such as platinum or gold) are diffused in a variety of combinations.
根據本發明之另一實施例,本文將描述一超快二極體。該超快二極體包含一基板。該基板以第一類型摻雜劑(例如n型摻雜劑)摻雜。超快二極體100包括一以第一類型摻雜劑摻雜的耦接至該基板的第一磊晶層。第一金屬層相鄰第一磊晶層而安置。第一溝槽凹陷至第一磊晶層中且耦接至金屬層。第一井形成於第一溝槽下方且與之相鄰。該第一井以第二類型摻雜劑(例如p型摻雜劑)摻雜。 In accordance with another embodiment of the present invention, an ultrafast diode will be described herein. The ultrafast diode includes a substrate. The substrate is doped with a dopant of a first type, such as an n-type dopant. The ultrafast diode 100 includes a first epitaxial layer coupled to the substrate doped with a dopant of a first type. The first metal layer is disposed adjacent to the first epitaxial layer. The first trench is recessed into the first epitaxial layer and coupled to the metal layer. The first well is formed below and adjacent to the first trench. The first well is doped with a dopant of a second type, such as a p-type dopant.
另外,一第二溝槽凹陷至第一磊晶層中且耦接至金屬層。第二井形成於第二溝槽下方且與之相鄰。該第二井以第二類型摻雜劑(例如p型摻雜劑)摻雜。 In addition, a second trench is recessed into the first epitaxial layer and coupled to the metal layer. A second well is formed below and adjacent to the second trench. The second well is doped with a second type of dopant, such as a p-type dopant.
一通道區域形成於第一磊晶層內部且定位於第一p型井與第二p型井之間。該通道區域以第一類型摻雜劑較第一磊晶層更重度地摻雜。 A channel region is formed inside the first epitaxial layer and positioned between the first p-well and the second p-well. The channel region is more heavily doped with the first type of dopant than the first epitaxial layer.
另外,一第一氧化層形成於第一溝槽之壁及底部上以使得第一井與該第一溝槽電絕緣。同樣,一第二氧化層形成於第二溝槽之壁及底部上以使得第二井與該第二溝槽電絕緣。 Additionally, a first oxide layer is formed on the walls and the bottom of the first trench to electrically insulate the first well from the first trench. Similarly, a second oxide layer is formed on the walls and bottom of the second trench to electrically insulate the second well from the second trench.
圖2為根據本發明之一實施例之一超快回復整流器結構200沿p型井160穿過溝槽插塞區之中平面所截得的截面圖。在另一實施例中,整流器結構200表示圖1之整流器100。舉例而言,圖2表示整流器結構100沿圖1之線A--A所截得的截面圖。 2 is a cross-sectional view of an ultrafast return rectifier structure 200 along a plane in which a p-well 160 passes through a trench plug region, in accordance with an embodiment of the present invention. In another embodiment, rectifier structure 200 represents rectifier 100 of FIG. For example, Figure 2 shows a cross-sectional view of the rectifier structure 100 taken along line A-- of Figure 1.
如圖2所示,超快整流器結構200包含一安置於一金屬層(例如陰極接觸)上的n+基板220。超快整流器結構200包括一以n型摻雜劑摻雜之第一磊晶層230。第一磊晶層230用作一耗盡終止層且與基板220相鄰。整流器200亦包括一安置於第一磊晶層230之頂部的第二磊晶層240。 As shown in FIG. 2, the ultrafast rectifier structure 200 includes an n + substrate 220 disposed on a metal layer (e.g., a cathode contact). The ultrafast rectifier structure 200 includes a first epitaxial layer 230 doped with an n-type dopant. The first epitaxial layer 230 functions as a depletion stop layer and is adjacent to the substrate 220. The rectifier 200 also includes a second epitaxial layer 240 disposed on top of the first epitaxial layer 230.
如圖2所示,其展示溝槽插塞區的橫截面。溝槽插塞區對應於圖1之溝槽區域175。舉例而言,溝槽插塞區包括矽化鈦層265。氧化層270 安置於溝槽之底部及壁上。以未摻雜之多晶矽275填充溝槽。同樣,溝槽插塞區包括一安置於溝槽填充物275與陽極金屬層215之間的障壁金屬280。 As shown in Figure 2, it shows a cross section of the trench plug region. The trench plug region corresponds to the trench region 175 of FIG. For example, the trench plug region includes a titanium telluride layer 265. Oxide layer 270 Placed on the bottom and wall of the trench. The trench is filled with undoped polysilicon 275. Likewise, the trench plug region includes a barrier metal 280 disposed between the trench fill 275 and the anode metal layer 215.
亦如圖2所示,一p型井260安置於溝槽插塞區的底部。如圖所示,該p型井260與溝槽區域275電絕緣,從而經由溝槽插塞區而與陽極金屬層215電絕緣。 As also shown in FIG. 2, a p-type well 260 is disposed at the bottom of the trench plug region. As shown, the p-well 260 is electrically insulated from the trench region 275 to be electrically insulated from the anode metal layer 215 via the trench plug region.
p型井區域260經由接觸310而電耦接至陽極金屬215。亦即,並非於p型井260與陽極金屬215之間形成一穿過溝槽插塞區的接觸,本發明之實施例提供一距溝槽插塞區較遠定位之接觸區310,以便於p型井260與陽極金屬層215之間的電耦接。如圖3所示,接觸310產生於設備之特定產生區中。 The p-well region 260 is electrically coupled to the anode metal 215 via the contact 310. That is, instead of forming a contact between the p-type well 260 and the anode metal 215 through the trench plug region, an embodiment of the present invention provides a contact region 310 positioned farther from the trench plug region to facilitate Electrical coupling between p-well 260 and anode metal layer 215. As shown in Figure 3, contact 310 is generated in a particular production zone of the device.
圖3為根據本發明之一實施例之快速回復整流器結構300的俯視圖。在一實施例中,圖3說明圖1之整流器結構100的向下俯視圖,該圖曝露金屬層(未圖示)下方的組件。同樣,在另一實施例中,圖3說明圖2之整流器結構200。 3 is a top plan view of a quick return rectifier structure 300 in accordance with an embodiment of the present invention. In one embodiment, FIG. 3 illustrates a top plan view of the rectifier structure 100 of FIG. 1 exposing components below a metal layer (not shown). Also, in another embodiment, FIG. 3 illustrates the rectifier structure 200 of FIG.
如圖3所示,整流器結構300包括複數個溝槽375。複數個蕭特基二極體395安置於複數個溝槽375之間。複數個p型井安置於複數個溝槽375下方。 As shown in FIG. 3, rectifier structure 300 includes a plurality of trenches 375. A plurality of Schottky diodes 395 are disposed between the plurality of trenches 375. A plurality of p-type wells are disposed below the plurality of trenches 375.
如圖3所示,其展示遠距離定位之複數個接觸區域310。接觸區域310距整流器結構300之溝槽插塞區較遠定位。亦即,p型井經由溝槽插塞區而與陽極金屬層(未圖示)電絕緣。 As shown in FIG. 3, it shows a plurality of contact areas 310 that are remotely located. Contact region 310 is located further from the trench plug region of rectifier structure 300. That is, the p-type well is electrically insulated from the anode metal layer (not shown) via the trench plug region.
複數個接觸區域310之每一者電耦接複數個p型井及陽極金屬層(未圖示)。因此,p型井經由接觸區域310而電耦接至陽極金屬層。 Each of the plurality of contact regions 310 is electrically coupled to a plurality of p-type wells and an anode metal layer (not shown). Thus, the p-type well is electrically coupled to the anode metal layer via the contact region 310.
圖4為說明根據本發明之一實施例之製造蕭特基與PiN比率等於或大於1之超快回復整流器結構之方法之步驟的流程圖。如圖4中所描 繪,製造製程可以半導體基板上之各初始製程開始,諸如清洗、摻雜、蝕刻及/或類似。半導體基板可含有第一濃度之第一類型摻雜劑。舉例而言,在本發明之實施例中,基板可包含以磷或砷重度摻雜之矽、或以硼重度摻雜之矽。 4 is a flow chart illustrating the steps of a method of fabricating an ultrafast recovery rectifier structure having a Schottky and PiN ratio equal to or greater than one, in accordance with an embodiment of the present invention. As depicted in Figure 4. The fabrication process can begin with each initial process on the semiconductor substrate, such as cleaning, doping, etching, and/or the like. The semiconductor substrate can contain a first concentration of dopant of a first concentration. For example, in embodiments of the invention, the substrate may comprise germanium heavily doped with phosphorus or arsenic or germanium heavily doped with boron.
在410處,本實施例於基板上沈積一可選磊晶層、一第二磊晶層。該第二磊晶層以第一類型摻雜劑摻雜。第二磊晶層用作一耗盡終止層。因此,基板以第一摻雜劑較第二磊晶層更重度地摻雜。 At 410, the embodiment deposits an optional epitaxial layer and a second epitaxial layer on the substrate. The second epitaxial layer is doped with a dopant of a first type. The second epitaxial layer acts as a depletion stop layer. Therefore, the substrate is more heavily doped with the first dopant than the second epitaxial layer.
在420處,本實施例於可選第二磊晶層上沈積另一磊晶層:第一磊晶層。該第一磊晶層以第一類型摻雜劑輕度摻雜。第二磊晶層較第一磊晶層更重度地摻雜。 At 420, the present embodiment deposits another epitaxial layer on the optional second epitaxial layer: a first epitaxial layer. The first epitaxial layer is lightly doped with a dopant of the first type. The second epitaxial layer is more heavily doped than the first epitaxial layer.
在一實施例中,藉由在沈積期間將摻雜劑引入一磊晶腔室來對第一磊晶層進行摻雜。舉例而言,第一沈積磊晶層可為以磷或砷適度摻雜之矽。亦可藉由沈積之後之一可選之高能植入及熱退火製程來對第一磊晶層進行摻雜。在此種情況下,磊晶沈積之半導體層可為以硼適度摻雜之矽。 In one embodiment, the first epitaxial layer is doped by introducing a dopant into an epitaxial chamber during deposition. For example, the first deposited epitaxial layer can be a germanium doped with phosphorus or arsenic moderately. The first epitaxial layer may also be doped by an optional high energy implantation and thermal annealing process after deposition. In this case, the epitaxially deposited semiconductor layer may be a doped with boron moderately doped.
在430處,本實施例蝕刻複數個溝槽至第一磊晶層中。該等溝槽大體上平行且為直線形。溝槽之間的間隔及溝槽之寬度經選擇以使得蕭特基障壁與PiN之比率大於或等於1,藉此增大逆向偏壓情況下整流器的回復特徵。 At 430, the present embodiment etches a plurality of trenches into the first epitaxial layer. The grooves are generally parallel and linear. The spacing between the trenches and the width of the trenches are selected such that the ratio of Schottky barrier to PiN is greater than or equal to 1, thereby increasing the return characteristics of the rectifier in the reverse bias condition.
在440處,本實施例形成安置於複數個溝槽之壁及底部上的複數個氧化層。因此,溝槽填充物由於氧化層而與溝槽底部下方的區域絕緣。 At 440, the present embodiment forms a plurality of oxide layers disposed on the walls and bottom of the plurality of trenches. Therefore, the trench fill is insulated from the region under the bottom of the trench due to the oxide layer.
在450處,本實施例在接近複數個溝槽之每一者之底部的位置植入複數個各以第二類型摻雜劑摻雜之井。在一實施例中,該複數個井 之每一者彼此間隔開,且其中該複數個井之每一者藉由先前所述氧化層而與對應溝槽電絕緣。舉例而言,該複數個井形成控制閘極區之柵格。可由熟知之高能植入製程來植入該等井。在一實施例中,可在熱循環(例如快速熱退火)期間驅動摻雜劑至一所要深度。 At 450, the present embodiment implants a plurality of wells each doped with a dopant of a second type at a location near the bottom of each of the plurality of trenches. In an embodiment, the plurality of wells Each of the plurality of wells is spaced apart from each other, and wherein each of the plurality of wells is electrically insulated from the corresponding trench by the previously described oxide layer. For example, the plurality of wells form a grid of control gate regions. The wells can be implanted by well known high energy implant processes. In an embodiment, the dopant can be driven to a desired depth during thermal cycling (eg, rapid thermal annealing).
另外,本實施例形成遠距離定位之複數個接觸區域,該複數個接觸區域電耦接該複數個井及第一金屬層。 In addition, the present embodiment forms a plurality of contact regions that are remotely positioned, and the plurality of contact regions are electrically coupled to the plurality of wells and the first metal layer.
在一實施例中,以第一類型摻雜劑植入該等井之間的複數個通道區域以形成一增強通道區域。亦即,以第一摻雜劑植入界定於複數個井之間的複數個通道區域中之第一半導體層中的區域。因此,該複數個通道區域較該第一磊晶層更重度地摻雜。 In one embodiment, a plurality of channel regions between the wells are implanted with a first type of dopant to form an enhanced channel region. That is, a region of the first semiconductor layer defined in a plurality of channel regions defined between the plurality of wells is implanted with the first dopant. Therefore, the plurality of channel regions are more heavily doped than the first epitaxial layer.
在460處,本實施例於該第一磊晶層上沈積一第一金屬層。舉例而言,該第一金屬層為陽極金屬層。 At 460, the embodiment deposits a first metal layer on the first epitaxial layer. For example, the first metal layer is an anode metal layer.
同樣,在另一實施例中,一蕭特基障壁金屬安置於第一金屬層下方,以使得蕭特基障壁間隔開第一金屬層與第一磊晶層。特定而言,蕭特基障壁二極體於前述通道區域上方形成於蕭特基障壁金屬與第一磊晶層之間。 Also, in another embodiment, a Schottky barrier metal is disposed under the first metal layer such that the Schottky barrier is spaced apart from the first metal layer and the first epitaxial layer. In particular, a Schottky barrier dipole is formed between the Schottky barrier metal and the first epitaxial layer over the aforementioned channel region.
圖5說明根據本發明之實施例之電流相對時間之例示性回復特徵500。回復特徵510表示如習知技術中已知之例示性600伏特超快二極體的逆向回復特徵。應理解,該回復特徵包含約三安培之最大逆向電流及約3x10秒的持續時間。 FIG. 5 illustrates an exemplary recovery feature 500 of current versus time in accordance with an embodiment of the present invention. Recovery feature 510 represents the reverse recovery feature of an exemplary 600 volt ultrafast diode as is known in the art. It should be understood that the recovery feature comprises a maximum reverse current of about three amps and a duration of about 3 x 10 seconds.
回復特徵520表示根據本發明之實施例之例示性600伏特二極體的逆向回復特徵。應理解,此二極體之回復特徵包含較特徵510之習知二極體顯著小的電流。回復特徵520展示約1.3安培之最大逆向電流。有益地,回復持續時間較特徵510之回復持續時間稍長,例如,約4.5 x 108秒。 Recovery feature 520 represents the reverse recovery feature of an exemplary 600 volt diode in accordance with an embodiment of the present invention. It should be understood that the return characteristics of this diode include a significantly smaller current than the conventional diode of feature 510. The recovery feature 520 exhibits a maximum reverse current of about 1.3 amps. Beneficially, the duration of the reply is slightly longer than the duration of the signature of feature 510, for example, about 4.5 x 108 seconds.
回復特徵530表示根據本發明之實施例之第二例示性600伏特二極體的逆向回復特徵。應理解,此二極體之回復特徵包含較特徵510之習知二極體顯著小的電流。回復特徵530展示約0.8安之最大逆向電流。有益地,回復持續時間較特徵510之回復持續時間稍長,例如,約4.5 x 108秒。 Recovery feature 530 represents the reverse recovery feature of a second exemplary 600 volt diode in accordance with an embodiment of the present invention. It should be understood that the return characteristics of this diode include a significantly smaller current than the conventional diode of feature 510. The recovery feature 530 exhibits a maximum reverse current of about 0.8 amps. Beneficially, the duration of the reply is slightly longer than the duration of the signature of feature 510, for example, about 4.5 x 108 seconds.
因此,本發明之各種實施例揭示一種用於快速回復整流器結構的裝置及方法。本發明之實施例能夠減少逆向回復電荷且同時維持一軟性回復特徵。同樣,本發明之實施例揭示一種基於矽之快速回復二極體,其涉及產生與JFET通道區域串聯之蕭特基二極體,或一合併式PiN蕭特基(MPS)二極體結構。舉例而言,在一實施例中,MPS二極體結構由於幾何形態較小而致能蕭特基與PiN之較高比率,且由於減少前向傳導期間電洞注入之井區域之間的N型摻雜而致能減小之通道電阻。 Accordingly, various embodiments of the present invention disclose an apparatus and method for a fast return rectifier structure. Embodiments of the present invention are capable of reducing reverse recovery charge while maintaining a soft recovery feature. Likewise, embodiments of the present invention disclose a germanium-based fast recovery diode that involves generating a Schottky diode in series with a JFET channel region, or a combined PiN Schottky (MPS) diode structure. For example, in one embodiment, the MPS diode structure enables a higher ratio of Schottky to PiN due to smaller geometry and reduces N between well regions injected during hole conduction during forward conduction. Type doping to reduce channel resistance.
儘管流程圖400中所說明之方法實施例展示了特定序列及數量的步驟,但本發明適用於諸替代實施例。舉例而言,本發明並非需要上述方法中所提供的所有步驟。此外,可添加額外步驟至本實施例中所呈現的步驟。類似地,可視應用而定對步驟之序列進行修改。 Although the method embodiments illustrated in flowchart 400 illustrate specific sequences and numbers of steps, the invention is applicable to alternative embodiments. For example, the present invention does not require all of the steps provided in the above methods. Additionally, additional steps can be added to the steps presented in this embodiment. Similarly, the sequence of steps is modified depending on the application.
因此,描述了本發明之實施例,亦即,一種蕭特基與PiN比率約大於或等於1的快速回復整流器結構及其製造方法。儘管已以特定實施例描述了本發明,但應理解,不應將本發明解釋為受限於此等實施例,而是應根據以下申請專利範圍來解釋本發明。 Accordingly, embodiments of the present invention are described, that is, a fast recovery rectifier structure having a Schottky to PiN ratio greater than or equal to one and a method of fabricating the same. Although the present invention has been described in terms of specific embodiments, it is understood that the invention is not construed as being limited to the embodiments.
100‧‧‧整流器結構 100‧‧‧Rectifier structure
110‧‧‧第二金屬層 110‧‧‧Second metal layer
120‧‧‧基板 120‧‧‧Substrate
130‧‧‧第二磊晶層 130‧‧‧Second epilayer
140‧‧‧第一磊晶層 140‧‧‧First epitaxial layer
150‧‧‧通道區域 150‧‧‧Channel area
160‧‧‧井 160‧‧‧ Well
165‧‧‧矽化鈦層 165‧‧‧Titanium telluride layer
170‧‧‧氧化層 170‧‧‧Oxide layer
175‧‧‧溝槽 175‧‧‧ trench
180‧‧‧蕭特基障壁金屬 180‧‧‧Schottky barrier metal
185‧‧‧蕭特基障壁 185‧‧‧ Schottky barrier
190‧‧‧第一金屬層 190‧‧‧First metal layer
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64457805A | 2005-12-22 | 2005-12-22 | |
US75455005P | 2005-12-27 | 2005-12-27 | |
US11/320,313 US7696598B2 (en) | 2005-12-27 | 2005-12-27 | Ultrafast recovery diode |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201421641A TW201421641A (en) | 2014-06-01 |
TWI517345B true TWI517345B (en) | 2016-01-11 |
Family
ID=51393534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102139696A TWI517345B (en) | 2005-12-22 | 2006-12-27 | Apparatus and method for a fast recovery rectifier structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI517345B (en) |
-
2006
- 2006-12-27 TW TW102139696A patent/TWI517345B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201421641A (en) | 2014-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7696540B2 (en) | Structure and method for a fast recovery rectifier structure | |
JP5059025B2 (en) | Ultrafast recovery diode | |
US10950717B2 (en) | Semiconductor device having semiconductor regions with an impurity concentration distribution which decreases from a respective peak toward different semiconductor layers | |
JP6471126B2 (en) | Improved Schottky rectifier | |
US9012954B2 (en) | Adjustable field effect rectifier | |
CN111149213B (en) | Silicon carbide semiconductor device and method for manufacturing same | |
JP2000512075A (en) | Schottky barrier rectifier and method of manufacturing the same | |
US10516017B2 (en) | Semiconductor device, and manufacturing method for same | |
KR101875287B1 (en) | A method for forming a semiconductor device | |
JP4889645B2 (en) | Manufacturing method of semiconductor device | |
JP2019129300A (en) | Semiconductor device and method for manufacturing the same | |
TWI416695B (en) | Apparatus and method for a fast recovery rectifier structure | |
US20230187546A1 (en) | Electronic Device Including a Transistor Structure | |
TWI517345B (en) | Apparatus and method for a fast recovery rectifier structure | |
US9202910B2 (en) | Lateral power semiconductor device and method for manufacturing a lateral power semiconductor device | |
US9419116B2 (en) | Diodes and methods of manufacturing diodes | |
JP2006100779A (en) | Semiconductor device and its manufacturing method |