Nothing Special   »   [go: up one dir, main page]

TWI575470B - A global relationship model and a relationship search method for internet social networks - Google Patents

A global relationship model and a relationship search method for internet social networks Download PDF

Info

Publication number
TWI575470B
TWI575470B TW103122020A TW103122020A TWI575470B TW I575470 B TWI575470 B TW I575470B TW 103122020 A TW103122020 A TW 103122020A TW 103122020 A TW103122020 A TW 103122020A TW I575470 B TWI575470 B TW I575470B
Authority
TW
Taiwan
Prior art keywords
social
peer
user
node
association
Prior art date
Application number
TW103122020A
Other languages
Chinese (zh)
Other versions
TW201601102A (en
Inventor
林風
鍾百俊
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW103122020A priority Critical patent/TWI575470B/en
Publication of TW201601102A publication Critical patent/TW201601102A/en
Application granted granted Critical
Publication of TWI575470B publication Critical patent/TWI575470B/en

Links

Landscapes

  • Information Transfer Between Computers (AREA)

Description

適用於社群網路之全域關係系統及搜尋關係方法 Global relationship system and search relationship method for social networks

本發明係一種關係網路搜尋方法,尤指一種基於整合異質社群網路之關係網路搜尋方法。 The invention relates to a relational network search method, in particular to a relational network search method based on integrating heterogeneous social networks.

現今之社群網站,例如臉書(FacebookTM)、領英(LinkedinTM)等藉由提供使用者簡易聯絡、通訊、以及分享大量資訊之存取平台,進而改變的現今之社會。而使用者透過社群網路更可與老朋友取得聯繫,以及透過分享如嗜好、興趣等資訊、及重疊之人際關係來建立新的社交關係。由於使用社群網路的人口,以及社群網路類型急速的增加。舉例而言,臉書的活躍使用者預計已達到數億人。雖然難以確切估算,世上大約有超過數千種的社群網路及其所提供之不同服務。 Today's social networking sites, such as Facebook (Facebook TM), LinkedIn (Linkedin TM), etc. By providing a simple user liaison, communications, and share a lot of information access platform, and then change today's society. Users can also get in touch with old friends through social networks, and build new social relationships by sharing information such as hobbies, interests, and overlapping relationships. Due to the use of the social network population, and the rapid increase in the types of social networks. For example, active users of Facebook are expected to reach hundreds of millions of people. Although it is difficult to estimate exactly, there are more than a thousand social networks in the world and the different services they provide.

因此,單一使用者可能會註冊多個社群網站以取得不同的社群網路應用、帶有多個社群網路帳號、與位於各個社群網路之朋友取得聯絡、發佈以及存取不同之內容、以及在每個社群網路之社群分享內容。而各個社群網路提供不同服務下,如何提供一種可讓使用者與位於不同社群網路之其他的使用者進行聯繫乃一關鍵要點。然而各個社群網路皆為獨立之網路,因此使用者必需分別在不同的社群網路進行管理、建立個人檔案 以及社交聯繫。而使用者在不同社群網路所發佈的貼文可能有所重覆,因此維護不同社群網路上之內容將對使用者造成極大的負擔。 As a result, a single user may sign up for multiple social networking sites to achieve different social networking applications, have multiple social network accounts, and get in touch, post, and access with friends on various social networks. The content and sharing of content across the community of each social network. While providing different services across social networks, it is a key point to provide a way for users to connect with other users on different social networks. However, each social network is an independent network, so users must manage and create profiles on different social networks. And social connections. The posts posted by users on different social networks may be duplicated, so maintaining content on different social networks will place a heavy burden on users.

綜上所述,提供一種用於整合異質社群網路之方法及其系統乃本領域亟需解決之技術問題。 In summary, it is a technical problem in the art to provide a method and system for integrating a heterogeneous social network.

為解決前揭習知技術之技術問題,本發明之一目的係提供一種用於整合異質社群網路之方法及其系統。 In order to solve the technical problems of the prior art, one object of the present invention is to provide a method and system for integrating a heterogeneous social network.

為達上述之目的,本發明提供一種用於整合異質社群網路之同儕網路方法,該方法係應用於一伺服裝置,該方法更包含下列步驟:首先,該伺服裝置連接複數個同儕節點,每一個同儕節點定義一使用者以及用以存取至少一社群網路。接著,該伺服裝置依據社群網路間之一社交關聯,以對具關聯性之該等同儕節點進行連結,據以整合成一同儕社群網路(peer-to-peer social network,簡稱:P2P-iSN),其中該同儕社群網路係於各個同儕節點其不同之社群網路間配置複數條社交路徑。 In order to achieve the above object, the present invention provides a peer network method for integrating a heterogeneous social network, the method is applied to a server device, and the method further comprises the following steps: First, the server device is connected to a plurality of peer nodes. Each peer node defines a user and is used to access at least one social network. Then, the server device is connected to the peer-to-peer social network according to a social association between the social networks, and is integrated into a peer-to-peer social network (P2P for short). -iSN), wherein the peer community network configures a plurality of social paths between different peer networks of different peer networks.

為達上述之目的,本發明又提供一種用於整合異質社群網路之同儕網路系統。該系統包含一通訊模組以及一處理模組。通訊模組係連接複數個同儕節點,而各個同儕節點定義一使用者以及用於存取至少一社群網路。處理模組為連接通訊模組並依據社群網路間之一社交關聯,以對具關聯性之該等同儕節點進行連結,據以整合成一同儕社群網路,其中同儕社群網路係於各個同儕節點其不同之社群網路間配置複數條社交路徑。 To achieve the above objects, the present invention further provides a peer network system for integrating a heterogeneous social network. The system includes a communication module and a processing module. The communication module is connected to a plurality of peer nodes, and each peer node defines a user and is used to access at least one social network. The processing module is connected to the communication module and according to a social association between the social networks, to link the equivalent nodes of the association, and to integrate into the same social network, wherein the peer social network system Configure multiple social paths between different peer networks of each peer node.

綜上所述,本發明之系統及其方法可整合異質之社群網路以及產生社交路徑,以讓使用者能與位在相同/相異社群網路朋友取得聯繫。 In summary, the system and method of the present invention integrates heterogeneous social networks and generates social paths to enable users to connect with friends on the same/different social network.

1,na,nb‧‧‧同儕節點 1,na, nb‧‧‧ peer node

1.1‧‧‧FeedRequestListener 1.1‧‧‧FeedRequestListener

1.2‧‧‧SampleAuthListener 1.2‧‧‧SampleAuthListener

1.3‧‧‧CreateFriendListListener 1.3‧‧‧CreateFriendListListener

1.4‧‧‧Friend List 1.4‧‧‧Friend List

1.5‧‧‧Peer Agent 1.5‧‧‧Peer Agent

1.6‧‧‧Update_Tvalue() 1.6‧‧‧Update_Tvalue()

1.7‧‧‧Update_FriendList() 1.7‧‧‧Update_FriendList()

1.8‧‧‧Relationship_Finding() 1.8‧‧‧Relationship_Finding()

1.9‧‧‧Phone Book API 1.9‧‧‧Phone Book API

1.10‧‧‧Background Service 1.10‧‧‧Background Service

2‧‧‧同儕索引節點 2‧‧‧Same index node

2.1‧‧‧IndexPeerAgent 2.1‧‧‧IndexPeerAgent

2.2‧‧‧receivePacket.getData() 2.2‧‧‧receivePacket.getData()

2.3‧‧‧receiveSocket.receive() 2.3‧‧‧receiveSocket.receive()

2.4‧‧‧receiveSocket.send() 2.4‧‧‧receiveSocket.send()

2.5‧‧‧Global ID list 2.5‧‧‧Global ID list

3‧‧‧Facebook Graph API 3‧‧‧Facebook Graph API

3.1‧‧‧SessionEvents.addAuthListener(new SampleAuthListener()) 3.1‧‧‧SessionEvents.addAuthListener(new SampleAuthListener())

3.2‧‧‧mAsyncRunner.request(“me/friends”,new reateFriendListListener()) 3.2‧‧‧mAsyncRunner.request("me/friends", new reateFriendListListener())

3.3‧‧‧mAsyncRunner.request(“me/feed”,newFeedRequestListener()) 3.3‧‧‧mAsyncRunner.request("me/feed", newFeedRequestListener())

4‧‧‧Twitter REST API 4‧‧‧Twitter REST API

5‧‧‧other social network API 5‧‧‧other social network API

第1圖係為本發明之同儕社群網路之系統架構圖。 Figure 1 is a system architecture diagram of the peer community network of the present invention.

第2圖係為本發明之朋友清單其格式示意圖。 Figure 2 is a schematic diagram of the format of a friend list of the present invention.

第3圖係為本發明之同儕社群網路之軟體架構圖。 Figure 3 is a software architecture diagram of the peer community network of the present invention.

第4圖係為本發明之Global ID list。 Figure 4 is a Global ID list of the present invention.

第5圖係為本發明之登入程序之訊息流程圖。 Figure 5 is a message flow diagram of the login procedure of the present invention.

第6A圖係為本發明之跨越異質社群網路之社交圖形。 Figure 6A is a social graph of the heterogeneous social network of the present invention.

第6B圖係為本發明之i-Search演算法。 Figure 6B is an i-Search algorithm of the present invention.

第7、8圖係為本發明之分析以及模擬之比較結果。 Figures 7 and 8 show the results of the analysis and simulation of the present invention.

以下將描述具體之實施例以說明本發明之實施態樣,惟其並非用以限制本發明所欲保護之範疇。 The specific embodiments are described below to illustrate the embodiments of the invention, but are not intended to limit the scope of the invention.

第1圖係呈現具有三種社群網路態樣之同儕社群網路(例如臉書(FacebookTM)、推特(TwitterTM)、谷哥(Google+TM)),以及二種節點:同儕節點1以及同儕索引節點2。 FIG 1 has three lines presented aspects of the social network community peer network (e.g., Facebook (Facebook TM), Twitter (Twitter TM), Columbia Valley (Google+ TM)), and two kinds of nodes: Peer node 1 and the same index node 2.

前述之同儕節點1係安裝於終端裝置(例如:PDA、智慧型手機、桌機等)以讓使用者存取社群網路以及連接至伺服裝置,伺服裝置主要功能在於整合異質社群網路。前述同儕節點1之使用者可透過其終端裝置註冊一或多個社群網路,並可同時登入前述之社群網路。本案藉由唯一使用者身分識別(Unique user ID,簡稱:UUID)來關聯相同使用者持有之異質社群網路帳號。前述之UUID可為特定之認證資訊,例如使用者手持電話之電 話號碼,或者是驗證之電子郵件信箱。前述之同儕索引節點2係安裝置於伺服裝置,並用來提供與各個同儕節點1之通訊狀態(例如:上線、離線狀態),以及路由資訊(例如:IP位址)。當各個同儕節點1開啟時,會向同儕索引節點2回報上線狀態,其上線狀態包含了同儕節點1之ID、IP位址等資訊。而在收到上線狀態後,同儕索引節點2會更新各個同儕節點1之相關資訊。若同儕節點na之使用者a,以及同儕節點nb之使用者b在一社群網路上皆在對方的朋友清單上,且同儕節點na以及同儕節點nb都是開啟的情況下,此上線之二同儕節點1可向同儕索引節點2查詢對方之IP位址來進行通訊。據此,同儕節點1可為使用端在不同的社群網路間建立社交路徑,以形成一全域關聯(global relationship)。 The aforementioned peer node 1 is installed in a terminal device (for example, PDA, smart phone, desk machine, etc.) to allow the user to access the social network and connect to the server device. The main function of the server device is to integrate the heterogeneous social network. . The user of the peer node 1 can register one or more social networks through its terminal device and can simultaneously log in to the aforementioned social network. In this case, the unique user ID (UUID) is used to associate the heterogeneous social network account held by the same user. The aforementioned UUID can be specific authentication information, such as the power of the user holding the phone. The phone number, or the verified email address. The aforementioned peer index node 2 is installed in the servo device and is used to provide communication status (for example, online, offline status) with each peer node 1 and routing information (for example, an IP address). When each peer node 1 is turned on, the online status is reported to the peer index node 2, and the online state includes information such as the ID and IP address of the peer node 1. After receiving the online status, the peer index node 2 updates the related information of each peer node 1. If the user a of the peer node na and the user b of the peer node nb are on the other party's friend list on a social network, and the peer node na and the peer node nb are both turned on, the second line is online. The peer node 1 can query the peer index node 2 for the IP address of the other party to communicate. Accordingly, peer node 1 can establish a social path between different social networks for the user to form a global relationship.

藉由同儕網路架構(peer to peer network architecture),本案之P2P-iSM透過整合多個異質之社群網路,以讓在不同社群網路之使用者毋需再藉由任何特定之社群網路即能相互進行通訊。換言之,前述之整合並不會產生額外之社群網路。透過P2P-iSM,本案提供一種全域關聯模型(global relationship Mode)來存取位於異質社群網路之二使用者間之全域關聯強度。透過全域關聯模型,本案又提供一種名為i-Search之搜尋機制,藉此尋找位於異質社群網路之二使用者間之社交路徑(social path)。本案又提供一種分析模型,該分析模型係用於分析i-Search搜尋機制於尋獲社交路徑之機率及其搜尋性能,並進行廣泛的模擬研究以驗證本案之分析結果。 Through the peer to peer network architecture, the P2P-iSM in this case integrates multiple heterogeneous social networks so that users on different social networks need to use any particular community. Group networks can communicate with each other. In other words, the aforementioned integration does not create additional social networks. Through P2P-iSM, the case provides a global relationship mode to access the global association strength between two users located in a heterogeneous social network. Through the global association model, the case also provides a search mechanism called i-Search to find the social path between the users of the heterogeneous social network. The case further provides an analysis model for analyzing the probability of the i-Search search mechanism in finding social paths and its search performance, and conducting extensive simulation studies to verify the analysis results of the case.

本案使用行動電話號碼作為前述之唯一使用者身分識別。而手持裝置內的電話薄(例如:Jenny的終端裝置)則作為整合異質社群網路之基礎。以第2圖所示之範例,Jenny有一位名為John的朋友,而John的電話號 碼為”0910456”。 This case uses the mobile phone number as the only user identity identified above. The phone book in the handheld device (for example, Jenny's terminal device) serves as the basis for integrating heterogeneous social networks. In the example shown in Figure 2, Jenny has a friend named John, and John's phone number. The code is "0910456".

本案又透過一資料庫以及一朋友清單來提供以及儲存使用者朋友之資訊。第2b圖係表示朋友清單之格式。前述之朋友清單包含了三種資訊:個人資訊(personal information)、社群網路資訊(social network information)、以及位址資訊(address information)。 The case also provides and stores information about users' friends through a database and a list of friends. Figure 2b shows the format of the friend list. The aforementioned friend list contains three types of information: personal information, social network information, and address information.

個人資訊之欄位儲存了使用者朋友之ID(包含了社群網路之ID)、電話號碼(phone no)、以及電子郵件地址(Email)。在不同的社群網路中,使用者可能使用不同的ID,請參閱第2b圖之例示,Jenny的朋友John在Facebook使用的ID為John_f,而在Twitter使用的ID為John_t。而電話號碼則作為關聯電話薄內朋友清單之條目(entry)。並以此條目得以進一步映射至朋友清單內之多個條目。 The personal information field stores the ID of the user's friend (including the ID of the social network), the phone number (phone no), and the email address (Email). In different social networks, users may use different IDs. See the example in Figure 2b. Jenny's friend John uses the ID of John_f on Facebook and the ID of John_t on Twitter. The phone number is used as an entry for the list of friends in the associated phone book. This entry can be further mapped to multiple entries in the friends list.

社群網路資訊之欄位包含了四個子欄位:社群網路類型(SN type)、T值(T value)、時間戳記(Timestamp)以及上線狀態(Online)。社群網路類型說明所註冊之社群網路。以第2b圖舉例說明之,Jenny的朋友John註冊Facebook的ID為”John_f”。T值儲存在全域關聯模型中,透過方程式(1)計算之結果。T值係用於說明使用者透過某種社交活動和朋友互動的頻率(例如:Jenny在John的Facebook頁面上發佈一則貼文、按「讚」、或發送訊息等)。以第2b圖說明之,當套用方程式(1)時可得Jenny←John於Facebook之T值為0.9。時間戳記係記錄T值計算之時間。上線狀態係說明特定朋友是否在此社群網路上及其最近登入之時間。若上線狀態為”ON”/”OFF”,則所記錄之時間係為John登入/登出Facebook最近之時間。以第2b圖舉例說明之,”On_12’0215_1430”意味著John登入Facebook的時間2012年2月15日 14:00,以及目前就掛在Facebook上。 The social network information field contains four sub-fields: SN type, T value, Timestamp, and Online status. The social network type describes the registered social network. As illustrated by Figure 2b, Jenny's friend John registered Facebook's ID as "John_f". The T value is stored in the global correlation model and the result is calculated by equation (1). The T value is used to indicate how often a user interacts with a friend through a social activity (eg, Jenny posts a post on John's Facebook page, presses "Like", or sends a message, etc.). As illustrated in Figure 2b, when applying equation (1), Jenny ← John has a T value of 0.9 on Facebook. The time stamp is the time at which the T value is calculated. The online status indicates whether a particular friend is on this social network and when he or she recently logged in. If the online status is "ON" / "OFF", the recorded time is the time when John logs in/out of Facebook. Illustrated in Figure 2b, "On_12'0215_1430" means John's time to log in to Facebook February 15, 2012 14:00, and currently hanging on Facebook.

位址資訊欄位係記錄IP位址以及朋友端終端裝置之連接埠號。本資訊在朋友端之同儕端開啟時始為有效。 The address information field records the IP address and the connection nickname of the friend terminal device. This information is valid when it is opened on the same side of the friend.

第3圖呈現本案P2P-iSM之軟體架構。同儕節點1之軟體架構包含5個類別(class)以及一個函式(function):PeerAgent 1.5、FeedRequestListener 1.1、SampleAuthListener 1.2、CreateFriendListListener 1.3、BackgroundService 1.10、以及PhoneBook API 1.9,各類別之詳細說明如下:FeedRequestListener 1.1係用於取得使用者位於社群網路之社交活動狀態。其係呼叫社群網路所提供之API mAsyncRunner.request(“me/feed”,newFeedRequestListener())3.3,例如:Facebook Graph API 3,Twitter REST API 4,other social network API5…等。 Figure 3 shows the software architecture of the P2P-iSM in this case. The software architecture of peer node 1 contains five classes and one function: PeerAgent 1.5, FeedRequestListener 1.1, SampleAuthListener 1.2, CreateFriendListListener 1.3, BackgroundService 1.10, and PhoneBook API 1.9. The detailed description of each category is as follows: FeedRequestListener 1.1 It is used to get the social activity status of the user on the social network. It is called API mAsyncRunner.request ("me/feed", newFeedRequestListener()) 3.3 provided by the community network, for example: Facebook Graph API 3, Twitter REST API 4, other social network API5...etc.

SampleAuthListener 1.2係於使用者開啟同儕節點1以及登入社群網路時進行認證作業。SampleAuthListener 1.2係藉由社群網路提供之API(SessionEvents.addAuthListener(new SampleAuthListener())3.1)來實現。 SampleAuthListener 1.2 is used when the user opens the peer node 1 and logs into the social network. SampleAuthListener 1.2 is implemented by the API provided by the social network (SessionEvents.addAuthListener(new SampleAuthListener())3.1).

CreateFriendListListener 1.3透過呼叫由社群網路所提供之SessionEvents.addAuthListener(new SampleAuthListener())3.1之應用程式(API)mAsyncRunner.request(“me/friends”,new CreateFriendListListener())3.2來取得使用者朋友在社群網路之ID,以及提供使用者之朋友清單。 CreateFriendListListener 1.3 obtains the user's friend by calling the SessionEvents.addAuthListener(new SampleAuthListener()) 3.1 application (API) mAsyncRunner.request ("me/friends", new CreateFriendListListener()) 3.2 provided by the social network. The ID of the social network and a list of friends who provide users.

BackgroundService class 1.10係在同儕節點1間,或同儕節點1和同儕索引節點2間提供訊息交換。本類別(Class)係在i-Search機制下提供同儕節點1間的通訊通道。進一步說明之,同儕節點1係透過本類別來請求 其他同儕節點1執行i-Search機制(此部分稍後詳述)。而同儕節點1更透過此類別來通知同儕索引節點2本身的上線狀態。 BackgroundService class 1.10 provides information exchange between peer node 1, or peer node 1 and peer index node 2. This class provides a communication channel between peer nodes 1 under the i-Search mechanism. Further, the peer node 1 requests through this category. Other peer nodes 1 perform the i-Search mechanism (this section will be detailed later). The peer node 1 further informs the online status of the peer index node 2 through this category.

Peer Agent 1.5為主要之類別(class)。該類別定義了三個函式(function):Update_Tvalue()1.6、Update_FriendList()1.7、以及Relationship_Finding()1.8。Update_Tvalue()1.6以及Update_FriendList()1.7係各別用於更新朋友清單之T值以及上線狀態欄位。而Relationship_Finding()1.8則執行i-Search機制以識別二個使用者之間的定向社交路徑。 Peer Agent 1.5 is the main class. This category defines three functions: Update_Tvalue()1.6, Update_FriendList()1.7, and Relationship_Finding()1.8. Update_Tvalue() 1.6 and Update_FriendList() 1.7 are used to update the T value of the friend list and the online status field. Relationship_Finding() 1.8 then performs an i-Search mechanism to identify the directed social path between the two users.

Phone Book API 1.9係用於擷取使用者手機內之朋友資訊。部分的智慧型手機之作業系統有提供此類的API,例如在登入執行此程序之安卓(Anddriod)API。藉由使用者之電話號碼,可識別屬於相同使用者之二或多個之帳號,並作為整合不同社群網路之依據。 Phone Book API 1.9 is used to retrieve friends information from users' mobile phones. Some of the smart phone operating systems have APIs that provide such an option, such as logging in to the Android (Anddriod) API that executes the program. By using the user's phone number, two or more accounts belonging to the same user can be identified and used as a basis for integrating different social networks.

同儕索引節點2係用於提供Global ID list 2.5之資料庫,其資料格式內容如第4圖所示。同儕索引節點2並在Global ID list2.5上建立每一個上線同儕節點1之項目。相似於Friend List 1.4,Global ID list 2.5包含了三種資訊類型:個人資訊(Personal Information)、社群網路資訊(Social Network Information)、以及上線使用者之位址資訊(Address Information)。 The peer index node 2 is used to provide a database of Global ID list 2.5, and its data format content is as shown in FIG. Peer index node 2 and establish an item for each online peer node 1 on Global ID list 2.5. Similar to Friend List 1.4, Global ID list 2.5 contains three types of information: Personal Information, Social Network Information, and Address Information.

個人資訊欄位係用於儲存使用者之ID(如:使用者在社群網路登入所使用之ID)、電話號碼、以及電子郵件信箱。注意的是,使用者應在同時登入一或多個社群網路下開啟同儕節點1,以讓同一使用者其不同社群網路之帳號能存在於Global ID list 2.5內的多個項目。前述多個項目係透過使用者相同電話號碼(或電子郵件地址)進行連結。於本案中,可選取使用 者其中之一個ID(例如:使用者之電話號碼)並儲存於同儕索引節點2中,以讓使用者其他的ID對同儕索引節點2而言可保持未知的狀態。 The personal information field is used to store the ID of the user (eg, the ID used by the user to log in on the social network), the phone number, and the email address. Note that the user should open the peer node 1 while logging into one or more social networks at the same time, so that the same user's different social network accounts can exist in multiple items in the Global ID list 2.5. The plurality of items are linked by the same phone number (or email address) of the user. In this case, you can choose to use One of the IDs (for example, the user's phone number) is stored in the peer index node 2 so that the user's other IDs can remain unknown to the peer index node 2.

社群網路資訊之欄位係儲存目前使用者登入(上線)之社群網路之類型。 The social network information field is the type of social network that stores the current user login (online).

位址資訊之欄位記錄使用者開啟之同儕節點1其裝置之IP位址以及埠號,該資訊在同儕節點1開啟時始為有效。 The field of the address information records the IP address and nickname of the device of the peer node 1 opened by the user, and the information is valid when the peer node 1 is turned on.

第3圖係為同儕索引節點2之軟體架構圖。其包含一主類別IndexPeerAgent 2.1以及資料庫Global ID list 2.5。於主類別IndexPeerAgent 2.1中,receiveSocket.receive()函數2.3係用於接收由同儕節點1所傳送的訊息。在接收到該訊息後,並呼叫receivePacket.getData()2.2來取得此訊息內之資訊。而receiveSocket.send()2.4則是用於傳送回應訊息至同儕節點1。 Figure 3 is a software architecture diagram of the peer index node 2. It contains a main category IndexPeerAgent 2.1 and a database Global ID list 2.5. In the main class IndexPeerAgent 2.1, the receiveSocket.receive() function 2.3 is used to receive the message transmitted by the peer node 1. After receiving the message, call receivePacket.getData()2.2 to get the information in this message. The receiveSocket.send()2.4 is used to send a response message to the peer node 1.

當使用者在終端裝置開啟同儕節點1時,會執行一登入程序。其登入程序之流程圖如第5圖所示: When the user opens the peer node 1 at the terminal device, a login procedure is executed. The flowchart of the login procedure is shown in Figure 5:

步驟1:當使用者開啟同儕節點1時,創建SampleAuthListener 1.2以及執行SessionEvents.addAuthListener(new SampleAuthListener())函式(function),以於社群網路中對使用者進行授權)。 Step 1: When the user opens peer node 1, create a SampleAuthListener 1.2 and execute a SessionEvents.addAuthListener(new SampleAuthListener()) function to authorize the user in the social network.

步驟2:若前述授權步驟成功時,社群網路會由theSessionEvents.addAuthListener()函式回應使用者之社群網路ID。 Step 2: If the authorization step is successful, the social network will respond to the user's social network ID by theSessionEvents.addAuthListener() function.

步驟3:同儕節點1創建Background Service 1.10類別來傳送承載使用者ID、電話號碼、電子郵件信箱、埠號、以及社群網路類型之訊息(亦即,User_Online_Message訊息)至同儕索引節點2。接著,同儕 索引節點2於Global ID list創建一項目。 Step 3: The peer node 1 creates a Background Service 1.10 class to transmit a message carrying the user ID, phone number, email address, nickname, and social network type (ie, User_Online_Message message) to the peer index node 2. Then, the same Index node 2 creates an item in the Global ID list.

步驟4及5:同儕節點1創建CreateFriendListListener 1.3(亦即,FriendList_Request以及FriendList_Response之訊息對)以取得使用者朋友在社群網路之ID,並在朋友清單中為每位朋友創建一條目(entry)。 Steps 4 and 5: The peer node 1 creates CreateFriendListListener 1.3 (ie, the FriendList_Request and FriendList_Response message pairs) to obtain the ID of the user's friend in the social network, and creates an entry for each friend in the friend list. .

步驟6及7:同儕節點1使用BackgroundService類別來傳送訊息(亦即,theFriends_OnlineStatus_Request以及Friends_OnlineSta-tus_Response之訊息對)至同儕索引節點2,來查詢使用者有上線之朋友。 Steps 6 and 7: The peer node 1 uses the BackgroundService class to transmit a message (ie, the friends_OnlineStatus_Request and the Friends_OnlineSta-tus_Response message pair) to the peer index node 2 to query the user who has the user online.

步驟8及9:同儕節點1創建FeedRequestListener 1.1類別來收集社交活動資訊,並藉由換取社群網路之T Value_Parameter_Request and the T Value_Parameter_Response訊息對來計算T值(T value)。 Steps 8 and 9: The peer node 1 creates a FeedRequestListener 1.1 category to collect social activity information, and calculates a T value by exchanging the T Value_Parameter_Request and the T Value_Parameter_Response message pairs of the social network.

本案藉由P2P-iSM來提供一種用以識別位於異質社群網路之二使用者其全域社交關聯之全域關聯模型。本案首先提供一種用於量測位於異質網路之任二使用者間其全域關聯強度之工具。接著,本案又提供一種用於搜尋位於P2P_iSM中任二同儕節點1間有意義之定向社交路徑之i-Search機制。 This case provides a global association model for identifying the global social association of a user on a heterogeneous social network by P2P-iSM. This case first provides a tool for measuring the strength of the global association between any two users located in a heterogeneous network. Next, the present invention further provides an i-Search mechanism for searching for a meaningful directed social path between any two peer nodes 1 in the P2P_iSM.

在搜尋使用者全域關聯之前,首先需藉由工具量測位於異質社群網路之任二使用者間之關聯強度。本案修改傳統之社群網路關聯衰減函數,以提出在異質社網路中更為精準的量測方案。 Before searching for a user's global association, the tool first needs to measure the strength of the association between any two users on the heterogeneous social network. This case modifies the traditional social network association attenuation function to propose a more accurate measurement scheme in the heterogeneous social network.

關聯於頻率之定向社交連結a→b定義為f(a,b),該函數係用於擷取使用者a透過某種社交活動與使用者b進行互動之頻繁程度(例如:使 用者a在使用者b的留言版上留言、按「讚」、發送訊息、打電話給對方等)。考量有c種社交活動前提下,且1 i C,令λ i 定義為使用者a透過第i種之社交活動與使用者b進行互動,並定義f(a,b)為: The associated social link a→b associated with frequency is defined as f(a,b), which is used to capture the frequency with which user a interacts with user b through certain social activities (eg, user a is User b's message board, leave a message, press "Like", send a message, call the other party, etc.). Consider the existence of c social activities, and 1 i C , let λ i be defined as user a interacting with user b through the social activity of the i-th, and defining f ( a , b ) as:

其中,w i 為第i種社交活動之權重值,0 w i 1且1 i C,以及。於方程式(1)中,權重值w i 係用以反應在社交關聯中不同互動程度之微調工具。舉例而言,按「讚」代表著較為隨意的互動意圖,而傳送電子郵件則表示較為強烈之互動意圖。因此,我們讓傳送電子郵件之社交活動具有較大的權重值。至於λ i 則是表示於指定期間(例如每月或每日)從社群網路獲取量測資訊。在定向社交關聯a→b中,f(a,b)值越大時代表使用者a對使用者b投以較多的關注。舉例而言,假設僅有一種社交活動:貼文(w 1=1),而使用者a若每日平均貼了5則留言在使用者b其社群網站的留言板上時(若λ 1=5/day),則f(a,b)=w 1 λ 1=5/day,並使用門檻值θ來界定f(a,b)。換言之,若f(a,b) θ,則代表使用者a對使用者b有足夠之關注。 Where w i is the weight value of the i-th social activity, 0 w i 1 and 1 i C , and . In equation (1), the weight value w i is a fine-tuning tool used to reflect the degree of interaction in social associations. For example, pressing "Like" represents a more casual interaction intention, while sending an email indicates a stronger interaction intention. Therefore, we have a large weight value for social activities that send emails. As for λ i, it means to obtain measurement information from the social network during a specified period (for example, monthly or daily). In the directed social association a→b, the larger the value of f ( a , b ), the more attention is paid to the user b on the user a. For example, suppose there is only one social activity: post ( w 1 =1), and user a if the average is posted 5 times per day, when the user is on the message board of the user's website (if λ 1 =5/ day ), then f ( a , b )= w 1 λ 1 =5/ day , and use the threshold θ to define f ( a , b ). In other words, if f ( a , b ) θ represents that user a has sufficient attention to user b.

本案在a→b以及b→a關聯存在下,揭露一種介於使用者a以及使用者b間之互動因素F(a,b),該互動因素定義為: In the case of a→b and b→a association, the interaction factor F ( a , b ) between user a and user b is revealed. The interaction factor is defined as:

F(a,b)值越大時代表使用者a以及使用者b之間有較多互動。於方程式(2)中,0 F(a,b)1以及F(a,b)=F(b,a)。 When the value of F ( a , b ) is larger, there is more interaction between user a and user b. In equation (2), 0 F ( a , b ) 1 and F ( a , b ) = F ( b , a ).

考慮由異質社群網路所形成之社交圖形。以第6A圖說明之,該社交圖形包含了二種社群網路。假設一條存在於使用者u 1(於社群網 路SNS1)以及使用者u L+1(於社群網路SNS2)之間的定向社交路徑(directional social path),且該定向社交路徑經由使用者u 2,u 3,...,u L ,而在L+1個使用者中,至少有一個使用者係為同儕節點1。並定義此定向社交路徑為一連結集合"P={u 1u 2,u 2u 3,...,u L-1u L ,u L u L+1}"。該定向社交路徑包含了L條定向連結(u 1u L+1之間的距離為|P|=L)。為表達此定向社交路徑,本案界定全域關聯存在於u 1u L+1之間。本案更提供一種用於量測全域關聯中u 1u L+1間強度之Z(P)函數,Z(P)函數定義如下: Consider social graphics formed by heterogeneous social networks. As illustrated in Figure 6A, the social graph contains two social networks. Suppose a directional social path exists between user u 1 (on community network SNS 1 ) and user u L +1 (on community network SNS 2 ), and the directed social path Via the user u 2 , u 3 ,..., u L , at least one of the L+1 users is the peer node 1. And defining the directed social path as a set of links " P = { u 1u 2 , u 2u 3 , ..., u L -1u L , u L u L +1 }". The directional social path contains L directional links (the distance between u 1 and u L +1 is | P |= L ). To express this directional social path, this case defines that the global association exists between u 1 and u L +1 . The case further provides a Z(P) function for measuring the strength between u 1 and u L +1 in the global correlation. The Z(P) function is defined as follows:

在方程式(2)中,我們已假設0 F(u i ,u i+1)1以及在1 i L下時F(u i+1,u i )=F(u i ,u i+1)。因此0 Z(P)1。又,其社交路徑P之反向社交路徑P’(P'={u L+1u L ,...,u 3u 2,u 2u 1}),可得Z(P')=Z(P)。而當Z(P)越大時,代表其全域關聯強度較高。關聯強度Z(P)提供更為精準的朋友推薦以及信任/信譽指標。並可作為跨越社群網路間內容分享之基礎。 In equation (2), we have assumed 0 F ( u i , u i +1 ) 1 and at 1 i When L is lower, F ( u i +1 , u i )= F ( u i , u i +1 ). Therefore 0 Z ( P ) 1. Moreover, the reverse social path P' of its social path P ( P '={ u L +1u L ,..., u 3u 2 , u 2u 1 }) can obtain Z ( P ' ) = Z ( P ). When Z(P) is larger, it means that its global correlation intensity is higher. The correlation strength Z(P) provides more accurate friend recommendations and trust/credit indicators. It can be used as a basis for sharing content across social networks.

本案又提供一種i-Search機制來尋找在P2P-iSN中,二個同儕節點1間之定向社交路徑。其i-Search係透過連結方式來建立社交路徑。當一連結加入路徑時,會藉由方程式(3)之Z(P)來計算其全域關聯強度。若新加入之路徑其全域關聯強度小於門檻值△時則會停止搜尋。門檻值△係用於確保建立路徑之全域關聯強度,以讓使用者有足夠的動機使用全域社群關聯模型於其他社群網路應用上。 The present invention further provides an i-Search mechanism to find a directed social path between two peer nodes 1 in the P2P-iSN. Its i-Search establishes a social path through a link. When a join joins a path, its global correlation strength is calculated by Z(P) of equation (3). If the newly added path has a global correlation strength less than the threshold △, the search will stop. Threshold value Δ is used to ensure that the global association strength of the path is established so that the user has sufficient motivation to use the global community association model for other social networking applications.

本案依據社群網路之搜尋結果來設定門檻值△(亦即,a→b連結之互動因素F(a,b)=0.5)。考慮路徑P其長度|P|=4,接著使用方程式(3)之 Z(P)函式,以求得此路徑之強度Z(P)=0.54=0.0625,其結果代表較為薄弱的社交關聯。因此,本案在後續之效能探討上設定門檻值△=0.53=0.125。 In this case, the threshold value △ is set according to the search result of the social network (that is, the interactive factor F(a, b)=0.5) of the a→b link. Consider the path P whose length |P|=4, and then use the Z(P) function of equation (3) to find the strength of this path Z(P)=0.5 4 =0.0625, the result representing a weak social association . Therefore, in this case, the threshold value △=0.5 3 =0.125 is set in the subsequent performance discussion.

換言之,由i-Search機制所搜尋之社交路徑其社交長度不大於3。只要a→b連結之互動因素係F(a,b) β<1,其全域關聯強度將會呈指數衰減。因此在大量搜尋下可保有較低的複雜度。 In other words, the social path searched by the i-Search mechanism has a social length of no more than three. As long as the a→b link interaction factor is F ( a , b ) β <1, whose global correlation strength will decay exponentially. Therefore, it is possible to maintain a lower complexity under a large number of searches.

i-Search機制詳細說明如下:同儕索引節點2提供上線同儕節點1之上線狀態(包含同儕節點1之ID以及IP位址)。而同儕節點1所提供之朋友清單係儲存全部朋友之上線資訊。為簡化說明,本案用同儕節點a之朋友b來表示a→b社群連結關係之存在。 The i-Search mechanism is described in detail as follows: The peer index node 2 provides the uplink state of the uplink peer node 1 (including the ID of the peer node 1 and the IP address). The friend list provided by the peer node 1 stores all friends' online information. To simplify the explanation, this case uses the friend b of the peer node a to indicate the existence of the a→b community connection relationship.

當同儕節點1開啟時,會將其上線資訊回報至同儕索引節點2,並從同儕索引節點2接收最新的朋友上線狀態。藉由最新的上線資訊,同儕節點1可判斷他的朋友是否在線上(換言之,該同儕節點1亦處於開啟狀態)。以讓上線之同儕節點1與和他的朋友直接通訊。請參閱第6B圖,本案又於一同儕節點1中執行一遞回演算法以及i-Search,於此演算法1中,G集合(setG)係為同儕節點1之朋友清單,輸入參數s係儲存呼叫演算法1同儕節點1之ID。參數r係被搜尋同儕節點1之ID。於初始時,我們設定PWhen the peer node 1 is turned on, its online information is reported to the peer index node 2, and the latest friend online state is received from the peer index node 2. With the latest online information, peer node 1 can determine whether his friend is online (in other words, the peer node 1 is also on). In order to let the peer node 1 on the line and communicate directly with his friends. Please refer to FIG. 6B. In this case, a recursive algorithm and i-Search are performed in the same node 1, in which the G set (setG) is a friend list of the peer node 1, and the input parameter s is Store the call algorithm 1 ID of the peer node 1. The parameter r is the ID of the peer node 1 being searched. At the beginning, we set P .

考量同儕節點a搜尋同儕節點b之情境下,使用者a在朋友b上線條件下與其直接通訊,並請求朋友b執行i-Search演算法(亦即,於演算法1中執行b.iSearch())。換言之,定向社交路徑P係沿著上線之同儕節點1所建立。 Considering the situation in which the peer node a searches for the peer node b, the user a communicates directly with the friend b under the online condition, and requests the friend b to perform the i-search algorithm (that is, executes b.iSearch() in algorithm 1. ). In other words, the directed social path P is established along the peer node 1 of the upper line.

若i-Search機制在任二同儕節點1間找到多個全域社交關聯時,而觸發i-Search機制之同儕節點1可選用最大的全域社群關聯強度作為依 據。本系統更可透過快取同儕節點1之搜尋結果來加速i-Search之執行。 If the i-Search mechanism finds multiple global social associations between any two peer nodes, the peer node 1 that triggers the i-Search mechanism can use the maximum global community association strength as the basis. according to. The system can also speed up the execution of i-Search by caching the search results of peer node 1.

在P2P-iSM中,全部的同儕節點1以及相關聯之社交路徑形成一社交圖形。同儕節點1可能在執行i-Search時開啟或關閉,而i-Search請求需在朋友上線時始與其取得聯繫。換言之,若同儕節點a或同儕節點b在關閉(離線)情況下,則社交連結a、b則不復存在。因此,當i-Search執行時,其P2P-iSM之實體網路拓撲將會動態變動。 In P2P-iSM, all peer nodes 1 and associated social paths form a social graph. Peer node 1 may be turned on or off when i-Search is performed, and the i-Search request needs to be contacted when a friend goes online. In other words, if the peer node a or the peer node b is off (offline), the social links a, b no longer exist. Therefore, when i-Search is executed, the physical network topology of its P2P-iSM will dynamically change.

本案又將同儕節點a執行i-Search機制尋找同儕節點b,且此定向之社交路徑存在時,其路徑尋獲之機率定義為P f 。而同儕節點1之上線狀態會顯著的影響P f 。於此段落中,本案將提供一種用於獲得P f 近似值之分析模型。 In this case, the peer node a performs the i-Search mechanism to find the peer node b, and when the directed social path exists, the probability of path finding is defined as P f . The state of the line above the peer node 1 will significantly affect P f . In this paragraph, the case would provide a model for obtaining an approximation of P f.

為簡化討論內容,本案設假設P2P-iSM內之同儕節點1其網路行為,例如上線狀態、互動等係為獨立且具有相同之分佈(i.i.d)。如前述所討論部分,於本段落中,我們設定i-Search機制之門檻值△=0.53=0.125。於本案之分析模型中,我們使用限制條件|P|3而不使用△0.125。亦即,i-Search機制會在路徑長度達到3時認定未找到其全域社交路徑而退出搜尋。假設同儕節點1開啟狀態(亦即上線狀態)為x期間(其機率密度函數為f x (.),均值為1/u x )為;其關閉狀態(亦即離線狀態)為y期間(其機率密度函數為f y (.),均值為1/u y )為。而同儕節點1在x期間以及y期間輪替。假設i-Search機制請求到達同儕節點1係形成一卜瓦松過程(Poisson process)。因此,當同儕節點1上線,而i-Search請求到達之機率p on In order to simplify the discussion, the case assumes that the peer node 1 in the P2P-iSM has its network behavior, such as online status, interaction, etc., which are independent and have the same distribution (iid). As discussed earlier, in this paragraph, we set the threshold for the i-Search mechanism to be Δ = 0.5 3 = 0.125. In the analysis model of this case, we use the constraint |P| 3 without using △ 0.125. That is, the i-Search mechanism will determine that the global social path has not been found and exits the search when the path length reaches 3. Assume that the peer node 1 on state (ie, the on-line state) is the x period (the probability density function is f x (.), the average value is 1 u x ) is; its off state (ie, the offline state) is the y period (its The probability density function is f y (.) and the mean is 1 u u y ). The peer node 1 rotates during the x period and during the y period. It is assumed that the i-Search mechanism requests to reach the peer node 1 to form a Poisson process. Therefore, when the peer node 1 goes online, and the probability of the i-Search request arrives, p on :

本案提供一種藉由Watts-Strogatz模型且用於P2P-iSM之社交圖形。前述之Watts-Strogatz模型係具有三個參數α(重新連線之機率)、n(在P2P-iSM中,同儕節點1的總數)、以及m(同儕節點1之平均朋友數),並設置:0<α<1以及n>>m>>ln n>>1 (5) This case provides a social graph for the P2P-iSM by the Watts-Strogatz model. The aforementioned Watts-Strogatz model has three parameters α (the probability of reconnection), n (the total number of peer nodes 1 in P2P-iSM), and m (the average number of friends of peer node 1), and sets: 0< α <1 and n>>m>>ln n>>1 (5)

Watts-Strogatz模型具有一小世界屬性(small-world property),其包含一小平均路徑長度(small average path length)以及一高分群(high cluster),以用於探討社群網路。 The Watts-Strogatz model has a small-world property that includes a small average path length and a high cluster for exploring social networks.

本案更將同儕節點a在執行i-Search時,接收到i-Search請求訊息之期望值定義為Nt。考量下列情境:同儕節點1執行i-Search機制以搜尋至同儕節點b之定向社交路徑,若b屬於Nt同儕節點1其中之一,則同儕節點a到b之定向社交路徑為尋獲,並可得: In this case, when the peer node a performs i-Search, the expected value of receiving the i-Search request message is defined as N t . Consider the following scenario: the peer node 1 performs an i-Search mechanism to search for the directed social path to the peer node b. If b belongs to one of the N t peer nodes 1, the directed social path of the peer nodes a to b is found, and Available:

Nt推導如下所示:在Watts-Strogatz模型中包含了二種節點態樣:遠節點(far-node)以及近節點(near-node)。遠節點係定義同儕節點1在重新連線後具有社交路徑,其機率為α。近節點定義具有初始之社交連結。 The N t derivation is as follows: Two node states are included in the Watts-Strogatz model: far-node and near-node. The far node system defines that peer node 1 has a social path after reconnection, and its probability is α . The near node definition has an initial social link.

於P2P-iSM之社交圖形中,令Nf以及Nn係分個代表遠節點以及近節點在i-Search被執行時,接收到i-Search請求之期望值。據此:N t =N f +N n In the social graph of P2P-iSM, Nf and Nn are respectively represented on the far node and the near node receives the expected value of the i-Search request when i-Search is executed. According to this: N t = N f + N n

Nf以及Nn之取得說明如下:一次循環(round)代表當使用者a、b都在線上,且i-Search請求使用定向社群連結a→b完成遞送。於i-Search機制中,最多有三次循環來建構定向社群路徑。在每次循環中,同儕節點1 在觸發循環運作時可為遠節點或近節點: The acquisition of Nf and Nn is as follows: One round represents that when users a, b are online, and i-Search requests to use the directed community link a → b to complete the delivery. In the i-Search mechanism, there are up to three loops to construct a directed community path. In each loop, the peer node 1 It can be a far node or a near node when the trigger loop operates:

情況1:同儕節點1觸發啟動循環時為遠節點,於此情況下,平均有mαp on 個遠節點,以及m(1-α)p on 個近節點可接收到i-Search請求。 Case 1: The peer node 1 triggers the start loop as a far node. In this case, there are mαp on far nodes on average, and m (1- α ) p on near nodes can receive the i-Search request.

情況2:同儕節點1觸發啟動循環時為近節點。由於近節點在傳送i-Search請求至其他近節點時,有相當高的機率預先收到i-Search請求,因此,我們考慮僅有遠節點可接收i-Search請求,以求取近似值。於此情況下,平均有mαp on 個遠節點可接收到i-Search請求。 Case 2: When node 1 triggers the start loop, it is a near node. Since the near node has a relatively high probability of receiving the i-Search request in advance when transmitting the i-Search request to other near nodes, we consider that only the far node can receive the i-Search request to obtain an approximation. In this case, an average of mαp on far nodes can receive the i-Search request.

接著,使用下列迭代程序以計算Nf以及Nn: Next, use the following iterative procedure to calculate Nf and Nn:

程序1: Procedure 1:

輸入參數:α,m,ux,uy Input parameters: α , m , u x , u y

輸出測量值:N f ,N n ,N t Output measured value: N f , N n , N t

Step 1:選擇初始值,N f ←1、N n ←0、以及round←0 Step 1: Select the initial value, N f ←1, N n ←0, and round ←0

Step 2: Step 2:

Step 3:If(round3),then go to Step 2.Otherwise,go to the next step. Step 3: If (round 3), then go to Step 2.Otherwise,go to the next step.

Step 4:N t N f +N n ;return. Step 4: N t N f + N n ; return.

此分析模型是由離散事件驅動之模擬模型進行模擬實驗驗證,該模擬模型已被廣泛採用,並用於模擬移動通信網路中的幾項研究模 擬實驗。該模擬模型模擬同儕節點1之上線/離線行為,以及i-Search機制之行為。 This analytical model is validated by a simulation model driven by a discrete event. The simulation model has been widely adopted and used to simulate several research models in mobile communication networks. Preliminary experiment. The simulation model simulates the above-line/offline behavior of peer node 1, and the behavior of the i-Search mechanism.

於該模擬模型,本案採用前述之離散事件驅動作法,以及定義下列5種事件型態: For the simulation model, the case uses the aforementioned discrete event-driven approach and defines the following five event types:

‧The QUERY_ARRIVAL事件:表示上線之同儕節點1開啟i-Search機制來找尋其他同儕節點1。 ‧The QUERY_ARRIVAL event: indicates that the peer node 1 on the line opens the i-Search mechanism to find other peer nodes 1.

‧The QUERY_FORWARD事件:表示上線之同儕節點1傳送i-Search請求給他上線的朋友。 ‧The QUERY_FORWARD event: indicates that the peer node 1 on the line sends an i-Search request to the friend who is online.

‧The QUERY_RESPONSE事件:表示一上線之同儕節點1為傳送i-Search請求之同儕節點1執行i-Search演算法,並回傳一結果(亦即,尋獲一路徑)。 ‧ The QUERY_RESPONSE event: indicates that an on-line peer node 1 performs an i-search algorithm for the peer node 1 transmitting the i-Search request, and returns a result (ie, finds a path).

‧The ONLINE事件:表示同儕節點1為開啟。 ‧The ONLINE event: indicates that peer node 1 is on.

‧The OFFLINE事件:表示同儕節點1為關閉。 ‧The OFFLINE event: indicates that peer node 1 is off.

本案更提供一時間戳記t s 以說明事件發生之時間。前述之事件更插入一事件清單,以及依據該清單內之一非遞減時間戳記順序進行刪除/處理。在執行模擬時,更提供一模擬時鐘以說明模擬之進度。用於模擬模型之參數說明如下: The case further provides a timestamp t s to indicate when the event occurred. The aforementioned event is further inserted into an event list and deleted/processed according to one of the non-decreasing time stamps in the list. When performing the simulation, an analog clock is provided to illustrate the progress of the simulation. The parameters used to simulate the model are as follows:

N r :為i-Search請求所執行之循環次數。 N r : The number of cycles executed for the i-Search request.

‧a:觸發i-Search機制之同儕節點1之ID。 ‧a: ID of the peer node 1 that triggers the i-Search mechanism.

‧d:被尋獲之同儕節點1之ID。 ‧d: ID of the peer node 1 found.

‧l:說明社交連結是否存在於兩同儕節點1之間。 ‧l: Indicates whether the social link exists between the two peer nodes 1.

本案於前述之模擬模型使用下列之計數器來計算輸出量測: In the above simulation model, the following counter is used to calculate the output measurement:

C f 計數器計算成功尋獲路徑之總次數。 ‧ The C f counter counts the total number of successful paths found.

C q 計數器計算QUERY_ARRIVAL事件被處理之總次數。 ‧ The C q counter counts the total number of times the QUERY_ARRIVAL event has been processed.

本案重復執行此模擬直到C q 達到100,000次,以確保模擬結果之穩定性,並獲得下列之輸出量測: This simulation was repeated in this case until C q reached 100,000 times to ensure the stability of the simulation results and to obtain the following output measurements:

第7圖以及第8圖呈現分析值與模擬值之比較結果。其細部之參數設定如下所述。該圖說明模擬結果極為近似於分析結果。 Fig. 7 and Fig. 8 show the comparison results of the analysis values and the simulation values. The parameter settings of the details are as follows. The figure shows that the simulation results are very similar to the analysis results.

接著,本案探討輸入參數對P f 效益以及i-Search機制之影響。於此處之探討中,本案設定輸入參數係依循著方程式(5)之限制條件,並且設定同儕節點1之總數n=100。其輸入參數之影響如下所述。 Next, the case investigate the influence of the input parameters P f effectiveness and i-Search Mechanism. In the discussion here, the input parameters of this case are based on the constraints of equation (5), and the total number of peer nodes 1 is set to n=100. The effect of its input parameters is as follows.

於第7圖以及第8圖中,本案將u y /u x 從0.8更動至8。當u y /u x 值越大時,代該同儕節點1上線的時間越長。舉例說明之,當自方程式(4)得知u y /u x =0.5以及u y /u x =8時,我們可分別得知p on =1/3以及p on =8/9。此二圖顯示路徑尋獲機率p f 會隨著u y /u x 而增加。值得注意的是,請再參閱第7圖,當u y /u x =8、α=0.8、m=6時,p f 會大15個百分點;請再參閱第8圖,而當u y /u x =8以及m=10時,p f 約在40個百分點左右。 In Figures 7 and 8, the case changes u y / u x from 0.8 to 8. When the value of u y / u x is larger, the time for the peer node 1 to go online is longer. For example, when we know that u y / u x =0.5 and u y / u x =8 from equation (4), we can know that p on =1/3 and p on =8/9, respectively. This two graph shows that the path search probability p f increases with u y / u x . It is worth noting that, please refer to Figure 7. When u y / u x =8, α=0.8, m=6, p f will be 15% larger; please refer to Figure 8, and when u y / When u x = 8 and m = 10, p f is about 40 percent.

請接著觀察第7圖,當我們設定m=6,並研究α之影響。當α越大,代表P2P-iSN之社交路徑較為稀疏(亦即,較多的遠節點)。第7圖說明p f 會隨著α增加而增加,此代表i-Search機制在較為稀疏之社交路徑能達到較佳的尋獲機率。 Please observe Figure 7, when we set m=6 and study the effect of α. When α is larger, the social path representing P2P-iSN is sparse (that is, more distant nodes). Figure 7 shows that p f increases as α increases, which means that the i-Search mechanism can achieve better chances of finding in a sparse social path.

請接著觀察第8圖,我們設定α=0.4並觀察m之影響。當m值 越大時,代表同儕節點1有更多的朋友。第8圖表示當有更多朋友時,i-Search機制可達到較佳的p f 效能。 Please observe Figure 8, we set α = 0.4 and observe the effect of m. When the m value is larger, it means that the peer node 1 has more friends. Figure 8 indicates that when there is more friends, i-Search mechanism can achieve a better performance p f.

綜上所述,當位於較為稀疏且該同儕節點1具有較多的朋友時,i-Search機制有40%的機率可以為使用者尋獲全域社交關聯,換言之,其該社交路徑有緊密的社交關聯 In summary, when located at a relatively sparse and the peer node 1 has more friends, the i-Search mechanism has a 40% chance of finding a global social association for the user, in other words, the social path has a close social relationship. Association

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

1,na,nb‧‧‧同儕節點 1,na, nb‧‧‧ peer node

2‧‧‧同儕索引節點 2‧‧‧Same index node

Claims (8)

一種用於整合異質社群網路之同儕網路方法,該同儕網路方法應用於一伺服裝置,包含下列步驟:連接複數個同儕節點,各該同儕節點係定義一使用端以及用於存取至少一社群網路;以及該伺服裝置依據該至少一社群網路間之一社交關聯、在指定期間內的社交活動以及該社交活動之權重值,以分析任二個該同儕節點間的定向社交關聯並產生具備方向性以及具備權重的社交頻率,並對具相互定向關聯性且該社交頻率符合門檻值之該等同儕節點進行關聯,據以整合成一同儕社群網路,其中該同儕社群網路係決定該等同儕節點其不同之該至少一社群網路間包含有效社交關聯;其中該伺服裝置分析介於該等同儕節點間的該社交關聯之社交強度,以判別該有效社交關聯,或者分析介於二個該同儕節點之間的該社交關聯之集合內,具有間接關聯的關聯同儕節點間之該社交強度,以判斷該有效社交關聯,接著該伺服裝置在二個該同儕節點間提供互動;其中該社交頻率由下列方程式表示之: 其中,f(a,b)表示使用者a→使用者b間其定向社交關聯之該社交頻率,w i 表示第i類活動之權重,λ i 表示為該使用者a對該使用b操作第i類活動之頻率。 A peer network method for integrating a heterogeneous social network, the peer network method being applied to a server device, comprising the steps of: connecting a plurality of peer nodes, each peer node defining a user terminal and for accessing At least one social network; and the server device analyzes the social association between the at least one social network, the social activity during the specified period, and the weight value of the social activity to analyze between the two peer nodes Orienting social associations and generating directional and weighted social frequencies, and associating the equivalent nodes with mutual relevance and the social frequency in accordance with the threshold, thereby integrating into a social network, wherein the peers The social network system determines that the equivalent node has a valid social association between the at least one social network; wherein the server analyzes the social strength of the social association between the equivalent nodes to determine the validity a social association, or an associated peer node with an indirect association within a set of the social associations between the two peer nodes The strength of the social, to determine whether the associated social valid, then the servo means to provide interaction between the two peer node; wherein the social frequency is expressed by the following equation of: Where f ( a , b ) represents the social frequency of the social interaction associated with the user a → user b, w i represents the weight of the i-th activity, and λ i represents that the user a operates the b The frequency of class i activities. 如請求項1所述之方法,其中該相互定向關聯之互動活動強度由下列方程式表示之: 其中,F(a,b)表示使用者a與使用者b之該互動活動強度,f(b,a)表示該使用者b→該使用者a間其定向社交關聯之該社交頻率,θ表示為門檻值。 The method of claim 1, wherein the strength of the interactive activity associated with the mutual orientation is represented by the following equation: Where F ( a , b ) represents the intensity of the interaction between user a and user b, and f ( b , a ) represents the social frequency of the directed social association between the user b and the user a, θ represents It is the threshold. 如請求項2所述之方法,其中該互動活動強度之該社交強度由下列方程式表示之: 其中,u表示該等社交關聯,L表示該等社交關聯之定向關聯數值,P表示該等社交關聯之一群組。 The method of claim 2, wherein the social intensity of the interactive activity intensity is represented by the following equation: Where u denotes the social associations, L denotes the associated association value of the social associations, and P denotes one of the social associations. 如請求項1所述之方法,更分析新增之該社交關聯之該社交強度,以判斷是否識別新增之該社交關聯。 The method of claim 1 further analyzes the added social strength of the social association to determine whether to identify the added social association. 如請求項1所述之方法,更包含:存取上線之該同儕節點之一上線狀態;提供具有對應友誼關連之一上線狀態給上線之該同儕節點,以使該同儕節點依據該上線狀態與其他該等同儕節點通訊。 The method of claim 1, further comprising: accessing an online state of the peer node of the online connection; providing the peer node with an online status of the corresponding friendship connection to the online node, so that the peer node is in accordance with the online state The other equivalent node communication. 一種用於整合異質社群網路之同儕網路系統,包含:一通訊模組,連接複數個同儕節點,各該同儕節點定義一使用者以及用於存取至少一社群網路;以及一處理模組,連接該通訊模組,該處理模組依據該至少一社群網路間之一社交關聯、在指定期間內的社交活動以及該社交活動之權重值,以分析任二個該同儕節點間的定向社交關聯並產生具備方向性以及具備權重 的社交頻率,並對具相互定向關聯性且該社交頻率符合門檻值之該等同儕節點進行關聯,據以整合成一同儕社群網路,其中該同儕社群網路係決定該等同儕節點其不同之該至少一社群網路間包含有效社交關聯;其中該處理模組分析介於該等同儕節點間的該社交關聯之社交強度,以判別該有效社交關聯,或者分析介於二個該同儕節點之間的該社交關聯之集合內,具有間接關聯的關聯同儕節點間之該社交強度,以判斷該有效社交關聯,接著該處理模組在二個該同儕節點間提供互動;其中該社交頻率由下列方程式表示之: 其中,f(a,b)表示使用者a→使用者b間其定向社交關聯之該社交頻率,w i 表示第i類活動之權重,λ i 表示為該使用者a對該使用b操作第i類活動之頻率。 A peer network system for integrating a heterogeneous social network, comprising: a communication module connecting a plurality of peer nodes, each peer node defining a user and for accessing at least one social network; and a a processing module, connected to the communication module, the processing module analyzes any two of the peers according to a social association between the at least one social network, a social activity during a specified period, and a weight value of the social activity Directed social associations between nodes and generate directional and weighted social frequencies, and associate the equivalent nodes with mutually related relevance and the social frequency in line with the threshold, thereby integrating into a social network. Wherein the peer community network determines that the equivalent node has a different effective social association between the at least one social network; wherein the processing module analyzes the social strength of the social association between the equivalent nodes, To identify the valid social association, or to analyze the association between the peer nodes with indirect associations within the set of the social associations between the two peer nodes The social strength, to determine whether the associated social effective, then the processing module provides the interaction between two peer node; wherein the social frequency is expressed by the following equation of: Where f ( a , b ) represents the social frequency of the social interaction associated with the user a → user b, w i represents the weight of the i-th activity, and λ i represents that the user a operates the b The frequency of class i activities. 如請求項6所述之系統,其中該間接關聯更包含朋友推薦值。 The system of claim 6, wherein the indirect association further comprises a friend recommendation value. 如請求項6所述之系統,其中該處理模組更存取上線之該同儕節點之一上線狀態,並提供具有對應友誼關連之一上線狀態給上線之該同儕節點,以使該同儕節依據該上線狀態與其他該等同儕節點通訊。 The system of claim 6, wherein the processing module further accesses an online state of the peer node of the online connection, and provides the peer node with an online status corresponding to one of the friendship connections to the peer node, so that the same node is based on the same node. The online state communicates with other such equivalent nodes.
TW103122020A 2014-06-26 2014-06-26 A global relationship model and a relationship search method for internet social networks TWI575470B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103122020A TWI575470B (en) 2014-06-26 2014-06-26 A global relationship model and a relationship search method for internet social networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103122020A TWI575470B (en) 2014-06-26 2014-06-26 A global relationship model and a relationship search method for internet social networks

Publications (2)

Publication Number Publication Date
TW201601102A TW201601102A (en) 2016-01-01
TWI575470B true TWI575470B (en) 2017-03-21

Family

ID=55641280

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122020A TWI575470B (en) 2014-06-26 2014-06-26 A global relationship model and a relationship search method for internet social networks

Country Status (1)

Country Link
TW (1) TWI575470B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063041B (en) * 2018-07-17 2020-04-07 阿里巴巴集团控股有限公司 Method and device for embedding relational network graph

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080635A1 (en) * 2007-09-25 2009-03-26 Utbk, Inc. Systems and Methods to Connect Members of a Social Network for Real Time Communication
CN101727479A (en) * 2009-12-08 2010-06-09 张玉峰 Relation path searching method of combining relevant database and network data structure
US8135800B1 (en) * 2006-12-27 2012-03-13 Qurio Holdings, Inc. System and method for user classification based on social network aware content analysis
US20120227086A1 (en) * 2011-03-04 2012-09-06 Scott Dale Cross social network data aggregation
TW201237652A (en) * 2011-03-08 2012-09-16 Hon Hai Prec Ind Co Ltd Node searching and analyzing method and searching system in social network
CN102868716A (en) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 Searching method, system and search server for contact path
US20130110835A1 (en) * 2011-10-28 2013-05-02 Zhijiang He Method for calculating proximities between nodes in multiple social graphs
US8554794B2 (en) * 2004-05-17 2013-10-08 Hoover's Inc. System and method for enforcing privacy in social networks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554794B2 (en) * 2004-05-17 2013-10-08 Hoover's Inc. System and method for enforcing privacy in social networks
US8135800B1 (en) * 2006-12-27 2012-03-13 Qurio Holdings, Inc. System and method for user classification based on social network aware content analysis
US20090080635A1 (en) * 2007-09-25 2009-03-26 Utbk, Inc. Systems and Methods to Connect Members of a Social Network for Real Time Communication
CN101727479A (en) * 2009-12-08 2010-06-09 张玉峰 Relation path searching method of combining relevant database and network data structure
US20120227086A1 (en) * 2011-03-04 2012-09-06 Scott Dale Cross social network data aggregation
TW201237652A (en) * 2011-03-08 2012-09-16 Hon Hai Prec Ind Co Ltd Node searching and analyzing method and searching system in social network
CN102868716A (en) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 Searching method, system and search server for contact path
US20130110835A1 (en) * 2011-10-28 2013-05-02 Zhijiang He Method for calculating proximities between nodes in multiple social graphs

Also Published As

Publication number Publication date
TW201601102A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
US11659050B2 (en) Discovering signature of electronic social networks
US11936652B2 (en) Proxied multi-factor authentication using credential and authentication management in scalable data networks
Yang et al. Identifying opinion leader nodes in online social networks with a new closeness evaluation algorithm
US10623332B2 (en) Accessing a cloud-based service using a communication device linked to another communication device via a peer-to-peer ad hoc communication link
Gallos et al. How people interact in evolving online affiliation networks
US8438184B1 (en) Uniquely identifying a network-connected entity
US20170091644A1 (en) Identification of a propagator-type leader in a social network
CN103634382B (en) A kind of system and method for realizing real-time, interactive on webpage
CN105530175A (en) Message processing method, device and system
EP2698967A1 (en) Social network data mining method for terminal user, and relevant method, device and system
WO2019072197A1 (en) Red packet distribution method, device, and medium
US20130311283A1 (en) Data mining method for social network of terminal user and related methods, apparatuses and systems
JP2015164055A (en) Determination of connectivity within community
CN107251528A (en) It is used as the network identity of service
US20170091309A1 (en) Identification of a trigger-type leader in a social network
US9477994B2 (en) Global relationship model and a relationship search method for internet social networks
Xu et al. Trust2Privacy: A novel fuzzy trust-to-privacy mechanism for mobile social networks
CN106789227A (en) A kind of internet behavior analysis method and internet behavior analytical equipment
Lin et al. P2P-iSN: A peer-to-peer architecture for heterogeneous social networks
Bahutair et al. Just-in-time memoryless trust for crowdsourced IoT services
Zhang et al. Trust computation for multiple routes recommendation in social network sites
CN112822208A (en) Internet of things equipment identification method and system based on block chain
US20170004531A1 (en) Advertisement selection using information retrieval systems
TWI575470B (en) A global relationship model and a relationship search method for internet social networks
Yang et al. Method of Interaction between Blockchain and the World outside the Chain based on Oracle Machine