TWI552473B - Parallel system of DC power supply and its control method - Google Patents
Parallel system of DC power supply and its control method Download PDFInfo
- Publication number
- TWI552473B TWI552473B TW102108004A TW102108004A TWI552473B TW I552473 B TWI552473 B TW I552473B TW 102108004 A TW102108004 A TW 102108004A TW 102108004 A TW102108004 A TW 102108004A TW I552473 B TWI552473 B TW I552473B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- power
- output
- power supply
- adjustment
- Prior art date
Links
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Dc-Dc Converters (AREA)
Description
本發明是一種直流電源並聯系統及其控制方法,尤指一種結合虛擬電壓下降法與主從式架構以兼顧均流與電壓調整能力的電源並聯系統。 The invention relates to a DC power supply parallel system and a control method thereof, in particular to a power supply parallel system combining the virtual voltage drop method and the master-slave architecture to balance the current sharing and voltage adjusting capability.
為確保電源系統供電的穩定性與可靠度,既有電源系統大都將電源供應器模組化,並使採用特定規格系列的電源模組以串聯或並聯方式相互連接。當多個電源模組並聯後仍不能完全確保整個電源系統能穩定可靠的工作,其穩定工作的前提在於均壓與均流,就均流方面而言,其主要任務包括:當負載變化時,各個電源模組的輸出電壓變化相同。且使各個電源模組的輸出電流依額定功率平均分攤。 In order to ensure the stability and reliability of the power supply system, most power supply systems modularize the power supply and connect the power modules of a specific specification series in series or in parallel. When multiple power modules are connected in parallel, the whole power system can not be completely ensured to work stably and reliably. The prerequisite for stable operation is equalization and current sharing. In terms of current sharing, the main tasks include: when the load changes, The output voltage of each power module changes the same. And the output current of each power module is evenly distributed according to the rated power.
至於並聯的現有技術主要有二類,其一為主動均流法(Active Current-Sharing Method),另一為電壓下降法(Droop Method),所稱的主動均流法包含平均電流法(Average current Method)、直接主從法(Dedicated Master Method)及自動主從法Automatic Master Method)。所謂的電壓下降法,如圖3所示,多個電源模組M1~Mn以其輸出端並聯地和負載連接而構成一並聯系統,理論上,每一個電源模組M1~Mn應該符合相同電壓、相同電流、相同輸出 阻抗的要求,但預設值與實際值總有差異,而前述差異將會影響並聯系統的均流,以第一個和第二個的電源模組M1,M2為例,如圖4所示,縱軸是表示輸出電壓Voi,橫軸則表示輸出電流Io,而電源模組M1,M2分別具有不同的輸出電壓Vno1、Vno2,在達對穩態供電時,電源模組M1,M2的輸出電流分別為Io1、Io2,在該狀態下的輸出電流差值為△Io。所謂電壓下降法是指若將電源模組M1,M2的輸出電壓Vno1、Vno2降低,則根據圖4所示,電源模組M1,M2的輸出電流分別為I’o1、I’o2,其差值則縮小為△I’o,藉此有助於均流的實現。 As for the prior art of parallel connection, there are mainly two types, one is the Active Current-Sharing Method, and the other is the Droop Method. The active current sharing method includes the average current method (Average current). Method), Dedicated Master Method and Automatic Master Method. The so-called voltage drop method, as shown in FIG. 3, a plurality of power modules M1 to Mn are connected in parallel with the load to form a parallel system. In theory, each power module M1~Mn should meet the same voltage. Same current, same output Impedance requirements, but the preset value and the actual value are always different, and the above difference will affect the current sharing of the parallel system, taking the first and second power modules M1, M2 as an example, as shown in Figure 4. The vertical axis represents the output voltage Voi, the horizontal axis represents the output current Io, and the power modules M1, M2 have different output voltages Vno1, Vno2, respectively, and the output of the power modules M1, M2 when the steady state power supply is reached. The currents are Io1 and Io2, respectively, and the output current difference in this state is ΔIo. The voltage drop method means that if the output voltages Vno1 and Vno2 of the power modules M1 and M2 are lowered, the output currents of the power modules M1 and M2 are I'o1 and I'o2, respectively, as shown in FIG. The value is reduced to ΔI'o, thereby contributing to the implementation of the current sharing.
以往實現上述電壓下降法最直接的方法是在各個電源模組M1~Mn的輸出端串接電阻,由於輸出阻抗提高,輸出電壓即相對下降。但此種作法勢必會提高電力損耗,影響電力使用效率。 In the past, the most straightforward method for implementing the voltage drop method described above is to connect resistors in series with the output terminals of the respective power modules M1 to Mn. As the output impedance is increased, the output voltage is relatively decreased. However, such an approach is bound to increase power consumption and affect power efficiency.
由上述可知,現有的電壓下降法雖然有助於並聯電源系統實現均流目的,但電壓下降透過提高阻抗所產生,將造成損耗且電壓調整能力不佳,故有待進一步檢討,並謀求可行的解決方案。 It can be seen from the above that although the conventional voltage drop method contributes to the purpose of current sharing in a parallel power supply system, the voltage drop is generated by increasing the impedance, which causes loss and poor voltage adjustment capability, and therefore needs further review and seeks a feasible solution. Program.
因此本發明主要目的在提供一種直流電源並聯系統,是使系統中並聯的各個直流電源模組分別以虛擬方式執行電壓下降,以解決串接電阻造成的電力損耗問題;並由一個以上的直流電源模組同時執行定電壓控制,藉以提升並聯系統的電壓調整能力。 Therefore, the main object of the present invention is to provide a DC power supply parallel system, which is to perform voltage drop in each of the DC power modules connected in parallel in the system to solve the power loss caused by the series resistance; and more than one DC power supply The module simultaneously performs constant voltage control to improve the voltage adjustment capability of the parallel system.
為達成上述目的採取的主要技術手段是使上 述直流電源並聯系統包括有多個直流電源模組,各個直流電源模組分別具有一電源輸入端及一電源輸出端,且各個直流電源模組分別以其電源輸入端、電源輸出端分別相互連接,以構成一並聯架構;又每一直流電源模組包括:一電源轉換器,連接於電源輸入端和電源輸出端間,該電源轉換器並具有一控制端;一脈寬調變控制器,具有一輸入端和一輸出端,其輸出端和電源轉換器的控制端連接;一電壓控制器,具有二輸入端和一輸出端,電壓控制器的輸出端和脈寬調變控制器的輸入端連接;一電壓回授單元,連接在電源輸出端和電壓控制器的一輸入端間;一虛擬電壓下降運算單元,具有一回授信號輸入端、一參考電壓輸入端、一調整電壓輸入端和一控制信號輸出端,該回授信號輸入端和電源輸出端連接,該控制信號輸出端和電壓控制器的另一輸入端連接;該虛擬電壓下降運算單元是根據電源輸出端的回授電壓和參考電壓輸入端的參考電壓比較後,以產生一個控制信號送到電壓控制器,以透過脈寬調變控制器降低電源轉換器的輸出電壓,而執行虛擬電壓下降法;前述的直流電源模組進一步包括一電壓調整單元,該電壓調整單元具有一回授電壓輸入端、一參考電壓輸入端和一調整電壓輸出端,該回授電壓輸入端和電源輸出端連接,該調整電壓輸出端和虛擬電壓下降運算單元的調整電壓輸入端連接;該電壓調整單元將根據回授電壓與一參考 電壓運算後產生一調整電壓送到虛擬電壓下降運算單元;前述並聯系統是由並聯的各個直流電源模組分別由其虛擬電壓下降運算單根據電源輸出端的回授電壓和參考電壓執行虛擬電壓下降法,以縮小輸出電流差值,實現均流目的,而執行虛擬電壓下降法導致輸出電壓下降,則可利用直流電源模組內的電壓調整單元將輸出電壓調整至正常狀態,藉以兼顧並聯系統的均流與電壓調整能力。 The main technical means to achieve the above objectives is to The parallel power supply system includes a plurality of DC power supply modules, each of the DC power supply modules has a power input end and a power output end, and each of the DC power supply modules is respectively connected to each other by a power input end and a power output end. To form a parallel architecture; each DC power module includes: a power converter connected between the power input end and the power output end, the power converter has a control end; a pulse width modulation controller, The utility model has an input end and an output end, wherein the output end is connected with the control end of the power converter; a voltage controller has two input ends and an output end, the output of the voltage controller and the input of the pulse width modulation controller a voltage feedback unit connected between the power output terminal and an input terminal of the voltage controller; a virtual voltage drop operation unit having a feedback signal input terminal, a reference voltage input terminal, and an adjustment voltage input terminal And a control signal output end, the feedback signal input end and the power output end are connected, the control signal output end and the other input end of the voltage controller The virtual voltage drop computing unit compares the feedback voltage of the power supply output with the reference voltage of the reference voltage input terminal to generate a control signal to the voltage controller to reduce the power converter through the pulse width modulation controller. The voltage is output, and the virtual voltage drop method is performed. The DC power module further includes a voltage adjustment unit having a feedback voltage input terminal, a reference voltage input terminal, and an adjustment voltage output terminal. The voltage input end is connected to the power output end, and the adjustment voltage output end is connected to the adjustment voltage input end of the virtual voltage drop operation unit; the voltage adjustment unit is based on the feedback voltage and a reference After the voltage calculation, an adjusted voltage is generated and sent to the virtual voltage drop computing unit; the parallel system is implemented by the virtual voltage drop method of each of the parallel DC power supply modules by the virtual voltage drop calculation unit according to the feedback voltage and the reference voltage of the power output end. In order to reduce the output current difference and achieve the current sharing purpose, and the execution of the virtual voltage drop method causes the output voltage to drop, the voltage adjustment unit in the DC power supply module can be used to adjust the output voltage to a normal state, thereby taking into account both of the parallel systems. Flow and voltage adjustment capabilities.
本發明的又一目的在提供一種直流電源並聯系統的控制方法,其可滿足均流要求,並提高電壓調整能力。 It is still another object of the present invention to provide a control method for a DC power supply parallel system that satisfies the current sharing requirement and improves the voltage adjustment capability.
為達成上述目的採取的主要技術手段是使前述控制方法包括以下步驟:提供多個直流電源模組,並使各直流電源模組以其電源輸入端、電源輸出端相互並聯;使各直流電源模組分別執行一虛擬電壓下降法,所稱虛擬電壓下降法,是由各直流電源模組透過改變電源輸出端的回授信號,以模擬提高輸出阻抗而降低電源輸出端的輸出電壓;使一個以上的直流電源模組執行定電壓控制,以調整電源輸出端的輸出電壓。 The main technical means for achieving the above object is to make the foregoing control method include the following steps: providing a plurality of DC power supply modules, and making each DC power supply module parallel with each other with its power input end and power output end; The group respectively performs a virtual voltage drop method, which is called a virtual voltage drop method, in which each DC power supply module changes the output signal of the power supply output by changing the feedback signal of the power supply output to simulate the output impedance; The power module performs constant voltage control to adjust the output voltage at the output of the power supply.
前述方法是利用各直流電源模組改變電源輸出端的回授信號,以降低電源輸出端的輸出電壓,藉此達成均流目的;由於上述均流是透過降低電源輸出端的輸出電壓模擬輸出阻抗提高,而不是在電源輸出端上串接電 阻,因此不會發生在電阻上消耗電力的問題;儘管電壓下降法是虛擬提高輸出阻抗而來,依然造成輸出電壓降低,因此使一個以上的直流電源模組對輸出電壓執行定電壓控制,以增進並聯系統的電壓調整能力。 In the foregoing method, each DC power supply module is used to change the feedback signal at the output end of the power supply to reduce the output voltage of the power output terminal, thereby achieving the purpose of current sharing; since the current sharing is achieved by reducing the output voltage of the output end of the power supply, the analog output impedance is improved. Not connected in series at the power output Resistance, so there is no problem of power consumption on the resistor; although the voltage drop method is to virtually increase the output impedance, the output voltage is still reduced, so that more than one DC power module performs constant voltage control on the output voltage. Improve the voltage adjustment capability of the parallel system.
10A、10B~10n‧‧‧直流電源模塊 10A, 10B~10n‧‧‧DC power supply module
11‧‧‧電源轉換器 11‧‧‧Power Converter
12‧‧‧脈寬調變控制器 12‧‧‧ Pulse width modulation controller
13‧‧‧電壓控制器 13‧‧‧Voltage controller
14‧‧‧電壓回授單元 14‧‧‧Voltage feedback unit
15‧‧‧虛擬電壓下降運算單元 15‧‧‧Virtual voltage drop computing unit
151‧‧‧第一運算器 151‧‧‧First Operator
152‧‧‧第二運算器 152‧‧‧Secondary
20A、20B~20n‧‧‧電壓調整單元 20A, 20B~20n‧‧‧Voltage adjustment unit
21‧‧‧電壓控制器 21‧‧‧Voltage controller
22‧‧‧運算器 22‧‧‧Operator
圖1是本發明並聯系統第一較佳實施例的方塊圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a first preferred embodiment of a parallel system of the present invention.
圖2是本發明並聯系統第二較佳實施例的方塊圖。 Figure 2 is a block diagram of a second preferred embodiment of the parallel system of the present invention.
圖3是已知執行電壓下降法的並聯系統示意圖。 Figure 3 is a schematic diagram of a parallel system known to perform a voltage drop method.
圖4是電壓下降法中輸出電流與輸出阻抗的相對關係曲線圖。 4 is a graph showing the relationship between the output current and the output impedance in the voltage drop method.
以下配合圖式及本發明的較佳實施例,進一步闡述本發明為達成預定發明目的所採取的技術手段。 The technical means adopted by the present invention for achieving the intended purpose of the invention are further described below in conjunction with the drawings and preferred embodiments of the invention.
關於本發明並聯系統的第一較佳實施例,請參考圖1所示,其包括多個直流電源模組10A、10B~10n,每一直流電源模組10A、10B~10n分別具有一電源輸入端和一電源輸出端,各電源輸入端相互連接以共同連接輸入電源,各個直流電源模組10A、10B~10n的電源輸出端也相互連接,以便共同地連接到負載,而構成一並聯系統。 For a first preferred embodiment of the parallel system of the present invention, please refer to FIG. 1 , which includes a plurality of DC power modules 10A , 10B 10 10n , each of which has a power input And a power output end, each power input end is connected to each other to jointly connect the input power, and the power output ends of the respective DC power modules 10A, 10B~10n are also connected to each other to be connected to the load in common to form a parallel system.
關於各個直流電源模組10A、10B~10n的具體構造,以下將以其中一個直流電源模組10A為例說明,其他直流電源模組10B~10n具有相同構造,容不一一贅述:該直流電源模組10A包括一電源轉換器11、一脈寬調變控制器12、一電壓控制器13、一電壓回授單元 14和一虛擬電壓下降運算單元15;其中:該電源轉換器11可以是交流對直流轉換器(AC/DC),也可以是直流對直流轉換器(DC/DC),前者是使用在輸入電源是交流電的場所,後者則應用在輸入電源為直流電壓源的場合。該電源轉換器11是連接在其電源輸入端和電源輸出端間,該電源轉換器11並具有一控制端,用來和脈寬調變控制器12連接。 For the specific structure of each of the DC power modules 10A and 10B to 10n, one of the DC power modules 10A will be described as an example. The other DC power modules 10B to 10n have the same structure, and the DC power supply is not described here. The module 10A includes a power converter 11, a pulse width modulation controller 12, a voltage controller 13, and a voltage feedback unit. 14 and a virtual voltage drop computing unit 15; wherein: the power converter 11 can be an AC to DC converter (AC / DC), or a DC to DC converter (DC / DC), the former is used in the input power It is a place for AC power, and the latter is used when the input power source is a DC voltage source. The power converter 11 is connected between its power input terminal and the power output terminal. The power converter 11 has a control terminal for connecting to the pulse width modulation controller 12.
該脈寬調變控制器12具有一輸入端和一輸出端,其輸出端和前述電源轉換器11的控制端連接,而透過調變脈寬(PWM)方式調整電源轉換器11的輸出電壓;該脈寬調變控制器12的輸入端是和電壓控制器13連接。 The pulse width modulation controller 12 has an input end and an output end, the output end of which is connected to the control end of the power converter 11 , and the output voltage of the power converter 11 is adjusted through a modulation pulse width (PWM) mode; The input of the pulse width modulation controller 12 is connected to the voltage controller 13.
該電壓控制器13具有二輸入端和一輸出端,其輸出端是和脈寬調變控制器12的輸入端連接,其中一輸入端是透過電壓回授單元14和電源輸出端連接。 The voltage controller 13 has two input terminals and an output terminal, and an output terminal thereof is connected to the input end of the pulse width modulation controller 12, wherein an input terminal is connected through the voltage feedback unit 14 and the power output terminal.
該虛擬電壓下降運算單元15具有一回授信號輸入端、一參考電壓輸入端Vor、一調整電壓輸入端Vc和一控制信號輸出端,該回授信號輸入端是和電源輸出端連接,該控制信號輸出端和電壓控制器13的另一輸入端連接;在本實施例中,虛擬電壓下降運算單元15具有一第一運算器151及一第二運算器152,該第一、第二運算器151、152分別具有兩參數端和一輸出端,第一運算器151的一參數端和電源輸出端連接,其輸出端構成前述控制信號輸出端,且連接到電壓控制器13的另一輸入端,第一運算器151的另一參數端和第二運算器152的輸出端連接,第二運算器152的兩參數端分別構成前述的參考電壓輸入端 Vor、調整電壓輸入端Vc:利用上述第一、第二運算器151、152的運算結果改變輸出到電壓控制器13的控制信號,進而透過脈寬調變控制器12使電源轉換器11降低輸出電壓,以虛擬直流電源模組10A的輸出阻抗提高,以執行電壓下降法,達成均流目的。 The virtual voltage drop computing unit 15 has a feedback signal input terminal, a reference voltage input terminal Vor, an adjustment voltage input terminal Vc, and a control signal output terminal, and the feedback signal input terminal is connected to the power output terminal, and the control The signal output terminal is connected to the other input end of the voltage controller 13; in this embodiment, the virtual voltage drop operation unit 15 has a first operator 151 and a second operator 152, the first and second operators 151, 152 respectively have a two-parameter end and an output end, a parameter end of the first computing unit 151 is connected to the power output end, and an output end thereof constitutes the aforementioned control signal output end, and is connected to the other input end of the voltage controller 13 The other parameter end of the first operator 151 is connected to the output end of the second operator 152, and the two parameter ends of the second operator 152 respectively form the aforementioned reference voltage input terminal. Vor, the adjustment voltage input terminal Vc: the control signal outputted to the voltage controller 13 is changed by the operation result of the first and second operators 151 and 152, and the power converter 11 is outputted through the pulse width modulation controller 12 The voltage is increased by the output impedance of the virtual DC power supply module 10A to perform a voltage drop method to achieve a current sharing purpose.
而為解決以電壓下降法實現的並聯系統其電壓調整能力不佳的問題,本發明進一步由一個以上的直流電源模組10A對並聯系統執行定電壓(CV)控制,以提升並聯系統的電壓調整能力。在本實施例中,是在其中一個直流電源模組10A設有一電壓調整單元20A,由該直流電源模組10A作為一主模組(Master)對輸出電壓執行定電壓控制,其他直流電源模組10B~10n則作為從模組(Slave),而組成一主從式架構。 In order to solve the problem that the voltage adjustment capability of the parallel system realized by the voltage drop method is not good, the present invention further performs constant voltage (CV) control on the parallel system by more than one DC power supply module 10A to improve the voltage adjustment of the parallel system. ability. In this embodiment, one of the DC power modules 10A is provided with a voltage adjusting unit 20A, and the DC power module 10A is used as a main module (Master) to perform constant voltage control on the output voltage, and other DC power modules. 10B~10n is used as a slave module (Slave) to form a master-slave architecture.
該電壓調整單元20A具有一回授電壓輸入端、一參考電壓輸入端Vor和一調整電壓輸出端,該回授電壓輸入端和電源輸出端連接,該調整電壓輸出端和虛擬電壓下降運算單元15的調整電壓輸入端Vc連接; 在本實施例中,該電壓調整單元20A包括一電壓控制器21和一運算器22,該電壓控制器21具有兩輸入端,分別和電源輸出端、參考電壓輸入端Vor連接;該運算器22具有兩參數端和一輸出端,其輸出端和各直流電源模組10A、10B~10n的調整電壓輸入端連接,其中一參數端和電壓控制器21的輸出端連接,另一參數端和參考電壓輸入端Vor連接。 The voltage adjustment unit 20A has a feedback voltage input terminal, a reference voltage input terminal Vor and an adjustment voltage output terminal. The feedback voltage input terminal is connected to the power supply output terminal, and the adjustment voltage output terminal and the virtual voltage drop operation unit 15 are connected. Adjusting voltage input terminal Vc is connected; In this embodiment, the voltage adjustment unit 20A includes a voltage controller 21 and an operator 22 having two input terminals respectively connected to the power output terminal and the reference voltage input terminal Vor; the operator 22 The utility model has a two-parameter end and an output end, the output end of which is connected with the adjusting voltage input end of each DC power supply module 10A, 10B~10n, wherein one parameter end is connected with the output end of the voltage controller 21, and another parameter end and reference The voltage input terminal Vor is connected.
在前述架構下,各直流電源模組10A、10B~10n 雖在其虛擬電壓下降運算單元15的運作下降低其輸出電壓,以執行電壓下降法並實現均流目的。然而作為主模組的直流電源模組10A則對輸出電壓執行定電壓控制,其電壓調整單元20A的電壓控制器21是參考電源輸出端的回授電壓及參考電壓輸入端Vor的參考電壓,並經運算器22運算後產生一調整電壓信號,送到各直流電源模組10A、10B~10n的虛擬電壓下降運算單元15,以參與對電壓控制器13送出一個控制信號的運算,因而在並聯系統的輸出電壓仍可獲得有效控制。 Under the foregoing architecture, each DC power module 10A, 10B~10n Although the output voltage is lowered by the operation of the virtual voltage drop operation unit 15, the voltage drop method is performed and the current sharing purpose is achieved. However, the DC power module 10A as the main module performs constant voltage control on the output voltage, and the voltage controller 21 of the voltage adjusting unit 20A is the reference voltage of the reference power output terminal and the reference voltage of the reference voltage input terminal Vor, and The operator 22 generates an adjusted voltage signal and sends it to the virtual voltage drop computing unit 15 of each of the DC power modules 10A, 10B-1010 to participate in the operation of sending a control signal to the voltage controller 13, thus in the parallel system. The output voltage is still available for effective control.
關於本發明的第二較佳實施例,請參考圖2所示,其在各直流電源模組10A、10B~10n的基本組成上和前一實施例大致相同,不同處在於:本實施例中,每一個直流電源模組10A、10B~10n分別設有一電壓調整單元20A、20B~20n,各個電壓調整單元20A、20B~20n的調整電壓輸出端分別透過一二極體和所有直流電源模組10A、10B~10n的虛擬電壓下降運算單元15的調整電壓輸入端連接。在此狀況下,將構成一自動主從控制架構。在前述架構下,每一個直流電源模組10A、10B~10n各自設有一電壓調整單元20A、20B~20n,以便對輸出電壓執行控制,但實際上由那一個直流電源模組10A、10B~10n作為主模組進行控制,則為機動的,主要視那一個直流電源模組10A、10B~10n輸出的調整電壓最大,即取得主模組資格,其他直流電源模組10B~10n則作為從模組。 Referring to FIG. 2, the basic composition of each DC power module 10A, 10B~10n is substantially the same as that of the previous embodiment, except that in this embodiment, Each of the DC power modules 10A, 10B~10n is respectively provided with a voltage adjusting unit 20A, 20B~20n, and the adjusting voltage output ends of the voltage adjusting units 20A, 20B~20n respectively pass through a diode and all the DC power modules. The adjustment voltage input terminals of the virtual voltage drop computing unit 15 of 10A, 10B to 10n are connected. In this case, an automatic master-slave control architecture will be constructed. Under the foregoing architecture, each of the DC power modules 10A, 10B~10n is provided with a voltage adjusting unit 20A, 20B~20n for performing control on the output voltage, but actually one DC power module 10A, 10B~10n As the main module for control, it is maneuverable. It mainly depends on which DC power supply module 10A, 10B~10n output the maximum adjustment voltage, that is, the main module qualification is obtained, and other DC power supply modules 10B~10n are used as the slave mode. group.
與前一實施例相同處在於:各個直流電源模組10A、10B~10n是在其虛擬電壓下降運算單元15控制下分 別執行虛擬的電壓下降法,以期達到均流目的。而關於輸出電壓的控制是由直流電源模組10A、10B~10n中的一個來執行,至於由何者執行,則視那一個直流電源模組10A、10B~10n的電壓調整單元20A、20B~20n輸出的調整電壓最大,即可取得主控權,並輸出調整電壓給所有直流電源模組10A、10B~10n的虛擬電壓下降運算單元15參與控制信號的運算,以提高對輸出電壓的調整能力。 The same as the previous embodiment is that each DC power supply module 10A, 10B~10n is controlled by its virtual voltage drop operation unit 15. Do not perform a virtual voltage drop method in order to achieve the purpose of current sharing. The control of the output voltage is performed by one of the DC power modules 10A, 10B~10n, and as to which of the DC voltage modules 10A, 10B~10n, the voltage adjusting units 20A, 20B~20n When the output adjustment voltage is the largest, the master control right can be obtained, and the adjustment voltage is output to the virtual voltage drop operation unit 15 of all the DC power supply modules 10A, 10B~10n to participate in the operation of the control signal to improve the adjustment capability of the output voltage.
前述各實施例主要強調透過虛擬電壓下降法使各直流電源模組的輸出電流差值縮小,以達成均流目的,再以其中一個直流電源模組執行定電壓控制,以提高輸出電壓的調整能力。除此以外,由於本發明採用虛擬電壓下降法可模擬各個直流電源模組具有不同的輸出阻抗,當輸出阻抗不同,直流電源模組分配到的輸出電流也不相同,例如一直流電源模組10A的輸出阻抗是另一直流電源模組10B的兩倍,則直流電源模組10A被分配到的輸出電流則是另一直流電源模組10B的二分之一,在此狀況下,其意味著本發明將可支援相同電壓但不同電流(容量)的直流電源模組相互並聯,而解決既有並聯系統的所有直流電源模組必須為相同規格,不同容量的直流電源模組無法再被利用所造成浪費的問題。 The foregoing embodiments mainly emphasize that the output current difference of each DC power module is reduced by the virtual voltage drop method to achieve the purpose of current sharing, and then one of the DC power modules performs constant voltage control to improve the output voltage adjustment capability. . In addition, since the present invention adopts the virtual voltage drop method, it can simulate that each DC power supply module has different output impedances. When the output impedance is different, the output current distributed by the DC power supply module is also different, for example, the DC power supply module 10A. The output impedance is twice that of the other DC power module 10B, and the output current to which the DC power module 10A is distributed is one-half of the other DC power module 10B. In this case, it means The present invention can support DC power modules of the same voltage but different currents (capacity) in parallel with each other, and all DC power modules of the existing parallel system must be of the same specification, and DC power modules of different capacities can no longer be utilized. The problem of waste.
以上所述僅是本發明的較佳實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何熟悉本專業的技術人員,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的 等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention. A person may make some changes or modify the equivalent change when using the technical content disclosed above without departing from the technical solution of the present invention. The invention is not limited to the scope of the technical solutions of the present invention. Any simple modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention are not included in the technical scope of the present invention.
10A、10B、10n‧‧‧直流電源模組 10A, 10B, 10n‧‧‧ DC power modules
11‧‧‧電源轉換器 11‧‧‧Power Converter
12‧‧‧脈寬調變控制器 12‧‧‧ Pulse width modulation controller
13‧‧‧電壓控制器 13‧‧‧Voltage controller
14‧‧‧電壓回授單元 14‧‧‧Voltage feedback unit
15‧‧‧虛擬電壓下降運算單元 15‧‧‧Virtual voltage drop computing unit
151‧‧‧第一運算器 151‧‧‧First Operator
152‧‧‧第二運算器 152‧‧‧Secondary
20A‧‧‧電壓調整單元 20A‧‧‧Voltage adjustment unit
21‧‧‧電壓控制器 21‧‧‧Voltage controller
22‧‧‧運算器 22‧‧‧Operator
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102108004A TWI552473B (en) | 2013-03-07 | 2013-03-07 | Parallel system of DC power supply and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102108004A TWI552473B (en) | 2013-03-07 | 2013-03-07 | Parallel system of DC power supply and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201436408A TW201436408A (en) | 2014-09-16 |
TWI552473B true TWI552473B (en) | 2016-10-01 |
Family
ID=51943508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102108004A TWI552473B (en) | 2013-03-07 | 2013-03-07 | Parallel system of DC power supply and its control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI552473B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3043442B1 (en) | 2015-01-12 | 2024-12-04 | SIMPower Technology Inc. | Hub having complex power converters |
CN109947161B (en) * | 2017-12-20 | 2020-08-28 | 致茂电子(苏州)有限公司 | Power supply system and control method thereof |
TWI667857B (en) * | 2018-04-27 | 2019-08-01 | 致茂電子股份有限公司 | Control method of inverters |
CN109361311A (en) * | 2018-10-25 | 2019-02-19 | 武汉精立电子技术有限公司 | A kind of multi-channel dc power supply current sharing control circuit and method |
TWI825794B (en) | 2022-06-21 | 2023-12-11 | 群光電能科技股份有限公司 | Power supply system and method of power supply control the same |
CN115242059B (en) * | 2022-09-21 | 2023-02-28 | 深圳英集芯科技股份有限公司 | Multi-power-supply parallel current output device and method and electronic equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030141907A1 (en) * | 2001-12-13 | 2003-07-31 | Antonio Canova | Current-sharing modular supply method and circuit |
TW556385B (en) * | 2002-01-29 | 2003-10-01 | Delta Electronics Inc | Control method and apparatus for power supply connected in parallel |
US7304462B2 (en) * | 2005-02-02 | 2007-12-04 | Power-One, Inc. | Compensated droop method for paralleling of power supplies (C-droop method) |
-
2013
- 2013-03-07 TW TW102108004A patent/TWI552473B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030141907A1 (en) * | 2001-12-13 | 2003-07-31 | Antonio Canova | Current-sharing modular supply method and circuit |
TW556385B (en) * | 2002-01-29 | 2003-10-01 | Delta Electronics Inc | Control method and apparatus for power supply connected in parallel |
US7304462B2 (en) * | 2005-02-02 | 2007-12-04 | Power-One, Inc. | Compensated droop method for paralleling of power supplies (C-droop method) |
Also Published As
Publication number | Publication date |
---|---|
TW201436408A (en) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI552473B (en) | Parallel system of DC power supply and its control method | |
CN103368170B (en) | The inverter of a kind of Multi-end flexible direct current transmission system and control method thereof | |
CN103155390B (en) | Power converter | |
CN106452068B (en) | A DC/DC Converter Input Series Output Series Voltage Equalization Control Method | |
JP6731764B2 (en) | Switchable power supply and power supply equipment using the same | |
US20140132070A1 (en) | Rack and power control method thereof | |
CN101710701A (en) | Current sharing control circuit and control method of double-current sharing buses of parallel DC switch power supply | |
CN104505853A (en) | Power distribution method for multiple fixed direct-current voltage stations in multi-terminal flexible direct-current transmission system | |
CN113054849B (en) | A parallel current sharing control method and device based on Boost plus LLC resonant converter | |
CN106026100B (en) | A kind of voltage stabilization Bifurcation method of alternating current-direct current mixing power distribution network | |
CN1112749C (en) | Full-load range precise current-equalizing device | |
CN105281561A (en) | Method for processing merging and current sharing problem of high-power high-frequency power supply | |
CN102622037A (en) | A parallel PFC rectifier module and current sharing control method | |
CN105186862B (en) | Distributed power supply system | |
TWM591728U (en) | Redundant power load ratio regulation circuit and regulation system | |
CN204333972U (en) | Multi-terminal flexible direct-current transmission equipment | |
CN106411150B (en) | The cascade multilevel converter and control method of bi-motor asynchronous operation can be driven | |
CN102789251B (en) | Current adjustable constant current circuit | |
CN104052050A (en) | Power supply parallel system adopting current-limiting control | |
CN105093993B (en) | Electronic equipment and its control method | |
CN103972879B (en) | DC Power Parallel System and Its Control Method | |
TW201436409A (en) | Power parallel-connection system using current-limiting control | |
Oberto et al. | An improved droop control strategy for load current sharing in output parallel-connected DC-DC converters | |
Johnsy | Analysis of a control strategy for parallel operation of single phase voltage source inverters | |
TWI559645B (en) | Power conversion system with power supply and electronic load |