TWI548217B - Output circuit - Google Patents
Output circuit Download PDFInfo
- Publication number
- TWI548217B TWI548217B TW104107013A TW104107013A TWI548217B TW I548217 B TWI548217 B TW I548217B TW 104107013 A TW104107013 A TW 104107013A TW 104107013 A TW104107013 A TW 104107013A TW I548217 B TWI548217 B TW I548217B
- Authority
- TW
- Taiwan
- Prior art keywords
- pull
- node
- output
- circuit
- voltage
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
Description
本發明是有關於一種輸出電路,其包含上拉(pull up)用的P型金屬氧化物半導體(P-type metal-oxide-semiconductor,PMOS)電晶體(transistor)與下拉(pull down)用的N型金屬氧化物半導體(N-type metal-oxide-semiconductor,NMOS)電晶體,本發明特別是有關於一種形成在半導體集成電路或半導體記憶裝置等中的輸出電路。 The present invention relates to an output circuit including a P-type metal-oxide-semiconductor (PMOS) transistor for pull-up and a pull down for pull down An N-type metal-oxide-semiconductor (NMOS) transistor, and more particularly to an output circuit formed in a semiconductor integrated circuit or a semiconductor memory device or the like.
在半導體裝置等的輸出電路中,使用有包含PMOS電晶體與NMOS電晶體的推挽型(push-pull type)的互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor Transistor,CMOS)逆變器(inverter)或CMOS緩衝器(buffer)。公開有使構成此種CMOS逆變器的電晶體低耐壓地構成且能輸出高電壓信號的輸出電路(專利文獻1)、抑制了開關雜訊(switching noise)的輸出電路(專利文獻2)等。 A push-pull type Complementary Metal-Oxide-Semiconductor Transistor (CMOS) inverter including a PMOS transistor and an NMOS transistor is used in an output circuit of a semiconductor device or the like. (inverter) or CMOS buffer (buffer). An output circuit in which a transistor constituting such a CMOS inverter has a low withstand voltage and can output a high voltage signal is disclosed (Patent Document 1), and an output circuit that suppresses switching noise (Patent Document 2) Wait.
[現有技術文獻] [Prior Art Literature]
[專利文獻] [Patent Literature]
[專利文獻1]日本專利特開2013-90278號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2013-90278
[專利文獻2]日本專利特開2012-65235號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2012-65235
圖1是表示以往的輸出電路的一結構例的圖。輸出電路包括構成推挽型CMOS逆變器的上拉用PMOS電晶體P1及下拉用NMOS電晶體N1。使PMOS電晶體P1的汲極(drain)與NMOS電晶體N1的汲極耦合的輸出節點(node)OUT例如電性耦合於輸出焊墊(pad)10。鎖存(latch)電路或前置緩衝器(prebuffer)電路20包括接收資料DATA的逆變器IN1、或非(Not OR,NOR)閘極(gate)、對上拉節點PU供給上拉控制信號的逆變器IN2、與非(Not AND,NAND)閘極、及對下拉節點PD供給下拉控制信號的逆變器IN3。鎖存電路20生成使資料DATA的邏輯位準(level)反轉的上拉控制信號及下拉控制信號,並將這些信號供給至上拉節點PU及下拉節點PD。 FIG. 1 is a view showing a configuration example of a conventional output circuit. The output circuit includes a pull-up PMOS transistor P1 and a pull-down NMOS transistor N1 that constitute a push-pull CMOS inverter. An output node (node) that couples the drain of the PMOS transistor P1 to the drain of the NMOS transistor N1 is, for example, electrically coupled to an output pad 10. A latch circuit or prebuffer circuit 20 includes an inverter IN1 or a NOT (NOR) gate that receives the data DATA, and supplies a pull-up control signal to the pull-up node PU. The inverter IN2, the non-(Not AND, NAND) gate, and the inverter IN3 that supplies the pull-down control signal to the pull-down node PD. The latch circuit 20 generates a pull-up control signal and a pull-down control signal for inverting the logic level of the material DATA, and supplies these signals to the pull-up node PU and the pull-down node PD.
上拉用PMOS電晶體P1為了對連接於輸出節點OUT、即連接於輸出焊墊10的負載進行驅動而需要一定的驅動能力。但是,伴隨半導體集成電路的微細化,當推進內部電源電壓VDD的低電壓化時,上拉電晶體P1的閘極/源極(source)間電壓Vgs變 小,從而有可能無法對連接於輸出節點OUT的負載進行高速驅動。例如,當電源電壓VDD從3.3V變為1.8V時,PMOS電晶體P1導通(ON)時的閘極/源極間電壓Vgs變小,因此PMOS電晶體P1的汲極電流Id變小,對連接於輸出焊墊10的負載進行驅動需要耗費過多的時間。 The pull-up PMOS transistor P1 requires a certain driving capability in order to drive a load connected to the output node OUT, that is, connected to the output pad 10. However, with the miniaturization of the semiconductor integrated circuit, when the voltage of the internal power supply voltage VDD is lowered, the voltage Vgs between the gate and the source of the pull-up transistor P1 changes. It is small, so that it is impossible to drive the load connected to the output node OUT at a high speed. For example, when the power supply voltage VDD is changed from 3.3V to 1.8V, the gate/source voltage Vgs when the PMOS transistor P1 is turned on (ON) becomes small, so the drain current Id of the PMOS transistor P1 becomes small, It takes a lot of time to drive the load connected to the output pad 10.
本發明的目的在於解決此類的以往問題,提供一種推挽型的輸出電路,能够更高速地驅動連接於輸出節點的負載。 An object of the present invention is to solve such conventional problems and to provide a push-pull type output circuit capable of driving a load connected to an output node at a higher speed.
本發明的輸出電路包括:P溝道型的上拉電晶體,連接於第1電源與輸出節點之間;下拉電晶體,連接於第2電源與所述輸出節點之間;供給電路,根據所輸入的資料的邏輯位準來對上拉電晶體的上拉節點供給上拉控制信號,且對下拉電晶體的下拉節點供給下拉控制信號;以及電路,當上拉電晶體藉由所述上拉控制信號而導通時,使所述上拉節點的電壓變化成負電壓。 The output circuit of the present invention comprises: a P-channel type pull-up transistor connected between the first power source and the output node; a pull-down transistor connected between the second power source and the output node; and a supply circuit The logic level of the input data is supplied to the pull-up control node of the pull-up transistor, and the pull-down control signal is supplied to the pull-down node of the pull-down transistor; and the circuit, when the pull-up transistor is pulled up by the pull-up When the control signal is turned on, the voltage of the pull-up node is changed to a negative voltage.
在較佳的方案中,所述使上拉節點的電壓變化成負電壓的電路包括:PMOS電晶體,連接於所述供給電路的上拉控制信號的供給節點與所述上拉節點之間;以及延遲電路,連接於所述供給節點,使所述上拉控制信號延遲,且,所述延遲電路的輸出電容耦合於所述上拉節點。較佳的是,當所述上拉控制信號從高位準遷移至低位準時,所述上拉節點的電壓變化成負電壓。較佳的是,所述PMOS電晶體包含形成在p型半導體區域內的N阱、以及形成在該N阱內的p型的第1擴散區域及第2擴散區域,第 1擴散區域連接於所述供給節點,第2擴散區域連接於所述上拉節點,N阱電性耦合於正的電源電壓。較佳的是,所述輸出節點電性耦合於半導體晶片(chip)的輸出焊墊。 In a preferred embodiment, the circuit for changing the voltage of the pull-up node to a negative voltage includes: a PMOS transistor connected between the supply node of the pull-up control signal of the supply circuit and the pull-up node; And a delay circuit coupled to the supply node to delay the pull up control signal, and an output capacitance of the delay circuit coupled to the pull up node. Preferably, when the pull-up control signal migrates from a high level to a low level, the voltage of the pull-up node changes to a negative voltage. Preferably, the PMOS transistor includes an N well formed in the p-type semiconductor region, and a p-type first diffusion region and a second diffusion region formed in the N well, A diffusion region is connected to the supply node, a second diffusion region is connected to the pull-up node, and an N-well is electrically coupled to a positive supply voltage. Preferably, the output node is electrically coupled to an output pad of a semiconductor chip.
根據本發明,藉由設置有當上拉電晶體導通時使上拉節點的電壓變化成負電壓的電路,從而能够使流經上拉電晶體的電流增加,因而能够更高速地驅動輸出節點。 According to the present invention, by providing a circuit for changing the voltage of the pull-up node to a negative voltage when the upper pull-up crystal is turned on, the current flowing through the pull-up transistor can be increased, so that the output node can be driven at a higher speed.
10‧‧‧輸出焊墊 10‧‧‧Output pad
20‧‧‧鎖存電路(前置緩衝器電路) 20‧‧‧Latch circuit (pre-buffer circuit)
100‧‧‧輸出電路 100‧‧‧Output circuit
200‧‧‧邏輯電路 200‧‧‧ logic circuit
210‧‧‧輸入部 210‧‧‧ Input Department
220‧‧‧負電壓生成電路 220‧‧‧Negative voltage generation circuit
240、IN1、IN2、IN3‧‧‧逆變器 240, IN1, IN2, IN3‧‧‧ inverter
300‧‧‧p型基板 300‧‧‧p type substrate
310‧‧‧N阱 310‧‧‧N well
320‧‧‧n型擴散區域 320‧‧‧n type diffusion area
330‧‧‧p型擴散區域 330‧‧‧p type diffusion area
340‧‧‧p型擴散區域 340‧‧‧p-type diffusion zone
DATA‧‧‧資料 DATA‧‧‧Information
DL‧‧‧延遲電路 DL‧‧‧ delay circuit
N1、TR2‧‧‧NMOS電晶體 N1, TR2‧‧‧ NMOS transistor
NAND‧‧‧與非 NAND‧‧‧和非
NOR‧‧‧或非 NOR‧‧‧ or non
NPU、PU_C‧‧‧節點 NPU, PU_C‧‧‧ nodes
OUT‧‧‧輸出節點 OUT‧‧‧ output node
P1、P2‧‧‧PMOS電晶體 P1, P2‧‧‧ PMOS transistor
PD‧‧‧下拉節點 PD‧‧‧ drop-down node
PU‧‧‧上拉節點 PU‧‧‧Upper node
t1、t1‧‧‧時刻 T1, t1‧‧‧ moments
T1~T5‧‧‧時刻 T1~T5‧‧‧ moments
TR1‧‧‧上拉用電晶體 TR1‧‧‧ Pull-up transistor
Vcc‧‧‧電源 Vcc‧‧‧ power supply
VDD‧‧‧電源電壓 VDD‧‧‧Power supply voltage
Vth‧‧‧PMOS電晶體P2的閾值 Vth‧‧‧ threshold of PMOS transistor P2
圖1是表示以往的輸出電路的一例的圖。 FIG. 1 is a view showing an example of a conventional output circuit.
圖2是表示本發明的實施例的輸出電路的結構例的圖。 Fig. 2 is a view showing an example of the configuration of an output circuit of an embodiment of the present invention.
圖3(A)、圖3(B)是對本發明的實施例的輸出電路的動作波形進行說明的圖。 3(A) and 3(B) are diagrams for explaining an operation waveform of an output circuit according to an embodiment of the present invention.
圖4是表示本發明的實施例的輸出電路的具體結構例的圖。 4 is a view showing a specific configuration example of an output circuit of an embodiment of the present invention.
圖5是圖4所示的輸出電路的PMOS電晶體的概略剖面圖。 Fig. 5 is a schematic cross-sectional view showing a PMOS transistor of the output circuit shown in Fig. 4;
圖6是表示圖4所示的輸出電路的各節點的電壓波形的圖。 Fig. 6 is a view showing voltage waveforms of respective nodes of the output circuit shown in Fig. 4;
圖7是表示自舉型(bootstrap type)輸出電路的圖。 Fig. 7 is a view showing a bootstrap type output circuit.
本發明的輸出電路是形成在半導體集成電路、半導體記憶裝置等半導體裝置或半導體晶片內。而且,本發明的輸出電路 可用於驅動半導體裝置內的電路,或者對與半導體裝置的輸出端子連接的其他半導體裝置或電路進行驅動。 The output circuit of the present invention is formed in a semiconductor device such as a semiconductor integrated circuit or a semiconductor memory device or a semiconductor wafer. Moreover, the output circuit of the present invention It can be used to drive circuits within a semiconductor device or to drive other semiconductor devices or circuits connected to the output terminals of the semiconductor device.
以下,參照附圖來說明本發明的實施例。圖2是表示本發明的實施例的輸出電路的一結構例的圖。本實施例的輸出電路100包括邏輯電路200及推挽型的逆變器240。邏輯電路200在輸入部210中接收資料DATA,並根據資料DATA的邏輯位準(level)來生成具有相輔關係的上拉控制信號及下拉控制信號,並將這些控制信號供給至上拉節點PU及下拉節點PD。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 2 is a view showing a configuration example of an output circuit of an embodiment of the present invention. The output circuit 100 of the present embodiment includes a logic circuit 200 and a push-pull type inverter 240. The logic circuit 200 receives the data DATA in the input unit 210, and generates a pull-up control signal and a pull-down control signal having a complementary relationship according to the logic level of the data DATA, and supplies the control signals to the pull-up node PU and Pull down the node PD.
逆變器240包括上拉用PMOS電晶體P1及下拉用NMOS電晶體N1。PMOS電晶體P1的源極連接於電源電壓VDD,閘極連接於上拉節點PU,汲極連接於輸出節點OUT。NMOS電晶體N1的源極連接於基準電位即GND,閘極連接於下拉節點PD,汲極連接於輸出節點OUT。PMOS電晶體P1及NMOS電晶體N1根據上拉控制信號及下拉控制信號來進行推挽動作。即,當上拉控制信號為L位準且下拉控制信號為L位準時,PMOS電晶體P1導通,NMOS電晶體N1斷開(OFF),汲極電流Id從電源電壓VDD流向輸出節點OUT。另一方面,當上拉控制信號為H位準且下拉控制信號為H位準時,PMOS電晶體P1斷開,NMOS電晶體N1導通,汲極電流Id從輸出節點OUT流向GND。輸出節點OUT連接於半導體裝置的輸出焊墊或者其他集成電路。 The inverter 240 includes a pull-up PMOS transistor P1 and a pull-down NMOS transistor N1. The source of the PMOS transistor P1 is connected to the power supply voltage VDD, the gate is connected to the pull-up node PU, and the drain is connected to the output node OUT. The source of the NMOS transistor N1 is connected to the reference potential, that is, GND, the gate is connected to the pull-down node PD, and the drain is connected to the output node OUT. The PMOS transistor P1 and the NMOS transistor N1 perform a push-pull operation based on the pull-up control signal and the pull-down control signal. That is, when the pull-up control signal is at the L level and the pull-down control signal is at the L level, the PMOS transistor P1 is turned on, the NMOS transistor N1 is turned off (OFF), and the drain current Id flows from the power supply voltage VDD to the output node OUT. On the other hand, when the pull-up control signal is at the H level and the pull-down control signal is at the H level, the PMOS transistor P1 is turned off, the NMOS transistor N1 is turned on, and the drain current Id flows from the output node OUT to GND. The output node OUT is connected to an output pad or other integrated circuit of the semiconductor device.
進而,本實施例的邏輯電路200包括負電壓生成電路220,該負電壓生成電路220用於在上拉用PMOS電晶體P1導通 時,使供給至上拉節點PU的L位準的上拉控制信號變化成負電壓或在負方向上變化。即,當PMOS電晶體P1導通時,上拉節點PU遷移至比0V低的負電壓,從而使PMOS電晶體P1强力導通。負電壓生成電路220只要是可使上拉節點PU的電壓遷移至負方向的電路,則其結構並無特別限定。負電壓生成電路220例如如後所述般,利用電容耦合來使上拉節點PU變化成負電壓。 Furthermore, the logic circuit 200 of the present embodiment includes a negative voltage generating circuit 220 for conducting the PMOS transistor P1 for pull-up. At this time, the L-level pull-up control signal supplied to the pull-up node PU is changed to a negative voltage or in a negative direction. That is, when the PMOS transistor P1 is turned on, the pull-up node PU migrates to a negative voltage lower than 0 V, thereby causing the PMOS transistor P1 to be strongly turned on. The negative voltage generating circuit 220 is not particularly limited as long as it is a circuit that can shift the voltage of the pull-up node PU to the negative direction. The negative voltage generating circuit 220 changes the pull-up node PU to a negative voltage by capacitive coupling, for example, as will be described later.
圖3(A)示意性地表示不具備負電壓生成電路220的以往的輸出電路的各節點的電壓波形,圖3(B)表示本實施例的具備負電壓生成電路的輸出電路的各節點的電壓波形。當資料DATA在時刻t1至時刻t2的期間內從H位準遷移至L位準時,邏輯電路200對上拉節點PU供給L位準的上拉控制信號,且對下拉節點PD供給L位準的下拉控制信號。由此,上拉用PMOS電晶體P1導通,下拉用NMOS電晶體N1斷開,輸出節點OUT輸出使資料DATA的邏輯位準反轉的H位準的信號。例如,當電源電壓VDD低電壓化(3.3V→1.8V)時,PMOS電晶體P1的閘極/源極間電壓會變得不够充分,與此相應地,汲極電流Id也變小,對連接於輸出節點OUT的負載電容進行驅動需要耗費時間。 3(A) schematically shows voltage waveforms of respective nodes of a conventional output circuit that does not include the negative voltage generating circuit 220, and FIG. 3(B) shows nodes of the output circuit including the negative voltage generating circuit of the present embodiment. Voltage waveform. When the data DATA transitions from the H level to the L level during the period from time t1 to time t2, the logic circuit 200 supplies the pull-up control signal of the L level to the pull-up node PU, and supplies the L level to the pull-down node PD. Pull down the control signal. Thereby, the pull-up PMOS transistor P1 is turned on, the pull-down NMOS transistor N1 is turned off, and the output node OUT outputs a signal of the H level which inverts the logic level of the data DATA. For example, when the power supply voltage VDD is low voltage (3.3V → 1.8V), the gate/source voltage of the PMOS transistor P1 becomes insufficient, and accordingly, the drain current Id becomes small, It takes time to drive the load capacitor connected to the output node OUT.
另一方面,本實施例的輸出電路100中,當資料DATA從H位準遷移至L位準時,負電壓生成電路220如圖3(B)所示,使L位準的上拉控制信號遷移至負電壓(-V)。因此,與圖3(A)所示的不變化成負電壓的輸出電路相比較,能够使上拉用PMOS電晶體P1的閘極/源極間電壓增大,其結果,能够使流經PMOS 電晶體P1的汲極電流Id增大。因此,能够高速驅動輸出節點OUT的負載電容。 On the other hand, in the output circuit 100 of the present embodiment, when the data DATA is transferred from the H level to the L level, the negative voltage generating circuit 220 shifts the L level pull-up control signal as shown in FIG. 3(B). To negative voltage (-V). Therefore, compared with the output circuit shown in FIG. 3(A) that does not change to a negative voltage, the gate-source voltage of the pull-up PMOS transistor P1 can be increased, and as a result, it can flow through the PMOS. The drain current Id of the transistor P1 increases. Therefore, the load capacitance of the output node OUT can be driven at a high speed.
接下來,對本實施例的輸出電路的具體結構例進行說明。圖4是本實施例的輸出電路,對於與圖1的輸出電路相同的結構標注相同的參照編號。如該圖4所示,本實施例的輸出電路100除了鎖存電路20、CMOS逆變器P1/N1的結構以外,還包括負電壓產生電路220,該負電壓產生電路220用於使上拉節點PU的電壓變化成負電壓。在上拉用PMOS電晶體P1的源極上,例如連接有1.8V的VDD電源。而且,在輸出節點OUT上連接有輸出焊墊等。 Next, a specific configuration example of the output circuit of the present embodiment will be described. 4 is an output circuit of the present embodiment, and the same components as those of the output circuit of FIG. 1 are denoted by the same reference numerals. As shown in FIG. 4, the output circuit 100 of the present embodiment includes, in addition to the structure of the latch circuit 20 and the CMOS inverter P1/N1, a negative voltage generating circuit 220 for pulling up. The voltage of the node PU changes to a negative voltage. On the source of the pull-up PMOS transistor P1, for example, a 1.8 V VDD power supply is connected. Further, an output pad or the like is connected to the output node OUT.
鎖存電路20對節點NPU生成上拉控制信號,對下拉節點PD生成與該上拉控制信號相輔的下拉控制信號。負電壓生成電路220包括:PMOS電晶體P2,連接於鎖存電路20的節點NPU與上拉節點PU之間;以及延遲電路DL,連接於節點NPU,使上拉控制信號延遲。延遲電路DL的輸出電容耦合於上拉節點PU,當對上拉節點PU供給L位準的上拉控制信號時,使上拉節點PU的電壓遷移至負電壓。延遲電路DL例如可包含多個逆變器。 The latch circuit 20 generates a pull-up control signal for the node NPU, and generates a pull-down control signal for the pull-down node PD that is complementary to the pull-up control signal. The negative voltage generating circuit 220 includes a PMOS transistor P2 connected between the node NPU of the latch circuit 20 and the pull-up node PU, and a delay circuit DL connected to the node NPU to delay the pull-up control signal. The output capacitance of the delay circuit DL is coupled to the pull-up node PU, and when the pull-up control signal for the L level is supplied to the pull-up node PU, the voltage of the pull-up node PU is shifted to a negative voltage. The delay circuit DL may for example comprise a plurality of inverters.
圖5表示PMOS電晶體P2的概略剖面圖。如該圖5所示,PMOS電晶體P2形成在N阱310內,該N阱310形成在p型矽(silicon)基板300內。對基板300供給GND(0V),對於N阱310,經由n型的擴散區域320而供給例如3.3V的電源Vcc。PMOS電晶體P2的其中一個p型的擴散區域330連接於鎖存電路 20的節點NPU,另一個p型的擴散區域340連接於上拉節點PU。對閘極供給有GND,PMOS電晶體P2始終處於導通狀態。 FIG. 5 is a schematic cross-sectional view showing the PMOS transistor P2. As shown in FIG. 5, a PMOS transistor P2 is formed in an N well 310 formed in a p-type silicon substrate 300. GND (0 V) is supplied to the substrate 300, and a power supply Vcc of, for example, 3.3 V is supplied to the N well 310 via the n-type diffusion region 320. One of the p-type diffusion regions 330 of the PMOS transistor P2 is connected to the latch circuit The node NPU of 20, the other p-type diffusion region 340 is connected to the pull-up node PU. The gate is supplied with GND, and the PMOS transistor P2 is always in an on state.
接下來,對本實施例的輸出電路的動作進行說明。圖6示意性地表示輸出電路的各節點的電壓波形。在時刻T1,朝向鎖存電路20的資料DATA從L位準遷移至H位準。響應於此,NAND閘極的輸出遷移至H位準,因此在時刻T2,下拉節點PD從H位準遷移至L位準,下拉用NMOS電晶體N1斷開。 Next, the operation of the output circuit of this embodiment will be described. Fig. 6 schematically shows voltage waveforms of respective nodes of the output circuit. At time T1, the data DATA toward the latch circuit 20 is shifted from the L level to the H level. In response to this, the output of the NAND gate migrates to the H level, so at time T2, the pull-down node PD migrates from the H level to the L level, and the pull-down NMOS transistor N1 is turned off.
NOR閘極根據來自逆變器IN1的L位準的輸入與下拉節點PD的L位準的輸入而輸出H位準,因此在時刻T3,節點NPU從H位準(Vcc)遷移至L位準(0V)。而且,在時刻T3,由於PMOS電晶體P2處於導通狀態,因此對節點NPU生成的L位準的上拉控制信號被供給至上拉節點PU。此時,上拉節點PU的電壓從Vcc下降至Vth(Vth為PMOS電晶體P2的閾值)。響應於上拉節點被驅動至L位準的情况,上拉用電晶體P1導通。 The NOR gate outputs the H level according to the input from the L level of the inverter IN1 and the L level input of the pulldown node PD, so at time T3, the node NPU migrates from the H level (Vcc) to the L level. (0V). Further, at time T3, since the PMOS transistor P2 is in an on state, the L level pull-up control signal generated for the node NPU is supplied to the pull-up node PU. At this time, the voltage of the pull-up node PU falls from Vcc to Vth (Vth is the threshold of the PMOS transistor P2). The pull-up transistor P1 is turned on in response to the case where the pull-up node is driven to the L level.
進而,在時刻T4,延遲電路DL對節點PU_C輸出延遲了固定時間的上拉控制信號。即,節點PU_C從H位準遷移至L位準。由於節點PU_C電容耦合於上拉節點PU,因此當節點PU_C的電壓下降時,與此相應地,上拉節點PU的電壓被拉向負方向。本實施例中,上拉節點PU的電容耦合比等受到調整,以成為負電壓。當上拉節點PU遷移至負電壓時,不在擴散區域340與N阱310之間形成順向偏壓(bias),因此無貫穿電流流經與基板300之間。 Further, at time T4, the delay circuit DL outputs a pull-up control signal delayed by a fixed time to the node PU_C. That is, the node PU_C migrates from the H level to the L level. Since the node PU_C is capacitively coupled to the pull-up node PU, when the voltage of the node PU_C drops, correspondingly, the voltage of the pull-up node PU is pulled to the negative direction. In this embodiment, the capacitance coupling ratio of the pull-up node PU is adjusted to become a negative voltage. When the pull-up node PU migrates to a negative voltage, a forward bias is not formed between the diffusion region 340 and the N well 310, so no through current flows between the substrate 300 and the substrate 300.
由於上拉節點PU的負電壓持續固定期間,因此,在此期間,PMOS電晶體P1的閘極/源極間電壓變大,PMOS電晶體P1强力導通,大的汲極電流Id被供給至輸出節點OUT。因此,能够對連接於輸出節點OUT的負載進行高速驅動。 Since the negative voltage of the pull-up node PU continues for a fixed period, during this period, the gate/source voltage of the PMOS transistor P1 becomes large, the PMOS transistor P1 is strongly turned on, and the large drain current Id is supplied to the output. Node OUT. Therefore, it is possible to drive the load connected to the output node OUT at a high speed.
圖7是藉由自舉(bootstrap)來驅動上拉電晶體的輸出電路。上拉用電晶體TR1包含NMOS,在電晶體TR1的閘極上,連接有連接至VDD的NMOS電晶體TR2。當對節點NPU供給H位準的上拉控制信號時,上拉節點PU經由電晶體TR2而變為Vcc-Vth,電晶體TR1導通,輸出節點OUT遷移至H位準。由於電容耦合於上拉節點PU,因此響應於輸出節點OUT的電壓上升的情况,輸出節點OUT的電壓上升,上拉用電晶體TR1的閘極/源極間電壓變大,與此相應地,上拉用電晶體TR1强力導通。但是,若連接於輸出節點OUT的負載電容為固定以上,則輸出節點OUT的電位會立即下降,因此無法將上拉節點PU的電壓維持為VDD+Vth。與此相對,本實施例的輸出電路並非藉由輸出節點OUT的電壓來使上拉節點PU的電壓發生變化的結構,因此能够使上拉節點PU的負電壓穩定地持續固定期間,因此,能够保持上拉電晶體强力導通的狀態。 Figure 7 is an output circuit for driving a pull-up transistor by bootstrap. The pull-up transistor TR1 includes an NMOS, and an NMOS transistor TR2 connected to VDD is connected to the gate of the transistor TR1. When the H-level pull-up control signal is supplied to the node NPU, the pull-up node PU becomes Vcc-Vth via the transistor TR2, the transistor TR1 is turned on, and the output node OUT is shifted to the H level. Since the capacitance is coupled to the pull-up node PU, the voltage of the output node OUT rises in response to an increase in the voltage of the output node OUT, and the voltage between the gate and the source of the pull-up transistor TR1 becomes large, and accordingly, The pull-up transistor TR1 is strongly turned on. However, if the load capacitance connected to the output node OUT is fixed or higher, the potential of the output node OUT is immediately lowered, so that the voltage of the pull-up node PU cannot be maintained at VDD+Vth. On the other hand, the output circuit of the present embodiment does not change the voltage of the pull-up node PU by the voltage of the output node OUT. Therefore, the negative voltage of the pull-up node PU can be stably maintained for a fixed period. Keep the pull-up transistor in a state of strong conduction.
所述實施例中,表示了邏輯電路200包含鎖存電路20的例子,但這只是一例,並不限定於此。邏輯電路200例如也可包含位準轉換電路(位準轉換器(level shifter)),還可包含前置緩衝器等其他電路或邏輯電路以外的電路元件,所述位準轉換電 路使輸入至輸入部210的資料的邏輯位準的電壓變化成其他電壓。進而,所述實施例中,例示了邏輯電路200包含負電壓生成電路220的情况,但負電壓生成電路220也可不包含在邏輯電路200中,而采用獨立於邏輯電路200的結構。進而,供給至邏輯電路200的電源Vcc與供給至上拉用電晶體的電源VDD既可為相同的電壓值,也可為不同的電壓值。進而,邏輯電路200也可生成與所輸入的資料的邏輯位準為相同的邏輯位準的上拉控制信號及下拉控制信號、或者使所輸入的資料的邏輯位準反轉的邏輯位準的上拉控制信號及下拉控制信號。 In the above embodiment, the example in which the logic circuit 200 includes the latch circuit 20 is shown, but this is only an example and is not limited thereto. The logic circuit 200 may also include, for example, a level shifter (level shifter), and may also include other circuits such as a pre-buffer or circuit elements other than the logic circuit. The circuit changes the voltage of the logic level of the data input to the input unit 210 to another voltage. Further, in the above embodiment, the case where the logic circuit 200 includes the negative voltage generating circuit 220 is exemplified, but the negative voltage generating circuit 220 may not be included in the logic circuit 200, and a configuration independent of the logic circuit 200 may be employed. Further, the power source Vcc supplied to the logic circuit 200 and the power source VDD supplied to the pull-up transistor may be the same voltage value or different voltage values. Furthermore, the logic circuit 200 can also generate a pull-up control signal and a pull-down control signal having the same logic level as the logic level of the input data, or a logic level in which the logic level of the input data is inverted. Pull-up control signal and pull-down control signal.
進而,所述實施例中,作為使上拉節點的電壓變化成負電壓的電路,例示了負電壓生成電路220,但本發明並不拘泥於負電壓生成電路220的名稱,可適用具備使上拉節點的電壓在負方向上變化的功能的電路。進而,本實施例中,示出了將輸出電路的輸出節點連接於輸出焊墊的例子,但輸出節點可適用於對其他電路或者其他裝置等各種負載進行驅動的情况。 Further, in the above-described embodiment, the negative voltage generating circuit 220 is exemplified as a circuit for changing the voltage of the pull-up node to a negative voltage. However, the present invention is not limited to the name of the negative voltage generating circuit 220, and is applicable to the above. A circuit that pulls the voltage of a node to change its function in the negative direction. Further, in the present embodiment, an example in which the output node of the output circuit is connected to the output pad is shown, but the output node can be applied to a case where various loads such as other circuits or other devices are driven.
如上所述,對本發明的較佳實施方式進行了詳述,但本發明並不限定於特定的實施方式,在本發明的主旨的範圍內,可進行各種變形、變更。 As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the invention.
20‧‧‧鎖存電路(前置緩衝器電路) 20‧‧‧Latch circuit (pre-buffer circuit)
100‧‧‧輸出電路 100‧‧‧Output circuit
220‧‧‧負電壓生成電路 220‧‧‧Negative voltage generation circuit
IN1、IN2、IN3‧‧‧逆變器 IN1, IN2, IN3‧‧‧ inverter
DATA‧‧‧資料 DATA‧‧‧Information
DL‧‧‧延遲電路 DL‧‧‧ delay circuit
N1‧‧‧NMOS電晶體 N1‧‧‧ NMOS transistor
NAND‧‧‧與非 NAND‧‧‧和非
NOR‧‧‧或非 NOR‧‧‧ or non
NPU、PU_C‧‧‧節點 NPU, PU_C‧‧‧ nodes
OUT‧‧‧輸出節點 OUT‧‧‧ output node
P1、P2‧‧‧PMOS電晶體 P1, P2‧‧‧ PMOS transistor
PD‧‧‧下拉節點 PD‧‧‧ drop-down node
PU‧‧‧上拉節點 PU‧‧‧Upper node
VDD‧‧‧電源電壓 VDD‧‧‧Power supply voltage
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104107013A TWI548217B (en) | 2015-03-05 | 2015-03-05 | Output circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104107013A TWI548217B (en) | 2015-03-05 | 2015-03-05 | Output circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI548217B true TWI548217B (en) | 2016-09-01 |
TW201633716A TW201633716A (en) | 2016-09-16 |
Family
ID=57443314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104107013A TWI548217B (en) | 2015-03-05 | 2015-03-05 | Output circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI548217B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072354A (en) * | 1996-09-30 | 2000-06-06 | Hitachi, Ltd. | Semiconductor device output buffer circuit for LSI |
TW200410490A (en) * | 2002-12-11 | 2004-06-16 | Ip First Llc | Thin gate oxide output driver |
TW200822559A (en) * | 2006-07-28 | 2008-05-16 | Dsm Solutions Inc | Level shifting circuit having junction field effect transistors |
JP2012065235A (en) * | 2010-09-17 | 2012-03-29 | Toshiba Corp | Voltage output circuit |
JP2013090278A (en) * | 2011-10-21 | 2013-05-13 | Toshiba Corp | Output circuit |
-
2015
- 2015-03-05 TW TW104107013A patent/TWI548217B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072354A (en) * | 1996-09-30 | 2000-06-06 | Hitachi, Ltd. | Semiconductor device output buffer circuit for LSI |
TW200410490A (en) * | 2002-12-11 | 2004-06-16 | Ip First Llc | Thin gate oxide output driver |
TW200822559A (en) * | 2006-07-28 | 2008-05-16 | Dsm Solutions Inc | Level shifting circuit having junction field effect transistors |
JP2012065235A (en) * | 2010-09-17 | 2012-03-29 | Toshiba Corp | Voltage output circuit |
JP2013090278A (en) * | 2011-10-21 | 2013-05-13 | Toshiba Corp | Output circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201633716A (en) | 2016-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100724646B1 (en) | Level conversion circuit and semiconductor integrated circuit device employing the level conversion circuit | |
US7145363B2 (en) | Level shifter | |
EP1102402A1 (en) | Level adjustment circuit and data output circuit thereof | |
US11012073B2 (en) | Level shifter circuit and method of operating the same | |
US7425845B2 (en) | Semiconductor integrated circuit | |
JP6820480B2 (en) | Output circuit | |
US6720794B2 (en) | Output buffer circuit | |
JP2004228782A (en) | Level conversion circuit | |
US9608604B2 (en) | Voltage level shifter with single well voltage | |
JP4731056B2 (en) | Semiconductor integrated circuit | |
JP3730963B2 (en) | Semiconductor integrated circuit | |
TWI548217B (en) | Output circuit | |
WO2023073904A1 (en) | Level-shifting circuit | |
US7218145B2 (en) | Level conversion circuit | |
JP5982460B2 (en) | Output circuit | |
JP2002300025A (en) | Level shift circuit | |
US8456216B2 (en) | Level shifter | |
US11621705B2 (en) | Semiconductor integrated circuit device and level shifter circuit | |
CN106160728B (en) | Output circuit | |
JPH10135818A (en) | Input circuit | |
JP2009213109A (en) | Input/output circuit | |
JPH04328858A (en) | Input/output buffer circuit | |
JP2005045526A (en) | Level changer circuit and semiconductor device using the same |