TWI489101B - Apparatus and method for combining 3d and 2d measurement - Google Patents
Apparatus and method for combining 3d and 2d measurement Download PDFInfo
- Publication number
- TWI489101B TWI489101B TW102144102A TW102144102A TWI489101B TW I489101 B TWI489101 B TW I489101B TW 102144102 A TW102144102 A TW 102144102A TW 102144102 A TW102144102 A TW 102144102A TW I489101 B TWI489101 B TW I489101B
- Authority
- TW
- Taiwan
- Prior art keywords
- light intensity
- image
- phase
- pixels
- line
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本揭露是有關於一種量測方法及裝置,且特別是有關於一種結合三維及二維形貌之量測方法及裝置。The disclosure relates to a measuring method and device, and in particular to a measuring method and device for combining three-dimensional and two-dimensional shapes.
傳統上,積體電路(integrated circuit,IC)封裝機械視覺檢測包括二維檢測及三維形貌量測,其中IC正面以二維檢測及二維形貌/尺寸量測為主;IC底部則需量測三維IC接腳共面度、接腳二維尺度以及缺陷檢測。Traditionally, mechanical inspection of integrated circuit (IC) packages includes two-dimensional inspection and three-dimensional topography measurement, in which the front of the IC is mainly measured by two-dimensional inspection and two-dimensional shape/size measurement; Measure the coplanarity of the 3D IC pin, the 2D scale of the pin and the defect detection.
然而,目前的量測技術通常需要透過兩組(或以上)不同的光源對物體進行多次掃描,以分別得到物體的2D及3D量測結果。如此不僅耗費量測時間,還會增加機具成本,更會導致過多的資料傳輸頻寬被占用。However, current measurement techniques typically require multiple scans of the object through two (or more) different light sources to obtain 2D and 3D measurements of the object, respectively. This not only consumes the measurement time, but also increases the cost of the machine, and leads to excessive data transmission bandwidth being occupied.
因此,如何提供一種可有效結合三維及二維形貌之量測方法及裝置,乃目前業界所致力的課題之一。Therefore, how to provide a measuring method and device capable of effectively combining three-dimensional and two-dimensional topography is one of the current topics in the industry.
本揭露係有關於一種結合三維及二維形貌之量測方法及裝置,其藉由單一次多線掃描即可建立物體之三維及二維形 貌,以達到快速量測之效果。The disclosure relates to a measuring method and device for combining three-dimensional and two-dimensional shapes, which can establish three-dimensional and two-dimensional shapes of objects by single-time multi-line scanning. Appearance to achieve the effect of rapid measurement.
根據本揭露之一實施例,提出一種量測方法,用以量測物體之三維及二維形貌,此物體之表面具有多個物點(object point)。此量測方法包括以下步驟。首先,經由投射裝置,將條紋圖案投射至物體表面。接著,藉由多線光電取像系統,接收並儲存多線影像。之後,物體與相移裝置系統做相對移動,以透過多線光電取像系統擷取多張相位光強影像,相移裝置系統包括投射裝置及多線光電取像系統。然後,依據相位光強影像決定物點之相位值,並透過三角幾何關係將相位值轉換為物點所對應之高度,以產生物體之三維形貌。以及,依據相位光強影像重建無相位變化之物體影像,無相位變化之物體影像係呈現物體之二維形貌尺寸。According to an embodiment of the present disclosure, a measurement method is proposed for measuring a three-dimensional and two-dimensional shape of an object, and the surface of the object has a plurality of object points. This measurement method includes the following steps. First, the stripe pattern is projected onto the surface of the object via the projection device. Then, the multi-line image is received and stored by the multi-line photoelectric image capturing system. Thereafter, the object and the phase shifting device system are relatively moved to capture a plurality of phase light intensity images through the multi-line photoelectric image capturing system, and the phase shifting device system includes a projection device and a multi-line photoelectric image capturing system. Then, the phase value of the object point is determined according to the phase light intensity image, and the phase value is converted into the height corresponding to the object point through the triangular geometric relationship to generate the three-dimensional shape of the object. And, according to the phase light intensity image, the object image without phase change is reconstructed, and the object image without phase change presents the two-dimensional shape size of the object.
根據本揭露之一實施例,提出一種量測裝置,用以量測一物體之三維及二維形貌,此物體之表面具有多個物點。此量測裝置包括相移裝置系統以及影像處理單元。相移裝置系統包括投射裝置及多線光電取像系統。投射裝置用以將條紋圖案投射至物體之表面。多線光電取像系統用以接收並儲存多線影像。其中,物體與相移裝置系統做相對移動,以透過多線光電取像系統擷取多張相位光強影像。影像處理單元用以依據相位光強影像決定物點之相位值,並透過三角幾何關係將相位值轉換為物點所對應之高度,以產生物體之三維形貌。影像處理單元並依據相位光強影像重建無相位變化之物體影像,此無相位變化之物體影像係 呈現物體之二維形貌尺寸。According to an embodiment of the present disclosure, a measuring device is provided for measuring a three-dimensional and two-dimensional shape of an object, the surface of the object having a plurality of object points. The measuring device comprises a phase shifting device system and an image processing unit. The phase shifting device system includes a projection device and a multi-line photoelectric image capturing system. The projection device is used to project the stripe pattern onto the surface of the object. A multi-line photo-electric imaging system is used to receive and store multi-line images. The object and the phase shifting device system are relatively moved to capture multiple phase light intensity images through the multi-line photoelectric image capturing system. The image processing unit is configured to determine the phase value of the object point according to the phase light intensity image, and convert the phase value into a height corresponding to the object point through a triangular geometric relationship to generate a three-dimensional shape of the object. The image processing unit reconstructs an object image without phase change according to the phase light intensity image, and the object image system without phase change Presents the two-dimensional shape of the object.
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present disclosure, the following specific embodiments, together with the accompanying drawings, are described in detail below:
10‧‧‧物體10‧‧‧ objects
100‧‧‧量測裝置100‧‧‧Measurement device
102‧‧‧相移裝置系統102‧‧‧ Phase shifting device system
104‧‧‧影像處理單元104‧‧‧Image Processing Unit
106‧‧‧投射裝置106‧‧‧Projecting device
108‧‧‧多線光電取像系統108‧‧‧Multi-line photoelectric imaging system
110‧‧‧掃描載體110‧‧‧ scan carrier
200‧‧‧量測方法200‧‧‧Measurement method
202、204、206、208、210‧‧‧步驟Steps 202, 204, 206, 208, 210‧‧
L1‧‧‧第一取像線L1‧‧‧first image line
L2‧‧‧第二取像線L2‧‧‧second image line
L3‧‧‧第三取像線L3‧‧‧ third line
O1~O5‧‧‧物點O1~O5‧‧‧ points
PL‧‧‧條紋光線PL‧‧‧ striped light
RP‧‧‧參考平面RP‧‧‧ reference plane
A、A’、B、C、C’、D、O‧‧‧點A, A’, B, C, C’, D, O‧‧ points
θ0 、θn ‧‧‧角度θ 0 , θ n ‧‧‧ angle
d0 ‧‧‧有效波長為d 0 ‧‧‧effective wavelength is
502、504、506、508‧‧‧影像502, 504, 506, 508 ‧ ‧ images
第1圖繪示依據本揭露之一實施例之量測裝置之方塊圖。FIG. 1 is a block diagram of a measuring device according to an embodiment of the present disclosure.
第2圖繪示依據本揭露之一實施例之量測方法之流程圖。FIG. 2 is a flow chart of a measurement method according to an embodiment of the present disclosure.
第3A圖至第3C圖繪示相移裝置系統之掃描機制示意圖。3A to 3C are schematic diagrams showing the scanning mechanism of the phase shifting device system.
第4圖繪示投影裝置所投影之條紋光線與物體之高度之幾何關係示意圖。FIG. 4 is a schematic diagram showing the geometric relationship between the streak light projected by the projection device and the height of the object.
第5圖繪示重建無相位變化之物體影像之示意圖。Figure 5 is a schematic diagram showing the reconstruction of an image of an object without phase change.
以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並不會限縮本揭露欲保護之範圍。此外,實施例中之圖式係省略不必要之元件,以清楚顯示本揭露之技術特點。The following is a detailed description of the embodiments, which are intended to be illustrative only and not to limit the scope of the disclosure. In addition, the drawings in the embodiments omit unnecessary elements to clearly show the technical features of the disclosure.
請同時參考第1圖及第2圖。第1圖繪示依據本揭露之一實施例之量測裝置100之方塊圖。第2圖繪示依據本揭露之一實施例之量測方法200之流程圖。量測裝置100用以量測物體10之三維及二維形貌,其包括相移裝置系統102以及影像處理單元104。相移裝置系統102包括投射裝置106及多線光電取像系統108。投射裝置106例如是光柵投射器或其他結構光(structured light)源。多線光電取像系統108例如是三線感光耦合 式(Charge Coupled Device,CCD)相機或其他多線CCD相機。影像處理單元104例如是積體電路或其他具運算能力的處理器。Please refer to both Figure 1 and Figure 2. FIG. 1 is a block diagram of a measuring device 100 in accordance with an embodiment of the present disclosure. FIG. 2 is a flow chart of a metrology method 200 in accordance with an embodiment of the present disclosure. The measuring device 100 is used to measure the three-dimensional and two-dimensional topography of the object 10, which includes a phase shifting device system 102 and an image processing unit 104. The phase shifting device system 102 includes a projection device 106 and a multi-line optical imaging system 108. Projection device 106 is, for example, a raster projector or other structured light source. The multi-line photoelectric imaging system 108 is, for example, a three-wire photosensitive coupling. Charge Coupled Device (CCD) camera or other multi-line CCD camera. The image processing unit 104 is, for example, an integrated circuit or other processor with computing power.
首先,在步驟202中,投射裝置106將條紋圖案投射至物體10之表面,此物體10之表面上定義有多個物點(object point)。First, in step 202, the projection device 106 projects a stripe pattern onto the surface of the object 10, on which a plurality of object points are defined.
接著,在步驟204中,多線光電取像系統108接收並儲存多線影像。Next, in step 204, the multi-line optical imaging system 108 receives and stores the multi-line image.
之後,在步驟206中,物體與相移裝置系統做相對移動,以透過多線光電取像系統108擷取多張相位光強影像。Thereafter, in step 206, the object and the phase shifting device system are moved relative to each other to capture a plurality of phase intensity images through the multi-line optical imaging system 108.
然後,在步驟208中,影像處理單元104依據相位光強影像決定物點之相位值,並透過三角幾何關係將相位值轉換為物點所對應之高度,以產生物體10之三維形貌。Then, in step 208, the image processing unit 104 determines the phase value of the object point according to the phase light intensity image, and converts the phase value into the height corresponding to the object point through the triangular geometric relationship to generate the three-dimensional shape of the object 10.
在步驟210中,影像處理單元104更依據相位光強影像重建無相位變化之物體影像。此無相位變化之物體影像係呈現物體10之二維形貌尺寸。可以理解的是,雖然第2圖中步驟208以及210係先後被執行,但在其它例子中,步驟S208以及S210之執行順序可以互換,或者同時被執行。In step 210, the image processing unit 104 reconstructs the object image without phase change according to the phase light intensity image. This object image without phase change presents the two-dimensional topographical dimensions of the object 10. It can be understood that although steps 208 and 210 in FIG. 2 are executed sequentially, in other examples, the order of execution of steps S208 and S210 may be interchanged or executed simultaneously.
在取得無相位變化之物體影像後,影像處理單元104可進一步將無相位變化之物體影像之部分或全部與一預設物體圖樣進行比對以檢測物體10之表面形貌、尺寸或缺陷。預設物體圖樣例如是物體10之部分或全部在無缺陷時的工程圖樣。舉例來說,假設經比對後發現無相位變化之物體影像存有相異於 此預設物體圖樣之部分,影像處理單元104則可依該相異部分之特徵判斷出物體10之表面缺陷(例如刻痕、凹陷、斷線圖樣等)。After obtaining the image of the object without phase change, the image processing unit 104 may further compare some or all of the image of the object without phase change with a preset object pattern to detect the surface topography, size or defect of the object 10. The preset object pattern is, for example, an engineering pattern in which part or all of the object 10 is free from defects. For example, suppose that after comparison, it is found that the image of the object without phase change is different. The portion of the preset object pattern, the image processing unit 104 can determine the surface defects (such as nicks, depressions, broken patterns, etc.) of the object 10 according to the characteristics of the different portions.
類似地,本揭露一實施例在測得物體10之三維形貌後,影像處理單元104可進一步將此三維形貌之部分或全部與一預設物體形貌進行比對,以檢測物體10之形貌、尺寸或缺陷。舉例來說,假設經掃描產生的物體三維形貌具有一黑塊,然而此黑塊並不存在於相應之預設物體形貌之中,此時影像處理單元104可判斷物體10之表面於該黑塊處具有缺陷(例如表面凹陷)。Similarly, after detecting the three-dimensional shape of the object 10, the image processing unit 104 may further compare some or all of the three-dimensional topography with a preset object topography to detect the object 10. Shape, size or defect. For example, it is assumed that the three-dimensional shape of the scanned object has a black block, but the black block does not exist in the corresponding preset object topography, and the image processing unit 104 can determine the surface of the object 10 at the time. There are defects at the black block (such as surface depressions).
依據上述,本揭露實施例之量測方法及裝置可透過所擷取之多張相位光強影像產生物體10之三維形貌,亦可透過此些相位光強影像建立物體10之二維形貌尺寸,故可進行量測以進行物體之形貌、尺寸或缺陷分析。According to the above, the measuring method and device of the embodiment can generate the three-dimensional shape of the object 10 through the plurality of phase light intensity images captured, and can also establish the two-dimensional shape of the object 10 through the phase light intensity images. Dimensions, so measurements can be made to analyze the shape, size or defect of the object.
在一實施例中,投射裝置106可將一結構光(structured light)投射至物體10之表面以形成條紋圖案,此結構光之光強度係隨位置的不同而作正弦強度變化。條紋圖案例如為條紋式正弦強度變化之圖案、正弦強度變化之圖案或由疊紋所形成之圖案。由於投影至物體10之表面的條紋圖樣會因為其表面的高低起伏而產生變形,故可由條紋圖樣的偏移量求得物體10之高度。此外,將物體10與相移裝置系統102作相對直線移動以進行掃描,可擷取多張不同之相位光強影像。如第1圖所示,待測物體10係放置於掃描載體110之上。掃描載體110可在相移裝置系統102為固定的情況下做相對於相移裝置系統102之直線 移動(例如沿第1圖中的X軸方向移動),使物體10之至少一物點被相移裝置系統102掃描。然本揭露並不以此為限,物體10亦可置於固定之掃描載體110,而相移裝置系統102係做相對於掃描載體110之直線移動。為清楚說明相移裝置系統102之掃描機制,茲輔以第3A至第3C圖做說明。In one embodiment, the projection device 106 can project a structured light onto the surface of the object 10 to form a stripe pattern whose light intensity varies sinusoidal intensity as a function of position. The stripe pattern is, for example, a pattern in which a stripe sinusoidal intensity changes, a pattern in which a sinusoidal intensity changes, or a pattern formed by a moiré. Since the stripe pattern projected onto the surface of the object 10 is deformed due to the undulation of its surface, the height of the object 10 can be obtained from the offset of the stripe pattern. In addition, moving the object 10 and the phase shifting device system 102 in a relatively straight line for scanning can capture a plurality of different phase intensity images. As shown in FIG. 1, the object to be tested 10 is placed on the scanning carrier 110. Scan carrier 110 can be aligned with phase shifting device system 102 with phase shifting device system 102 being fixed. Movement (e.g., moving in the X-axis direction in Figure 1) causes at least one object point of object 10 to be scanned by phase shifting device system 102. However, the disclosure is not limited thereto, and the object 10 can also be placed on the fixed scanning carrier 110, and the phase shifting device system 102 can be moved in a straight line relative to the scanning carrier 110. To clearly illustrate the scanning mechanism of the phase shifting device system 102, the description will be made with reference to Figures 3A through 3C.
如第3A圖所示,多線光電取像系統108透過第一取像線L1、第二取像線L2以及第三取像線L3分別對物體10上的物點O3、物點O2以及物點O1作取像。接著,如第3B圖所示,在下一時間點中,物體10沿著掃描方向移動1個單位,使得第一取像線L1、第二取像線L2以及第三取像線L3分別對物體10上的物點O4、物點O3以及物點O2作取像。之後,如第3C圖所示,在下一個時間點中,物體10再沿著掃描方向移動1個單位,使得第一取像線L1、第二取像線L2以及第三取像線L3分別對物體10上的物點O5、物點O4以及物點O3作取像。As shown in FIG. 3A, the multi-line photoelectric imaging system 108 transmits the object point O3, the object point O2, and the object on the object 10 through the first image taking line L1, the second image taking line L2, and the third image taking line L3, respectively. Point O1 for image acquisition. Next, as shown in FIG. 3B, in the next time point, the object 10 is moved by 1 unit in the scanning direction, so that the first image taking line L1, the second image taking line L2, and the third image taking line L3 are respectively paired with the object. The object point O4, the object point O3, and the object point O2 on the 10 are taken as images. Thereafter, as shown in FIG. 3C, at the next time point, the object 10 is further moved by 1 unit in the scanning direction, so that the first image taking line L1, the second image taking line L2, and the third image taking line L3 are respectively The object point O5, the object point O4, and the object point O3 on the object 10 are taken as images.
執行上述過程直到完成對物體10之所有物點之掃描,至少一物點會被取像3次。因此,當相移裝置系統102對物體10完成單一次掃描,多線光電取像系統108即可依序擷取到3張具有等相移量的相位光強影像I1
、I2
以及I3
。換言之,當相移裝置系統102與物體10做單次的直線相對移動,多線光電取像系統108即可回應於此單次的直線相對移動依序地擷取對應於物體10之多張相位光強影像。然本揭露並不限於此,相移裝置系統102亦可與物體10做多次的直線相對移動,並透過多線光電
取像系統108擷取多張相位光強影像。在此例子中,相位光強影像I1
、I2
以及I3
裡對應各物點的光強值可表示為
上式中(x,y)代表物點的位置,I0
(x,y)代表影像背景光強,A(x,y)代表影像中結構光振福,φ(x,y)代表物點之相位值。整理上述表示式後,可得
然本揭露並不以上述例示為限,多線光電取像系統108亦可擷取更多張具有等相移量的相位光強影像。此等相移量可表示為
其中n代表多線光電取像系統108所擷取的相位光強影像張數。Where n represents the number of phase light intensity images captured by the multi-line optical imaging system 108.
以擷取4張相位光強影像I1
、I2
、I3
以及I4
為例,此些相位光強影像I1
、I2
、I3
以及I4
中對應各物點的光強值可表示為
整理上述表示式後,可得
又,以擷取5張相位光強影像I1
、I2
、I3
、I4
以及I5
為例,此些相位光強影像I1
、I2
、I3
、I4
以及I5
中對應各物點的光強值可表示為
整理上述表示式後,可得
在取得各物點之相位值φ(x,y)後,影像處理單元104即可依據三角幾何關係將此些物點所對應之相位值φ(x,y)轉換成此些物點所對應之高度,進而建立出物體10之三維形貌。另一方面,影像處理單元104亦可依據多線光電取像系統108所擷取之相位光強影像以重建無相位變化之物體影像。為清楚說明,茲分別針對(1)建立三維形貌以及(2)重建無相位變化之物體影像作說明。After obtaining the phase values φ(x, y) of the object points, the image processing unit 104 can convert the phase values φ(x, y) corresponding to the object points into corresponding points according to the triangular geometric relationship. The height, in turn, establishes the three-dimensional shape of the object 10. On the other hand, the image processing unit 104 can also reconstruct the image of the object without phase change according to the phase light intensity image captured by the multi-line photoelectric imaging system 108. For the sake of clarity, the description is made for (1) establishing a three-dimensional topography and (2) reconstructing an image of an object without phase change.
請參考第4圖,其繪示投影裝置106所投影之條紋光線PL與物體10之高度之幾何關係示意圖。其中,條紋光線PL之有效波長為d0
。如第4圖所示,點A、B、C、O為參考平面RP上的點,而點B至點D之直線距離為對應於物體10於點D處之物體高度。假設多線光電取像系統108擷取來自參考平面RP上點A之光線,其相應之成像位置為點A’。不過由於物體10之高度變化,使多線光電取像系統108實際上是擷取來自點D之光線,其相應之成像位置為點C’。因此,點A’至點C’之條紋偏移量係可對應至物體10在點D處之高度(即點B至點D之直線距離)。經由三角幾何關係的轉換,可得點B至點D之直線距離(即)如下:
其中代表條紋偏移量,θ0 代表條紋光線PL之投射角度,θn 代表多線光電取像系統108之影像擷取角度,φA 代表之點A之條紋相位,φB 代表之點B之條紋相位。因此,本揭露實施例之量測方法及裝置可藉由相位值資訊以及三角幾何關係轉換,有效地計算出物體之三維形貌。among them Representing the stripe offset, θ 0 represents the projection angle of the stripe ray PL, θ n represents the image capture angle of the multi-line photo-electric imaging system 108, φ A represents the stripe phase of the point A, and φ B represents the stripe of the point B. Phase. Therefore, the measuring method and device of the embodiment of the present disclosure can effectively calculate the three-dimensional shape of the object by phase value information and triangular geometric relationship conversion.
請參考第5圖,其繪示重建無相位變化之物體影像之示意圖。在第5圖中,影像502、504、506分別代表多線光電取像系統108在一次掃描中所擷取之3張相位光強影像(為方便說明,故影像502、504、506皆僅以4個像素表示),影像508代表 依據影像502、504、506以最大光強法所建立之無相位變化之物體影像。如第5圖所示,相位光強影像502之4個像素之光強值分別為20、55、28、78;相位光強影像504之4個像素之光強值分別為80、102、95、65;相位光強影像506之4個像素之光強值分別為110、90、100、67。為建立無相位變化之物體影像(即影像508),影像處理單元104比較影像502、504、506中具有相同影像位置之像素之光強值,並選擇當中的最大光強值作為無相位變化之物體影像中於相同影像位置之像素之光強值。舉例來說,由於影像502、504、506之左上像素之光強值分別為20、80、110,當中最大光強值為110,因此,影像處理單元104係設定影像508之左上像素之光強值為110。同理,由於影像502、504、506之右上像素之光強值分別為55、102、90,當中最大光強值為102,因此,影像處理單元104係設定影像508之左上像素之光強值為102。以此類推。如此一來,多張不同的相位光強影像可被重建成一張無相位變化之物體影像。此無相位變化之物體影像係呈現物體之二維形貌尺寸,並可作為物體的形貌、尺寸或缺陷分析。Please refer to FIG. 5, which is a schematic diagram of reconstructing an image of an object without phase change. In FIG. 5, the images 502, 504, and 506 respectively represent three phase intensity images captured by the multi-line photoelectric imaging system 108 in one scan (for convenience of explanation, the images 502, 504, and 506 are only 4 pixels), image 508 stands for The image of the object without phase change established by the maximum light intensity method according to the images 502, 504, and 506. As shown in FIG. 5, the light intensity values of the four pixels of the phase light intensity image 502 are 20, 55, 28, and 78, respectively; the light intensity values of the four pixels of the phase light intensity image 504 are 80, 102, and 95, respectively. 65; the intensity values of the four pixels of the phase light intensity image 506 are 110, 90, 100, and 67, respectively. To create an image of the object without phase change (ie, image 508), image processing unit 104 compares the intensity values of the pixels having the same image position in images 502, 504, and 506, and selects the maximum light intensity value as the phaseless change. The intensity value of the pixels in the object image at the same image position. For example, since the light intensity values of the upper left pixels of the images 502, 504, and 506 are 20, 80, and 110, respectively, and the maximum light intensity value is 110, the image processing unit 104 sets the light intensity of the upper left pixel of the image 508. The value is 110. Similarly, since the light intensity values of the upper right pixels of the images 502, 504, and 506 are 55, 102, and 90, respectively, and the maximum light intensity value is 102, the image processing unit 104 sets the light intensity value of the upper left pixel of the image 508. Is 102. And so on. In this way, multiple different phase intensity images can be reconstructed into an object image without phase change. This image of the object without phase change presents the two-dimensional shape of the object and can be used as an analysis of the shape, size or defect of the object.
在另一例子中,無相位變化之物體影像可透過影像平均法來建立。進一步說,影像處理單元104可對相位光強影像中具有相同影像位置之像素之光強值做平均以產生一平均光強值,並以此平均光強值作為無相位變化之物體影像中於此相同影像位置之像素之光強值。以第5圖為例,由於影像502、504、506 之左上像素之光強值分別為20、80、110,其平均值為70,因此,影像處理單元104係設定無相位變化之物體影像之左上像素之光強值為70。同理,由於影像502、504、506之右上像素之光強值分別為55、102、90,其平均值約為82,因此,影像處理單元104係設定無相位變化之物體影像之左上像素之光強值為102。以此類推。In another example, an image of an object without phase changes can be created by image averaging. Further, the image processing unit 104 may average the light intensity values of the pixels having the same image position in the phase light intensity image to generate an average light intensity value, and use the average light intensity value as the object image without phase change. The intensity value of the pixel of this same image position. Taking Figure 5 as an example, due to images 502, 504, 506 The light intensity values of the upper left pixels are 20, 80, and 110, respectively, and the average value is 70. Therefore, the image processing unit 104 sets the light intensity value of the upper left pixel of the object image without phase change to 70. Similarly, since the light intensity values of the upper right pixels of the images 502, 504, and 506 are 55, 102, and 90, respectively, and the average value thereof is about 82, the image processing unit 104 sets the upper left pixel of the object image without phase change. The light intensity value is 102. And so on.
在另一例子中,無相位變化之物體影像可透過高動態範圍(High Dynamic Range,HDR)顯示技術來建立。進一步說,由於多線光電取像系統108所擷取之多張相位光強影像可分別視為代表各像素不同光強(對應曝光時間)大小之影像,故可將各像素不同光強大小之影像還原成高動態範圍影像,以作為無相位變化之物體影像。在此例中,無相位變化之物體影像之像素之像素值可表示為Z ij =f (E i △t j )In another example, an object image without phase change can be created using a High Dynamic Range (HDR) display technique. Furthermore, since the plurality of phase light intensity images captured by the multi-line photoelectric image capturing system 108 can be regarded as images representing different light intensities (corresponding to exposure time) of the respective pixels, different pixels of different light intensities can be used. The image is restored to a high dynamic range image as an image of the object without phase changes. In this example, the pixel value of the pixel of the object image without phase change can be expressed as Z ij = f ( E i Δ t j )
其中下標i代表像素位置索引值,下標j代表曝光時間索引值。The subscript i represents the pixel position index value, and the subscript j represents the exposure time index value.
接著,對像素值Zij 作反函數轉換後可得f -1 (Z ij )=E i △t j Then, inversely transforming the pixel value Z ij to obtain f -1 ( Z ij )= E i Δ t j
接著,對上式取自然對數可得lnf -1 (Z ij )=lnE i +ln △t j Then, taking the natural logarithm of the above formula, we can get ln f -1 ( Z ij )=ln E i +ln △ t j
如此一來,即可得到還原成高動態範圍影像之像素值如下:g (Z ij )=lnE i +ln △t j In this way, the pixel values obtained by reducing the image into a high dynamic range image are as follows: g ( Z ij )=ln E i +ln Δ t j
因此,影像處理單元104可依據各張相位光強影像之像素所對應之光強值,將此些相位光強影像轉換為一高動態範圍二維影像以作為無相位變化之物體影像。Therefore, the image processing unit 104 can convert the phase light intensity images into a high dynamic range two-dimensional image as the object image without phase change according to the light intensity value corresponding to the pixels of each phase light intensity image.
綜合以上,本揭露實施例之量測方法及裝置可透過所擷取之多張相位光強影像建立物體之三維形貌以及重建物體之二維形貌尺寸,故可進行量測以進行物體之形貌、尺寸或缺陷分析。In summary, the measurement method and apparatus of the present disclosure can establish a three-dimensional shape of an object and reconstruct a two-dimensional shape of the object through the acquired plurality of phase light intensity images, so that the measurement can be performed to perform the object. Morphology, size or defect analysis.
雖然本揭露已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
200‧‧‧量測方法200‧‧‧Measurement method
202、204、206、208、210‧‧‧步驟Steps 202, 204, 206, 208, 210‧‧
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102144102A TWI489101B (en) | 2013-12-02 | 2013-12-02 | Apparatus and method for combining 3d and 2d measurement |
CN201310688068.9A CN104677307B (en) | 2013-12-02 | 2013-12-13 | Measuring method and device combining three-dimensional and two-dimensional shapes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102144102A TWI489101B (en) | 2013-12-02 | 2013-12-02 | Apparatus and method for combining 3d and 2d measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201522948A TW201522948A (en) | 2015-06-16 |
TWI489101B true TWI489101B (en) | 2015-06-21 |
Family
ID=53312678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102144102A TWI489101B (en) | 2013-12-02 | 2013-12-02 | Apparatus and method for combining 3d and 2d measurement |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104677307B (en) |
TW (1) | TWI489101B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10461281B2 (en) | 2018-03-30 | 2019-10-29 | Industrial Technology Research Institute | Light emitting device |
TWI676000B (en) * | 2018-07-17 | 2019-11-01 | 財團法人工業技術研究院 | Surface topography optical measuring system and surface topography optical measuring method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017036498A1 (en) * | 2015-08-28 | 2017-03-09 | Marx Jürgen | Method and device for sensing the surface structure and the nature of a sample |
JP6846441B2 (en) * | 2016-02-01 | 2021-03-24 | ケーエルエー コーポレイション | Optical 3D topography measurement system for the surface of an object |
CN108240800B (en) * | 2016-12-23 | 2020-03-10 | 致茂电子(苏州)有限公司 | Surface topography measuring method |
CN107421466B (en) * | 2017-06-22 | 2019-08-23 | 上海弼智仿生高科技有限公司 | A kind of synchronous acquisition device and acquisition method of two and three dimensions image |
CN109141293B (en) * | 2018-08-08 | 2020-04-24 | 深圳市银星智能科技股份有限公司 | Object measuring method based on structured light and electronic equipment |
CN109959346A (en) * | 2019-04-18 | 2019-07-02 | 苏州临点三维科技有限公司 | A kind of non-contact 3-D measuring system |
TWI735953B (en) * | 2019-09-18 | 2021-08-11 | 財團法人工業技術研究院 | Three-dimension measurement device and operation method thereof |
CN113720852A (en) * | 2021-08-16 | 2021-11-30 | 中国飞机强度研究所 | Multi-camera image acquisition monitoring device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW580556B (en) * | 2002-11-22 | 2004-03-21 | Ind Tech Res Inst | Method and system for measuring the three-dimensional appearance of an object surface |
US20040246496A1 (en) * | 2003-03-31 | 2004-12-09 | Mitutoyo Corporation | Method and apparatus for non-contact three-dimensional surface measurement |
US20050174581A1 (en) * | 2002-02-09 | 2005-08-11 | Lang Liu | Sensing device for measuring the three-dimension shape and its measuring method |
CN101726264A (en) * | 2009-12-30 | 2010-06-09 | 深圳先进技术研究院 | Residual filtering method aiming at projected fringe image |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438272B1 (en) * | 1997-12-31 | 2002-08-20 | The Research Foundation Of State University Of Ny | Method and apparatus for three dimensional surface contouring using a digital video projection system |
CN1508514A (en) * | 2002-12-17 | 2004-06-30 | 财团法人工业技术研究院 | Object surface three-dimensiona topographical measuring method and system |
ATE525638T1 (en) * | 2003-01-09 | 2011-10-15 | Orbotech Ltd | METHOD AND DEVICE FOR SIMULTANEOUS 2D AND TOPOGRAPHIC INVESTIGATION |
CN1267860C (en) * | 2003-01-23 | 2006-08-02 | 财团法人工业技术研究院 | Method for processing color in junction between 3D images |
CN2901741Y (en) * | 2006-01-25 | 2007-05-16 | 捷扬光电股份有限公司 | Projector and its optical sensing module |
US7880798B2 (en) * | 2008-09-09 | 2011-02-01 | Electro Scientific Industries, Inc. | Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image |
DE102010029091B4 (en) * | 2009-05-21 | 2015-08-20 | Koh Young Technology Inc. | Form measuring device and method |
CN102542571B (en) * | 2010-12-17 | 2014-11-05 | 中国移动通信集团广东有限公司 | Moving target detecting method and device |
KR101087172B1 (en) * | 2011-07-13 | 2011-11-28 | 동국대학교 경주캠퍼스 산학협력단 | Extraction system of 3 dimensional shape of high temperature metallic surface and method thereof |
-
2013
- 2013-12-02 TW TW102144102A patent/TWI489101B/en active
- 2013-12-13 CN CN201310688068.9A patent/CN104677307B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050174581A1 (en) * | 2002-02-09 | 2005-08-11 | Lang Liu | Sensing device for measuring the three-dimension shape and its measuring method |
TW580556B (en) * | 2002-11-22 | 2004-03-21 | Ind Tech Res Inst | Method and system for measuring the three-dimensional appearance of an object surface |
US20040246496A1 (en) * | 2003-03-31 | 2004-12-09 | Mitutoyo Corporation | Method and apparatus for non-contact three-dimensional surface measurement |
CN101726264A (en) * | 2009-12-30 | 2010-06-09 | 深圳先进技术研究院 | Residual filtering method aiming at projected fringe image |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10461281B2 (en) | 2018-03-30 | 2019-10-29 | Industrial Technology Research Institute | Light emitting device |
TWI676000B (en) * | 2018-07-17 | 2019-11-01 | 財團法人工業技術研究院 | Surface topography optical measuring system and surface topography optical measuring method |
US10571252B2 (en) | 2018-07-17 | 2020-02-25 | Industrial Technology Research Institute | Surface topography optical measuring system and surface topography optical measuring method |
Also Published As
Publication number | Publication date |
---|---|
CN104677307A (en) | 2015-06-03 |
CN104677307B (en) | 2018-03-23 |
TW201522948A (en) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI489101B (en) | Apparatus and method for combining 3d and 2d measurement | |
US9074879B2 (en) | Information processing apparatus and information processing method | |
US20170076458A1 (en) | Device and method for three-dimensional reconstruction of a scene by image analysis | |
US9441959B2 (en) | Calibration method and shape measuring apparatus | |
JP2011064482A (en) | Device and method of high-speed three-dimensional measurement | |
CN102261896A (en) | Method and system for measuring three-dimensional shape of object based on phase measurement | |
CN111272099A (en) | Surface structure light precision detection system for three-dimensional surface morphology of aero-engine blade | |
JP2012527610A (en) | 3D shape measurement method | |
CN109242895B (en) | Self-adaptive depth constraint method based on real-time three-dimensional measurement of multi-camera system | |
KR100941978B1 (en) | Method of 3D Inspection of the object using CCD camera laser beam and Apparutus thereof | |
JP2018179665A (en) | Inspection method and inspection device | |
US20140267246A1 (en) | Information processing apparatus, control method thereof and storage medium | |
Deng et al. | Regularized multiframe phase-shifting algorithm for three-dimensional profilometry | |
KR101001894B1 (en) | Apparatus and method for 3-D profilometry using color projection moire technique | |
KR100558325B1 (en) | The method and device for 3D inspection by moire and stereo vision | |
CN113503832B (en) | Absolute phase recovery method based on object transverse dimension assistance | |
KR101555027B1 (en) | Appapatus for three-dimensional shape measurment and method the same | |
KR101750883B1 (en) | Method for 3D Shape Measuring OF Vision Inspection System | |
JP5968370B2 (en) | Three-dimensional measuring apparatus, three-dimensional measuring method, and program | |
JP2014238298A (en) | Measurement device, calculation device, and measurement method for inspected object, and method for manufacturing articles | |
CN118189857B (en) | Digital image correlation three-dimensional measurement method and system based on single camera-projector system | |
JP2011075311A (en) | Image processing method | |
Wang et al. | Automated coplanarity inspection of BGA solder balls by structured light | |
CN113916904B (en) | Method and system for detecting surface defects of wafer | |
Munaro et al. | Fast 2.5 D model reconstruction of assembled parts with high occlusion for completeness inspection |