Nothing Special   »   [go: up one dir, main page]

TWI478160B - Data storage media containing carbon and metal layers and method for preparing optical information medium - Google Patents

Data storage media containing carbon and metal layers and method for preparing optical information medium Download PDF

Info

Publication number
TWI478160B
TWI478160B TW098135934A TW98135934A TWI478160B TW I478160 B TWI478160 B TW I478160B TW 098135934 A TW098135934 A TW 098135934A TW 98135934 A TW98135934 A TW 98135934A TW I478160 B TWI478160 B TW I478160B
Authority
TW
Taiwan
Prior art keywords
layer
carbon
optical information
support substrate
data
Prior art date
Application number
TW098135934A
Other languages
Chinese (zh)
Other versions
TW201021040A (en
Inventor
Matthew C Asplund
Robert C Davis
Douglas P Hansen
Matthew R Linford
Barry M Lunt
Travis L Niederhauser
Raymond T Perkins
Mark O Worthington
Original Assignee
Univ Brigham Young
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Brigham Young filed Critical Univ Brigham Young
Publication of TW201021040A publication Critical patent/TW201021040A/en
Application granted granted Critical
Publication of TWI478160B publication Critical patent/TWI478160B/en

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

包含碳層及金屬層之資料儲存媒體及製備光學資訊媒體之方法Data storage medium containing carbon layer and metal layer and method for preparing optical information medium 相關申請案之交互參照Cross-references to related applications

本發明主張2008年9月12日申請之美國暫時專利申請案第61/191,839號;2008年10月23日申請之美國暫時專利申請案第61/197,089號;2008年12月31日申請之美國暫時專利申請案第61/204,010號;及2008年12月31日申請之美國暫時專利申請案第61/205,739號的優先權,所有這些申請案之內容在此加入作為參考。The present invention claims US Provisional Patent Application No. 61/191,839, filed on Sep. 12, 2008, and U.S. Provisional Patent Application No. 61/197,089, filed on Oct. 23, 2008; The priority of the provisional patent application No. 61/204, 010, and the priority of the U.S. Provisional Patent Application No. 61/205,739, filed on Dec. 31, 2008, the entire disclosure of which is hereby incorporated by reference.

發明領域Field of invention

本發明係有關於長期數位資料儲存媒體,且更詳而言之,有關於產生非常穩定數位資料儲存媒體之材料與製造方法。特別是揭露包含一金屬層與一碳層之光碟。The present invention relates to long term digital data storage media and, more particularly, to materials and methods of producing very stable digital data storage media. In particular, a disc containing a metal layer and a carbon layer is disclosed.

相關技術之說明Description of related technology

光資訊儲存媒體通常包含如資料層、介電層及支持基板等數個組件,這些組件各對該商品提供某種功能。Optical information storage media typically includes several components, such as a data layer, a dielectric layer, and a support substrate, each of which provides a certain function for the product.

碲材料已被用光資訊儲存媒體中一段時間了,但卻因多種原因尚未被作為商品使用。碲容易被氧化是已知的,且已有人嘗試各種方法來減少或消除這問題。在碲媒體中經常觀察到的另一個問題是形成“凸堤(berm)”,凸堤是當該光儲存媒體使用一雷射被寫入時形成之一環繞一被寫入“凹坑(pit)”之凸起區域。初始佔據該空間之材料被排出,且產生一升高唇“凸堤”,多數凸堤在HF信號中產生一假影(artifact),在讀取該媒體時該假影減少有效峰間值。The 碲 material has been used in the information storage media for some time, but it has not been used as a commodity for a variety of reasons. It is known that hydrazine is easily oxidized, and various methods have been tried to reduce or eliminate this problem. Another problem often observed in media is the formation of "berm", which is formed when the optical storage medium is written using a laser and is written around a "pit" (pit). )" raised area. The material that initially occupies the space is expelled and produces a raised lip "bulge" that produces an artifact in the HF signal that reduces the effective peak-to-peak value when reading the media.

以下是說明利用碲材料之科學與專利文獻的代表性例子,及各種試圖減少與在光儲存媒體中使用碲相關之問題的方法。The following are representative examples of scientific and patent literature describing the use of germanium materials, and various methods for attempting to reduce the problems associated with the use of germanium in optical storage media.

目前已有一碲合金層在雷射寫入後結合至不同球形顆粒中之報告(Holstein,W.L. and Begnoche,B.C.J. Appl. Phys . 60(8):2928-2943(1968))。製備一具有一鋁碟片基板之碟片以包含一厚度小於15nm之由Te80 Se19 As1 合金製成的吸收層,該吸收層被一厚度250nm之被濺鍍介電有機塗層覆蓋。目前已發現的是增加用以將記號寫至該碟片之雷射功率會增加該等記號之尺寸。此外,亦發現的是顆粒之形成會隨著雷射功率增加而增加。作者區別這些結果與先前被報告出來之用於記號形成之已發現相變化或剝蝕機構。There has been a report of the incorporation of an alloy layer into different spherical particles after laser writing (Holstein, WL and Begnoche, BC J. Appl. Phys . 60(8): 2928-2943 (1968)). A disc having an aluminum disc substrate was prepared to comprise an absorber layer made of a Te 80 Se 19 As 1 alloy having a thickness of less than 15 nm, the absorber layer being covered by a 250 nm thick sputtered dielectric organic coating. It has been found that increasing the laser power used to write a mark to the disc increases the size of the marks. In addition, it has also been found that the formation of particles increases as the laser power increases. The authors distinguish these results from previously discovered phase change or erosion mechanisms for the formation of tokens.

在一聚甲基丙烯酸甲酯基板上形成於薄膜中之孔的形狀已使用各種金屬膜系統來研究(J. Appl. Phys. 50:6881(1979)。所使用的這些系統是As-Te、Ge-Te、As-Se、Ge-Se、及Sb-S。目前已發現的是該膜之高黏度有助於獲得乾淨成形之孔。The shape of the pores formed in the film on a polymethyl methacrylate substrate has been studied using various metal film systems (J. Appl. Phys. 50:6881 (1979). These systems used are As-Te, Ge-Te, As-Se, Ge-Se, and Sb-S. It has been found that the high viscosity of the film helps to obtain clean formed pores.

電解腐蝕因其用於儲存媒體時使碲膜具有多數嚴重缺點而被討論(Kivits,P.,et al.,Vac .Sci. Technol . 18(1):68-69(1981))。硒及/或銻被加入,使該碲膜非晶化。耐候測試顯示Te-Se-Sb膜穩定期超過200天。隨後之刊物討論藉添加In、Pb、Sn、Bi、或Sb於金屬-Te-Se膜防止氧化(Terao,M.,et al.J. Appl. Phys . 62(3):1029-1034(1987))。Electrolytic corrosion is discussed because it has most serious drawbacks to the enamel film when it is used to store media (Kivits, P., et al., Vac . Sci. Technol . 18(1): 68-69 (1981)). Selenium and/or bismuth are added to amorphize the ruthenium film. The weathering test showed that the Te-Se-Sb film was stable for more than 200 days. Subsequent publications discuss the prevention of oxidation by adding In, Pb, Sn, Bi, or Sb to the metal-Te-Se film (Terao, M., et al. J. Appl. Phys . 62(3): 1029-1034 (1987) )).

美國專利第4,322,839號(1982年3月30日核准)提供一連續波型半導體雷射光束,及其在一光碟上記錄資訊之用途。該光碟可包含碲氧化物。目前已有報告的是以各種不同濃度添加PbO及V2 O5 來改變光吸收率。U.S. Patent No. 4,322,839 (issued March 30, 1982) provides a continuous wave type semiconductor laser beam and its use for recording information on a compact disc. The disc may contain niobium oxide. It has been reported that PbO and V 2 O 5 are added at various concentrations to change the light absorption rate.

歐洲專利申請案第82301410.5(WO 0 062 975 A1;1982年10月20日公開)揭露一具有一碲與碳層之光學記錄媒體。該碳係以5-50原子百分比之預定含量存在,該碲-碳層因具有良好敏感度與長使用壽命而存在。An optical recording medium having a stack of carbon and carbon layers is disclosed in European Patent Application No. 82301410.5 (WO 0 062 975 A1; issued Oct. 20, 1982). The carbon system is present at a predetermined content of 5 to 50 atomic percent, and the ruthenium-carbon layer exists due to good sensitivity and long service life.

美國專利第4,357,366號(1982年11月2日核准)及第4,385,376號(1983年5月24日核准)建議添加一薄碲膜至一基板,且將該碲氧化以形成兩氧化層。這些氧化層各包含不同碲氧化物,且使用紫外線照射來產生氧化作用。U.S. Patent No. 4,357,366 (issued on Nov. 2, 1982) and No. 4,385,376 (issued on May 24, 1983), it is proposed to add a thin film to a substrate and oxidize the crucible to form a double oxide layer. These oxide layers each contain different cerium oxides and are irradiated with ultraviolet light to produce oxidation.

美國專利第4,410,968號(1983年10月18日核准)提供一沈積在一碟片基板上之可變形金屬碲膜、及一用以記錄資訊之經調制光束。該光將該碲材料液化,但不蒸發,使材料重分佈而改變一讀出光束之反射性。U.S. Patent No. 4,410,968 (issued October 18, 1983) provides a deformable metal tantalum film deposited on a disc substrate and a modulated beam for recording information. The light liquefies the ruthenium material but does not evaporate, causing the material to redistribute to change the reflectivity of a read beam.

美國專利第4,423,427號(1983年12月27日核准)建議使用包含兩或兩個以上之不一致塗層且在該等塗層之間具有一溶劑障壁層的碟片。一在該碟片中之吸收層可由包括碲與碲合金之多種金屬與合金構成,該等塗層與溶劑障壁層有助於製備缺少巨觀與微觀缺陷之基板。U.S. Pat. An absorbing layer in the disc may be composed of a plurality of metals and alloys including niobium and tantalum alloys, which facilitate the preparation of substrates lacking macro and micro defects.

美國專利第4,433,340號(1984年2月21日核准)提供一具有一碲層之光學記錄媒體,該碲層包含某一預定原子百分比之碳。其中建議在該碲層中存在碳以減少該碲因氧或水氣而氧化。U.S. Pat. It is suggested that carbon is present in the ruthenium layer to reduce oxidation of the ruthenium due to oxygen or moisture.

美國專利第4,476,214號(1984年10月9日核准)提供一包含一基板及一碲、硒及銻合金之光學資訊碟片。該記錄層材料滿足分子式Tex Sey Sbz Sq ,其中x=55-85原子%,y=13-30原子%,z=1-12原子%,q=0-10原子%,且x+y+z+q=100。適當記錄層為Te60 Se25 Sb10 S5 與Te75 Se15 Sb5 S5 合金,且發現這些合金對該記錄層賦與較佳之剝蝕性質。An optical information disc comprising a substrate and a tantalum, selenium and tellurium alloy is provided in U.S. Patent No. 4,476,214 (issued October 9, 1984). The recording layer material satisfies the molecular formula Te x Se y Sb z S q , where x=55-85 atom%, y=13-30 atom%, z=1-12 atom%, q=0-10 atom%, and x +y+z+q=100. Suitable recording layers are Te 60 Se 25 Sb 10 S 5 and Te 75 Se 15 Sb 5 S 5 alloys, and these alloys were found to impart better ablation properties to the recording layer.

美國專利第4,583,102號(1986年4月15日核准)揭露一光碟,該光碟具有一樹脂碟片基板、一記錄媒體層、一形成在該記錄媒體層上之透明層、及一透明保護樹脂層。該記錄媒體層可包含碲氧化物或一有機顏料,該透明層可以是一黏著層或一空氣層。所報告之該等層之配置可相較於一習知光碟產生一較少錯誤。An optical disc having a resin disc substrate, a recording medium layer, a transparent layer formed on the recording medium layer, and a transparent protective resin layer is disclosed in U.S. Patent No. 4,583,102 (issued Apr. 15, 1986). . The recording medium layer may comprise a cerium oxide or an organic pigment, and the transparent layer may be an adhesive layer or an air layer. The reported configuration of the layers can produce a lesser error than a conventional optical disc.

歐洲專利申請案第85309330.0(WO 0 186 467 A2;1986年7月2日公開)建議一具有10-80原子百分比之碲與碳的資料記錄媒體,該記錄層可以藉在存在甲烷與氬之情形下濺鍍碲來形成。European Patent Application No. 85309330.0 (WO 0 186 467 A2; published July 2, 1986), which is incorporated herein by reference in its entirety, the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the present disclosure of The next layer is sputtered to form.

美國專利第4,652,215號(1986年11月25日核准)提供一具有一碟形基板;一平坦化層;一反射層;一氟碳相層、一活性層及一氟碳基質層之三層結構;一薄透明導電覆蓋層的資訊儲存裝置。該活性層被包覆在該相層與該基質層之間,且該活性層包含一碲、硒及砷合金之多數小球。施加一雷射光束使該活性層結塊,且改變該三層結構之光學透射率。該相層使該活性層不受該反射層之散熱效應的影響,使該雷射能量可以在該活性層中散逸。U.S. Patent No. 4,652,215 (issued November 25, 1986) to provide a three-layer structure having a dish-shaped substrate; a planarization layer; a reflective layer; a fluorocarbon phase layer, an active layer, and a fluorocarbon matrix layer. An information storage device with a thin transparent conductive cover. The active layer is coated between the phase layer and the substrate layer, and the active layer comprises a plurality of beads of a bismuth, selenium and arsenic alloy. A laser beam is applied to agglomerate the active layer and change the optical transmittance of the three layer structure. The phase layer protects the active layer from the heat dissipation effect of the reflective layer such that the laser energy can escape in the active layer.

美國專利第4,647,947號(1987年3月3日核准)揭露一基板及一電磁能吸收層。該層可包含如碲、銻、錫、鉍、鋅或鉛等低熔點金屬,該層亦可包含在一低於預定溫度以下之溫度時呈氣態之元素。施加能量使該記錄層會凸起,形成一突出部。A substrate and an electromagnetic energy absorbing layer are disclosed in U.S. Patent No. 4,647,947 (issued March 3, 1987). The layer may comprise a low melting point metal such as ruthenium, osmium, tin, antimony, zinc or lead, and the layer may also comprise an element which is gaseous at a temperature below a predetermined temperature. Energy is applied to cause the recording layer to bulge to form a projection.

美國專利第4,682,321號(1987年7月21日核准)建議一光碟,該光碟包含由鍺、碲、鉍、銻及其合金構成之多數薄膜層。以一雷射光束照射將該等多數層轉換成一單一層。U.S. Pat. The majority of the layers are converted to a single layer by irradiation with a laser beam.

歐洲專利申請案第89105303.5(WO 0 334 275 A2;1989年10月4日公開)揭露利用一含有碲、碳及氫之記錄膜。該碳加氫含量係由其原子百分比定義為等於或大於25原子百分比,且小於或等於38原子百分比。該等範圍係選定為可提供良好記錄敏感性、抗氧化性、及再生雷射功率裕度。European Patent Application No. 89105303.5 (WO 0 334 275 A2; issued Oct. 4, 1989) discloses the use of a recording film containing bismuth, carbon and hydrogen. The carbon hydrogenation content is defined by its atomic percentage to be equal to or greater than 25 atomic percent and less than or equal to 38 atomic percent. These ranges are selected to provide good recording sensitivity, oxidation resistance, and regenerative laser power margin.

美國專利第4,908,250號(1990年3月13日核准)及第5,073,243號(1991年12月17日核准)提供一具有一基板、一底層及一低熔化碲記錄層之碟片。該底層緩和由該記錄層傳至該碟片基板之熱衝擊,且該底層包含一具有一優於該基板之耐熱性的高聚合性材料。氟碳樹脂或聚醯亞胺被提供作為聚合材料例。A disc having a substrate, a bottom layer and a low melting ruthenium recording layer is provided in U.S. Patent No. 4,908,250 (issued March 13, 1990) and No. 5,073,243 (issued on Dec. 17, 1991). The underlayer mitigates thermal shock transmitted from the recording layer to the disc substrate, and the underlayer comprises a highly polymerizable material having a heat resistance superior to that of the substrate. A fluorocarbon resin or a polyimine is provided as an example of a polymeric material.

美國專利第4,929,485號(1990年5月29日核准)提供一具有一非晶結構記錄層之資訊儲存媒體,該非晶結構記錄層包含碳及一金屬元素、半金屬元素或半導體元素。該等元素之例包括Te、Se、Bi、Pb、Sb、Ag、Ga、As及Ge。施加能量至該記錄層將該結構由非晶形態改變成結晶形態,這些結構係被用來提出碲或其他先前使用金屬之氧化性質。An information storage medium having an amorphous structured recording layer comprising carbon and a metal element, a semi-metal element or a semiconductor element is provided in U.S. Patent No. 4,929,485 (issued May 29, 1990). Examples of such elements include Te, Se, Bi, Pb, Sb, Ag, Ga, As, and Ge. The application of energy to the recording layer changes the structure from an amorphous form to a crystalline form, which is used to characterize the oxidizing properties of germanium or other previously used metals.

美國專利第4,990,387號(1991年2月5日核准)建議使用一碳與氟底層作為一防止水與氧穿透進入一記錄層之擴散障壁。所述該記錄層包含碳及一如Te、Se、Ge、Sb、Pb、Sn、Ag、In及Bi之金屬與半導體元素,該記錄層具有良好寫入敏感性及抗氧化特性。U.S. Patent No. 4,990,387 (issued February 5, 1991) teaches the use of a carbon and fluorine underlayer as a diffusion barrier to prevent water and oxygen from penetrating into a recording layer. The recording layer comprises carbon and a metal and a semiconductor element such as Te, Se, Ge, Sb, Pb, Sn, Ag, In, and Bi, and the recording layer has good writing sensitivity and oxidation resistance.

美國專利第5,013,635號(1991年5月7日核准)提出一資訊儲存媒體,該資訊儲存媒體由一聚碳酸酯基板及一包含一AgTe共熔合金、碳及氫之記錄層構成。這些結構係被用來提出碲或其他先前使用金屬之氧化性質。An information storage medium consisting of a polycarbonate substrate and a recording layer comprising an AgTe eutectic alloy, carbon and hydrogen is proposed in U.S. Patent No. 5,013,635 (issued May 7, 1991). These structures are used to characterize the oxidizing properties of germanium or other previously used metals.

美國專利第5,061,563號建議製備一包含碲、碳及氫之記錄膜,該記錄膜具有多數碲簇群分散在一C-H基質中之結構,在該C-H基質中,碳與氫係藉化學鍵互相鍵結。這系統被建議為一由碲膜氧化所造成之問題的可能解決方法,所得之記錄膜被發現可在遠紅外線範圍(25至100μm)中吸收。No. 5,061,563 proposes to prepare a recording film comprising ruthenium, carbon and hydrogen, the recording film having a structure in which a plurality of ruthenium clusters are dispersed in a CH matrix in which carbon and hydrogen are bonded to each other by chemical bonds. . This system was suggested as a possible solution to the problem caused by oxidation of the ruthenium film, and the resulting recording film was found to be absorbable in the far infrared range (25 to 100 μm).

美國專利第5,102,708號(1992年4月7日核准)提供一資料記錄媒體,該資料記錄媒體包含一基板、一藉電漿聚合C4 F8 氟碳氣體所形成之底覆蓋層、及一記錄層,該記錄層包含Te、C、H及一以多種含量比例含有Ag、Au與Cu構成之金屬。U.S. Patent No. 5,102,708 (issued Apr. 7, 1992) to provide a data recording medium comprising a substrate, a bottom cover layer formed by plasma polymerization of C 4 F 8 fluorocarbon gas, and a record In the layer, the recording layer comprises Te, C, H and a metal composed of Ag, Au and Cu in various content ratios.

美國專利第5,510,164號(1996年4月23日核准)揭露一光碟,該光碟包含一碲系活性資料層。以一雷射照射會使該碲合金流動且形成多數孔,該碟片包含一直接位在該碲層上之“柔軟”可變形層。矽氧彈性體、氟化碳氫化合物、聚丙烯酸酯、乙烯丙烯、及聚胺基甲酸乙酯被表列為用於該可變形層之材料例。該可變形層是柔軟的,使該碲不需要過量之雷射功率便可流動。U.S. Patent No. 5,510,164 (issued Apr. 23, 1996) discloses a disc which contains a layer of active material. Irradiation with a laser causes the tantalum alloy to flow and form a plurality of pores, the disc comprising a "soft" deformable layer directly on the tantalum layer. Oxide elastomers, fluorinated hydrocarbons, polyacrylates, ethylene propylene, and polyurethanes are listed as examples of materials for the deformable layer. The deformable layer is flexible so that the crucible can flow without excessive laser power.

美國專利第5,580,632號(1996年12月3日核准)及第5,652,037號(1997年7月29日核准)揭露由一包含Ge、Sb及Te之非晶合金構成之記錄膜。照射該膜使該合金變成結晶GeTe及結晶SeTe,這改變是可光學地偵測的。A recording film composed of an amorphous alloy containing Ge, Sb, and Te is disclosed in U.S. Patent No. 5,580,632 (issued on Dec. 3, 1996) and No. 5,652,037 (issued on July 29, 1997). Irradiation of the film causes the alloy to become crystalline GeTe and crystalline SeTe, which changes are optically detectable.

美國專利第5,796,708號(1998年8月18日核准)提供一光碟,該光碟具有一Ge-Sb-Te之第一記錄副層及一Bi-Te之第二記錄副層。A disc is provided in U.S.

雖然已有許多已報告出來之有關在光學資訊媒體中使用碲與其他金屬之發展,仍需要新材料與方法來製造對用於光學資訊媒體中具有商業吸引力之金屬。減少或消除與氧化及形成凸堤相關之問題特別具有吸引力。While there have been many reported developments in the use of germanium and other metals in optical information media, new materials and methods are still needed to make metals that are commercially attractive for use in optical information media. It is particularly attractive to reduce or eliminate the problems associated with oxidation and the formation of girders.

介電層通常被包含在光學資料光碟中以保護該資料層材料不會因擴散之氧或水而造成腐蝕,介電層通常是由如二氧化矽、硫化鋅-二氧化矽、氧化鋯、或矽-鎳氮氧化合物等無機材料。包含二氧化矽之介電層目前被廣泛地使用在商品中。The dielectric layer is typically included in an optical data disc to protect the data layer material from corrosion by diffusion of oxygen or water. The dielectric layer is typically composed of, for example, cerium oxide, zinc sulfide-cerium oxide, zirconium oxide, Or inorganic materials such as bismuth-nickel oxynitride. Dielectric layers comprising hafnium oxide are currently widely used in commercial products.

介電層亦作為有效地分開該光碟之不同層的電絕緣體。The dielectric layer also acts as an electrical insulator that effectively separates the different layers of the disc.

在該介電層中使用之材料經常因其光透明度而,使得該等層不會光學地干涉將資料寫入或由該碟片讀取資料。介電材料之光學性質會隨著所使用之光波長而改變,例如,矽在大於400nm之光波長處是透明的,但在小於400nm之光波長處是具吸收性的。The materials used in the dielectric layer are often such that, due to their optical transparency, the layers do not optically interfere with writing or reading data from the disc. The optical properties of the dielectric material will vary with the wavelength of light used. For example, germanium is transparent at wavelengths of light greater than 400 nm, but is absorptive at wavelengths of light less than 400 nm.

習知介電材料亦被用來在熱方面保護基板與寫入層。介電材料不易出現針孔(pinhole)缺陷,且在其玻璃狀態下大多不會劣化。選擇一特殊介電材料會涉及許多準據,例如成本、與相鄰材料在其界面處之黏著力、材料之可混合性與不可混合性、熔點及熱容量。Conventional dielectric materials have also been used to thermally protect substrates and write layers. The dielectric material is less prone to pinhole defects and does not deteriorate much in its glass state. The choice of a particular dielectric material involves many criteria, such as cost, adhesion to adjacent materials at its interface, miscibility and miscibility of materials, melting point, and heat capacity.

碳尚未被廣泛地使用在商用光學媒體中,以下是討論使用包括碳等作為“界面層”之多種材料的數個參考資料。Carbon has not been widely used in commercial optical media. The following is a discussion of several references using a variety of materials including carbon as the "interfacial layer."

美國專利公開第2004/0166440 A1號(2004年8月26日公開)提供具有一基板、第一保護層、記錄層、第二保護層、及反射層之相變化可重寫光碟。該記錄層包括一具有一預定原子比例之Sb、Te、Ge與In之複合組成物,該公報容許加入一氮化物、氧化物或碳化物“界面層”在該記錄層之一或兩側。該等碟片亦可包含一由類似材料製成之“擴散保護層”,該界面層缺少硫組分,且保護該記錄層不會被硫穿透。A phase change rewritable optical disk having a substrate, a first protective layer, a recording layer, a second protective layer, and a reflective layer is provided in US Patent Publication No. 2004/0166440 A1 (published on Aug. 26, 2004). The recording layer comprises a composite composition of Sb, Te, Ge and In having a predetermined atomic ratio, which allows the addition of a nitride, oxide or carbide "interfacial layer" on one or both sides of the recording layer. The discs may also comprise a "diffusion protective layer" made of a similar material which lacks the sulfur component and protects the recording layer from sulfur penetration.

美國專利公開第2005/0074694 A1號(2005年4月7日公開)建議一包括一相變化記錄層、一Cr與O層、及一Ga與O層之資訊記錄媒體,該相變化記錄層之相可以在一結晶相與一非晶相之間變化。工作例11揭露加入一位在該記錄層與該含Ga層之間,及/或在該含Cr層與該記錄層之間作為一“界面層”之含C層。界面層具有用以防止物質進入介電層與該記錄層之間的功能,該界面層具有低光吸收性,具有一高至使它在記錄時不會熔化之熔點,且具有對該記錄層之良好黏著力。US Patent Publication No. 2005/0074694 A1 (published Apr. 7, 2005) proposes an information recording medium comprising a phase change recording layer, a Cr and O layer, and a Ga and O layer, the phase change recording layer The phase can vary between a crystalline phase and an amorphous phase. Working Example 11 discloses the addition of a C-containing layer between the recording layer and the Ga-containing layer, and/or as an "interfacial layer" between the Cr-containing layer and the recording layer. The interface layer has a function of preventing a substance from entering between the dielectric layer and the recording layer, the interface layer having low light absorption, having a melting point so high that it does not melt upon recording, and having the recording layer Good adhesion.

美國專利第6,790,592 B2號(2004年9月14日核准)提供具有特定記錄層及其他複合層狀物之相變化光學資訊媒體。該專利提供由包括金屬氧化物、氮化物、硫化物、碳化物、似鑽石碳及其混合物等各種材料構成之上與下保護層。該專利“需要”該等保護層具有一高於該記錄層之熔點,該專利亦“需要”該等保護層具有一高熱導率、一低熱膨脹係數、及良好黏著性。A phase change optical information medium having a particular recording layer and other composite layers is provided in U.S. Patent No. 6,790,592 B2, issued on September 14,2004. This patent provides for the upper and lower protective layers from a variety of materials including metal oxides, nitrides, sulfides, carbides, diamond-like carbons, and mixtures thereof. The patent "requires" that the protective layers have a higher melting point than the recording layer, and the patent also "requires" that the protective layers have a high thermal conductivity, a low coefficient of thermal expansion, and good adhesion.

美國專利第7,169,533 B2號(2007年1月30日核准)提供具有一透明基板、可逆記錄層、Ta系介電層及銀反射層之相變化光學資訊記錄媒體。一含有碳、或一元素α(Sn、In、Zr、Si、Cr、Al、V、Nb、Mo、W、Ti、Mg或Ge)之氮化物、氧化物、碳化物或氮氧化物的“界面層”可以被用來防止剝離。該界面層亦防止原子在該記錄層與該介電層之間擴散,該界面層厚度宜為至少1nm與至多10nm的厚度,且以至少1nm與至多5nm的厚度更佳。A phase change optical information recording medium having a transparent substrate, a reversible recording layer, a Ta-based dielectric layer, and a silver reflective layer is provided in U.S. Patent No. 7,169,533 B2, issued Jan. 30, 2007. a "nitride, oxide, carbide or oxynitride containing carbon, or a single element alpha (Sn, In, Zr, Si, Cr, Al, V, Nb, Mo, W, Ti, Mg or Ge)" The interface layer can be used to prevent peeling. The interfacial layer also prevents diffusion of atoms between the recording layer and the dielectric layer, the interfacial layer preferably having a thickness of at least 1 nm and at most 10 nm, and more preferably at least 1 nm and at most 5 nm.

在大部份商品中,資料係藉改變一有機染料之分子狀態或一金屬或合金之相來記錄,且在該商品中之其他材料被選擇成可與這些資料儲存機構相容。但是,為了達成永久資料儲存,其他更永久且不可逆機構是必要的。雖然已有許多已報告出來之有關在光學資訊媒體中使用無機材料作為介電層的發展,但仍需要新的材料與方法。In most commodities, the data is recorded by changing the molecular state of an organic dye or a phase of a metal or alloy, and other materials in the commodity are selected to be compatible with these data storage mechanisms. However, in order to achieve permanent data storage, other more permanent and irreversible institutions are necessary. Although there have been many reports of the development of the use of inorganic materials as dielectric layers in optical information media, new materials and methods are still needed.

發明概要Summary of invention

本發明揭露一種包含一金屬材料層與一碳材料層之多種組合的光學資訊媒體。使用一碳材料層保護一附近資料層不受如氧化、熱變形及應力誘發之破壞等各種因素的影響。使用一碳材料層亦可減少或消除在以一雷射或其他能源寫入之後,在該金屬材料層中形成凸堤。該碳材料層亦可被用來作為一在多種光學資訊媒體中之介電層,碳材料層與金屬材料層之組合已被發現對於歸檔品質光學資訊媒體之發展具有令人驚訝之吸引力。The present invention discloses an optical information medium comprising a plurality of combinations of a metal material layer and a carbon material layer. A layer of carbon material is used to protect a nearby data layer from various factors such as oxidation, thermal deformation, and stress induced damage. The use of a layer of carbon material can also reduce or eliminate the formation of girders in the layer of metallic material after writing at a laser or other source of energy. The carbon material layer can also be used as a dielectric layer in a variety of optical information media. The combination of a carbon material layer and a metal material layer has been found to be surprisingly attractive for the development of archive quality optical information media.

圖式簡單說明Simple illustration

以下圖式形成此說明書之一部份且被包括以進一步展示本發明之某些特性,本發明可藉參照這些圖式並配合在此提出之特定實施例之詳細說明而更佳地了解。The following drawings are a part of this specification and are included to provide a further understanding of the invention.

第1a圖顯示具有一支持基板及一資料層之光學資訊媒體。Figure 1a shows an optical information medium having a support substrate and a data layer.

第1b圖顯示一支持基板、一資料層及一捕捉層之光學資訊媒體。Figure 1b shows an optical information medium supporting a substrate, a data layer and a capture layer.

第1c圖顯示一支持基板、一資料層及一反射層之光學資訊媒體。Figure 1c shows an optical information medium supporting a substrate, a data layer and a reflective layer.

第1d圖顯示一支持基板、一資料層及一反射捕捉層之光學資訊媒體。Figure 1d shows an optical information medium of a support substrate, a data layer and a reflective capture layer.

第1e圖顯示一支持基板、一擴散障壁、一資料層及一反射捕捉層之光學資訊媒體。Figure 1e shows an optical information medium of a support substrate, a diffusion barrier, a data layer and a reflective capture layer.

第1f圖顯示一支持基板、一擴散障壁、一資料層、一反射捕捉層及一保護密封障壁之光學資訊媒體。Figure 1f shows a support substrate, a diffusion barrier, a data layer, a reflective capture layer, and an optical information medium that protects the barrier barrier.

第1g圖顯示一環境保護層、一防刮層、一紫外線阻擋層、一支持基板、一擴散障壁、一資料層、一反射捕捉層及一保護密封障壁之光學資訊媒體。Figure 1g shows an environmental protection layer, a scratch-resistant layer, an ultraviolet blocking layer, a supporting substrate, a diffusion barrier, a data layer, a reflective capturing layer, and an optical information medium for protecting the sealing barrier.

第2a圖顯示一具有一支持基板、一資料層及一碳材料層之光學資訊媒體。Figure 2a shows an optical information medium having a support substrate, a data layer and a layer of carbon material.

第2b圖顯示一具有一支持基板、一碳材料層、及一資料層之光學資訊媒體。Figure 2b shows an optical information medium having a support substrate, a layer of carbon material, and a data layer.

第2c圖顯示一具有一支持基板、至少一中間層、一資料層、及一碳材料層之光學資訊媒體。Figure 2c shows an optical information medium having a support substrate, at least one intermediate layer, a data layer, and a layer of carbon material.

第2d圖顯示一具有一支持基板、至少一中間層、一碳材料層、及一資料層之光學資訊媒體。Figure 2d shows an optical information medium having a support substrate, at least one intermediate layer, a layer of carbon material, and a data layer.

第3a圖顯示一具有一支持基板、一第一碳材料層、一資料層及一第二碳材料層之光學資訊媒體。Figure 3a shows an optical information medium having a support substrate, a first carbon material layer, a data layer and a second carbon material layer.

第3b圖顯示一具有一支持基板、至少一中間層、一第一碳材料層、一資料層及一第二碳材料層之光學資訊媒體。Figure 3b shows an optical information medium having a support substrate, at least one intermediate layer, a first carbon material layer, a data layer and a second carbon material layer.

第3c圖顯示一具有一第一支持基板、一資料層、一碳材料層及一第二支持基板之光學資訊媒體。Figure 3c shows an optical information medium having a first support substrate, a data layer, a carbon material layer and a second support substrate.

第3d圖顯示一具有一第一支持基板、一第一碳材料層、一資料層、一第二碳材料層及一第二支持基板之光學資訊媒體。Figure 3d shows an optical information medium having a first support substrate, a first carbon material layer, a data layer, a second carbon material layer and a second support substrate.

第3e圖顯示一具有一第一支持基板、一第一中間層、一第一碳材料層、一資料層、一第二碳材料層、一第二中間層及一第二支持基板之光學資訊媒體。FIG. 3e shows an optical information having a first supporting substrate, a first intermediate layer, a first carbon material layer, a data layer, a second carbon material layer, a second intermediate layer, and a second supporting substrate. media.

第4a圖顯示一具有一支持基板、一金屬材料層及一碳材料層之光學資訊媒體。Figure 4a shows an optical information medium having a support substrate, a layer of metallic material and a layer of carbon material.

第4b圖顯示第4a圖所示之光學資訊媒體的一變化例,其中該金屬材料層與碳材料層之位置係相對該支持基板顛倒。該光學資訊媒體具有一支持基板、一碳材料層及一金屬材料層。Figure 4b shows a variation of the optical information medium shown in Figure 4a, wherein the location of the layer of metallic material and the layer of carbon material is reversed relative to the support substrate. The optical information medium has a support substrate, a carbon material layer and a metal material layer.

第4c圖顯示一具有一支持基板、一或多個中間層、一金屬材料層及一碳材料層之光學資訊媒體。Figure 4c shows an optical information medium having a support substrate, one or more intermediate layers, a layer of metallic material and a layer of carbon material.

第4d圖顯示一具有一第一支持基板、一第一碳材料層、一金屬材料層、一第二碳材料層及一第二支持基板之光學資訊媒體。Figure 4d shows an optical information medium having a first support substrate, a first carbon material layer, a metal material layer, a second carbon material layer and a second support substrate.

第5a圖顯示一具有一基板層之光學資訊媒體,該基板層面接觸一碲/二氧/一氧化碳資料層。Figure 5a shows an optical information medium having a substrate layer that is in contact with a layer of germanium/dioxa/carbon monoxide data.

第5b圖顯示一具有一基板層、至少一中間層及一碲/二氧/一氧化碳資料層之光學資訊媒體。Figure 5b shows an optical information medium having a substrate layer, at least one intermediate layer, and a germanium/dioxa/carbon monoxide data layer.

第5c圖顯示一具有一第一基板層、一碲/二氧/一氧化碳資料層及一第二基板層之光學資訊媒體。Figure 5c shows an optical information medium having a first substrate layer, a germanium/dioxa/carbon monoxide data layer, and a second substrate layer.

第6圖顯示隨著氧化氣體二氧化碳之濃度增加,所製備之碳膜之光學密度減少(或光學透明度增加)。x軸是以nm計算之波長,y軸是每厚度(1/nm)之吸收度。以正方形符號表示之線代表1%(v/v)二氧化碳,以鑽石形符號表示之線代表2%(v/v)二氧化碳,且以圓形符號表示之線代表4%(v/v)二氧化碳。Figure 6 shows that as the concentration of carbon dioxide in the oxidizing gas increases, the optical density of the prepared carbon film decreases (or the optical transparency increases). The x-axis is the wavelength calculated in nm and the y-axis is the absorbance per thickness (1/nm). The line indicated by a square symbol represents 1% (v/v) carbon dioxide, the line represented by a diamond symbol represents 2% (v/v) carbon dioxide, and the line represented by a circular symbol represents 4% (v/v) carbon dioxide. .

第7圖顯示相較於碲與二氧化碳膜,碲膜之光學密度隨著時間變化的圖。x軸是以天計算之時間,y軸是以比例(OD/-ODinit )/ODinit 測量之光學密度(或吸收度)。該圖顯示添加二氧化碳至碲因氧化而減少變化。正方形符號代表未添加二氧化碳之碲;“x”符號代表添加1%二氧化碳;“鑽石形”符號代表添加2%二氧化碳;“填滿圓圈”符號代表添加2.3%二氧化碳;“+”符號代表添加2.5%二氧化碳;“一長劃”符號代表添加2.7%二氧化碳;“*”符號代表添加3%二氧化碳;“三角形”符號代表添加4%二氧化碳;且“空圓圈”符號代表添加10%二氧化碳。Figure 7 shows a graph of the optical density of the tantalum film as a function of time compared to the tantalum and carbon dioxide film. The x-axis is the time in days, and the y-axis is the optical density (or absorbance) measured in proportion (OD/-OD init ) / OD init . The figure shows the addition of carbon dioxide to reduce the change due to oxidation. The square symbol represents the carbon dioxide without added carbon; the "x" symbol represents the addition of 1% carbon dioxide; the "diamond" symbol represents the addition of 2% carbon dioxide; the "filled circle" symbol represents the addition of 2.3% carbon dioxide; the "+" symbol represents the addition of 2.5% Carbon dioxide; the "one long stroke" symbol represents the addition of 2.7% carbon dioxide; the "*" symbol represents the addition of 3% carbon dioxide; the "triangle" symbol represents the addition of 4% carbon dioxide; and the "empty circle" symbol represents the addition of 10% carbon dioxide.

第8圖相較於碲與二氧化碳膜,碲膜之反射率隨著時間變化的圖。x軸是以天計算之時間,y軸是百分比反射率。正方形符號代表未添加二氧化碳之碲;“x”符號代表添加1%二氧化碳;“鑽石形”符號代表添加2%二氧化碳;“填滿圓圈”符號代表添加2.3%二氧化碳;“+”符號代表添加2.5%二氧化碳;“一長劃”符號代表添加2.7%二氧化碳;“*”符號代表添加3%二氧化碳;“三角形”符號代表添加4%二氧化碳;且“空圓圈”符號代表添加10%二氧化碳。Fig. 8 is a graph showing the reflectance of the ruthenium film as a function of time compared to the ruthenium and carbon dioxide film. The x-axis is the time in days and the y-axis is the percent reflectivity. The square symbol represents the carbon dioxide without added carbon; the "x" symbol represents the addition of 1% carbon dioxide; the "diamond" symbol represents the addition of 2% carbon dioxide; the "filled circle" symbol represents the addition of 2.3% carbon dioxide; the "+" symbol represents the addition of 2.5% Carbon dioxide; the "one long stroke" symbol represents the addition of 2.7% carbon dioxide; the "*" symbol represents the addition of 3% carbon dioxide; the "triangle" symbol represents the addition of 4% carbon dioxide; and the "empty circle" symbol represents the addition of 10% carbon dioxide.

發明之詳細說明Detailed description of the invention

雖然組成物與方法係藉“包含”各種組分或步驟(被解釋成表示“包括,但不限於”),但是該等組成物與方法亦可“主要由各種組分或步驟構成”或“由各種組分或步驟構成”,這用語應被解釋為主要界定封閉構件群。Although the compositions and methods are "comprising" the various components or steps (which are meant to mean "including, but not limited to"), such compositions and methods may also "consist primarily of various components or steps" or " Consisting of various components or steps, this term should be interpreted to primarily define a closed component group.

在此所述之光學資訊媒體最好不是具有磁性的,被寫至在此所述之光學資訊媒體的資料最好不是可逆的或相變化記號,而是永久的、不可抹除的物理變化記號。Preferably, the optical information medium described herein is not magnetic, and the data written to the optical information medium described herein is preferably not a reversible or phase change mark, but a permanent, non-erasable physical change mark. .

在此所述之光學資訊媒體最好適用於作為歸檔媒體,儲存在歸檔媒體上之資料最好在大約1個月後、在大約1年後、在大約2年後、在大約3年後、在大約4年後、在大約5年後、在大約6年後、在大約7年後、在大約8年後、在大約9年後、在大約10年後、在大約20年後、在大約30年後、在大約40年後、在大約50年後、在大約60年後、在大約70年後、在大約80年後、在大約90年後、在大約100年後、在大約200年後、在大約300年後、在大約400年後、在大約500年後、且理想上是無限期地,仍是可讀取的。The optical information medium described herein is preferably applied as an archive medium, and the information stored on the archived medium is preferably about one month later, about one year later, about two years later, and about three years later. After about 4 years, after about 5 years, after about 6 years, after about 7 years, after about 8 years, after about 9 years, after about 10 years, after about 20 years, at about 30 years later, after about 40 years, after about 50 years, after about 60 years, after about 70 years, after about 80 years, after about 90 years, after about 100 years, after about 200 years It is still readable after about 300 years, after about 400 years, after about 500 years, and ideally indefinitely.

以下所述之光學資訊媒體可大致是任何形狀與尺寸。該媒體之形狀通常是扁平且圓的,目前預計之尺寸是大約直徑8cm、大約直徑12cm(例如一習知CD或DVD)、大約直徑13cm、大約直徑20cm、大約直徑10英吋(大約25.4cm)、大約直徑26cm、及大約直徑12英吋(大約30.48cm)。The optical information media described below can be generally any shape and size. The shape of the media is generally flat and round, and is currently expected to be about 8 cm in diameter, about 12 cm in diameter (e.g., a conventional CD or DVD), about 13 cm in diameter, about 20 cm in diameter, and about 10 inches in diameter (about 25.4 cm). ), approximately 26 cm in diameter, and approximately 12 inches in diameter (approximately 30.48 cm).

該光學資訊媒體之橫截面圖可以是對稱的或非對稱的,該橫截面大部份是非對稱的。The cross-sectional view of the optical information medium can be symmetrical or asymmetrical, and the cross section is mostly asymmetrical.

以下所述之光學資訊媒體大致包括至少一支持基板,該支持基板可大致是可適用於光學資訊儲存之任何材料。具有所需光學與機械性質之聚合物或陶瓷材料被廣泛地使用,支持基板通常包含聚碳酸酯、聚苯乙烯、氧化鋁、聚二甲基矽氧烷、聚甲基丙烯酸甲酯、氧化矽、玻璃、鋁、不鏽鋼、或其混合物。如果基板透明性是不必要的,則可使用金屬基板,且亦可使用其他光學性透明之塑膠或聚合物。支持基板可以選自於具有足夠硬度或剛性之材料,硬度或剛性通常是以單位為每單位面積壓力之楊氏係數來測量,且最好是大約0.5GPa至大約70GPa。剛性值之特定例子為大約0.5GPa、大約1GPa、大約5GPa、大約10GPa、大約20GPa、大約30GPa、大約40GPa、大約50GPa、大約60GPa、大約70GPa、及在這些值之任兩個值之間的範圍。支持基板可以選自於具有一大約1.45至大約1.70之折射率的材料,折射率之特定例子包括大約1.45、大約1.5、大約1.55、大約1.6、大約1.65、大約1.7、及在這些值之任兩個值之間的範圍。The optical information medium described below generally includes at least one support substrate, which may be substantially any material suitable for optical information storage. Polymer or ceramic materials having desirable optical and mechanical properties are widely used, and the support substrate usually comprises polycarbonate, polystyrene, alumina, polydimethyl siloxane, polymethyl methacrylate, ruthenium oxide. , glass, aluminum, stainless steel, or a mixture thereof. If substrate transparency is not necessary, a metal substrate can be used, and other optically transparent plastics or polymers can also be used. The support substrate may be selected from materials having sufficient hardness or rigidity, and the hardness or rigidity is usually measured in terms of Young's modulus per unit area pressure, and is preferably from about 0.5 GPa to about 70 GPa. Specific examples of the stiffness value are about 0.5 GPa, about 1 GPa, about 5 GPa, about 10 GPa, about 20 GPa, about 30 GPa, about 40 GPa, about 50 GPa, about 60 GPa, about 70 GPa, and a range between any two of these values. . The support substrate may be selected from materials having a refractive index of from about 1.45 to about 1.70, and specific examples of refractive indices include about 1.45, about 1.5, about 1.55, about 1.6, about 1.65, about 1.7, and any two of these values. The range between values.

該基板最好包括不會受到老化變質作用之影響之材料,目前較佳之材料為聚碳酸酯、玻璃、及氧化矽(熔融矽石)。該基板厚度可被選為驅動能力之一函數:1.2毫米厚度之基板係適用於CD驅動器,0.6毫米厚度之基板係適用於DVD驅動器,且0.1毫米厚度之基板係適用於BD驅動器。該厚度在歷史上被選擇成可將轉動質量保持在合理極限值內,同時維持該基板之必要扁平度與硬度以在讀取與寫入過程中保持該資料層在焦點上。Preferably, the substrate comprises a material that is not affected by aging and deterioration, and currently preferred materials are polycarbonate, glass, and yttria (melted vermiculite). The thickness of the substrate can be selected as a function of the driving ability: a substrate of 1.2 mm thickness is suitable for a CD drive, a substrate of 0.6 mm thickness is suitable for a DVD drive, and a substrate of 0.1 mm thickness is suitable for a BD drive. This thickness has historically been chosen to maintain the rotational mass within reasonable limits while maintaining the necessary flatness and stiffness of the substrate to maintain the data layer in focus during reading and writing.

材料-碳層Material - carbon layer

本發明之一實施例包含一適合歸檔用之光學資訊媒體。該等材料與製造程序係設計成可以是非常耐用的且不會受到老化變質作用之影響至一實質程度。類似地,資訊寫入過程是要永久的且不會受到老化變質作用之影響至一實質程度。該媒體包括至少一支持基板10及至少一被注入有一氣體之資料層15,這顯示於第1a圖中。One embodiment of the invention includes an optical information medium suitable for archiving. These materials and manufacturing procedures are designed to be very durable and not subject to aging deterioration to a substantial extent. Similarly, the information writing process is permanent and is not affected by aging deterioration to a substantial extent. The medium includes at least one support substrate 10 and at least one data layer 15 infused with a gas, which is shown in Figure 1a.

該資料層可包含碳、非晶碳、似鑽石碳、碳化矽、碳化硼、氮化硼、矽、非晶矽、鍺、非晶鍺、或其組合物。目前最好的是該資料層包含非晶碳,非晶碳是一需要相當大量活化能來改變其光學性質的穩定物質,這特性使非晶碳不會受到典型熱與化學動力老化過程之影響。非晶碳亦具有極佳耐化學藥品性,及一高度石墨型(SP2 )碳。The data layer may comprise carbon, amorphous carbon, diamond-like carbon, tantalum carbide, boron carbide, boron nitride, tantalum, amorphous tantalum, niobium, amorphous tantalum, or combinations thereof. At present, it is best that the data layer contains amorphous carbon, which is a stable substance that requires a considerable amount of activation energy to change its optical properties, which makes amorphous carbon unaffected by typical thermal and chemical dynamic aging processes. . Amorphous carbon also has excellent chemical resistance and a high graphite type (SP 2 ) carbon.

該資料層亦包括至少一被注入該結構中之氣體,該用語“被注入”表示至少一氣體被共價鍵結、捕捉或吸收至該非晶碳或其他材料中或上。在以一適當能源處理時,該被處理資料層會分解且釋放出氣體,這被釋放之氣體膨脹且會產生一突起或剝蝕位置,藉此在被處理位置與未被處理位置之間產生一可偵測光學對比。該資料層可以被注入有一氣體,或可以被注入有兩或兩種以上不同氣體。如果該資料層被注入有兩或兩種以上氣體,它們會均缺少氧原子、均含有氧原子、或可以是缺少氧原子之氣體與含有氧原子之一或多種氣體之一混合物。The data layer also includes at least one gas that is injected into the structure. The term "injected" means that at least one gas is covalently bonded, captured or absorbed into or onto the amorphous carbon or other material. When processed at an appropriate energy source, the treated data layer decomposes and releases a gas which is expanded by the released gas and creates a prominence or ablation location whereby a between the treated and untreated locations is created Optical contrast can be detected. The data layer may be injected with a gas or may be injected with two or more different gases. If the data layer is injected with two or more gases, they all lack oxygen atoms, both contain oxygen atoms, or may be a mixture of a gas lacking an oxygen atom and one or more gases containing oxygen atoms.

一缺少氧原子之氣體的例子包括分子氫(H2 )、分子氮(N2 )、氦(He)、氬(Ar)、氖(Ne)、氪(Kr)、氙(Xe)、氯(Cl2 )、及氟(F2 )。Examples of a gas lacking an oxygen atom include molecular hydrogen (H 2 ), molecular nitrogen (N 2 ), helium (He), argon (Ar), neon (Ne), krypton (Kr), xenon (Xe), and chlorine ( Cl 2 ), and fluorine (F 2 ).

在一目前較佳實施例中,該氣體是一經氧化氣體。該用語“經氧化氣體”表示其分子式包括至少一氧原子之氣體,這些氣體之例子包括一氧化碳(CO)、二氧化碳(CO2 )、分子氧(O2 )、臭氧(O3 )、氮氧化物(NOx )、硫氧化物(SOx )、及其混合物。一般相信在該資料層被加熱至一極高溫度時,氧會增加該資料層之揮發性。一般亦相信在一般條件下,特別是對於在碳膜中之殘餘應力而言,氧可穩定該寫入層。一般相信這穩定性會導致在與碳鍵結時,氧將碳氧化而產生一非常非反應性化合物。該資料層可以被注入有一經氧化氣體,或可被注入有兩或兩種以上不同經氧化氣體。In a presently preferred embodiment, the gas is an oxidizing gas. The term "oxidized gas" means a gas whose molecular formula includes at least one oxygen atom, and examples of such gases include carbon monoxide (CO), carbon dioxide (CO 2 ), molecular oxygen (O 2 ), ozone (O 3 ), and nitrogen oxides. (NO x ), sulfur oxides (SO x ), and mixtures thereof. It is generally believed that when the data layer is heated to a very high temperature, oxygen increases the volatility of the data layer. It is also believed that oxygen can stabilize the write layer under typical conditions, particularly for residual stress in the carbon film. It is generally believed that this stability results in oxygen oxidizing carbon to form a very non-reactive compound when bonded to carbon. The data layer may be implanted with an oxidizing gas or may be injected with two or more different oxidizing gases.

該資料層之透明度(或不透明度)可以藉調整在製備該資料層時使用之氣體濃度來改變,本發明人已發現的是氣體之濃度愈高會使該資料層之透明度愈大,所加入之氣體可以使用如XPS等方法偵測與測重。所得塗層具有一高於如果另外以相同方式但在製備時缺少所添加之氣體來製備時具有之氣體、氧氣或經氧化氣體的濃度。The transparency (or opacity) of the data layer can be varied by adjusting the concentration of the gas used in preparing the data layer. The inventors have discovered that the higher the concentration of the gas, the greater the transparency of the data layer. The gas can be detected and measured using methods such as XPS. The resulting coating has a higher concentration of gas, oxygen or oxidizing gas than would be obtained if otherwise prepared in the same manner but lacking the added gas during preparation.

目前已發現該氣體有助於剝蝕該資料層,以下是目前相信可促進剝蝕之機構的說明。真正之機構不被視為會對本發明之實施例造成限制。在寫入過程中,由該寫入雷射產生極高熱使在氣體與碳原子間之一般為強且穩定之共價鍵斷裂。該氣體加熱與分離過程產生一爆炸,由該資料層排出該氣體與該非晶碳。該氣體爆炸具有由該光碟剝蝕該寫入層或永久改變該資料層之被寫入部份成為,依據系統設計,對一讀取雷射而言比未被寫入資料層區域明顯更不透明或更透明的組合效果。該資料層之被寫入與未被寫入部份兩者係非常非反應性的(不受典型熱與化學動力老化過程影響),且是光學性不同的。此外,由氣體注入轉變成氣體較少狀態需要大量之活化能,防止經過自然化學動力老化而發生改變。It has been found that this gas helps to erode the data layer. The following is a description of the institutions currently believed to promote erosion. The true mechanism is not to be construed as limiting the embodiments of the invention. During writing, extreme heat is generated by the writing laser to cause a generally strong and stable covalent bond break between the gas and the carbon atoms. The gas heating and separation process produces an explosion from which the gas and the amorphous carbon are discharged. The gas explosion has the effect of ablation of the write layer by the optical disk or permanent alteration of the written portion of the data layer, depending on the system design, which is significantly more opaque to a read laser than to a region that is not written to the data layer or A more transparent combination of effects. The data layer is very non-reactive with both the unwritten portion and the unwritten portion (not affected by typical thermal and chemical dynamic aging processes) and is optically different. In addition, the conversion from gas injection to a less gaseous state requires a large amount of activation energy to prevent changes through natural chemical dynamic aging.

該資料層可大致為任何厚度,該資料層厚度提供光吸收性。一厚度下限值可以是大約10nm或大約20nm,一厚度上限值可以藉改變該資料層所需能量來決定且將依所選擇之材料變化。一上限值之例子是大約100nm,厚度例子是大約10nm、大約20nm、大約30nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、及在這些值之任兩者間的範圍。一厚度值可以理論上地計算為λ/n,其中λ為讀取波長,且n是該雷射之折射率。The data layer can be substantially any thickness and the thickness of the data layer provides light absorption. A lower thickness limit may be about 10 nm or about 20 nm, and an upper thickness limit may be determined by varying the energy required for the data layer and will vary depending on the material selected. An example of an upper limit is about 100 nm, and examples of thickness are about 10 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, about 100 nm, and at any of these values. Scope between people. A thickness value can theoretically be calculated as λ/n, where λ is the read wavelength and n is the refractive index of the laser.

該支持基板可以直接面接觸該被氣體注入之資料層且沒有任何中間單一或多數層。或者,可以在該支持基板與該資料層之間放置一或多數另外的層。The support substrate can be in direct contact with the gas-injected data layer without any intermediate single or majority layers. Alternatively, one or more additional layers may be placed between the support substrate and the data layer.

該基板與資料層之折射率、厚度、及不透明度可以在未被寫入狀態下最佳化以光學地反射一讀取雷射。以一讀取雷射之形式進入該碟片底部之光產生一來自該資料層/資料層界面之第一反射光束及一來自該資料層/空氣界面之第二反射光束。調整該資料層厚度使得兩反射光束同相將透過建設性干涉使反射最大化,在該碟片之未被寫入狀態下增加反射可在被寫入與未被寫入部份之間提供更大之光學對比,增加在讀取過程中之信號雜訊比。The refractive index, thickness, and opacity of the substrate and data layer can be optimized in an unwritten state to optically reflect a read laser. Light entering the bottom of the disc in the form of a read laser produces a first reflected beam from the data layer/data layer interface and a second reflected beam from the data layer/air interface. Adjusting the thickness of the data layer such that the in-phase of the two reflected beams will maximize reflection by constructive interference, and increasing the reflection in the unwritten state of the disc can provide greater between being written and unwritten. The optical contrast increases the signal-to-noise ratio during the reading process.

該資料層之被寫入部份可以利用一高功率寫入雷射強度由該碟片被剝蝕或移除,而該高功率寫入雷射強度被調制成一被記錄在該碟片上之資料流。一明顯較小強度之讀取雷射通過該資料層之被剝蝕部份或被吸收在氣體較少不透明部份中而與在該資料層之未被寫入部份處發生之最大反射呈一光學對比,一光二極體偵測在該碟片之被寫入或非反射與未被寫入或反射部份之間的光學對比。The written portion of the data layer can be ablated or removed from the disc by a high power write laser intensity, and the high power write laser intensity is modulated to be recorded on the disc. The flow of data. An apparently less intense reading laser passes through the ablated portion of the data layer or is absorbed in a less opaque portion of the gas and exhibits a maximum reflection at the unwritten portion of the data layer. Optically contrasting, a photodiode detects optical contrast between the written or non-reflective and unwritten or reflected portions of the disc.

可增加另外的層,使該碟片更適用於寫入、對歸檔更耐用、或更能配合現有光碟容量與格式。該光學資訊媒體可更包含一剝蝕捕捉層20,一剝蝕捕捉層可覆蓋該資料層以捕捉在該寫入過程中剝蝕之材料且保護該資料層。適合作為該剝蝕捕捉層之材料包括氣溶膠、或金屬層。其他適合材料包括鋁、鉻、鈦、銀、金、鉑、銠、矽、鍺、鈀、銥、錫、銦、其他金屬、陶瓷、SiO2 、Al2 O3 、其合金、及其混合物。當存在一剝蝕捕捉層時,該寫入過程永久地分離最初被注入在該資料層中之氣體,在該層中產生一空洞及一在該剝蝕捕捉層中之一氣泡或凸起。如先前所述,因為除非透過該高功率能量寫入過程,否則該被注入氣體不會被輕易移除,該資料層之未被寫入部份並未隨著時間改變。該剝蝕捕捉層具有密封該資料層以在該寫入過程時防止來自剝蝕材料之可能寫入光學污染的另一優點,當該凸起吸收讀取雷射時,在該剝蝕捕捉層中之凸起產生一對未被寫入或未分配寫入層部份之光學對比,產生如同該讀取雷射完全穿過該光碟時之相同效果。如果由該資料層移除且在該剝蝕捕捉層下方被捕捉之氣體最後離開該凸起,該凸起之光學性質將保持不變。因此,因為該等被寫入與未被寫入部份之光學性質是永久的,該碟片不會受到老化變質作用之影響。Additional layers can be added to make the disc more suitable for writing, more durable for archiving, or more compatible with existing disc capacity and format. The optical information medium can further include an ablation capture layer 20, and an ablation capture layer can cover the data layer to capture material that is ablated during the writing process and to protect the data layer. Suitable materials for the ablation capture layer include an aerosol, or a metal layer. Other suitable materials include aluminum, chromium, titanium, silver, gold, platinum, rhodium, ruthenium, iridium, palladium, iridium, tin, indium, other metals, ceramics, SiO 2 , Al 2 O 3 , alloys thereof, and mixtures thereof. When an ablation capture layer is present, the writing process permanently separates the gas initially implanted into the data layer, creating a void in the layer and a bubble or bump in the ablation capture layer. As previously stated, the injected gas is not easily removed unless the high power energy writing process is passed, and the unwritten portion of the data layer does not change over time. The ablation capture layer has another advantage of sealing the data layer to prevent possible write optical contamination from the ablated material during the writing process, and convex in the ablation capture layer when the protrusion absorbs the read laser The optical contrast is produced as a pair of unwritten or unallocated portions of the write layer, producing the same effect as when the read laser passes completely through the disc. If the gas removed by the data layer and captured under the ablation capture layer finally leaves the bump, the optical properties of the bump will remain unchanged. Therefore, since the optical properties of the written and unwritten portions are permanent, the disc is not affected by aging deterioration.

該光學資訊媒體可更包含一反射層25,如第1e圖所示。該反射層可與或不與一剝蝕捕捉層一起使用,或者,該反射層可具有一反射層及一剝蝕捕捉層兩者之功能(將它作成一反射捕捉層30;第1d圖)。此時,它提供兩不同寫入方式。一第一寫入方式提供一半透明寫入層,如前所述,該寫入層透明度隨著氣體濃度增加而調整。一反射剝蝕捕捉層作為一鏡子,在該資料層之未被寫入區域處反射該讀取雷射。當該寫入層透過該寫入過程被剝蝕時,在該反射剝蝕捕捉層中產生一凸起,且產生一防止該讀取雷射直接反射回到一光二極體偵測器之有效稜鏡。因此,對於該讀取雷射,未被寫入區域更具反射性且被寫入區域更具吸收性,在該讀取過程中提供必要之對比。一第二寫入方式藉調整厚度提供一最小反射性資料層,使得來自該等第一與第二表面之反射光相位相差180度以進行破壞性干涉。該資料層亦可藉減少氣體濃度被製造成可更不透明,此外,該資料層之不透明度與厚度可調整以使讀取雷射吸收性與破壞性光相位抵消最大化。該寫入過程藉該寫入層之剝蝕部份暴露該反射層,未被寫入區域是不透明的或更具吸收性的,且被寫入區域是反射性的,再為該寫入過程提供必要之對比。The optical information medium may further comprise a reflective layer 25 as shown in Figure 1e. The reflective layer may or may not be used with an ablation capture layer, or the reflective layer may have the function of both a reflective layer and an ablation capture layer (which is formed as a reflective capture layer 30; Figure 1d). At this point, it provides two different ways of writing. A first write mode provides a half transparent write layer, as previously described, the write layer transparency is adjusted as the gas concentration increases. A reflective ablation capture layer acts as a mirror that reflects the read laser at the unwritten regions of the data layer. When the write layer is etched through the writing process, a bump is generated in the reflective ablation capture layer, and an effective ridge is generated to prevent the read laser from being directly reflected back to a photodiode detector. . Thus, for this read laser, the unwritten area is more reflective and the written area is more absorptive, providing the necessary contrast during the reading process. A second writing mode provides a minimum reflective data layer by adjusting the thickness such that the reflected light from the first and second surfaces are 180 degrees out of phase for destructive interference. The data layer can also be made more opaque by reducing the gas concentration. In addition, the opacity and thickness of the data layer can be adjusted to maximize read laser absorbance and destructive optical phase cancellation. The writing process exposes the reflective layer by the ablated portion of the write layer, the unwritten area is opaque or more absorbing, and the written area is reflective, and the write process is provided The necessary comparison.

該反射層材料係依其極端耐用性與反射性來選擇且可包含如矽、銀、鈦、鉻、鉑、銠、金、鋁、或其合金等材料。The reflective layer material is selected for its extreme durability and reflectivity and may comprise materials such as ruthenium, silver, titanium, chromium, platinum, rhodium, gold, aluminum, or alloys thereof.

該光學資訊媒體可更包含一擴散障壁層35;第1e圖。該擴散障壁層可被加入該基板與該資料層之間以在該基板由聚碳酸酯材料構成時加入一對該資料層之另一保護層,在沒有一擴散障壁層時,氧與水氣會輕易地擴散通過習知聚碳酸酯基板而不利地與該資料層反應。擴散障壁材料係依其耐用性與對氣體與水氣之不透性來選擇且可包含如氧化矽、氧化鋁、陶瓷、玻璃、金屬氧化物、透明材料、或其他透明金屬氧化物等材料。當該基板包含這些相同材料時,不需另一擴散障壁。The optical information medium may further comprise a diffusion barrier layer 35; Figure 1e. The diffusion barrier layer may be added between the substrate and the data layer to add another pair of protective layers of the data layer when the substrate is made of a polycarbonate material, and oxygen and moisture in the absence of a diffusion barrier layer It will easily diffuse through the conventional polycarbonate substrate and adversely react with the data layer. The diffusion barrier material is selected for its durability and impermeability to gases and moisture, and may include materials such as cerium oxide, aluminum oxide, ceramics, glass, metal oxides, transparent materials, or other transparent metal oxides. When the substrate contains these same materials, no other diffusion barrier is needed.

該光學資訊媒體可更包含一保護密封障壁層40;第1f圖。多數另外的層可增加至前述層上方與下方以達成另外的保護及增加數位資料壽命。一保護密封障壁層可包含如鉻、鈦、氧化矽、氧化鋁、陶瓷、玻璃、金屬氧化物、透明材料、或一旋塗聚合物等材料。如果該反射層包含反應性材料,則更需要一保護密封障壁層。依據所選擇之材料,該保護密封障壁層亦可是該反射層。The optical information medium may further comprise a protective sealing barrier layer 40; Figure 1f. Most additional layers can be added above and below the aforementioned layers to achieve additional protection and increase digital data lifetime. A protective sealing barrier layer may comprise a material such as chromium, titanium, yttria, alumina, ceramic, glass, metal oxide, transparent material, or a spin-on polymer. If the reflective layer comprises a reactive material, a protective seal barrier layer is more desirable. The protective sealing barrier layer may also be the reflective layer depending on the material selected.

該光學資訊媒體可更包含一紫外線輻射阻擋層45;第1g圖。該紫外線輻射阻擋層可增加至該基板下方,以防止基板濁矇或對該資料層產生其他變質作用。一紫外線輻射阻擋層包含聚碳酸酯或玻璃膜,該等聚碳酸酯或玻璃膜包含如氧化鋅、氧化鈦、碳化矽、玻璃、或各種透明材料等至少一紫外線輻射阻擋劑。The optical information medium may further comprise an ultraviolet radiation blocking layer 45; Figure 1g. The ultraviolet radiation blocking layer can be added below the substrate to prevent clouding of the substrate or other metamorphism of the data layer. An ultraviolet radiation blocking layer comprises a polycarbonate or glass film comprising at least one ultraviolet radiation blocking agent such as zinc oxide, titanium oxide, tantalum carbide, glass, or various transparent materials.

該光學資訊媒體可更包含一防刮層50;第1g圖。光碟之其中一最常見失效模式是刮痕,該等刮痕會透過散射與吸收造成光讀回信號之減少。雖然這些刮痕偏離該光讀回系統之焦點平面甚遠,它們在光學性上非常寬(數百甚至數千軌之寬度)且因此會造成廣分布讀回問題。因此,一防刮層可施加在該基板下方,防刮材料包含氧化矽、氧化鋁、碳化矽、或透明材料。The optical information medium may further comprise a scratch-resistant layer 50; a 1g image. One of the most common failure modes of optical discs is scratches, which cause a reduction in optical readback signals through scattering and absorption. Although these scratches are far from the focal plane of the optical readback system, they are very optically wide (hundreds or even thousands of tracks) and therefore cause widespread readback problems. Thus, a scratch resistant layer can be applied beneath the substrate, the scratch resistant material comprising yttria, alumina, tantalum carbide, or a transparent material.

該基板、紫外線阻擋層、及防刮層可以組合成一展現個別層之所有有利特性的單一材料。換言之,該基板可包含至少一紫外線輻射阻擋劑、至少一防刮材料、或兩者。The substrate, UV blocking layer, and scratch resistant layer can be combined into a single material that exhibits all of the advantageous properties of the individual layers. In other words, the substrate can comprise at least one ultraviolet radiation blocker, at least one scratch resistant material, or both.

該光學資訊媒體可更包含一環境保護層55;第1g圖。該環境保護層可加入以防止污物、水、或其他污染物進入該碟片結構。典型環境保護層包括疏水性材料與氟化疏水性材料。The optical information medium may further comprise an environmental protection layer 55; Figure 1g. The environmental protection layer can be added to prevent dirt, water, or other contaminants from entering the disc structure. Typical environmental protection layers include hydrophobic materials and fluorinated hydrophobic materials.

該光學資訊媒體可包含以各種不同構型排列之許多不同層,以下是在該光學資訊媒體產品中簡單或更複雜排列之數個例子。這些例子不表示僅止於此,而是存在有許多層的變化及層施加之次序。目前較佳的是該氣體是一經氧化氣體,且該資料層包含碳。The optical information medium can include many different layers arranged in a variety of different configurations, and the following are a few examples of simple or more complex arrangements in the optical information media product. These examples are not meant to be merely illustrative, but rather there are many variations of layers and the order in which the layers are applied. It is presently preferred that the gas is an oxidizing gas and the data layer comprises carbon.

在一最簡單的例子中,該媒體可包含至少一支持基板及至少一被注入有一氣體之資料層,使得該支持基板與該資料層互相面接觸。在一目前較佳實施例中,該資料層面接觸該支持基板之一面。在一目前較佳實施例中,該支持基板是一聚碳酸酯。在另一目前較佳實施例中,該支持基板是熔融矽石或玻璃。在一目前較佳實施例中,該資料層包含碳。目前較佳的是該氣體是一經氧化氣體。In a simplest example, the medium can include at least one support substrate and at least one data layer infused with a gas such that the support substrate and the data layer are in surface contact with each other. In a presently preferred embodiment, the data layer contacts one side of the support substrate. In a presently preferred embodiment, the support substrate is a polycarbonate. In another presently preferred embodiment, the support substrate is fused vermiculite or glass. In a presently preferred embodiment, the data layer comprises carbon. It is presently preferred that the gas be an oxidizing gas.

在一實施例中,該媒體可包含至少一支持基板;至少一被注入有一氣體之資料層,使得該支持基板與該資料層互相面接觸;及至少一剝蝕捕捉層,使得該資料層與該剝蝕捕捉層互相面接觸。In one embodiment, the medium may include at least one support substrate; at least one data layer implanted with a gas such that the support substrate and the data layer are in surface contact with each other; and at least one ablation capture layer, such that the data layer The ablation capture layers are in surface contact with each other.

在另一實施例中,該媒體可包含至少一支持基板;至少一被注入有一氣體之資料層,使得該支持基板與該資料層互相面接觸;及至少一反射捕捉層,使得該資料層與該反射捕捉層互相面接觸。這顯示在第1c圖中。In another embodiment, the medium may include at least one support substrate; at least one data layer implanted with a gas such that the support substrate and the data layer are in surface contact with each other; and at least one reflective capture layer such that the data layer The reflective capture layers are in surface contact with each other. This is shown in Figure 1c.

在另一實施例中,該媒體可包含至少一支持基板;至少一擴散障壁層,使得該支持基板與該擴散障壁層互相面接觸;至少一被注入有一氣體之資料層,使得該擴散障壁層與該資料層互相面接觸;及至少一反射捕捉層,使得該資料層與該反射捕捉層互相面接觸。這顯示在第1e圖中。In another embodiment, the medium may include at least one supporting substrate; at least one diffusion barrier layer such that the supporting substrate and the diffusion barrier layer are in surface contact with each other; at least one material layer injected with a gas, such that the diffusion barrier layer And contacting the data layer with each other; and at least one reflective capture layer such that the data layer and the reflective capture layer are in surface contact with each other. This is shown in Figure 1e.

在另一實施例中,該媒體可包含至少一支持基板;至少一擴散障壁層,使得該支持基板與該擴散障壁層互相面接觸;至少一被注入有一氣體之資料層,使得該擴散障壁層與該資料層互相面接觸;至少一反射捕捉層,使得該資料層與該反射捕捉層互相面接觸;及至少一保護密封障壁層,使得該反射捕捉層與該保護密封障壁層互相面接觸。這顯示在第1f圖中。In another embodiment, the medium may include at least one supporting substrate; at least one diffusion barrier layer such that the supporting substrate and the diffusion barrier layer are in surface contact with each other; at least one material layer injected with a gas, such that the diffusion barrier layer Contacting the data layer in contact with each other; at least one reflective capture layer such that the data layer and the reflective capture layer are in surface contact with each other; and at least one protective sealing barrier layer such that the reflective capture layer and the protective seal barrier layer are in surface contact with each other. This is shown in Figure 1f.

在另一實施例中,該媒體可包含至少一具有一第一面與一第二面之支持基板;至少一擴散障壁層,使得該支持基板與該擴散障壁層互相面接觸;至少一被注入有一氣體之資料層,使得該擴散障壁層與該資料層互相面接觸;至少一反射捕捉層,使得該資料層與該反射捕捉層互相面接觸;至少一保護密封障壁層,使得該反射捕捉層與該保護密封障壁層互相面接觸;至少一紫外線輻射阻擋層,使得該支持基板與該紫外線輻射阻擋層互相面接觸;至少一防刮層,使得該防刮層與該紫外線輻射阻擋層互相面接觸;及至少一環境保護層,使得該環境保護層與該紫外線輻射阻擋層互相面接觸。這顯示在第1g圖中。In another embodiment, the medium may include at least one support substrate having a first surface and a second surface; at least one diffusion barrier layer such that the support substrate and the diffusion barrier layer are in surface contact with each other; at least one is injected a gas data layer, such that the diffusion barrier layer and the data layer are in surface contact with each other; at least one reflective capture layer, such that the data layer and the reflective capture layer are in surface contact with each other; at least one protective sealing barrier layer, such that the reflective capture layer Contacting the protective sealing barrier layer in contact with each other; at least one ultraviolet radiation blocking layer, such that the supporting substrate and the ultraviolet radiation blocking layer are in surface contact with each other; at least one scratch-resistant layer, such that the scratch-resistant layer and the ultraviolet radiation blocking layer face each other Contacting; and at least one environmental protection layer such that the environmental protection layer and the ultraviolet radiation blocking layer are in surface contact with each other. This is shown in the 1g chart.

在一非常特定實施例中,一光學資訊媒體可包含一聚碳酸酯、熔融矽石、或玻璃支持基板;及一被注入有二氧化碳之非晶碳資料層。In a very specific embodiment, an optical information medium can comprise a polycarbonate, a fused vermiculite, or a glass support substrate; and an amorphous carbon data layer that is infused with carbon dioxide.

製備方法-碳層Preparation method - carbon layer

本發明之另一實施例係有關於製備一光學資訊媒體之方法。通常,該方法可包含提供一支持基板,及施加一或多數另外的層以製備該光學資訊媒體。Another embodiment of the invention is directed to a method of making an optical information medium. Generally, the method can include providing a support substrate and applying one or more additional layers to prepare the optical information medium.

各種層可依據在該光學資訊媒體產品中所需之特殊配置以各種次序施加,該等層可全部施加在該支持基板之一側上,產生一在一外面上具有該支持基板之最終產品。或者,該等層可以施加在該支持基板之兩側上,產生一具有該支持基板的最終產品,且該支持基板設置成使它不是該最終產品之一外面。The various layers can be applied in various orders depending on the particular configuration desired in the optical information media product, and the layers can all be applied to one side of the support substrate to produce a final product having the support substrate on the outside. Alternatively, the layers may be applied on both sides of the support substrate to produce a final product having the support substrate, and the support substrate is disposed such that it is not outside of one of the final products.

在一最簡單之實施例中,該方法可包含提供一支持基板,及將至少一被注入有一氣體之資料層施加在該支持基板之至少一面上,使得該支持基板與資料層互相面接觸。在一目前較佳實施例中,該資料層被施加在該支持基板之一面上,該支持基板可以是任一種前述支持基板。在一目前較佳實施例中,該支持基板是聚碳酸酯。在另一目前較佳實施例中,該支持基板是熔融矽石或玻璃。In a simplest embodiment, the method can include providing a support substrate and applying at least one data layer implanted with a gas on at least one side of the support substrate such that the support substrate and the data layer are in surface contact with each other. In a presently preferred embodiment, the data layer is applied to one side of the support substrate, and the support substrate can be any of the aforementioned support substrates. In a presently preferred embodiment, the support substrate is polycarbonate. In another presently preferred embodiment, the support substrate is fused vermiculite or glass.

該方法可更包含在該施加步驟之前,將該支持基板暴露於一真空。The method can further include exposing the support substrate to a vacuum prior to the applying step.

在該施加步驟可使用濺鍍來施加該資料層與其他層。濺鍍形成該資料層可包含提供一前驅物材料及至少一氣體;對該前驅物材料施加能量以蒸發前驅物材料;及沈積該被蒸發前驅物材料與該氣體在該支持基板上,使得該氣體被注入在該資料層中。在一目前較佳實施例中,該前驅物材料是碳,該氣體可以是任一種前述氣體。在一目前較佳實施例中,該氣體可以是任一種前述經氧化氣體,例如,二氧化碳。在濺鍍時可存在另外的非經氧化氣體,例如,氬、氪、氮、氦、及氖。濺鍍可使用通常具有一單一室及一或多個標靶之實驗室級設備(例如一來自Kurt J. Lesker Company(賓州匹茲堡)之PVD 75設備)來實施,或可使用具有多數室及多數標靶之工業級設備(例如一來自Oerlikon Systems(Pfffikon,Switzerland)之Sprinter設備)來實施。Sputtering can be used to apply the data layer to the other layers during the application step. Sputtering the data layer may include providing a precursor material and at least one gas; applying energy to the precursor material to evaporate the precursor material; and depositing the evaporated precursor material and the gas on the support substrate such that the Gas is injected into the data layer. In a presently preferred embodiment, the precursor material is carbon and the gas can be any of the foregoing gases. In a presently preferred embodiment, the gas can be any of the foregoing oxidizing gases, such as carbon dioxide. Additional non-oxidized gases may be present during sputtering, such as argon, helium, nitrogen, helium, and neon. Sputtering can be performed using laboratory-grade equipment typically having a single chamber and one or more targets (eg, a PVD 75 device from Kurt J. Lesker Company, Pittsburgh, PA), or can have a majority of chambers and Most of the target industrial grade equipment (eg one from Oerlikon Systems (Pf Ffikon, Switzerland) Sprinter device) to implement.

在濺鍍時該氣體之濃度可以是大約0.01%(v/v)至大約25%(v/v),特定濃度可以是大約0.01%(v/v)、大約0.05%(v/v)、大約0.1%(v/v)、大約0.5%(v/v)、大約1%(v/v)、大約2%(v/v)、大約3%(v/v)、大約4%(v/v)、大約5%(v/v)、大約10%(v/v)、大約15%(v/v)、大約20%(v/v)、大約25%(v/v)、及在這些值之任兩者之間的範圍。這些值相對於該惰性濺鍍載氣(通常是氬)而言是體積/體積。The concentration of the gas may be from about 0.01% (v/v) to about 25% (v/v) at the time of sputtering, and the specific concentration may be about 0.01% (v/v), about 0.05% (v/v), About 0.1% (v/v), about 0.5% (v/v), about 1% (v/v), about 2% (v/v), about 3% (v/v), about 4% (v) /v), approximately 5% (v/v), approximately 10% (v/v), approximately 15% (v/v), approximately 20% (v/v), approximately 25% (v/v), and The range between any of these values. These values are volume/volume relative to the inert sputtering carrier gas (usually argon).

可使用除了濺鍍以外之方法來施加該資料層與其他層,例如,可使用電漿聚合、電子束蒸發、化學蒸氣沈積、分子束磊晶、及蒸發。The data layer and other layers may be applied using methods other than sputtering, for example, plasma polymerization, electron beam evaporation, chemical vapor deposition, molecular beam epitaxy, and evaporation may be used.

施加至少一被注入有一氣體之資料層的步驟可以一單一步驟實施。或者,該施加步驟可以先施加無該被注入氣體之資料層,且接著以該氣體注入該資料層之兩步驟實施。The step of applying at least one data layer to which a gas is injected can be carried out in a single step. Alternatively, the applying step may be performed by first applying a data layer without the injected gas and then applying the gas to the data layer in two steps.

在更複雜之實施例中,可以將一或多數另外的層施加在該支持基板上。該支持基板可具有一第一面與一第二面,該等另外的層可定向成使它們由該支持基板之第一面、第二面或第一面與第二面兩者延伸出來。如果該等另外的層僅由該支持基板之一面延伸出來,則最終製備之產品將使該支持基板之一面暴露。如果該等另外的層由該支持基板之第一面與第二面兩者延伸出來,則最終製備之產品將不會使該支持基板暴露出來。該一或多數另外的層可相對於該支持基板對稱地定向,或相對於該支持基板非對稱地定向。In a more complex embodiment, one or more additional layers may be applied to the support substrate. The support substrate can have a first side and a second side, and the additional layers can be oriented such that they extend from the first side, the second side, or both the first side and the second side of the support substrate. If the additional layers extend only from one side of the support substrate, the final prepared product will expose one side of the support substrate. If the additional layers extend from both the first side and the second side of the support substrate, the final prepared product will not expose the support substrate. The one or more additional layers may be oriented symmetrically relative to the support substrate or asymmetrically relative to the support substrate.

在某些實施例中,一或多層可以在將該資料層施加在最外層上之前,施加在該支持基板上。例如,該等方法可更包含施加一或多數以下層:剝蝕捕捉層、反射捕捉層、保護密封障壁層、紫外線輻射阻擋層、防刮層、及環境保護層。In some embodiments, one or more layers may be applied to the support substrate prior to applying the data layer to the outermost layer. For example, the methods may further comprise applying one or more of the following layers: an ablation capture layer, a reflective capture layer, a protective seal barrier layer, an ultraviolet radiation barrier layer, a scratch resistant layer, and an environmental protection layer.

在某些實施例中,某些層可施加在一第一支持基板上,某些層可施加在一第二支持基板上,且該第一支持基板與該第二支持基板可面接合或黏合。這方法對於製備DVD媒體特別具有吸引力。In some embodiments, certain layers may be applied to a first support substrate, some layers may be applied to a second support substrate, and the first support substrate may be surface bonded or bonded to the second support substrate. . This method is particularly attractive for preparing DVD media.

以下是製備多層光學資料媒體之方法的特殊例子,這些例子不表示僅止於此,而是存在有許多層的變化及層施加之次序。在多層被施加在該支持基板之第一面與第二面兩者上的實施例中,層施加之特殊次序可改變以達成相同之光學資料媒體產品。The following are specific examples of methods for preparing a multilayer optical data medium. These examples are not meant to be merely limiting, but rather there are many layers of variations and layer application sequences. In embodiments where multiple layers are applied to both the first side and the second side of the support substrate, the particular order of layer application can be varied to achieve the same optical data media product.

在一實施例中,該方法可包含提供一支持基板;將至少一被注入有一氣體之資料層施加在該支持基板上,使得該支持基板與該資料層互相面接觸;及將至少一剝蝕捕捉層施加在該資料層上,使得該資料層與該剝蝕捕捉層互相面接觸。In one embodiment, the method can include providing a support substrate; applying at least one data layer implanted with a gas to the support substrate such that the support substrate and the data layer are in surface contact with each other; and capturing at least one ablation A layer is applied over the data layer such that the data layer and the ablation capture layer are in surface contact with each other.

在另一實施例中,該方法可包含提供一支持基板;將至少一被注入有一氣體之資料層施加在該支持基板上,使得該支持基板與該資料層互相面接觸;及將至少一反射捕捉層施加在該資料層上,使得該資料層與該反射捕捉層互相面接觸。In another embodiment, the method can include providing a support substrate; applying at least one data layer implanted with a gas on the support substrate such that the support substrate and the data layer are in surface contact with each other; and reflecting at least one A capture layer is applied over the data layer such that the data layer and the reflective capture layer are in surface contact with each other.

在另一實施例中,該方法可包含提供一支持基板;將至少一擴散障壁層施加在該支持基板上,使得該支持基板與該擴散障壁層互相面接觸;將至少一被注入有一氣體之資料層施加在該擴散障壁層上,使得該擴散障壁層與該資料層互相面接觸;及將至少一反射捕捉層施加至該資料層上,使得該資料層與該反射捕捉層互相面接觸。In another embodiment, the method may include providing a support substrate; applying at least one diffusion barrier layer on the support substrate such that the support substrate and the diffusion barrier layer are in surface contact with each other; at least one is injected with a gas A data layer is applied on the diffusion barrier layer such that the diffusion barrier layer is in surface contact with the data layer; and at least one reflective capture layer is applied to the data layer such that the data layer and the reflective capture layer are in surface contact with each other.

在另一實施例中,該方法可包含提供一支持基板;將至少一擴散障壁層施加在該支持基板上,使得該支持基板與該擴散障壁層互相面接觸;將至少一被注入有一氣體之資料層施加在該擴散障壁層上,使得該擴散障壁層與該資料層互相面接觸;將至少一反射捕捉層施加在該資料層上,使得該資料層與該反射捕捉層互相面接觸;及施加至少一保護密封障壁層,使得該反射捕捉層與該保護密封障壁層互相面接觸。In another embodiment, the method may include providing a support substrate; applying at least one diffusion barrier layer on the support substrate such that the support substrate and the diffusion barrier layer are in surface contact with each other; at least one is injected with a gas a data layer is applied on the diffusion barrier layer such that the diffusion barrier layer and the data layer are in surface contact with each other; and at least one reflective capture layer is applied on the data layer such that the data layer and the reflective capture layer are in surface contact with each other; At least one protective sealing barrier layer is applied such that the reflective capturing layer and the protective sealing barrier layer are in surface contact with each other.

在另一實施例中,該方法可包含提供一具有一第一面與一第二面之支持基板;將至少一擴散障壁層施加在該支持基板上,使得該支持基板與該擴散障壁層互相面接觸;將至少一被注入有一氣體之資料層施加在該擴散障壁層上,使得該擴散障壁層與該資料層互相面接觸;將至少一反射捕捉層施加在該資料層上,使得該資料層與該反射捕捉層互相面接觸;將至少一保護密封障壁層施加在該反射捕捉層上,使得該反射捕捉層與該保護密封障壁層互相面接觸;將至少一紫外線輻射阻擋層施加在該支持基板之第二面上,使得該支持基板與該紫外線輻射阻擋層互相面接觸;將至少一防刮層施加在該紫外線輻射阻擋層上,使得該防刮層與該紫外線輻射阻擋層互相面接觸;及將至少一環境保護層施加在該防刮層上,使得該環境保護層與該防刮層互相面接觸。In another embodiment, the method can include providing a support substrate having a first surface and a second surface; applying at least one diffusion barrier layer on the support substrate such that the support substrate and the diffusion barrier layer are mutually Surface contact; applying at least one data layer implanted with a gas to the diffusion barrier layer such that the diffusion barrier layer and the data layer are in surface contact with each other; and applying at least one reflective capture layer to the data layer, such that the data The layer and the reflective trap layer are in surface contact with each other; at least one protective sealing barrier layer is applied on the reflective trap layer such that the reflective trap layer and the protective seal barrier layer are in surface contact with each other; and at least one ultraviolet radiation blocking layer is applied thereto Supporting the second surface of the substrate such that the support substrate and the ultraviolet radiation blocking layer are in surface contact with each other; and applying at least one scratch-resistant layer to the ultraviolet radiation blocking layer such that the scratch-resistant layer and the ultraviolet radiation blocking layer face each other Contacting; and applying at least one environmental protection layer to the scratch-resistant layer such that the environmental protection layer and the scratch-resistant layer are in surface contact with each other.

材料-碳層與資料層相鄰Material-carbon layer adjacent to the data layer

本發明之一實施例包含一適合歸檔用之光學資訊媒體。該等材料與製造程序係設計成可以是非常耐用的且不會受到老化變質作用之影響至一實質程度。類似地,資訊寫入過程是要永久的且不會受到老化變質作用之影響至一實質程度。該媒體包含至少一資料層60,至少一碳層65,及至少一支持基板10,雖然目前較佳的是該碳層與該資料層為面接觸,但至少一中間層可設置在它們之間。One embodiment of the invention includes an optical information medium suitable for archiving. These materials and manufacturing procedures are designed to be very durable and not subject to aging deterioration to a substantial extent. Similarly, the information writing process is permanent and is not affected by aging deterioration to a substantial extent. The medium comprises at least one data layer 60, at least one carbon layer 65, and at least one support substrate 10. Although it is presently preferred that the carbon layer is in surface contact with the data layer, at least one intermediate layer may be disposed between them. .

該碳層之存在使該光學資訊媒體具有多數有利性質。該碳層可作為一熱容器(thermal capacitor),以便熱傳送遠離該資料層。這在使用高功率雷射將資料寫入該資料層中時特別有用,高功率雷射會產生多數高局部熱暈(heat bloom),如果該等熱暈未散逸,則會破壞或劣化相鄰資料。在某些極端之例子中,該等熱暈會破壞在後續讀取步驟中用於資料循跡之基板溝槽。該碳層亦可作為一滲透障壁,防止該資料層暴露於氧、水蒸氣、及會氧化或劣化該資料層材料之其他藥劑。一碳層可比以往使用在介電層中之材料更具撓性,且該撓性可以藉加入氣體或其他材料來“調整”。該撓性賦與較少應力、可減少或避免破裂、且可減少或避免該碳層與相鄰層之不必要分離。碳亦是一具有高熔點之耐高溫材料,且亦有助於抵抗當使用高功率雷射將資料寫入一資料層時會產生之瞬間高溫。The presence of the carbon layer provides the optical information medium with a number of advantageous properties. The carbon layer acts as a thermal capacitor for heat transfer away from the data layer. This is especially useful when using high power lasers to write data into the data layer. High power lasers produce most high local heat blooms that can damage or degrade neighbors if they are not dissipated. data. In some extreme cases, such thermal halos can destroy substrate trenches used for data tracking in subsequent reading steps. The carbon layer can also act as a barrier to the substrate, preventing exposure of the data layer to oxygen, water vapor, and other agents that can oxidize or degrade the material of the data layer. A carbon layer can be more flexible than materials previously used in dielectric layers, and the flexibility can be "tuned" by the addition of gases or other materials. This flexibility imparts less stress, reduces or avoids cracking, and reduces or avoids unnecessary separation of the carbon layer from adjacent layers. Carbon is also a high temperature resistant material with a high melting point and also helps to resist the transient high temperatures that can occur when a high power laser is used to write data into a data layer.

該資料層可大致是適合利用一如光碟機等適合裝置寫入資料及讀取資料之任何材料或多數材料。該碳層可大致與任何資料層一起使用以形成本發明之各種實施例,使用在資料層中之材料的例子包括有機染料、金屬、金屬合金、金屬氧化物、玻璃、及陶瓷。The data layer can be generally any material or a plurality of materials suitable for writing data and reading data using a suitable device such as an optical disk drive. The carbon layer can be used with substantially any of the data layers to form various embodiments of the invention, examples of materials used in the data layer include organic dyes, metals, metal alloys, metal oxides, glass, and ceramics.

該資料層可大致為任何厚度。厚度下限值之一例子可為大約2nm,厚度上限值之一例子是大約250nm。厚度例子是大約2nm、大約4nm、大約6nm、大約8nm、大約10nm、大約12nm、大約14nm、大約16nm、大約18nm、大約20nm、大約22nm、大約24nm、大約25nm、大約26nm、大約28nm、大約30nm、大約32nm、大約34nm、大約35nm、大約36nm、大約38nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、大約110nm、大約120nm、大約130nm、大約140nm、大約150nm、大約160nm、大約170nm、大約180nm、大約190nm、大約200nm、大約210nm、大約220nm、大約230nm、大約240nm、大約250nm、及在這些值之任兩者間的範圍。The data layer can be of any thickness. An example of a lower limit of the thickness may be about 2 nm, and an example of the upper limit of the thickness is about 250 nm. Examples of thickness are about 2 nm, about 4 nm, about 6 nm, about 8 nm, about 10 nm, about 12 nm, about 14 nm, about 16 nm, about 18 nm, about 20 nm, about 22 nm, about 24 nm, about 25 nm, about 26 nm, about 28 nm, about 30 nm. , about 32 nm, about 34 nm, about 35 nm, about 36 nm, about 38 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, about 100 nm, about 110 nm, about 120 nm, about 130 nm, about 140 nm, about 150 nm, about 160 nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, about 210 nm, about 220 nm, about 230 nm, about 240 nm, about 250 nm, and a range between any of these values.

該碳層可包含元素碳(C)、主要由元素碳(C)構成、或由元素碳(C)構成。元素碳之例子包括非晶碳、石墨非晶碳、四面體非晶碳、似鑽石非晶碳、似聚合物非晶碳、似玻璃碳、似鑽石碳、及碳黑。相對於其他缺少該碳層之相同光學資訊媒體,使用一碳層可在相鄰層之間提供較佳之黏著性。The carbon layer may comprise elemental carbon (C), consist essentially of elemental carbon (C), or consist of elemental carbon (C). Examples of elemental carbon include amorphous carbon, graphite amorphous carbon, tetrahedral amorphous carbon, diamond-like amorphous carbon, polymer-like amorphous carbon, glassy carbon, diamond-like carbon, and carbon black. The use of a carbon layer provides better adhesion between adjacent layers than other optical information media lacking the carbon layer.

如果該光學資訊媒體包含一層以上之碳層,則它們可各自是相同或不同的。If the optical information medium contains more than one layer of carbon, they may each be the same or different.

該碳層可缺少一被注入氣體。或者,該碳層可更包含至少一被注入氣體。該用語“被注入”表示至少一氣體被共價鍵結、捕捉或吸收至該碳材料層中或上。該氣體可缺少氧原子或含有氧原子,一缺少氧原子之氣體之例子包括分子氫(H2 )、分子氮(N2 )、氦(He)、氬(Ar)、氖(Ne)、氪(Kr)、氙(Xe)、氯(Cl2 )、及氟(F2 )。一含有至少一氧原子之氣體之例子包括一氧化碳(CO)、二氧化碳(CO2 )、分子氧(O2 )、臭氧(O3 )、氮氧化物(NOx )、及硫氧化物(SOx )。一特定實施例可包括二氧化碳(CO2 )作為一被注入氣體,另一特定實施例可包括分子氫(H2 )作為一被注入氣體。或者,可使用如甲烷、乙烷、丙烷或乙炔等各種碳氫化合物將氫加入該碳層。The carbon layer may lack an injected gas. Alternatively, the carbon layer may further comprise at least one injected gas. The phrase "injected" means that at least one gas is covalently bonded, captured or absorbed into or onto the layer of carbon material. The gas may lack an oxygen atom or contain an oxygen atom, and examples of a gas lacking an oxygen atom include molecular hydrogen (H 2 ), molecular nitrogen (N 2 ), helium (He), argon (Ar), neon (Ne), and neon. (Kr), hydrazine (Xe), chlorine (Cl 2 ), and fluorine (F 2 ). Examples of a gas containing at least one oxygen atom include carbon monoxide (CO), carbon dioxide (CO 2 ), molecular oxygen (O 2 ), ozone (O 3 ), nitrogen oxides (NO x ), and sulfur oxides (SO x ). ). A particular embodiment may include carbon dioxide (CO 2 ) as an injected gas, and another specific embodiment may include molecular hydrogen (H 2 ) as an injected gas. Alternatively, hydrogen may be added to the carbon layer using various hydrocarbons such as methane, ethane, propane or acetylene.

或者,該碳層可更包含另一固體,例如,鋁。Alternatively, the carbon layer may further comprise another solid, such as aluminum.

該碳層可大致為任何厚度。厚度下限值可為大約一單層碳,另一厚度下限值可為大約10nm,一厚度上限值可為大約200nm。厚度例子包括1nm、大約2nm、大約3nm、大約4nm、大約5nm、大約10nm、大約15nm、大約20nm、大約30nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、大約110nm、大約120nm、大約130nm、大約140nm、大約150nm、大約160nm、大約170nm、大約180nm、大約190nm、大約200nm、及在這些值之任兩者間的範圍。The carbon layer can be substantially any thickness. The lower thickness limit may be about one single layer of carbon, the other lower thickness limit may be about 10 nm, and the upper thickness limit may be about 200 nm. Examples of thickness include 1 nm, about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 10 nm, about 15 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, about 100 nm, Approximately 110 nm, about 120 nm, about 130 nm, about 140 nm, about 150 nm, about 160 nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, and a range between any of these values.

該碳層最好與在該光學資訊媒體中之相鄰層是不互溶的,該碳層最好黏著於在該光學資訊媒體中之相鄰層上。該碳層最好實質上沒有應力,以有助於該光學資訊媒體之平坦性及該媒體之長期黏合性。Preferably, the carbon layer is immiscible with an adjacent layer in the optical information medium, the carbon layer preferably being adhered to an adjacent layer in the optical information medium. Preferably, the carbon layer is substantially free of stress to aid in the flatness of the optical information medium and the long-term adhesion of the medium.

該光學資訊媒體可包含一第一支持基板及一第二支持基板。該第一支持基板及第二支持基板可以由相同材料製成,或可由不同材料製成。該第一支持基板與該第二支持基板通常被定向成使得它們形成該光學資訊媒體之外部兩層(即,由一橫截面來看時為第一與最後一層),這在一DVD型格式中特別理想。The optical information medium can include a first support substrate and a second support substrate. The first support substrate and the second support substrate may be made of the same material or may be made of different materials. The first support substrate and the second support substrate are generally oriented such that they form two outer layers of the optical information medium (ie, the first and last layers when viewed in a cross section), which is in a DVD format Especially ideal.

該支持基板可面接觸該資料層或該碳層,或者,可有在該支持基板與該資料層或該支持基板與該碳層之間的至少一中間層70。這些層之結構係圖示於第2a-2d圖中。The support substrate may be in surface contact with the data layer or the carbon layer, or at least one intermediate layer 70 between the support substrate and the data layer or the support substrate and the carbon layer. The structure of these layers is shown in Figures 2a-2d.

在第2a圖所示之實施例中,一橫截面將先與該支持基板,然後與該資料層,再與該碳層相交。第2b圖顯示該資料層與該碳層相對該支持基板之另一種方位,在這圖中,一橫截面將先與該支持基板,然後與該碳層,再與該資料層相交。在第2c圖所示之實施例中,一橫截面將先與該支持基板,接著與該至少一中間層,然後與該資料層,再與該碳層相交。第2d圖顯示該資料層與該碳層相對該支持基板之另一種方位,在這圖中,一橫截面將先與該支持基板,接著與該至少一中間層,然後與該碳層,再與該資料層相交。In the embodiment illustrated in Figure 2a, a cross section will first intersect the support substrate, then the data layer, and the carbon layer. Figure 2b shows another orientation of the data layer and the carbon layer relative to the support substrate. In this figure, a cross section will first intersect the support substrate, then the carbon layer, and the data layer. In the embodiment illustrated in Figure 2c, a cross section will first be associated with the support substrate, then with the at least one intermediate layer, then with the data layer, and with the carbon layer. Figure 2d shows another orientation of the data layer and the carbon layer relative to the support substrate. In this figure, a cross section will be first with the support substrate, then with the at least one intermediate layer, and then with the carbon layer, Intersect with the data layer.

一中間層之例子是一熱障壁層。一熱障壁層可保護該基板不受在將資料寫入該金屬材料層時所產生之熱的影響,熱障壁層之例子包括玻璃、陶瓷、氮化物及金屬氧化物。特定例子包括矽石(SiO2 )、二氧化矽-硫化鋅(SiO2 ZnS)、氮化矽(SiN)、碳、氧化鋁、矽、氮化矽、氮化硼、鈦氧化物(TiOx )、及鉭氧化物(TaOx )。如果可以被沈積在一具有適當黏著性之薄膜中,亦可使用其他耐高溫材料。或者,由於相較於一介電層,其具有較佳熱傳導性,一金屬層可被用來作為一熱障壁層。使用一金屬層將容許熱快速地傳導遠離一資料位置,而不是隨著時間使熱逐漸被吸收與散逸。An example of an intermediate layer is a thermal barrier layer. A thermal barrier layer protects the substrate from the heat generated when data is written into the layer of metallic material. Examples of thermal barrier layers include glass, ceramics, nitrides, and metal oxides. Specific examples include vermiculite (SiO 2 ), cerium oxide-zinc sulfide (SiO 2 ZnS), tantalum nitride (SiN), carbon, aluminum oxide, tantalum, tantalum nitride, boron nitride, titanium oxide (TiO x ), and bismuth oxide (TaO x ). Other refractory materials can also be used if they can be deposited in a film with appropriate adhesion. Alternatively, since it has better thermal conductivity than a dielectric layer, a metal layer can be used as a thermal barrier layer. The use of a metal layer will allow heat to be quickly conducted away from a data location rather than gradually absorbing and dissipating heat over time.

該資料層可被“夾合”在兩碳層之間。此時,該資料層面接觸第一碳層75與第二碳層80兩者。如此之一例子係顯示於第3a圖中,在這圖中,一橫截面將先與該支持基板,接著該第一碳層,然後與該資料層,再與該第二碳層相交。The data layer can be "sandwiched" between the two carbon layers. At this time, the data layer contacts both the first carbon layer 75 and the second carbon layer 80. One such example is shown in Figure 3a, in which a cross section will first be associated with the support substrate, then the first carbon layer, then the data layer, and the second carbon layer.

另一實施例係顯示於第3b圖中,在這圖中,一橫截面將先與該支持基板,接著該至少一中間層,再與該第一碳層,然後與該資料層,再與該第二碳層相交。Another embodiment is shown in FIG. 3b, in which a cross section will be first with the support substrate, then the at least one intermediate layer, the first carbon layer, and then the data layer, and then The second carbon layers intersect.

包含一第一支持基板與一第二支持基板之其他實施例係顯示在第3c與3d圖中。在第3c圖中,一橫截面將先與該第一支持基板85,接著與該資料層60,然後與該碳層65,再與該第二支持基板90相交。在第3d圖中,一橫截面將先與該第一支持基板85,接著與該第一碳層75,再與該資料層60,然後與該第二碳層80,再與該第二支持基板90相交。Other embodiments including a first support substrate and a second support substrate are shown in Figures 3c and 3d. In Fig. 3c, a cross section will first intersect the first support substrate 85, then the data layer 60, then the carbon layer 65, and the second support substrate 90. In FIG. 3d, a cross section will be first with the first support substrate 85, then with the first carbon layer 75, with the data layer 60, then with the second carbon layer 80, and with the second support. The substrates 90 intersect.

包含多數支持基板與多數中間層之另外的實施例係顯示在第3e圖中。在第3e圖中,一橫截面將先與該第一支持基板85,接著與一或多個第一中間層95,再與該第一碳層75,然後與該資料層60,再與該第二碳層80,接著與一或多個第二中間層100,再與該第二支持基板90相交。Further embodiments comprising a plurality of support substrates and a plurality of intermediate layers are shown in Figure 3e. In FIG. 3e, a cross section will be first with the first support substrate 85, then with one or more first intermediate layers 95, with the first carbon layer 75, and then with the data layer 60, The second carbon layer 80, and then the one or more second intermediate layers 100, intersects the second support substrate 90.

該光學資訊媒體可更包含另外的層,例如至少一反射層、至少一外部保護層、至少一散熱層、至少一光調整層、或至少一黏著層。亦可再加入其他層以藉增加光徑長度調整該光學資訊媒體之光學特性,以利用建設性或破壞性干涉來調制該結構之反射率。The optical information medium may further comprise another layer, such as at least one reflective layer, at least one outer protective layer, at least one heat dissipation layer, at least one light adjustment layer, or at least one adhesive layer. Other layers may be added to adjust the optical properties of the optical information medium by increasing the optical path length to modulate the reflectivity of the structure using constructive or destructive interference.

該資料層可更包含一或多個已寫入資料之位置,該等位置具有與尚未寫入資料之其他位置不同之可偵測差異。The data layer may further include one or more locations where data has been written, the locations having detectable differences that are different from other locations where the data has not been written.

製備方法-碳層介電體Preparation Method - Carbon Layer Dielectric

本發明之另外的實施例係有關於製備一光學資訊媒體之方法。A further embodiment of the invention relates to a method of preparing an optical information medium.

各種層可依據在該光學資訊媒體產品中所需之特殊配置以各種次序施加,該等層可全部施加在該支持基板之一側上,產生一在一外面上具有該支持基板之最終產品。或者,該等層可以施加在該支持基板之兩側上,產生一具有該支持基板的最終產品,且該支持基板設置成使它不是該最終產品之一外面。雖然目前較佳的是該碳層與該資料層係面接觸,但是至少一中間層可設置在它們之間。The various layers can be applied in various orders depending on the particular configuration desired in the optical information media product, and the layers can all be applied to one side of the support substrate to produce a final product having the support substrate on the outside. Alternatively, the layers may be applied on both sides of the support substrate to produce a final product having the support substrate, and the support substrate is disposed such that it is not outside of one of the final products. Although it is presently preferred that the carbon layer is in surface contact with the data layer, at least one intermediate layer may be disposed therebetween.

在一實施例中,該方法可包含提供一支持基板;施加一資料層,使得該資料層與該支持基板面接觸;及施加一碳層,使得該碳層與該資料層面接觸。實施這方法可產生一如顯示於第2a圖中者之光學資訊媒體。In one embodiment, the method can include providing a support substrate; applying a data layer such that the data layer is in surface contact with the support substrate; and applying a carbon layer such that the carbon layer contacts the data layer. Implementing this method produces an optical information medium as shown in Figure 2a.

在另一實施例中,該方法可包含提供一支持基板;施加一碳層,使得該碳層與該支持基板面接觸;及施加一資料層,使得該資料層與該碳層面接觸。實施這方法可產生一如顯示於第2b圖中者之光學資訊媒體。In another embodiment, the method can include providing a support substrate; applying a carbon layer such that the carbon layer is in surface contact with the support substrate; and applying a data layer such that the data layer is in contact with the carbon layer. Implementing this method produces an optical information medium as shown in Figure 2b.

在另一實施例中,該方法可包含提供一支持基板;施加至少一中間層,使得該中間層與該支持基板面接觸;施加一資料層,使得該資料層與該中間層面接觸;及施加一碳層,使得該碳層與該資料層面接觸。實施這方法可產生一如顯示於第2c圖中者之光學資訊媒體。In another embodiment, the method can include providing a support substrate; applying at least one intermediate layer such that the intermediate layer is in surface contact with the support substrate; applying a data layer such that the data layer is in contact with the intermediate layer; and applying A carbon layer is placed in contact with the data layer. Implementing this method produces an optical information medium as shown in Figure 2c.

在另一實施例中,該方法可包含提供一支持基板;施加至少一中間層,使得該中間層與該支持基板面接觸;施加一碳層,使得該碳層與該中間層面接觸;及施加一資料層,使得該資料層與該碳層面接觸。實施這方法可產生一如顯示於第2d圖中者之光學資訊媒體。In another embodiment, the method can include providing a support substrate; applying at least one intermediate layer such that the intermediate layer is in surface contact with the support substrate; applying a carbon layer such that the carbon layer is in contact with the intermediate layer; and applying A data layer that brings the data layer into contact with the carbon layer. Implementing this method produces an optical information medium as shown in Figure 2d.

在另一實施例中,該方法可包含提供一支持基板;施加一第一碳層,使得該第一碳層與該支持基板面接觸;施加一資料層,使得該資料層與該第一碳層面接觸;及施加一第二碳層,使得該第二碳層與該資料層面接觸。實施這方法可產生一如顯示於第3a圖中者之光學資訊媒體。In another embodiment, the method can include providing a support substrate; applying a first carbon layer such that the first carbon layer is in surface contact with the support substrate; applying a data layer such that the data layer and the first carbon Layer contact; and applying a second carbon layer such that the second carbon layer is in contact with the data layer. Implementing this method produces an optical information medium as shown in Figure 3a.

在又一實施例中,該方法可包含提供一支持基板;施加至少一中間層,使得該中間層與該支持基板面接觸;施加一第一碳層,使得該第一碳層與該中間層接觸;施加一資料層,使得該資料層與該第一碳層面接觸;及施加一第二碳層,使得該第二碳層與該資料層面接觸。實施這方法可產生一如顯示於第3b圖中者之光學資訊媒體。In still another embodiment, the method can include providing a support substrate; applying at least one intermediate layer such that the intermediate layer is in surface contact with the support substrate; applying a first carbon layer such that the first carbon layer and the intermediate layer Contacting; applying a data layer such that the data layer is in contact with the first carbon layer; and applying a second carbon layer such that the second carbon layer is in contact with the data layer. Implementing this method produces an optical information medium as shown in Figure 3b.

在一實施例中,該方法可包含提供一第一支持基板;施加一資料層,使得該資料層與該第一支持基板面接觸;施加一碳層,使得該碳層與該資料層面接觸;及施加一第二支持基板,使得該第二支持基板與該碳層面接觸。實施這方法可產生一如顯示於第3c圖中者之光學資訊媒體。In an embodiment, the method may include: providing a first support substrate; applying a data layer such that the data layer is in surface contact with the first support substrate; applying a carbon layer such that the carbon layer is in contact with the data layer; And applying a second support substrate such that the second support substrate is in contact with the carbon layer. Implementing this method produces an optical information medium as shown in Figure 3c.

在另一實施例中,該方法可包含提供一第一支持基板;施加一第一碳層,使得該第一碳層與該第一支持基板面接觸;施加一資料層,使得該資料層與該第一碳層面接觸;施加一第二碳層,使得該第二碳層與該資料層面接觸;及施加一第二支持基板,使得該第二支持基板與該第二碳層面接觸。實施這方法可產生一如顯示於第3d圖中者之光學資訊媒體。In another embodiment, the method can include providing a first support substrate; applying a first carbon layer such that the first carbon layer is in surface contact with the first support substrate; applying a data layer such that the data layer The first carbon layer contacts; applying a second carbon layer such that the second carbon layer contacts the data layer; and applying a second support substrate such that the second support substrate is in contact with the second carbon layer. Implementing this method produces an optical information medium as shown in Figure 3d.

在又一實施例中,該方法可包含提供一第一支持基板;施加至少一第一中間層,使得該第一中間層與該第一支持基板面接觸;施加一第一碳層,使得該第一碳層與該第一中間層面接觸;施加一資料層,使得該資料層與該第一碳層面接觸;施加一第二碳層,使得該第二碳層與該資料層面接觸;施加至少一第二中間層,使得該第二中間層與該第二碳層面接觸;及施加一第二支持基板,使得該第二支持基板與該第二碳層面接觸。實施這方法可產生一如顯示於第3e圖中者之光學資訊媒體。In still another embodiment, the method can include providing a first support substrate; applying at least one first intermediate layer such that the first intermediate layer is in surface contact with the first support substrate; applying a first carbon layer such that the a first carbon layer is in contact with the first intermediate layer; a data layer is applied such that the data layer is in contact with the first carbon layer; a second carbon layer is applied such that the second carbon layer is in contact with the data layer; a second intermediate layer, the second intermediate layer is in contact with the second carbon layer; and a second supporting substrate is applied such that the second supporting substrate is in contact with the second carbon layer. Implementing this method produces an optical information medium as shown in Figure 3e.

該施加步驟可包括物理蒸氣沈積(例如一標靶之濺鍍、反應性濺鍍、電子束蒸發、及雷射剝蝕)、或化學蒸氣沈積。濺鍍可使用通常具有一單一室及一或多個標靶之實驗室級設備(例如一來自Kurt J. Lesker Company(賓州匹茲堡)之PVD75設備)來實施,或可使用具有多數室及多數標靶之工業級設備(例如一來自Oerlikon Systems(Pfffikon,Switzerland)之Sprinter設備)來實施。The applying step can include physical vapor deposition (eg, sputtering of a target, reactive sputtering, electron beam evaporation, and laser ablation), or chemical vapor deposition. Sputtering can be performed using laboratory-grade equipment typically having a single chamber and one or more targets (eg, a PVD75 device from Kurt J. Lesker Company (Pittsburgh, PA)), or can be used with most rooms and majority Targeted industrial grade equipment (eg one from Oerlikon Systems (Pf Ffikon, Switzerland) Sprinter device) to implement.

材料-碳層與金屬資料層總成Material-carbon layer and metal data layer assembly

本發明之一實施例包含一適合歸檔用之光學資訊媒體。該等材料與製造程序係設計成可以是非常耐用的且不會受到老化變質作用之影響至一實質程度。類似地,資訊寫入過程是要永久的且不會受到老化變質作用之影響至一實質程度。該媒體包含至少一金屬材料層105,至少一碳材料層65,及至少一支持基板10。One embodiment of the invention includes an optical information medium suitable for archiving. These materials and manufacturing procedures are designed to be very durable and not subject to aging deterioration to a substantial extent. Similarly, the information writing process is permanent and is not affected by aging deterioration to a substantial extent. The medium comprises at least one metal material layer 105, at least one carbon material layer 65, and at least one support substrate 10.

該金屬材料層包含至少一金屬或金屬合金、主要由至少一金屬或金屬構成、或由至少一金屬或金屬構成。該金屬材料層可包含兩種或兩種以上之金屬或金屬合金的混合物,金屬或金屬合金之例子包括碲、碲合金、硒、硒合金、砷、砷合金、錫、錫合金、鉍、鉍合金、銻、銻合金、鉛、及鉛合金。碲合金之例子包括Tex Se100-x 、Tex Se100-x (其中X小於或等於95)、Te86 Se14 、Te79 Se21 、Tex Sb100-x 、Tex Sb100-x (其中X小於或等於95)、Tex Sey Sbz 、Tex Sey Sbz (其中X+Y+Z=100)、Tex Sey Sbz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sb5 、Te72.5 Se20 Sb7.5 、Tex Sey Inz 、Tex Sey Inz (其中X+Y+Z=100)、Tex Sey Inz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 In5 、Te72.5 Se20 In7.5 、Tex Sey Pbz 、Tex Sey Pbz (其中X+Y+Z=100)、Tex Sey Pbz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Pb5 、Te72.5 Se20 Pb7.5 、Tex Sey Snz 、Tex Sey Snz (其中X+Y+Z=100)、Tex Sey Snz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sn5 、Te72.5 Se20 Sn7.5 、Tex Sey Biz 、Tex Sey Biz (其中X+Y+Z=100)、Tex Sey Biz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Bi5 、Te72.5 Se20 Bi7.5 、TeGeAs、TeGeSbS、TeOx Ge、TeOx Sn、Pb-Te-Se、Pb-Te-Sb、As-Te、及Ge-Te。其他合金之例子包括As-Se、Ge-Se、GeS、SnS、Sb-S、Bix Sb100-x 、Bix Sb100-x (其中X小於或等於95)。合金之其他例子包括GeS、As2 S3 、SnS、Sb2 S3 、Sb20 S80 、GeSe、As2 Se3 、SnSe、Sb2 Se3 、Bi2 Se3 、GeTe、Ge10 Te90 、AS2 Te3 、SnTe、Sb2 Te3 、PbTe、Bi2 Te3 、As10 Te90 、As32 Te68 、InTe3 、In2 S3 、CdTe、及InSe3 。另外之金屬與合金包括鎳(Ni)、鉻(Cr)、鈦(Ti)、不鏽鋼、金(Au)、鉑(Pt)、鈀(Pd)、蒙乃爾(Monel)(通常使用在船舶應用中之一鎳、銅與鐵的合金)、矽(Si)、AuSi、CuNi、及NiCr。目前較佳之金屬材料層包含鉻、碲、或碲合金。The layer of metallic material comprises at least one metal or metal alloy, consists essentially of at least one metal or metal, or consists of at least one metal or metal. The metal material layer may comprise a mixture of two or more metals or metal alloys, examples of which include niobium, tantalum alloy, selenium, selenium alloy, arsenic, arsenic alloy, tin, tin alloy, niobium, tantalum Alloys, niobium, tantalum alloys, lead, and lead alloys. Examples of the niobium alloy include Te x Se 100-x , Te x Se 100-x (where X is less than or equal to 95), Te 86 Se 14 , Te 79 Se 21 , Te x Sb 100-x , Te x Sb 100-x (where X is less than or equal to 95), Te x Se y Sb z , Te x Se y Sb z (where X+Y+Z=100), Te x Se y Sb z (where X+Y+Z=100, Y Is 10-30, and Z is 5-20), Te 75 Se 20 Sb 5 , Te 72.5 Se 20 Sb 7.5 , Te x Se y In z , Te x Se y In z (where X+Y+Z=100) Te x Se y In z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 In 5 , Te 72.5 Se 20 In 7.5 , Te x Se y Pb z , Te x Se y Pb z (where X+Y+Z=100), Te x Se y Pb z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Pb 5 , Te 72.5 Se 20 Pb 7.5 , Te x Se y Sn z , Te x Se y Sn z (where X+Y+Z=100), Te x Se y Sn z (where X+Y+Z =100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Sn 5 , Te 72.5 Se 20 Sn 7.5 , Te x Se y Bi z , Te x Se y Bi z (where X+Y+ Z=100), Te x Se y Bi z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Bi 5 , Te 72.5 Se 20 Bi 7.5 , TeGeAs , TeGeSbS, TeO x Ge, TeO x Sn, Pb-Te-Se, Pb-Te-Sb, As-Te, and Ge-Te. Examples of other alloys include As-Se, Ge-Se, GeS, SnS, Sb-S, Bi x Sb 100-x , Bi x Sb 100-x (where X is less than or equal to 95). Other examples of the alloy include GeS, As 2 S 3 , SnS, Sb 2 S 3 , Sb 20 S 80 , GeSe, As 2 Se 3 , SnSe, Sb 2 Se 3 , Bi 2 Se 3 , GeTe, Ge 10 Te 90 , AS 2 Te 3 , SnTe, Sb 2 Te 3 , PbTe, Bi 2 Te 3 , As 10 Te 90 , As 32 Te 68 , InTe 3 , In 2 S 3 , CdTe, and InSe 3 . Other metals and alloys include nickel (Ni), chromium (Cr), titanium (Ti), stainless steel, gold (Au), platinum (Pt), palladium (Pd), Monel (usually used in marine applications) One of nickel, an alloy of copper and iron), bismuth (Si), AuSi, CuNi, and NiCr. Currently preferred layers of metallic materials comprise chromium, niobium, or tantalum alloys.

該金屬材料層可大致為任何厚度。厚度下限值之一例子可為大約2nm,厚度上限值之一例子是大約250nm。厚度例子是大約2nm、大約4nm、大約6nm、大約8nm、大約10nm、大約12nm、大約14nm、大約16nm、大約18nm、大約20nm、大約30nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、大約110nm、大約120nm、大約130nm、大約140nm、大約150nm、大約160nm、大約170nm、大約180nm、大約190nm、大約200nm、大約210nm、大約220nm、大約230nm、大約240nm、大約250nm、及在這些值之任兩者間的範圍。The layer of metallic material can be of substantially any thickness. An example of a lower limit of the thickness may be about 2 nm, and an example of the upper limit of the thickness is about 250 nm. Examples of thickness are about 2 nm, about 4 nm, about 6 nm, about 8 nm, about 10 nm, about 12 nm, about 14 nm, about 16 nm, about 18 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm. , about 90 nm, about 100 nm, about 110 nm, about 120 nm, about 130 nm, about 140 nm, about 150 nm, about 160 nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, about 210 nm, about 220 nm, about 230 nm, about 240 nm, about 250 nm, and the range between any of these values.

該碳材料層可包含至少一碳化合物、主要由至少一碳化合物構成、或由至少一碳化合物構成。碳化合物之例子包括非晶碳、似玻璃碳、似鑽石碳、及碳黑。The carbon material layer may comprise at least one carbon compound, consist essentially of at least one carbon compound, or consist of at least one carbon compound. Examples of the carbon compound include amorphous carbon, glassy carbon, diamond-like carbon, and carbon black.

如果該光學資訊媒體包含一層以上之碳材料層,則它們可各自是相同或不同的。If the optical information medium contains more than one layer of carbon material, they may each be the same or different.

該碳材料層可缺少一被注入氣體。或者,該碳材料層可更包含至少一被注入氣體。該用語“被注入”表示至少一氣體被共價鍵結、捕捉或吸收至該碳材料層中或上。該氣體可缺少氧原子或含有氧原子,一缺少氧原子之氣體之例子包括分子氫(H2 )、分子氮(N2 )、氦(He)、氬(Ar)、氖(Ne)、氪(Kr)、氙(Xe)、氯(Cl2 )、及氟(F2 )。一含有至少一氧原子之氣體之例子包括一氧化碳(CO)、二氧化碳(CO2 )、分子氧(O2 )、臭氧(O3 )、氮氧化物(NOx )、及硫氧化物(SOx )。一特定實施例可包括二氧化碳(CO2 )作為一被注入氣體,另一特定實施例可包括分子氫(H2 )作為一被注入氣體。The carbon material layer may lack an injected gas. Alternatively, the carbon material layer may further comprise at least one injected gas. The phrase "injected" means that at least one gas is covalently bonded, captured or absorbed into or onto the layer of carbon material. The gas may lack an oxygen atom or contain an oxygen atom, and examples of a gas lacking an oxygen atom include molecular hydrogen (H 2 ), molecular nitrogen (N 2 ), helium (He), argon (Ar), neon (Ne), and neon. (Kr), hydrazine (Xe), chlorine (Cl 2 ), and fluorine (F 2 ). Examples of a gas containing at least one oxygen atom include carbon monoxide (CO), carbon dioxide (CO 2 ), molecular oxygen (O 2 ), ozone (O 3 ), nitrogen oxides (NO x ), and sulfur oxides (SO x ). ). A particular embodiment may include carbon dioxide (CO 2 ) as an injected gas, and another specific embodiment may include molecular hydrogen (H 2 ) as an injected gas.

該碳材料層可大致為任何厚度。厚度下限值可為大約一單層碳,另一厚度下限值可為大約10nm,一厚度上限值可為大約200nm。厚度例子包括1nm、大約2nm、大約3nm、大約4nm、大約5nm、大約10nm、大約15nm、大約20nm、大約30nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、大約110nm、大約120nm、大約130nm、大約140nm、大約150nm、大約160nm、大約170nm、大約180nm、大約190nm、大約200nm、及在這些值之任兩者間的範圍。一目前較佳厚度是第一碳層大約19nm且一第二碳層大約13nm。The carbon material layer can be substantially any thickness. The lower thickness limit may be about one single layer of carbon, the other lower thickness limit may be about 10 nm, and the upper thickness limit may be about 200 nm. Examples of thickness include 1 nm, about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 10 nm, about 15 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, about 100 nm, Approximately 110 nm, about 120 nm, about 130 nm, about 140 nm, about 150 nm, about 160 nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, and a range between any of these values. A currently preferred thickness is about 19 nm for the first carbon layer and about 13 nm for the second carbon layer.

該光學資訊媒體可包含一第一支持基板及一第二支持基板。該第一支持基板及第二支持基板可以由相同材料製成,或可由不同材料製成。該第一支持基板與該第二支持基板通常被定向成使得它們形成該光學資訊媒體之外部兩層(即,由一橫截面來看時為第一與最後一層),這在一DVD型格式中特別理想。The optical information medium can include a first support substrate and a second support substrate. The first support substrate and the second support substrate may be made of the same material or may be made of different materials. The first support substrate and the second support substrate are generally oriented such that they form two outer layers of the optical information medium (ie, the first and last layers when viewed in a cross section), which is in a DVD format Especially ideal.

該支持基板可面接觸該資料層或該碳層,或者,可有在它們之間的至少一中間層該金屬材料層可面接觸該碳材料層。這些層之結構係圖示於第4a-4d圖中。在第4a圖所示之實施例中,一橫截面將先與該支持基板10,然後與該金屬材料層105,再與該碳材料層65相交。第4b圖顯示該金屬材料層與該碳材料層相對該支持基板之另一種方位,在這圖中,一橫截面將先與該支持基板10,然後與該碳材料層65,再與該金屬材料層105相交。在第4c圖所示之實施例中,一橫截面將先與該支持基板10,接著與該至少一中間層70,然後與該金屬材料層105,再與該碳材料層65相交。The support substrate may be in surface contact with the data layer or the carbon layer, or there may be at least one intermediate layer between the metal material layer that may be in surface contact with the carbon material layer. The structure of these layers is shown in Figures 4a-4d. In the embodiment shown in Fig. 4a, a cross section will first intersect the support substrate 10, then the metal material layer 105, and the carbon material layer 65. Figure 4b shows another orientation of the metal material layer and the carbon material layer relative to the support substrate. In this figure, a cross section will be first with the support substrate 10, then with the carbon material layer 65, and with the metal. The material layers 105 intersect. In the embodiment illustrated in Figure 4c, a cross section will first intersect the support substrate 10, then the at least one intermediate layer 70, and then the metal material layer 105, and the carbon material layer 65.

一中間層之例子是一熱障壁層。一熱障壁層可保護該基板不受在將資料寫入該金屬材料層時所產生之熱的影響,熱障壁層之例子包括矽石(SiO2 )或碳。An example of an intermediate layer is a thermal barrier layer. A thermal barrier layer protects the substrate from the heat generated when writing data into the layer of metallic material. Examples of thermal barrier layers include vermiculite (SiO 2 ) or carbon.

該金屬材料層可被“夾合”在兩碳材料層之間。此時,該金屬材料層面接觸第一碳材料層與第二碳材料層兩者。如此之一例子係顯示於第4d圖中,在這圖中,一橫截面將先與該第一支持基板85,再與該第一碳材料層110,接著與金屬材料層105,然後與該第二碳材料層115,再與該第二支持基板90相交。The layer of metallic material can be "sandwiched" between the layers of two carbon materials. At this time, the metal material layer contacts both the first carbon material layer and the second carbon material layer. One such example is shown in Figure 4d, in which a cross section will be first with the first support substrate 85, with the first carbon material layer 110, then with the metal material layer 105, and then with The second carbon material layer 115 is further intersected with the second support substrate 90.

另一個簡化“夾合”構形可包含至少一支持基板10、一第一碳材料層110、一金屬材料層105、及一第二碳材料層115。該支持基板可直接接觸該第一碳材料層,或在該支持基板與該第一碳材料層之間可有至少一中間層。該第一碳材料層可與該金屬材料層面接觸,且該金屬材料層可該第二碳材料層面接觸。一橫截面將先與該支持基板、再與該第一碳材料層、然後與該金屬材料層、再與該第二碳材料層相交。Another simplified "clip" configuration can include at least one support substrate 10, a first carbon material layer 110, a metal material layer 105, and a second carbon material layer 115. The support substrate may directly contact the first carbon material layer or may have at least one intermediate layer between the support substrate and the first carbon material layer. The first carbon material layer may be in contact with the metal material layer, and the metal material layer may be in contact with the second carbon material layer. A cross section will first intersect the support substrate, the first layer of carbon material, and then the layer of metal material, and then the layer of second carbon material.

製備方法-碳層與金屬資料層Preparation Method - Carbon Layer and Metal Data Layer

本發明之另外的實施例係有關於製備一光學資訊媒體之方法。A further embodiment of the invention relates to a method of preparing an optical information medium.

各種層可依據在該光學資訊媒體產品中所需之特殊配置以各種次序施加,該等層可全部施加在該支持基板之一側上,產生一在一外面上具有該支持基板之最終產品。或者,該等層可以施加在該支持基板之兩側上,產生一具有該支持基板的最終產品,且該支持基板設置成使它不是該最終產品之一外面。The various layers can be applied in various orders depending on the particular configuration desired in the optical information media product, and the layers can all be applied to one side of the support substrate to produce a final product having the support substrate on the outside. Alternatively, the layers may be applied on both sides of the support substrate to produce a final product having the support substrate, and the support substrate is disposed such that it is not outside of one of the final products.

在一實施例中,該方法可包含提供一支持基板;施加一金屬材料層,使得該金屬材料層與該支持基板面接觸;及施加一碳材料層,使得該碳材料層與該金屬材料層面接觸。In one embodiment, the method may include providing a support substrate; applying a metal material layer such that the metal material layer is in surface contact with the support substrate; and applying a carbon material layer such that the carbon material layer and the metal material layer contact.

在另一實施例中,該方法可包含提供一支持基板;施加至少一中間層,使得該中間層與該支持基板面接觸;施加一金屬材料層,使得該金屬材料層與該中間層面接觸;及施加一碳材料層,使得該碳材料層與該金屬材料層面接觸。In another embodiment, the method can include providing a support substrate; applying at least one intermediate layer such that the intermediate layer is in surface contact with the support substrate; applying a metal material layer such that the metal material layer is in contact with the intermediate layer; And applying a layer of carbon material such that the layer of carbon material is in contact with the layer of the metal material.

在又一實施例中,該方法可包含提供一第一支持基板;施加一第一碳材料層,使得該第一碳材料層與該第一支持基板面接觸;施加一金屬材料層,使得該金屬材料層與該第一碳材料層面接觸;施加一第二碳材料層,使得該第二碳材料層與該金屬材料層面接觸;及施加一第二支持基板,使得該第二支持基板與該第二碳材料層面接觸。In still another embodiment, the method may include providing a first support substrate; applying a first carbon material layer such that the first carbon material layer is in surface contact with the first support substrate; applying a metal material layer such that the a metal material layer is in contact with the first carbon material layer; a second carbon material layer is applied such that the second carbon material layer is in contact with the metal material layer; and a second support substrate is applied such that the second support substrate and the Contact at the second carbon material level.

該施加步驟可包含物理蒸氣沈積(例如一標靶之濺鍍、反應性濺鍍、電子束蒸發、及雷射剝蝕)、或化學蒸氣沈積。濺鍍可使用通常具有一單一室及一或多個標靶之實驗室級設備(例如一來自Kurt J. Lesker Company(賓州匹茲堡)之PVD 75設備)來實施,或可使用具有多數室及多數標靶之工業級設備(例如一來自Oerlikon Systems(Pfffikon,Switzerland)之Sprinter設備)來實施。The applying step can include physical vapor deposition (eg, sputtering of a target, reactive sputtering, electron beam evaporation, and laser ablation), or chemical vapor deposition. Sputtering can be performed using laboratory-grade equipment typically having a single chamber and one or more targets (eg, a PVD 75 device from Kurt J. Lesker Company, Pittsburgh, PA), or can have a majority of chambers and Most of the target industrial grade equipment (eg one from Oerlikon Systems (Pf Ffikon, Switzerland) Sprinter device) to implement.

材料-包含被注入氣體之碲資料層Material - contains the data layer of the injected gas

本發明之一實施例包含一適合歸檔用之光學資訊媒體。該等材料與製造程序係設計成可以是非常耐用的且不會受到老化變質作用之影響至一實質程度。類似地,資訊寫入過程是要永久的且不會受到老化變質作用之影響至一實質程度。該光學資訊媒體包含至少一碲與碳氧化物(一氧化碳、二氧化碳、或一氧化碳與二氧化碳兩者)資料層120,及至少一支持基板10。One embodiment of the invention includes an optical information medium suitable for archiving. These materials and manufacturing procedures are designed to be very durable and not subject to aging deterioration to a substantial extent. Similarly, the information writing process is permanent and is not affected by aging deterioration to a substantial extent. The optical information medium comprises at least one layer of carbon oxide (carbon monoxide, carbon dioxide, or both carbon monoxide and carbon dioxide) data layer 120, and at least one support substrate 10.

該碲與二氧化碳資料層包含一碲材料與一碳氧化物(COx,其中x=1或2;一氧化碳、二氧化碳、或一氧化碳與二氧化碳兩者)、主要由一碲材料與一碳氧化物構成、或由一碲材料與一碳氧化物構成。該二氧化碳或一氧化碳可以任何方式被包含在該資料層中,例如,該二氧化碳或一氧化碳可以被共價鍵結、捕捉或吸收至該資料層之碲材料中或上。該二氧化碳或一氧化碳可以大致任何濃度存在該資料層中。The ruthenium and carbon dioxide data layer comprises a ruthenium material and a carbon oxide (COx, wherein x=1 or 2; carbon monoxide, carbon dioxide, or both carbon monoxide and carbon dioxide), mainly composed of a tantalum material and a carbon oxide, or It consists of a tantalum material and a carbon oxide. The carbon dioxide or carbon monoxide may be included in the data layer in any manner, for example, the carbon dioxide or carbon monoxide may be covalently bonded, captured or absorbed into or onto the material of the data layer. The carbon dioxide or carbon monoxide can be present in the data layer in substantially any concentration.

該碲材料可以是碲金屬(Te)或至少一碲合金。碲可以與如硒(Se)、銻(Sb)、銦(In)、鉛(Pb)、錫(Sn)、鉍(Bi)、鍺(Ge)、砷(As)、氧(O)、鎘(Cd)、或其組合等多種其他元素形成合金,碲合金可以比碲金屬更穩定地對抗氧化。The tantalum material may be a base metal (Te) or at least one tantalum alloy.碲 can be combined with, for example, selenium (Se), antimony (Sb), indium (In), lead (Pb), tin (Sn), bismuth (Bi), germanium (Ge), arsenic (As), oxygen (O), cadmium An alloy is formed by various other elements such as (Cd), or a combination thereof, and the niobium alloy can be more stably resistant to oxidation than the niobium metal.

碲合金之例子包括Tex Se100-x 、Tex Se100-x (其中X小於或等於95)、Te86 Se14 、Te79 Se21 、Tex Sb100-x 、Tex Sb100-x (其中X小於或等於95)、Tex Sey Sbz 、Tex Sey Sbz (其中X+Y+Z=100)、Tex Sey Sbz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sb5 、Te72.5 Se20 Sb7.5 、Te3 Sb2 、Tex Sey Inz 、Tex Sey Inz (其中X+Y+Z=100)、Tex Sey Inz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、InTe3 、Te75 Se20 In5 、Te72.5 Se20 In7.5 、Tex Sey Pbz 、Tex Sey Pbz (其中X+Y+Z=100)、Tex Sey Pbz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Pb5 、Te72.5 Se20 Pb7.5 、TePb、Tex Sey Snz 、Tex Sey Snz (其中X+Y+Z=100)、Tex Sey Snz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sn5 、Te72.5 Se20 Sn7.5 、Te3 Bi2 、Tex Sey Biz 、Tex Sey Biz (其中X+Y+Z=100)、TeSn、Tex Sey Biz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Bi5 、Te72.5 Se20 Bi7.5 、TeGeAs、TeGeSbS、TeOx Ge、TeOx Sn、Pb-Te-Se、Pb-Te-Sb、As-Te、As10 Te90 、As32 Te68 、Ge-Te、Ge10 Te90 、CdTe、及PbTe。其他合金之例子包括As-Se、Ge-Se、GeS、SnS、Sb-S、Bix Sb100-x 、Bix Sb100-x (其中X小於或等於95)。合金之其他例子包括GeTe、Ge10 Te90 、As2 Te3 、SnTe、Sb2 Te3 、PbTe、Bi2 Te3 、As10 Te90 、As32 Te68 、及InTe3Examples of the niobium alloy include Te x Se 100-x , Te x Se 100-x (where X is less than or equal to 95), Te 86 Se 14 , Te 79 Se 21 , Te x Sb 100-x , Te x Sb 100-x (where X is less than or equal to 95), Te x Se y Sb z , Te x Se y Sb z (where X+Y+Z=100), Te x Se y Sb z (where X+Y+Z=100, Y Is 10-30, and Z is 5-20), Te 75 Se 20 Sb 5 , Te 72.5 Se 20 Sb 7.5 , Te 3 Sb 2 , Te x Se y In z , Te x Se y In z (where X+Y +Z=100), Te x Se y In z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), InTe 3 , Te 75 Se 20 In 5 , Te 72.5 Se 20 In 7.5 , Te x Se y Pb z , Te x Se y Pb z (where X+Y+Z=100), Te x Se y Pb z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Pb 5 , Te 72.5 Se 20 Pb 7.5 , TePb, Te x Se y Sn z , Te x Se y Sn z (where X+Y+Z=100), Te x Se y Sn z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Sn 5 , Te 72.5 Se 20 Sn 7.5 , Te 3 Bi 2 , Te x Se y Bi z , Te x Se y Bi z (where X+Y+Z=100), TeSn, Te x Se y Bi z (where X+Y+Z=100, Y is 10-30, and Z is 5-20 ), Te 75 Se 20 Bi 5 , Te 72.5 Se 20 Bi 7.5 , TeGeAs, TeGeSbS, TeO x Ge, TeO x Sn, Pb-Te-Se, Pb-Te-Sb, As-Te, As 10 Te 90 , As 32 Te 68 , Ge-Te, Ge 10 Te 90 , CdTe, and PbTe. Examples of other alloys include As-Se, Ge-Se, GeS, SnS, Sb-S, Bi x Sb 100-x , Bi x Sb 100-x (where X is less than or equal to 95). Other examples of the alloy include GeTe, Ge 10 Te 90 , As 2 Te 3 , SnTe, Sb 2 Te 3 , PbTe, Bi 2 Te 3 , As 10 Te 90 , As 32 Te 68 , and InTe 3 .

該碲與二氧化碳或一氧化碳資料層可大致為任何厚度。厚度下限值之一例子可為大約2nm,厚度上限值之一例子是大約250nm。厚度例子是大約2nm、大約4nm、大約6nm、大約8nm、大約10nm、大約12nm、大約14nm、大約16nm、大約18nm、大約20nm、大約30nm、大約40nm、大約50nm、大約60nm、大約70nm、大約80nm、大約90nm、大約100nm、大約110nm、大約120nm、大約130nm、大約140nm、大約150nm、大約160nm、大約170nm、大約180nm、大約190nm、大約200nm、大約210nm、大約220nm、大約230nm、大約240nm、大約250nm、及在這些值之任兩者間的範圍。一目前較佳範圍可以是大約12nm至大約45nm。The crucible and the carbon dioxide or carbon monoxide data layer can be of substantially any thickness. An example of a lower limit of the thickness may be about 2 nm, and an example of the upper limit of the thickness is about 250 nm. Examples of thickness are about 2 nm, about 4 nm, about 6 nm, about 8 nm, about 10 nm, about 12 nm, about 14 nm, about 16 nm, about 18 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm. , about 90 nm, about 100 nm, about 110 nm, about 120 nm, about 130 nm, about 140 nm, about 150 nm, about 160 nm, about 170 nm, about 180 nm, about 190 nm, about 200 nm, about 210 nm, about 220 nm, about 230 nm, about 240 nm, about 250 nm, and the range between any of these values. A presently preferred range can be from about 12 nm to about 45 nm.

該碲與二氧化碳或一氧化碳資料層可更包含一或多數如銀等另外之材料。The crucible and the carbon dioxide or carbon monoxide data layer may further comprise one or more additional materials such as silver.

該碲與二氧化碳或一氧化碳資料層可更包含多數已寫入資料之位置,該等位置具有與尚未寫入資料之其他位置不同之可偵測差異。The enthalpy and carbon dioxide or carbon monoxide data layer may further contain a plurality of locations where data has been written, the locations having detectable differences that are different from other locations where the data has not yet been written.

該光學資訊媒體可包含一第一支持基板85及一第二支持基板90。該第一支持基板及第二支持基板可以由相同材料製成,或可由不同材料製成。該第一支持基板與該第二支持基板通常被定向成使得它們形成該光學資訊媒體之外部兩層(即,由一橫截面來看時為第一與最後一層),這在一DVD型格式中特別理想。這結構係顯示在第5c圖中。The optical information medium can include a first support substrate 85 and a second support substrate 90. The first support substrate and the second support substrate may be made of the same material or may be made of different materials. The first support substrate and the second support substrate are generally oriented such that they form two outer layers of the optical information medium (ie, the first and last layers when viewed in a cross section), which is in a DVD format Especially ideal. This structure is shown in Figure 5c.

該支持基板可面接觸該碲與二氧化碳或一氧化碳資料層,或者,在它們之間可以有至少一中間層。這些層之結構係圖示於第5a與5b圖中。在第5a圖所示之實施例中,一橫截面將先與該支持基板,然後與該資料層相交。在第5b圖所示之實施例中,一橫截面將先與該支持基板,然後與至少一中間層,再與該資料層相交。在第5b圖中,該支持基板與該至少一中間層面接觸,且該至少一中間層與該資料層面接觸。The support substrate may be in surface contact with the tantalum and carbon dioxide or carbon monoxide data layer, or there may be at least one intermediate layer between them. The structure of these layers is shown in Figures 5a and 5b. In the embodiment shown in Figure 5a, a cross section will first intersect the support substrate and then with the data layer. In the embodiment illustrated in Figure 5b, a cross section will first intersect the support substrate and then with at least one intermediate layer and then with the data layer. In FIG. 5b, the support substrate is in contact with the at least one intermediate layer, and the at least one intermediate layer is in contact with the data layer.

一中間層之例子是一熱障壁層。一熱障壁層可保護該基板不受在將資料寫入該資料層時所產生之熱的影響,熱障壁層之例子包括矽石(SiO2 )、碳、氧化鋁、矽、氮化矽、氮化硼、鈦氧化物(TiOx )、及鉭氧化物(TaOx )。An example of an intermediate layer is a thermal barrier layer. A thermal barrier layer protects the substrate from the heat generated when data is written into the data layer. Examples of thermal barrier layers include vermiculite (SiO 2 ), carbon, aluminum oxide, tantalum, tantalum nitride, Boron nitride, titanium oxide (TiO x ), and tantalum oxide (TaO x ).

一中間層之另一例子是一熱傳導層。這種層將熱傳導遠離已寫入資料之位置,減少或避免對相鄰位置造成熱破壞。Another example of an intermediate layer is a thermally conductive layer. This layer shields heat away from where data has been written, reducing or avoiding thermal damage to adjacent locations.

該光學資訊媒體可更包含至少一反射層,多數反射層通常被定向成遠離該支持基板,使得由該反射層至該資料層之距離小於由該反射層至該支持基板之距離。The optical information medium may further comprise at least one reflective layer, the plurality of reflective layers being generally oriented away from the support substrate such that the distance from the reflective layer to the data layer is less than the distance from the reflective layer to the support substrate.

相較於在該資料層中沒有該二氧化碳或一氧化碳而製成之類似媒體,該光學資訊媒體具有一較大之抗氧化性。The optical information medium has a greater resistance to oxidation than a similar medium made without the carbon dioxide or carbon monoxide in the data layer.

製備方法-包含包含被注入氣體之碲資料層Preparation Method - Contains a data layer containing the injected gas

本發明之另外的實施例係有關於製備一光學資訊媒體之方法。A further embodiment of the invention relates to a method of preparing an optical information medium.

各種層可依據在該光學資訊媒體產品中所需之特殊配置以各種次序施加,該等層可全部施加在該支持基板之一側上,產生一在一外面上具有該支持基板之最終產品。或者,該等層可以施加在該支持基板之兩側上,產生一具有該支持基板的最終產品,且該支持基板設置成使它不是該最終產品之一外面。The various layers can be applied in various orders depending on the particular configuration desired in the optical information media product, and the layers can all be applied to one side of the support substrate to produce a final product having the support substrate on the outside. Alternatively, the layers may be applied on both sides of the support substrate to produce a final product having the support substrate, and the support substrate is disposed such that it is not outside of one of the final products.

在一實施例中,該方法可包含提供一支持基板;及施加一碲與二氧化碳及/或一氧化碳資料層,使得該資料層與該支持基板面接觸。這方法產生一如顯示於第5a圖中者之光學資訊媒體。In one embodiment, the method can include providing a support substrate; and applying a layer of carbon dioxide and/or carbon monoxide data such that the data layer is in surface contact with the support substrate. This method produces an optical information medium as shown in Figure 5a.

在另一實施例中,該方法可包含提供一支持基板;施加至少一中間層,使得該中間層與該支持基板面接觸;及施加一碲與二氧化碳及/或一氧化碳資料層,使得該資料層與該中間層面接觸。這方法產生一如顯示於第5b圖中者之光學資訊媒體。In another embodiment, the method can include providing a support substrate; applying at least one intermediate layer such that the intermediate layer is in surface contact with the support substrate; and applying a layer of carbon dioxide and/or carbon monoxide data to cause the data layer Contact with the intermediate level. This method produces an optical information medium as shown in Figure 5b.

在又一實施例中,該方法可包含提供一第一支持基板;施加一碲與二氧化碳及/或一氧化碳資料層,使得該資料層與該第一支持基板面接觸;及施加一第二支持基板,使得該第二支持基板與該資料層面接觸。這方法產生一如顯示於第5c圖中者之光學資訊媒體。In still another embodiment, the method can include providing a first support substrate, applying a layer of carbon dioxide and/or a carbon monoxide material layer such that the data layer is in surface contact with the first support substrate, and applying a second support substrate The second support substrate is brought into contact with the data layer. This method produces an optical information medium as shown in Figure 5c.

該施加步驟可包括物理蒸氣沈積(例如一標靶之濺鍍、反應性濺鍍、電子束蒸發、及雷射剝蝕)、或化學蒸氣沈積。濺鍍可使用通常具有一單一室及一或多個標靶之實驗室級設備(例如一來自Kurt J. Lesker Company(賓州匹茲堡)之PVD 75設備)來實施,或可使用具有多數室及多數標靶之工業級設備(例如一來自Oerlikon Systems(Pfffikon,Switzerland)之Sprinter設備)來實施。The applying step can include physical vapor deposition (eg, sputtering of a target, reactive sputtering, electron beam evaporation, and laser ablation), or chemical vapor deposition. Sputtering can be performed using laboratory-grade equipment typically having a single chamber and one or more targets (eg, a PVD 75 device from Kurt J. Lesker Company, Pittsburgh, PA), or can have a majority of chambers and Most of the target industrial grade equipment (eg one from Oerlikon Systems (Pf Ffikon, Switzerland) Sprinter device) to implement.

碲金屬或一碲合金可以在二氧化碳、一氧化碳、或二氧化碳與一氧化碳兩者存在之情形下施加。二氧化碳或一氧化碳存在之濃度可大致為任何濃度,在該施加步驟時存之二氧化碳濃度的例子可以是大約1%(v/v)、大約2%(v/v)、大約3%(v/v)、大約4%(v/v)、大約5%(v/v)、大約6%(v/v)、大約7%(v/v)、大約8%(v/v)、大約9%(v/v)、大約10%(v/v)、大約15%(v/v)、大約20%(v/v)、大約25%(v/v)、大約30%(v/v)、大約35%(v/v)、大約40%(v/v)、大約45%(v/v)、大約50%(v/v)、及在這些值之任兩者之間的範圍。如果使用二氧化碳與一氧化碳兩者,則各可以相同或以不同濃度存在。通常是使用至少一如稀有氣體、氦、氖、氪、或氬之惰性氣體來作為100%之其餘部份。由於其低成本,目前較佳的是氬。The base metal or a tantalum alloy may be applied in the presence of carbon dioxide, carbon monoxide, or both carbon dioxide and carbon monoxide. The concentration of carbon dioxide or carbon monoxide present may be substantially any concentration, and an example of the concentration of carbon dioxide present at the application step may be about 1% (v/v), about 2% (v/v), about 3% (v/v). ), approximately 4% (v/v), approximately 5% (v/v), approximately 6% (v/v), approximately 7% (v/v), approximately 8% (v/v), approximately 9% (v/v), approximately 10% (v/v), approximately 15% (v/v), approximately 20% (v/v), approximately 25% (v/v), approximately 30% (v/v) , approximately 35% (v/v), approximately 40% (v/v), approximately 45% (v/v), approximately 50% (v/v), and a range between any of these values. If both carbon dioxide and carbon monoxide are used, each may be the same or present in different concentrations. Typically, at least one inert gas such as a rare gas, helium, neon, xenon, or argon is used as the remainder of 100%. Due to its low cost, argon is currently preferred.

使用之方法Method of use

任一前述數位資料媒體均可被用來儲存數位資料,其方法可包含提供一數位資料媒體,及對在該金屬材料層中之位置施加能量,以在該媒體之資料層中產生一可偵測之變化。該方法更包含偵測在該資料層中之變化。Any of the foregoing digital data media can be used to store digital data, the method can include providing a digital data medium and applying energy to a location in the metallic material layer to generate a detectable in the data layer of the media Measuring changes. The method further includes detecting changes in the data layer.

對在該金屬材料層中之位置施加能量亦會局部地產生足以使在該支持基板中之軌道變形,接著可偵測在該支持基板中之變形位置。Applying energy to the location in the layer of metallic material also locally produces deformation sufficient to deform the track in the support substrate, which in turn can detect the location of deformation in the support substrate.

在該施加能量步驟中及在該偵測步驟中可使用雷射,主要之雷射種類包括氣體雷射、二極體激升固態雷射、及二極體雷射。Lasers can be used in the energy application step and in the detection step. The main types of lasers include gas lasers, diode-excited solid-state lasers, and diode lasers.

在此包括之以下例子係用以說明本發明之較佳實施例。發明所屬技術領域中具有通常知識者應可了解在以下例子中所揭露之技術代表本發明人所發現之用以在實施本發明良好作用之技術,且因此可被視為構成實施之較佳模式。但是,發明所屬技術領域中具有通常知識者應可藉此揭露內容了解在不偏離本發明範疇之情形下,可對該等特定實施例進行許多改變且仍可獲得一相似或類似之結果。The following examples are included to illustrate preferred embodiments of the invention. Those skilled in the art should understand that the techniques disclosed in the following examples represent techniques discovered by the inventors to perform a good function of the present invention, and thus can be considered as a preferred mode of implementation. . However, it will be apparent to those skilled in the art that the present invention may be practiced without departing from the scope of the invention. Many changes can be made to the particular embodiments and a similar or similar result can still be obtained.

例子example

例1:候選寫入層材料之辨識Example 1: Identification of candidate write layer materials

在此採用數種工具及方法來辨識適合用來作為一在光學媒體中之寫入層的材料。一第一工具是該候選材料的相圖,相圖說明熱力學上穩定之材料,且提供熔點、相分離成不同化合物與結構、尖峰結晶溫度、及共熔溫度方面的資訊。Several tools and methods are employed herein to identify materials suitable for use as a write layer in an optical medium. A first tool is a phase diagram of the candidate material. The phase diagram illustrates a thermodynamically stable material and provides information on the melting point, phase separation into different compounds and structures, peak crystallization temperatures, and eutectic temperatures.

寫入層材料可選擇成具有高到足以使該材料在某預定溫度(如100度C)以下穩定,但低到足以使它可以被一雷射熔化且不會使在一產品中之支持基板材料變形或分解的熔點。該材料最好在加熱時不會分離成兩種不同之物質狀態(有時被稱為“共熔組成物”),該材料最好在加熱或冷卻時不會分成兩不同相。The write layer material can be selected to have a height sufficient to stabilize the material below a predetermined temperature (e.g., 100 degrees C), but low enough to allow it to be melted by a laser without causing a support substrate in a product The melting point of the material's deformation or decomposition. Preferably, the material does not separate into two distinct material states (sometimes referred to as "eutectic compositions") upon heating, and the material preferably does not separate into two distinct phases upon heating or cooling.

雖然材料不能滿定所有的“理想”條件,它們仍可適用於商品中。有關任何變化之動力學的資訊亦有助於辨識、篩選、或評定候選材料。相變化動力學資訊可使用如示差掃描熱析法及X光結晶法獲得,動力學資訊可說明一材料將如何快速地或緩慢地接近一在一相圖中所示之於一預定溫度時有利或不利之狀態。例如,一具有一在室溫之大約50度C內之尖峰結晶溫度的合金比一具有較高尖峰結晶溫度的合金不具商用之吸引力。Although the materials do not meet all of the "ideal" conditions, they can still be applied to commodities. Information about the dynamics of any change can also help identify, screen, or evaluate candidate materials. Phase change kinetic information can be obtained using differential scanning calorimetry and X-ray crystallization. The kinetic information can show how quickly or slowly a material will be close to a predetermined temperature as shown in a phase diagram. Or unfavorable state. For example, an alloy having a peak crystallization temperature of about 50 degrees C at room temperature is less commercially attractive than an alloy having a higher peak crystallization temperature.

例2:用於反應性濺鍍之一般方法Example 2: General Method for Reactive Sputtering

濺鍍是使用一PVD 75設備(Kurt J. Lesker Company;賓州匹茲堡)來實施。該系統構形成具有一RF功率源、三個可固持3英吋(7.62公分)標靶之磁控管槍、及用於兩濺鍍氣體之設備。該等標靶係排列成一向上濺鍍(sputter-up)構形,多數閘遮蔽三標靶之各標靶,多數基板安裝在一可被加熱至200℃之旋轉平台上,且該旋轉平台位於該等標靶上方。大部份的實驗是在沒有主動加熱該平台之情形下完成,由於沒有主動加熱,該平台之溫度於400w下隨著濺鍍時間增加逐漸增加,直到溫度到達大約60℃-70℃之最大值。在大約3小時後到達該最大溫度,在濺鍍前該室中之初始溫度通常是大約27℃,時間、標靶及濺鍍源會如在以下例子中之說明般地改變。Sputtering was performed using a PVD 75 device (Kurt J. Lesker Company; Pittsburgh, PA). The system is constructed with an RF power source, three magnetron guns that hold a 3 inch (7.62 cm) target, and equipment for two sputtering gases. The targets are arranged in an upward sputter-up configuration, and most of the gates shield the targets of the three targets, and most of the substrates are mounted on a rotating platform that can be heated to 200 ° C, and the rotating platform is located Above the targets. Most of the experiments were carried out without actively heating the platform. Since there is no active heating, the temperature of the platform increases with the increase of sputtering time at 400w until the temperature reaches a maximum of about 60 ° C - 70 ° C. . The maximum temperature is reached after about 3 hours, and the initial temperature in the chamber prior to sputtering is typically about 27 ° C. The time, target, and sputtering source will vary as explained in the examples below.

所使用之基板通常是一矽(Si)晶圓或一在大約300nm具有一UV阻截作用之氣體顯微鏡載片。將經電漿清潔之基板安裝在該平台上,以一片具有一丙烯酸黏著劑之膠帶遮蓋該矽基板之一部份以便測量濺鍍沈積速度。當該平台定位後,使該濺鍍室形成真空直到壓力低於2.3×10-5 托耳(torr)。然後,將氬(Ar)與二氧化碳(CO2 )以特定比例導入該室中,使得在室中之壓力為大約12毫托耳。卡普曼(Capman)壓力保持在13毫托耳(該卡普曼壓力是該PVD設備之設備設定值),接著在碳石墨標靶(99.999%;Kurt J. Lesker Company,零件號碼EJTCXXX503A4)上方發射該電漿。將功率緩慢地上升至400Wrf且將該室壓力減少至大約2.3毫托耳(卡普曼壓力等於3毫托耳),並一直保持Ar對CO2 之特定比例。然後,在該石墨標靶上之閘打開且該基板暴露於該濺鍍標靶一預定長度之時間。在該時間終止後,在該標靶上之閘關閉且功率下降。接著,將包含被濺鍍材料之基板由該設備取出以進行分析或進一步處理。The substrate used is typically a germanium (Si) wafer or a gas microscope slide with a UV blocking effect at approximately 300 nm. A plasma-cleaned substrate was mounted on the platform, and a portion of the crucible substrate was covered with a piece of tape having an acrylic adhesive to measure the sputter deposition rate. After the platform is positioned, the sputtering chamber is vacuumed until the pressure is below 2.3 x 10 -5 torr. Argon (Ar) and carbon dioxide (CO 2 ) were then introduced into the chamber in a specific ratio such that the pressure in the chamber was about 12 mTorr. The Capman pressure is maintained at 13 mTorr (the Kapman pressure is the equipment setting for the PVD device) and then above the carbon graphite target (99.999%; Kurt J. Lesker Company, part number EJTCXXX503A4) The plasma is emitted. 400Wrf power was gradually warmed and the chamber pressure is reduced to about 2.3 mTorr (Capmann pressure equal to 3 mTorr), and has been maintained for a specific ratio of CO 2 Ar. Then, the gate on the graphite target is opened and the substrate is exposed to the sputtering target for a predetermined length of time. After the time has elapsed, the gate on the target is closed and the power is reduced. Next, the substrate containing the sputtered material is taken out of the apparatus for analysis or further processing.

例3:用於AFM厚度測量之一般方法Example 3: General Method for AFM Thickness Measurement

一原子力顯微法(AFM)係使用一Veeco Dimension 3100設備(Veeco;Plainview,NY)實施,且以間歇接觸模式(tapping mode)取得影像。One atomic force microscopy (AFM) was performed using a Veeco Dimension 3100 apparatus (Veeco; Plainview, NY) and images were taken in a tapping mode.

製備經塗覆之矽晶圓,以如下地利用AFM進行階高度測量。移除遮蓋該表面一部份之膠帶,將該表面以丙酮濕潤且以一末端浸泡過丙酮之棉花棒塗擦,以去除殘留黏著劑且使在該晶圓之暴露與被遮蓋部份之間之界面處的材料鬆軟。藉AFM測量在該Si晶圓上之界面階高度,且藉XPS研究在該Si晶圓上之少數膜,再藉UV-VIS光譜法分析該經塗覆之玻璃顯微鏡載片。The coated tantalum wafer was prepared to perform step height measurement using AFM as follows. Removing a portion of the tape covering the surface, moistening the surface with acetone and wiping it with a cotton swab soaked with acetone at one end to remove residual adhesive and between the exposed and covered portions of the wafer The material at the interface is soft. The interface height on the Si wafer was measured by AFM, and a few films on the Si wafer were studied by XPS, and the coated glass microscope slide was analyzed by UV-VIS spectroscopy.

例4:用於UV-VIS測量之一般方法Example 4: General method for UV-VIS measurement

在玻璃載片上之膜之UV/VIS光譜測量係使用一Agilent 8453UV/VIS光譜儀(Agilent;Santa Clara,CA)實施。對一光譜測量而言,該玻璃載片係被定向成使得來自該光譜儀之光束先通過該載片之空氣-玻璃界面且接著通過該玻璃-膜界面。每次掃描係伴隨一次單純未塗覆玻璃載片之掃描,該薄膜之吸收光譜係利用由該經塗覆玻璃載片之吸收光譜減去該單純玻璃載片之吸收光譜而獲得。吾人假設該單純玻璃載片之玻璃-空氣界面之反射率與在該經塗覆玻璃載片之膜-空氣界面之反射率相同,且該膜-玻璃界面之反射率是可忽略的。當對一經塗覆玻璃載片進行一掃描時,該載片係被設置成使該光譜儀之光束通過在該濺鍍沈積時距離該平台中心2.2公分之該玻璃載片的區段。UV/VIS spectroscopy of the film on a glass slide was performed using an Agilent 8453 UV/VIS spectrometer (Agilent; Santa Clara, CA). For a spectroscopic measurement, the glass slide is oriented such that the beam from the spectrometer first passes through the air-glass interface of the slide and then through the glass-membrane interface. Each scan was accompanied by a scan of a single uncoated glass slide, and the absorption spectrum of the film was obtained by subtracting the absorption spectrum of the simple glass slide from the absorption spectrum of the coated glass slide. We assume that the reflectivity of the glass-air interface of the simple glass slide is the same as the reflectance of the film-air interface at the coated glass slide, and the reflectance of the film-glass interface is negligible. When a scan of a coated glass slide is performed, the slide is positioned such that the beam of the spectrometer passes through a section of the glass slide that is 2.2 cm from the center of the platform during the sputter deposition.

例5:用於測量光學密度之一般方法Example 5: General method for measuring optical density

一薄膜之光學密度係藉將該UV/VIS除以該膜厚度來決定。一材料在一預定波長處之光學密度愈高,其在該波長處就愈不透明。在此使用兩樣本與兩測量值來決定光學密度,兩樣本是一經塗覆之被遮蔽矽晶圓及一經塗覆玻璃載片。在這兩樣本上之膜理想上是同時製備的,所得到的是該經塗覆玻璃載片之一UV/VIS光譜。得到該Si晶圓之被遮蔽與暴露區段之界面的AFM影像,且進行一階高度測量以獲得該膜之厚度。接著,沿著該吸收光譜之所有點的吸收值除以膜厚度,以獲得該膜之光學密度光譜。The optical density of a film is determined by dividing the UV/VIS by the film thickness. The higher the optical density of a material at a predetermined wavelength, the more opaque it is at that wavelength. Two samples and two measurements are used herein to determine the optical density. The two samples are a coated masked wafer and a coated glass slide. The films on the two samples are desirably prepared simultaneously, resulting in a UV/VIS spectrum of the coated glass slide. An AFM image of the interface of the Si wafer that is shielded from the exposed section is obtained, and a first-order height measurement is performed to obtain the thickness of the film. Next, the absorption value at all points along the absorption spectrum is divided by the film thickness to obtain an optical density spectrum of the film.

例6:製備缺少被注入有經氧化氣體之資料層的碟片Example 6: Preparation of a disc lacking a data layer in which an oxidizing gas is injected

將一沒有塗層於其上之聚碳酸酯光碟安裝在該PVD 75設備中之平台上,且在該碟片上之光軌道面向該等標靶。在一3毫托耳之卡普曼壓力下利用400w RF之磁控管功率,以氬作為該濺鍍氣體濺鍍一碳石墨標靶1小時。這在該光碟之表面上產生一大約31nm厚度之碳膜,接著,沈積一層鉻。A polycarbonate disc uncoated thereon is mounted on a platform in the PVD 75 apparatus, and the optical track on the disc faces the targets. A carbon graphite target was sputtered with argon as the sputtering gas for 1 hour using a magnetron power of 400 W RF at a 3 mTorr Kapman pressure. This produces a carbon film having a thickness of about 31 nm on the surface of the optical disk, followed by deposition of a layer of chromium.

例7:製備包含被注入有二氧化碳之資料層的碟片Example 7: Preparation of a disc containing a data layer infused with carbon dioxide

將一沒有塗層於其上之聚碳酸酯光碟安裝在該PVD 75設備中之平台上,且在該碟片上之光軌道面向該等標靶。在一3毫托耳之卡普曼壓力下利用400w RF之磁控管功率,以Ar與CO2 作為該濺鍍氣體利用該CO2 之濃度濺鍍一碳石墨標靶1小時。接著,在該碳膜之頂面上沈積一層如鋁或鉻之金屬層。A polycarbonate disc uncoated thereon is mounted on a platform in the PVD 75 apparatus, and the optical track on the disc faces the targets. A carbon graphite target was sputtered with a concentration of the CO 2 for 1 hour using a magnet power of 400 W RF at a Kmman pressure of 3 mTorr using Ar and CO 2 as the sputtering gas. Next, a metal layer such as aluminum or chromium is deposited on the top surface of the carbon film.

例8:施加鉻反射層Example 8: Applying a chrome reflective layer

通常是在沈積一碳層之後,藉濺鍍沈積將鉻層施加至光碟。通常,該室在施加碳層與鉻層之間保持於真空狀態。在一4毫托耳之卡普曼壓力下利用400w RF之磁控管功率,以Ar作為該濺鍍氣體濺鍍一鉻標靶15分鐘。這在該光碟之表面上產生一大約138nm厚度之鉻膜。Usually, after depositing a carbon layer, a chromium layer is applied to the disc by sputtering deposition. Typically, the chamber is maintained in a vacuum between the application of the carbon layer and the chromium layer. A magnet of 400 W RF was used at a Kmman pressure of 4 mTorr, and a chromium target was sputtered with Ar as the sputtering gas for 15 minutes. This produces a chrome film having a thickness of about 138 nm on the surface of the disc.

例9:藉改變濺鍍時間測量膜成長速度Example 9: Measuring film growth rate by changing the sputtering time

使用AFM決定該等膜之厚度。如先前所述,在濺鍍時以膠帶遮蔽一膜。在濺鍍後,移除該膠帶且清潔該表面。接著,藉AFM測量該階高度。吾人發現在400w RF之磁控管功率及一4毫托耳之卡普曼壓力之條件下濺鍍的鉻係以0.154nm/s之速度成長,這是由一5資料點之校準曲線之斜率來決定。吾人發現在400w RF之磁控管功率及一3毫托耳之卡普曼壓力之條件下濺鍍的鋁係以0.141nm/s之速度成長,這是由一3資料點之校準曲線之斜率來決定。The thickness of the films is determined using AFM. As previously described, a film is masked with tape during sputtering. After sputtering, the tape is removed and the surface is cleaned. Next, the height of the step is measured by AFM. I have found that the chromium-plated chromium system grows at a rate of 0.154 nm/s under the 400W RF magnetron power and a 4 mTorr Kapman pressure. This is the slope of the calibration curve from a 5 data point. To decide. We have found that the aluminum alloy sputtered at a magnet power of 400w RF and a Kapman pressure of 3 mTorr grows at a rate of 0.141 nm/s, which is the slope of the calibration curve from a 3 data point. To decide.

例10:藉改變氣體濃度測量膜成長速度Example 10: Measuring film growth rate by changing gas concentration

吾人發現碳膜之成長速度係依在該濺鍍氣體中之二氧化碳百分比而定。所有實驗均不變之實驗條件為400w RF之磁控管功率及卡普曼壓力=3毫托耳。在處理氣體中之二氧化碳的量為已經實驗之氬量的百分比是0%(v/v)、1%(v/v)、2%(v/v)及4%(v/v),這些膜之成長速度係顯示於下表中,且藉將由AFM所決定之該等膜之厚度除以該濺鍍時間來決定。We have found that the growth rate of the carbon film depends on the percentage of carbon dioxide in the sputtering gas. The experimental conditions in which all experiments were constant were 400w RF magnetron power and Kapman pressure = 3 mTorr. The amount of carbon dioxide in the process gas is 0% (v/v), 1% (v/v), 2% (v/v) and 4% (v/v) of the amount of argon that has been tested. The growth rate of the film is shown in the table below, and is determined by dividing the thickness of the film determined by the AFM by the sputtering time.

這些成長速度清楚地顯示增加二氧化碳濃度減緩濺鍍沈積速度。These growth rates clearly show that increasing the carbon dioxide concentration slows down the rate of sputter deposition.

例11:藉改變氣體濃度測量膜光學密度(透明度)Example 11: Measuring Film Optical Density (Transparency) by Changing Gas Concentration

吾人發現在該濺鍍氣體中於1%-4%(v/v)之範圍內,該等碳膜之光學密度隨著二氧化碳濺鍍濃度增加而減少。對這例子而言,多數膜係藉以400w RF之磁控管功率及一3毫托耳之卡普曼壓力濺鍍碳石墨4小時而產生。這些膜之650nm光學密度係顯示於下表中。I have found that in the range of 1%-4% (v/v) of the sputtering gas, the optical density of the carbon films decreases as the carbon dioxide sputtering concentration increases. For this example, most of the film was produced by sputtering a carbon graphite of 400 W RF and a 3 mTorr of Kapman pressure to deposit carbon graphite for 4 hours. The 650 nm optical density of these films is shown in the table below.

測量通過一由300nm至1100nm之光譜的光學密度,且顯示於第6圖中。這些結果清楚地顯示增加二氧化碳濃度會減少形成膜的光學密度。換言之,增加二氧化碳濃度會增加形成膜的透明度。The optical density through a spectrum from 300 nm to 1100 nm was measured and is shown in FIG. These results clearly show that increasing the carbon dioxide concentration reduces the optical density of the formed film. In other words, increasing the concentration of carbon dioxide increases the transparency of the film formation.

例12:被注入有二氧化碳之碳膜的X光光電子光譜法Example 12: X-ray photoelectron spectroscopy of a carbon film implanted with carbon dioxide

以一SSX-100設備(Surface Science maintained by Surface Physics;Bend,OR)實施X光光電子光譜法(XPS)。XPS提供上方大約10nm之材料的基本成分。XPS顯示在該等膜中之氧含量隨著在該濺鍍氣體中二氧化碳百分比增加而增加,結果顯示在下表中。X-ray photoelectron spectroscopy (XPS) was carried out using an SSX-100 device (Surface Science maintained by Surface Physics; Bend, OR). XPS provides the basic composition of materials approximately 10 nm above. XPS showed that the oxygen content in the films increased as the percentage of carbon dioxide in the sputtering gas increased, and the results are shown in the table below.

此外,當在該濺鍍氣體中之二氧化碳濃度增加時,在C1s窄掃描之高能側上的一肩部尺寸相對主Cls尖峰增加。這表示當在該濺鍍氣體中之二氧化碳百分比增加時,共價鍵結至氧之碳量增加。In addition, as the concentration of carbon dioxide in the sputtering gas increases, the size of a shoulder on the high energy side of the narrow scan of C1s increases relative to the peak of the main Cls. This means that as the percentage of carbon dioxide in the sputtering gas increases, the amount of carbon covalently bonded to oxygen increases.

例13:碳膜剝離之測量Example 13: Measurement of carbon film peeling

眾所周知的是藉濺鍍沈積之碳膜會由於內部應力與在大氣中之分解而變質,在無損傷碳膜與嚴重變質碳膜之間有多數在外觀與性質上之不同可見差異。一具有已嚴重變質之碳膜具有一有暗影的外觀、顏色較淡且會由該基板輕易地被擦去或洗去。相反地,一無損傷膜具有反射性且難以由該基板移除。It is well known that carbon films deposited by sputtering are degraded by internal stress and decomposition in the atmosphere, and there are many differences in appearance and properties between the non-damaged carbon film and the severely degraded carbon film. A carbon film having a severe deterioration has a shadow appearance, a light color, and is easily wiped off or washed away from the substrate. Conversely, a non-damaging film is reflective and difficult to remove from the substrate.

以下實驗證明二氧化碳注入一石墨膜改善該膜之穩定性。在玻璃顯微鏡載片上製備各種膜以進行分析。對於藉在400w以3毫托耳之卡普曼壓力濺鍍一石墨標靶所產生之膜而言,該等膜出現可見之變質傾向隨著濺鍍時間增加而增加。例如,一藉濺鍍沒有加入二氧化碳之石墨1小時所產生之對照膜未顯示可見之變質跡象,但一1.5小時膜則出現可見之變質跡象。在該濺鍍氣體中加入二氧化碳增加一膜在產生一不穩定膜之前被濺鍍的時間,例如,一藉以包括在該濺鍍氣體中之1%(v/v)二氧化碳濺鍍石墨3小時所產生之膜並未觀察到變質,但是一4小時膜則顯現出變質跡象,一藉以包括在該濺鍍氣體中之2%(v/v)二氧化碳濺鍍石墨4小時所產生之膜並未顯現變質。這些結果顯示於下表中。The following experiment demonstrates that carbon dioxide injection into a graphite film improves the stability of the film. Various films were prepared on glass microscope slides for analysis. For films produced by sputtering a graphite target at 400 w at 3 mTorr, the visible deterioration tendency of the films increases with increasing sputtering time. For example, a control film produced by sputtering a graphite without addition of carbon dioxide for 1 hour showed no signs of visible deterioration, but a 1.5 hour film showed visible signs of deterioration. The addition of carbon dioxide to the sputtering gas increases the time during which a film is sputtered prior to producing an unstable film, for example, by 1% (v/v) carbon dioxide sputtering of graphite in the sputtering gas for 3 hours. No deterioration was observed in the film produced, but the film showed signs of deterioration in a 4 hour film, and the film produced by sputtering 2% (v/v) of carbon dioxide on the sputtering gas for 4 hours did not appear. Deterioration. These results are shown in the table below.

例14:碟片耐用性之測量Example 14: Measurement of disc durability

測量耐用性之簡單測試包括將樣本浸入沸水中48小時、及一膠帶拉扯黏著測試(tape-pull test)。一更複雜之變質測試係載明於ECMA-379(亦被稱為ISO-IEC-10995)。A simple test to measure durability includes immersing the sample in boiling water for 48 hours and a tape-pull test. A more complex metamorphosis test is shown in ECMA-379 (also known as ISO-IEC-10995).

例15:剝蝕方法之預示例Example 15: Pre-example of the erosion method

可產生包含一聚碳酸酯支持基板及一被注入有二氧化碳之碳資料層的光學資訊媒體。該媒體可以暴露於一雷射以使在該媒體上之位置剝蝕或變形,以將一電腦程式或檔案編碼至該媒體中。該媒體可接著以一習知CD或DVD光碟機讀取,以檢索該電腦程式或檔案。An optical information medium comprising a polycarbonate support substrate and a carbon data layer implanted with carbon dioxide can be produced. The medium can be exposed to a laser to erode or deform the location on the medium to encode a computer program or file into the medium. The media can then be read by a conventional CD or DVD player to retrieve the computer program or file.

例16:比較具有與不具有經氧化氣體製成之碟片之剝蝕的預示例Example 16: Comparison of pre-examples with ablation of discs made without oxidizing gas

具有一聚碳酸酯支持基板,一碳資料層,且在該資料層中具有或沒有被注入二氧化碳的所產生光學資訊媒體將比較其效能與使用壽命。可預期的是包括被注入二氧化碳之媒體在寫入效能與使用壽命測試中將是較佳的。An optical information medium having a polycarbonate support substrate, a carbon data layer, and with or without carbon dioxide injected in the data layer will compare its performance and lifetime. It is expected that media including carbon dioxide injected will be preferred in writing performance and lifetime testing.

例17:材料與方法Example 17: Materials and Methods

聚碳酸酯空白碟片係由如Bayer Material Science AG(Leverkusen,Germany)、General Electric Company(Fairfield,CT)、及Teijin Limited(Osaka,Japan)等各種來源購得。熔融矽石空白碟片係由如Corning Incorporated(Corning,NY)、Hoya Corporation(Tokyo,Japan)、及Schott AG(Mainz,Germany)等各種來源購得。Polycarbonate blank discs are commercially available from various sources such as Bayer Material Science AG (Leverkusen, Germany), General Electric Company (Fairfield, CT), and Teijin Limited (Osaka, Japan). Molten vermiculite blank discs are commercially available from various sources such as Corning Incorporated (Corning, NY), Hoya Corporation (Tokyo, Japan), and Schott AG (Mainz, Germany).

碲具有99.999%純度(Sigma Aldrich;St. Louis,MO;型錄452378,批號01948ER),碲沈積係以一電子束沈積系統(型號NRC3116;NRC Equipment Corp.(now Varian,Palo Alto,CA))來實施。該系統配備有一晶體感測器,以測量該等沈積膜之厚度。碳係由一碳石墨標靶(99.999%;Kurt J. Lesker Company,零件號碼EJTCXXX503A4)獲得。碲 has a purity of 99.999% (Sigma Aldrich; St. Louis, MO; catalogue 452378, lot 01948ER), and the yttrium deposition system is an electron beam deposition system (model NRC3116; NRC Equipment Corp. (now Varian, Palo Alto, CA)) To implement. The system is equipped with a crystal sensor to measure the thickness of the deposited films. The carbon system was obtained from a carbon graphite target (99.999%; Kurt J. Lesker Company, part number EJTCXXX503A4).

RF濺鍍是使用使用一PVD 75設備(Kurt J. Lesker Company;賓州匹茲堡)來實施。該系統構形成具有一RF功率源、三個可固持3英吋(7.62公分)標靶之磁控管槍、及用於兩濺鍍氣體之設備。該等標靶係排列成一向上濺鍍(sputter-up)構形,多數閘遮蔽三標靶之各標靶,多數基板安裝在一可被加熱至200℃之旋轉平台上,且該旋轉平台位於該等標靶上方。大部份的實驗是在沒有主動加熱該平台之情形下完成,由於沒有主動加熱,該平台之溫度於400w下隨著濺鍍時間增加逐漸增加,直到溫度到達大約60℃-70℃之最大值。在大約3小時後到達該最大溫度,在濺鍍前該室中之初始溫度通常是大約27℃,時間、標靶及濺鍍源會如在以下例子中之說明般地改變。RF sputtering was performed using a PVD 75 device (Kurt J. Lesker Company; Pittsburgh, PA). The system is constructed with an RF power source, three magnetron guns that hold a 3 inch (7.62 cm) target, and equipment for two sputtering gases. The targets are arranged in an upward sputter-up configuration, and most of the gates shield the targets of the three targets, and most of the substrates are mounted on a rotating platform that can be heated to 200 ° C, and the rotating platform is located Above the targets. Most of the experiments were carried out without actively heating the platform. Since there is no active heating, the temperature of the platform increases with the increase of sputtering time at 400w until the temperature reaches a maximum of about 60 ° C - 70 ° C. . The maximum temperature is reached after about 3 hours, and the initial temperature in the chamber prior to sputtering is typically about 27 ° C. The time, target, and sputtering source will vary as explained in the examples below.

例18:製備碟片95Example 18: Preparation of Disc 95

將一沒有塗層於其上、直徑120mm且厚度0.6mm之聚碳酸酯光碟安裝在該PVD 75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度係大約14nm。A polycarbonate disc without a coating thereon having a diameter of 120 mm and a thickness of 0.6 mm was mounted on the platform in the PVD 75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 14 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積40nm碲。基本壓力是5×10-5 托耳。For the second layer on the disc, a 40 nm crucible was deposited using an electron beam deposition system. The basic pressure is 5 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力濺鍍一碳石墨標靶,以65W在該石墨標靶上方發射電漿且供給該槍之功率以3W/s之速度上升至200W。當功率設定點到達時,開始倒數計時1小時。在倒數計時1小時結束後,開始倒數計時15分鐘且供給該槍之功率以3W/s之速度上升至400W。該閘在倒數計時15分鐘後關閉,所得之碳膜厚度是大約9nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure sputtered a carbon graphite target to emit plasma at 65 W above the graphite target and the power supplied to the gun rose to 200 W at a rate of 3 W/s. When the power set point arrives, the countdown starts for 1 hour. After the end of one hour of the countdown, the countdown was started for 15 minutes and the power supplied to the gun was increased to 400 W at a speed of 3 W/s. The gate was turned off after 15 minutes of countdown and the resulting carbon film thickness was approximately 9 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例19:製備碟片98Example 19: Preparation of Disc 98

將一沒有塗層於其上、直徑120mm且厚度0.6mm之聚碳酸酯光碟安裝在該PVD75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶15分鐘,所得之碳膜厚度係大約7nm。A polycarbonate disc without a coating thereon having a diameter of 120 mm and a thickness of 0.6 mm was mounted on the platform in the PVD75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400 W RF were sputtered with a carbon graphite target for 15 minutes, and the resulting carbon film thickness was about 7 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積40nm碲。基本壓力是5×10-5 托耳。For the second layer on the disc, a 40 nm crucible was deposited using an electron beam deposition system. The basic pressure is 5 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力濺鍍一碳石墨標靶,以65W在該石墨標靶上方發射電漿且供給該槍之功率以3W/s之速度上升至200W。當功率設定點到達時,開始倒數計時1小時。在倒數計時1小時結束後,開始倒數計時15分鐘且供給該槍之功率以3W/s之速度上升至400W。該閘在倒數計時15分鐘後關閉,所得之碳膜厚度是大約9nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure sputtered a carbon graphite target to emit plasma at 65 W above the graphite target and the power supplied to the gun rose to 200 W at a rate of 3 W/s. When the power set point arrives, the countdown starts for 1 hour. After the end of one hour of the countdown, the countdown was started for 15 minutes and the power supplied to the gun was increased to 400 W at a speed of 3 W/s. The gate was turned off after 15 minutes of countdown and the resulting carbon film thickness was approximately 9 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例20:製備碟片99Example 20: Preparation of Disc 99

將一沒有塗層於其上、直徑120mm且厚度0.6mm並具有170nm溝槽深度之聚碳酸酯光碟安裝在該PVD 75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶15分鐘,所得之碳膜厚度係大約7nm。A polycarbonate disc having no coating thereon, a diameter of 120 mm and a thickness of 0.6 mm and having a groove depth of 170 nm was mounted on the platform in the PVD 75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400 W RF were sputtered with a carbon graphite target for 15 minutes, and the resulting carbon film thickness was about 7 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積50nm碲。基本壓力是6×10-5 托耳。For the second layer on the disc, a 50 nm crucible was deposited using an electron beam deposition system. The basic pressure is 6 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在200W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度是大約1nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure and the magnetron power set at 200 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 1 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例21:製備碟片100Example 21: Preparation of Disc 100

將一沒有塗層於其上、直徑120mm且厚度0.6mm並具有170nm溝槽深度之聚碳酸酯光碟安裝在該PVD 75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度係大約14nm。A polycarbonate disc having no coating thereon, a diameter of 120 mm and a thickness of 0.6 mm and having a groove depth of 170 nm was mounted on the platform in the PVD 75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 14 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積61nm碲。基本壓力是3×10-5 托耳。For the second layer on the disc, a 61 nm crucible was deposited using an electron beam deposition system. The basic pressure is 3 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在200W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度是大約1nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure and the magnetron power set at 200 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 1 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例22:製備碟片101Example 22: Preparation of Disc 101

將一沒有塗層於其上、直徑120mm且厚度0.6mm並具有170nm溝槽深度之聚碳酸酯光碟安裝在該PVD 75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度係大約14nm。A polycarbonate disc having no coating thereon, a diameter of 120 mm and a thickness of 0.6 mm and having a groove depth of 170 nm was mounted on the platform in the PVD 75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 14 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積70nm碲。基本壓力是2×10-5 托耳。For the second layer on the disc, a 70 nm crucible was deposited using an electron beam deposition system. The basic pressure is 2 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在200W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度是大約1nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure and the magnetron power set at 200 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 1 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例23:製備碟片123Example 23: Preparation of a disc 123

將一沒有塗層於其上、直徑120mm且厚度0.6mm並具有60nm溝槽深度之聚碳酸酯光碟安裝在該PVD 75設備中之平台上。對在該碟片上之第一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在400W RF之磁控管功率濺鍍一碳石墨標靶30分鐘。該卡普曼壓力是一設備參數,且該卡普曼壓力值接近在該電漿室中之壓力。所得之碳膜厚度係大約14nm。A polycarbonate disc having no coating thereon, a diameter of 120 mm and a thickness of 0.6 mm and having a groove depth of 60 nm was mounted on the platform in the PVD 75 apparatus. For the first layer on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 were used as the sputtering gas and the total Kapman held at 3 mTorr was utilized. The pressure and the magnetron power set at 400W RF were sputtered with a carbon graphite target for 30 minutes. The Kapman pressure is a device parameter and the Kapman pressure value is close to the pressure in the plasma chamber. The resulting carbon film thickness was about 14 nm.

對在該碟片上之第二層而言,利用電子束沈積系統沈積60nm碲。基本壓力是5×10-5 托耳。For the second layer on the disc, a 60 nm crucible was deposited using an electron beam deposition system. The basic pressure is 5 x 10 -5 Torr.

對在該碟片上之第三與最後一層而言,以98%(v/v)Ar與2%(v/v)CO2 作為該濺鍍氣體且利用保持在3毫托耳之總卡普曼壓力及設定在200W RF之磁控管功率濺鍍一碳石墨標靶30分鐘,所得之碳膜厚度是大約1nm。For the third and last layers on the disc, 98% (v/v) Ar and 2% (v/v) CO 2 are used as the sputtering gas and the total card maintained at 3 mTorr is utilized. The Puman pressure and the magnetron power set at 200 W RF were sputtered with a carbon graphite target for 30 minutes, and the resulting carbon film thickness was about 1 nm.

所得碟片具有一聚碳酸酯支持基板、一碳與二氧化碳反應性材料層、一碲層、及一第二碳與二氧化碳反應性材料層。The resulting disc has a polycarbonate support substrate, a carbon and carbon dioxide reactive material layer, a tantalum layer, and a second carbon and carbon dioxide reactive material layer.

例24:用以將資料寫至碟片之一般方法Example 24: General method for writing data to a disc

使用一Pulstec ODU1000設備(Pulstec Industrial Co.,Ltd.;Hamamatsu-City;Japan)以設定在650nm之波長之二極體雷射在各種碟片上做記號。所有寫入係以1X速度(3.49m/秒)進行,除非另外指明,否則所有寫入均在單軌上進行。在所有情形中均看到一HF信號,且使用一顯微鏡確實觀察到多數記號。A Pulstec ODU1000 device (Pulstec Industrial Co., Ltd.; Hamamatsu-City; Japan) was used to mark the various discs with a diode laser set at a wavelength of 650 nm. All writes were performed at 1X speed (3.49 m/sec) and all writes were performed on a single track unless otherwise indicated. An HF signal was seen in all cases and most of the marks were actually observed using a microscope.

例25:將資料寫至碟片95Example 25: Writing data to disc 95

寫至碟片編號95係以各種功率等級:4mW、5mW、6mW、8mW、10mW、11mW、12mW、13mW、15mW、16mW、及20mW進行。以33%負載使用槽形與多脈衝兩種方式,以下記號長度被成功寫入且以顯微鏡確認:3T(398nm)、5T(663nm)、及14T(1857nm)。Written to disc number 95 is performed at various power levels: 4 mW, 5 mW, 6 mW, 8 mW, 10 mW, 11 mW, 12 mW, 13 mW, 15 mW, 16 mW, and 20 mW. Using a trough and a multi-pulse at 33% load, the following mark lengths were successfully written and confirmed by microscopy: 3T (398 nm), 5T (663 nm), and 14T (1857 nm).

例26:將資料寫至碟片98Example 26: Writing data to disc 98

寫至碟片編號98係以各種功率等級:3mW、4mW、5mW、6mW、7mW、8mW、9mW、10mW、12mW、14mW、15mW、16mW、及20mW進行。以33%負載使用一多脈衝方式,以下記號長度被成功寫入且以顯微鏡確認:3T(398nm)、4T(530nm)、5T(663nm)、7T(928nm)、及14T(1857nm)。Written to disc number 98 is performed at various power levels: 3 mW, 4 mW, 5 mW, 6 mW, 7 mW, 8 mW, 9 mW, 10 mW, 12 mW, 14 mW, 15 mW, 16 mW, and 20 mW. Using a multi-pulse mode with a 33% load, the following mark lengths were successfully written and confirmed by microscopy: 3T (398 nm), 4T (530 nm), 5T (663 nm), 7T (928 nm), and 14T (1857 nm).

例27:將資料寫至碟片99Example 27: Writing data to disc 99

寫至碟片編號99係以各種功率等級:3mW、3.5mW、4mW、4.5mW、5mW、6mW、7mW、8mW、及9mW進行。以33%負載使用一多脈衝方式,以下記號長度被成功寫入且以顯微鏡確認:3T(398nm)、4T(530nm)、及5T(663nm)。Written to disc number 99 is performed at various power levels: 3 mW, 3.5 mW, 4 mW, 4.5 mW, 5 mW, 6 mW, 7 mW, 8 mW, and 9 mW. Using a multi-pulse mode with a 33% load, the following mark lengths were successfully written and confirmed by microscopy: 3T (398 nm), 4T (530 nm), and 5T (663 nm).

例28:將資料寫至碟片100Example 28: Writing data to the disc 100

寫至碟片編號100係以各種功率等級:3.5mW、4mW、4.5mW、5mW、6mW、及7mW進行。以33%負載使用一多脈衝方式,以下記號長度被成功寫入且以顯微鏡確認:3T(398nm)、4T(530nm)、7T(928nm)、及14T(1857nm)。亦進行以4mW連續寫入具有由3T(398nm)至14T(1857nm)之所有記號長度數個軌道且加以確認。The write to disc number 100 is performed at various power levels: 3.5 mW, 4 mW, 4.5 mW, 5 mW, 6 mW, and 7 mW. Using a multi-pulse mode with a 33% load, the following mark lengths were successfully written and confirmed by microscopy: 3T (398 nm), 4T (530 nm), 7T (928 nm), and 14T (1857 nm). It was also confirmed that a plurality of tracks having a length of all marks from 3T (398 nm) to 14T (1857 nm) were continuously written at 4 mW and confirmed.

例29:將資料寫至碟片101Example 29: Writing data to disc 101

寫至碟片編號101係以各種功率等級:4mW、5mW、6mW、7mW、及8mW進行。以33%負載使用一多脈衝方式,以下記號長度被成功寫入且以顯微鏡確認:3T(398nm)、4T(530nm)、及14T(1857nm)。The writing to the disc number 101 is performed at various power levels: 4 mW, 5 mW, 6 mW, 7 mW, and 8 mW. Using a multi-pulse mode with a 33% load, the following mark lengths were successfully written and confirmed by microscopy: 3T (398 nm), 4T (530 nm), and 14T (1857 nm).

例30:將資料寫至碟片123Example 30: Writing data to the disc 123

寫至碟片編號123係以各種功率等級:3.5mW、4mW、4.5mW、及8mW進行。以33%負載使用一多脈衝方式,50軌之3T(398nm)記號長度之連續寫入被成功寫入且以顯微鏡確認。The disc number 123 is written at various power levels: 3.5 mW, 4 mW, 4.5 mW, and 8 mW. A multi-pulse mode was used with a 33% load, and a continuous write of a 3T (398 nm) mark length of 50 tracks was successfully written and confirmed by a microscope.

例31:將資料寫至碟片之摘錄Example 31: Writing an excerpt to a disc

下表摘錄各種碟片及所得之結果。The following table extracts the various discs and the results obtained.

例32:材料與方法Example 32: Materials and Methods

聚碳酸酯空白碟片係由如Bayer Material Science AG(Leverkusen,Germany)、General Electric Company(Fairfield,CT)、及Teijin Limited(Osaka,Japan)等各種來源購得。熔融矽石空白碟片係由如Corning Incorporated(Corning,NY)、Hoya Corporation(Tokyo,Japan)、及Schott AG(Mainz,Germany)等各種來源購得。Polycarbonate blank discs are commercially available from various sources such as Bayer Material Science AG (Leverkusen, Germany), General Electric Company (Fairfield, CT), and Teijin Limited (Osaka, Japan). Molten vermiculite blank discs are commercially available from various sources such as Corning Incorporated (Corning, NY), Hoya Corporation (Tokyo, Japan), and Schott AG (Mainz, Germany).

使用一具有銅底層板之0.125英吋(3.175mm)碲標靶,在碲上進行濺鍍沈積。Sputter deposition was performed on the crucible using a 0.125 inch (3.175 mm) crucible target with a copper backsheet.

RF濺鍍是使用使用一PVD 75設備(Kurt J. Lesker Company;賓州匹茲堡)來實施。該系統構形成具有一RF功率源、三個可固持3英吋(7.62公分)標靶之磁控管槍、及用於兩濺鍍氣體之設備。該等標靶係排列成一向上濺鍍(sputter-up)構形,多數閘遮蔽三標靶之各標靶,多數基板安裝在一可被加熱至200℃之旋轉平台上,且該旋轉平台位於該等標靶上方。所有實驗均是在沒有主動加熱該平台之情形下完成,在該標靶與該基板間之距離是22公分。在濺鍍前該室中之初始溫度通常是大約27℃,時間、標靶及濺鍍源會如在以下例子中之說明般地改變。RF sputtering was performed using a PVD 75 device (Kurt J. Lesker Company; Pittsburgh, PA). The system is constructed with an RF power source, three magnetron guns that hold a 3 inch (7.62 cm) target, and equipment for two sputtering gases. The targets are arranged in an upward sputter-up configuration, and most of the gates shield the targets of the three targets, and most of the substrates are mounted on a rotating platform that can be heated to 200 ° C, and the rotating platform is located Above the targets. All experiments were performed without actively heating the platform, and the distance between the target and the substrate was 22 cm. The initial temperature in the chamber prior to sputtering is typically about 27 ° C. The time, target, and sputtering source will vary as explained in the examples below.

例33:製備包含碲及變化二氧化碳膜之碟片系列Example 33: Preparation of a disc series containing niobium and varying carbon dioxide films

利用PVD 75將一系列具有或沒有二氧化碳之Te膜沈積在一組聚碳酸酯光碟上,該等光碟上沒有塗層,直徑為120nn且厚度為0.6mm。對於沈積在該等碟片上之系列的Te膜而言,以下參數保持不變:該碲標靶被濺鍍,功率為20WDC,卡普曼壓力為7毫托耳,基板係以20rpm旋轉,且該基板暴露於該被濺鍍標靶12分鐘。在該濺鍍氣體中之二氧化碳濃度改變,使得在該系列中之各膜被在該濺鍍氣體中之單位為原子%之二氧化碳不同濃度濺鍍。二氧化碳之濃度為0%、1%、2%、2.3%、2.5%、2.7%、3%、4%及10%。該濺鍍氣體之剩餘部份是氬。A series of Te films with or without carbon dioxide were deposited on a set of polycarbonate discs using PVD 75, which had no coating on them and had a diameter of 120 nn and a thickness of 0.6 mm. For a series of Te films deposited on the discs, the following parameters remain unchanged: the target is sputtered, the power is 20 WDC, the Kapman pressure is 7 mTorr, and the substrate is rotated at 20 rpm. And the substrate was exposed to the sputtered target for 12 minutes. The concentration of carbon dioxide in the sputtering gas is varied such that each film in the series is sputtered at different concentrations of carbon dioxide in units of atomic % of the sputtering gas. The concentration of carbon dioxide is 0%, 1%, 2%, 2.3%, 2.5%, 2.7%, 3%, 4% and 10%. The remainder of the sputtering gas is argon.

例34:二氧化碳在Te資料層中之效果的評定Example 34: Evaluation of the effect of carbon dioxide in the Te data layer

使用一光碟測量系統(Argus eco;dr. schwab Inspection Technology GmbH;Aichach,Germany)每天分析由前述例子所得之碟片,該等膜之吸收度與反射率隨時間經過繪製成圖。The discs obtained from the foregoing examples were analyzed daily using a disc measuring system (Argus eco; dr. schwab Inspection Technology GmbH; Aichach, Germany), and the absorbance and reflectance of the films were plotted over time.

吸收度結果顯示在第7圖中,在第7圖中之各資料點係利用由該吸收度測量值減去該碟片製成之同一天所獲得初始吸收度(光學密度)而獲得,且由在該碟片產生之一天內利用該Argus設備進行之第一次測量開始,相對於天數繪製成圖。The absorbance results are shown in Fig. 7, and the data points in Fig. 7 are obtained by subtracting the initial absorbance (optical density) obtained on the same day that the disc is made from the absorbance measurement, and The mapping is plotted against the number of days starting with the first measurement made with the Argus device within one day of the disc creation.

反射率結果係顯示於第8圖中,且列表如下。該圖表顯示由製備該等碟片開始,相對於天數之該等碟片的百分比反射率。The reflectance results are shown in Figure 8 and are listed below. The graph shows the percent reflectance of the discs relative to the number of days from the preparation of the discs.

第7與8圖之原始資料表列如下。在表中之天數不是整數,因為它們係由產生該碟片開始,依據小時與分鐘數計算而得。The raw data sheets of Figures 7 and 8 are listed below. The number of days in the table is not an integer because they are calculated from the hours and minutes since the disc was produced.

由具有0%二氧化碳之碟片所獲得之資料Information obtained from discs with 0% carbon dioxide

由具有1%二氧化碳之碟片所獲得之資料Information obtained from discs with 1% carbon dioxide

由具有2%二氧化碳之碟片所獲得之資料Information obtained from discs with 2% carbon dioxide

由具有2.3%二氧化碳之碟片所獲得之資料Information obtained from discs with 2.3% carbon dioxide

由具有2.5%二氧化碳之碟片所獲得之資料Information obtained from discs with 2.5% carbon dioxide

由具有2.7%二氧化碳之碟片所獲得之資料Information obtained from discs with 2.7% carbon dioxide

由具有3%二氧化碳之碟片所獲得之資料Information obtained from discs with 3% carbon dioxide

由具有4%二氧化碳之碟片所獲得之資料Information obtained from discs with 4% carbon dioxide

由具有10%二氧化碳之碟片所獲得之資料Information obtained from discs with 10% carbon dioxide

利用在該濺鍍氣體中10%CO2 所產生之Te膜隨著時間之吸收度變化顯示比其他膜小很多,但它亦具有較低之反射率值,該較低反射率至少是部份因為該膜之較高透明度的緣故。該較高透明度係由比其他膜低之吸收度值來顯示。由於其較佳之穩定性,這膜對於使用在歸檔光碟中特別具有吸引力。The change in absorbance of the Te film produced by 10% CO 2 in the sputtering gas over time is much smaller than that of other films, but it also has a lower reflectance value, which is at least partially Because of the higher transparency of the film. This higher transparency is shown by lower absorbance values than other films. Due to its better stability, this film is particularly attractive for use in archived discs.

例35:製備碟片356Example 35: Preparation of Disc 356

三膜依序沈積在一具有多數溝槽之聚碳酸酯光碟基板上,使得一被注入有CO2 之碲層被夾合在兩碳層之間。該基板直徑為120mm且厚度為0.6mm。The three films are sequentially deposited on a polycarbonate optical disk substrate having a plurality of grooves such that a layer of CO 2 infused with CO 2 is sandwiched between the two carbon layers. The substrate has a diameter of 120 mm and a thickness of 0.6 mm.

該基板被安裝在該PVD 75之平台上,且具溝槽側面向該等槍。該第一層係如下地沈積:以400W DC功率及7毫托耳卡普曼壓力濺鍍一1/8"厚度之石墨標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTCXXX503A2,批號VPU0140000)。濺鍍氣體是98%(v/v)氬氣與2%(v/v)二氧化碳,該基板以20rpm旋轉。該基板暴露於該被濺鍍標靶10分鐘。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns. The first layer was deposited by sputtering a 1/8" thick graphite target at 400 W DC power and 7 mTorr Kapman pressure (Kurt J. Lesker Co., Clariton, PA, part number EJTCXXX503A2, Lot number VPU0140000). The sputtering gas was 98% (v/v) argon and 2% (v/v) carbon dioxide, and the substrate was rotated at 20 rpm. The substrate was exposed to the sputtered target for 10 minutes.

該第二層係如下地沈積:以20W DC功率及7毫托耳卡普曼壓力濺鍍一具有一銅底層板之1/8"厚度之Te標靶(Plasmaterials,批號PLA5420787)。濺鍍氣體是98%(v/v)氬氣與2%(v/v)二氧化碳,該基板以20rpm旋轉。該基板暴露於該被濺鍍標靶6分鐘2秒。The second layer was deposited by sputtering a 1/8" thick Te target (Plasmaterials, lot number PLA5420787) with a copper backing plate at 20 W DC power and 7 mTorr Kapman pressure. It was 98% (v/v) argon and 2% (v/v) carbon dioxide, and the substrate was rotated at 20 rpm. The substrate was exposed to the sputtered target for 6 minutes and 2 seconds.

第三層之沈積參數與第一層之沈積參數相同。The deposition parameters of the third layer are the same as those of the first layer.

碟片356具有一聚碳酸酯支持基板、一第一7nm碳層、一大約20nm碲與二氧化碳資料層、及一第二7nm碳層。Disc 356 has a polycarbonate support substrate, a first 7 nm carbon layer, a 20 nm tantalum and carbon dioxide data layer, and a second 7 nm carbon layer.

例36:用以將資料寫至碟片之一般方法Example 36: General method for writing data to a disc

使用一Pulstec ODU1000設備(Pulstec Industrial Co.,Ltd.;Hamamatsu-City;Japan)以設定在650nm之波長之二極體雷射做記號。所有寫入係以1X速度(3.49m/秒)進行,除非另外指明,否則所有寫入均在單軌上進行。在所有情形中均看到一HF信號,且使用一顯微鏡確實觀察到多數記號。A Pulstec ODU1000 device (Pulstec Industrial Co., Ltd.; Hamamatsu-City; Japan) was used to mark the diode laser set at a wavelength of 650 nm. All writes were performed at 1X speed (3.49 m/sec) and all writes were performed on a single track unless otherwise indicated. An HF signal was seen in all cases and most of the marks were actually observed using a microscope.

例37:將資料寫至碟片356Example 37: Writing data to disc 356

寫至碟片編號356係藉以各種功率等級將一混合資料格式反覆寫至該碟片,該功率等級經過篩選以決定產生最小集合抖動值之設定值。相對於測量被寫入凹坑長度變化之資料對資料(data-to-data)抖動,資料對時脈抖動測量相對一時脈信號之任何凹坑之前緣的時間變化。下表顯示在該碟片之兩區域中所獲得的資料。Written to disc number 356, a mixed data format is repeatedly written to the disc at various power levels, and the power level is filtered to determine the set value that produces the minimum aggregate jitter value. The data versus clock jitter is measured relative to the temporal change of any pit front edge of a clock signal relative to the data-to-data jitter that is measured as the change in pit length. The table below shows the information obtained in the two areas of the disc.

這些結果顯示混合資料可寫至該碟片,且該寫入功率可以藉監測抖動值而最佳化。These results show that the mixed data can be written to the disc and the write power can be optimized by monitoring the jitter value.

例38:製備示範碟片911與912Example 38: Preparation of exemplary discs 911 and 912

該基板被安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJBPCU03A2,批號VPU014670/4-8-08);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為30分鐘。該SiO2 膜厚度大約為35nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns that rotate as they are deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJBPCU03A2, batch number VPU014670/4- 8-08); power is 400 W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 30 minutes. The SiO 2 film thickness is about 35 nm.

第二層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,Livermore,CA,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是15分鐘。這碳膜厚度大約是19nm。The second layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, Livermore, CA, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; The main component is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 15 minutes. The thickness of this carbon film is about 19 nm.

該第三層係如下地沈積:濺鍍一銅底層板之1/8"厚度之Te標靶(Plasmaterials,批號PLA489788);功率為20W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是5:23分鐘。這碲膜厚度大約是20nm。The third layer is deposited by sputtering a 1/8" thick Te target (Plasmaterials, lot number PLA489788) of a copper backing plate; a power of 20 W DC, a Kapman pressure of 7 mTorr; The main component of the gas is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 5:23 minutes. This film thickness is about 20 nm.

第四層之沈積條件與第二層之沈積條件相同,但沈積時間是10分鐘。第四層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是10分鐘。這碳膜厚度大約是13nm。The deposition conditions of the fourth layer were the same as those of the second layer, but the deposition time was 10 minutes. The fourth layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, lot number PLA489556); the power is 400W DC, and the Kapman pressure is 7 mTorr; the main component of the sputtering gas is Argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 10 minutes. The thickness of this carbon film is about 13 nm.

碟片911與912具有一聚碳酸酯支持基板、一35nmSiO2 中間介電層、一第一19nm碳與二氧化碳層、一大約20nm碲與二氧化碳資料層、及一第二13nm碳與二氧化碳層。Discs 911 and 912 have a polycarbonate support substrate, a 35 nm SiO 2 intermediate dielectric layer, a first 19 nm carbon and carbon dioxide layer, a approximately 20 nm germanium and carbon dioxide data layer, and a second 13 nm carbon and carbon dioxide layer.

使用一Spaceline II DVD線將一第二聚碳酸酯支持物結合在該等碟片上,所使用之黏著劑是以3500-3600rpm旋轉之0.9-1.1克的Pancure 1503。該黏著劑以4.5kVA之硬化功率硬化1.5-1.7秒。A second polycarbonate support was bonded to the discs using a Spaceline II DVD cable using an adhesive of 0.9-1.1 grams of Pancure 1503 rotated at 3500-3600 rpm. The adhesive is hardened at a hardening power of 4.5 kVA for 1.5-1.7 seconds.

例39:示範碟片911與912在市售播放器中良好地作用Example 39: Exemplary discs 911 and 912 work well in commercially available players

以容許使用一標準市售DVD播放器播放之方式記錄示範碟片911與912,且在寫入前先取得適當雷射功率設定值與脈衝方式值。The exemplary discs 911 and 912 are recorded in a manner that allows playback using a standard commercial DVD player, and the appropriate laser power setpoint and pulse mode values are obtained prior to writing.

預寫入評定步驟包括反射率與對讀取功率誘發調制(“RPIM”)之電阻的例行測試。反射率之測試包含以由該碟片資料區域之最小至最大徑向範圍的任意間隔映射該碟片表面之反射率,這是利用一Pulstec ODU-1000系統來達成,該Pulstec ODU-1000系統包括ODU控制單元、一類比至數位信號二元化器、一具有一光/機械碟片驅動單元之多信號產生器(MSG4)、及一Yokogawa DL1640L數位示波器,且兩者均在電腦控制下操作。測試自動軟體存入與記錄來自該數位示波器之讀數,且一RPIM研讀係使用相同設備達成。該RPIM評定該碟片對改變之平均阻抗及在重覆、延長之例如1.0毫瓦特等低等級雷射曝光之影響下的局部反射率。兩碟片均通過該預寫入評定。The pre-write evaluation step includes a reflectance and a routine test of the resistance to read power induced modulation ("RPIM"). The reflectance test involves mapping the reflectivity of the surface of the disc at any interval from the smallest to the largest radial extent of the disc data region, which is achieved using a Pulstec ODU-1000 system, including the Pulstec ODU-1000 system. The ODU control unit, a analog-to-digital signal binaryizer, a multi-signal generator (MSG4) having an optical/mechanical disc drive unit, and a Yokogawa DL1640L digital oscilloscope, both of which operate under computer control. The test automation software deposits and records readings from the digital oscilloscope, and a RPIM study is performed using the same device. The RPIM evaluates the local reflectance of the disc for varying average impedance and for repeated, extended, low-level laser exposures such as 1.0 milliwatts. Both discs were evaluated by this pre-write.

在完成該預寫入測試後,使用前述設備及一Yokogawa TIA520時間間隔分析器進行預備功率與寫入方式最佳化,用以在播放時評估被寫入資料。該時間間隔分析器係在一提供一先前被寫入資料之即時圖示以指導對功率與方式設定之調整,以進行後續之寫入嘗試。在手動控制下使用該ODU-1000,一包含一所有標準DVD記號與空間之虛擬隨機組合之標準測試圖案以各種功率與寫入方式被重覆地寫至該等碟片。記下在各寫入期間後各記號種類(3T-14T)之各記號長度的所得平均與標準偏差,且使用這些值與公稱值之偏差作為需要方式及/或雷射寫入功率調整之指標。這重覆工作之結果是近似決定該碟片之最佳寫入功率與方式設定。在自動測試之後,以下所述,進行手動控制之方式與功率最佳化。After the pre-write test is completed, the preparatory power and write modes are optimized using the aforementioned device and a Yokogawa TIA520 time interval analyzer to evaluate the data being written during playback. The time interval analyzer provides an instant representation of a previously written data to guide adjustments to power and mode settings for subsequent write attempts. The ODU-1000 is used under manual control, and a standard test pattern containing a virtually random combination of all standard DVD marks and spaces is repeatedly written to the discs in various power and write modes. Make a note of the resulting average and standard deviation of each symbol length for each symbol type (3T-14T) after each write period, and use the deviation of these values from the nominal value as an indication of the required mode and/or laser write power adjustment. . The result of this repetitive work is an approximate decision on the optimal write power and mode setting for the disc. After the automatic test, the manual control method and power optimization are performed as described below.

使用一(n-2)多脈衝DVD+R寫入方式,在該方式內之真正最佳功率及各參數之值會隨著碟片不同而稍微不同。一重要度量標準,該組合,或“貯體(bucket)”,資料對時脈抖動亦會隨著碟片不同而稍微不同。由於該抖動代表在虛擬隨機測試圖案中所有記號之前與後脈之時點的標準偏差,其最小化是該最佳化儀式之一所需結果。對隔離之單軌效能與多軌效能兩者測量抖動,在其中雷射寫入功率改變且測量各功率設定之抖動的自動測試後,所觀察到之最小多軌抖動的範圍是4.8ns至5.24ns。最佳功率之範圍是15.0至16.0毫瓦,寫入速度是標準1x、恆定線性速度(CLV)。Using an (n-2) multi-pulse DVD+R write mode, the true optimum power and the value of each parameter in this mode will vary slightly from disc to disc. An important metric, the combination, or "bucket", the data jitter on the clock will vary slightly from disc to disc. Since this jitter represents the standard deviation of the time points before and after the all veins in the virtual random test pattern, its minimization is the desired result of one of the optimization rituals. The jitter is measured for both the monorail performance and the multi-track performance of the isolation. After the laser write power is changed and the jitter of each power setting is measured, the minimum multi-track jitter observed is in the range of 4.8 ns to 5.24 ns. . The optimum power range is 15.0 to 16.0 mW and the write speed is standard 1x, constant linear velocity (CLV).

在前述最佳化工作後,該標準DVD格式之資料成功地被寫至三個碟片之各碟片,一連結至在該碟片技術之一介紹及由Church of Jesus Christ of Latter-day Saints,Les Olson Company(Sharp複印機與印表機之一經銷商)及THX Ltd.所提供與授權之多媒體內容的DVD選單結構使用該ODU-1000及一Eclipse Data Technologies影像編碼器單元,被寫入至該碟片。來自該Eclipse編碼器之資料藉一Apogee Labs TTL至ECL轉換器修正等級,且透過該Pulstec多信號產生器串流至該ODU-1000雷射頭中,它在此使用先前導出之寫入方式與功率設定值以1xCLV被寫在原型碟片上。After the aforementioned optimization work, the standard DVD format data was successfully written to each of the three discs, one linked to one of the disc technologies introduced by Church of Jesus Christ of Latter-day Saints The DVD menu structure of the licensed multimedia content provided by Les Olson Company (a distributor of Sharp copiers and printers) and THX Ltd. is written to the ODU-1000 and an Eclipse Data Technologies image encoder unit. The disc. The data from the Eclipse encoder is graded by an Apogee Labs TTL to ECL converter and streamed through the Pulstec multi-signal generator to the ODU-1000 laser head, where it uses the previously derived write mode and The power setpoint is written on the prototype disc at 1xCLV.

在記錄後,該等碟片已在數個市售DVD播放器中密集地播放測試且已發現沒有阻止成功檢索該被寫入資料的錯誤。這例子證明視訊內容可以被寫入至該等碟片,且該等碟片可在不同市售DVD播放器中重覆地播放。After recording, the discs have been played intensively in several commercially available DVD players and have found no errors preventing the successful retrieval of the written material. This example demonstrates that video content can be written to the discs and that the discs can be played repeatedly in different commercially available DVD players.

例40:製備具有TeSe合金資料與碳層之碟片944與945Example 40: Preparation of Discs 944 and 945 with TeSe Alloy Data and Carbon Layer

四個膜依序被沈積在一具有循跡軌道之聚碳酸酯光碟基板[D27W40A-LB]上,該基板直徑為120mm且厚度為0.6mm。所有四個膜係在沒有中斷真空之情形下沈積。The four films were sequentially deposited on a polycarbonate optical disk substrate [D27W40A-LB] having a tracking track having a diameter of 120 mm and a thickness of 0.6 mm. All four film systems were deposited without interrupting the vacuum.

該基板係安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為36:52分鐘。該膜厚度大約為45nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns, the platform rotating as it is deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 36:52 minutes. The film thickness is about 45 nm.

第二層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,Livermore,CA,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是13:46分鐘。這膜厚度大約是19nm。The second layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, Livermore, CA, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; The main component is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 13:46 minutes. The film thickness is about 19 nm.

該第三層係如下地沈積:濺鍍一結合於一銅底層板之含有Te,78.4原子%及Se,21.6原子%之1/8"厚度標靶(Plasmaterials,Livermore,CA)。該標靶具有一透過暴露該結合劑而被濺鍍之部份,施加至陰極之功率為20W DC,卡普曼壓力為3毫托耳;該濺鍍氣體是Ar;沈積時間是4:18分鐘。這膜厚度大約是20nm。The third layer is deposited by sputtering a 1/8" thickness target (Plasmaterials, Livermore, CA) containing Te, 78.4 at% and Se, 21.6 at% bonded to a copper backsheet. There is a portion that is sputtered by exposing the binder, the power applied to the cathode is 20 W DC, the Kapman pressure is 3 mTorr; the sputtering gas is Ar; the deposition time is 4:18 minutes. The film thickness is approximately 20 nm.

該第四層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是9:25分鐘。這膜厚度大約是13nm。The fourth layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; the main component of the sputtering gas It is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 9:25 minutes. The film thickness is about 13 nm.

所得之碟片具有一聚碳酸酯支持基板、一45nmSiO2 介電中間層、一19nm碳與二氧化碳之層、一大約20nmTeSe合金資料層、及一13nm碳與二氧化碳層。The resulting disc had a polycarbonate support substrate, a 45 nm SiO 2 dielectric interlayer, a 19 nm layer of carbon and carbon dioxide, an approximately 20 nm TeSe alloy data layer, and a 13 nm carbon and carbon dioxide layer.

例41:具有TeSe合金資料層之碟片944與945之特性鑑定Example 41: Characterization of Discs 944 and 945 with TeSe Alloy Data Layer

使用關於示範碟片911與912之前述一般方法評定TeSe合金資料碟片。雖然資料記號被成功地寫至該等碟片,但有一明顯的“穩定時間(settling time)”,在穩定時間期間,該抖動值在寫入後改變數分鐘。這些TeSe合金資料碟片被努力地最佳化以將穩定時間效應減至最小。The TeSe alloy data discs were evaluated using the general methods described above with respect to the exemplary discs 911 and 912. Although the data token was successfully written to the discs, there is a significant "settling time" during which the jitter value changes for a few minutes after writing. These TeSe alloy data discs have been continually optimized to minimize stabilizing time effects.

例42:製備一具有鉻資料與碳層之碟片Example 42: Preparation of a disc with chromium data and carbon layer

四個膜依序被沈積在一具溝槽之聚碳酸酯光碟基板上,該基板直徑為120mm且厚度為0.6mm。所有四個膜係在沒有中斷真空之情形下沈積。Four films were sequentially deposited on a grooved polycarbonate optical disk substrate having a diameter of 120 mm and a thickness of 0.6 mm. All four film systems were deposited without interrupting the vacuum.

該基板係安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。該膜厚度大約為45nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns, the platform rotating as it is deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

第二層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,Livermore,CA,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是15:20分鐘。這膜厚度大約是19nm。The second layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, Livermore, CA, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; The main component is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 15:20 minutes. The film thickness is about 19 nm.

該第三層係如下地沈積:濺鍍一結合於一銅底層板之1/8"厚度Cr標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTCRXX353A2,批號L5791/D05/601713);功率為20W DC,卡普曼壓力為3毫托耳;該濺鍍氣體是Ar;沈積時間是2:49分鐘。這膜厚度大約是20nm。The third layer is deposited by sputtering a 1/8" thick Cr target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTCRXX353A2, lot number L5791/D05/601713) The power is 20 W DC, the Kapman pressure is 3 mTorr; the sputtering gas is Ar; the deposition time is 2:49 minutes. The film thickness is about 20 nm.

該第四層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是10:30分鐘。這膜厚度大約是13nm。The fourth layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; the main component of the sputtering gas It is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 10:30 minutes. The film thickness is about 13 nm.

所得之碟片具有一第一聚碳酸酯支持基板、一45nmSiO2 介電中間層、一19nm碳與二氧化碳之層、一大約20nm鉻資料層、一13nm碳與二氧化碳層、及一第二聚碳酸酯支持基板。The resulting disc has a first polycarbonate support substrate, a 45 nm SiO 2 dielectric interlayer, a 19 nm carbon and carbon dioxide layer, a 20 nm chromium data layer, a 13 nm carbon and carbon dioxide layer, and a second polycarbonate. Ester support substrate.

例43:具有鉻資料層與碳層之碟片之特性鑑定Example 43: Characterization of discs with chromium data layers and carbon layers

這碟片以大於3.5mW通過讀取功率誘發調制(“RPIM”)測試,這表示該碟片對讀取功率雷射強度極具耐性。3T與4T記號兩者被做在該碟片中,但該記號品質是有些雜音的。寫入方式尚未被最佳化。This disc is tested by a read power induced modulation ("RPIM") at greater than 3.5 mW, which indicates that the disc is extremely resistant to read power laser intensities. Both the 3T and 4T marks are made in the disc, but the quality of the mark is somewhat murmur. The write mode has not been optimized.

例44:具有TeSe資料層但缺少碳層之碟片966之製備與分析Example 44: Preparation and Analysis of Disc 966 with TeSe Data Layer but Missing Carbon Layer

兩膜依序被沈積在一具溝槽之聚碳酸酯光碟基板上,該基板直徑為120mm且厚度為0.6mm。所有兩膜係在沒有中斷真空之情形下沈積。The two films were sequentially deposited on a grooved polycarbonate optical disk substrate having a diameter of 120 mm and a thickness of 0.6 mm. All two membrane systems were deposited without interrupting the vacuum.

該基板係安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。該膜厚度大約為45nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns, the platform rotating as it is deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

第二層係如下地沈積:濺鍍一化合物TeSe標靶(Plasmaterials,Livermore,CA,批號PLA489556),該標靶具有Te78 Se22 之比例。這膜厚度大約是20nm。The second layer was deposited by sputtering a compound TeSe target (Plasmaterials, Livermore, CA, lot number PLA489556) with a ratio of Te 78 Se 22 . This film thickness is approximately 20 nm.

所得之碟片具有一第一聚碳酸酯支持基板、一45nmSiO2 介電中間層、及一20nmTe78 Se22 資料層。The resulting disc had a first polycarbonate support substrate, a 45 nm SiO 2 dielectric interlayer, and a 20 nm Te 78 Se 22 data layer.

該碟片未在0.8mW通過該讀取功率誘發調制(“RPIM”)測試,這表示在缺少一碳層時,光碟機所使用之低讀取功率會破壞TeSe合金資料層。在未通過這基本測試之後,不再進一步進行這碟片之特性鑑定。The disc was not subjected to the read power induced modulation ("RPIM") test at 0.8 mW, which indicates that the low read power used by the optical disc would destroy the TeSe alloy data layer in the absence of a carbon layer. After the basic test is not passed, the characterization of the disc is not further performed.

例45:具有Te資料層但缺少碳層之碟片967之製備與分析Example 45: Preparation and Analysis of Disc 967 with Te Data Layer but Missing Carbon Layer

三膜依序被沈積在一具溝槽之聚碳酸酯光碟基板上,該基板直徑為120mm且厚度為0.6mm。所有三膜係在沒有中斷真空之情形下沈積。The three films were sequentially deposited on a grooved polycarbonate optical disk substrate having a diameter of 120 mm and a thickness of 0.6 mm. All three membrane systems were deposited without interrupting the vacuum.

該基板係安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。該膜厚度大約為45nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns, the platform rotating as it is deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

第二層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之Te標靶(Plasmaterials,批號PLA489788);功率為20W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%;沈積時間是5:23分鐘。這碲膜厚度大約是20nm。The second layer is deposited by sputtering a 1/8" thick Te target (Plasmaterials, lot number PLA489788) bonded to a copper backing plate; the power is 20 W DC, and the Kapman pressure is 7 mTorr; The main component of the sputtering gas is argon; the concentration of carbon dioxide in the sputtering gas is 2%; the deposition time is 5:23 minutes. This film thickness is about 20 nm.

該第三層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。這膜厚度大約為45nm。The third layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

所得之碟片具有一第一聚碳酸酯支持基板、一45nmSiO2 介電中間層、一20nm碲與二氧化碳之層、及一45nmSiO2 介電中間層。The resulting disc had a first polycarbonate support substrate, a 45 nm SiO 2 dielectric interlayer, a 20 nm layer of tantalum and carbon dioxide, and a 45 nm SiO 2 dielectric interlayer.

例46:具有碳層但缺少一資料層之碟片968之製備與分析Example 46: Preparation and Analysis of Disc 968 with Carbon Layer but Missing a Data Layer

三膜依序被沈積在一具溝槽之聚碳酸酯光碟基板上,該基板直徑為120mm且厚度為0.6mm。所有三膜係在沒有中斷真空之情形下沈積。The three films were sequentially deposited on a grooved polycarbonate optical disk substrate having a diameter of 120 mm and a thickness of 0.6 mm. All three membrane systems were deposited without interrupting the vacuum.

該基板係安裝在該PVD 75之平台上,且具溝槽側面向該等槍,該平台在沈積時旋轉。該第一層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。該膜厚度大約為45nm。The substrate is mounted on the platform of the PVD 75 with a grooved side facing the guns, the platform rotating as it is deposited. The first layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

第二層係如下地沈積:濺鍍一1/4"厚度之石墨標靶(Plasmaterials,Livermore,CA,批號PLA489556);功率為400W DC,卡普曼壓力為7毫托耳;該濺鍍氣體之主要成分是氬;在該濺鍍氣體中之二氧化碳濃度是2%。這膜厚度大約是30nm。The second layer is deposited by sputtering a 1/4" thick graphite target (Plasmaterials, Livermore, CA, lot number PLA489556); power is 400W DC, Kapman pressure is 7 mTorr; The main component is argon; the concentration of carbon dioxide in the sputtering gas is 2%. The film thickness is about 30 nm.

該第三層係如下地沈積:濺鍍一1/8"厚度之結合於一銅底層板之SiO2 標靶(Kurt J. Lesker Co.,Clariton,PA,零件號碼EJTSIO2453A2,批號11-24-08/VPU026926);功率為400W RF,卡普曼壓力為3毫托耳;濺鍍氣體由100%Ar構成;沈積時間為44:12分鐘。這膜厚度大約為45nm。The third layer is deposited by sputtering a 1/8" thick SiO 2 target bonded to a copper backsheet (Kurt J. Lesker Co., Clariton, PA, part number EJTSIO 2453A2, lot 11-24- 08/VPU026926); power is 400W RF, Kapman pressure is 3 mTorr; sputtering gas is composed of 100% Ar; deposition time is 44:12 minutes. The film thickness is about 45 nm.

所得之碟片具有一第一聚碳酸酯支持基板、一45nmSiO2 介電中間層、一30nm碳與二氧化碳之層、及一45nmSiO2 介電中間層。該碟片不包含任何資料層。The resulting disc had a first polycarbonate support substrate, a 45 nm SiO 2 dielectric interlayer, a 30 nm layer of carbon and carbon dioxide, and a 45 nm SiO 2 dielectric interlayer. The disc does not contain any data layers.

這碟片可以循跡,但所有寫入資料至該碟片之嘗試完全失敗。This disc can be tracked, but all attempts to write data to the disc completely fail.

在此揭露與請求之所有組成物及/或方法及/或製程及/或裝置可以在了解此揭露內容在不需過度實驗之情形下製成與執行。雖然本發明之組成物與方法已藉較佳實施例說明過了,發明所屬技術領域中具有通常知識者可了解在不偏離本發明觀念與範疇之情形下,可對在此所述之組成物及/或方法及/或裝置及/或製程及在該等方法之步驟或步驟之順序進行多種變化。詳而言之,可了解的是化學與物理上相關之某些藥劑可取代在此所述之藥劑並達成相同或類似之結果。發明所屬技術領域中具有通常知識者所了解之所有類似取代物與修改係被視為在本發明之範疇與觀念內。All of the compositions and/or methods and/or processes and/or devices disclosed and claimed herein may be made and executed without undue experimentation. Although the compositions and methods of the present invention have been described in the preferred embodiments, those skilled in the art can understand that the compositions described herein can be made without departing from the spirit and scope of the invention. And / or methods and / or devices and / or processes and a variety of changes in the order of steps or steps of the methods. In particular, it will be appreciated that certain agents that are chemically and physically related may be substituted for the agents described herein and achieve the same or similar results. All of the similar substitutes and modifications that are known to those of ordinary skill in the art are considered to be within the scope and concept of the invention.

10...支持基板10. . . Support substrate

15...資料層15. . . Data layer

20...捕捉層20. . . Capture layer

25...反射層25. . . Reflective layer

30...反射捕捉層30. . . Reflection trapping layer

35...擴散障壁層35. . . Diffusion barrier layer

40...保護密封障壁層40. . . Protective sealing barrier layer

45...紫外線輻射阻擋層45. . . Ultraviolet radiation barrier

50...防刮層50. . . Scratch resistant layer

55...環境保護層55. . . Environmental protection layer

60...資料層60. . . Data layer

65...碳層65. . . Carbon layer

70...中間層70. . . middle layer

75...第一碳層75. . . First carbon layer

80...第二碳層80. . . Second carbon layer

85...第一支持基板85. . . First support substrate

90...第二支持基板90. . . Second support substrate

95...第一中間層95. . . First intermediate layer

100...第二中間層100. . . Second intermediate layer

105...金屬材料層105. . . Metal material layer

110...第一碳材料層110. . . First carbon material layer

115...第二碳材料層115. . . Second carbon material layer

120...資料層120. . . Data layer

第1a圖顯示具有一支持基板及一資料層之光學資訊媒體。Figure 1a shows an optical information medium having a support substrate and a data layer.

第1b圖顯示一支持基板、一資料層及一捕捉層之光學資訊媒體。Figure 1b shows an optical information medium supporting a substrate, a data layer and a capture layer.

第1c圖顯示一支持基板、一資料層及一反射層之光學資訊媒體。Figure 1c shows an optical information medium supporting a substrate, a data layer and a reflective layer.

第1d圖顯示一支持基板、一資料層及一反射捕捉層之光學資訊媒體。Figure 1d shows an optical information medium of a support substrate, a data layer and a reflective capture layer.

第1e圖顯示一支持基板、一擴散障壁、一資料層及一反射捕捉層之光學資訊媒體。Figure 1e shows an optical information medium of a support substrate, a diffusion barrier, a data layer and a reflective capture layer.

第1f圖顯示一支持基板、一擴散障壁、一資料層、一反射捕捉層及一保護密封障壁之光學資訊媒體。Figure 1f shows a support substrate, a diffusion barrier, a data layer, a reflective capture layer, and an optical information medium that protects the barrier barrier.

第1g圖顯示一環境保護層、一防刮層、一紫外線阻擋層、一支持基板、一擴散障壁、一資料層、一反射捕捉層及一保護密封障壁之光學資訊媒體。Figure 1g shows an environmental protection layer, a scratch-resistant layer, an ultraviolet blocking layer, a supporting substrate, a diffusion barrier, a data layer, a reflective capturing layer, and an optical information medium for protecting the sealing barrier.

第2a圖顯示一具有一支持基板、一資料層及一碳材料層之光學資訊媒體。Figure 2a shows an optical information medium having a support substrate, a data layer and a layer of carbon material.

第2b圖顯示一具有一支持基板、一碳材料層、及一資料層之光學資訊媒體。Figure 2b shows an optical information medium having a support substrate, a layer of carbon material, and a data layer.

第2c圖顯示一具有一支持基板、至少一中間層、一資料層、及一碳材料層之光學資訊媒體。Figure 2c shows an optical information medium having a support substrate, at least one intermediate layer, a data layer, and a layer of carbon material.

第2d圖顯示一具有一支持基板、至少一中間層、一碳材料層、及一資料層之光學資訊媒體。Figure 2d shows an optical information medium having a support substrate, at least one intermediate layer, a layer of carbon material, and a data layer.

第3a圖顯示一具有一支持基板、一第一碳材料層、一資料層及一第二碳材料層之光學資訊媒體。Figure 3a shows an optical information medium having a support substrate, a first carbon material layer, a data layer and a second carbon material layer.

第3b圖顯示一具有一支持基板、至少一中間層、一第一碳材料層、一資料層及一第二碳材料層之光學資訊媒體。Figure 3b shows an optical information medium having a support substrate, at least one intermediate layer, a first carbon material layer, a data layer and a second carbon material layer.

第3c圖顯示一具有一第一支持基板、一資料層、一碳材料層及一第二支持基板之光學資訊媒體。Figure 3c shows an optical information medium having a first support substrate, a data layer, a carbon material layer and a second support substrate.

第3d圖顯示一具有一第一支持基板、一第一碳材料層、一資料層、一第二碳材料層及一第二支持基板之光學資訊媒體。Figure 3d shows an optical information medium having a first support substrate, a first carbon material layer, a data layer, a second carbon material layer and a second support substrate.

第3e圖顯示一具有一第一支持基板、一第一中間層、一第一碳材料層、一資料層、一第二碳材料層、一第二中間層及一第二支持基板之光學資訊媒體。FIG. 3e shows an optical information having a first supporting substrate, a first intermediate layer, a first carbon material layer, a data layer, a second carbon material layer, a second intermediate layer, and a second supporting substrate. media.

第4a圖顯示一具有一支持基板、一金屬材料層及一碳材料層之光學資訊媒體。Figure 4a shows an optical information medium having a support substrate, a layer of metallic material and a layer of carbon material.

第4b圖顯示第4a圖所示之光學資訊媒體的一變化例,其中該金屬材料層與碳材料層之位置係相對該支持基板顛倒。該光學資訊媒體具有一支持基板、一碳材料層及一金屬材料層。Figure 4b shows a variation of the optical information medium shown in Figure 4a, wherein the location of the layer of metallic material and the layer of carbon material is reversed relative to the support substrate. The optical information medium has a support substrate, a carbon material layer and a metal material layer.

第4c圖顯示一具有一支持基板、一或多個中間層、一金屬材料層及一碳材料層之光學資訊媒體。Figure 4c shows an optical information medium having a support substrate, one or more intermediate layers, a layer of metallic material and a layer of carbon material.

第4d圖顯示一具有一第一支持基板、一第一碳材料層、一金屬材料層、一第二碳材料層及一第二支持基板之光學資訊媒體。Figure 4d shows an optical information medium having a first support substrate, a first carbon material layer, a metal material layer, a second carbon material layer and a second support substrate.

第5a圖顯示一具有一基板層之光學資訊媒體,該基板層面接觸一碲/二氧/一氧化碳資料層。Figure 5a shows an optical information medium having a substrate layer that is in contact with a layer of germanium/dioxa/carbon monoxide data.

第5b圖顯示一具有一基板層、至少一中間層及一碲/二氧/一氧化碳資料層之光學資訊媒體。Figure 5b shows an optical information medium having a substrate layer, at least one intermediate layer, and a germanium/dioxa/carbon monoxide data layer.

第5c圖顯示一具有一第一基板層、一碲/二氧/一氧化碳資料層及一第二基板層之光學資訊媒體。Figure 5c shows an optical information medium having a first substrate layer, a germanium/dioxa/carbon monoxide data layer, and a second substrate layer.

第6圖顯示隨著氧化氣體二氧化碳之濃度增加,所製備之碳膜之光學密度減少(或光學透明度增加)。x軸是以nm計算之波長,y軸是每厚度(1/nm)之吸收度。以正方形符號表示之線代表1%(v/v)二氧化碳,以鑽石形符號表示之線代表2%(v/v)二氧化碳,且以圓形符號表示之線代表4%(v/v)二氧化碳。Figure 6 shows that as the concentration of carbon dioxide in the oxidizing gas increases, the optical density of the prepared carbon film decreases (or the optical transparency increases). The x-axis is the wavelength calculated in nm and the y-axis is the absorbance per thickness (1/nm). The line indicated by a square symbol represents 1% (v/v) carbon dioxide, the line represented by a diamond symbol represents 2% (v/v) carbon dioxide, and the line represented by a circular symbol represents 4% (v/v) carbon dioxide. .

第7圖顯示相較於碲與二氧化碳膜,碲膜之光學密度隨著時間變化的圖。x軸是以天計算之時間,y軸是以比例(OD/-ODinit )/ODinit 測量之光學密度(或吸收度)。該圖顯示添加二氧化碳至碲因氧化而減少變化。正方形符號代表未添加二氧化碳之碲;“x”符號代表添加1%二氧化碳;“鑽石形”符號代表添加2%二氧化碳;“填滿圓圈”符號代表添加2.3%二氧化碳;“+”符號代表添加2.5%二氧化碳;“一長劃”符號代表添加2.7%二氧化碳;“*”符號代表添加3%二氧化碳;“三角形”符號代表添加4%二氧化碳;且“空圓圈”符號代表添加10%二氧化碳。Figure 7 shows a graph of the optical density of the tantalum film as a function of time compared to the tantalum and carbon dioxide film. The x-axis is the time in days, and the y-axis is the optical density (or absorbance) measured in proportion (OD/-OD init ) / OD init . The figure shows the addition of carbon dioxide to reduce the change due to oxidation. The square symbol represents the carbon dioxide without added carbon; the "x" symbol represents the addition of 1% carbon dioxide; the "diamond" symbol represents the addition of 2% carbon dioxide; the "filled circle" symbol represents the addition of 2.3% carbon dioxide; the "+" symbol represents the addition of 2.5% Carbon dioxide; the "one long stroke" symbol represents the addition of 2.7% carbon dioxide; the "*" symbol represents the addition of 3% carbon dioxide; the "triangle" symbol represents the addition of 4% carbon dioxide; and the "empty circle" symbol represents the addition of 10% carbon dioxide.

第8圖相較於碲與二氧化碳膜,碲膜之反射率隨著時間變化的圖。x軸是以天計算之時間,y軸是百分比反射率。正方形符號代表未添加二氧化碳之碲;“x”符號代表添加1%二氧化碳;“鑽石形”符號代表添加2%二氧化碳;“填滿圓圈”符號代表添加2.3%二氧化碳;“+”符號代表添加2.5%二氧化碳;“一長劃”符號代表添加2.7%二氧化碳;“*”符號代表添加3%二氧化碳;“三角形”符號代表添加4%二氧化碳;且“空圓圈”符號代表添加10%二氧化碳。Fig. 8 is a graph showing the reflectance of the ruthenium film as a function of time compared to the ruthenium and carbon dioxide film. The x-axis is the time in days and the y-axis is the percent reflectivity. The square symbol represents the carbon dioxide without added carbon; the "x" symbol represents the addition of 1% carbon dioxide; the "diamond" symbol represents the addition of 2% carbon dioxide; the "filled circle" symbol represents the addition of 2.3% carbon dioxide; the "+" symbol represents the addition of 2.5% Carbon dioxide; the "one long stroke" symbol represents the addition of 2.7% carbon dioxide; the "*" symbol represents the addition of 3% carbon dioxide; the "triangle" symbol represents the addition of 4% carbon dioxide; and the "empty circle" symbol represents the addition of 10% carbon dioxide.

10...支持基板10. . . Support substrate

15...資料層15. . . Data layer

Claims (35)

一種歸檔光學資訊媒體,包含:至少一支持基板;至少一資料層;及至少一碳層,被注入有至少一氣體,其中該碳層的主要成分是碳且其中該碳層與該資料層面接觸。 An archive optical information medium comprising: at least one support substrate; at least one data layer; and at least one carbon layer, at least one gas is injected, wherein a main component of the carbon layer is carbon and wherein the carbon layer is in contact with the data layer . 如申請專利範圍第1項之歸檔光學資訊媒體,其中該資料層包含一有機染料、一金屬、或一金屬合金。 The archived optical information medium of claim 1, wherein the data layer comprises an organic dye, a metal, or a metal alloy. 如申請專利範圍第1項之歸檔光學資訊媒體,其中該碳層包含非晶碳、石墨非晶碳、四面體非晶碳、似鑽石非晶碳、似聚合物非晶碳、似玻璃碳、似鑽石碳、或碳黑。 For example, the archived optical information medium of claim 1 wherein the carbon layer comprises amorphous carbon, graphite amorphous carbon, tetrahedral amorphous carbon, diamond-like amorphous carbon, polymer-like amorphous carbon, glassy carbon, Like diamond carbon, or carbon black. 如申請專利範圍第1項之歸檔光學資訊媒體,包含一與該資料層面接觸之第一碳層、及一面接觸該資料層之第二碳層。 An archived optical information medium as claimed in claim 1 includes a first carbon layer in contact with the data layer and a second carbon layer in contact with the data layer. 如申請專利範圍第1項之歸檔光學資訊媒體,更包含至少一在該支持基板與該資料層之間的中間層。 The archive optical information medium of claim 1 further comprises at least one intermediate layer between the support substrate and the data layer. 如申請專利範圍第1項之歸檔光學資訊媒體,其中該資料層包含一或多個已被寫入資料之位置。 An archive optical information medium as claimed in claim 1, wherein the data layer includes one or more locations where data has been written. 如申請專利範圍第1項之歸檔光學資訊媒體,其中該資料層包含碲、一碲合金、硒、一硒合金、錫、一錫合金、鉍、一鉍合金、銻、一銻合金、鉛、或一鉛合金。 For example, the archived optical information medium of claim 1 of the patent scope, wherein the data layer comprises tantalum, a tantalum alloy, selenium, a selenium alloy, tin, a tin alloy, tantalum, a tantalum alloy, tantalum, a tantalum alloy, lead, Or a lead alloy. 如申請專利範圍第1項之歸檔光學資訊媒體,其中該資料層包含碲金屬或鉻金屬。 For example, the archive optical information medium of claim 1 of the patent scope, wherein the data layer comprises base metal or chrome metal. 一種歸檔光學資訊媒體,包含: 一第一支持基板,包含一聚碳酸酯;一第一介電層,係與該第一支持基板面接觸;一第一碳層,被注入有至少一氣體,且與該第一介電層面接觸,其中該碳層的主要成分是碳;一金屬材料資料層,係與該第一碳材料層面接觸;一第二碳層,被注入有至少一氣體,且與該金屬材料層面接觸;及一第二介電層,係與該第二碳材料層面接觸。 An archived optical information medium comprising: a first supporting substrate comprising a polycarbonate; a first dielectric layer in surface contact with the first supporting substrate; a first carbon layer implanted with at least one gas, and the first dielectric layer Contact, wherein the main component of the carbon layer is carbon; a metal material data layer is in contact with the first carbon material layer; a second carbon layer is injected with at least one gas and is in contact with the metal material layer; A second dielectric layer is in contact with the second carbon material layer. 一種製備一歸檔光學資訊媒體之方法,該方法包含:提供一支持基板;施加一資料層;及施加一被注入有至少一氣體之碳層,使得該碳層與該資料層面接觸,且其中碳是該碳層的主要成分。 A method of preparing an archived optical information medium, the method comprising: providing a support substrate; applying a data layer; and applying a carbon layer implanted with at least one gas such that the carbon layer is in contact with the data layer, and wherein the carbon It is the main component of this carbon layer. 如申請專利範圍第10項之方法,其中該施加一資料層步驟包含一標靶之濺鍍、反應性濺鍍、電子束蒸發、雷射剝蝕,或化學蒸氣沈積。 The method of claim 10, wherein the applying a data layer step comprises sputtering of a target, reactive sputtering, electron beam evaporation, laser ablation, or chemical vapor deposition. 如申請專利範圍第10項之方法,其中該施加一碳層步驟包含一標靶之濺鍍、反應性濺鍍、電子束蒸發、雷射剝蝕,或化學蒸氣沈積。 The method of claim 10, wherein the step of applying a carbon layer comprises sputtering of a target, reactive sputtering, electron beam evaporation, laser ablation, or chemical vapor deposition. 如申請專利範圍第10項之方法,更包含施加至少一中間層,使得該中間層與該支持基板及該資料層兩者面接觸。 The method of claim 10, further comprising applying at least one intermediate layer such that the intermediate layer is in surface contact with both the support substrate and the data layer. 如申請專利範圍第10項之方法,更包含施加一第二碳層,使得該第二碳層被注入有至少一氣體,且與該資料 層面接觸。 The method of claim 10, further comprising applying a second carbon layer such that the second carbon layer is injected with at least one gas, and the data Level contact. 一種製備一歸檔光學資訊媒體之方法,該方法包含:提供一第一支持基板;施加一第一介電層,使得該第一介電層與該第一支持基板面接觸;施加一被注入有至少一氣體之第一碳層,使得該第一碳層與該第一介電層面接觸,其中碳是該碳層的主要成分;施加一資料層,使得該資料層與該第一碳層面接觸;施加一第二碳層,使得該第二碳層與該資料層面接觸;及施加一被注入有至少一氣體之第二介電層,使得該第二介電層與該第二碳層面接觸。 A method for preparing an archive optical information medium, the method comprising: providing a first support substrate; applying a first dielectric layer such that the first dielectric layer is in surface contact with the first support substrate; a first carbon layer of at least one gas such that the first carbon layer is in contact with the first dielectric layer, wherein carbon is a main component of the carbon layer; applying a data layer such that the data layer is in contact with the first carbon layer Applying a second carbon layer such that the second carbon layer contacts the data layer; and applying a second dielectric layer implanted with at least one gas such that the second dielectric layer is in contact with the second carbon layer . 一種如申請專利範圍第1項之歸檔光學資訊媒體,更包含:至少一資料層,包含:碲;及被注入之二氧化碳、一氧化碳、或二氧化碳與一氧化碳兩者。 An archived optical information medium as claimed in claim 1, further comprising: at least one data layer comprising: strontium; and injected carbon dioxide, carbon monoxide, or both carbon dioxide and carbon monoxide. 如申請專利範圍第16項之歸檔光學資訊媒體,更包含至少一在該支持基板與該資料層間的中間層。 The archived optical information medium of claim 16 further comprises at least one intermediate layer between the support substrate and the data layer. 如申請專利範圍第16項之歸檔光學資訊媒體,包含一第一支持基板及一第二支持基板。 The archive optical information medium of claim 16 of the patent application includes a first support substrate and a second support substrate. 如申請專利範圍第16項之歸檔光學資訊媒體,其中該資料層包含碲金屬(Te)或至少一碲合金。 An archived optical information medium as claimed in claim 16, wherein the data layer comprises a base metal (Te) or at least one tantalum alloy. 如申請專利範圍第16項之歸檔光學資訊媒體,其中該資料層包含Tex Se100-x 、Tex Se100-x (其中X小於或等於95)、Te86 Se14 、Te79 Se21 、Tex Sb100-x 、Tex Sb100-x (其中X小於或等於95)、Tex Sey Sbz 、Tex Sey Sbz (其中X+Y+Z=100)、Tex Sey Sbz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sb5 、Te72.5 Se20 Sb7.5 、Te3 Sb2 、Tex Sey Inz 、Tex Sey Inz (其中X+Y+Z=100)、Tex Sey Inz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、InTe3 、Te75 Se20 In5 、Te72.5 Se20 In7.5 、Tex Sey Pbz 、Tex Sey Pbz (其中X+Y+Z=100)、Tex Sey Pbz (其中X+Y+Z=100,Y是0-30,且Z是5-20)、Te75 Se20 Pb5 、Te72.5 Se20 Pb7.5 、TePb、Tex Sey Snz 、Tex Sey Snz (其中X+Y+Z=100)、Tex Sey Snz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Sn5 、Te72.5 Se20 Sn7.5 、Te3 Bi2 、Tex Sey Biz 、Tex Sey Biz (其中X+Y+Z=100)、TeSn、Tex Sey Biz (其中X+Y+Z=100,Y是10-30,且Z是5-20)、Te75 Se20 Bi5 、Te72.5 Se20 Bi7.5 、TeGeAs、TeGeSbS、TeOx Ge、TeOx Sn、Pb-Te-Se、Pb-Te-Sb、As-Te、As10 Te90 、As32 Te68 、Ge-Te、Ge10 Te90 、或CdTe。An archive optical information medium as claimed in claim 16, wherein the data layer comprises Te x Se 100-x , Te x Se 100-x (where X is less than or equal to 95), Te 86 Se 14 , Te 79 Se 21 , Te x Sb 100-x , Te x Sb 100-x (where X is less than or equal to 95), Te x Se y Sb z , Te x Se y Sb z (where X+Y+Z=100), Te x Se y Sb z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Sb 5 , Te 72.5 Se 20 Sb 7.5 , Te 3 Sb 2 , Te x Se y In z , Te x Se y In z (where X+Y+Z=100), Te x Se y In z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), InTe 3 , Te 75 Se 20 In 5 , Te 72.5 Se 20 In 7.5 , Te x Se y Pb z , Te x Se y Pb z (where X+Y+Z=100), Te x Se y Pb z (where X+ Y+Z=100, Y is 0-30, and Z is 5-20), Te 75 Se 20 Pb 5 , Te 72.5 Se 20 Pb 7.5 , TePb, Te x Se y Sn z , Te x Se y Sn z ( Wherein X+Y+Z=100), Te x Se y Sn z (where X+Y+Z=100, Y is 10-30, and Z is 5-20), Te 75 Se 20 Sn 5 , Te 72.5 Se 20 Sn 7.5, Te 3 Bi 2 , Te x Se y Bi z, Te x Se y Bi z ( wherein X + Y + Z = 100) , TeSn, Te x Se y Bi z ( wherein X + Y + Z = 100 Y is 10-30, and Z is 5-20), Te 75 Se 20 Bi 5, Te 72.5 Se 20 Bi 7.5, TeGeAs, TeGeSbS, TeO x Ge, TeO x Sn, Pb-Te-Se, Pb-Te- Sb, As-Te, As 10 Te 90 , As 32 Te 68 , Ge-Te, Ge 10 Te 90 , or CdTe. 如申請專利範圍第16項之歸檔光學資訊媒體,其中該資料層包含二氧化碳且不包含一氧化碳。 An archived optical information medium as claimed in claim 16, wherein the data layer comprises carbon dioxide and does not comprise carbon monoxide. 如申請專利範圍第16項之歸檔光學資訊媒體,其中該媒 體具有一比一缺少二氧化碳及一氧化碳之對應媒體更高之抗氧化性。 For example, the archived optical information medium of claim 16 of the patent scope, wherein the medium The body has a higher oxidation resistance than the corresponding medium lacking carbon dioxide and carbon monoxide. 一種製備如申請專利範圍第15項之一歸檔光學資訊媒體之方法,該方法包含:施加一資料層,該資料層包含:碲;及被注入之二氧化碳、一氧化碳、或二氧化碳與一氧化碳兩者。 A method of preparing an optical information medium as claimed in claim 15 of the patent application, the method comprising: applying a data layer comprising: ruthenium; and injected carbon dioxide, carbon monoxide, or both carbon dioxide and carbon monoxide. 如申請專利範圍第23項之方法,其中該施加一資料層步驟包含一標靶之濺鍍、反應性濺鍍、電子束蒸發、雷射剝蝕,或化學蒸氣沈積。 The method of claim 23, wherein the applying a data layer step comprises sputtering of a target, reactive sputtering, electron beam evaporation, laser ablation, or chemical vapor deposition. 如申請專利範圍第23項之方法,其中該施加一資料層步驟包含在二氧化碳存在但一氧化碳不存在之情形下施加碲。 The method of claim 23, wherein the applying a data layer step comprises applying hydrazine in the presence of carbon dioxide but in the absence of carbon monoxide. 如申請專利範圍第23項之方法,其中該施加一資料層步驟包含在大約1%(v/v)至大約50%(v/v)二氧化碳或一氧化碳存在之情形下施加碲。 The method of claim 23, wherein the applying a data layer step comprises applying hydrazine in the presence of about 1% (v/v) to about 50% (v/v) carbon dioxide or carbon monoxide. 如申請專利範圍第23項之方法,更包含施加至少一中間層,使得該中間層與該支持基板及該資料層兩者面接觸。 The method of claim 23, further comprising applying at least one intermediate layer such that the intermediate layer is in surface contact with both the support substrate and the data layer. 如申請專利範圍第23項之方法,更包含施加一第二支持基板。 The method of claim 23, further comprising applying a second support substrate. 一種歸檔光學資訊媒體,包含:至少一支持基板;及 至少一由碳組成之資料層,被注入有至少一氧化氣體。 An archive optical information medium comprising: at least one support substrate; At least one data layer composed of carbon is implanted with at least one oxidizing gas. 如申請專利範圍第29項之歸檔光學資訊媒體,其中該資料層包含碳、非晶碳、似鑽石碳、碳化矽、碳化硼、氮化硼、矽、非晶矽、鍺、非晶鍺、或其組合物。 For example, the archived optical information medium of claim 29, wherein the data layer comprises carbon, amorphous carbon, diamond-like carbon, niobium carbide, boron carbide, boron nitride, tantalum, amorphous germanium, germanium, amorphous germanium, Or a composition thereof. 如申請專利範圍第29項之歸檔光學資訊媒體,其中該氣體缺少氧原子。 An archived optical information medium as claimed in claim 29, wherein the gas lacks an oxygen atom. 如申請專利範圍第29項之歸檔光學資訊媒體,其中該氣體是分子氫(H2 )、分子氮(N2 )、氦(He)、氬(Ar)、氖(Ne)、氪(Kr)、氙(Xe)、氯(Cl2 )、及氟(F2 )。For example, the archived optical information medium of claim 29, wherein the gas is molecular hydrogen (H 2 ), molecular nitrogen (N 2 ), helium (He), argon (Ar), neon (Ne), krypton (Kr). , 氙 (Xe), chlorine (Cl 2 ), and fluorine (F 2 ). 如申請專利範圍第29項之歸檔光學資訊媒體,其中該氣體是一經氧化氣體。 An archived optical information medium as claimed in claim 29, wherein the gas is an oxidizing gas. 如申請專利範圍第29項之歸檔光學資訊媒體,其中該氣體是一氧化碳、二氧化碳、分子氧、臭氧、氮氧化物、硫氧化物、或其混合物。 An archived optical information medium as claimed in claim 29, wherein the gas is carbon monoxide, carbon dioxide, molecular oxygen, ozone, nitrogen oxides, sulfur oxides, or a mixture thereof. 如申請專利範圍第29項之歸檔光學資訊媒體,其中該氣體是二氧化碳。For example, the archived optical information medium of claim 29, wherein the gas is carbon dioxide.
TW098135934A 2008-10-23 2009-10-23 Data storage media containing carbon and metal layers and method for preparing optical information medium TWI478160B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19708908P 2008-10-23 2008-10-23
US20401008P 2008-12-31 2008-12-31
US20573909P 2009-01-23 2009-01-23

Publications (2)

Publication Number Publication Date
TW201021040A TW201021040A (en) 2010-06-01
TWI478160B true TWI478160B (en) 2015-03-21

Family

ID=44832514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098135934A TWI478160B (en) 2008-10-23 2009-10-23 Data storage media containing carbon and metal layers and method for preparing optical information medium

Country Status (1)

Country Link
TW (1) TWI478160B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3045802A1 (en) 2016-12-02 2018-06-07 The Research Foundation For The State University Of New York Fabrication method for fused multi-layer amorphous selenium sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006524A (en) * 1998-06-26 2000-01-11 Sony Corp Optical recording medium and manufacture thereof
US6541093B1 (en) * 1999-03-25 2003-04-01 Lg Electronics Inc. Optical recording medium and method for fabricating the same
TW200705409A (en) * 2005-06-15 2007-02-01 Koninkl Philips Electronics Nv Method of writing on an optical recording medium, optical recording medium, and method of manufacturing an optical recording medium
US20070122747A1 (en) * 2002-12-19 2007-05-31 Fujifilm Corporation Optical information recording method and optical information recording medium
US20070253318A1 (en) * 2006-04-28 2007-11-01 Fujitsu Limited Optical recording medium and fabrication method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006524A (en) * 1998-06-26 2000-01-11 Sony Corp Optical recording medium and manufacture thereof
US6541093B1 (en) * 1999-03-25 2003-04-01 Lg Electronics Inc. Optical recording medium and method for fabricating the same
US20070122747A1 (en) * 2002-12-19 2007-05-31 Fujifilm Corporation Optical information recording method and optical information recording medium
TW200705409A (en) * 2005-06-15 2007-02-01 Koninkl Philips Electronics Nv Method of writing on an optical recording medium, optical recording medium, and method of manufacturing an optical recording medium
US20070253318A1 (en) * 2006-04-28 2007-11-01 Fujitsu Limited Optical recording medium and fabrication method thereof

Also Published As

Publication number Publication date
TW201021040A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
US8192820B2 (en) Data storage media containing carbon and metal layers
USRE36383E (en) Optical recording medium and production process for the medium
KR920001263B1 (en) Recording and removing method of information
EP1351230B1 (en) Optical recording medium and method for optically recording information on the same
US6352753B2 (en) Optical recording medium
EP1217620A1 (en) Multi-layer optical recording medium for reading/writing by laser beam
TWI478160B (en) Data storage media containing carbon and metal layers and method for preparing optical information medium
JP4357144B2 (en) Optical recording medium and sputtering target for optical recording medium
Chang et al. New write-once medium with NiOx film using blue laser
JP3034124B2 (en) Optical information recording medium
WO2006025162A1 (en) Optical information recording medium and its manufacturing method
EP0098046B1 (en) Archival record films for digital data storage using low power write-laser
Shima et al. Readout durability improvement of super-resolution near-field structure discs with PtOx–SiO2 recording and GeNy interfacial layers
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
EP0096501B1 (en) Method for detecting fire
JPH08315418A (en) Optical information medium and its production
US20060165946A1 (en) Optical storage medium
Lee et al. Blu-ray type super-resolution near-field phase change disk with In2Ge8Sb85Te5 mask layer
EP0097430B1 (en) Method for detecting fire
EP0098045A1 (en) Gold archival record films for digital data storage using low power write-laser
KR0121185B1 (en) Optical recording medium of phase changing type
EP0362901A2 (en) Heat sensitive film shutter
Suh Optical recording in multilayer Bi/Se thin films
US20090176048A1 (en) AgSb recording thin film for the inorganic write-once optical disc and the manufacturing method
JPH0459152B2 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees