TWI471134B - 肌醇磷脂3-激酶抑制劑化合物及化療劑之組合及使用方法 - Google Patents
肌醇磷脂3-激酶抑制劑化合物及化療劑之組合及使用方法 Download PDFInfo
- Publication number
- TWI471134B TWI471134B TW97134764A TW97134764A TWI471134B TW I471134 B TWI471134 B TW I471134B TW 97134764 A TW97134764 A TW 97134764A TW 97134764 A TW97134764 A TW 97134764A TW I471134 B TWI471134 B TW I471134B
- Authority
- TW
- Taiwan
- Prior art keywords
- formula
- acid
- cancer
- compound
- chemotherapeutic agent
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
本發明大體而言係關於具有對抗諸如癌症之過度增生性病症之活性且包括抑制PI3激酶活性之化合物的化合物之醫藥組合。本發明亦係關於使用該等化合物用於活體外、原位及活體內診斷或治療哺乳動物細胞或相關病理學病狀之方法。
根據37 CFR §1.53(b),本非臨時申請案依35 USC §119(e)規定主張2007年9月12日申請之美國臨時申請案編號60/971,773之權利,該臨時申請案以引用方式完全併入。
磷脂醯肌醇係細胞膜中所見且參與細胞內信號轉導之許多磷脂之一。經由3'-磷酸化肌醇磷脂之細胞信號轉導已牽涉於多種細胞過程中,例如惡性轉型、生長因子信號轉導、發炎及免疫性(Rameh等人。(1999)J. Biol Chem. 274:8347-8350)。負責產生此等磷酸化信號轉導產物之酶磷脂醯肌醇3-激酶(亦稱為PI 3-激酶或PI3K)最初被鑑別為具有與使磷脂醯肌醇(PI)及其磷酸化衍生物在肌醇環之3'-羥基處磷酸化之病毒癌基因蛋白及生長因子受體酪胺酸激酶相關的活性(Panayotou等人。(1992)Trends Cell Biol 2:358-60)。肌醇磷脂3-激酶(PI3K)係使脂質在肌醇環之3-羥基殘基處磷酸化的脂質激酶(Whitman等人。(1988)Nature,332:664)。由PI3激酶產生之3-磷酸化磷脂(PIP3)充當募集具有脂質結合域(包括plekstrin同源性(PH)區域)之激酶的第二信使,該等激酶諸如Akt及PDK1、肌醇磷脂依賴型激酶-1(Vivanco等人。(2002)Nature Rev. Cancer 2:489;Phillips等人。(1998)Cancer 83:41)。
PI3激酶家族包含至少15種根據結構同源性而亞分類之不同酶且基於序列同源性及由酶催化所形成之產物分成3類。第I類PI3激酶係由2個亞單位構成:110kd催化亞單位及85kd調節亞單位。調節亞單位含有SH2域且結合至由具有酪胺酸激酶活性之生長因子受體或致癌基因產物磷酸化之酪胺酸殘基,藉此誘導磷酸化脂質受質的p110催化亞單位之PI3K活性。第I類PI3激酶與細胞激素、整合素、生長因子及免疫受體下游之重要信號轉導事件有關,此表明控制此途徑可產生重要治療性效果,諸如調節細胞增生及癌發生。第I類PI3K可使磷脂醯肌醇(PI)、磷脂醯肌醇-4-磷酸酯及磷脂醯肌醇-4,5-二磷酸酯(PIP2)磷酸化而分別產生磷脂醯肌醇-3-磷酸酯(PIP)、磷脂醯肌醇-3,4-二磷酸酯及磷脂醯肌醇-3,4,5-三磷酸酯。第II類PI3K使PI及磷脂醯肌醇-4-磷酸酯磷酸化。第III類PI3K僅可使PI磷酸化。癌症中之主要PI3激酶同功異型物係第I類PI3-激酶p110α(US 5824492;US 5846824;US 6274327)。其他同功異型物牽涉於心血管病及免疫發炎性疾病(Workman P(2004)Biochem Soc Trans 32:393-396;Patel等人,(2004)Proc. Am. Assoc. of Cancer Res.(摘要LB-247)第95屆年會,3月27-31日,Orlando,Florida,USA;Ahmadi K及Waterfield MD(2004)"Phosphoinositide 3-Kinase:Function and Mechanisms"Encyclopedia of Biological Chemistry(Lennarz W J,Lane M D編)Elsevier/Academic Press)以及PI3激酶之致癌基因突變中(Samuels等人。(2004)Science 304:554)。已在結腸、乳房、大腦、肝臟、卵巢、胃、肺及頭頸部實體腫瘤中發現顯著頻率之p110α致癌突變。在神經膠母細胞瘤、黑色素瘤、前列腺癌、子宮內膜癌、卵巢癌、乳癌、肺癌、頭頸部癌、肝細胞癌及甲狀腺癌中發現PTEN異常。
PI3激酶之初始純化及分子選殖顯示其為由p85及p110亞單位組成之雜二聚體(Otsu等人。(1991)Cell 65:91-104;Hiles等人。(1992)Cell 70:419-29)。其後,已鑑別出4種不同第I類PI3K,其被命名為PI3K α、PI3K β、PI3K δ及PI3K γ且各自由不同110kDa催化亞單位及調節亞單位組成。更具體言之,該等催化亞單位中之三個,亦即p110 α、p110 β及p110 δ各自與同一調節亞單位p85相互作用;而p110 γ與不同調節亞單位p101相互作用。此等PI3K中之每一者在人類細胞及組織中之表現模式亦不同。在PI3K α、PI3K β及PI3K δ亞型中之每一者中,p85亞單位藉由其SH2域與標靶蛋白質中之磷酸化酪胺酸殘基(存在於適當序列環境之中)之相互作用而起到使PI3激酶定位於質膜之作用(Rameh等人。(1995)Cell,83:821-30;Volinia等人。(1992)Oncogene,7:789-93)。
PI3激酶/Akt/PTEN途徑為針對癌症藥物發展之具有吸引力的標靶,此係由於可預期該等藥劑抑制增生、逆轉細胞凋亡抑制且克服癌細胞中對細胞毒性藥劑之抗性。已報導PI3激酶抑制劑(Yaguchi等人。(2006)Jour. of the Nat. Cancer Inst. 98(8):545-556;US 7173029;US 7037915;US 6608056;US 6608053;US 6838457;US 6770641;US 6653320;US 6403588;WO 2006/046031;WO 2006/046035;WO 2006/046040;WO 2007/042806;WO 2007/042810;WO 2004/017950;US 2004/092561;WO 2004/007491;WO 2004/006916;WO 2003/037886;US 2003/149074;WO 2003/035618;WO 2003/034997;US 2003/158212;EP 1417976;US 2004/053946;JP 2001247477;JP 08175990;JP 08176070)。渥曼青黴素(Wortmannin)類似物在哺乳動物中具有PI3激酶活性(US 6703414;WO 97/15658)。
式I及式II之噻吩并嘧啶化合物具有p110 α結合、PI3激醄抑制性活性且抑制癌細胞生長(WO 2006/046031;US 2008/0039459;US 2008/0076768;US 2008/0076758;WO 2008/070740;WO 2008/073785)。
式I化合物GDC-0941(Genentech Inc)為具有頗有前景之藥物動力學及醫藥學特性的選擇性口服生物可用性PI3K抑制劑(Belvin等人,美國癌症研究學會年會(American Association for Cancer Research Annual Meeting)2008年第99屆:4月15日,摘要4004;Folkes等人,美國癌症研究學會年會2008年第99屆:4月14,摘要LB-146;Friedman等人,美國癌症研究學會年會2008年第99屆:4月14,摘要LB-110)。
現今在癌症治療中常見在給藥方案中同時或依次投與的抗癌藥物治療劑之組合。成功的組合療法提供優於單一療法(亦即限於一種藥物之醫藥治療)之改良且甚至協同的效應。已研究用於治療諸如癌症的過度增生性病症之組合療法,包括埃羅替尼(erlotinib)與卡西他賓(capecitabine)組合在人類腫瘤異種移植模型中之抗腫瘤活性(Ouchi等人。(2006)Cancer Chemother. Pharmacol. 57:693-702),及埃羅替尼與吉西他濱及順鉑(cisplatin)組合在非小細胞肺癌(NSCLC)腫瘤異種移植模型中之抗腫瘤活性(Higgins等人。(2004)Anti-Cancer Drugs 15:503-512)。臨床前研究已成為用於預測抗癌藥物治療劑組合(包括用於治療乳癌之卡西他賓及紫杉烷類(taxanes))的臨床階段協同作用之基礎(Sawada等人。(1998)Clin. Cancer Res. 4:1013-1019)。卡西他賓與紫杉烷之組合療法的某些劑量及時程可提高安全性,而不損害功效(O'Shaughnessy等人。(2006)Clin. Breast Cancer Apr 7(1):42-50)。活體外抗真菌組合之協同效應與臨床階段協同作用相關聯(Steinbach等人。(2003)Clin. Inf. Dis. 10月1日;37增刊3:S188-224)。
本發明大體而言係關於具有抗癌活性且更特定言之具有PI3激酶抑制性活性的式I及式II之噻吩并嘧啶化合物,其與化療劑組合投與以抑制癌細胞生長。式I及式II化合物與化療劑之某些組合在活體外及活體內抑制癌細胞生長期間顯示協同效應。本發明之組合及方法可適用於治療諸如癌症之過度增生性病症。該等組合物可抑制哺乳動物之腫瘤生長且可適用於治療人類癌症患者。
在一態樣中,本發明包括一種用於治療過度增生性病症之方法,其包含向哺乳動物以組合調配物或交替形式投與治療劑組合,其中該治療劑組合包含治療有效量之具有式I或式II之化合物及治療有效量之化療劑,該化療劑係選自埃羅替尼、多西他賽(docetaxel)、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑(carboplatin)、紫杉醇(paclitaxel)、貝伐單抗(bevacizumab)、曲妥珠單抗(trastuzumab)、帕妥珠單抗(pertuzumab)、替莫唑胺(temozolomide)、他莫昔芬(tamoxifen)、阿黴素(doxorubicin)、Akti-1/2、HPPD、雷帕黴素(rapamycin)及拉帕替尼(lapatinib)。
本發明亦係關於使用該等組合物用於活體外、原位及活體內診斷或治療哺乳動物細胞、生物體或相關病理學病狀之方法。
本發明之一態樣提供治療劑組合,其包含亦稱為GDC-0941(Genentech,Inc)且具有式Ia之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉(US 2008/0076768;WO 2006/046031)及治療有效量之化療劑,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼。
本發明之一態樣提供治療劑組合,其包含具有式Ib之(S)-1-(4-((2-(2-胺基嘧啶-5-基)-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮(WO 2008/070740)及治療有效量之化療劑,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼。
本發明之一態樣提供治療劑組合,其包含具有式IIa之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[2,3-d]嘧啶-4-基)嗎啉(US 2008/0076758;WO 2006/046031)及治療有效量之化療劑,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼。
式Ia、式Ib及式IIa化合物具口服生物可用性且在多種人類癌症模型中具有單一藥劑抗腫瘤活性。
式I及式II化合物包括其所有立體異構體、幾何異構體、互變異構體、代謝物及醫藥學上可接受之鹽。某些式I及式II化合物為具有藥物樣物理化學及藥物動力學特性之有效PI3K抑制劑。某些式I及式II化合物對第Ia類PI3K展現超過第Ib類之選擇性,對於P110 α亞型而言尤然。
本發明之醫藥組合物及治療劑組合包含化療劑,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼。
本發明之醫藥組合物可進一步包含醫藥學上可接受之載劑。
本發明之另一態樣提供治療受PI3激酶調節的過度增生性疾病或病症之方法,其包含向需要該治療之哺乳動物投與有效量之式I或式II化合物及化療劑。式I或式II化合物及化療劑可加以共同調配以便以醫藥組合物形式組合投與,或其可以治療劑組合形式交替(依次)獨立投與。
本發明之另一態樣提供治療過度增生性病症之方法,其包含向需要該治療之哺乳動物投與有效量之式I或式II化合物及化療劑。
在另一態樣中,本發明提供一種使用本發明之醫藥組合物來治療哺乳動物之受PI3激酶調節之疾病或病狀的方法。
本發明之另一態樣為本發明之醫藥組合物用於製備用以治療哺乳動物之受PI3激酶調節之疾病或病狀的藥劑之用途。
本發明之另一態樣包括包含式I或式II化合物、化療劑、容器及視情況使用之對治療作指示說明之包裝插頁或標籤的製品或套組。
本發明之另一態樣為一種包含具有式I或式II之化合物及化療劑的產品,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼;其在過度增生性病症之治療中呈適於獨立、同時或依次使用之組合製劑形式。
本發明之另一態樣包括一種用於確定欲被組合使用用於治療癌症之化合物之方法,其包含:a)向富含層黏連蛋白(laminin)之重構基底膜培養基中的HER2擴增之乳癌細胞投與具有式I或式II之化合物與化療劑之治療劑組合,其中該化療劑靶向HER2受體,與HER2受體結合或調節HER2受體;及b)量測細胞增生之抑制,其中根據選自細胞存活力及腺泡形態發生之一或多種表型差異區分非惡性及惡性乳房細胞。
本發明之另一態樣包括一種用於確定欲被組合使用用於治療癌症之化合物之方法,其包含:a)向具有K-ras突變之活體外腫瘤細胞株投與如請求項1之治療劑組合;及b)量測協同或非協同效應。
現將詳細參考本發明之某些實施例,其實例係以隨附結構及化學式加以說明。儘管將結合所列舉之實施例描述本發明,但應瞭解其並不意欲使本發明受限於彼等實施例。相反,本發明意欲涵蓋可包括在如由申請專利範圍所界定之本發明範疇內之所有替代、修改及等效體。熟習此項技術者應認識到許多類似或等同於本文所述之彼等者的方法及材料可用於實施本發明。本發明決不受限於所述方法及材料。在所併入文獻、專利及類似材料中之一或多者與本申請案不同或相悖(包括(但不限於)所定義術語、術語用法、所述技術或其類似者)之情況下,應以本申請案為準。
詞語"包含"、"包括"當用於本說明書及申請專利範圍時意欲說明所述特徵、整數、組份或步驟之存在,但其並不排除一或多個其他特徵、整數、組份、步驟或其族群之存在或添加。
如本文中所用,術語"烷基"係指具有一至十二個碳原子之飽和直鏈或支鏈單價烴基,其中烷基可視情況經一或多個如下所述之取代基獨立地取代。烷基之實例包括(但不限於)甲基(Me、-CH3
)、乙基(Et、-CH2
CH3
)、1-丙基(n-Pr、正丙基、-CH2
CH2
CH3
)、2-丙基(i-Pr、異丙基、-CH(CH3
)2
)、1-丁基(n-Bu、正丁基、-CH2
CH2
CH2
CH3
)、2-甲基-1-丙基(i-Bu、異丁基、-CH2
CH(CH3
)2
)、2-丁基(s-Bu、第二丁基、-CH(CH3
)CH2
CH3
)、2-甲基-2-丙基(t-Bu、第三丁基、-C(CH3
)3
)、1-戊基(正戊基、-CH2
CH2
CH2
CH2
CH3
)、2-戊基(-CH(CH3
)CH2
CH2
CH3
)、3-戊基(-CH(CH2
CH3
)2
)、2-甲基-2-丁基(-C(CH3
)2
CH2
CH3
)、3-甲基-2-丁基(-CH(CH3
)CH(CH3
)2
)、3-甲基-1-丁基(-CH2
CH2
CH(CH3
)2
)、2-甲基-1-丁基(-CH2
CH(CH3
)CH2
CH3
)、1-己基(-CH2
CH2
CH2
CH2
CH2
CH3
)、2-己基(-CH(CH3
)CH2
CH2
CH2
CH3
)、3-己基(-CH(CH2
CH3
)(CH2
CH2
CH3
))、2-甲基-2-戊基(-C(CH3
)2
CH2
CH2
CH3
)、3-甲基-2-戊基(-CH(CH3
)CH(CH3
)CH2
CH3
)、4-甲基-2-戊基(-CH(CH3
)CH2
CH(CH3
)2
)、3-甲基-3-戊基(-C(CH3
)(CH2
CH3
)2
)、2-甲基-3-戊基(-CH(CH2
CH3
)CH(CH3
)2
)、2,3-二甲基-2-丁基(-C(CH3
)2
CH(CH3
)2
)、3,3-二甲基-2-丁基(-CH(CH3
)C(CH3
)3
)、1-庚基、1-辛基及其類似基團。
術語"烯基"係指具有至少一個不飽和位點(亦即碳-碳sp2
雙鍵)且具有兩至十二個碳原子之直鏈或支鏈單價烴基,其中烯基可視情況經一或多個本文所述之取代基獨立地取代,且包括具有"順"及"反"取向或者"E"及"Z"取向之基團。實例包括(但不限於)乙烯基(-CH=CH2
)、烯丙基(-CH2
CH=CH2
)及其類似基團。
術語"炔基"係指具有至少一個不飽和位點(亦即碳-碳sp參鍵)且具有兩至十二個碳原子之直鏈或支鏈單價烴基,其中炔基可視情況經一或多個本文所述之取代基獨立地取代。實例包括(但不限於)乙炔基(-C≡CH)、丙炔基(炔丙基、-CH2
C≡CH)及其類似基團。
術語"碳環"、"碳環基"及"環烷基"係指具有3至12個碳原子作為單環或具有7至12個碳原子作為雙環之單價非芳族的飽和或部分不飽和環。具有7至12個原子之雙環碳環可(例如)排列為雙環[4,5]、[5,5]、[5,6]或[6,6]系統,且具有9或10個環原子之雙環碳環可排列為雙環[5,6]或[6,6]系統,或排列為諸如雙環[2.2.1]庚烷、雙環[2.2.2]辛烷及雙環[3.2.2]壬烷之橋接系統。單環碳環之實例包括(但不限於)環丙基、環丁基、環戊基、1-環戊-1-烯基、1-環戊-2-烯基、1-環戊-3-烯基、環己基、1-環己-1-烯基、1-環己-2-烯基、1-環己-3-烯基、環己二烯基、環庚基、環辛基、環壬基、環癸基、環十一基、環十二基及其類似基團。
"芳基"意謂藉由自母體芳環系統之單個碳原子移除一個氫原子所產生的具有6-20個碳原子之單價芳族烴基。一些芳基在例示性結構中以"Ar"表示。芳基包括包含與飽和、部分不飽和環或芳族碳環或雜環稠合之芳環的雙環基團。典型芳基包括(但不限於)源自以下者之基團:苯(苯基)、經取代之苯、萘、蒽、聯苯、茚基、二氫茚基、1,2-二氫萘、1,2,3,4-四氫萘基及其類似物。芳基視情況經一或多個本文所述之取代基獨立地取代。
術語"雜環"及"雜環基"在本文中可互換使用且係指具有3至20個環原子之飽和或部分不飽和(亦即,環內具有一或多個雙鍵及/或參鍵)的碳環基團,其中至少一個環原子為選自氮、氧及硫之雜原子,其餘環原子為C,其中一或多個環原子視情況經一或多個如下所述之取代基獨立地取代。雜環可為具有3至7個環成員(2至6個碳原子及1至4個選自N、O、P及S之雜原子)之單環或具有7至10個環成員(4至9個碳原子及1至6個選自N、O、P及S之雜原子)之雙環,例如:雙環[4,5]、[5,5]、[5,6]或[6,6]系統。雜環係描述於以下文獻中:Paquette,Leo A.;"Principles of Modern Heterocyclic Chemistry"(W.A. Benjamin,New York,1968),尤其第1章、第3章、第4章、第6章、第7章及第9章;"The Chemistry of Heterocyclic Compounds,A series of Monographs"(John Wiley & Sons,New York,1950至今),尤其第13卷、第14卷、第16卷、第19卷及第28卷;及J. Am. Chem. Soc.(1960)82:5566。術語"雜環"包括雜環烷氧基。"雜環基"亦包括如下基團,其中雜環基團與飽和、部分不飽和環或芳族碳環或雜環稠合。雜環之實例包括(但不限於)吡咯啶基、四氫呋喃基、二氫呋喃基、四氫噻吩基、四氫哌喃基、二氫哌喃基、四氫硫代哌喃基、哌啶基、嗎啉基、硫代嗎啉基、硫氧雜環己基、哌嗪基、高哌嗪基、吖丁啶基、氧雜環丁烷基、硫雜環丁烷基、高哌啶基、氧雜環庚烷基、硫雜環庚基、噁氮呯基、二氮呯基、噻氮呯基、2-吡咯啉基、3-吡咯啉基、吲哚啉基、2H-哌喃基、4H-哌喃基、二氧雜環己烷基、1,3-二氧戊環基、吡唑啉基、二噻烷基、二硫基、二氫哌喃基、二氫噻吩基、二氫呋喃基、吡唑啶基咪唑啉基、咪唑啶基、3-氮雜雙環[3.1.0]己基、3-氮雜雙環[4.1.0]庚基、氮雜雙環[2.2.2]己基、3H-吲哚基、喹嗪基及N-吡唑基脲。螺部分亦包括在此定義之範疇內。2個環碳原子經側氧基(=O)部分取代之雜環基之實例為嘧啶酮基及1,1-二側氧基-硫代嗎啉基。本文中之雜環基視情況經一或多個本文所述之取代基獨立地取代。
術語"雜芳基"係指5、6或7員環之單價芳基,且包括含有一或多個獨立地選自氮、氧及硫之雜原子之5-20個原子的稠環系統(其中至少一者為芳族系統)。雜芳基之實例為吡啶基(包括例如2-羥基吡啶基)、咪唑基、咪唑并吡啶基、嘧啶基(包括例如4-羥基嘧啶基)、吡唑基、三唑基、吡嗪基、四唑基、呋喃基、噻吩基、異噁唑基、噻唑基、噁唑基、異噻唑基、吡咯基、喹啉基、異喹啉基、吲哚基、苯并咪唑基、苯并呋喃基、啉基、吲唑基、吲嗪基、酞嗪基、噠嗪基、三嗪基、異吲哚基、喋啶基、嘌呤基、噁二唑基、三唑基、噻二唑基、噻二唑基、呋吖基、苯并呋吖基、苯并噻吩基、苯并噻唑基、苯并噁唑基、喹唑啉基、喹喏啉基、啶基及呋喃并吡啶基。雜芳基視情況經一或多個本文所述之取代基獨立地取代。
雜環或雜芳基可為碳(碳連接)、氮(氮連接)或氧(氧連接)連接於可能連接之處。舉例而言(但不帶限制性),碳鍵結雜環或雜芳基係鍵結於吡啶之2、3、4、5或6位處,噠嗪之3、4、5或6位處,嘧啶之2、4、5或6位處,吡嗪之2、3、5或6位處,呋喃、四氫呋喃、硫代呋喃、噻吩、吡咯或四氫吡咯之2、3、4或5位處,噁唑、咪唑或噻唑之2、4或5位處,異噁唑、吡唑或異噻唑之3、4或5位處,氮丙啶之2或3位處,吖丁啶之2、3或4位處,喹啉之2、3、4、5、6、7或8位處或異喹啉之1、3、4、5、6、7或8位處。
舉例而言(但不帶限制性),氮鍵結雜環或雜芳基係鍵結於氮丙啶、吖丁啶、吡咯、吡咯啶、2-吡咯啉、3-吡咯啉、咪唑、咪唑啶、2-咪唑啉、3-咪唑啉、吡唑、吡唑啉、2-吡唑啉、3-吡唑啉、哌啶、哌嗪、吲哚、吲哚啉、1H-吲唑之1位處,異吲哚或異吲哚啉之2位處,嗎啉之4位處,及咔唑或β-咔啉之9位處。
"碳連接單環雜芳基"係指五或六員未經取代或經取代之單環雜芳基,其含有1、2、3或4個獨立地選自N、O及S之環雜原子。根據式I及式II,碳連接單環雜芳基係在單環雜芳基R3
基團之任一碳原子處連接至嘧啶環之C-2位。碳連接單環雜芳基包括(但不限於):2-吡啶基、3-吡啶基、4-吡啶基、3-異噁唑基、4-異噁唑基、5-異噁唑基、2-咪唑基、4-咪唑基、3-吡唑基、4-吡唑基、2-吡咯基、3-吡咯基、2-噻唑基、4-噻唑基、5-噻唑基、3-噠嗪基、4-噠嗪基、5-噠嗪基、2-嘧啶基、5-嘧啶基、6-嘧啶基、2-吡嗪基、2-噁唑基、4-噁唑基、5-噁唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、3-三唑基、1-三唑基、5-四唑基、1-四唑基及2-四唑基。碳連接單環雜芳基視情況經一或多個本文所述之取代基獨立地取代。
含有一或多個獨立地選自氮、氧及硫之雜原子的"碳連接稠合雙環C3
-C20
雜環基"及"碳連接稠合雙環C1
-C20
雜芳基"僅因其芳族特徵而不同且具有兩個稠合在一起之環,亦即共有共用鍵。根據式I及式II,碳連接稠合雙環雜環基及雜芳基係在稠合雙環C3
-C20
雜環基或稠合雙環C1
-C20
雜芳基R3
基團之任一碳原子處連接至嘧啶環之C-2位。碳連接稠合雙環雜環基及雜芳基包括(但不限於):1H-吲唑、1H-吲哚、吲哚啉-2-酮、1-(吲哚啉-1-基)乙酮、1H-苯并[d][1,2,3]三唑、1H-吡唑并[3,4-b]吡啶、1H-吡唑并[3,4-d]嘧啶、1H-苯并[d]咪唑、1H-苯并[d]咪唑-2(3H)-酮、1H-吡唑并[3,4-c]吡啶、1H-吡咯并[2,3-c]吡啶、3H-咪唑并[4,5-c]吡啶、7H-吡咯并[2,3-d]嘧啶、7H-嘌呤、1H-吡唑并[4,3-d]嘧啶、5H-吡咯并[3,2-d]嘧啶、2-胺基-1H-嘌呤-6(9H)-酮、喹啉、喹唑啉、喹喏啉、異喹啉、異喹啉-1(2H)-酮、3,4-二氫異喹啉-1(2H)-酮、3,4-二氫喹啉-2(1H)-酮、喹唑啉-2(1H)-酮、喹喏啉-2(1H)-酮、1,8-啶、吡哆并[3,4-d]嘧啶及吡哆并[3,2-b]吡嗪。稠合雙環雜環及稠合雙環雜芳基視情況經一或多個本文所述之取代基獨立地取代。
視情況取代烷基、烯基、炔基、碳環基、雜環基、芳基、雜芳基、稠合雙環C4
-C20
雜環基及稠合雙環C1
-C20
雜芳基之取代基包括F、Cl、Br、I、CN、CF3
、-NO2
、側氧基、R10
、-C(=Y)R10
、-C(=Y)OR10
、-C(=Y)NR10
R11
、-(CR14
R15
)n
NR10
R11
、-(CR14
R15
)n
OR10
、-NR10
R11
、-NR12
C(=Y)R10
、-NR12
C(=Y)OR11
、-NR12
C(=Y)NR10
R11
、-NR12
SO2
R10
、=NR12
、OR10
、-OC(=Y)R10
、-OC(=Y)OR10
、-OC(=Y)NR10
R11
、-OS(O)2
(OR10
)、-OP(=Y)(OR10
)(OR11
)、-OP(OR10
)(OR11
)、SR10
、-S(O)R10
、-S(O)2
R10
、-S(O)2
NR10
R11
、-S(O)(OR10
)、-S(O)2
(OR10
)、-SC(=Y)R10
、-SC(=Y)OR10
、-SC(=Y)NR10
R11
、C1
-C12
視情況經取代之烷基、C2
-C8
視情況經取代之烯基、C2
-C8
視情況經取代之炔基、C3
-C12
視情況經取代之碳環基、C2
-C20
視情況經取代之雜環基、C6
-C20
視情況經取代之芳基、C1
-C20
視情況經取代之雜芳基、-(CR14
R15
)t
-NR12
C(=O)(CR14
R15
)NR10
R11
及(CR4
R5
)t
-NR10
R11
。
術語"治療"係指治療性治療及預防性措施兩者,其中目的在於防止或減緩(減輕)不當生理變化或病症,諸如癌症之生長、發展或擴散。為達成本發明之目的,有益或希望的臨床結果包括(但不限於)減輕症狀、降低疾病程度、穩定疾病病況(亦即不惡化)、延遲或減緩疾病進展、改善或緩和疾病病況以及緩解(無論部分抑或整體),無論可偵測抑或不可偵側皆然。"治療"亦可意謂與若未接受治療時之預期存活相比延長存活。需要治療之彼等者包括已患有病狀或病症之彼等者以及趨向於患有病狀或病症之彼等者或病狀或病症有待預防之彼等者。
短語"治療有效量"意謂本發明化合物可達成以下目的之量:(i)治療特定疾病、病狀或病症;(ii)削弱、改善或消除特定疾病、病狀或病症之一或多種症狀;或(iii)防止或延遲本文所述之特定疾病、病狀或病症之一或多種症狀的發作。在癌症之情況下,藥物之治療有效量能減少癌細胞之數目;減小腫瘤大小;抑制(亦即,在某種程度上減緩且較佳為阻止)癌細胞浸潤於周邊器官中;抑制(亦即,在某種程度上減緩且較佳為阻止)腫瘤轉移;在某種程度上抑制腫瘤生長;及/或在某種程度上減輕與癌症相關之症狀中的一或多種症狀。就藥物可防止現有癌細胞生長及/或殺死現有癌細胞而言,其可具細胞抑制性及/或細胞毒性。對於癌症療法而言,可例如藉由評估疾病進展時間(TTP)及/或測定反應率(RR)來量測功效。
術語"癌症"及"癌性"係指或描述哺乳動物之通常特徵為不受調節之細胞生長的生理病狀。"腫瘤"包含一或多種癌性細胞。癌症之實例包括(但不限於)癌瘤、淋巴瘤、胚細胞瘤、肉瘤及白血病或淋巴惡性腫瘤。該等癌症之更特定實例包括鱗狀細胞癌(例如,上皮鱗狀細胞癌)、肺癌(包括小細胞肺癌、非小細胞肺癌("NSCLC"))、肺之腺癌及肺之鱗狀癌、腹膜癌、肝細胞癌、胃癌(包括胃腸癌)、胰腺癌、神經膠母細胞瘤、子宮頸癌、卵巢癌、肝癌、膀胱癌、肝瘤、乳癌、結腸癌、直腸癌、結腸直腸癌、子宮內膜癌或子宮癌、唾液腺癌、腎癌、前列腺癌、外陰癌、甲狀腺癌、肝癌、肛門癌、陰莖癌以及頭頸部癌。
"化療劑"為不管何種作用機制皆適用於治療癌症之生物(大分子)或化學(小分子)化合物。化療劑之種類包括(但不限於):烷基化劑、抗代謝物、紡錘體毒素植物鹼、細胞毒素/抗腫瘤抗生素、拓撲異構酶抑制劑、蛋白質、抗體、光敏劑及激酶抑制劑。化療劑包括用於"靶向療法"及非靶向習知化學療法之化合物。
化療劑之實例包括埃羅替尼(TARCEVA,Genentech/OSI Pharm.)、多西他賽(TAXOTERE,Sanofi-Aventis)、5-FU(氟尿嘧啶,5-氟尿嘧啶,CAS號51-21-8)、吉西他濱(GEMZAR,Lilly)、PD-0325901(CAS號391210-10-9,Pfizer)、順鉑(順-二胺,二氯鉑(II),CAS號15663-27-1)、卡鉑(CAS號41575-94-4)、紫杉醇(TAXOL,Bristol-Myers Squibb Oncology,Princeton,N.J.)、貝伐單抗(AVASTIN,Genentech)、曲妥珠單抗(HERCEPTIN,Genentech)、帕妥珠單抗(OMNITARG,rhuMab 2C4,Genentech)、替莫唑胺(4-甲基-5-側氧基-2,3,4,6,8-五氮雜雙環[4.3.0]壬-2,7,9-三烯-9-甲醯胺,CAS號85622-93-1,TEMODAR,TEMODAL,Schering Plough)、他莫昔芬((Z)-2-[4-(1,2-二苯基丁-1-烯基)苯氧基]-N,N
-二甲基-乙胺,NOLVADEX,ISTUBAL,VALODEX)、阿黴素(ADRIAMYCIN)、Akti-1/2、HPPD、雷帕黴素及拉帕替尼(TYKERB,Glaxo SmithKline)。
化療劑之更多實例包括:奧賽力鉑(oxaliplatin)(ELOXATIN,Sanofi)、硼替佐米(bortezomib)(VELCADE,Millennium Pharm.)、舒尼替尼(sutent)(SUNITINIB,SU11248,Pfizer)、來曲唑(letrozole)(FEMARA,Novartis)、甲磺酸伊馬替尼(imatinib mesylate)(GLEEVEC,Novartis)、XL-518(MEK抑制劑,Exelixis,WO 2007/044515)、ARRY-886(MEK抑制劑,AZD6244,Array BioPharma,Astra Zeneca)、SF-1126(PI3K抑制劑,Semafore Pharmaceuticals)、BEZ-235(PI3K抑制劑,Novartis)、XL-147(PI3K抑制劑,Exelixis)、ABT-869(VEGF及PDGF家族受體酪胺酸激酶之多靶點抑制劑,Abbott Laboratories and Genentech)、ABT-263(Bcl-2/Bcl-xL抑制劑,Abbott Laboratories and Genentech)、PTK787/ZK 222584(Novartis)、氟維司群(fulvestrant)(FASLODEX,AstraZeneca)、甲醯四氫葉酸(leucovorin)(亞葉酸)、洛那法尼(lonafarnib)(SARASARTM
,SCH 66336,Schering Plough)、索拉非尼(sorafenib)(NEXAVAR,BAY43-9006,Bayer Labs)、吉非替尼(gefitinib)(IRESSA,AstraZeneca)、伊立替康(irinotecan)(CAMPTOSAR,CPT-11,Pfizer)、替吡法尼(tipifarnib)(ZARNESTRATM
,Johnson & Johnson)、卡西他賓(capecitabine)(XELODA,Roche)、ABRAXANETM
(不含克列莫佛(Cremophor))、紫杉醇之白蛋白工程化奈米粒子調配物(American Pharmaceutical Partners,Schaumberg,I1)、範得它尼(vandetanib)(rINN,ZD6474,ZACTIMA,AstraZeneca)、苯丁酸氮芥(chloranmbucil)、AG1478、AG1571(SU 5271;Sugen)、坦西莫司(temsirolimus)(TORLSEL,Wyeth)、帕唑盤尼(pazopanib)(GlaxoSmithKline)、坎弗醯胺(canfosfamide)(TELCYTA,Telik)、塞替派(thiotepa)及環磷醯胺(CYTOXAN,NEOSAR);磺酸烷酯,諸如白消安(busulfan)、英丙舒凡(improsulfan)及哌泊舒凡(piposulfan);氮丙啶類,諸如苯佐多巴(benzodopa)、卡波醌(carboquone)、米特多巴(meturedopa)及尤利多巴(uredopa);乙烯亞胺類及甲基三聚氰胺類,包括六甲密胺(altretamine)、三伸乙基三聚氰胺、三伸乙基磷醯胺、三伸乙基硫基磷醯胺及三甲基三聚氰胺;乙醯精寧(acetogenin)(尤其布拉他辛(bullatacin)及布拉他辛酮(bullatacinone));喜樹鹼(camptothecin)(包括合成類似物拓朴替康(topotecan));苔蘚蟲素(bryostatin);卡利他汀(callystatin);CC-1065(包括其阿多來新(adozelesin)、卡折來新(carzelesin)及比折來新(bizelesin)合成類似物);自念珠藻環肽(cryptophycin)(尤其念珠藻環肽1及自念珠藻環肽8);海兔毒素(dolastatin);多卡米辛(duocarmycin)(包括合成類似物KW-2189及CB1-TM1);艾榴素(eleutherobin);水鬼蕉鹼(pancratistatin);沙考的汀(sarcodictyin);海綿他汀(spongistatin);氮芥類,諸如苯丁酸氮芥(chlorambucil)、萘氮芥(chlornaphazine)、氯磷醯胺(chlorophosphamide)、雌莫司汀(estramustine)、異環磷醯胺(ifosfamide)、氮芥、氮芥氧化物鹽酸鹽、美法侖(melphalan)、新氮芥(novembichin)、膽甾醇苯乙酸氮芥(phenesterine)、潑尼莫司汀(prednimustine)、曲洛磷胺(trofosfamide)、尿嘧啶氮芥;亞硝基脲,諸如卡莫司汀(carmustine)、氯脲黴素(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)及雷莫司汀(ranimnustine);抗生素,諸如烯二炔抗生素(例如卡奇黴素(calicheamicin)、卡奇黴素γ1I、卡奇黴素ωI1、達內黴素(dynemicin)、達內黴素A;雙膦酸鹽,諸如氯屈膦酸鹽;埃斯培拉黴素(esperamicin);以及新制癌菌素(neocarzinostatin)發色團及相關色蛋白烯二炔抗生素發色團)、阿克拉黴素(aclacinomycin)、放線菌素(actinomycin)、奧斯拉米辛(authramycin)、重氮絲胺酸(azaserine)、博來黴素(bleomycin)、放線菌素C(cactinomycin)、卡拉比辛(carabicin)、洋紅黴素(carminomycin)、嗜癌黴素(carzinophilin)、色黴素(chromomycin)、放線菌素D(dactinomycin)、柔紅黴素、地托比星(detorubicin)、6-重氮基-5-側氧基-L-正白胺酸、嗎啉基-阿黴素、氰基嗎啉基-阿黴素、2-N-吡咯啉基-阿黴素及去氧阿黴素、表柔比星(epirubicin)、依索比星(esorubicin)、黃膽素(idarubicin)、麻西羅黴素(marcellomycin)、絲裂黴素(mitomycin)(諸如絲裂黴素C)、黴酚酸(mycophenolic acid)、諾拉黴素(nogalamycin)、橄欖黴素(olivomycin)、培洛黴素(peplomycin)、泊非黴素(porfiromycin)、嘌呤黴素(puromycin)、三鐵阿黴素(quelamycin)、羅多比星(rodorubicin)、鏈黑菌素(streptonigrin)、鏈佐星(streptozocin)、殺結核菌素(tubercidin)、烏苯美司(ubenimex)、淨司他丁(zinostatin)、佐柔比星(zorubicin);抗代謝物,諸如甲胺喋呤及5-氟尿嘧啶(5-FU);葉酸類似物,諸如迪諾特寧(denopterin)、甲胺喋呤(methotrexate)、蝶羅呤(pteropterin)、三甲曲沙(trimetrexate);嘌呤類似物,諸如氟達拉濱(fludarabine)、6-巰基嘌呤、噻咪嘌呤(thiamiprine)、硫鳥嘌呤;嘧啶類似物,諸如安西他濱(ancitabine)、阿紮胞苷(azacitidine)、6-氮尿苷、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、雙脫氧尿苷、脫氧氟尿苷、依諾他濱(enocitabine)、氟尿苷(floxuridine);雄激素,諸如卡普睾酮(calusterone)、丙酸屈他雄酮(dromostanolone propionate)、環硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾內酯(testolactone);抗腎上腺類,諸如胺魯米特(aminoglutethimide)、米托坦(mitotane)、曲洛司坦(trilostane);葉酸補充劑,諸如夫羅林酸(frolinic acid);醋葡醛內酯(aceglatone);醛磷醯胺糖苷;胺基乙醯丙酸;恩尿嘧啶(eniluracil);安吖啶(amsacrine);貝司他布(bestrabucil);比生群(bisantrene);艾達曲卡(edatraxate);得弗伐胺(defofamine);秋水仙胺(demecolcine);地吖醌(diaziquone);艾弗尼辛(elfornithine);依利醋銨(elliptinium acetate);埃坡黴素(epothilone);依託格魯(etoglucid);硝酸鎵;羥基脲;香菇多糖(lentinan);羅尼代寧(lonidainine);美登素類(maytansinoids),諸如美登素(maytansine)及美登木素(ansamitocin);米托胍月宗(mitoguazone);米托蒽醌(mitoxantrone);莫比旦莫耳(mopidanmol);硝爾靈(nitraerine);噴司他丁(pentostatin);蛋胺氮芥(phenamet);吡柔比星(pirarubicin);洛索蒽醌(losoxantrone);足葉草酸(podophyllinic acid);2-乙基醯肼;丙卡巴肼(procarbazine);PSK多醣複合物(JHS天然產物,Eugene,OR);雷佐生(razoxane);根瘤菌素(rhizoxin);西佐喃(sizofiran);鍺螺胺(spirogermanium);細交鏈孢菌酮酸(tenuazonic acid);三亞胺醌(triaziquone);2,2',2"-三氯三乙胺;單端孢黴烯族毒素(trichothecene)(尤其T-2毒素、韋拉庫林A(弗納庫林A)、桿孢菌素A(roridin A)及安奎定(anguidine));烏拉坦(urethan);長春地辛(vindesine);達卡巴嗪(dacarbazine);甘露莫司汀(mannomustine);二溴甘露醇(mitobronitol);二溴衛矛醇(mitolactol);哌泊溴烷(pipobroman);伽托辛(gacytosine);阿拉伯糖苷("Ara-C");環磷醯胺(cyclophosphamide);塞替派;6-硫鳥嘌呤;巰基嘌呤;甲胺喋呤;鉑類似物,諸如順鉑及卡鉑;長春鹼(vinblastine);依託泊苷(etoposide)(VP-16);異環磷醯胺;米托蒽醌(mitoxantrone);長春新鹼(vincristine);長春瑞賓(vinorelbine)(NAVELBINE);諾凡特龍(novantrone);替尼泊甙(teniposide);依達曲沙(edatrexate);道諾黴素(daunomycin);胺基喋呤;伊班膦酸鹽(ibandronate);CPT-11;拓撲異構酶抑制劑RFS 2000;二氟甲基鳥胺酸(DMFO);類視色素,諸如視黃酸;及任何上述物質之醫藥學上可接受之鹽、酸及衍生物。
"化療劑"之定義中亦包括:(i)起作用以調節或抑制激素對腫瘤之作用的抗激素藥劑,諸如抗雌激素及選擇性雌激素受體調節劑(SERM),包括(例如)他莫昔芬(包括NOLVADEX,檸檬酸他莫西芬)、雷諾昔酚(raloxifene)、屈洛昔芬(droloxifene)、4-羥基他莫昔芬、曲沃昔芬(trioxifene)、雷洛昔芬(keoxifene)、LY117018、奧那司酮(onapristone)及FARESTON(檸檬酸托瑞米芬(toremifine citrate));(ii)可抑制酶芳香酶之芳香酶抑制劑,其調節腎上腺中之雌激素產生,諸如4(5)-咪唑、胺魯米特、MEGASE(醋酸甲地孕酮(megestrol acetate))、AROMASIN(依西美坦(exemestane);Pfizer)、弗米斯坦(formestanie)、法屈唑(fadrozole)、RIVISOR(伏羅唑(vorozole))、FEMARA(來曲唑(letrozole);Novartis)及ARIMIDEX(安美達錠(anastrozole);AstraZeneca);(iii)抗雄激素,諸如氟他胺(flutamide)、尼魯米特(nilutamide)、比卡魯胺(bicalutamide)、亮丙瑞林(leuprolide)及戈舍瑞林(goserelin);以及曲沙他濱(troxacitabine)(1,3-二氧戊環核苷胞嘧啶類似物);(iv)蛋白激酶抑制劑,諸如MEK抑制劑(WO 2007/044515);(v)脂質激酶抑制劑;(vi)反義寡核苷酸,尤其能抑制異常細胞增生中所涉及之信號轉導途徑中之基因表現的彼等者,例如PKC-α、Raf及H-Ras,諸如奧利默森(oblimersen)(GENASENSE,Genta Inc.);(vii)核酶,諸如VEGF表現抑制劑(例如ANGIOZYME)及HER2表現抑制劑;(viii)疫苗,諸如基因治療疫苗,例如ALLOVECTIN、LEUVECTIN及VAXID;PROLEUKINrIL-2;拓撲異構酶1抑制劑,諸如LURTOTECAN;ABARELIXrmRH;(ix)抗血管生成劑,諸如貝伐單抗(AVASTIN,Genentech)及任何上述物質之醫藥學上可接受之鹽、酸及衍生物。
"化療劑"之定義中亦包括治療性抗體,諸如阿來組單抗(alemtuzumab)(Campath)、貝伐單抗(AVASTIN,Genentech);西妥昔單抗(ERBITUX,Imclone);帕尼單抗(panitumumab)(VECTIBIX,Amgen)、利妥昔單抗(RITUXAN,Genentech/Biogen Idec)、帕妥珠單抗(OMNITARGTM
,2C4,Genentech)、曲妥珠單抗(HERCEPTIN,Genentech)、托西莫單抗(Bexxar,Corixia)及抗體藥物共軛物吉妥珠單抗奧唑米星(gemtuzumab ozogamicin)(MYLOTARG,Wyeth)。
組合本發明之PI3K抑制劑作為化療劑具有治療潛力之人類化單株抗體包括:阿來組單抗、阿泊珠單抗(apolizumab)、阿塞珠單抗(aselizumab)、阿利珠單抗(atlizumab)、貝頻珠單抗(bapineuzumab)、貝伐單抗、比伐珠單抗美坦新(bivatuzumab mertansine)、卡突珠單抗美坦新(cantuzumab mertansine)、西利珠單抗(cedelizumab)、塞妥珠單抗(certolizumab pegol)、西弗珠單抗(cidfusituzumab)、西突珠單抗(cidtuzumab)、達利珠單抗(daclizumab)、依庫珠單抗(eculizumab)、依法珠單抗(efalizumab)、依帕珠單抗(epratuzumab)、厄利珠單抗(erlizumab)、泛維珠單抗(felvizumab)、芳妥珠單抗(fontolizumab)、吉妥珠單抗奧唑米星、印突珠單抗奧唑米星(inotuzumab ozogamicin)、依莫單抗(ipilimumab)、拉貝珠單抗(labetuzumab)、林妥珠單抗(lintuzumab)、馬妥珠單抗(matuzumab)、美泊珠單抗(mepolizumab)、莫維珠單抗(motavizumab)、莫突珠單抗(motovizumab)、那他珠單抗(natalizumab)、尼妥珠單抗(nimotuzumab)、諾維珠單抗(nolovizumab)、木維珠單抗(numavizumab)、奧克珠單抗(ocrelizumab)、奧馬珠單抗(omalizumab)、帕利珠單抗(palivizumab)、帕考珠單抗(pascolizumab)、匹弗珠單抗(pecfusituzumab)、匹克珠單抗(pectuzumab)、帕妥珠單抗、培克珠單抗(pexelizumab)、雷維珠單抗(ralivizumab)、雷珠單抗(ranibizumab)、瑞維珠單抗(reslivizumab)、瑞利珠單抗(reslizumab)、瑞斯珠單抗(resyvizumab)、羅維珠單抗(rovelizumab)、盧利珠單抗(ruplizumab)、西羅珠單抗(sibrotuzumab)、西利珠單抗(siplizumab)、索突珠單抗(sontuzumab)、他珠單抗泰昔坦(tacatuzumab tetraxetan)、他西珠單抗(tadocizumab)、他利珠單抗(talizumab)、泰非珠單抗(tefibazumab)、托珠單抗(tocilizumab)、托利珠單抗(toralizumab)、曲司珠單抗(trastuzumab)、突克珠單抗昔莫魯克(tucotuzumab celmoleukin)、突斯珠單抗(tucusituzumab)、烏維珠單抗(umavizumab)、烏珠單抗(urtoxazumab)及維西珠單抗(visilizumab)。
術語"哺乳動物"包括(但不限於)人類、小鼠、大鼠、天竺鼠、猴、狗、貓、馬、牛、豬及綿羊及家禽。
"代謝物"為經由指定化合物或其鹽在身體內代謝所產生之產物。可使用此項技術中已知之常規技術來鑑別化合物之代謝物且可使用諸如本文所述之彼等者之測試來測定其活性。該等產物可例如由所投與化合物之氧化、還原、水解、醯胺化、脫醯胺、酯化、脫酯、酶促裂解及其類似方式產生。因此,本發明包括本發明之化合物之代謝物,包括藉由包含使本發明之化合物與哺乳動物接觸足以產生其代謝產物之時間段的方法所產生之化合物。
術語"包裝插頁"係用於指通常包括在治療產品之商業包裝中之用法說明書,其含有關於適應症、用法、劑量、投藥、禁忌症及/或關於使用該等治療產品之注意事項的資訊。
如本文中所使用之短語"醫藥學上可接受之鹽"係指本發明之化合物的醫藥學上可接受之有機或無機鹽。例示性鹽包括(但不限於)硫酸鹽、檸檬酸鹽、乙酸鹽、草酸鹽、氯化物、溴化物、碘化物、硝酸鹽、硫酸氫鹽、磷酸鹽、酸式磷酸鹽、異菸酸鹽、乳酸鹽、水楊酸鹽、酸式檸檬酸鹽、酒石酸鹽、油酸鹽、丹寧酸鹽、泛酸鹽、酒石酸氫鹽、抗壞血酸鹽、丁二酸鹽、順丁烯二酸鹽、龍膽酸鹽(gentisinate)、反丁烯二酸鹽、葡糖酸鹽、葡萄糖醛酸鹽、葡萄糖二酸鹽、甲酸鹽、苯甲酸鹽、麩胺酸鹽、甲磺酸鹽"甲磺酸鹽"、乙烷磺酸鹽、苯磺酸鹽、對甲苯磺酸鹽及雙羥萘酸鹽(亦即1,1'-亞甲基-雙-(2-羥基-3-萘甲酸鹽))。醫藥學上可接受之鹽可涉及包括諸如乙酸根離子、丁二酸根離子或其他平衡離子之另一分子。平衡離子可為使母體化合物上之電荷穩定的任何有機或無機部分。此外,醫藥學上可接受之鹽在其結構中可具有一個以上帶電原子。多個帶電原子為醫藥學上可接受之鹽之部分的情況可具有多個平衡離子。因此,醫藥學上可接受之鹽可具有一或多個帶電原子及/或一或多個平衡離子。
若本發明之化合物為鹼,則所需醫藥學上可接受之鹽可藉由此項技術中可利用之任何合適之方法來製備,例如用下列酸處理游離鹼:無機酸,諸如鹽酸、氫溴酸、硫酸、硝酸、甲磺酸、磷酸及其類似酸;或有機酸,諸如乙酸、順丁烯二酸、丁二酸、扁桃酸、反丁烯二酸、丙二酸、丙酮酸、草酸、乙醇酸、水楊酸、哌喃糖酸(pyranosidyl acid)(諸如葡糖醛酸或半乳糖醛酸)、α羥酸(諸如檸檬酸或酒石酸)、胺基酸(諸如天冬胺酸或麩胺酸)、芳族酸(諸如苯甲酸或肉桂酸)、磺酸(諸如對甲苯磺酸或乙烷磺酸)或其類似酸。通常認為適用於由鹼性醫藥化合物形成醫藥學上適用或可接受之鹽的酸係(例如)由P. Stahl等人,Camille G.(編)Handbook of Pharmaceutical Salts. Properties,Selection and Use.(2002)Zurich:Wiley-VCH;S. Berge等人,Journal of Pharmaceutical Sciences(1977)66(1)1 19;P. Gould,International J. of Pharmaceutics(1986)33 201 217;Anderson等人,The Practice of Medicinal Chemistry(1996),Academic Press,New York;Remington's Pharmaceutical Sciences,第18版,(1995)Mack Publishing Co.,Easton PA所論述且論述於The Orange Book(美國食品與藥物管理局(Food & Drug Administration),Washington,D.C.於其網站上)中。該等揭示內容據此以引用的方式併入本文中。
若本發明之化合物為酸,則所需醫藥學上可接受之鹽可藉由任何合適之方法來製備,例如用無機鹼或有機鹼處理游離酸,該鹼諸如胺(第一、第二或第三胺)、鹼金屬氫氧化物或鹼土金屬氫氧化物或其類似物。合適之鹽之說明性實例包括(但不限於)源自胺基酸(諸如甘胺酸及精胺酸)、氨、第一胺、第二胺及第三胺及環胺(諸如哌啶、嗎啉及哌嗪)之有機鹽,及源自鈉、鈣、鉀、鎂、錳、鐵、銅、鋅、鋁及鋰之無機鹽。
短語"醫藥學上可接受之"指示物質或組合物必須與構成調配物之其他成份及/或所治療之哺乳動物在化學上及/或毒理學上相容。
"溶劑合物"係指一或多種溶劑分子與本發明之化合物之物理性締合物或複合物。本發明之化合物可以非溶劑合形式以及溶劑合形式存在。形成溶劑合物之溶劑的實例包括(但不限於)水、異丙醇、乙醇、甲醇、DMSO、乙酸乙酯、乙酸及乙醇胺。術語"水合物"係指溶劑分子為水之複合物。該物理性締合與不同程度之離子鍵及共價鍵(包括氫鍵)有關。在某些情況下,例如當一或多個溶劑分子併入結晶固體之晶格中時,溶劑合物將會能夠分離。溶劑合物之製備通常係已知的,例如M. Caira等人,J. Pharmaceutical Sci.,93(3),601 611(2004)。溶劑合物、半溶劑合物、水合物及其類似物之類似製備係由E. C. van Tonder等人,AAPS PharmSciTech.,5(1),article 12(2004);及A. L. Bingham等人,Chem. Commun.,603 604(2001)所描述。典型非限制性方法包括在高於環境溫度之溫度下將本發明之化合物溶解於所需量之所需溶劑(有機溶劑或水或其混合物)中,且以足以形成晶體之速率冷卻溶液,接著藉由標準方法分離晶體。諸如I.R.光譜術之分析技術顯示晶體中溶劑(或水)以溶劑合物(或水合物)形式存在。
如本文中所用,術語"協同"係指比兩個或兩個以上單一藥劑之疊加效應更有效的治療劑組合。式I或式II化合物與一或多種化療劑之間的協同相互作用之確定可基於獲自本文所述之檢定的結果。使用Chou-Talalay組合方法及CalcuSyn軟體劑量-效應分析來分析此等檢定之結果以獲得組合指數(Chou及Talalay,1984,Adv. Enzyme Regul. 22:27-55)。已在數種檢定系統中評估本發明提供之組合,且可利用用於量化抗癌劑之協同作用、疊加作用及拮抗作用的標準程式來分析資料。較佳利用之程式係由Chou及Talalay於"New Avenues in Developmental Cancer Chemotherapy,"Academic Press,1987第2章中所描述。組合指數值小於0.8指示協同作用,值大於1.2指示拮抗作用且值在0.8至1.2之間指示疊加效應。組合療法可提供"協同作用"且證明為"協同的",亦即活性成份一起使用時所達成之效應大於由單獨使用該等化合物所引起之效應的總和。協同效應可在活性成份為下列情況時獲得:(1)將其共調配且同時以組合之單位劑量調配物投與或傳遞;(2)將其以獨立調配物交替或並行傳遞;或(3)利用一些其他方案。當以交替療法傳遞時,協同效應可在(例如)藉由以獨立注射器進行不同注射來依序投與或傳遞化合物時獲得。一般而言,在交替療法期間,依次(亦即連續)投與有效劑量之各活性成份,而在組合療法中,同時投與有效劑量之兩種或兩種以上活性成份。
本發明包括治療劑組合,其包括式具有以下結構之I及II化合物:
或其立體異構體、幾何異構體、互變異構體或醫藥學上可接受之鹽,其中:R1
係選自H、F、Cl、Br、I、CN、-(CR14
R15
)m
NR10
R11
、-C(R14
R15
)n
NR12
C(=Y)R10
、-(CR14
R15
)n
NR12
S(O)2
R10
、-(CR14
R15
)m
OR10
、-(CR14
R15
)n
S(O)2
R10
、-(CR14
R15
)n
S(O)2
NR10
R11
、-C(OR10
)R11
R14
、-C(=Y)R10
、-C(=Y)OR10
、-C(=Y)NR10
R11
、-C(=Y)NR12
OR10
、-C(=O)NR12
S(O)2
R10
、-C(=O)NR12
(CR14
R15
)m
NR10
R11
、-NO2
、-NR12
C(=Y)R11
、-NR12
C(=Y)OR11
、-NR12
C(=Y)NR10
R11
、-NR12
S(O)2
R10
、-NR12
SO2
NR10
R11
、-SR10
、-S(O)2
R10
、-S(O)2
NR10
R11
、-SC(=Y)R10
、-SC(=Y)OR10
、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基及C1
-C20
雜芳基;R2
係選自H、F、Cl、Br、I、CN、CF3
、-NO2
、-C(=Y)R10
、-C(=Y)OR10
、-C(=Y)NR10
R11
、-(CR14
R15
)m
NR10
R11
、-(CR14
R15
)n
OR10
、-(CR14
R15
)t
-NR12
C(=O)(CR14
R15
)NR10
R11
、-NR12
C(=Y)R10
、-NR12
C(=Y)OR10
、-NR12
C(=Y)NR10
R11
、-NR12
SO2
R10
、OR10
、-OC(=Y)R10
、-OC(=Y)OR10
、-OC(=Y)NR10
R11
、-OS(O)2
(OR10
)、-OP(=Y)(OR10
)(OR11
)、-OP(OR10
)(OR11
)、SR10
、-S(O)R10
、-S(O)2
R10
、-S(O)2
NR10
R11
、-S(O)(OR10
)、-S(O)2
(OR10
)、-SC(=Y)R10
、-SC(=Y)OR10
、-SC(=Y)NR10
R11
、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基及C1
-C20
雜芳基;R3
為碳連接單環雜芳基、碳連接稠合雙環C3
-C20
雜環基或碳連接稠合雙環C1
-C20
雜芳基,其中該單環雜芳基、該稠合雙環C3
-C20
雜環基及該稠合雙環C1
-C20
雜芳基視情況經一或多個選自以下者之基團取代:F、Cl、Br、I、-CN、-NR10
R11
、-OR10
、-C(O)R10
、-NR10
C(O)R11
、-N(C(O)R11
)2
、-NR10
C(O)NR10
R11
、-NR12
S(O)2
R10
、-C(=O)OR10
、-C(=O)NR10
R11
、C1
-C12
烷基及(C1
-C12
烷基)-OR10
;R10
、R11
及R12
獨立地為H、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基或C1
-C20
雜芳基;或R10
及R11
與其所連接之氮一起形成C2
-C20
雜環,該雜環視情況經一或多個獨立地選自以下者之基團取代:側氧基、(CH2
)m
OR12
、NR12
R12
、CF3
、F、Cl、Br、I、SO2
R12
、C(=O)R12
、NR12
C(=Y)R12
、NR12
S(O)2
R12
、C(=Y)NR12
R12
、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基及C1
-C20
雜芳基;R14
及R15
係獨立地選自H、C1
-C12
烷基或-(CH2
)n
-芳基;或R14
及R15
與其所連接之原子一起形成飽和或部分不飽和C3
-C12
碳環;其中該烷基、該烯基、該炔基、該碳環基、該雜環基、該芳基及該雜芳基視情況經一或多個獨立地選自以下者之基團取代:F、Cl、Br、I、CN、CF3
、-NO2
、側氧基、R10
、-C(=Y)R10
、-C(=Y)OR10
、-C(=Y)NR10
R11
、-(CR14
R15
)n
NR10
R11
、-(CR14
R15
)n
OR10
、-NR10
R11
、-NR12
C(=Y)R10
、-NR12
C(=Y)OR11
、-NR12
C(=Y)NR10
R11
、-(CR14
R15
)m
NR12
SO2
R10
、=NR12
、OR10
、-OC(=Y)R10
、-OC(=Y)OR10
、-OC(=Y)NR10
R11
、-OS(O)2
(OR10
)、-OP(=Y)(OR10
)(OR11
)、-OP(OR10
)(OR11
)、-SR10
、-S(O)R10
、-S(O)2
R10
、-S(O)2
NR10
R11
、-S(O)(OR10
)、-S(O)2
(OR10
)、-SC(=Y)R10
、-SC(=Y)OR10
、-SC(=Y)NR10
R11
、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基及C1
-C20
雜芳基;Y為O、S或NR12
;m為0、1、2、3、4、5或6;且n為1、2、3、4、5或6。
式I及式II化合物之例示性實施例包括其中R1
為-(CR14
R15
)m
NR10
R11
,其中m為1且R10
及R11
與其所連接之氮一起形成視情況經取代之C3
-C20
雜環。C3
-C20
雜環可為哌嗪基,其視情況經一或多個選自以下者之基團取代:NR10
R11
、CF3
、F、Cl、Br、I、SO2
R10
、C(=O)R10
、NR12
C(=Y)R11
、NR12
S(O)2
R11
、C(=Y)NR10
R11
及C1
-C12
烷基。
式I及式II化合物之例示性實施例包括其中R1
不為H。
式I及式II化合物之例示性實施例包括其中R2
為H、CH3
、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基或C1
-C20
雜芳基。C1
-C20
雜芳基可為選自以下者之單環雜芳基:2-吡啶基、3-吡啶基、4-吡啶基、3-異噁唑基、4-異噁唑基、5-異噁唑基、2-咪唑基、4-咪唑基、3-吡唑基、4-吡唑基、2-吡咯基、3-吡咯基、2-噻唑基、4-噻唑基、5-噻唑基、3-噠嗪基、4-噠嗪基、5-噠嗪基、2-嘧啶基、5-嘧啶基、6-嘧啶基、2-吡嗪基、2-噁唑基、4-噁唑基、5-噁唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、3-三唑基、1-三唑基、5-四唑基、1-四唑基及2-四唑基。
式I及式II化合物之例示性實施例包括其中R3
為2-胺基嘧啶-5-基。
式I及式II化合物之例示性實施例包括其中R3
為選自以下者之雙環雜芳基:1H-吲唑、1H-吲哚、吲哚啉-2-酮、1-(吲哚啉-1-基)乙酮、1H-苯并[d][1,2,3]三唑、1H-吡唑并[3,4-b]吡啶、1H-吡唑并[3,4-d]嘧啶、1H-苯并[d]咪唑、1H-苯并[d]咪唑-2(3H)-酮、1H-吡唑并[3,4-c]吡啶、1H-吡咯并[2,3-c]吡啶、3H-咪唑并[4,5-c]吮啶、7H-咄咯并[2,3-d]嘧啶、7H-嘌呤、1H-吡唑并[4,3-d]嘧啶、5H-吡咯并[3,2-d]嘧啶、2-胺基-1H-嘌呤-6(9H)-酮、喹啉、喹唑啉、喹喏啉、異喹啉、異喹啉-1(2H)-酮、3,4-二氫異喹啉-1(2H)-酮、3,4-二氫喹啉-2(1H)-酮、唑唑啉-2(1H)-酮、喹喏啉-2(1H)-酮、1,8-啶、吡哆并[3,4-d]嘧啶及吡哆并[3,2-b]吡嗪。
式I及式II化合物之例示性實施例包括其中R3
為1H-吲唑-4-基。
例示性式I化合物為具有式Ia之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉:
另一例示性式I化合物為具有式Ib之(S)-1-(4-((2-(2-胺基嘧啶-5-基)-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮:
例示性式II化合物為具有式IIa之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[2,3-d]嘧啶-4-基)嗎啉:
可藉由包括類似於化學技術中所熟知之彼等方法且包括WO 2006/046031的方法之合成途徑合成式I及式II化合物。起始材料通常係自諸如Aldrich Chemicals(Milwaukee,WI)之商業來源獲得或係容易地使用熟習此項技術者所熟知之方法來製備(例如,藉由大體描述於Louis F. Fieser及Mary Fieser,Reagents for Organic Synthesis,第1-19卷,Wiley,N.Y.(1967-1999版)或Beilsteins Handbuch der organischen Chemie,4,Aufl.編。Springer-Verlag,Berlin(包括增刊)(亦可經由Beilstein在線資料庫獲得)中之方法製備)。
式I及式II化合物可使用用以製備其他噻吩及嘧啶(US 6608053;US 6492383;US 6232320;US 6187777;US 3763156;US 3661908;US 3475429;US 5075305;US 2003/220365;GB 1393161;WO 93/13664)以及其他雜環(其描述於:Comprehensive Heterocyclic Chemistry,編者Katritzky 及 Rees,Pergamon Press,1984中)之程序來製備。
藉由習知方法,可將式I及式II化合物轉化為醫藥學上可接受之鹽,且可將鹽轉化為游離鹼化合物。視諸如溶解性、溶解作用、吸濕性及藥物動力學之所需特性而定,式I及式II化合物可作為游離鹼或作為醫藥學上可接受之鹽而在治療上為有效的。醫藥學上可接受之鹽之實例包括與無機酸形成之鹽,該等無機酸諸如鹽酸、氫溴酸、氫碘酸、硫酸、硝酸及磷酸;及與有機酸形成之鹽,該等有機酸諸如甲磺酸、苯磺酸、甲酸、乙酸、三氟乙酸、丙酸、草酸、丙二酸、丁二酸、反丁烯二酸、順丁烯二酸、乳酸、蘋果酸、酒石酸、檸檬酸、乙磺酸、天冬胺酸及麩胺酸。鹽可為甲磺酸鹽、鹽酸鹽、磷酸鹽、苯磺酸鹽或硫酸鹽。鹽可為單鹽或雙鹽。例如,甲磺酸鹽可為單甲磺酸鹽或雙甲磺酸鹽。
式I及式II化合物及鹽亦可以水合物或溶劑合物形式存在。
在製備式I及式II化合物時中間物之官能基(例如第一胺或第二胺)之保護可能為必需的。該保護之需要將視遠端官能基之性質及製備方法之條件而變化。適當胺基-保護基包括乙醯基、三氟乙醯基、第三丁氧基羰基(BOC)、苄氧羰基(CBz)及9-茀基亞甲基氧基羰基(Fmoc)。該保護之需要易於由熟習此項技術者確定。關於保護基及其使用之一般說明,參見T.W. Greene,Protective Groups in Organic Synthesis,John Wiley&Sons,New York,1991。
出於說明性目的,流程1-7展示用於製備本發明之化合物以及關鍵中間體之一般方法。對於個別反應步驟之更詳細描述,參見以下實例部分。熟習此項技術者應瞭解可使用其他合成途徑來合成本發明之化合物。儘管在以下流程及下文論述中描述特定起始材料及試劑,但可容易地用其他起始材料及試劑代替以提供各種衍生物及/或反應條件。另外,可根據本揭示案,使用熟習此項技術者所熟知之習知化學技術來進一步改質由下述方法製備之許多化合物。
流程1展示由分別為51及52之2-羧基酯,3-胺基噻吩及2-胺基,3-羧基酯噻吩試劑製備噻吩并嘧啶中間物55及56的一般方法,其中Ha1為Cl、Br或I;且R1
、R2
及R10
係如對式I及式II化合物或其前驅體或前藥所定義。
流程2展示以嗎啉在鹼性條件下在有機溶劑中自雙-鹵基噻吩并嘧啶中間物57及58選擇性置換4-鹵化物以分別製備2-鹵基,4-嗎啉基噻吩并嘧啶化合物59及60之一般方法,其中Ha1為Cl、Br或I;且R1
及R2
係如對式I及式II化合物或其前驅體或前藥所定義。
流程3展示使R1
為H之2-鹵基,4-嗎啉基,6-氫噻吩并嘧啶化合物61及62之6位衍生的一般方法。以鋰化試劑處理61或62以移除6位質子,接著添加醯化試劑R10
C(O)Z(其中Z為脫離基,諸如鹵素、NHS酯、羧酸酯或二烷基胺基),產生2-鹵基,4-嗎啉基,6-醯基噻吩并嘧啶化合物63及64,其中Hal為Cl、Br或I;且R2
及R10
係如對式I及式II化合物或其前驅體或前藥所定義。用於製備6-甲醯基化合物(R10
=H)之R10
C(O)Z之實例為N,N'-二甲基甲醯胺(DMF)。
流程4展示使2-鹵基嘧啶中間物(65及66)與單環雜芳基、稠合雙環雜環基或稠合雙環雜芳基酸(R15
=H)或酯(R15
=烷基)試劑67發生鈴木(Suzuki)型偶合以製備式I及式II之2-經取代之(Hy),4-嗎啉基噻吩并嘧啶化合物(68及69)的一般方法,其中Hal為Cl、Br或I;且R1
及R2
係如對式I及式II化合物或其前驅體或前藥所定義。對於鈴木反應之綜述,參見:Miyaura等人。(1995)Chem. Rev. 95:2457-2483;Suzuki,A. (1999)J. Organomet. Chem. 576:147-168;Suzuki,A.在Metal-Catalyzed Cross-Coupling Reactions,Diederich,F.,Stang,P.J.編,VCH,Weinheim,DE(1998),第49-97頁中。鈀催化劑可為通常用於鈴木型交叉偶合反應之任何催化劑,諸如PdCl2
(PPh3
)2
、Pd(PPh3
)4
、Pd(OAc)2
、PdCl2
(dppf)-DCM、Pd2
(dba)3
/Pt-Bu)3
(Owens等人。(2003)Bioorganic&Med. Chem. Letters 13:4143-4145;Molander等人。(2002)Organic Letters 4(11):1867-1870;US 6448433)。
流程5展示合成炔烴71之一般方法,其可用於製備化合物72及73之炔基化衍生物。可藉由溴丙塊70與式R10
R11
NH(其中R10
及R11
獨立地選自H、烷基、芳基及雜芳基,或R10
及R11
連同其所連接之氮一起形成雜環)之胺在適當鹼(CS2
CO3
或其類似物)存在下之反應來製備丙炔胺71。對於炔基胺及有關合成之綜述,參見Booker-Milburn,K.I.,Comprehensive Organic Functional Group Transformations
(1995),2:1039-1074;及Viehe,H.G.,(1967)Angew. Chem.,Int. Ed. Eng.,6(9):767-778。可隨後使炔烴71與中間物72(X2
=溴基或碘基)或73(經由Sonogashira偶合)反應以分別提供化合物74及75,其中R2
及R3
係如對式I及式II化合物或其前驅體或前藥所定義。
流程6展示合成炔烴77之一般方法,其可用於製備化合物72及73之炔基化衍生物。可使用Zaragoza等人。(2004)J. Med. Chem.,47:2833所述之方法來製備孿二烷基丙炔胺77。根據流程6,可使孿二烷基氯76(R14
及R15
獨立地為甲基、乙基或其他烷基)與式R10
R11
NH(其中R10
及R11
獨立地選自H、烷基、芳基及雜芳基,或R10
及R11
連同其所連接之氮一起形成雜環)之胺在CuCl及適當鹼(例如TEA或其類似物)存在下反應以提供炔烴77。可使炔烴77與中間物72或73(經由Sonogashira偶合)反應以分別提供化合物78及79,其中R2
及R3
係如對式I及式II化合物或其前驅體或前藥所定義。
流程7展示合成炔烴81之一般流程,其可用於製備化合物72及73之炔基化衍生物。可使用Olomucki M.等人。(1960)Ann. Chim. 5:845所述之方案由炔烴80(LG=甲苯磺酸根或其他脫離基)與式R10
R11
NH之胺(其中R10
及R11
獨立地選自H、烷基、芳基及雜芳基,或R10
及R11
連同其所連接之氮一起形成雜環)的反應製備丁-3-炔-1-胺81(其中R14
及R15
獨立地為H、烷基、芳基、雜芳基,或R14
及R15
連同其所連接之碳原子一起形成碳環或雜環)。根據對於流程5及6所提供之描述,可隨後使炔烴81與中間物72或73(經由Sonogashira偶合)反應,以分別提供化合物82及83,其中R2
及R3
係如對式I及式II化合物或其前驅體或前藥所定義。
可使用習知技術製備式I或式II之噻吩并嘧啶化合物的醫藥學上可接受之鹽。方法通常包含以適當酸在適當溶劑中處理如以上所定義的式I之噻吩并嘧啶。
在如以上所定義之本發明之方法中,胺化步驟與Pd介導之交叉偶合步驟均在習知條件下發生。鈀催化劑可為通常用於鈴木型交叉偶合反應之任何催化劑,諸如PdCl2
(PPh3
)2
。還原劑通常為氫硼化物,諸如NaBH(OAc)3
、NaBH4
或NaCNBH4
。
在製備本發明之化合物之方法中,由彼此及/或由起始材料分離反應產物可為有利的。藉由此項技術中常見之技術將各步驟或一系列步驟之所需產物分離及/或純化(在下文中皆稱作分離)至所需均質度。該等分離通常包括多相萃取、自溶劑或溶劑混合物結晶、蒸餾、昇華或層析。層析可包括許多方法,包括(例如):逆相與正相層析;尺寸排阻層析;離子交換層析;高、中等及低壓液相層析方法及裝置;小型分析;模擬移動床(SMB)及製備型薄或厚層層析以及小型薄層及急驟層析技術。
另一類分離方法包括以經選擇可結合於所需產物、未反應起始材料、反應副產物或其類似物或使得所需產物、未反應起始材料、反應副產物或其類似物可分離的試劑處理混合物。該等試劑包括吸附劑,諸如活性碳、分子篩、離子交換介質或其類似物。或者,試劑可為酸(在鹼性材料情況下);鹼(在酸性材料情況下);結合試劑,諸如抗體、結合蛋白;選擇性螯合劑,諸如冠醚;液體/液體離子萃取試劑(LIX)或其類似物。
適當分離方法之選擇取決於所涉及材料之性質。例如,蒸餾及昇華中之沸點及分子量、層析中極性官能基之存在與否、多相萃取中酸性及鹼性介質內材料之穩定性及其類似性質。熟習此項技術者將應用最可能實現所需分離之技術。
非對映異構混合物可基於其物理化學差異藉由熟習此項技術者所熟知之方法(諸如藉由層析及/或分步結晶)而分離成其個別非對映異構體。對映異構體可藉由與適當光學活性化合物(例如對掌性助劑,諸如對掌性醇或Mosher氏酸氯化物)反應而使對映異構混合物轉化成非對映異構體混合物、分離非對映異構體且使個別非對映異構體轉化(例如水解)成相應純對映異構體來分離。又,本發日月之某些化合物可為滯轉異構體(例如經取代之聯芳基化合物)且其被認為為本發明之部分。亦可藉由使用對掌性HPLC管柱分離對映異構體。
可藉由使用光學活性解析試劑,使用諸如形成非對映異構體之方法來解析外消旋混合物,從而獲得單一立體異構體,例如大體上不含其立體異構體之對映異構體(Eliel,E.及Wilen,S."Stereochemistry of Organic Compounds,"John Wiley&Sons,Inc.,New York,1994;Lochmuller,C.H.,(1975)J. Chromatogr.,113(3):283-302)。可藉由任何適當方法分離本發明之對掌性化合物之外消旋混合物,包括:(1)與對掌性化合物形成離子型非對映異構體鹽,且藉由分步結晶或其他方法分離;(2)與對掌性衍生試劑形成非對映異構化合物、分離該等非對映異構體且轉化成純立體異構體;以及(3)在對掌性條件下直接分離大體上純或富集立體異構體。參見:"Drug stereochemistry.Analytical Methods and Pharmacology,"Irving W.Wainer,Ed.,Marcel Dekker,Inc.,New York(1993)。
在方法(1)下,可藉由諸如馬錢子鹼、奎寧、麻黃素、番木鼈鹼、α-甲基-β-苯基乙胺(安非他命(amphetamine))及其類似物之對映異構純對掌性鹼與諸如羧酸及磺酸之帶有酸性官能基之不對稱化合物的反應來形成非對映異構體鹽。可藉由分步結晶或離子層析促使分離非對映異構體鹽。對於分離胺基化合物之光學異構體而言,添加諸如樟腦磺酸、酒石酸、扁桃酸或乳酸之對掌性羧酸或磺酸可使得非對映異構體鹽形成。
或者,藉由方法(2),使待解析之基質與對掌性化合物中之一個對映異構體反應以形成非對映異構體對(E.及Wilen,S."Stereochemistry of Organic Compounds",John Wiley & Sons,Inc.,1994,第322頁)。可藉由使不對稱化合物與諸如基衍生物之對映異構純對掌性衍生試劑反應,接著分離非對映異構體且水解以產生純或富集對映異構體來形成非對映異構體化合物。測定光學純度之方法包括製備外消旋混合物之對掌性酯類(諸如在鹼存在下,基酯,例如(-)氯甲酸酯,或Mosher酯乙酸α-甲氧基-α-(三氟甲基)苯酯)(Jacob III. J. Org. Chem.,(1982)47:4165);及分析1
H NMR譜中兩個滯轉異構對映異構體或非對映異構體之存在。可藉由正相及逆相層析法按照用於分離滯轉異構萘基-異喹啉之方法(WO 96/15111)來分離滯轉異構化合物之穩定非對映異構體。藉由方法(3),可藉由使用對掌性固定相("Chiral Liquid Chromatography"(1989)W. J. Lough,編,Chapman and Hall,New York;Okamoto,J. Chromatogr.,(1990)513:375-378)層析來分離兩個對映異構體之外消旋混合物。可藉由用以區分具有不對稱碳原子之其他對掌性分子之諸如旋光度及圓二色性的方法來區分富集或純化對映異構體。
某些化療劑已與式I或式II化合物組合在活體外及活體內抑制細胞增生方面展示驚人及出乎意料之特性。該等化療劑包括:埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD及雷帕黴素。
埃羅替尼(TARCEVA,OSI-774,Genentech)係藉由特異性靶向上皮生長因子受體(EGFR)酪胺酸激酶而用於治療非小細胞肺癌(NSCLC)、肺癌、胰腺癌及數種其他類型之癌症(US 5747498;US 6900221;Moyer等人。(1997)Cancer Res. 57:4838;Pollack等人。(1999)J. Pharmcol. Exp. Ther. 291:739;Perez-Soler等人。(2004)J. Clin. Oncol. 22:3238;Kim等人。(2002)Curr. Opin. Invest. Drugs 3:1385-1395;Blackhall等人。(2005)Expert Opin. Pharmacother. 6:995-1002)。埃羅替尼被命名為N-(3-乙炔基苯基)-6,7-雙(甲氧基甲氧基)喹唑啉-4-胺(CAS登記號:183321-74-6)且具有以下結構:
多西他賽(TAXOTERE,Sanofi-Aventis)係用於治療乳癌、卵巢癌及NSCLC癌(US 4814470;US 5438072;US 5698582;US 5714512;US 5750561;Mangatal等人。(1989)Tetrahedron 45:4177;Ringel等人。(1991)J.Natl. Cancer Inst. 83:288;Bissery等人。(1991)Cancer Res. 51:4845;Herbst等人。(2003)Cancer Treat.Rev.29:407-415;Davies等人。(2003)Expert. Opin. Pharmacother. 4:553-565)。多西他賽被命名為與5,20-乙氧基-1,2,4,7,10,13-六羥基紫杉-11-烯-9-酮4-乙酸酯2-苯甲酸酯之(2R,
3S
)-N-
羧基-3-苯基異絲胺酸,N-
第三丁酯,13-酯三水合物(US 4814470;EP 253738;CAS登記號:114977-28-5)且具有以下結構:
5-FU(氟尿嘧啶、5-氟尿嘧啶,CAS登記號:51-21-8)為胸苷酸合酶抑制劑且已有數十年用於治療包括結腸直腸癌及胰腺癌之癌症(US 2802005;US 2885396;Duschinsky等人。(1957)J. Am. chem. Soc. 79:4559;Hansen,R.M、(1991)Cancer Invest.9:637-642)。5-FU被命名為5-氟-1H-
嘧啶-2,4-二酮且具有以下結構:
吉西他濱(GEMZAR,Lilly,CAS登記號:95058-81-4)為阻斷DNA複製之核苷類似物,其用於治療包括胰腺癌、乳癌、NSCLC及淋巴瘤之各種癌(US 4808614;US 5464826;Hertel等人。(1988)J. Org. Chem. 53:2406;Hertel等人。(1990)Cancer Res. 50:4417;Lund等人。(1993)Cancer Treat. Rev. 19:45-55)。吉西他濱被命名為4-胺基-1-[3,3-二氟-4-羥基-5-(羥基甲基)四氫呋喃-2-基]-1H-嘧啶-2-酮且具有以下結構:
PD-0325901(CAS登記號:391210-10-9,Pfizer)為用於癌症之潛在口服錠劑治療之第二代、非ATP競爭性別構MEK抑制劑(US 6960614;US 6972298;US 2004/147478;US 2005/085550)。已針對乳腺腫瘤、結腸腫瘤及黑色素瘤之潛在治療進行第II階段臨床試驗。PD-0325901被命名為(R)-N-(2,3-二羥基丙氧基)-3,4-二氟-2-(2-氟-4-碘苯基胺基)苯甲醯胺且具有以下結構:
順鉑(順-二胺,二氯鉑(II),CAS登記號:15663-27-1)為鉑基化療藥物,其用以治療各種類型之癌症,包括肉瘤、某些癌瘤(例如小細胞肺癌及卵巢癌)、淋巴瘤及生殖細胞腫瘤(Ochs等人。(1978)Cancer Treat.Rep.62:239;Pinedo等人。(1978)Eur.J.Cancer 14:1149;"Cisplatin,Current Status and New Developmenta",A.W.Prestayko等人,編,Academic Press,New York,1980)。順鉑(CDDP)為其類別之第一個成員,其現亦包括卡鉑及奧賽力鉑。
卡鉑(CAS登記號41575-94-4)為用於對抗卵巢癌、肺癌、頭頸部癌之化療藥物(US 4140707;Calvert等人。(1982)Cancer Chemother.Pharmacol.9:140;Harland等人。(1984)Cancer Res.44:1693)。卡鉑被命名為氮烷化物;環丁烷-1,1-二羧酸;鉑且具有以下結構:
紫杉醇(TAXOL,Bristol-Myers Squibb Oncology,Princeton NJ,CAS登記號:33069-62-4)為自太平洋紫杉樹短葉紫杉(Taxus breνifolia
)之樹皮分離之化合物,且係用以治療肺癌、卵巢癌、乳癌及卡波西氏肉瘤(Kaposi's sarcoma)之晚期形式(Wani等人。(1971)J. Am. Chem. Soc. 93:2325;Mekhail等人。(2002)Expert. Opin. Pharmacother. 3:755-766)。紫杉醇被命名為β-(苄醯基胺基)-α-羥基-,6,12b-雙(乙醯基氧基)-12-(苄醯基氧基)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-十二氫-4,11-二羥基-4a,8,13,13-四甲基-5-側氧基-7,11-甲橋-1H-環十(3,4)苯并(1,2-b)氧雜環丁-9-基酯,(2aR-(2a-α,4-β,4a-β,6-β,9-α(α-R*,β-S*),11-α,12-α,12a-α,2b-α))-苯丙酸且具有以下結構:
貝伐單抗(AVASTIN,Genentech)為針對VEGF(亦即血管內皮細胞生長因子)之重組人類化單株抗體(US6054297;Presta等人。(1997)Cancer ReS.57:4593-4599)。其用於治療癌症,其中其藉由阻斷新血管形成而抑制腫瘤生長。在美國,貝伐單抗為第一個在臨床上可用之血管生成抑制劑,其在2004年由FDA批准與標準化學療法組合用於治療轉移性結腸癌及轉移性非小細胞肺癌之大多數形式。正在進行數種末期臨床研究以確定其對於患有以下疾病之患者之安全性及有效性:輔助/非轉移性結腸癌、轉移性乳癌、轉移性腎細胞癌、轉移性多形性神經膠母細胞瘤、轉移性卵巢癌、轉移性激素難治性前列腺癌及轉移性或無法手術切除之局部晚期胰腺癌(Ferrara等人。(2004)Nat. Rev. Drug Disc. 3:391-400)。
貝伐單抗包括突變人類IgG1框架區及來自阻斷人類VEGF與其受體結合的鼠類抗hVEGF單株抗體A.4.6.1之抗原結合互補判定區。貝伐單抗具有約149,000道爾頓之分子質量且經糖基化。貝伐單抗及其他人類化抗VEGF抗體係進一步描述於US 6884879中。其他抗VEGF抗體包括G6或B20系列抗體,例如G6-31、B20-4.1(WO 2005/012359;WO 2005/044853;US 7060269;US 6582959;US 6703020;US 6054297;WO 98/45332;WO 96/30046;WO 94/10202;EP 0666868B1;US 2006/009360;US 2005/0186208;US 2003/0206899;US 2003/0190317;US 2003/0203409;20050112126;Popkov等人。(2004)Journal of Immunological Methods 288:149-164)。"B20系列抗體"為根據WO 2005/012359之圖27-29之任一者源自B20抗體或B20源性抗體的序列之抗VEGF抗體,該專利之全部揭示內容以引用的方式明確地併入本文中。在一實施例中,B20系列抗體結合至包含殘基F17、M18、D19、Y21、Y25、Q89、I91、K101、E103及C104的人類VEGF上之功能性抗原決定基。其他抗VEGF抗體包括彼等結合至包含殘基F17、M18、D19、Y21、Y25、Q89、I91、K101、E103及C104或者包含殘基F17、Y21、Q22、Y25、D63、I83及Q89的人類VEGF上之功能性抗原決定基之抗體。
曲妥珠單抗(HERCEPTIN,huMAb4D5-8,rhuMAb HER2,Genentech)為在細胞基檢定中以高親和力(Kd=5nM)選擇性結合於人類表皮生長因子受體2蛋白HER2(ErbB2)之胞外域的鼠類HER2抗體之重組性DNA源性人類化IgGlκ單株抗體形式(US 5821337;US 6054297;US 6407213;US 6639055;Coussens L,等人。(1985)Science 230:1132-9;Slamon DJ,等人。(1989)Science 244:707-12)。曲妥珠單抗含有具有結合於HER2之鼠類抗體(4D5)的互補判定區之人類框架區。曲妥珠單抗結合於HER2抗原且因此抑制癌性細胞之生長。已顯示曲妥珠單抗在活體外檢定與動物中抑制過度表現HER2的人類腫瘤細胞之增生(Hudziak RM,等人。(1989)Mol Cell Biol 9:1165-72;Lewis GD,等人。(1993)Cancer Immunol Immunother;37:255-63;Baselga J,等人。(1998)Cancer Res. 58:2825-2831)。曲妥珠單抗為抗體依賴細胞毒性ADCC之介體(Hotaling TE,等人。(1996)[摘要]. Proc. Annual Meeting Am Assoc Cancer Res;37:471;Pegram MD,等人。(1997)[摘要]. Proc Am Assoc Cancer Res;38:602;Sliwkowski等人。(1999)Seminars in Oncology 26(4),增刊12:60-70;Yarden Y.及Sliwkowski,M.(2001)Nature Reviews:Molecular Cell Biology,Macmillan Magazines,Ltd.,第2卷:127-137)。HERCEPTIN在1998年經批准用於治療患有ErbB2過度表現轉移性乳癌之患者(Baselga等人,(1996)J. Clin. Oncol. 14:737-744)。在2006年FDA批准HERCEPTIN作為含有阿黴素、環磷醯胺及紫杉醇用於輔助治療患有HER2-陽性、結點陽性乳癌之患者的治療方案之部分。對於彼等患有HER2過度表現腫瘤或其他與HER2表現相關且對HERCEPTIN治療不起反應或反應不良之疾病的患者而言,對開發進一步針對HER2之癌症療法存在顯著的臨床需要。
帕妥珠單抗(OMNITARGTM
,rhuMab 2C4,Genentech)為臨床階段人類化抗體且為稱為HER二聚化抑制劑(HDI)之新一類藥劑的第一者,該等抑制劑阻斷HER2受體與其他HER受體家族成員(亦即HER1/EGFR、HER3及HER4)協作之能力(US 6949245;Agus等人。(2002)Cancer Cell 2:127-37;Jackson等人。(2004)Cancer Res 64:2601-9;Takai等人。(2005)Cancer 104:2701-8)。在癌細胞中,干擾HER2與其他HER家族受體協作之能力阻斷細胞信號轉導且最終可引起癌細胞生長抑制及癌細胞死亡。由於HDI之獨特作用方式,其具有在包括彼等並不過度表現HER2者之各種腫瘤中起作用的潛能(Mullen等人。(2007)Molecular Cancer Therapeutics 6:93-100)。
替莫唑胺(CAS登記號:85622-93-1,TEMODAR,TEMODAL,Schering Plough)為經FDA批准用於治療退行性星形細胞瘤之口服化學療法藥物,且其已針對其他腦腫瘤類型(諸如多形性神經膠母細胞瘤)進行了研究(US 5260291;Stevens等人。(1984)J. Med. Chem. 27:196;Newlands等人。(1997)Cancer Treat. Rev. 23:35-61;Danson等人。(2001)Expert Rev. Anticancer Ther. 4:43-19)。替莫唑胺被命名為(4-甲基-5-側氧基-2,3,4,6,8-五氮雜雙環[4.3.0]壬-2,7,9-三烯-9-甲醯胺或3,4-二氫-3-甲基-4-側氧基咪唑并[5,1-d]-as-四嗪-8-甲醯胺(US 5260291,CAS第85622-93-1號)且具有以下結構:
他莫昔芬(NOLVADEX,ISTUBAL,VALODEX)為口服活性選擇性雌激素受體調製劑(SERM),其用於治療乳癌且為目前世界上用於此適應症之銷量最大的藥物。他莫昔芬()最先在1977年經FDA(ICI Pharmaceuticals,現AstraZeneca)批准用於治療轉移性乳癌(Jordan VC(2006)Br J Pharmacol 147(增刊1):S269-76)。他莫昔芬目前用於治療絕經前後女性之早期與晚期雌激素受體(ER)陽性乳癌(Jordan VC(1993)Br J Pharmacol 110(2):507-17)。其亦經FDA批准用於預防處於發展疾病之高風險的女性乳癌且用於減少對側(在對側乳房中)乳癌。他莫昔芬被命名為(Z)-2-[4-(1,2-二苯基丁-1-烯基)苯氧基]-N,N-
二甲基-乙胺(CAS登記號:10540-29-1)且具有以下結構:
阿黴素(ADRIAMYCIN,羥基道諾紅菌素)為自20世紀60年代起廣泛用於化學療法之DNA相互作用藥物。其為蒽環黴素抗生素且在結構上與亦插入DNA之道諾黴素有關。阿黴素通常用於治療多種癌症。阿黴素被命名為(8S,
10S
)-10-(4-胺基-5-羥基-6-甲基-四氫-2H
-哌喃-2-基氧基)-6,8,11-三羥基-8-(2-羥基乙醯基)-1-甲氧基-7,8,9,10-四氫并四苯-5,12-二酮(CAS登記號:23214-92-8)且具有以下結構:
Akti-1/2為細胞可滲透喹喏啉化合物,其在活體外激酶檢定中有效地且選擇性抑制Akt1/Akt2活性:對於Akt1、Akt2及Akt3,IC50
分別為58nM、210nM及2.12μM(Barnett等人。(2005)Biochem. J. 385,:399;DeFeo-Jones,等人。(2005)Mol.Cancer Ther. 4:271;Zhao等人。(2005)Bioorg. Med. Chem. Lett. 15:905;Lindsley等人。(2005)Bioorg. Med. Chem. Lett. 15:761;US 2006/142178;US 2005/159422;US 2004/102360)。抑制似乎為血小板-白細胞C激酶底物(pleckstrin)同源性(P H)域依賴性的。其甚至在高達50μM濃度下亦不顯示任何針對PH域缺乏之Akt或其他緊密相關之AGC家族激酶PKA、PKC及SGK的抑制作用。Akti-1/2克服腫瘤細胞中Akt1/Akt2介導之對化療法的抗性,且顯示其阻斷Akt1/Akt2兩者在活體外培養細胞及活體內小鼠中的基底及受刺激之磷酸化/活化。Akti-1/2(EMD Biosciences產品號124018)被命名為1,3-二氫-1-(1-((4-(6-苯基-1H-咪唑并[4,5-g]喹喏啉-7-基)苯基)甲基)-4-哌啶基)-2H-苯并咪唑-2-酮且具有以下結構:
HPPD在臨床前研究中為選擇性B-Raf抑制劑(B-Raf IC50
<2nM,pERK IC50
87nM)(US 2006/0189627)。HPPD被命名為5-(1-(2-羥基乙基)-3-(吡啶-4-基)-1H-吡唑-4-基)-2,3-二氫-1H-茚-1-酮肟且具有以下結構:
雷帕黴素(西羅莫司(sirolimus),RAPAMUNE)為用以防止器官移植排斥之免疫抑制藥物且其尤其適用於腎臟移植。雷帕黴素為最先作為細菌吸水鏈黴菌(Streptomyces hygroscopicus
)在來自稱為復活島(Rapa Nui)之島嶼(熟知為復活島(Easter Island))之土壤樣品中的產物而發現之大環內脂類抗菌素("-黴菌素")(Pritchard DI(2005). Drug Discovery Today 10(10):688-691)。雷帕黴素抑制對介白素-2(IL-2)之反應且藉此阻斷T及B細胞活化。雷帕黴素之作用方式係結合胞質蛋白FK-結合蛋白12(FKBP12)。雷帕黴素-FKBP12複合物經由直接結合mTOR Complex1(mTORC1)抑制雷帕黴素之哺乳動物標靶(mTOR)途徑。mTOR亦稱為FRAP(FKBP-雷帕黴素相關蛋白)或RAFT(雷帕黴素及FKBP標靶)。雷帕黴素被命名為(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-十六氫-9,27-二羥基-3-[(1R)-2-[(1S,3R,4R)-4-羥基-3-甲氧基環己基]-1-甲基乙基]-10,21-二甲氧基-6,8,12,14,20,26-六甲基-23,27-乙氧基-3H-吡哆并[2,1-c][1,4]-氧雜氮雜環三十一烷-1,5,11,28,29(4H,6H,31H)-戊酮(CAS登記號:53123-88-9)且具有以下結構:
拉帕替尼(TYKERB,GW572016,Glaxo SmithKline)已經批准與卡西他賓(XELODA,Roche)組合使用用於治療腫瘤過度表現HER2(ErbB2)且已接受包括蒽環黴素、紫杉烷及曲妥珠單抗之預先療法的晚期或轉移性乳癌患者。拉帕替尼為ATP競爭性表皮生長因子(EGFR)及HER2/neu(ErbB-2)雙重酪胺酸激酶抑制劑(US 6727256;US 6713485;US 7109333;US 6933299;US 7084147;US 7157466;US 7141576),其藉由結合至EGFR/HER2蛋白質激酶域之ATP結合袋而抑制受體自體磷酸化及活化。拉帕替尼被命名為N-(3-氯-4-(3-氟苄氧基)苯基)-6-(5-((2-(甲基磺醯基)乙胺基)甲基)呋喃-2-基)唑唑啉-4-胺且具有以下結構:
某些式I及式II化合物特異性結合於PI3激酶同功異型物且抑制腫瘤細胞增生(WO 2006/046031;US 2008/0039459;US 2008/0076768;US 2008/0076758;WO 2008/070740;WO 2008/073785)。
某些式Ia及式IIa化合物以小於1微莫耳之IC50
值結合p110α同功異型物且在小鼠異種移植物模型中顯示單一藥劑活體內腫瘤生長抑制。因此,式I及式II化合物可作為單一藥劑或與一或多種化療劑一起以組合療法用於治療由於異常細胞生長、功能或行為而引起的疾病或病症。
製備本文所述之某些例示性式I及式II化合物,加以表徵且檢定其PI3K結合活性(實例13)及活體外抗腫瘤細胞活性(實例14)。PI3K結合活性(IC50
值)之範圍為小於1nM(1奈莫耳)至約10μM(10微莫耳)。某些例示性式I及式II化合物具有小於10nM之PI3K結合活性IC50
值。某些式I及式II化合物具有小於100nM之腫瘤細胞基活性EC50
值。
藉由以下程序量測式I及式II例示性化合物之細胞毒性或細胞生長抑制活性:在細胞培養基中建立增生哺乳動物腫瘤細胞株;添加式I或式II化合物;將細胞培養約6小時至約5天之時段;及量測細胞存活力(實例14)。使用細胞基活體外檢定量測存活力,亦即增生(IC50
值)、細胞毒性(EC50
)及細胞凋亡誘導(卡斯蛋白酶活化)。藉由包括以下項之檢定量測某些例示性化合物之吸收、分布、新陳代謝及排泄(ADME)之藥效學及藥物動力學特性:Caco-2滲透性、肝細胞清除、細胞色素P450抑制、細胞色素P450誘導、血漿蛋白結合及hERG通道堵塞。
藉由實例14之細胞增生檢定(CellTiter-Glo發光細胞存活力檢定,可購自Promega Corp.,Madison,WI),量測式I或式II化合物與化療劑之組合的活體外效力。此均質檢定法係基於鞘翅目(Coleoptera
)螢光素酶之重組表現(US 5583024;US 5674713;US 5700670)且基於所存在之ATP(亦即一種代謝活性細胞之指示物)之量化來測定培養物中活細胞之數目(Crouch等人。(1993)J. Immunol. Meth. 160:81-88;US 6602677)。以96或384孔形式進行CellTiter-檢定,使其能執行自動高產量篩選(HTS)(Cree等人。(1995)AntiCancer Drugs 6:398-404)。該均質檢定程序涉及將單一試劑(CellTiter-試劑)直接添加至培養於經血清補充之培養基中之細胞中。並不要求細胞洗滌、培養基移除及多個吸液步驟。在添加試劑且混合後10分鐘,系統以384孔形式偵測到少至15個細胞/孔。
均質"添加-混合-量測"形式引起細胞溶解且產生與所存在之ATP之量成比例的發光信號。ATP之量與培養物中所存在之細胞數目成正比。CellTiter-檢定產生由螢光素酶反應產生的"輝光型"發光信號,其視所用細胞類型及培養基而定具有通常大於5小時之半衰期。以相對發光單位(RLU)反映活細胞。藉由重組性螢火蟲螢光素酶使受質甲蟲螢光素氧化脫羧基,同時伴隨ATP轉化為AMP且產生光子。延長之半衰期消除使用試劑注射器之需要且提供連續或批次方式處理多個板之靈活性。此細胞增生檢定可以各種多孔形式,例如96或384孔形式使用。可藉由光度計或CCD攝影成像裝置記錄資料。將發光輸出表示為相對光單位(RLU),其係隨時間測定。
藉由CellTiter-檢定(實例14)針對圖1-A、1-B及1-C中之腫瘤細胞株量測式I及式II例示性化合物及與化療劑之組合的抗增生效應。確定所測試化合物及組合之EC50
值。活體外細胞效力活性之範圍為約100nM至約10μM。
圖1-A展示關於式Ia化合物與各種化療劑之組合的活體外細胞增生檢定之總結。圖1-B展示關於式IIa化合物與各種化療劑之組合的活體外細胞增生檢定之總結。圖1-C展示關於式Ib化合物與各種化療劑之組合的活體外細胞增生檢定之總結。根據腫瘤類型及基因突變之存在表徵癌細胞株。
將式Ia、Ib及IIa化合物及化療劑針對特定細胞之個別量測的EC50
值與組合EC50
值相比較。藉由Chou-Talalay方法(Chou T.及Talalay,P.(1984)Adv. Enzyme Regul. 22:27-55)計算組合指數(CI)得分。CI小於0.8指示協同作用。CI介於0.8與1.2之間指示疊加。CI大於1.2指示拮抗作用。圖1-A、1-B及1-C中之CI值係來自EC50
濃度(自右側起第三點)。根據Chou-Talalay評估協同作用之強度且列在該等表之最後一行。圖1-A、1-B及1-C中之某些組合在包括乳癌、子宮頸癌、結腸癌、子宮內膜癌、神經膠質瘤、肺癌、黑色素瘤、卵巢癌、胰腺癌及前列腺癌之腫瘤類型細胞株之活體外細胞增生檢定中顯示驚人且出乎意料之協同作用特性。圖1-A、1-B及1-C中之其他組合不顯示協同作用;且僅顯示純粹的疊加性或拮抗作用。某些組合對一或多種腫瘤類型具有協同作用,但其他組合並非如此。活體外細胞增生檢定中證實之協同作用為在治療人類患者之包括(但不限於)乳癌、子宮頸癌、結腸癌、子宮內膜癌、神經膠質瘤、肺癌、黑色素瘤、卵巢癌、胰腺癌及前列腺癌之癌症時預期相應協同作用提供基礎。
圖2展示關於在自右至左不同濃度(起始於4×EC50
)之5-FU、式Ia化合物及5-FU與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以5-FU給藥之前4小時以式Ia預先給藥(中圖)以及在以5-FU給藥後4小時再以式Ia給藥(下圖)治療MDA-MB-361(乳腺腫瘤類型)細胞。對於同時給藥(CI=0.11)及式Ia後給藥(CI=0.10)觀測到較強協同作用。觀測到較強給藥順序效應。式Ia預先給藥顯示較小的協同作用(CI=0.67)。
圖3展示關於在自右至左不同濃度(起始於4×EC50
)之吉西他濱、式Ia化合物及吉西他濱與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)及在以吉西他濱給藥後4小時再以式Ia給藥(下圖)治療Ca1-51(乳腺腫瘤類型)細胞。對於同時給藥(CI=0.59)觀測到協同作用且對於式Ia後給藥(CI=0.17)觀測到較強協同作用。
圖4展示關於在自右至左不同濃度(起始於4×EC50
)之吉西他濱、式Ia化合物及吉西他濱與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以吉西他濱給藥之前4小時以式Ia預先給藥(中圖)以及在以吉西他濱給藥後4小時再以式Ia給藥(下圖)治療MDA-MB-361(乳腺腫瘤類型)細胞。對於同時給藥(CI=0.27)、式Ia預先給藥(CI=0.46)及式Ia後給藥(CI=0.28)觀測到協同作用。
圖5展示關於在自右至左不同濃度(起始於4×EC50
)之埃羅替尼、式Ia化合物及埃羅替尼與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以埃羅替尼給藥之前4小時以式Ia預先給藥(中圖)以及在以埃羅替尼給藥後4小時再以式Ia給藥(下圖)治療A549(具有K-ras G12C之肺腫瘤類型)細胞。對於同時給藥(CI=0.17)、式Ia預先給藥(CI=0.31)及式Ia後給藥(CI=0.33)觀測到協同作用。
圖6展示關於在自右至左不同濃度(起始於4×EC50
)之埃羅替尼、式Ia化合物及埃羅替尼與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以埃羅替尼給藥之前4小時以式Ia預先給藥(中圖)以及在以埃羅替尼給藥後4小時再以式Ia給藥(下圖)治療H23(具有K-ras G12C突變之肺腫瘤類型)細胞。對於同時給藥(CI=0.28)、式Ia預先給藥(CI=0.39)及式Ia後給藥(CI=0.37)觀測到協同作用。
圖7展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療U87(神經膠質瘤腫瘤類型)細胞。對於同時給藥(CI=0.004)觀測到協同作用,但對於式Ia預先給藥(CI=1.13)及式Ia後給藥(CI=1.41)並非如此。
圖8展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療A375(黑色素瘤腫瘤類型)細胞。對於同時給藥(CI=0.007)觀測到協同作用,但對於式Ia預先給藥(CI=0.99)及式Ia後給藥(CI=1.02)並非如此。
圖9展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療MALME-3M(黑色素瘤腫瘤類型)細胞。對於同時給藥(CI=0.18)觀測到協同作用,但對於式Ia預先給藥(CI=1.46)及式Ia後給藥(CI=1.22)並非如此。
圖10展示關於在自右至左不同濃度(起始於4×EC50
)之阿黴素、式Ia化合物及阿黴素與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以阿黴素給藥之前4小時以式Ia預先給藥(中圖)以及在以阿黴素給藥後4小時再以式Ia給藥(下圖)治療SKOV3(卵巢腫瘤類型)細胞。對於同時給藥(CI=0.39)及式Ia後給藥(CI=0.18)觀測到協同作用,但對於式Ia預先給藥(CI=1.44)並非如此。
圖11展示關於在自右至左不同濃度(起始於4×EC50
)之多西他賽、式Ia化合物及多西他賽與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以多西他賽給藥之前4小時以式Ia預先給藥(中圖)以及在以多西他賽給藥後4小時再以式Ia給藥(下圖)治療PC3(前列腺腫瘤類型)細胞。對於同時給藥(CI=0.43)及式Ia後給藥(CI=0.30)觀測到協同作用,但對於式Ia預先給藥(CI=1.23)並非如此。
圖12展示關於在自右至左不同濃度(起始於4×EC50
)之以下物質下量測活MDAMD361(乳腺腫瘤類型)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果:(上圖)5-FU、式IIa化合物及5-FU與式IIa之同時組合;(中圖)多西他賽、式IIa化合物及多西他賽與式IIa之同時組合;以及(下圖)吉西他濱、式IIa化合物及吉西他濱與式IIa之同時組合。對於5-FU與式IIa(CI=0.34)、多西他賽與式IIa(CI=0.09)及吉西他濱與式IIa(CI=0.50)同時給藥觀測到協同作用。
圖13展示關於(上圖)在自右至左不同濃度(起始於4×EC50
)之多西他賽、式IIa化合物及多西他賽與式IIa之同時組合下量測活MT3(乳腺腫瘤類型)細胞以及(下圖)在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式IIa化合物及替莫唑胺與式IIa之同時組合下量測活U87(神經膠質瘤腫瘤類型,PTEN陰性突變)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。對於在MT3細胞中多西他賽與式IIa(CI=0.69)及在U87細胞中替莫唑胺與式IIa(CI=0.67)同時給藥觀測到協同作用。
圖14展示關於在自右至左不同濃度(起始於4×EC50
)之(上圖)5-FU、式IIa化合物及5-FU與式IIa之同時組合以及(下圖)多西他賽、式IIa化合物及多西他賽與式IIa之同時組合下量測活ZR75-1(乳腺腫瘤類型)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。對於在ZR75-1細胞中5-FU與式IIa(CI=0.47)同時給藥及在ZR75-1細胞中多西他賽與式IIa(CI=0.46)同時給藥觀測到協同作用。
可藉由點陣圖來呈現歸因於式Ia化合物與化療劑之組合的Ras突變與圖1A(實驗1-248)中所列之活體外協同效應之間的相關性。圖15及圖16中之各點為來自圖1A之實驗結果。將實驗分組為Ras野生型(Ras WT)或具有如圖1A所提及的特定突變之Ras突變體(Ras Mut),針對協同效應(組合指數,CI)作圖,其中如藉由Chou-Talalay方法(Chou,T.及Talalay,P.(1984)Adv. Enzyme Regul. 22:27-55)所計算協同作用隨CI降低而增加。
圖15展示來自圖1A之埃羅替尼與式Ia化合物對抗具有Ras突變及無Ras突變之腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖(實驗71-73、140-168、230-231)。ras突變細胞株顯示強於ras野生型細胞株之介於埃羅替尼與式Ia化合物之間的協同作用。
圖16展示來自圖1A之PD-0325901與式Ia化合物對抗具有Ras突變及無Ras突變之腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖(實驗29-35、74-83、124-139、175-184、224-226、232-236、247、248)。ras突變細胞株顯示強於ras野生型細胞株之介於PD-0325901與式Ia化合物之間的協同作用。
圖17展示以吉西他濱在EC80給藥水平下治療協同腫瘤細胞株MDA-MB-361與非協同腫瘤細胞株MT-3之時程結果。在T=0(未經治療,UT)、1小時、4小時、6小時及24小時時量測pAkt水平。已知組成性及誘導性Akt活性促進乳癌細胞中對化學療法、曲妥珠單抗或他莫昔芬之抗性(Clark等人。(2002)Mol Cancer Ther. 1(9):707-17)。可藉由實例18中所述之方法量測磷酸化Akt(pAkt)水平。低CI與化療劑促使pAkt增加之效應有關。使用Biosource(Carlsbad,CA)之珠粒套組及Luminex Bio-Plex系統(Bio-Rad,Hercules,CA)測定pAkt(Ser473)水平。吉西他濱治療引起協同細胞株(MDA-MB-361)而非非協同細胞株(MT-3)中pAkt水平升高,此證明響應於化學療法pAkt水平增加與癌症治療中式I或式II化合物與化療劑之協同作用相關且預示該協同作用。
圖18展示來自圖1A之多西他賽、5-FU或吉西他濱與式Ia化合物對抗腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖,其顯示響應於單獨之化療劑pAkt增加或無pAkt增加。在以多西他賽、5-FU或吉西他濱處理後顯示pAkt增加之細胞株顯示強於無pAkt反應之細胞株的與式Ia化合物之協同作用。
本發明包括一種用於確定欲被組合使用用於治療癌症之化合物之方法,其包含:a)向具有K-ras突變之活體外腫瘤細胞株投與具有式I或式II之化合物與選自以下物質之化療劑的治療劑組合:埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼;及b)量測協同或非協同效應。
儘管圖1A、1B、1C及圖2-14所例示之組合中其他作用機制可起作用,但結果與以下相一致:PI3K抑制劑對腫瘤細胞增生之抑制施加G1期特異性效應,5FU施加對DNA合成之S期特異性破壞,吉西他濱施加對DNA合成之S期特異性破壞且多西他賽施加對微管之M期特異性去極化。
進行流式細胞術檢測以量測式Ia化合物與若干化療劑之組合療法對MB3乳腺腫瘤及PC3前列腺腫瘤細胞的作用。膜聯蛋白V/PI檢定偵測早期與晚期細胞凋亡事件(實例15)。為膜聯蛋白V陽性之細胞處於細胞凋亡之早期且彼等為膜聯蛋白V與PI陽性之細胞在圖19之條形圖上經註明為"死亡"。剩餘細胞構成"活"群體。
圖19展示流式細胞術FACS(螢光活化細胞揀選器)測定之結果:(上圖)MB361細胞(自左至右)未經處理,經式Ia、5FU處理,以及首先以5FU接著以式Ia化合物處理;(中圖)PC3細胞(自左至右)未經處理,以式Ia、多西他賽處理,以式Ia化合物及多西他賽同時處理,首先以式Ia接著以多西他賽處理,以及首先以多西他賽接著以式Ia處理;及(下圖)MB361細胞(自左至右)未經處理,經式Ia、吉西他濱處理,以及首先以吉西他濱接著以式Ia處理。
以EC80投與式Ia化合物及基因毒性化療劑,歷時24、48、72小時。FACS(針對細胞週期(PI)加以固定,對於膜聯蛋白V及PI而言為活細胞)。與式Ia化合物同時或間隔4小時、在式Ia化合物給藥之前及在式Ia化合物給藥之後添加化合物(實例19)。注意到洗出效應,其中在1小時後達到最大協同作用。給藥後1小時,組合保留兩種洗出藥物之協同作用。當式Ia與化療藥物組合時,所有三個組合均存在早期與晚期細胞凋亡之增加(圖19)。低Chou-Talalay CI值表明當活體內組合此等藥物時在腫瘤抑制方面存在顯著之益處係有可能的。
在諸如乳房之腺組織中,上皮與特定形式之胞外基質(稱為基底膜)相互作用。該胞外基質調節正常乳腺生物學及發病機制。將重構、富含層黏連蛋白之基底膜(1rBM)改適成標準細胞培養物可重現乳腺之基本腺泡結構且將之視為用以模擬腫瘤之動力學微環境的改良活體外模型(Debnath J,Brugge JS. (2005)Nat Rev Cancer. 5:675-88)。使用寬特異性抑制劑,PI3K信號轉導已牽涉於生長在1rBM中的HMT-3522 T4-2人類乳腺腫瘤細胞之腺泡發展中,藉此PI3K抑制足以恢復頂端-基底極性且誘導生長停滯(Liu H,Radisky DC,Wang F,Bissell MJ. (2004)J Cell Biol.;164:603-12)。考慮到所提出之PI3K對乳癌之引發與發展的影響,3D培養系統提供一種評估小分子PI3K抑制劑(諸如式Ia化合物)之功效的新穎綜合性方式。
受體酪胺酸激酶HER2(Neu/ErbB2)於約20%之人類乳癌中擴增且過度表現並在乳癌發生中起病因性作用(Yarden Y,Sliwkowski MX. (2001)Nat Rev Mol Cell Biol. 2:127-37)。由抗HER2單株抗體曲妥珠單抗(HERCEPTIN,Genentech)之治療功效證明HER2過度表現在人類乳癌中起作用。除均二聚之外,HER2亦可充當其他HER家族成員之共受體。單株抗體帕妥珠單抗靶向HER2二聚化臂(細胞外亞域II)且破壞HER2於HER受體-配位體複合物中之募集(Franklin等人。(2004)Cancer Cell. 5:317-28)。與使用治療性抗體曲妥珠單抗及帕妥珠單抗抑制HER家族信號轉導組合,使用式Ia及式IIa化合物來測定PI3K抑制之功效。
本發明包括一種用於確定欲被組合使用用於治療癌症之化合物之方法,其包含:a)向富含層黏連蛋白之重構基底膜培養基中的HER2擴增之乳癌細胞投與如請求項1之治療劑組合,其中該化療劑靶向HER2受體,與HER2受體結合或調節HER2受體;及b)量測細胞增生之抑制,其中根據選自細胞存活力及腺泡形態發生之一或多種表型差異區分非惡性及惡性乳房細胞。
在HER2擴增之BT474M1細胞中評估式I及式II化合物與治療性抗體之組合(實例16)。在3維(3D)富含層黏連蛋白之重構基底膜中培養細胞以說明胞外基質分子在致癌基因信號轉導及生物學中的作用。3D培養重現致癌微環境之能力意謂其可為活體內功效之較為可靠的預測因子(如與細胞在塑料上之二維(2D)培養相比)且可適用於表徵抑制劑及靶基因。使用3D培養來評估HER家族信號轉導且量測抑制劑之協同功效。使用細胞存活力及腺泡表型(形態發生)作用藥物功效之標記(實例16)。
利用新穎3D細胞培養表型,使用HER2擴增之BT474M1細胞來偵測HER家族信號轉導,且基於腺泡形態發生量測協同功效(實例16)。富含層黏連蛋白之重構基底膜培養基之一實施例為作為BD MatrigelTM
(BD Biosciences)購得之Engelbreth-Holm-Swarm胞外基質提取物。適於3D培養之胞外基質(ECM)之另一例示性實施例為Madin-Darby犬腎臟上皮細胞。例示性表型差異為侵襲性(惡性)及非侵襲性(非惡性)細胞之腺泡結構。
可根據另一檢定針對藥物功效對腺泡形態發生作出評定。滴定各抑制劑以檢驗途徑藥效學(PD)標記、細胞存活力及腺泡表型。確定有效地抑制標靶之最低抑制劑藥物濃度。考慮總細胞存活力、相應下游途徑標記(諸如磷酸化AKT1)之藥效學性質及腺泡表型變化,藉由投與增加之劑量來確定用於3D培養檢定之式I及式II化合物之適當濃度。選擇有效地抑制標靶之最低藥物濃度用於檢定。選擇250nM式Ia及式IIa化合物之濃度作為3D培養檢定之最終工作濃度。
已顯示諸如曲妥珠單抗及帕妥珠單抗之HER2的直接抑制劑干擾包括PI3K-AKT軸之若干關鍵效應因子途徑之下游活化。HER2擴增之乳癌細胞中PI3K與HER家族信號轉導之組合抑制可引起有效的腫瘤細胞抑制。
藉由磷酸化AKT1(pAkt)之免疫印跡偵測,證實250nM式Ia化合物有效地抑制PI3K下游信號轉導(實例16)。在對於帕妥珠單抗及曲妥珠單抗分別為20 μg/ml及25μg/ml之飽和濃度下使用治療性抗體。式Ia與曲妥珠單抗之組合引起在缺乏HRG配位體之Matrigel中培養之BT474M1腺泡的3D生長之疊加抑制。為了偵測配位體依賴性HER2-HER3雜二聚體信號轉導(如已被提出在多個細胞株中轉型),將1nM HRG添加於此等檢定中。式Ia及曲妥珠單抗對HRG誘導之增生無影響。比較而言,以式Ia與帕妥珠單抗共同治療引起HRG誘導之腺泡生長及形態發生疊加降低。據顯示,此效應在多個重複後在統計學上為顯著的。在配位體不存在之情況下,與式Ia及帕妥珠單抗相比,在以式Ia及曲妥珠單抗治療後,3D腺泡生長之降低較大。曲妥珠單抗與式Ia化合物之組合抑制細胞增生且削弱和瑞古林(heregulin)誘導之形態發生。曲妥珠單抗與式Ia化合物之組合對正常血清中之3D生長具有有效且疊加的效應,但就該組合對和瑞古林處理之培養基中的腺泡生長或形態發生未觀測到疊加性。帕妥珠單抗與式Ia化合物之組合有效而疊加地抑制BT474M1腺泡生長及形態發生。曲妥珠單抗、帕妥珠單抗與式Ia化合物之三重組合協同抑制HRG補充之培養基及標準培養基中的BT474M1腺泡芽生長及形態發生(圖20)。
滴定各抑制劑以檢驗相關途徑藥效學(PD)標記、細胞存活力及腺泡表型。確定有效地抑制標靶之最低抑制劑藥物濃度,且將之用於所有3D檢定中。
圖20展示三維(3D)培養中BT474生長之定量化。藉由量測細胞ATP水平來測定細胞存活力。在10%血清或10%血清與1nM和瑞古林中培養BT474M1細胞,且使其經受如所指示(自左至右)之抑制劑組合處理:培養基、DMSO、20μg/ml曲妥珠單抗與25μg/ml帕妥珠單抗之組合、250nM式Ia化合物及20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗與250nM式Ia化合物之組合。腺泡生長及形態發生與有或無1nM和瑞古林的10%FBS培養基中以相對光單位(RLU)計之細胞ATP產生相關連。
在標準培養基(無和瑞古林)中,在曲妥珠單抗、帕妥珠單抗或式Ia化合物單獨存在下細胞活性相對較低,但在經HRG處理之培養基中並非如此。曲妥珠單抗與式Ia化合物之組合抑制正常血清中之細胞增生且削弱和瑞古林誘導之形態發生,但對和瑞古林處理之培養基中的腺泡生長或形態發生未觀測到疊加性。帕妥珠單抗與式Ia化合物之組合有效地且疊加地抑制標準培養基與和瑞古林補充之培養基中的BT474M1腺泡生長及形態發生。曲妥珠單抗、帕妥珠單抗與式Ia化合物之三重組合協同地抑制標準培養基與HRG補充之培養基中的BT474M1細胞增生及和瑞古林誘導之形態發生(圖20)。所有三種藥劑之組合協同地降低標準培養基與HRG補充之培養基中的細胞存活力。如經由微觀檢查所確定,該三重組合亦消除BT474M1細胞的和瑞古林誘導之形態發生。此等資料表明式Ia、曲妥珠單抗與帕妥珠單抗三重組合對於治療人類患者之HER2擴增的乳癌可提供改良之功效。
曲妥珠單抗或式Ia顯著降低正常培養基中的腺泡尺寸,但對HRG誘導之形態發生具有有限影響。作為組合治療,曲妥珠單抗與式Ia可最小化腺泡尺寸及形態發生。藉由細胞存活力之Cell Titer-Glo分析,曲妥珠單抗與式Ia之間的疊加性引起正常培養基中細胞生長之降低,但添加HRG未觀察到差異。
帕妥珠單抗完全抑制HRG誘導之形態發生,而式Ia僅部分地降低表型。帕妥珠單抗與式Ia一起減少正常培養基與HRG補充之培養基中的細胞生長及形態發生。藉由評估如由Cell Titer-Glo所測定之細胞存活力,在帕妥珠單抗與式Ia作為單一藥劑或組合療法存在之情況下在正常培養基中觀測到細胞活性降低。HRG處理之腺泡亦顯示類似趨勢,但程度較小。藉由評估Cell Titer-Glo重複(n=8)之Dunnett T檢驗比較,帕妥珠單抗與式Ia之組合顯著抑制細胞活性(p=0.0054)。
圖21展示關於將式IIa添加至雙重曲妥珠單抗與帕妥珠單抗治療中之類似效應。圖21展示如所指示在20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗或250nM式IIa化合物治療之後的3D細胞培養中之BT474生長。式IIa顯著地使正常培養基中之腺泡尺寸減小,但作為單一藥劑對HRG誘導之形態發生具有有限影響。作為組合治療,如藉由使用Cell Titer Glo量測細胞存活力所確定,式IIa、曲妥珠單抗與帕妥珠單抗顯著地降低腺泡尺寸及形態發生。與式Ia化合物相比較,在250nM用量下作為單一藥劑(p=0.0001,Dunnett T檢驗)以及與曲妥珠單抗及帕妥珠單抗組合(p<0.0001,Dunnett T檢驗),式IIa化合物之有效性均略微欠佳。
圖21-A展示關於將式Ib添加至雙重曲妥珠單抗與帕妥珠單抗治療中之類似效應。如所指示,在20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗或20nM式Ib化合物治療後量測3D細胞培養中之BT474生長。式Ib單一療法使正常培養基與HRG補充之培養基中的腺泡尺寸減小。如藉由使用Cell TiterGlo量測細胞存活力所確定,腺泡尺寸及形態發生之最顯著的降低係由式Ib、曲妥珠單抗與帕妥珠單抗之組合療法所產生。
可藉由在齧齒動物中植入癌細胞之同種異體移植物或異種移植物且以本發明之組合治療攜帶腫瘤之動物而於活體內量測該等組合之功效。視細胞株、腫瘤細胞中某些突變之存在與否、式I或式II化合物及化療劑之投與順序、給藥方案及其他因素而定,預期可變結果。以藥物或對照劑(媒劑)處理受檢小鼠且監控數週或更長時間以量測腫瘤倍增、對數細胞殺死及腫瘤抑制之時間(實例17)。
圖22展示在第0天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸鼠(Charles River Labs)隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、150mg/kg式Ia、5mg/kg多西他賽及式Ia150mg/kg與多西他賽5mg/kg之組合。在第1、5及9天(q4d×3)將多西他賽靜脈內投與小鼠,而式Ia係藉由口服強飼法每日投與,歷時21天。當在同一天投與時,在多西他賽之後1小時投與式Ia。150mg/kg式Ia與5mg/kg多西他賽之組合協同作用而大於單獨之各單一藥劑抑制MDA-MB-361.1乳腺腫瘤生長。
21天後,投與式Ia150mg/kg的11隻動物之組顯示75%抑制,且在41天後顯示3隻部分消退及66%抑制。21天後,投與多西他賽5mg/kg的10隻動物之組顯示78%抑制,且在41天後顯示2隻部分消退及26%抑制。21天後,投與式Ia150mg/kg與多西他賽5mg/kg之組合的9隻動物之組顯示90%抑制,且在41天後顯示7隻部分消退及83%抑制。該組合展示在腫瘤抑制方面較佳之功效且當與各單一藥物相比時在統計學上為顯著的(p=0.0001(相對於多西他賽)及p=0.02(相對於式Ia))。
圖23展示在第1天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸鼠(Charles River Labs)隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween 80)、37.5mg/kg 式IIa、5mg/kg多西他賽及37.5mg/kg 式IIa與5mg/kg多西他賽之組合。在第1、5及9天(q4d×3)將多西他賽靜脈內投與小鼠,而式IIa係藉由口服強飼法每日投與,歷時21天。當在同一天投與時,在多西他賽之後1小時投與式IIa。21天後,投與37.5mg/kg式IIa之10隻動物之組顯示30%抑制及2隻部分消退。21天後,投與5mg/kg多西他賽之10隻動物之組顯示35%抑制及3隻部分消退。投與式IIa 37.5mg/kg與多西他賽5mg/kg之組合的10隻動物之組顯示63%抑制。該組合顯示在腫瘤抑制方面較佳之功效且當與各單一藥物相比時在統計學上為顯著的(p=0.0454(相對於多西他賽)及p=0.0174(相對於式IIa))。
圖24展示在第0天投與以下物質之具有MAXF 401(三重陰性)原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu(裸)小鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、100mg/kg式Ia、15mg/kg多西他賽及100mg/kg式Ia與15mg/kg多西他賽之組合。MAXF 401為直接來自對多西他賽起反應之患者活組織檢查的原發性乳腺腫瘤,且將其皮下植入小鼠中。此乳癌組為呈HER2陰性、ER(雌激素受體)陰性及PR(孕激素受體)陰性之"三重陰性"患者之亞群。小鼠離體保留對多西他賽之敏感性。在第0天及第11天將多西他賽靜脈內投與小鼠,而式Ia係在第0-4、11-17及21-28天藉由口服強飼法投與。在最後劑量之式Ia後,再對動物之腫瘤生長監控22天(動物研究總天數為50天)。當在同一天投與時,在多西他賽之後1小時投與式Ia。投與100mg/kg式Ia之10隻動物之組在第28天顯示49%抑制。投與15mg/kg多西他賽之10隻動物之組在第28天顯示95%抑制。在28天後,投與式Ia150mg/kg與多西他賽15mg/kg之組合的10隻動物之組顯示>90%抑制。在研究結束時(第50天),單獨投與多西他賽與式Ia之動物具有腫瘤再生長現象且腫瘤抑制分別自95%降至68%及自49%降至10%。然而,在研究結束時(第50天),多西他賽與式Ia之組合引起所有10隻動物具有MAXF401原發性乳腺腫瘤之持續腫瘤消退(>90%抑制)且當與各單一藥物相比時在統計學上為顯著的(p=0.05(相對於多西他賽)及p<0.001(相對於式Ia))。考慮到MAXF401乳腺腫瘤係獲自對紫杉烷療法起反應之患者,離體觀察到之改良的功效表明式Ia之組合當與多西他賽組合時在乳癌中可具有臨床益處。
圖25展示在第0天投與以下物質之具有MAXF401原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween80)、100 mg/kg 式IIa、15mg/kg多西他賽及100mg/kg式IIa與15mg/kg多西他賽之組合。MAXF401為直接來自對多西他賽起反應之患者活組織檢查的原發性乳腺腫瘤,且將其皮下植入小鼠中。小鼠離體保留對多西他賽之敏感性。在第0天及第11天將多西他賽靜脈內投與小鼠,而式IIa係在第0-3、11-17及21-28天藉由口服強飼法投與。在最後劑量之式IIa後,再對動物之腫瘤生長監控22天(動物研究總天數為50天)。當在同一天投與時,在多西他賽之後1小時投與式IIa。投與100mg/kg式IIa之10隻動物之組在第28天顯示82%腫瘤抑制。投與15mg/kg多西他賽之10隻動物之組在第28天顯示95%腫瘤抑制。投與式IIa150mg/kg與多西他賽15mg/kg之組合的10隻動物之組在第28天顯示99%抑制。在研究結束時(第50天),單獨投與多西他賽及式IIa之動物具有腫瘤再生長現象且腫瘤抑制分別降至68%及51%。然而,在研究結束時(第50天),100mg/kg式IIa與15mg/kg多西他賽之組合引起MAXF 401原發性乳腺腫瘤之持續腫瘤消退(99%抑制)且當與各單一藥物相比時在統計學上為顯著的(p=0.0118(相對於多西他賽)及p=0.0005(相對於式IIa))。考慮到MAXF401乳腺腫瘤係獲自對紫杉烷療法起反應之患者,離體觀察到之改良的功效表明式IIa之組合當與多西他賽組合時在乳癌中可具有臨床益處。
圖26展示在第0天投與以下物質之具有MAXF 1162原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween 80)、100mg/kg式Ia、15mg/kg多西他賽及100mg/kg式Ia與15mg/kg多西他賽之組合。MAXF 1162為直接來自對多西他賽療法失效之患者活組織檢查的原發性乳腺腫瘤,且將其皮下植入小鼠中。此等小鼠離體保留對多西他賽之抗性。在第0、11、22及44天將多西他賽靜脈內投與小鼠,且在第0-5、11-16、22-27、30-32、42及44天藉由口服強飼法投與式Ia。在最後劑量之式Ia後,再對動物之腫瘤生長監控6天(動物研究總天數為50天)。當在同一天投與時,在多西他賽之後1小時投與式Ia。49天後,投與100 mg/kg式Ia之10隻動物之組顯示54%抑制。49天後,投與15mg/kg多西他賽之10隻動物之組顯示36%抑制。49天後,投與式Ia100 mg/kg與多西他賽15mg/kg之組合的10隻動物之組顯示87%抑制。在研究結束時(第50天),該組合引起持續腫瘤消退(>87%抑制)且當與各單一藥物相比時在統計學上為顯著的(p=0.0005(相對於多西他賽)及p=0.0007(相對於式Ia))。考慮到MAXF1162乳腺腫瘤係獲自對紫杉烷療法失效之患者,離體觀察到之改良的功效表明式Ia與多西他賽之組合在紫杉烷抗性人類乳癌中可具有臨床益處。
圖27展示在第0天投與以下物質之具有MAXF1162原發性乳腺腫瘤異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween80)、100 mg/kg式IIa、15mg/kg多西他賽及100 mg/kg式IIa與15mg/kg多西他賽之組合。MAXF1162為直接來自對多西他賽療法失效之患者活組織檢查的原發性乳腺腫瘤,且將其皮下植入小鼠中。此等小鼠離體保留對多西他賽之抗性。在第0、11、22及44天將多西他賽靜脈內投與小鼠,且在第0-5、11-16、22-23、29-31及35-38天藉由口服強飼法投與式IIa。在最後劑量之式IIa後,再對動物之腫瘤生長監控12天(動物研究總天數為50天)。當在同一天投與時,在多西他賽之後1小時投與式IIa。49天後,投與100mg/kg式IIa之10隻動物之組顯示32%抑制。49天後,投與15mg/kg多西他賽之10隻動物之組顯示36%抑制。49天後,投與式IIa100 mg/kg與多西他賽15mg/kg之組合的10隻動物之組顯示80%抑制。在研究結束時(第50天),該組合引起MAXF 1162原發性乳癌腫瘤之持續腫瘤消退(>80%抑制)且當與各單一藥物相比時在統計學上為顯著的(p<0.0001(相對於多西他賽)及p=0.0166(相對於式IIa))。考慮到MAXF 1162乳腺腫瘤係獲自對紫杉烷療法失效之患者,離體觀察到之改良的功效表明式IIa與多西他賽之組合在紫杉烷抗性人類乳癌中可具有臨床益處。
圖28展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤異種移植物之CRL雌性nu/nu(裸)鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween 80)、50mg/kg式Ia、75mg/kg埃羅替尼及50mg/kg式Ia與75mg/kg埃羅替尼之組合。藉由口服強飼法每日將埃羅替尼及式Ia投與小鼠,歷時16天。再對動物之腫瘤生長監控5天(研究結束日為第21天)。同時投與埃羅替尼與式Ia。20天後,投與50mg/kg式Ia之8隻動物之組顯示17%腫瘤抑制。20天後,投與75mg/kg埃羅替尼之8隻動物之組顯示21%抑制。20天後,投與式Ia50mg/kg與埃羅替尼75mg/kg之組合的8隻動物之組顯示55%抑制。在研究結束時(第21天),50mg/kg式Ia與埃羅替尼之組合具有疊加性且當與各單一藥物相比時引起NCI-H2122 NSCLC腫瘤異種移植物顯著的腫瘤生長延遲(p=0.032(相對於埃羅替尼)及p=0.019(相對於式Ia))。
圖29展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤異種移植物之CRL雌性nu/nu(裸)鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween 80)、50mg/kg式IIa、75mg/kg埃羅替尼及50mg/kg式IIa與75mg/kg埃羅替尼之組合。藉由口服強飼法每日將埃羅替尼及式IIa投與小鼠,歷時14天(研究結束)。同時投與埃羅替尼與式IIa。在研究結束時,投與50mg/kg式IIa之9隻動物之組顯示27%腫瘤抑制。在研究結束時,投與75mg/kg埃羅替尼之10隻動物之組顯示34%腫瘤抑制。在研究結束時,投與式IIa50mg/kg與埃羅替尼75mg/kg之組合的9隻動物之組顯示63%腫瘤抑制。在研究結束時(第21天),50mg/kg式IIa與75mg/kg埃羅替尼之組合具有疊加性且當與各單一藥物相比時引起NSCLC腫瘤異種移植物顯著的腫瘤生長延遲(p=0.032(相對於埃羅替尼)及p=0.029(相對於式IIa))。
圖30展示在第1天投與以下物質之具有MCF-7(PI3K突變體)乳腺腫瘤細胞異種移植物之HRLN雌性nu/nu小鼠隨時間的平均腫瘤體積變化:MCT及PBS媒劑(MCT;0.5%甲基纖維素/0.2%Tween 80及PBS;磷酸鹽緩衝生理食鹽水)、對照IgG 5mg/kg、mB20-4.1鼠類抗VEGF(抗血管生成劑)5mg/kg、式Ia 150mg/kg及式Ia 150mg/kg與mB20-4.1鼠類抗VEGF 5mg/kg之組合。每週兩次將對照IgG及mB20-4.1腹膜內投與動物,歷時3週;且藉由口服強飼法每日投與式Ia,歷時21天,且再監控腫瘤生長41天(總研究天數為62天)。同時共投與式Ia及mB20-4.1。21天後,投與對照IgG且加以研究之15隻動物中的13隻之組顯示19%抑制及0隻部分消退。21天後,投與mB20-4.1鼠類抗VEGF且加以研究之15隻動物中的10隻之組顯示49%抑制及0隻部分消退。21天後,投與150mg/kg式Ia化合物且加以研究之13隻動物之組顯示36%抑制及0隻部分消退。21天後,投與式Ia化合物與mB20-4.1鼠類抗VEGF之組合且加以研究的10隻動物之組顯示66%抑制及4隻完全消退。當與各單一藥物相比時,在終止給藥之後41天(研究結束),投與式Ia與mB20-4.1鼠類抗VEGF之組合的動物顯示腫瘤生長之顯著抑制及持續消退(p<0.006(相對於式Ia)及<0.01(相對於mB20-4.1))。
圖31展示在第1天投與以下物質之具有MCF-7(PI3K突變體)乳腺腫瘤細胞異種移植物之HRLN雌性nu/nu小鼠隨時間的平均腫瘤體積變化:MCT及PBS媒劑(MCT;0.5%甲基纖維素/0.2% Tween 80及PBS;磷酸鹽緩衝生理食鹽水)、對照IgG 5mg/kg、mB20-4.1鼠類抗VEGF(抗血管生成劑)5mg/kg、式IIa 100mg/kg及式IIa 100mg/kg與mB20-4.1鼠類抗VEGF5mg/kg之組合。每週兩次將對照IgG及mB20-4.1腹膜內投與動物,歷時3週;且每日經口投與式IIa,歷時21天,且再監控腫瘤生長41天(總研究天數為62天)。同時共投與式IIa及mB20-4.1。21天後,投與媒劑且加以研究之15隻動物中的12隻之組顯示10%抑制及0隻部分消退。21天後,投與mB20-4.1鼠類抗-VEGF且加以研究之15隻動物中的10隻之組顯示49%抑制及0隻部分消退。21天後,投與100mg/kg式IIa化合物且加以研究之13隻動物之組顯示5%抑制及0隻部分消退。21天後,投與式IIa化合物與mB20-4.1鼠類抗-VEGF之組合且加以研究之15隻動物中的10隻之組顯示61%抑制及1隻完全消退。當與各單一藥物相比時,在終止給藥之後41天,投與式Ia與mB20-4.1鼠類抗VEGF之組合的動物顯示腫瘤生長之顯著抑制及延遲(p<0.001(相對於式IIa)及<0.01(相對於mB20-4.1))。
圖32展示在第0天投與以下物質之具有U87MG神經膠質瘤腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:式Ia(GDC-0941)109mg/kg、替莫唑胺100mg/kg及式Ia 109mg/kg與替莫唑胺10mg/kg之組合;以及未接受藥物之小鼠(未治療組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天且每日經口投與替莫唑胺,歷時5天。109mg/kg式Ia與100mg/kg替莫唑胺之組合協同作用而大於單獨之式Ia或替莫哇胺抑制活體內U87MG神經膠質瘤腫瘤生長且引起腫瘤消退,繼之以腫瘤生長延遲。
圖33展示在第0天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸CR/Hollister小鼠隨時間的平均腫瘤體積變化:式Ia(GDC-0941)150mg/kg、吉西他濱100mg/kg及式Ia 150mg/kg與吉西他濱100mg/kg之組合;以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天,且在第1、4、7及10天(q3d×4)腹膜內投與吉西他濱。150mg/kg式Ia與100mg/kg吉西他濱之組合協同作用而大於單獨之式Ia或吉西他濱抑制活體內MDA-MB-361.1乳腺腫瘤生長,且引起腫瘤消退,繼之以腫瘤生長延遲。
圖34展示在第0天投與以下物質之具有BT474乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:18、36及73mg/kg之式Ia(GDC-0941)、曲妥珠單抗20mg/kg及18、36及73mg/kg之式Ia與曲妥珠單抗20mg/kg之組合;以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天,且每週兩次腹膜內投與曲妥珠單抗,歷時3週。73mg/kg式Ia與20mg/kg曲妥珠單抗之組合協同作用而大於單獨之式Ia或曲妥珠單抗抑制活體內BT474乳腺腫瘤生長且引起腫瘤消退,繼之以腫瘤生長延遲。
以曲妥珠單抗處理BT474-M1(BT474之活體內繼代次純系)細胞引起pAKT下降,其等同於以式Ia化合物(GDC-0941)所實現之下降。向50nM式Ia中添加曲妥珠單抗引起劑量依賴性、增強之pAKT下降。在最大麯妥珠單抗劑量下,額外降低為單獨GDC-0941處理之29-38%。對pAKT抑制之增強之組合效應並非瞬時的且在處理後48h仍可偵測得到。就pAKT所見之組合效應亦反映在AKT信號轉導組分之下游。在曲妥珠單抗存在或不存在之情況下,以式Ia將BT474-M1細胞處理4小時。曲妥珠單抗之添加進一步降低直接AKT受質PRAS40(Thr246)及遠端受質磷酸S6核糖體蛋白(Ser235/236)之磷酸化,此表明曲妥珠單抗及式Ia對下游AKT信號轉導具有增強之組合效應。當將BT474-M1細胞處理6天且量測細胞存活力時,顯示增強之PI3K/AKT途徑抑制引起細胞增生/存活力降低。曲妥珠單抗單獨地使增生/存活力降低40%。在不存在曲妥珠單抗之情況下,式Ia之IC50
值為296nM。曲妥珠單抗之添加引起劑量依賴性、增強之增生/存活力降低。10μg/ml之最大麯妥珠單抗劑量引起達到106nM之IC50
值所需的式Ia濃度之64%下降,此同樣顯示在降低細胞增生/存活力方面的增強之組合效應。當處理SKBR-3細胞時,而非當處理曲妥珠單抗非反應性KPL-4細胞時,亦觀察到對pAKT及增生抑制之類似組合效應。曲妥珠單抗與式Ia之組合在如藉由CalcuSyn軟體所確定之大多數有效藥物範圍內協同抑制BT474及SKBR-3細胞之增生,此顯示該組合增強對AKT及其下游標靶之抑制效應,從而產生對曲妥珠單抗敏感性乳癌細胞之增生之協同效應。
曲妥珠單抗與式Ia之組合疊加誘導經處理48h之BT474-M1細胞乳癌細胞之細胞凋亡。曲妥珠單抗與式Ia之組合使所裂解之卡斯蛋白酶-3片段之累積增加,此指示此關鍵效應因子卡斯蛋白酶之活化。組合曲妥珠單抗與式Ia亦引起所裂解之PARP89kDa片段增加,亦即一種已知之對卡斯蛋白酶-3活化的反應。當將曲妥珠單抗添加至式Ia治療中時,卡斯蛋白酶3及7之活性亦增加。組合曲妥珠單抗與250nM式Ia使卡斯蛋白酶3及7之活性增加至類似於就單獨4倍高之劑量(1000nM)之式Ia所偵測到的水平。重要地為,此關於卡斯蛋白酶活性之增加係反映在此等細胞之細胞凋亡指數上。曲妥珠單抗之添加顯著地降低誘導細胞凋亡所需之式Ia濃度。與當單獨以1000nM之式Ia處理時相比,當以100nM之式Ia與曲妥珠單抗處理細胞時,偵測到近似等同之細胞凋亡水平。如所預期,48h後,細胞凋亡之增加係反映在細胞存活力之下降上。當以抑制劑組合處理SKBR-3細胞時,可觀察到卡斯蛋白酶活性及細胞凋亡之類似增加。式Ia與曲妥珠單抗之組合顯著降低在曲妥珠單抗敏感性乳癌細胞中達到卡斯蛋白酶活化及細胞凋亡之臨限值所需的式Ia濃度。因此,可使用曲妥珠單抗處理來使HER2擴增之細胞對PI3K抑制敏感,且因此為PI3K抑制劑式Ia提供額外的腫瘤特異性水平。
圖35展示在第0天投與以下物質之具有BT474乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:2.5mg/kg之式Ib,每日經口,歷時3週;2.5mg/kg之式Ib,每週兩次經口,歷時3週;5mg/kg之式Ib,每日經口,歷時3週;15mg/kg之曲妥珠單抗,每週一次腹膜內,歷時3週;及以下組合:2.5mg/kg之式Ib(每日經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次腹膜內,歷時3週)、2.5mg/kg之式Ib(每週兩次經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次腹膜內,歷時3週)及5mg/kg之式Ib(每日經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次腹膜內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。每日投與的2.5mg/kg式Ia與每週一次投與的15mg/kg曲妥珠單抗之組合協同作用而大於單獨之式Ia或曲妥珠單抗抑制活體內BT474乳腺腫瘤生長且引起腫瘤生長延遲。
圖36展示在第0天投與以下物質之具有MCF-7乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週,或5mg/kg式Ib;及以下組合:5mg/kg之式Ib(每日經口,歷時第0-3天、第10-26天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。5.0mg/kg式Ib與5mg/kgB20-4.1之組合協同作用而大於單獨之式Ib或B20-4.1抑制活體內MCF-7乳腺腫瘤生長且引起腫瘤消退。
圖37展示在第0天投與以下物質之具有Fo5乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週;36及73mg/kg之式Ia(GDC-0941),每日經口,歷時21天;2.5及5mg/kg之式Ib,每日經口,歷時21天;及以下組合:36mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、73mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之 B20-4.1(每週兩次腹膜內,歷時3週)、5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)及2.5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。36mg/kg式Ia與5mg/kg B20-4.1之組合協同作用而大於單獨之式Ia或 B20-4.1抑制活體內Fo5乳腺腫瘤生長且引起腫瘤生長延遲。73mg/kg式Ia與5mg/kg B20-4.1之組合亦協同作用而大於單獨之式Ia或B20-4.1抑制活體內Fo5乳腺腫瘤生長且引起腫瘤生長延遲。2.5mg/kg式Ib與5mg/kg B20-4.1之組合協同作用而大於單獨之式Ib或B20-4.1抑制活體內Fo5乳腺腫瘤生長且引起腫瘤生長延遲。5.0 mg/kg式Ib與5.0 mg/kgB20-4.1之組合協同作用而大於單獨之式Ib或B20-4.1抑制活體內Fo5乳腺腫瘤生長且引起腫瘤生長消退。
圖38展示在第0天投與以下物質之具有MDA-MB-231乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週;36及73mg/kg之式Ia(GDC-0941),每日經口,歷時21天;5mg/kg之式Ib,每日經口,歷時21天;及7.5mg/kg之式Ib,每日經口,歷時8天;及以下組合:36mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、73mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之 B20-4.1(每週兩次腹膜內,歷時3週)、5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)及7.5mg/kg之式Ib(每日經口,歷時8天)與5mg/kg 之B20-4.1(每週兩次腹膜內,歷時1.5週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。5.0 mg/kg式Ib與5.0mg/kg B20-4.1之組合協同作用而大於單獨之式Ib或B20-4.1抑制活體內MDA-MB-231乳腺腫瘤生長且引起腫瘤生長延遲。
圖39展示在第0天投與以下物質之具有H1299非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時3週;100mg/kg之式Ia(GDC-0941),每日經口,歷時6天;50mg/kg之式Ia,每日經口,歷時21天;25mg/kg之式Ia,每日經口,歷時21天;及以下組合:100mg/kg之式Ia(每日經口,歷時6天)與50mg/kg之埃羅替尼(每日經口,歷時6天)、50mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天)及25mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。25mg/kg式Ia與50mg/kg埃羅替尼之組合協同作用而大於單獨之式Ia或埃羅替尼抑制活體內H1299非小細胞肺癌腫瘤生長且引起腫瘤生長延遲。50mg/kg式Ia與50mg/kg埃羅替尼之組合亦協同作用而大於單獨之式Ia或埃羅替尼抑制活體內NCI-H1299非小細胞肺癌腫瘤生長且引起腫瘤生長延遲。
圖40展示在第0天投與以下物質之具有H520非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時3週;73mg/kg之式Ia(GDC-0941),每日經口,歷時4天;36mg/kg之式Ia,每日經口,歷時21天;18mg/kg之式Ia,每日經口,歷時21天;及以下組合:73mg/kg之式Ia(每日經口,歷時4天)與50mg/kg之埃羅替尼(每日經口,歷時4天)、36mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天)及18mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。18mg/kg式Ia與50mg/kg埃羅替尼之組合協同作用而大於單獨之式Ia或埃羅替尼抑制活體內H520非小細胞肺癌腫瘤生長且引起腫瘤生長延遲。36mg/kg式Ia與50mg/kg埃羅替尼之組合亦協同作用而大於單獨之式Ia或埃羅替尼抑制活體內H520非小細胞肺癌腫瘤生長且引起腫瘤生長延遲。
圖41展示在第0天投與以下物質之具有H1299非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時21天;2.5mg/kg之式Ib,每日經口,歷時21天;5mg/kg之式Ib,每週兩次經口,歷時21天;5mg/kg之式Ib,每週一次經口,歷時3週;及以下組合:2.5mg/kg之式Ib(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天)、5mg/kg之式Ib(每週兩次經口,歷時3週)與50mg/kg之埃羅替尼(每日經口,歷時21天)及5mg/kg之式Ib(每週一次經口,歷時3週)與50mg/kg之埃羅替尼(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。每日經口投與之2.5mg/kg式Ib與50mg/kg埃羅替尼(每日經口投與,歷時21天)之組合協同作用而大於單獨之式Ib或埃羅替尼抑制活體內H520非小細胞肺癌腫瘤生長且引起腫瘤生長延遲。
圖42展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Taconic NCR雌性裸鼠隨時間的平均腫瘤體積變化:75mg/kg之埃羅替尼,每日經口,歷時16天;2.5mg/kg之式Ib,每日經口,歷時16天;5mg/kg之式Ib,每日經口,歷時16天;7.5mg/kg之式Ib,每日經口,歷時16天;及以下組合:2.5mg/kg之式Ib(每日經口,歷時16天)與50mg/kg之埃羅替尼(每日經口,歷時16天)、5mg/kg之式Ib(每日經口,歷時16天)與50mg/kg之埃羅替尼(每日經口,歷時16天)及7.5mg/kg之式Ib(每日經口,歷時16天)與50mg/kg之埃羅替尼(每日經口,歷時16天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。2.5mg/kg式Ib與75mg/kg埃羅替尼之組合協同作用而大於單獨之式Ib或埃羅替尼抑制活體內NCI-H2122非小細胞肺癌腫瘤生長且引起腫瘤停滯。
圖43展示在第0天投與以下物質之具有A375人類黑色素瘤癌症細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:3mg/kg之PD-0325901,每日經口,歷時3週;73mg/kg之式Ia(GDC-0941),每日經口,歷時3週;及以下組合:3mg/kg之PD-0325901(每日經口,歷時3週)與73mg/kg之式Ia(每日經口,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。73mg/kg式Ia與3mg/kg PD-0325901之組合協同作用而大於單獨之式Ia或PD-0325901抑制活體內A375人類黑色素瘤腫瘤生長且引起腫瘤消退及腫瘤生長延遲。
圖44展示在第0天投與以下物質之具有A375人類黑色素瘤癌症腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:100mg/kg之替莫唑胺,每日經口,歷時5天;10mg/kg之式Ib,每週一次經口,歷時3週;5mg/kg之式Ib,每週經口,歷時3週;及以下組合:10mg/kg之式Ib(每週一次經口,歷時3週)與100mg/kg之替莫唑胺(每日經口,歷時5天)及5mg/kg之式Ib(每週一次經口,歷時3週)與100mg/kg之替莫唑胺(每日經口,歷時5天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。5mg/kg式Ib與100mg/kg替莫唑胺之組合協同作用而大於單獨之式Ib或替莫唑胺抑制活體內A375人類黑色素瘤腫瘤生長且引起腫瘤生長延遲。
圖45展示在第0天投與以下物質之具有SKOV3人類卵巢癌細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:73mg/kg之式Ia(GDC-0941),每日經口,歷時3週;36mg/kg之式Ia,每日經口,歷時3週;10mg/kg之多西他賽,每週腹膜內,歷時3週;及以下組合:73mg/kg之式Ia(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)、36mg/kg之式Ia(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及73mg/kg之式Ia(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。每日投與之36mg/kg式Ia與10mg/kg多西他賽之組合協同作用而大於單獨之式Ib或多西他賽抑制活體內SKOV3人類卵巢腫瘤生長且引起腫瘤生長延遲。每日投與之73mg/kg式Ia與10mg/kg多西他賽之組合亦協同作用而大於單獨之式Ib或多西他賽抑制活體內SKOV3人類卵巢腫瘤生長且引起腫瘤生長延遲。
圖46展示在第0天投與以下物質之具有SKOV3人類卵巢癌腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之式Ib,每日經口,歷時3週;1mg/kg之式Ib,每日經口,歷時3週;10mg/kg之多西他賽,每週靜脈內,歷時3週;及以下組合:5mg/kg之式Ib(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及1mg/kg之式Ib(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。5mg/kg式Ib與10mg/kg多西他賽之組合協同作用而大於單獨之式Ib或多西他賽抑制活體內SKOV3人類卵巢腫瘤生長且引起腫瘤生長停滯。
圖47展示在第0天投與以下物質之具有SKOV3人類卵巢癌腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之式Ib,每週經口,歷時3週;10mg/kg之式Ib,每週經口,歷時3週;10mg/kg之多西他賽,每週靜脈內,歷時3週;及以下組合:5mg/kg之式Ib(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及10mg/kg之式Ib(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。每週經口投與之10mg/kg式Ib與10mg/kg多西他賽之組合協同作用而大於單獨之式Ib或多西他賽抑制活體內SKOV3人類卵巢腫瘤生長且引起腫瘤生長延遲。
圖48展示在第0天投與以下物質之具有LuCap 35V人類原發性前列腺癌腫瘤細胞異種移植物之雌性SCID米色裸鼠隨時間的平均腫瘤體積變化:5mg/kg之多西他賽,在第1、5及9天(q4d×3),靜脈內;50mg/kg之式Ia(GDC-0941),每日經口,歷時18天;100mg/kg之式Ia,每日經口,歷時18天;及以下組合:5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與50mg/kg之式Ia(每日經口,歷時18天)及5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與100mg/kg之式Ia(每日經口,歷時18天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。100mg/kg式Ia與5mg/kg多西他賽之組合協同作用而大於單獨之式Ia或多西他賽抑制活體內LuCap 35V人類原發性前列腺腫瘤生長且引起腫瘤消退。
圖49展示在第0天投與以下物質之具有LuCap35V人類原發性前列腺癌腫瘤細胞異種移植物之雌性SCID米色裸鼠隨時間的平均腫瘤體積變化:5mg/kg之多西他賽,在第1、5及9天(q4d×3),靜脈內;2.5mg/kg之式Ib,每日經口,歷時15天;5mg/kg之式Ib,每日經口,歷時15天;及以下組合:5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與2.5mg/kg之式Ib(每日經口,歷時15天)及5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與5mg/kg之式Ib(每日經口,歷時15天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。2.5mg/kg式Ib與5mg/kg多西他賽之組合協同作用而大於單獨之式Ib或多西他賽抑制活體內LuCap35V人類原發性前列腺腫瘤生長且引起腫瘤消退。5.0 mg/kg式Ib與5mg/kg多西他賽之組合亦協同作用而大於單獨之式Ib或多西他賽抑制活體內LuCap35V人類原發性前列腺腫瘤生長且引起腫瘤消退。
圖50展示在第1、5、9及13天(q4d×4)投與以下物質之具有PC3-NCI人類原發性前列腺癌腫瘤細胞異種移植物之CRL雌性nu
/nu
小鼠隨時間的平均腫瘤體積變化:2..5mg/kg多西他賽,靜脈內;2.5mg/kg式Ib,在第1、5、9及13天(q4d×4);10 mg/kg式Ib,在第1、5、9及13天(q4d×4),經口;及以下組合:2.5mg/kg多西他賽(靜脈內)與10 mg/kg式Ib(經口);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。在第1、5、9及13天投與之10mg/kg式Ib與5mg/kg多西他賽之組合協同作用而大於單獨之式Ib或多西他賽抑制活體內PC3-NCI人類原發性前列腺腫瘤生長且引起腫瘤消退。
圖51展示在第0天投與以下物質之具有PC3-NCI人類原發性前列腺癌細胞異種移植物之CRL雌性nu/nu小鼠隨時間的平均腫瘤體積變化:100mg/kg吉西他濱,每3天(q3d)腹膜內,達4次;150mg/kg式Ia(GDC-0941),每3天(q3d)經口,達4次;2.5mg/kg式Ib,每3天(q3d)經口,達4次;5mg/kg式Ib,每3天經口,達4次;及以下組合:100mg/kg吉西他濱(每3天腹膜內,達4次)與150mg/kg式Ia(每3天經口,達4次)、100mg/kg吉西他濱(每3天腹膜內,達4次)與2.5mg/kg式Ib(每3天經口,達4次)、100mg/kg吉西他濱(每3天腹膜內,達4次)與5mg/kg式Ib(每3天經口,達4次)、100mg/kg吉西他濱(每3天腹膜內,達4次)與10mg/kg式Ib(每3天經口,達4次);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。150mg/kg式Ia(每3天(q3d)經口投與,達4次)與100mg/kg吉西他濱之組合協同作用而大於單獨之式Ia或吉西他濱抑制活體內PC3-NCI人類原發性前列腺腫瘤生長且引起腫瘤消退及腫瘤生長延遲。2.5mg/kg式Ib(每3天(q3d)經口投與,達4次)與100mg/kg吉西他濱之組合協同作用而大於單獨之式Ia或吉西他濱抑制活體內PC3-NCI人類原發性前列腺腫瘤生長且引起腫瘤消退及腫瘤生長延遲。5.0mg/kg式Ib(每3天(q3d)經口投與,達4次)與100mg/kg吉西他濱之組合協同作用而大於單獨之式Ia或吉西他濱抑制活體內PC3-NCI人類原發性前列腺腫瘤生長且引起腫瘤消退及腫瘤生長延遲。10mg/kg式Ib(每3天(q3d)經口投與,達4次)與100mg/kg吉西他濱之組合協同作用而大於單獨之式Ia或吉西他濱抑制活體內PC3-NCI人類原發性前列腺腫瘤生長且引起腫瘤消退及腫瘤生長延遲。
圖52展示在第0天投與以下物質之具有NCI-H2122(K-ras)非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性裸鼠隨時間的平均腫瘤體積變化:6.3mg/kg之PD-0325901,每日經口,歷時21天;100mg/kg之式Ia(GDC-0941),每日經口,歷時21天;及以下組合:6.3mg/kg之PD-0325901(每日經口,歷時21天)與100mg/kg之式Ia(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。100mg/kg式Ia與6.3mg/kg PD-0325901之組合協同作用而大於單獨之式Ia或PD-0325901抑制活體內NCI-H2122(K-ras)NSCLC腫瘤生長且引起腫瘤消退。
在重現內源性組織微環境中之人類腫瘤進展之遺傳工程化小鼠模型(GEMM)中式I化合物與化療劑之組合療法有效於治療小細胞肺癌(SCLC)、非小細胞肺癌(NSCLC)及胰腺癌(PDAC)(Singh,M.及Johnson,L.(2006)Clin. Cancer Res. 12(18):5312-5328;US 2007/0292948,該兩文獻皆以引用的方式全部併入本文中)。來自此等實驗之驚人且出乎意料的結果可預示具有所選腫瘤類型及突變之某些患者群體對式I及式II化合物與化療劑之該組合療法之臨床反應。
在帶有通常見於患者群體之突變之SCLC模型(Meuwissen等人。(2003)Cancer Cell 4(3):181-189)中,如藉由microCT成像所評估,單獨式Ia化合物並不顯示對腫瘤生長之影響,但與對照組相比對存活率確實具有影響(顯著危險比率)。藉由microCT成像分析,當與對照組及各單一藥物相比時,給與式Ia化合物與mB20-4.1.1鼠類抗VEGF-A之組合的動物顯示腫瘤生長之顯著抑制及消退。與對照組相比,式Ia化合物與mB20-4.1鼠類抗VEGF-A之組合對總存活率亦具有統計學顯著的影響。與單一藥劑相比,給與式Ia化合物、卡鉑與mB20-4.1.1鼠類抗VEGF-A之三重組合的動物亦顯示可量測且持久的抗腫瘤反應。與單一藥劑相比,該三重組合顯著增加存活率,且與卡鉑與mB20-4.1鼠類抗VEGF-A二重組合相比,此三重方案中之式Ia化合物增強存活優勢。另外,當與對照組及各單一藥物相比時,此等組合方案顯著降低向區域淋巴結及肝臟轉移之發生率。
胰腺癌GEMM(Aguirre等人。(2003)Genes&Development 17:3112-3126)涵蓋患有此疾病之大多數患者中所見的突變。與對照處理之小鼠相比,此等小鼠當以式Ia化合物處理時顯示初始腫瘤生長下降(經由超音波得知)。然而,此反應並不持久且單一藥劑治療對此等小鼠之存活率具有適度(在統計學上不顯著)的影響。與此相反,式Ia與mB20-4.1.1鼠類抗VEGF-A之組合顯示顯著的腫瘤生長下降(經由超音波得知,與未經處理之小鼠及單一藥劑相比)以及對存活率之顯著影響。與單獨吉西他濱相比,在存在或不存在mB20-4.1.1鼠類抗VEGF-A之情況下,與吉西他濱之組合療法並未顯示在腫瘤生長抑制(經由超音波得知)或存活率方面顯著之改良。
在K-raS驅動之NSCLC GEMM(Johnson等人。(2001)Nature 410:1111-1116;Jackson等人。(2001) Genes&Development 15:3243-3248)中,與對照組相比,如藉由microCT成像所量測,單獨式Ia化合物治療最低限度地影響腫瘤生長,且對存活率無影響。與單一藥劑治療相比,以式Ia化合物組合埃羅替尼治療顯示適度的腫瘤生長抑制及存活優勢。與對照組相比,以式Ia化合物組合mB20-4.1.1鼠類抗VEGF-A治療引起腫瘤生長顯著下降及存活率增加,不過並未顯著大於mB20-4.1.1鼠類抗VEGF-A作為單一藥劑所觀察到之效應。與對照組相比,給與式Ia化合物、卡鉑與mB20-4.1.1鼠類抗VEGF-A之三重組合的動物在此模型中亦顯示可量測且持久的抗腫瘤反應,而且顯著影響存活率。
本發明之醫藥組合物或調配物包括式I或式II化合物、化療劑與一或多種醫藥學上可接受之載劑、助流劑、稀釋劑或賦形劑之組合。
本發明之式I或式II化合物及化療劑可以非溶劑合形式以及與諸如水、乙醇及其類似物之醫藥學上可接受之溶劑形成的溶劑合形式存在,且本發明意欲涵蓋溶劑合形式與非溶劑合形式兩者。
本發明之式I或式II化合物及化療劑亦可以不同互變異構形式存在且所有該等形式均涵蓋在本發明之範疇內。術語"互變異構體"或"互變異構形式"係指可經由低能量障壘互相轉化的不同能量之結構異構體。例如,質子互變異構體(亦稱為質子轉移互變異構體)包括經由質子遷移互相轉化,諸如酮-烯醇及亞胺-烯胺異構化。價鍵互變異構體包括藉由某些成鍵電子之改組互相轉化。
醫藥組合物涵蓋散裝組合物與個別劑量單位,其由一種以上(例如兩種)包括式I或式II化合物及選自本文所述之其他藥劑列表之化療劑的醫藥活性劑以及任何醫藥學惰性賦形劑、稀釋劑、載劑或助流劑組成。散裝組合物及各個別劑量單位可含有固定量之上述醫藥活性劑。散裝組合物為尚未形成個別劑量單位之物質。例示性劑量單位為口服劑量單位,諸如錠劑、丸劑、膠囊及其類似物。類似地,本文所述藉由投與本發明之醫藥組合物來治療患者之方法亦意欲涵蓋投與散裝組合物及個別劑量單位。
醫藥組合物亦涵蓋本發明之同位素標記化合物,其除了以下事實之外與彼等本文中所述之化合物一致:一或多個原子由具有不同於通常在自然界中所發現之原子質量或質量數之原子質量或質量數的原子所置換。如所指定之任何特定原子或元素之所有同位素涵蓋在本發明化合物及其用途之範疇內。可併入本發明化合物中之例示性同位素包括氫、碳、氮、氧、磷、硫、氟、氯及碘之同位素,諸如2
H、3
H、11
C、13
C、14
C、13
N、15
N、15
O、17
O、18
O、32
P、33
P、35
S、18
F、36
Cl、123
I及125
I。本發明之某些同位素標記化合物(例如彼等以3
H及14
C標記之化合物)適用於化合物及/或基質組織分布檢定。氚化(3
H)及碳14(14
C)同位素由於其易於製備及可偵測性而適用。此外,以諸如氘(亦即2
H)之較重同位素取代可提供某些由較大代謝穩定性(例如增加之活體內半衰期或降低之劑量要求)所產生之治療優勢且因此在一些情況下可為較佳的。諸如15
O、13
N、11
C及18
F之正電子發射同位素適用於正電子發射斷層攝影術(PET)研究以檢驗基質受體佔有率。通常可藉由按照類似於下文之流程及/或實例中所揭示之彼等程序的程序,藉由以同位素標記試劑取代非同位素標記試劑來製備本發明之同位素標記化合物。
根據適用於用於治療性治療(包括預防性治療)包括人類之哺乳動物的過度增生性病症之治療劑組合的標準醫藥實踐調配式I或式II化合物及化療劑。本發明提供一種包含式I或式II化合物與一或多種醫藥學上可接受之載劑、助流劑、稀釋劑或賦形劑之醫藥組合物。
適當載劑、稀釋劑及賦形劑為熟習此項技術者所熟知且包括諸如碳水化合物、蠟類、水溶性及/或可膨脹聚合物、親水性或疏水性材料、明膠、油類、溶劑、水及其類似物之材料。所用特定載劑、稀釋劑或賦形劑將取決於應用本發明化合物之方法及目的。通常基於由熟習此項技術者識別為對於向哺乳動物投與具安全性(GRAS)之溶劑來選擇溶劑。一般而言,安全溶劑為無毒性水性溶劑,諸如水及其他可溶或可混溶於水中之無毒性溶劑。適當水性溶劑包括水、乙醇、丙二醇、聚乙二醇(例如PEG 400、PEG 300)等及其混合物。調配物亦可包括一或多種緩衝劑、穩定劑、界面活性劑、濕潤劑、潤滑劑、乳化劑、懸浮劑、防腐劑、抗氧化劑、遮光劑、助流劑、加工助劑、著色劑、甜味劑、芳香劑、調味劑及其他已知添加劑以提供藥物(亦即本發明之化合物或其醫藥組合物)之一流表現或有助於醫藥產品(亦即藥劑)之製造。
可使用習知溶解及混合程序來製備調配物。舉例而言,在一或多種上述賦形劑之存在下將散裝藥物(亦即本發明之化合物或化合物之穩定形式(例如與環糊精衍生物或其他已知錯合劑形成之錯合物))溶解於適當溶劑中。通常,將本發明之化合物調配成醫藥劑型以提供藥物之可容易控制的劑量且使得患者順應所指定方案。
視用於投與藥物之方法而定,可以各種方法封裝供應用之醫藥組合物(或調配物)。通常,供分配用之物品包括內部以適當形式沈積醫藥調配物之容器。適當容器為熟習此項技術者所熟知且包括諸如瓶(塑料及玻璃)、藥囊、安瓿、塑料袋、金屬圓筒及其類似物之材料。容器亦可包括防干擾組件以防止不慎接觸封裝之內含物。另外,容器上沈積有描述容器之內含物之標籤。標籤亦可包括適當注意事項。
可針對各種投藥途徑及類型製備本發明之化合物之醫藥調配物。舉例而言,可以凍乾調配物、研磨粉末或水溶液形式,視情況將具有所需純度之式I或式II化合物與醫藥學上可接受之稀釋劑、載劑、賦形劑或穩定劑混合(Remington's Pharmaceutical Sciences(1995)第18版,MackPubl. Co.,Easton,PA)。可藉由在環境溫度下,在適當pH值下且在所需純度下與生理上可接受之載劑(亦即在所用劑量及濃度下對接受者無毒性之載劑)混合而進行調配。調配物之pH值主要取決於化合物之特定用途及濃度,但可在約3至約8範圍內。
醫藥調配物較佳為無菌的。尤其,欲用於活體內投藥之調配物必須為無菌的。該滅菌易於藉由經由無菌過濾膜過濾來實現。
醫藥調配物通常可作為固體組合物、凍乾調配物或作為水溶液加以儲存。
將以某一方式(亦即投藥量、濃度、時程、過程、媒劑及途徑符合良好醫療實踐),給與且投與本發明之醫藥調配物。就此而言考慮因素包括所治療之特定病症、所治療之特定哺乳動物、個別患者之臨床病狀、病症之原因、藥劑傳遞部位、投藥方法、投藥時程及醫師已知之其他因素。待投與化合物之"治療有效量"將取決於該等考慮因素且為防止、改善或治療凝血因子介導之病症所必需的最低量。該量較佳低於對宿主有毒或致使宿主對出血顯著更敏感之量。
作為一般建議,每劑量以口服或非經腸方式投與之式I或式II化合物的初始醫藥學上有效之量將在約0.01-1000mg/kg(亦即每日約0.1至20mg/kg患者體重)範圍內,其中所用化合物之典型初始範圍為0.3至15mg/kg/天。待投與之式I或式II化合物之劑量及化療劑之劑量各自可在每單位劑型約1mg至約1000mg或每單位劑型約10mg至約100mg範圍內。式I或式II化合物與化療劑之劑量可以約1:50至約50:1重量比或以約1:10至約10:1重量比投與。
可接受之稀釋劑、載劑、賦形劑及穩定劑在所用劑量及濃度下對接受者無毒性且包括緩衝劑,諸如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如十八基二甲基苄基氯化銨、氯化六羥季銨、氯苄烷銨、苄索氯銨、苯酚、丁基醇或苄基醇、對羥基苯甲酸烷酯(諸如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯)、兒茶酚、間苯二酚、環己醇、3-戊醇及間甲酚);低分子量(小於約10個殘基)多酞;蛋白質,諸如血清白蛋白、明膠或免疫球蛋白;親水聚合物,諸如聚乙烯吡咯啶;胺基酸,諸如甘胺酸、麩醯胺酸、天冬醯胺酸、組胺酸、精胺酸或離胺酸;單醣、二醣及其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,諸如EDTA;糖類,諸如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成鹽平衡離子,諸如鈉;金屬錯合物(例如Zn-蛋白質錯合物);及/或非離子界面活性劑,諸如TWEENTM
、PLURONICSTM
或聚乙二醇(PEG)。亦可將活性醫藥成份包埋於(例如)藉由凝聚技術或藉由界面聚合所製備之微膠囊(分別例如為羥甲基纖維素或明膠微膠囊及聚-(甲基丙烯酸甲酯)微膠囊)中;包埋於膠態藥物傳遞系統(例如脂質體、白蛋白微球體、微乳液、奈米粒子及奈米膠囊)中;或包埋於巨乳液中。該等技術係揭示於Remington's Pharmaceutical Sciences第18版,(1995)Mack Publ. Co.,Easton,PA中。
可製備式I及式II化合物之持續釋放製劑。持續釋放製劑之適當實例包括含有式I化合物之固體疏水性聚合物的半透性基質,該等基質呈成形物品之形式,例如薄膜或微膠囊。持續釋放基質之實例包括聚酯、水凝膠(例如,聚(2-羥乙基-甲基丙烯酸酯)或聚(乙烯醇))、聚丙交酯(US 3773919)、L-麩胺酸與γ-乙基-L-麩胺酸鹽之共聚物、不可降解之乙烯-乙酸乙烯酯、可降解之乳酸-乙醇酸共聚物(諸如LUPRON DEPOTTM
(由乳酸-乙醇酸共聚物及醋酸亮丙瑞林組成之可注射微球體))及聚-D-(-)3-羥基丁酸。
醫藥調配物包括彼等適合於本文中詳述之投藥途徑的調配物。調配物可便利地以單位劑型呈現且可藉由藥劑學技術中熟知之任何方法製備。技術及調配通常見於Remington's Pharmaceutical Sciences第18版。(1995)Mack Publishing Co.,Easton,PA。該等方法包括使活性成份與構成一或多種輔助成份之載劑結合之步驟。一般而言,藉由使活性成份與液態載劑或細粉狀固體載劑或兩者均勻且緊密結合並隨後(若有必要時)使產物成形來製備調配物。
可以諸如丸劑、硬或軟質(例如)明膠膠囊、扁囊劑、藥片、口含劑、水性或油性懸浮液、可分散粉末或顆粒、乳液、糖漿或酏劑(各自含有預定量之式I或式II化合物及/或化療劑)之離散單位形式製備適於經口投與之式I或式II化合物及/或化療劑之調配物。可將式I或式II化合物之量及化療劑之量以組合調配物形式調配於丸劑、膠囊、溶液或懸浮液中。或者,可將式I或式II化合物及化療劑獨立地調配於丸劑、膠囊、溶液或懸浮液中以供交替投與。
可根據此項技術中已知用於製造醫藥組合物之任何方法製備調配物,且該等組合物可含有一或多種包括甜味劑、調味劑、著色劑及防腐劑之試劑以提供可口製劑。可藉由在適當機器中壓縮呈自由流動形式(諸如粉末或顆粒形式)且視情況與黏合劑、潤滑劑、惰性稀釋劑、防腐劑、表面活性劑或分散劑混合之活性成份來製備壓製錠劑。模製錠劑可藉由在適當機器中使經惰性液體稀釋劑濕潤之粉狀活性成份的混合物成型來製備。錠劑可視情況被包衣或被刻痕且視情況加以調配以便由此提供活性成份之緩慢釋放或受控釋放。
本發明之醫藥調配物之錠劑賦形劑可包括:增加構成錠劑之粉狀藥物之總體積的填充劑(或稀釋劑);當攝取時促進錠劑分解為小片段(理想地為個別藥物顆粒)且促進藥物快速溶解及吸收的崩解劑;確保可形成具有所需機械強度之顆粒及錠劑且在被擠壓後使錠劑固持在一起、防止其在封裝、運輸及常規處理期間破裂為其組份粉末之黏合劑;在製備期間改善構成錠劑之粉末之流動性的助流劑;確保在製造期間製錠粉末不會黏附於用以壓製錠劑之設備的潤滑劑,其改善粉末混合物經由壓製機之流動且當成品錠劑自設備排出時最小化摩擦及破損;降低構成錠劑之粉末與在製造期間用以衝壓出錠劑形狀之機器之間的黏附力、其類似於助流劑之作用的抗黏附劑;併入錠劑中以為其提供更合意之口味或掩蔽令人不快之口味之調味劑;及有助於辨識及患者順應性之著色劑。
含有活性成份與無毒性醫藥學上可接受之賦形劑(其適用於製造錠劑)之混合物的錠劑為可接受的。此等賦形劑可為(例如)惰性稀釋劑,諸如碳酸鈣或碳酸鈉、乳糖、磷酸鈣或磷酸鈉;粒化劑及崩解劑,諸如玉米澱粉或海藻酸;黏合劑,諸如澱粉、明膠或阿拉伯膠;及潤滑劑,諸如硬脂酸鎂、硬脂酸或滑石。錠劑可未經包衣或可藉由包括微囊化之已知技術來包衣以延遲在胃腸道中之崩解及吸附且藉此提供較長時段內之持續作用。舉例而言,可單獨使用諸如單硬脂酸甘油酯或二硬脂酸甘油酯之時間延遲材料或者與蠟一起使用。
為了治療眼睛或其他外部組織(例如口及皮膚),較佳將調配物作為含有例如0.075至20w/w%之量的活性成份之局部軟膏或乳膏來應用。當調配成軟膏時,可將活性成份與石蠟或水可混溶軟膏基質一起使用。或者,可將活性成份與水包油乳膏基質一起調配成乳膏。
若需要時,乳膏基質之水相可包括多元醇,亦即具有兩個或兩個以上羥基之醇,諸如丙二醇、丁烷1,3-二醇、甘露糖醇、山梨糖醇、甘油及聚乙二醇(包括PEG 400)及其混合物。局部調配物可恰當地包括增強活性成份經由皮膚或其他受影響區域之吸收或穿透之化合物。該等皮膚穿透增強劑之實例包括二甲亞碸及相關類似物。
本發明之乳液之油相可由已知成份以已知方式構成,包括至少一種乳化劑與脂肪或油或與脂肪與油兩者之混合物。較佳地,包括親水性乳化劑以及充當穩定劑之親脂性乳化劑。同時,具有穩定劑或無穩定劑之乳化劑構成乳化蠟,且該蠟連同油及脂肪一起構成形成乳膏調配物之油性分散相的乳化軟膏基質。適用於本發明之調配物的乳化劑及乳液穩定劑包括Tween60、Span80、十六醇十八醇、苄基醇、十四烷醇、單硬脂酸甘油酯及月桂基硫酸鈉。
本發明之醫藥調配物之水性懸浮液含有活性材料與通用於製造水性懸浮液之賦形劑的混合物。該等賦形劑包括懸浮劑,諸如羧甲基纖維素鈉、交聯羧甲纖維素、聚乙烯吡咯酮、甲基纖維素、羥丙基甲基纖維素、海藻酸鈉、聚乙烯吡咯啶酮、黃蓄膠及阿拉伯膠;及分散劑或濕潤劑,諸如天然產生之磷脂(例如卵磷脂)、氧化烯與脂肪酸之縮合產物(例如聚氧乙烯硬脂酸酯)、氧化乙烯與長鏈脂族醇之縮合產物(例如十七伸乙基氧基十六醇)、氧化乙烯與源自脂肪酸及己糖醇酐之偏酯之縮合產物(例如聚氧化乙烯脫水山梨糖醇單油酸酯)。水性懸浮液亦可含有一或多種防腐劑(諸如對羥基苯甲酸乙酯或對羥基苯甲酸正丙酯)、一或多種著色劑、一或多種調味劑及一或多種甜味劑(諸如蔗糖或糖精)。
醫藥組合物可為無菌可注射製劑之形式,諸如無菌可注射水性或油性懸浮液。可根據已知技術使用上述之彼等適當分散劑或濕潤劑及懸浮劑調配該懸浮液。無菌可注射製劑可為於無毒性非經腸可接受之稀釋劑或溶劑中之溶液或懸浮液,諸如於1,3-丁二醇中之溶液,或由凍乾粉末製備。可採用之可接受之媒劑及溶劑為水、林格氏溶液及等滲氯化鈉溶液。此外,無菌不揮發性油類可習知被用作溶劑或懸浮介質。為達此目的,可使用任何溫和不揮發性油,包括合成之甘油單酯或甘油二酯。此外,諸如油酸之脂肪酸可同樣地用於製備注射劑。
可與載劑物質組合以產生單一劑型之活性成份的量將視所治療之主體及特定投藥方式而變化。舉例而言,意欲經口投與人類之延時釋放調配物可含有約1至1000mg與可自總組合物之約5至約95%(重量:重量)不等的適當且便利之量之載劑材料混合的活性材料。可製備醫藥組合物以為投藥提供可容易量測之量。舉例而言,意欲靜脈內輸注之水溶液可含有每毫升溶液約3至500μg之活性成份,以便可以約30mL/hr速率輸注適當體積。
適於非經腸投藥之調配物包括:水性及非水性無菌注射溶液,其可含有抗氧化劑、緩衝劑、抑菌劑及使調配物與預定接受者之血液等張的溶質;以及水性及非水性無菌懸浮液,其可包括懸浮劑及增稠劑。
適於局部投與眼睛之調配物亦包括滴眼劑,其中活性成份被溶解或懸浮於適用於該活性成份之載劑、尤其水性溶劑中。活性成份較佳係以約0.5至20w/w%(例如約0.5至10w/w%、例如約1.5w/w%)之濃度存在於該等調配物之中。
適於口中局部投藥之調配物包括:口含劑,其包含活性成份於通常為蔗糖及阿拉伯膠或黃耆膠之調味基質中;片劑,其包含活性成份於諸如明膠及甘油或蔗糖及阿拉伯膠之惰性基質中;及漱口劑,其包含活性成份於適當液體載劑中。
可以具有包含(例如)可可脂或水楊酸鹽之適當基質之栓劑形式提供用於直腸投與之調配物。
適於肺內或經鼻投與之調配物具有例如在0.1至500微米範圍內之粒徑(包括範圍介於0.1與500微米之間且微米增量為諸如0.5、1、30微米、35微米等的粒徑),其係藉由經由鼻通道快速吸入或藉由經由口吸入來投與以便達到肺泡囊。適當調配物包括活性成份之水性或油性溶液。適於氣溶膠或乾粉末投與之調配物可根據習知方法製備且可與諸如前文用於治療或預防如下所述之病症之化合物的其他治療劑一起傳遞。
可以除活性成份外含有如此項技術中已知為適當之載劑的子宮托、棉塞、乳膏、凝膠、膏狀物、泡沫或噴霧調配物形式提供適於陰道投藥之調配物。
調配物可封裝於例如密封安瓿及小瓶之單位劑量或多劑量容器中,且可儲存於冷凍乾燥(凍乾)條件下,對於剛要使用之前的注射而言,僅要求添加例如水之無菌液態載劑。自先前描述之種類之無菌粉末、顆粒及錠劑製備臨時注射溶液及懸浮液。較佳單位劑量調配物為如上文所述含有活性成份之日劑量或單位每日亞劑量或其適當部分的彼等者。
本發明進一步提供包含至少一種如上定義之活性成份與適於此之獸醫學載劑之獸醫學組合物。獸醫學載劑為適用於投與該組合物之目的之材料且可為固體、液體或氣態材料,其另外在獸醫學技術中為惰性或可接受的且與活性成份相容。可非經腸、經口或藉由任何其他所需途徑投與此等獸醫學組合物。
式I及式II化合物可與其他化療劑組合使用用於治療過度增生性疾病或病症,該疾病或病症包括腫瘤、癌症及贅生性組織以及惡化前及非贅生性或非惡性過度增生性病症。在某些實施例中,將式I或式II化合物與具有抗過度增生性特性或適用於治療過度增生性病症之第二化合物組合於醫藥組合調配物或作為組合療法之給藥方案中。醫藥組合調配物或給藥方案之第二化合物較佳具有與式I或式II化合物互補之活性,且因此其並不不利地影響彼此。可以對於預定目的有效之量投與該等化合物。在一實施例中,本發明之醫藥調配物包含式I或式II化合物或其立體異構體、幾何異構體、互變異構體、溶劑合物、代謝物或醫藥學上可接受之鹽,以及如本文所述之化療劑。在另一實施例中,藉由在每日兩次至每三週一次(q3wk)之範圍內投與治療有效量之具有式I或式II的化合物且在每日兩次至每三週一次之範圍內投與治療有效量之化療劑的給藥方案投與治療劑組合。
本發明之治療劑組合包括包含具有式I或式II之化合物及化療劑的產品,該化療劑係選自埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼;該產品在過度增生性病症之治療中呈適於獨立、同時或依次使用之組合製劑形式。
可以同時或依次方案投與組合療法。當依次投與時,可以兩次或更多次投與來投與組合。組合投藥包括使用獨立調配物或單一醫藥調配物之共同投藥及按任何一種順序之連續投藥,其中較佳當兩種(或所有)活性劑同時發揮其生物學活性時存在一定時段。
上述共同投與之藥劑中的任一者之適當劑量為目前使用之彼等劑量且可由於新近鑑別之藥劑與其他化療劑或治療之組合作用(協同作用)而有所降低,以便增加治療指數或減輕毒性或其他副作用或後果。
在抗癌療法之一特定實施例中,式I或式II化合物或其立體異構體、幾何異構體、互變異構體、溶劑合物、代謝物或醫藥學上可接受之鹽可與包括諸如彼等本文所述者之激素或抗體藥劑之化療劑組合,而且與手術療法及放射線療法組合。因此,本發明之組合療法包含投與至少一種式I或式II化合物或其立體異構體、幾何異構體、互變異構體、溶劑合物、代謝物或醫藥學上可接受之鹽,以及至少一種其他癌症治療方法之使用。應對式I或式II化合物及其他醫藥學活性化療劑之量及投藥之相對時序進行選擇以便實現所需組合治療效果。
可藉由任何適合於所治療之病狀的途徑投與本發明之化合物。適當途徑包括經口、非經腸(包括皮下、肌肉內、靜脈內、動脈內、吸入、皮內、鞘內、硬膜外及輸注技術)、經皮、經直腸、經鼻、局部(包括頰內及舌下)、經陰道、腹膜內、肺內及鼻內。局部投與亦可包括使用經皮投與,諸如經皮貼片或離子電滲裝置。藥物之調配係論述於Remington's Pharmaceutical Sciences,第18版,(1995)Mack Publishing Co.,Easton,PA中。藥物調配之其他實例可見於Liberman,H. A.及Lachman,L.,編,Pharmaceutical Dosage Forms,Marcel Decker,第3卷,第二版,NewYork,NY。對於局部免疫抑制治療,可藉由包括灌注或者在移植前使移植物與抑制劑接觸之病灶內投與來投與化合物。應瞭解,較佳途徑可隨(例如)接受者之病狀而變化。若經口投與化合物,則其可與醫藥學上可接受之載劑、助流劑或賦形劑一起調配成丸劑、膠囊、錠劑等。若非經腸投與化合物,則如下文所詳述,其可與醫藥學上可接受之非經腸媒劑或稀釋劑一起且以單位劑量可注射形式調配。
用於治療人類患者之劑量可在約10mg至約1000mg式I或式II化合物之範圍內。典型劑量可為約100mg至約300mg之化合物。視包括特定化合物之吸收、分布、新陳代謝及排泄之藥物動力學(PK)及藥效學(PD)特性而定,劑量可每天投與一次(QD)、每天投與兩次(BID)或更頻繁。另外,毒性因子可影響劑量及投藥給藥方案。當經口投與時,可每日兩次、每日一次或更低頻率地(諸如對於指定時段而言每週一次或每兩週或每三週一次)攝取丸劑、膠囊或錠劑。方案可重複若干個治療週期。
(1)式I或式II化合物與(2)化療劑之治療劑組合適用於治療包括(但不限於)特徵在於PI3激酶途徑活化之彼等者的疾病、病狀及/或病症。因此,本發明之另一態樣包括治療可藉由抑制包括PI3之脂質激酶而治療的疾病或病狀之方法。在一實施例中,該方法包含向有需要之哺乳動物投與治療有效量之式I或式II化合物或其立體異構體、幾何異構體、互變異構體、溶劑合物、代謝物或醫藥學上可接受之鹽。可使用(1)式I或式II化合物與(2)化療劑之治療劑組合治療過度增生性疾病或病症,包括腫瘤、癌症及贅生性組織以及惡化前及非贅生性或非惡性過度增生性病症。在一實施例中,以治療劑組合及醫藥學上可接受之載劑、佐劑或媒劑治療人類患者,其中該治療劑組合之式I或式II化合物或其代謝物以可偵測地抑制PI3激酶活性之量存在。
根據本發明之方法可治療的"癌症"包括(但不限於)乳癌、卵巢癌、子宮頸癌、前列腺癌、睾丸癌、泌尿生殖道癌、食道癌、喉癌、神經膠母細胞瘤、神經母細胞瘤、胃癌、皮膚癌、角化棘皮瘤、肺癌、表皮樣癌、大細胞癌、非小細胞肺癌(NSCLC)、小細胞癌、肺腺癌、骨癌、結腸癌、腺瘤、胰腺癌、腺癌、甲狀腺癌、濾泡癌、未分化癌、乳頭狀癌、精原細胞瘤、黑色素瘤、肉瘤、膀胱癌、肝癌及膽道癌、腎癌、骨髓病症、淋巴病症、毛細胞癌、頰腔癌及咽(口腔)癌、唇癌、舌癌、口腔癌、咽癌、小腸癌、結腸-直腸癌、大腸癌、直腸癌、大腦及中樞神經系統癌症、霍奇金症(Hodgkin)及白血病。
本發明之另一態樣提供一種適用於治療患有本文所述之疾病或病狀的哺乳動物(例如人類)之該疾病或病狀之醫藥組合物或治療劑組合。亦提供醫藥組合物用於製備用以治療患有本文所述之疾病及病狀的溫血動物(諸如哺乳動物,例如人類)之該疾病及病狀的藥劑之用途。
本文所述之式I及式II之活體內代謝產物亦屬於本發明之範疇。該等產物可(例如)由所投與化合物之氧化、還原、水解、醯胺化、脫醯胺化、酯化、脫酯、酶促裂解等產生。因此,本發明包括式I及式II化合物之代謝物,包括藉由包含使本發明之化合物與哺乳動物接觸一段足以產生其代謝產物之時間的方法產生之化合物。
通常藉由製備本發明之經放射性同位素(例如14
C或3
H)標記的化合物,以可偵測劑量(例如大於約0.5mg/kg)將其非經腸投與諸如大鼠、小鼠、豚鼠、猴或人類之動物,使有充分的時間進行新陳代謝(通常約30秒至30小時)且自尿、血液或其他生物試樣分離其轉化產物,從而鑑別代謝物產物。由於經標記,因此此等產物易於分離(藉由使用能夠結合代謝物中殘存之抗原決定基的抗體來分離其他產物)。以習知方式,例如藉由MS、LC/MS或NMR分析確定代謝物結構。通常,以與熟習此項技術者所熟知之習知藥物代謝研究相同之方式進行代謝物分析。代謝物產物適用於本發明化合物之治療性給藥的診斷檢定,其限制條件為其並不以別的方式見於活體內。
在本發明之另一實施例中,提供一種含有適用於治療上述疾病及病症的式I及式II化合物之製品或"套組"。在一實施例中,套組包含一包含式I化合物或其立體異構體、幾何異構體、互變異構體、溶劑合物、代謝物或醫藥學上可接受之鹽的容器。套組可進一步在容器上或與容器相聯包含標籤或包裝插頁。術語"包裝插頁"係用於指通常包括在治療劑產品之商業包裝中之用法說明書,其含有關於使用該等治療劑產品的有關適應症、用法、劑量、投藥、禁忌症及/或注意事項之資訊。適當容器包括(例如)瓶、小瓶、注射器、發泡包裝等。容器可由諸如玻璃或塑料之各種材料形成。容器可容納有效於治療病狀之式I或式II化合物或其調配物且可具有無菌入口孔(例如,容器可為具有可為皮下注射針所刺穿之塞子的靜脈內溶液袋或小瓶)。組合物中之至少一種活性劑為式I或式II化合物。標籤或包裝插頁指示該組合物用於治療所選病狀,諸如癌症。在一實施例中,標籤或包裝插頁指示包含式I或式II化合物之組合物可用於治療由異常細胞生長引起之病症。標籤或包裝插頁亦可指示組合物可用於治療其他病症。或者或另外,製品可進一步包含一包含醫藥學上可接受之緩衝液(諸如抑菌注射用水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液(Ringer's solution)及右旋糖溶液)的第二容器。其可進一步包括自商業及使用者觀點出發所需之其他材料,包括其他緩衝液、稀釋劑、過濾器、針及注射器。
套組可進一步包含關於投與式I或式II化合物及(若存在時)第二醫藥調配物之指示。舉例而言,若套組包含包括式I或式II化合物之第一組合物及第二醫藥調配物,則該套組可進一步包含關於將第一及第二醫藥組合物同時、依次或獨立投與有需要之患者的指示。
在另一實施例中,套組適用於傳遞式I或式II化合物之固體口服形式,諸如錠劑或膠囊。此類套組較佳包括若干單位劑量。該等套組可包括使劑量以其預期使用順序定向之卡片。此類套組之實例為"發泡包裝"。發泡包裝為封裝工業所熟知且廣泛用於封裝醫藥單位劑型。若需要,則可例如以數字、字母或其他標示之形式或以日曆插頁(其指示可投與劑量之治療時程之天數)提供記憶輔助。
根據一實施例,套組可包含(a)一含有式I或式II化合物之第一容器;及(視情況)(b)一含有第二醫藥調配物之第二容器,其中該第二醫藥調配物包含具有抗過度增生性活性之第二化合物。或者或另外,該套組可進一步包含一包含醫藥學上可接受之緩衝液(諸如抑菌注射用水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液及右旋糖溶液)的第三容器。其可進一步包括自商業及使用者觀點出發所需之其他材料,包括其他緩衝液、稀釋劑、過濾器、針及注射器。
若套組包含式I或式II化合物及第二治療劑(亦即化療劑)之組合物,則套組可包含一用於容納獨立組合物之容器,諸如分隔瓶或分隔箔包裝,然而該等獨立組合物亦可包含於單一、未分隔容器內。通常,套組包含關於投與獨立組份之指示。當較佳以不同劑型(例如經口及非經腸)投與,以不同劑量間隔投與獨立組份時,或當組合之個別組份之滴定為處方醫師所需時,套組形式尤其有利。
鈴木型偶合反應適用於將稠合雙環雜環或雜芳基連接於嘧啶環之2位處(參見流程4)。通常,經取代之2-氯-4-嗎啉基噻吩并[3,2-d
]嘧啶5
或經取代之2-氯-4-嗎啉基噻吩并[2,3-d
]嘧啶6
可與1.5當量之4-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)1H-吲唑7
組合且溶解於3當量之呈1莫耳濃度水溶液形式的碳酸鈉及等體積之乙腈中。添加催化量或更多低價鈀試劑,諸如雙(三苯膦)二氯化鈀(II)。可使用各種酉朋酸或酸酯替代所指吲唑酸酯。又或者,可(例如)以四氫哌喃基保護吲唑之氮。參見化合物40
。在某些情況下,使用乙酸鉀替代碳酸鈉以調整水層之pH值。接著在壓力下在Biotage Optimizer微波反應器(Biotage,Inc)中,將反應物加熱至約140-150℃,歷時10至30分鐘。以乙酸乙酯或另一有機溶劑萃取內含物。在蒸發有機層之後,可用矽石或藉由逆相HPLC純化產物8
或9
。
鈴木型偶合反應適用於將單環雜芳基連接於嘧啶環之2位處(參見流程4)。通常,經取代之2-氯-4-嗎啉基噻吩并[3,2-d
]嘧啶5
或經取代之2-氯-4-嗎啉基噻吩并[2,3-d
]嘧啶6
可與1.5當量之5-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)嘧啶-2-胺7a
組合且溶解於3當量之呈1莫耳濃度水溶液形式的碳酸鈉或碳酸鉀及等體積之乙腈中。添加催化量或更多低價鈀試劑,諸如雙(三苯膦)二氯化鈀(II)。可使用各種酸或酸酯替代所指頻哪醇酸酯。又或者,可(例如)以四氫哌喃基保護嘧啶-2-胺之氮。在某些情況下,使用乙酸鉀替代碳酸鈉以調整水層之pH值。接著在壓力下在Biotage Optimizer微波反應器(Biotage,Inc)中,將反應物加熱(例如)至約100-150℃,歷時10至30分鐘。以乙酸乙酯或另一有機溶劑萃取內含物。在蒸發有機層之後,可用矽石或藉由逆相HPLC純化產物8a
或9a
。
以DMF中之1.5當量HATU、3當量烷基胺及3當量DIPEA處理2-(1H
-吲唑-4-基)-4-嗎啉基噻吩并[3,2-d
]嘧啶-6-甲酸13
或2-(1H
-吲唑-4-基)-4-嗎啉基噻吩并[2,3-d
]嘧啶-6-甲酸14
至約0.1M濃度。攪拌反應物直至反應完成且在乙酸乙酯中以飽和碳酸氫鹽溶液萃取一次。將有機層乾燥,過濾且濃縮以產生粗中間物。經由逆相HPLC純化此中間物以產生產物15
或16
。
以DMF中之1.5當量HATU、3當量烷基胺(R-NH2
)及3當量DIPEA處理4-嗎啉基-2-(吡啶-3-基)噻吩并[3,2-d]嘧啶-6-甲酸13a或4-嗎啉基-2-(吡啶-3-基)噻吩并[2,3-d]嘧啶-6-甲酸14a至約0.1M濃度。攪拌反應物直至反應完成且在乙酸乙酯中以飽和碳酸氫鹽溶液萃取一次。將有機層乾燥,過濾且濃縮以產生粗中間物。經由逆相HPLC純化此中間物以產生產物15a或16a。
以DMF中之1.5當量HATU、3當量羧酸(RCO2
H)及3當量DIPEA處理2-氯-4-嗎啉基-6-((哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶或2-氯-4-嗎啉基-6-((哌嗪-1-基)甲基)噻吩并[2,3-d]嘧啶至約0.1M濃度。攪拌反應物直至反應完成且在乙酸乙酯中以飽和碳酸氫鹽溶液萃取一次。將有機層乾燥,過濾且濃縮以產生粗中間物。
在二氯乙烷中將2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-甲醛10或2-氯-4-嗎啉基噻吩并[2,3-d]嘧啶-6-甲醛33溶解至0.2M濃度。向此溶液中添加1.5至2.0當量胺(R1
R2
NH)、10當量原甲酸三甲酯及1當量乙酸。使該混合物攪拌2-6小時,隨後添加1.5當量三乙醯氧基氫硼化鈉。在攪拌12至16小時後,將反應物傾入飽和碳酸氫鈉中且以乙酸乙酯萃取數次以提供還原胺化中間物,將其用矽膠純化或以粗產物形式用於後續反應。
使2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-磺醯基氯17懸浮於1mL DCM中,隨後添加2當量胺及3當量DIPEA。藉由LCMS監控反應直至完成。將粗反應混合物以乙酸乙酯稀釋,以飽和氯化銨萃取且以乙酸乙酯反萃取一次。將有機層組合且濃縮至無水。在後續鈴木偶合中直接使用粗磺醯胺中間物18。
使2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶4在THF中懸浮至0.2莫耳濃度且在乾冰/乙腈浴中冷卻至-50℃,隨後添加2當量之於己烷中之2.5MnBuLi。15min後,將3.0莫耳當量之環狀或非環狀酮添加至該溶液中。將反應物在-50℃下持續攪拌1h且隨後在大多數情況下使其達到0℃。當藉由TLC或質譜得知反應完成時,將其於飽和氯化銨溶液中中止且以EtOAc萃取兩次。將有機層濃縮且作為粗混合物使用,用矽石純化或可將產物12溶解於最小量之乙腈中且過濾以移除剩餘起始材料4。
在存在或不存在二氯甲烷作為共溶劑之情況下,將10當量或10當量以上之於二噁烷中的4 N HC1添加至起始材料中(以上所示之通用流程,但亦使用相似支架)。有時需要加熱至40℃,歷時數小時以移除Boc基。將反應物濃縮至無水且可以粗產物形式用於後續反應。
在密封微波反應器中將1 M Na2
CO3
水溶液(3當量)及乙腈(3當量)中之2-氯-6-碘-4-嗎啉基噻吩并[3,2-d]嘧啶19(1當量)、苯基酸或雜環酸(R1
-B(OH)2
,1.1當量)及雙(三苯膦)二氯化鈀(II)(0.1當量)加熱至100℃,歷時10至40分鐘,以提供5。完成後,將4-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)-1H-吲唑7(1.3當量)及雙(三苯膦)二氯化鈀(II)(0.1當量)添加於同一釜中。在密封微波反應器中,將反應混合物加熱至150℃,歷時10至15min。以乙酸乙酯(3×5mL)萃取混合物。濃縮所組合有機層以產生粗8。
攪拌二氯甲烷中之2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-胺22(1當量)、酸氯化物(1.5-2當量)及三乙胺(2當量)。藉由LC/MS監控反應直至完成。蒸發混合物以提供粗醯胺23,其無需純化即直接用於下一步驟反應。
向冷卻至0℃之1-(2-氯-4-嗎啉基噻吩并[2,3-d]嘧啶-6-基)-N-甲基甲胺於DCM中之0.25至0.40M溶液中添加1.5當量TEA,接著逐滴添加1.0至1.5當量烷基或芳基酸氯化物或磺醯基氯,在DCM中稀釋。在環境溫度下攪拌反應物且藉由LCMS監控完成度。完成後,反應物體積隨DCM而增加,且向該溶液中添加稀碳酸氫鈉水溶液。分離有機層與水層。最終,將有機層以鹽水洗滌且乾燥(MgSO4
)。在真空中濃縮所乾燥之有機溶液且若需要時藉由矽石層析純化產物。
在室溫下攪拌DMF中之3-(2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)苯胺24(1當量)、甲酸(1.5當量)、1-羥基-7-氮雜苯并三唑(0.2當量)、O-(7-氮雜苯并三唑-1-基)-N,N,N',N',N'-四甲基金尿六氟磷酸鹽(HATU,1.5當量)及N,N-二異丙基乙胺(2.5當量)。藉由LC/MS監控反應直至完成。將反應混合物以乙酸乙酯稀釋,以飽和碳酸氫鈉及鹽水洗滌。將有機層經MgSO4
乾燥,過濾且蒸發以產生醯胺產物25。
向2-氯-6-碘-4-嗎啉基噻吩并[3,2-d]嘧啶19(0.05g,0.13mmol)於DMF(1.00mL)中之溶液中添加適當苯胺(200mol%)、Cs2
CO3
(50mol%)、Pd2
(dba)3
(5mol%)及XANTPHOS(10mol%)。在壓力下於Biotage Optimizer微波反應器中將反應物加熱至110℃,歷時30min。在真空中濃縮所得溶液以在遵循通用程序A之後產生26。
向(2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲胺27(50mg,0.2mmol)於CH2
Cl2
(4mL)中之溶液中添加Et3N(84μL,0.6mmol)及適當酸氯化物或其HC1鹽(0.3mmol)。將反應物在室溫下攪拌18-48小時,隨後以水中止。以EtOAc萃取水層。將所組合有機物經Na2
SO4
乾燥,且在真空中濃縮。根據通用程序A使2-氯粗產物與酉朋酸酯試劑7及鈀催化劑偶合以產生28,將其藉由逆相HPLC純化來純化。
或者,向(2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲胺27(111mg,0.39mmol)於DMF(5mL)中之溶液中添加2,6-二甲基吡啶(48.2μL,0.41mmol)及適當酸氯化物或其HC1鹽(0.39mmol)。將反應物在室溫下攪拌18-72小時,隨後以水中止。以EtOAc萃取水層。將所組合有機物經MgSO4乾燥,且在真空中濃縮。根據通用程序A使2-氯粗產物與酸酯試劑7及鈀催化劑偶合以產生20mg28,將其藉由逆相HPLC純化來純化。
將2-氯-6-(6-氟吡啶-3-基)-4-嗎啉基噻吩并[3,2-d]嘧啶或2-氯-6-(6-氟吡啶-3-基)-4-嗎啉基噻吩并[2,3-d]嘧啶化合物、約4當量之第一或第二胺(R=H、C1
-C12
烷基、C2
-C8
烯基、C2
-C8
炔基、C3
-C12
碳環基、C2
-C20
雜環基、C6
-C20
芳基或C1
-C20
雜芳基)與約2當量於N-甲基吡咯啶中之二異丙基乙胺(約0.1M)之混合物在密封微波反應器中加熱至約130-140℃,歷時10-40分鐘,接著在高真空下移除揮發物。藉由急驟層析純化粗混合物以提供中間物2-氯-6-(6-胺基吡啶-3-基)-4-嗎啉基噻吩并[3,2-d]嘧啶或2-氯-6-(6-胺基吡啶-3-基)-4-嗎啉基噻吩并[2,3-d]嘧啶化合物,其可按照通用程序A與單環雜芳基、稠合雙環雜環或雜芳基酸酯試劑發生鈴木偶合。
為了說明本發明,包括以下實例。然而,應瞭解此等實例並不限制本發明且僅意欲表明實施本發明之方法。熟習此項技術者應認識到,可容易地改變所述化學反應以製備本發明之許多其他PI3K抑制劑,且認為用於製備本發明化合物之替代性方法屬於本發明之範疇內。舉例而言,可藉由為熟習此項技術者所顯而易見之修改,例如藉由適當地保護干擾基團,藉由使用此項技術中已知之除彼等所述者以外的其他適當試劑,及/或藉由對反應條件作出常規修改,成功地執行本發明之非例示性化合物的合成。或者,應認為本文中所揭示或此項技術中已知之其他反應對於製備本發明之其他化合物而言具有適用性。
在190℃下將3-胺基-2-噻吩甲酸甲酯1(13.48g,85.85mmol)與尿素(29.75g,5當量)之混合物加熱2小時。將熱反應混合物傾於氫氧化鈉溶液上且藉由過濾移除任何不溶性材料。接著酸化(HCl,2 N)混合物以產生呈白色沈澱狀之1H-噻吩并[3,2-d]嘧啶-2,4-二酮2,藉由過濾收集沈澱且使之風乾(9.49g,66%)。1
H NMR(400MHz,d6
-DMSO)6.90(1H,d,J=5.2Hz),8.10(1H,d,J=5.2Hz),11.60-11.10(2H,br s)。
將1H-噻吩并[3,2-d]嘧啶-2,4-二酮2(9.49g,56.49mmol)與磷醯氯(150mL)之混合物在回流下加熱6h。接著,在劇烈攪拌下將反應混合物冷卻且傾於冰/水上,產生沈澱。接著過濾混合物以產生呈白色固體狀之2,4-二氯-噻吩并[3,2-d]嘧啶3(8.68g,75%)。1
H NMR(400MHz,CDCl3
)7.56(1H,d,J=5.5Hz),8.13(1H,d,J=5.5Hz)。
將2,4-二氯-噻吩并[3,2-d]嘧啶3(8.68g,42.34mmol)、嗎啉(8.11mL,2.2當量)與MeOH(150mL)之混合物在室溫下攪拌1h。接著,將反應混合物過濾,以水及MeOH洗滌以產生呈白色固體狀之2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶4(11.04g,100%)。1
H NMR(400 MHz,d6
-DMSO)3.74(4H,t,J=4.9Hz),3.90(4H,t,J=4.9Hz),7.40(1H,d,J=5.6Hz),8.30(1H,d,J=5.6Hz)。
在-78℃下,向2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶4(1.75g,6.85mmol)於無水THF(40mL)中之懸浮液中添加正丁基鋰(nBuLi)於己烷中之2.5M溶液(3.3mL,1.2當量)。攪拌1h後,添加無水DMF(796μL,1.5當量)。將反應混合物在-78℃下攪拌1h且隨後緩慢加熱至室溫。在室溫下另外2h後,將反應混合物傾於冰/水上,產生黃色沈澱。藉由過濾收集此沈澱且使之風乾以產生2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-甲醛10(1.50g,77%)。1
H NMR(400MHz,d6
-DMSO)3.76(4H,t,J=4.9),3.95(4H,t,J=4.9),8.28(1H,S),10.20(1H,S)。
在-78℃下,向2-氯-4-嗎啉基噻吩并[2,3-d]嘧啶38(1.75g,6.85mmol)於無水THF(40mL)中之懸浮液中添加正丁基鋰(nBuLi)於己烷中之2.5M溶液(3.3mL,1.2當量)。攪拌1h後,添加無水DMF(796μL,1.5當量)。將反應混合物在-78℃下攪拌1h且隨後緩慢加熱至室溫。在室溫下另外2h後,將反應混合物傾於冰/水上,產生黃色沈澱,藉由過濾收集沈澱且使之風乾以產生2-氯-4-嗎啉基噻吩并[2,3-d]嘧啶-6-甲醛33(1.50g)。MS(Q1)284(M+)。
在-78℃下,向2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶39(3.0g,11.1mmol;根據用於合成2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶之程序但以3-胺基-4-甲基-噻吩-2-甲酸乙酯開始來製備)於THF(60mL)中之溶液中添加n-Buli(8.9mL,Et2
O中2.5M)。將所得漿料加熱至-40℃且攪拌50min。接著,將反應混合物冷卻至-78℃且添加I2
(5.6g,22.2mmol)於THF(30mL)中之溶液。將溶液加熱至室溫且攪拌5h。藉由添加水中止反應。將有機層分離且以CH2
Cl2
萃取水層。將所組合有機物以飽和Na2
S2
O3
水溶液洗滌,經Na2
SO4
乾燥,過濾且在真空中濃縮以提供2-氯-6-碘-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶41(3.8g,產率84%)。
在室溫下,將2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-甲醛10(3.5g)、1-BOC-哌嗪(2.76g)與原甲酸三甲酯(4.05mL)之混合物在1,2-二氯乙烷(300mL)中攪拌1小時。向此添加三乙醯氧基氫硼化鈉(3.92g)且在室溫下將反應混合物攪拌24小時。接著,將混合物以鹽水中止,以二氯甲烷萃取,乾燥(MgSO4
)且在真空中移除溶劑。使用急驟層析純化殘餘物以產生4-(2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-基甲基)-哌嗪-1-甲酸第三丁酯(3.4g)。在二氯甲烷/甲醇中以HC1處理產生4-(2-氯-6-(哌嗪-1-基甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉30。
向於50mL甲苯及50mL THF中之2-氯-4-嗎啉基噻吩并[2,3-d]嘧啶-6-甲醛33(2.0g)中添加20mL於H2
O中之40%甲胺。在室溫下在N2
下將反應混合物攪拌24小時。在真空中移除溶劑且將
殘餘物溶解於50mL MeOH及50mL THF中,且逐份添加NaBH4
。將此反應混合物在室溫下在N2
下攪拌24小時,且藉由LCMS證實反應完成。在真空中移除溶劑且藉由急驟層析(EtOAc/EtOH)純化粗產物以產生1.12g34(產率53%)。MS(Q1)300(M+)。
將2-氯-4-嗎啉基噻吩并[3,2-d]嘧啶-6-甲醛10(2.0g)溶解於50mL甲苯及50mLTHF中,接著添加20mL於H2
O中之40%甲胺。在室溫下在N2
下將反應混合物攪拌24小時。在真空中移除溶劑且將殘餘物溶解於50mL甲醇及50mLTHF中,且逐份添加NaBH4
。將此反應混合物在室溫下在N2
下攪拌24小時,且藉由LCMS證實反應完成。在真空中移除溶劑且藉由急驟層析(EtOAc/EtOH)純化粗產物以產生1.12g35(產率53%)。MS(Q1)300(M+)。
將2-氯-7-甲基-4-嗎啉基噻吩并-[3,2-d]嘧啶-6-甲醛36溶解於20mL甲苯及20mLTHF中,接著添加15mL於H2
O中之40%甲胺且將反應物攪拌24小時。在真空中濃縮反應混合物且將殘餘物溶解於30mL甲醇及30mLTHF中,接著添加Na
BH4
。將反應物在室溫下攪拌至少24小時且藉由LCMS證實產物形成。在真空中移除溶劑且藉由急驟層析純化粗產物以產生2.53g(2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)-N-甲基甲胺37(產率70%)。MS(Q1)314(M)+。
N-BOC-哌嗪與甲烷磺醯基氯在二氯甲烷及三乙胺中之反應產生4-甲烷磺醯基-哌嗪-1-甲酸第三丁酯。使用二氯甲烷中之HCl(2M)使BOC保護基裂解,從而產生1-甲烷磺醯基-哌嗪HCl鹽。
在室溫下,將2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-甲醛10(1.00g)、1-甲烷磺醯基-哌嗪(750mg)與原甲酸三甲酯(3.80mL)之混合物在1,2-二氯乙烷(30mL)中攪拌6小時。向此添加三乙醯氧基氫硼化鈉(900mg)且在室溫下將反應混合物攪拌24小時。接著,將混合物以鹽水中止,以二氯甲烷萃取,乾燥(MgSO4
)且在真空中移除溶劑。將殘餘物以熱乙酸乙酯濕磨以產生呈白色固體狀之4-(2-氯-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉31(1.01g)。
使用通用程序C使1-甲烷磺醯基-哌嗪HCL鹽與2-氯-4-嗎啉-4-基-噻吩并[2,3-d]嘧啶-6-甲醛33之間反應產生2-氯-6-(4-甲烷磺醯基-哌嗪-1-基甲基)-4-嗎啉-4-基-噻吩并[2,3-d]嘧啶。
根據US 2008/0076768、US 2008/0076758、WO 2006/046031之方法製備中間物7,將該等專利以引用的方式併入本文中。
根據US 2008/0039459、US 2008/0076768、US2008/0076758、WO2006/046031之方法製備中間物40,將該等專利以引用的方式併入本文中。
使2-氯-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-甲醛10(100mg,0.35mmol)、4-(4,4,5,5-四甲基-[1,3,2]二氧硼-2-基)-1H-吲唑(70)(95mg,0.39mmol)與碳酸鈉(112mg)之混合物懸浮於甲苯(2.5mL)、乙醇(1.5mL)及水(0.7mL)中。向此添加雙(三苯膦)氯化鈀(II)(13.5mg)且以氬氣沖洗反應容器。將反應混合物在120℃下微波處理1h且隨後於DCM與水之間分溶,以鹽水洗滌有機層,經硫酸鎂乾燥,過濾且在真空中蒸發。使用急驟層析純化所得殘餘物以產生2-(1H-吲唑-4-基)-4-嗎啉-4-基-噻吩并[3,2-d]嘧啶-6-甲醛11(97mg)。
在微波中將實例4之4-(2-氯-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉31(2.00g)、4-(4,4,5,5-四甲基-[1,3,2]二氧硼-2-基)-1H-吲唑7(2.26g)、甲苯(24mL)、乙醇(12mL)、水(6mL)、碳酸鈉(1.72g)與PdCl2
(PPh3
)2
(325mg)之混合物加熱至130℃,歷時90分鐘(US 2008/0076768;WO 2006/046031,將其以引用的方式併入本文中)。
將反應混合物冷卻,以氯仿稀釋,以鹽水洗滌,乾燥(MgSO4
)且在真空中移除溶劑。使用急驟層析(乙酸乙酯,接著5%乙酸乙酯/甲醇)純化殘餘物且隨後以乙醚濕磨產生式Ia化合物GDC-0941(1.4g)。MS資料:(ESI+):MH+514。NMR資料:(CDCl3
):2.67-2.71(4H,m),2.81(3H,s),3.29-3.33(4H,m),3.89(2H,s),3.89-3.93(4H,m),4.08-4.12(4H,m),7.41(1H,s),7.51(1H,t,J=7.2),7.60(1H,d,J=8.3),8.28(1H,d,J=7.5),9.02(1H,s),10.10(1H,br)。
經由通用程序A使實例5之2-氯-6-(4-甲烷磺醯基-哌嗪-1-基甲基)-4-嗎啉-4-基-噻吩并[2,3-d]嘧啶32與4-(4,4,5,5-四甲基-[1,3,2]二氧硼-2-基)-1H-吲唑7反應以產生式IIa化合物,使用急驟層析純化(US 2008/0076758;WO 2006/046031,將其以引用的方式併入本文中)。400MHz1
HNMR CDC13
:2.67(m,4H,2×CH2),2.81(s,3H,CH3),3.30(m,4H,2×CH2),3.83(s,2H,CH2),3.92-3.94(m,4H,2×CH2),3.98-4.00(m,4H,2×CH2),7.17(s,H,ArH),7.50(t,H,ArH,J=7.81Hz),7.59(d,H,ArH,J=8.31Hz),8.31(d,H,ArH,J=6.98Hz),10.12(Sbr,H,NH)。 MH+=514.10。
經由通用程序B-3使2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-甲醛36(495mg)與Boc-哌嗪反應以產生4-((2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-甲酸第三丁酯。
使4-((2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-甲酸第三丁酯(777mg)經受通用程序E以產生2-氯-7-甲基-4-嗎啉基-6-((哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶之HCl鹽。經由通用程序B-2使2-氯-7-甲基-4-嗎啉基-6-((哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶之HCl鹽(590mg)與乳酸反應以產生(S)-1-(4-((2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮。
經由通用程序A-2使(S)-1-(4-((2-氯-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮(60mg)與50mg 5-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)嘧啶-2-胺反應以產生10毫克式Ib(WO 2008/070740,將其以引用的方式併入本文中)。MS(Q1)499.3(M)+。
結合檢定:用Analyst HT 96-384(Molecular Devices Corp,Sunnyvale,CA.)執行初始偏振實驗。藉由添加起始於偏振緩衝液(10mM Tris pH 7.5、50 mM NaCl、4 mMMgCl2
、0.05% Chaps及1 mM DTT)中20μg/ml最終濃度之p110α PI3K(Upstate Cell Signaling Solutions,Charlottesville,VA)之1:3連續稀釋液至10 mM PIP2
(Echelon-Inc.,Salt Lake City,UT)最終濃度中來製備用於螢光偏振親和力量測之樣品。在室溫下培育30分鐘後,藉由添加GRP-1及PIP3-TAMRA探針(Echelon-Inc.,Salt Lake City,UT)(最終濃度分別為100nM及5nM)來終止反應。以標準截止濾波器在384孔黑色低容量Proxiplates(PerkinElmer,Wellesley,MA)中針對若丹明(rhodamine)螢光團(λex=530nm;λem=590nm)讀數。將螢光偏振值作為蛋白質濃度之函數作圖,且藉由使用KaleidaGraph軟體(Synergy software,Reading,PA)將資料擬合成4參數方程式而獲得EC50
值。此實驗亦確定用於後續抑制劑競爭實驗之適當蛋白質濃度。
藉由添加0.04mg/mL p110α PI3K(最終濃度)與PIP2
(10mM最終濃度)至含有於偏振緩衝液中最終濃度為25mMATP(Cell Signaling Technology,Inc.,Danvers,MA)之拮抗劑的1:3連續稀釋液之孔中來測定抑制劑IC50
值。在室溫下培育30分鐘後,藉由添加GRP-1及PIP3-TAMRA探針(Echelon-Inc.,Salt Lake City,UT)(最終濃度分別為100nM及5nM)來終止反應。以標準截止濾波器在384孔黑色低容量proxi平板(PerkinElmer,Wellesley,MA)中針對若丹明螢光團(λex=530nm;λem=590nm)讀數。將螢光偏振值作為拮抗劑濃度之函數作圖,且藉由用Assay Explorer軟體(MDL,San Ramon,CA)將資料擬合成4參數方程式而獲得IC50
值。
或者,在輻射測量檢定中使用純化重組酶及ATP(濃度為1μM)測定PI3K之抑制。將化合物連續稀釋於100% DMSO中。將激酶反應物在室溫下培育1小時且藉由添加PBS來終止反應。隨後使用S形劑量-反應曲線擬合(可變斜率)來確定IC50
值。
藉由細胞增生檢定採用以下方案量測式I或式II化合物之功效(Promega Corp. Technical Bulletin TB288;Mendoza等人。(2002)Cancer Res. 62:5485-5488)。Cell-Titer Glo檢定試劑及方案係可購得的(Promega)。該檢定評估化合物進入細胞且抑制細胞增生之能力。檢定原理為藉由定量所存在之ATP來測定所存在之活細胞之數目。Cell-Titer Glo為用於此定量之試劑。該檢定為均質檢定,其中添加Cell-Titer Glo引起細胞溶解且經由螢光素酶反應產生發光信號。發光信號與所存在之ATP之量成正比。
細胞:細胞株及腫瘤類型參見圖1A-C
DMSO及培養基平板:Nunc之96孔錐形底聚丙烯平板(目錄號:249946)
細胞平板:來自Falcon的具有蓋之384孔黑色透明底(微透明)TC平板(353962)
細胞培養基:RPMI或DMEM高葡萄糖、10%胎牛血清、2mM L-麩醯胺酸、P/S
Cell Titer-Glo:Promega(目錄號:G7572)
程序:
第1天-接種細胞平板,收集細胞,將PC3細胞以每孔每54μl 1000個細胞接種於384孔細胞平板中以供3天檢定。在37℃、5% CO2
下培育O/N。
第2天-將藥物添加至細胞、化合物稀釋、DMSO平板(9個點連續1:2)。將20μl化合物以10mM添加於96孔平板之第二行中。使用Precision跨過平板進行總計9個點之連續1:2稀釋(10μl+10μl 100%DMSO)。培養基平板(1:50稀釋)。將147μl培養基添加於所有孔中。使用Rapidplate,將3μl DMSO+化合物自DMSO平板之各孔轉移入培養基平板上之各對應孔。對於2種藥物組合研究,使用Rapidplate將一種藥物1.5μl DMSO+化合物自DMSO平板中之各孔轉移至培養基平板上之各對應孔。接著,將另一藥物1.5μl轉移至培養基平板。
將藥物添加至細胞、細胞平板(1:10稀釋),將6μl培養基+化合物直接添加至細胞(細胞上已有54μl培養基)。在不會被經常開啟之培養室中在37℃、5%CO2
下培育3天。
第5天-在室溫下使平板顯影、解凍Cell Titer Glo緩衝液。自37℃移出細胞平板且平衡至室溫,歷時約30分鐘。將Cell Titer Glo緩衝液添加至Cell Titer Glo受質中(瓶至瓶)。將30μl Cell Titer Glo試劑添加至各孔細胞中。置於平板震盪器上約30分鐘。用Analyst HT平板讀取器讀取發光(每孔半秒鐘)。
細胞存活力檢定及組合檢定:將細胞以1000-2000個細胞/孔接種於384孔平板中,歷時16h。在第二天,在96孔平板中用DMSO進行9個連續1:2化合物稀釋。使用Rapidplate自動儀(Zymark Corp.,Hopkinton,MA)將化合物進一步稀釋於生長培養基中。接著,將所稀釋之化合物添加至384孔細胞平板之孔中(一式四份)且在37℃及5%CO2
下培育。在4天後,利用發光使用Cell-Titer Glo(Promega)根據製造商之用法說明書量測相對數目之活細胞且用Wallac Multilabel讀取器(PerkinElmer,Foster City)讀數。使用Prism 4.0軟體(GraphPad,San Diego)計算EC50
值。起始於4×EC50
濃度投與組合檢定之藥物。在藥物之EC50
>2.5μM之情況下,所用最高濃度為10μM。在所有檢定中,同時或分隔4小時(一種在另一種之前)添加PI3K抑制劑及化療劑。
另一例示性活體外細胞增生檢定包括以下步驟:
1.使於培養基中含有約104
個細胞(對於細胞株及腫瘤類型,參見圖1A-C)之100μ1細胞培養物的等分試樣沈積於384孔不透明壁之平板的各孔中。
2.製備含有培養基但無細胞之對照孔。
3.將化合物添加至實驗孔中且培育3-5天。
4.使平板平衡至室溫,歷時約30分鐘。
5.添加等於各孔中所存在之細胞培養基的體積之體積的CellTiter-Glo試劑。
6.在迴轉式震盪器上將內含物混合2分鐘以誘導細胞溶解。
7.將平板在室溫下培育10分鐘以穩定發光信號。
8.記錄發光且以RLU=相對光單位報導於圖中。
或者,以最佳密度將細胞接種於96孔平板中且在測試化合物存在下培育4天。隨後將Alamar BlueTM
添加至檢定培養基中,且將細胞培育6h,然後在544nm激發、590nm發射下讀數。使用S形劑量反應曲線擬合計算EC50
值。
將細胞(2×106
個)置於10cm組織培養平板中。16小時後,將細胞暴露於0.1%DMSO(對照)或式Ia(含有0.1%DMSO),歷時48小時。接著,使用胰蛋白酶自平板中移出細胞且以PBS洗滌一次。為偵測細胞凋亡,使細胞(MB361,PC3)以1×106
個細胞/mL再懸浮於結合緩衝液(10mM HepeS/NaOH[pH 7.4]、140mM NaCl及2.5mM CaCl2
)中且立即以5μL膜聯蛋白V-FITC(BD Pharmingen;Franklin Lakes,NJ)及500μL於PBS中含有50μg/mL PI(Sigma)、0.2mg/mL核糖核酸酶溶液(Sigma)及0.1%Triton-X(Sigma)之碘化丙啶(PI)溶液染色。將混合物在室溫下培育30分鐘且以流式細胞儀(BD Biosciences;San Jose,CA)分析細胞。
在使用重疊法進行之3D細胞培養物中測定PI3K抑制劑之生物活性及PI3K與HER家族抑制劑於HER2擴增之乳癌細胞中的最有效治療劑組合。將式Ia化合物作為於二甲亞碸中濃度為50mM之懸浮液使用。以225.8μM之儲存濃度提供和瑞古林β-1177-244
(下文稱為HRG)。在3D培養物中以20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗、250nM式Ia化合物或250nM式IIa化合物處理BT474M1細胞。藉由使用Cell Titer-Glo發光細胞存活力檢定(Promega)量測細胞ATP水平來測定細胞存活力。讀數係基於每個檢定條件下3次重複之平均。藉由根據相差影像計算芽形成之程度來量化形態發生。對各檢定條件下之100個腺泡(通常持續9天)針對腺泡表面上所形成之芽數目作出評分。每3天更新培養基。
在滴定曲線中,以增加劑量之式Ia處理BT474M1細胞以確定有效地抑制PI3K下游之標記(AKT)且引起細胞存活力總體下降(Cell Titer-Glo)之最佳濃度。BT474M1細胞係源自經由美國菌種保存中心(American Type Culture Collection)購得之BT474親本細胞株。使細胞經由小鼠傳代以獲得適用於活體外及活體內研究之活雌激素依賴型細胞株。
如(Lee等人。(2007)Nat Methods. 4:359-65)所述使用"重疊法"進行所有3D檢定。以100μl生長因子經減少之Matrigel(BD Biosciences)在冰上均勻地塗佈48孔培養盤。隨後,將平板轉移至37℃培養室,歷時20分鐘以允許基質聚合。收集BT474M1細胞且將10,000個細胞/孔接種於經Matrigel塗佈之培養盤上。在補充有5% Matrigel及相應藥物或配位體之生長培養基中培養細胞。檢定通常持續9-10天,且每3天更換生長培養基。以適合於Leica DMIL顯微鏡之Sony數位攝影機(DXC-S500)記錄相差影像。藉由使用Cell Titer-Glo發光細胞存活力檢定(Promega)量測細胞ATP水平來測定細胞存活力。藉由光度計且基於每個檢定條件3次重複之平均評估讀數。藉由根據相差影像計算芽形成之程度來量化形態發生。對各檢定條件下之100個腺泡針對腺泡表面上所形成之芽數目作出評分。將評分合計且分成以下類別:每個腺泡0-1、2-3或4個芽。
可自標準商業來源獲得適用於轉殖基因實驗之動物。對雌性CD-1裸鼠(Charles River Laboratory)組在後脅部皮下植入每隻小鼠2千萬個MDA-MB-361.1(PI3K突變體)乳癌細胞與Matrigel及0.36mg雌激素植入物。對雌性NM RI nu/nu小鼠(Janvier)組植入每隻小鼠150mm3
MAXF 401(Her2+/ER+/PR+)或MAXF 1162(Her2+/ER+/PR+)原發性乳腺腫瘤(直接來自兩個個別乳癌患者之活組織檢查)之片段與Matrigel及0.36mg雌激素顆粒。對雌性HRLN nu/nu(Harlan Labs)組植入每隻小鼠1千萬個M CF-7(PI3R突變體)乳癌細胞與Matrigel及0.36mg雌激素顆粒。對雌性無胸腺nu/nu小鼠(Charles River Laboratory)組植入每隻小鼠1千5百萬個NCI-H2122(K-Ras突變體)非小細胞肺癌細胞與Matrigel。根據對各腫瘤模型指定之時程在第一天將藥物、藥物組合或媒劑投與小鼠異種移植物。靜脈內投與多西他賽,腹膜內投與B20-1.4且藉由口服強飼法經口傳遞式Ia及式IIa。在研究過程中每週兩次記錄腫瘤尺寸。亦每週兩次記錄小鼠體重,且定期觀測小鼠。使用Ultra Cal-IV測徑規(型號54-10-111;Fred V.Fowler Co.,Inc.;Newton,MA)在兩個尺寸(長度及寬度)上量測腫瘤體積且使用Excelv.11.2(Microsoft Corporation;Redmond,WA)進行分析。使用KaleidaGraph第3.6版(Synergy Software;Reading,PA)繪製腫瘤抑制圖。以下式計算腫瘤體積:腫瘤尺寸(mm3
)=(較長量測值×較短量測值2
)×0.5。
使用Adventurera Pro AV812標尺(OhauS Corporation;Pine Brook,NJ)量測動物體重。使用KaleidaGraph第3.6版產生圖。利用下式計算重量變化百分比:組重量變化百分比=(1-(初重/新重量))×100。
根據管理方針,對腫瘤體積超過2000mm3
或體重損失大於其初重之20%的小鼠立即施以安樂死。
使用下式計算研究結束時(EOS)之腫瘤生長抑制百分比(INH%):INH%=100×(給與媒劑之動物的腫瘤之EOS平均體積-給與藥物之動物的腫瘤之EOS平均體積)/給與媒劑之動物的腫瘤之EOS平均體積。
基於研究結束時各組中殘餘的可量測之腫瘤數目測定腫瘤發生率(TI)。部分反應(PR)係定義為在研究中任一天所觀測與開始腫瘤體積相比,腫瘤體積發生大於50%但小於100%之降低。完全反應(CR)係定義為在研究中任一天所觀測與初始腫瘤體積相比,腫瘤體積發生100%之降低。分析數據且使用Dunnett檢驗以JMP統計軟體第5.1.2版(SAS Institute;Cary,NC)測定p值。使用JMP統計軟體第5.1.2版計算研究結束時之個別腫瘤體積及平均腫瘤體積±SEM值。基於自初始體重之平均變化百分數±SEM,對體重數據作圖。
在6孔組織培養平板中,以每孔5×105
個細胞接種細胞隔夜。以EC80
之化療劑處理細胞。在處理後,以冷PBS將細胞洗滌一次且在補充有蛋白酶抑制劑(Roche,Mannheim,Germany)、1mM PMSF及Sigma(St. Louis,MO)之磷酸酶抑制劑混合物1及2的Biosource(Carlsbad,CA)之1×細胞提取緩衝液中溶解。使用Pierce BCA蛋白檢定套組(Rockford,IL)測定蛋白濃度。使用Biosource(Carlsbad,CA)之珠粒套組及Luminex Bio-Plex系統(Bio-Rad,Hercules,CA)評估pAkt(Ser473
)及總Akt水平。
上述描述應僅視為對本發明之原理的例示說明。另外,由於許多修改及變化將易於為熟習此項技術者所顯而易見,因此不希望使本發明受限於如上描述所示之精確結構及方法。因此,可認為所有適當修改及等效體屬於如由以下申請專利範圍所界定的本發明之範疇內。
圖1-A展示關於同時給藥之式Ia化合物與各種化療劑之組合的活體外細胞增生檢定之總結。根據腫瘤類型及已知突變之存在表徵細胞株。將化療劑及式Ia化合物(GDC-0941)之個別測定的EC50
值與組合EC50
值相比較,且藉由Chou-Talalay法計算組合指數得分(Chou,T.及Talalay,P.(1984)Adv. Enzyme Regul. 22:27-55)。使用分級系統(ranking System)對協同作用強度評分且列在最後一行。
圖1-B展示關於式IIa化合物與各種化療劑之組合的活體外細胞增生檢定之總結。根據腫瘤類型及Ras突變之存在表徵細胞株。將化療劑及式IIa化合物之個別測定的EC50
值與組合EC50
值相比較,且藉由Chou-Talalay法計算組合指數得分(Chou, T.及Talalay,P.(1984)Adv. Enzyme Regul. 22:27-55)。使用Chou-Talalay之分級系統對協同作用強度評分。
圖1-C展示關於式Ib化合物與各種化療劑之組合的活體外細胞增生檢定之總結。根據腫瘤類型及Ras突變之存在表徵細胞株。將化療劑及式Ib化合物之個別測定的EC50
值與組合EC50
值相比較,且藉由Chou-Talalay法計算組合指數得分(Chou,T.及Talalay,P.(1984)Adv. Enzyme Regul. 22:27-55)。使用Chou-Talalay之分級系統對協同作用強度評分。
圖2展示關於在自右至左不同濃度(起始於4×EC50
)之5-FU、式Ia化合物(GDC-0941)及5-FU與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以5-FU給藥之前4小時以式Ia預先給藥(中圖)以及在以5-FU給藥後4小時再以式Ia給藥(下圖)治療MDA-MB-361(乳腺腫瘤類型)細胞。
圖3展示關於在自右至左不同濃度(起始於4×EC50
)之吉西他濱、式Ia化合物(GDC-0941)及吉西他濱與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)及在以吉西他濱給藥後4小時再以式Ia給藥(下圖)治療Cal-51(乳腺腫瘤類型)細胞。
圖4展示關於在自右至左不同濃度(起始於4×EC50
)之吉西他濱、式Ia化合物(GDC-0941)及吉西他濱與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以吉西他濱給藥之前4小時以式Ia預先給藥(中圖)以及在以吉西他濱給藥後4小時再以式Ia給藥(下圖)治療MDA-MB-361(乳腺腫瘤類型)細胞。
圖5展示關於在自右至左不同濃度(起始於4×EC50
)之埃羅替尼、式Ia化合物(GDC-0941)及埃羅替尼與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以埃羅替尼給藥之前4小時以式Ia預先給藥(中圖)以及在以埃羅替尼給藥後4小時再以式Ia給藥(下圖)治療A549(具有K-ras G12C之肺腫瘤類型)細胞。
圖6展示關於在自右至左不同濃度(起始於4×EC50
)之埃羅替尼、式Ia化合物(GDC-0941)及埃羅替尼與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以埃羅替尼給藥之前4小時以式Ia預先給藥(中圖)以及在以埃羅替尼給藥後4小時再以式Ia給藥(下圖)治療H23(具有K-ras G12C突.變之肺腫瘤類型)細胞。
圖7展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物(GDC-0941)及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療U87(神經膠質瘤腫瘤類型)細胞。
圖8展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物(GDC-0941)及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療A375(黑色素瘤腫瘤類型)細胞。
圖9展示關於在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式Ia化合物(GDC-0941)及替莫唑胺與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以替莫唑胺給藥之前4小時以式Ia預先給藥(中圖)以及在以替莫唑胺給藥後4小時再以式Ia給藥(下圖)治療MALME-3M(黑色素瘤腫瘤類型)細胞。
圖10展示關於在自右至左不同濃度(起始於4×EC50
)之阿黴素、式Ia化合物(GDC-0941)及阿黴素與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以阿黴素給藥之前4小時以式Ia預先給藥(中圖)以及在以阿黴素給藥後4小時再以式Ia給藥(下圖)治療SKOV3(卵巢腫瘤類型)細胞。
圖11展示關於在自右至左不同濃度(起始於4×EC50
)之多西他賽、式Ia化合物(GDC-0941)及多西他賽與式Ia之組合下量測活細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。同時(上圖)、在以多西他賽給藥之前4小時以式Ia預先給藥(中圖)以及在以多西他賽給藥後4小時再以式Ia給藥(下圖)治療PC3(前列腺腫瘤類型)細胞。
圖12展示關於在自右至左不同濃度(起始於4×EC50
)之以下物質下量測活MDA-MB 361(乳腺腫瘤類型)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果:(上圖)5-FU、式IIa化合物及5-FU與式IIa之同時組合;(中圖)多西他賽、式IIa化合物及多西他賽與式IIa之同時組合;以及(下圖)吉西他濱、式IIa化合物及吉西他濱與式IIa之同時組合。
圖13展示關於(上圖)在自右至左不同濃度(起始於4×EC50
)之多西他賽、式IIa化合物及多西他賽與式IIa之同時組合下量測活MT3(乳腺腫瘤類型)細胞以及(下圖)在自右至左不同濃度(起始於4×EC50
)之替莫唑胺、式IIa化合物及替莫唑胺與式IIa之同時組合下量測活U87(神經膠質瘤腫瘤類型)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。
圖14展示關於在自右至左不同濃度(起始於4×EC50
)之(上圖)5-FU、式IIa化合物及5-FU與式IIa之同時組合以及(下圖)多西他賽、式IIa化合物及多西他賽與式IIa之同時組合下量測活ZR75-1(乳腺腫瘤類型)細胞的活體外細胞增生檢定(Cell-Titer Glo,Promega)之結果。
圖15展示來自圖1-A之埃羅替尼與式Ia化合物(GDC-0941)對抗無Ras突變(Ras WT,實驗41、42、73-75、77、79-81、83、84、86)及具有Ras突變(Ras Mut,實驗40、69-72、76、78、82、144、145)之腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖。
圖16展示來自圖1-A之PD-0325901與式Ia化合物(GDC-0941)對抗無Ras突變(Ras WT,實驗22-24、26-28、31-33、36-38、55、59、61、63-66、85、89-98、149、161、162)及具有Ras突變(Ras Mut,實驗25、30、34、35、39、56-58、60、62、67、68、146-148、150)之腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖。
圖17展示以吉西他濱在EC80給藥水平下治療協同腫瘤細胞株MDA-MB-361與非協同腫瘤細胞株MT-3之時程結果。在T=0(未經治療,UT)、1小時、4小時、6小時及24小時時量測pAKT水平。
圖18展示來自圖1-A之多西他賽、5-FU或吉西他濱與式Ia化合物(GDC-0941)對抗腫瘤細胞株之實驗的協同作用(組合指數)之點陣圖,其展示pAkt增加或無pAkt增加。
圖19展示流式細胞術FACS(螢光活化細胞揀選器)測定之結果:(上圖)MB361細胞(自左至右)未經處理,經式Ia、5FU處理,以及首先以5FU接著以式Ia化合物(GDC-0941)處理;(中圖)PC3細胞(自左至右)未經處理,以式Ia、多西他賽處理,以式Ia化合物及多西他賽同時處理,首先以式Ia接著以多西他賽處理,以及首先以多西他賽接著以式Ia處理;及(下圖)MB361細胞(自左至右)未經處理,經式Ia、吉西他濱處理,以及首先以吉西他濱接著以式Ia處理。
圖20展示在三維(3D)培養中BT474M1細胞之處理。就以(自左至右)以下物質處理而言,腺泡生長及形態發生與有或無1nM和瑞古林(heregulin)1之10% FBS培養基中以相對光單位(relative light unit,RLU)計的細胞ATP產生相關連:培養基、DMSO、20μg/ml曲妥珠單抗與25μg/ml帕妥珠單抗之組合、250nM式Ia化合物(GDC-0941)及20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗與250nM式Ia化合物之組合。
圖21展示在三維(3D)培養中BT474M1細胞之處理。就以(自左至右)以下物質處理而言,腺泡生長及形態發生與有或無1nM和瑞古林1之10% FBS培養基中以相對光單位(RLU)計的細胞ATP產生相關連:培養基、DMSO、20μg/ml曲妥珠單抗與25μg/ml帕妥珠單抗之組合、250nM式IIa化合物及20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗與250nM式IIa化合物之組合。
圖21-A展示在三維(3D)培養中BT474M1細胞之處理。就以(自左至右)以下物質處理而言,腺泡生長及形態發生與有或無1nM和瑞古林1之10% FBS培養基中以相對光單位計的細胞ATP產生相關連:DMSO、20μg/ml曲妥珠單抗與25μg/ml帕妥珠單抗之組合、20nM式Ib化合物及20μg/ml曲妥珠單抗、25μg/ml帕妥珠單抗與20nM式Ib化合物之組合。
圖22展示在第0天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸鼠(Charles River Labs)隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、150mg/kg式Ia(GDC-0941)、5mg/kg多西他賽及式Ia 150mg/kg與多西他賽5mg/kg之組合。在第1、5及9天(q4d×3)將多西他賽靜脈內投與小鼠,而式Ia係藉由口服強飼法每日投與,歷時21天。
圖23展示在第1天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸鼠(Charles River Labs)隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、37.5mg/kg式IIa、5mg/kg多西他賽及37.5mg/kg式IIa與5mg/kg多西他賽之組合。在第1、5及9天(q4d×3)將多西他賽靜脈內投與小鼠,而式IIa係藉由口服強飼法每日投與,歷時21天。
圖24展示在第0天投與以下物質之具有MAXF 401原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu(裸)鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、100mg/kg式Ia(GDC-0941)、15mg/kg多西他賽及100mg/kg式Ia與15mg/kg多西他賽之組合。在第0天及第11天將多西他賽靜脈內投與小鼠,而式Ia係在第0-4、11-17及21-28天藉由口服強飼法投與。
圖25展示在第0天投與以下物質之具有MAXF401原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween80)、100mg/kg式IIa、15mg/kg多西他賽及100mg/kg式IIa與15mg/kg多西他賽之組合。在第0天及第11天將多西他賽靜脈內投與小鼠,而式IIa係在第0-3、11-17及21-28天藉由口服強飼法投與。
圖26展示在第0天投與以下物質之具有MAXF1162原發性乳腺腫瘤外植體異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween80)、100 mg/kg式Ia(GDC-0941)、15mg/kg多西他賽及100 mg/kg式Ia與15mg/kg多西他賽之組合。在第0、11、22及44天將多西他賽靜脈內投與小鼠,且在第0-5、11-16、22-27、30-32、42及44天藉由口服強飼法投與式Ia。
圖27展示在第0天投與以下物質之具有MAXF1162原發性乳腺腫瘤異種移植物之NMRI雌性nu/nu裸鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2%Tween 80)、100mg/kg式IIa、15mg/kg多西他賽及100mg/kg式IIa與 15mg/kg多西他賽之組合。在第0、11、22及44天將多西他賽靜脈內投與小鼠,且在第0-5、11-16、22-23、29-31及35-38天藉由口服強飼法投與式IIa。
圖28展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤異種移植物之CRL雌性nu/nu(裸)鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、50mg/kg式Ia(GDC-0941)、75mg/kg埃羅替尼及50mg/kg式Ia與75mg/kg埃羅替尼之組合。藉由口服強飼法每日將埃羅替尼及式Ia投與小鼠,歷時16天。
圖29展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤異種移植物之CRL雌性nu/nu(裸)鼠隨時間的平均腫瘤體積變化:MCT媒劑(0.5%甲基纖維素/0.2% Tween 80)、50mg/kg式IIa、75mg/kg埃羅替尼及50mg/kg式IIa與75mg/kg埃羅替尼之組合。藉由口服強飼法每日將埃羅替尼及式IIa投與小鼠,歷時14天(研究結束)。
圖30展示在第0天投與以下物質之具有MCF-7(PI3K突變體)乳腺腫瘤細胞異種移植物之HRLN雌性nu/nu小鼠隨時間的平均腫瘤體積變化:MCT及PBS媒劑(MCT;0.5%甲基纖維素/0.2% Tween 80及PBS;磷酸鹽緩衝生理食鹽水)、對照IgG 5mg/kg、mB20-4.1鼠類抗VEGF 5mg/kg、式Ia(GDC-0941)150mg/kg及式Ia 150mg/kg與mB20-4.1鼠類抗VEGF 5mg/kg之組合。每週兩次將對照IgG及mB20-4.1腹膜內投與動物,歷時3週;且藉由口服強飼法每日投與式Ia,歷時21天,且再監控腫瘤生長41天(總研究天數為62天)。同時共投與式Ia及mB20-4.1。
圖31展示在第0天投與以下物質之具有MCF-7(PI3K突變體)乳腺腫瘤細胞異種移植物之HRLN雌性nu/nu小鼠隨時間的平均腫瘤體積變化:MCT及PBS媒劑(MCT;0.5%甲基纖維素/0.2% Tween 80及PBS;磷酸鹽緩衝生理食鹽水)、對照IgG 5mg/kg、mB20-4.1鼠類抗VEGF(抗血管生成劑)5mg/kg、式IIa 100mg/kg及式IIa 100mg/kg與mB20-4.1鼠類抗VEGF 5 mg/kg之組合。每週兩次將對照IgG及mB20-4.1腹膜內投與動物,歷時3週;且每日經口投與式IIa,歷時21天,且再監控腫瘤生長41天(總研究天數為62天)。同時共投與式IIa及mB20-4.1。
圖32展示在第0天投與以下物質之具有U87MG神經膠質瘤腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:式Ia(GDC-0941)109mg/kg、替莫唑胺100mg/kg及式Ia 109mg/kg與替莫唑胺100mg/kg之組合;以及未接受藥物之小鼠(未治療組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天且每日經口投與替莫唑胺,歷時5天。
圖33展示在第0天投與以下物質之具有MDA-MB-361.1乳腺腫瘤細胞異種移植物之CD-1裸鼠隨時間的平均腫瘤體積變化:式Ia(GDC-0941)150mg/kg、吉西他濱100mg/kg及式Ia 150mg/kg與吉西他濱100mg/kg之組合;以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天,且在第1、4、7及10天(q3d×4)腹膜內投與吉西他濱。
圖34展示在第0天投與以下物質之具有BT474乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:18、36及73mg/kg之式Ia(GDC-0941)、曲妥珠單抗20mg/kg及18、36及73mg/kg之式Ia與曲妥珠單抗20mg/kg之組合;以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。將式Ia每日經口投與動物,歷時21天,且每週兩次靜脈內投與曲妥珠單抗,歷時3週。
圖35展示在第0天投與以下物質之具有BT474乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:2.5mg/kg之式Ib,每日經口,歷時3週;2.5mg/kg之式Ib,每週兩次經口,歷時3週;5mg/kg之式Ib,每日經口,歷時3週;15mg/kg之曲妥珠單抗,每週一次靜脈內,歷時3週;及以下組合:2.5mg/kg之式Ib(每日經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次靜脈內,歷時3週)、2.5mg/kg之式Ib(每週兩次經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次靜脈內,歷時3週)及5mg/kg之式Ib(每日經口,歷時3週)與15mg/kg之曲妥珠單抗(每週一次靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖36展示在第0天投與以下物質之具有MCF-7乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週;10mg/kg之式Ib,每日經口,歷時4天;5mg/kg之式Ib,每日經口,歷時第0-3天、第10-26天;2mg/kg之式Ib,每日經口,歷時第0-4天、第10-25天;及以下組合:10mg/kg之式Ib(每日經口,歷時4天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、5mg/kg之式Ib(每日經口,歷時第0-3天、第10-26天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)及2mg/kg之式Ib(每日經口,歷時第0-4天、第10-25天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖37展示在第0天投與以下物質之具有Fo5乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週;36及73mg/kg之式Ia(GDC-0941),每日經口,歷時21天;2.5及5mg/kg之式Ib,每日經口,歷時21天;及以下組合:36mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、73mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)及2.5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖38展示在第0天投與以下物質之具有MDA-MB-231乳腺腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之鼠類抗VEGF抗體B20-4.1,每週兩次腹膜內,歷時3週;36及73mg/kg之式Ia(GDC-0941),每日經口,歷時21天;5mg/kg之式Ib,每日經口,歷時21天;及7.5mg/kg之式Ib,每日經口,歷時8天;及以下組合:36mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)、73mg/kg之式Ia(每日經口,歷時21天)與5mg/kg之 B20-4.1(每週兩次腹膜內,歷時3週)、5mg/kg之式Ib(每日經口,歷時21天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時3週)及7.5mg/kg之式Ib(每日經口,歷時8天)與5mg/kg之B20-4.1(每週兩次腹膜內,歷時1.5週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖39展示在第0天投與以下物質之具有H1299非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時21天;100mg/kg之式Ia(GDC-0941),每日經口,歷時6天;50mg/kg之式Ia,每日經口,歷時21天;25mg/kg之式Ia,每日經口,歷時21天;及以下組合:100mg/kg之式Ia(每日經口,歷時6天)與50mg/kg之埃羅替尼(每日經口,歷時6天)、50mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天)及25mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖40展示在第0天投與以下物質之具有H520非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時21天;73mg/kg之式Ia(GDC-0941),每日經口,歷時4天;36mg/kg之式Ia,每日經口,歷時21天;18mg/kg之式Ia,每日經口,歷時21天;及以下組合:73mg/kg之式Ia(每日經口,歷時4天)與50 mg/kg之埃羅替尼(每日經口,歷時4天)、36mg/kg之式Ia(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時21天)及18mg/kg之式Ia(每日經口,歷時21天)與50 mg/kg之埃羅替尼(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖41展示在第0天投與以下物質之具有H1299非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:50mg/kg之埃羅替尼,每日經口,歷時3週;2.5mg/kg之式Ib,每日經口,歷時21天;5mg/kg之式Ib,每週兩次經口,歷時3週;5mg/kg之式Ib,每週一次經口,歷時3週;及以下組合:2.5mg/kg之式Ib(每日經口,歷時21天)與50mg/kg之埃羅替尼(每日經口,歷時3週)、5mg/kg之式Ib(每週兩次經口,歷時3週)與50 mg/kg之埃羅替尼(每日經口,歷時3週)及5mg/kg之式Ib(每週一次經口,歷時3週)與50mg/kg之埃羅替尼(每日經口,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖42展示在第0天投與以下物質之具有NCI-H2122非小細胞肺癌(NSCLC)腫瘤細胞異種移植物之Taconic NCR雌性裸鼠隨時間的平均腫瘤體積變化:75mg/kg之埃羅替尼,每日經口,歷時16天;2.5mg/kg之式Ib,每日經口,歷時16天;5mg/kg之式Ib,每日經口,歷時16天;7..5mg/kg之式Ib,每日經口,歷時16天;及以下組合:2.5mg/kg之式Ib(每日經口,歷時16天)與50 mg/kg之埃羅替尼(每日經口,歷時3週)、5mg/kg之式Ib(每週兩次經口,歷時3週)與50mg/kg之埃羅替尼(每日經口,歷時16天)及5mg/kg之式Ib(每日經口,歷時16天)與50mg/kg之埃羅替尼(每日經口,歷時16天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖43展示在第0天投與以下物質之具有A375人類黑色素瘤癌症腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:3mg/kg之PD-0325901,每日經口,歷時3週;73mg/kg之式Ia(GDC-0941),每日經口,歷時3週;及以下組合:3mg/kg之PD-0325901(每日經口,歷時3週)與73mg/kg之式Ia(每日經口,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖44展示在第0天投與以下物質之具有A375人類黑色素瘤癌症腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:100mg/kg之替莫唑胺,每日經口,歷時5天;10mg/kg之式Ib,每週一次經口,歷時3週;5mg/kg之式Ib,每週經口,歷時3週;及以下組合:10mg/kg之式Ib(每週一次經口,歷時3週)與100mg/kg之替莫唑胺(每日經口,歷時5天)及5mg/kg之式Ib(每週一次經口,歷時3週)與100mg/kg之替莫唑胺(每日經口,歷時5天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖45展示在第0天投與以下物質之具有SKOV3人類卵巢癌腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:73mg/kg之式Ia(GDC-0941),每日經口,歷時3週;36mg/kg之式Ia,每日經口,歷時3週;10mg/kg之多西他賽,每週腹膜內,歷時3週;及以下組合:73mg/kg之式Ia(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)、36mg/kg之式Ia(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及73mg/kg之式Ia(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖46展示在第0天投與以下物質之具有SKOV3人類卵巢癌腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之式Ib,每日經口,歷時3週;1mg/kg之式Ib,每日經口,歷時3週;10mg/kg之多西他賽,每週靜脈內,歷時3週:及以下組合:5mg/kg之式Ib(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及1mg/kg之式Ib(每日經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖47展示在第0天投與以下物質之具有SKOV3人類卵巢癌腫瘤細胞異種移植物之Harlan雌性nu/nu小鼠隨時間的平均腫瘤體積變化:5mg/kg之式Ib,每週經口,歷時3週;10mg/kg之式Ib,每週經口,歷時3週;10mg/kg之多西他賽,每週靜脈內,歷時3週;及以下組合:5mg/kg之式Ib(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週)及10mg/kg之式Ib(每週經口,歷時3週)與10mg/kg之多西他賽(每週靜脈內,歷時3週);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖48展示在第0天投與以下物質之具有LuCap 35V人類原發性前列腺癌腫瘤細胞異種移植物之雌性SCID米色裸鼠隨時間的平均腫瘤體積變化:5mg/kg之多西他賽,在第1、5及9天(q4d×3),靜脈內;50mg/kg之式Ia(GDC-0941),每日經口,歷時18天;100mg/kg之式Ia,每日經口,歷時18天;及以下組合:5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與50mg/kg之式Ia(每日經口,歷時18天)及5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與100mg/kg之式Ia(每日經口,歷時18天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖49展示在第0天投與以下物質之具有LuCap 35V人類原發性前列腺癌腫瘤細胞異種移植物之雌性SCID米色裸鼠隨時間的平均腫瘤體積變化:5mg/kg之多西他賽,在第1、5及9天(q4d×3),靜脈內;2.5mg/kg之式Ib,每日經口,歷時15天;5mg/kg之式Ib,每日經口,歷時15天;及以下組合:5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與2.5mg/kg之式Ib(每日經口,歷時15天)及5mg/kg之多西他賽(在第1、5及9天(q4d×3),靜脈內)與5mg/kg之式Ib(每日經口,歷時15天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖50展示在第1、5、9及13天(q4d×4)投與以下物質之具有PC3-NCI人類原發性前列腺癌腫瘤細胞異種移植物之CRL雌性nu/nu小鼠隨時間的平均腫瘤體積變化:2.5mg/kg多西他賽,靜脈內;10mg/kg式Ib,在第1、5、9及13天(q4d×4),經口;及以下組合:2.5mg/kg多西他賽(靜脈內)與10mg/kg式Ib(在第1、5、9及13天(q4d×4),經口);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖51展示在第0天投與以下物質之具有PC3-NCI人類原發性前列腺癌腫瘤細胞異種移植物之CRL雌性nu/nu小鼠隨時間的平均腫瘤體積變化:100mg/kg吉西他濱,每3天腹膜內,達4次;150mg/kg式Ia(GDC-0941),每3天(q3d)經口,達4次;2.5mg/kg式Ib,每3天(q3d)經口,達4次;5mg/kg式Ib,每3天經口,達4次;及以下組合:100mg/kg吉西他濱(每3天腹膜內,達4次)與150mg/kg式Ia(每3天經口,達4次)、100mg/kg吉西他濱(每3天腹膜內,達4次)與2.5mg/kg式Ib(每3天經口,達4次)、100mg/kg吉西他濱(每3天腹膜內,達4次)與5mg/kg式Ib(每3天經口,達4次)及10mg/kg式Ib(每3天經口,達4次);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
圖52展示在第0天投與以下物質之具有NCI-H2122(K-ras)NSCLC腫瘤細胞異種移植物之Harlan雌性裸鼠隨時間的平均腫瘤體積變化:6.3mg/kg之PD-0325901,每日經口,歷時21天;100mg/kg之式Ia(GDC-0941),每日經口,歷時21天;及以下組合:6.3mg/kg之PD-0325901(每日經口,歷時21天)與100mg/kg之式Ia(每日經口,歷時21天);以及未接受藥物之小鼠(媒劑組)隨時間的平均腫瘤體積變化。
(無元件符號說明)
Claims (41)
- 一種治療劑組合之用途,其係用於製備治療癌症之藥物,其中該治療組合係以組合調配物形式或以交替方式向哺乳動物投與,其中該治療劑組合包含治療有效量之具有式Ia或式Ib之化合物及治療有效量之選自以下物質之化療劑:埃羅替尼(erlotinib)、多西他賽(docetaxel)、5-FU、吉西他濱(gemcitabine)、PD-0325901、順鉑(cisplatin)、卡鉑(carboplatin)、紫杉醇(paclitaxel)、貝伐單抗(bevacizumab)、曲妥珠單抗(trastuzumab)、帕妥珠單抗(pertuzumab)、替莫唑胺(temozolomide)、他莫昔芬(tamoxifen)、阿黴素(doxorubicin)、Akti-1/2、HPPD、雷帕黴素(rapamycin)及拉帕替尼(lapatinib);其中式Ia及式Ib為:具有式Ia之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉:
- 如請求項1之用途,其中該化療劑為埃羅替尼。
- 如請求項1之用途,其中該化療劑為多西他賽。
- 如請求項1之用途,其中該化療劑為5-FU。
- 如請求項1之用途,其中該化療劑為吉西他濱。
- 如請求項1之用途,其中該化療劑為PD-0325901。
- 如請求項1之用途,其中該化療劑為順鉑。
- 如請求項1之用途,其中該化療劑為卡鉑。
- 如請求項1之用途,其中該化療劑為紫杉醇。
- 如請求項1之用途,其中該化療劑為貝伐單抗。
- 如請求項1之用途,其中該化療劑為曲妥珠單抗。
- 如請求項1之用途,其中該化療劑為帕妥珠單抗。
- 如請求項1之用途,其中該化療劑為替莫唑胺。
- 如請求項1之用途,其中該化療劑為他莫昔芬。
- 如請求項1之用途,其中該化療劑為阿黴素。
- 如請求項1之用途,其中該化療劑為Akti-1/2。
- 如請求項1之用途,其中該化療劑為HPPD。
- 如請求項1之用途,其中該化療劑為雷帕黴素。
- 如請求項1之用途,其中該化療劑為拉帕替尼。
- 如請求項1之用途,其中治療組合中之化合物為具有式Ia之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉:
- 如請求項1之用途,其中治療組合中之化合物為具有式Ib之(S)-1-(4-((2-(2-胺基嘧啶-5-基)-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮:
- 如請求項1之用途,其中該式Ia或該式Ib化合物之醫藥學上可接受之鹽係選自與以下酸形成之鹽:鹽酸、氫溴酸、氫碘酸、硫酸、硝酸、磷酸、甲磺酸、苯磺酸、甲酸、乙酸、三氟乙酸、丙酸、草酸、丙二酸、丁二酸、反丁烯二酸、順丁烯二酸、乳酸、蘋果酸、酒石酸、檸檬酸、乙磺酸、天冬胺酸及麩胺酸。
- 如請求項1之用途,其中該治療有效量之具有式Ia或式Ib 之化合物及該治療有效量之化療劑係以組合調配物形式投與。
- 如請求項1之用途,其中該治療有效量之具有式Ia或式Ib之化合物及該治療有效量之化療劑係以交替方式投與哺乳動物。
- 如請求項24之用途,其中該化療劑且隨後該式Ia或該式Ib化合物係投與哺乳動物。
- 如請求項24之用途,其中藉由以下給藥方式投與該治療劑組合:在每日兩次至每三週一次之範圍內投與該治療有效量之具有式Ia或式Ib之化合物,且在每日兩次至每三週一次之範圍內投與該治療有效量之化療劑。
- 如請求項26之用途,其中重複該給藥方式一或多次。
- 如請求項1之用途,其中該治療劑組合之投與產生協同效應。
- 如請求項1之用途,其中該癌症係選自乳癌、子宮頸癌、結腸癌、子宮內膜癌、神經膠質瘤、肺癌、黑色素瘤、卵巢癌、胰腺癌及前列腺癌。
- 如請求項29之用途,其中該癌症表現K-ras突變體。
- 如請求項24之用途,其中該哺乳動物為乳癌患者,其中該患者為HER2陰性、ER(雌激素受體)陰性及PR(孕酮受體)陰性。
- 如請求項31之用途,其中該患者係經投與式Ia及多西他賽。
- 如請求項1之用途,其中該式Ia或該式Ib化合物及該化療 劑各自係以每單位劑型約1mg至約1000mg之量投與。
- 如請求項1之用途,其中該式Ia或該式Ib化合物及該化療劑係以約1:50至約50:1重量比投與。
- 一種醫藥調配物,其包含式Ia或式Ib之化合物、選自以下物質之化療劑:埃羅替尼、多西他賽、5-FU、吉西他濱、PD-0325901、順鉑、卡鉑、紫杉醇、貝伐單抗、曲妥珠單抗、帕妥珠單抗、替莫唑胺、他莫昔芬、阿黴素、Akti-1/2、HPPD、雷帕黴素及拉帕替尼;以及一或多種醫藥學上可接受之載劑、助流劑、稀釋劑或賦形劑;其中式Ia及式Ib為:具有式Ia之4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉:
- 如請求項35之醫藥調配物,其中該式Ia或該式Ib化合物之醫藥學上可接受之鹽係選自與以下酸形成之鹽:鹽酸、氫溴酸、氫碘酸、硫酸、硝酸、磷酸、甲磺酸、苯磺酸、甲酸、乙酸、三氟乙酸、丙酸、草酸、丙二酸、丁二酸、反丁烯二酸、順丁烯二酸、乳酸、蘋果酸、酒石酸、檸檬酸、乙磺酸、天冬胺酸及麩胺酸。
- 如請求項35之醫藥調配物,其中該式Ia為4-(2-(1H-吲唑-4-基)-6-((4-(甲基磺醯基)哌嗪-1-基)甲基)噻吩并[3,2-d]嘧啶-4-基)嗎啉:
- 如請求項35之醫藥調配物,其中該式Ib化合物為(S)-1-(4-((2-(2-胺基嘧啶-5-基)-7-甲基-4-嗎啉基噻吩并[3,2-d]嘧啶-6-基)甲基)哌嗪-1-基)-2-羥基丙-1-酮:
- 如請求項35-38中任一項之醫藥調配物,其包含醫藥學上可接受之選自以下物質的助流劑:二氧化矽、粉狀纖維素、微晶纖維素、金屬硬脂酸鹽、鋁矽酸鈉、苯甲酸鈉、碳酸鈣、矽酸鈣、玉米澱粉、碳酸鎂、無石棉滑石、Stearowet C、澱粉、澱粉1500、月桂基硫酸鎂、氧化鎂及其組合。
- 如請求項35-38中任一項之醫藥調配物,其中該式Ia或該式Ib化合物及該化療劑各自包含每單位劑型約1毫克至約1000毫克之量。
- 如請求項35-38中任一項之醫藥調配物,其適用於治療癌症。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97177307P | 2007-09-12 | 2007-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200920377A TW200920377A (en) | 2009-05-16 |
TWI471134B true TWI471134B (zh) | 2015-02-01 |
Family
ID=39942941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97134764A TWI471134B (zh) | 2007-09-12 | 2008-09-10 | 肌醇磷脂3-激酶抑制劑化合物及化療劑之組合及使用方法 |
Country Status (19)
Country | Link |
---|---|
US (3) | US8247397B2 (zh) |
EP (1) | EP2205242B1 (zh) |
JP (1) | JP5658565B2 (zh) |
KR (1) | KR101584823B1 (zh) |
CN (1) | CN101939006B (zh) |
AR (1) | AR068402A1 (zh) |
AU (1) | AU2008298948B2 (zh) |
BR (1) | BRPI0816769A2 (zh) |
CA (1) | CA2699202C (zh) |
CL (1) | CL2008002687A1 (zh) |
ES (1) | ES2537352T3 (zh) |
HK (1) | HK1145287A1 (zh) |
IL (1) | IL204333A (zh) |
MX (1) | MX338504B (zh) |
PE (2) | PE20140100A1 (zh) |
RU (1) | RU2523890C2 (zh) |
TW (1) | TWI471134B (zh) |
WO (1) | WO2009036082A2 (zh) |
ZA (1) | ZA201002475B (zh) |
Families Citing this family (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030133939A1 (en) | 2001-01-17 | 2003-07-17 | Genecraft, Inc. | Binding domain-immunoglobulin fusion proteins |
US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
JO3000B1 (ar) | 2004-10-20 | 2016-09-05 | Genentech Inc | مركبات أجسام مضادة . |
GB0423653D0 (en) * | 2004-10-25 | 2004-11-24 | Piramed Ltd | Pharmaceutical compounds |
BRPI0606542A8 (pt) | 2005-02-23 | 2018-03-20 | Genentech Inc | métodos para aumentar o tempo de progressão de uma doença (ttp) |
HUE026303T2 (hu) | 2005-07-25 | 2016-06-28 | Emergent Product Dev Seattle | B-sejt csökkentés CD37-specifikus és CD20-specifikus kapcsoló molekulák alkalmazásával |
CN105837690A (zh) | 2006-06-12 | 2016-08-10 | 新兴产品开发西雅图有限公司 | 具有效应功能的单链多价结合蛋白 |
KR20150039212A (ko) | 2007-03-02 | 2015-04-09 | 제넨테크, 인크. | 낮은 her3 발현을 기초로 한 her 이량체화 억제제에 대한 반응 예측 |
GB0721095D0 (en) * | 2007-10-26 | 2007-12-05 | Piramed Ltd | Pharmaceutical compounds |
TWI472339B (zh) | 2008-01-30 | 2015-02-11 | Genentech Inc | 包含結合至her2結構域ii之抗體及其酸性變異體的組合物 |
SI2254571T1 (sl) * | 2008-03-18 | 2015-10-30 | Genentech, Inc. | Kombinacije konjugata protitelo proti HER2-zdravilo in kemoterapevtskih sredstev ter postopki uporabe |
MX340204B (es) | 2008-04-11 | 2016-06-30 | Emergent Product Dev Seattle | Inmunoterapeutico de cd37 y combinacion con quimioterapeutico bifuncional del mismo. |
BRPI0812682A2 (pt) | 2008-06-16 | 2010-06-22 | Genentech Inc | tratamento de cáncer de mama metastático |
TWI378933B (en) | 2008-10-14 | 2012-12-11 | Daiichi Sankyo Co Ltd | Morpholinopurine derivatives |
MX2011007326A (es) | 2009-01-08 | 2011-10-19 | Curis Inc | Inhibidores de fosfoinositida 3-quinasa con una porcion de enlace de cinc. |
AU2010224125B2 (en) | 2009-03-12 | 2015-05-14 | Genentech, Inc. | Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents for the treatment of hematopoietic malignancies |
JP5567136B2 (ja) * | 2009-09-08 | 2014-08-06 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 4−置換ピリジン−3−イル−カルボキサミド化合物及び使用方法 |
SG10201405598QA (en) * | 2009-09-09 | 2014-11-27 | Celgene Avilomics Res Inc | Pi3 kinase inhibitors and uses thereof |
US20110086837A1 (en) * | 2009-10-12 | 2011-04-14 | Genentech, Inc. | Combinations of a pi3k inhibitor and a mek inhibitor |
TW201129380A (en) * | 2009-12-04 | 2011-09-01 | Genentech Inc | Methods of treating metastatic breast cancer with trastuzumab-MCC-DM1 |
KR20120111739A (ko) | 2009-12-31 | 2012-10-10 | 센트로 내셔널 드 인베스티가시오네스 온콜로지카스 (씨엔아이오) | 키나제 억제제로서의 사용을 위한 삼환식 화합물 |
UY33236A (es) | 2010-02-25 | 2011-09-30 | Novartis Ag | Inhibidores dimericos de las iap |
WO2011120911A1 (en) | 2010-03-30 | 2011-10-06 | Novartis Ag | Pkc inhibitors for the treatment of b-cell lymphoma having chronic active b-cell-receptor signalling |
CN103038643A (zh) * | 2010-04-16 | 2013-04-10 | 基因泰克公司 | 作为pi3k/akt激酶途径抑制剂效能的预测性生物标记的foxo3a |
JP2013531474A (ja) * | 2010-04-30 | 2013-08-08 | エスペランス ファーマシューティカルズ, インコーポレイテッド | 溶解性ペプチド−Her2/neu(ヒト上皮成長因子レセプター2)リガンド結合体およびその使用方法 |
EP2580320B1 (en) | 2010-06-14 | 2018-08-01 | The Scripps Research Institute | Reprogramming of cells to a new fate |
AU2011290672B2 (en) | 2010-08-20 | 2015-07-09 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (HER3) |
CA2813304A1 (en) * | 2010-10-01 | 2012-04-05 | Biogen Idec Ma Inc. | Interferon-beta for use as monotherapy or in combination with other cancer therapies |
WO2012080260A1 (en) | 2010-12-13 | 2012-06-21 | Novartis Ag | Dimeric iap inhibitors |
UY33794A (es) | 2010-12-13 | 2012-07-31 | Novartis Ag | Inhibidores diméricos de las iap |
WO2012098387A1 (en) | 2011-01-18 | 2012-07-26 | Centro Nacional De Investigaciones Oncológicas (Cnio) | 6, 7-ring-fused triazolo [4, 3 - b] pyridazine derivatives as pim inhibitors |
MX2013011333A (es) * | 2011-04-01 | 2014-04-16 | Genentech Inc | Combinaciones de compuestos inhibidores de akt y mek, y metodos de uso. |
PT3111938T (pt) | 2011-04-01 | 2019-07-10 | Curis Inc | Inibidores de fosfoinoritide 3-quinase com uma fração de ligação ao zinco |
US20120308562A1 (en) * | 2011-06-03 | 2012-12-06 | Derynck Mika K | Methods of treating mesothelioma with a pi3k inhibitor compound |
WO2013012723A1 (en) | 2011-07-13 | 2013-01-24 | Novartis Ag | Novel 2-piperidin-1-yl-acetamide compounds for use as tankyrase inhibitors |
US9163003B2 (en) | 2011-07-13 | 2015-10-20 | Novartis Ag | 4-piperidinyl compounds for use as tankyrase inhibitors |
WO2013010092A1 (en) | 2011-07-13 | 2013-01-17 | Novartis Ag | 4-oxo-3,5,7,8-tetrahydro-4h-pyrano {4,3-d} pyrminidinyl compounds for use as tankyrase inhibitors |
EP3409278B8 (en) | 2011-07-21 | 2020-11-04 | Sumitomo Dainippon Pharma Oncology, Inc. | Heterocyclic protein kinase inhibitors |
WO2013019620A2 (en) * | 2011-07-29 | 2013-02-07 | Glaxosmithkline Llc | Method of treating cancer using combination of braf inhibitor, mek inhibitor, and anti-ctla-4 antibody |
WO2013055996A1 (en) | 2011-10-13 | 2013-04-18 | Genentech, Inc. | Treatment of pharmacological-induced hypochlorhydria |
SG10202110077QA (en) | 2011-10-14 | 2021-10-28 | Genentech Inc | Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab |
EP2776837A4 (en) * | 2011-11-11 | 2015-05-20 | Intellikine Llc | COMBINATION OF KINASEINHIBITORS AND THEIR USE |
MX2014006736A (es) | 2011-12-05 | 2014-08-29 | Novartis Ag | Derivados de urea ciclicos como antagonistas de los receptores de androgeno. |
AU2012349736A1 (en) | 2011-12-05 | 2014-06-26 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (HER3) directed to domain II of HER3 |
SG11201402783YA (en) | 2011-12-05 | 2014-06-27 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (her3) |
BR112014016870A2 (pt) | 2012-01-09 | 2017-06-27 | Huesken Dieter | composições orgânicas para tratar doenças relacionadas com beta-catenina |
BR112014028376A2 (pt) | 2012-06-08 | 2018-04-24 | Hoffmann La Roche | métodos para o tratamento de um distúrbio hiperproliferativo, para a determinação dos compostos, para monitorar, para optimizar a eficácia terapêutica e de identificação de um biomarcador; formulação farmacêutica; utilização de uma combinação terapêutica e de gdc-0032, artigo de manufatura, produto e invenção |
WO2013192367A1 (en) | 2012-06-22 | 2013-12-27 | Novartis Ag | Neuroendocrine tumor treatment |
CA2883513A1 (en) | 2012-10-10 | 2014-04-17 | F. Hoffmann-La Roche Ag | Process for making thienopyrimidine compounds |
US9394257B2 (en) | 2012-10-16 | 2016-07-19 | Tolero Pharmaceuticals, Inc. | PKM2 modulators and methods for their use |
BR112015013196A2 (pt) | 2012-12-07 | 2018-02-06 | Massachusetts Gen Hospital | combinações de um composto inibidor de pi3k/akt com um composto inibidor de her3/egfr e métodos de uso |
SG11201505697VA (en) | 2013-02-19 | 2015-09-29 | Novartis Ag | Benzothiophene derivatives and compositions thereof as selective estrogen receptor degraders |
US9394368B2 (en) | 2013-02-20 | 2016-07-19 | Novartis Ag | Treatment of cancer using humanized anti-EGFRvIII chimeric antigen receptor |
US9498532B2 (en) | 2013-03-13 | 2016-11-22 | Novartis Ag | Antibody drug conjugates |
KR102334260B1 (ko) | 2013-03-14 | 2021-12-02 | 스미토모 다이니폰 파마 온콜로지, 인크. | Jak2 및 alk2 억제제 및 이들의 사용 방법 |
EP2968590B1 (en) | 2013-03-15 | 2018-09-05 | Novartis AG | Antibody drug conjugates |
RU2737727C2 (ru) | 2013-04-16 | 2020-12-02 | Дженентек, Инк. | Варианты пертузумаба и их аналитическая характеристика |
WO2015092634A1 (en) | 2013-12-16 | 2015-06-25 | Novartis Ag | 1,2,3,4-tetrahydroisoquinoline compounds and compositions as selective estrogen receptor antagonists and degraders |
JO3517B1 (ar) | 2014-01-17 | 2020-07-05 | Novartis Ag | ان-ازاسبيرو الكان حلقي كبديل مركبات اريل-ان مغايرة وتركيبات لتثبيط نشاط shp2 |
WO2015107493A1 (en) | 2014-01-17 | 2015-07-23 | Novartis Ag | 1 -pyridazin-/triazin-3-yl-piper(-azine)/idine/pyrolidine derivatives and and compositions thereof for inhibiting the activity of shp2 |
ES2699354T3 (es) | 2014-01-17 | 2019-02-08 | Novartis Ag | Derivados de 1-(triazin-3-il/piridazin-3-il)-piper(-azin)idina y composiciones de las mismas para inhibir la actividad de SHP2 |
JP2017513901A (ja) | 2014-04-25 | 2017-06-01 | ジェネンテック, インコーポレイテッド | トラスツズマブ−mcc−dm1及びペルツズマブにより早期の乳癌を処置する方法 |
RU2016148441A (ru) | 2014-05-21 | 2018-06-22 | Ф. Хоффманн-Ля Рош Аг | Способ лечения pr-положительного люминального а-типа рака молочной железы ингибитором pi3k пиктилисибом |
EP3155126B1 (en) * | 2014-06-16 | 2018-06-06 | Worldwide Innovative Network | Method for selecting personalized tri-therapy for cancer treatment |
EP3539990B1 (en) | 2014-07-16 | 2021-09-08 | Dana-Farber Cancer Institute, Inc. | Her3 inhibition in low-grade serous cancers |
US10786578B2 (en) | 2014-08-05 | 2020-09-29 | Novartis Ag | CKIT antibody drug conjugates |
SG11201700254QA (en) | 2014-08-12 | 2017-02-27 | Novartis Ag | Anti-cdh6 antibody drug conjugates |
EP3191127A1 (en) | 2014-09-13 | 2017-07-19 | Novartis AG | Combination therapies of egfr inhibitors |
MX2017004360A (es) | 2014-10-03 | 2017-06-26 | Novartis Ag | Terapias de combinacion. |
TN2017000173A1 (en) | 2014-11-14 | 2018-10-19 | Novartis Ag | Antibody drug conjugates |
AU2014413483B2 (en) | 2014-12-11 | 2019-07-25 | Natco Pharma Limited | 7-(morpholinyl)-2-(N-piperazinyl) methyl thieno [2, 3-c] pyridine derivatives as anticancer drugs |
US10689459B2 (en) | 2014-12-12 | 2020-06-23 | Novartis Ag | Treatment of breast cancer brain metastases |
WO2016100882A1 (en) | 2014-12-19 | 2016-06-23 | Novartis Ag | Combination therapies |
EA032416B1 (ru) | 2014-12-23 | 2019-05-31 | Новартис Аг | Соединения триазолопиримидина и их применения |
RU2017134379A (ru) | 2015-03-25 | 2019-04-03 | Новартис Аг | Формилированные n-гетероциклические производные в качестве ингибиторов fgfr4 |
AR104068A1 (es) | 2015-03-26 | 2017-06-21 | Hoffmann La Roche | Combinaciones de un compuesto inhibidor de fosfoinosítido 3-cinasa y un compuesto inhibidor de cdk4/6 para el tratamiento del cáncer |
JP6822980B2 (ja) | 2015-05-30 | 2021-01-27 | ジェネンテック, インコーポレイテッド | Her2陽性転移性乳癌の治療方法 |
EP3310813A1 (en) | 2015-06-17 | 2018-04-25 | Novartis AG | Antibody drug conjugates |
ES2824576T3 (es) | 2015-06-19 | 2021-05-12 | Novartis Ag | Compuestos y composiciones para inhibir la actividad de SHP2 |
CN112625028B (zh) | 2015-06-19 | 2024-10-29 | 诺华股份有限公司 | 用于抑制shp2活性的化合物和组合物 |
EP3310779B1 (en) | 2015-06-19 | 2019-05-08 | Novartis AG | Compounds and compositions for inhibiting the activity of shp2 |
JP6698712B2 (ja) | 2015-06-29 | 2020-05-27 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | Taselisibを用いた治療方法 |
CN105147696A (zh) * | 2015-07-08 | 2015-12-16 | 李荣勤 | 联合使用盐酸二甲双胍和gdc0941的抗乳腺癌颗粒剂及制备方法 |
GB201514760D0 (en) * | 2015-08-19 | 2015-09-30 | Karus Therapeutics Ltd | Compounds and method of use |
WO2017053469A2 (en) | 2015-09-21 | 2017-03-30 | Aptevo Research And Development Llc | Cd3 binding polypeptides |
MA44334A (fr) | 2015-10-29 | 2018-09-05 | Novartis Ag | Conjugués d'anticorps comprenant un agoniste du récepteur de type toll |
WO2017087280A1 (en) | 2015-11-16 | 2017-05-26 | Genentech, Inc. | Methods of treating her2-positive cancer |
EP3383391A1 (en) | 2015-12-03 | 2018-10-10 | Novartis AG | Treatment of cancer with a pi3k inhibitor in a patient preselected for having a pik3ca mutation in the ctdna |
DK3452465T3 (da) | 2016-05-04 | 2021-02-08 | Genoscience Pharma | Substituerede 2,4-diaminoquinolinderivater til anvendelse til behandling af proliferative sygdomme |
EA036446B1 (ru) | 2016-06-14 | 2020-11-11 | Новартис Аг | Соединения и композиции для подавления активности shp2 |
WO2017221100A1 (en) | 2016-06-20 | 2017-12-28 | Novartis Ag | Imidazopyrimidine compounds useful for the treatment of cancer |
EP3472161B1 (en) | 2016-06-20 | 2020-03-25 | Novartis AG | Triazolopyridine compounds and uses thereof |
WO2017219948A1 (en) | 2016-06-20 | 2017-12-28 | Novartis Ag | Crystalline forms of triazolopyrimidine compound |
TW201813963A (zh) | 2016-09-23 | 2018-04-16 | 美商基利科學股份有限公司 | 磷脂醯肌醇3-激酶抑制劑 |
TW201815787A (zh) | 2016-09-23 | 2018-05-01 | 美商基利科學股份有限公司 | 磷脂醯肌醇3-激酶抑制劑 |
TW201825465A (zh) | 2016-09-23 | 2018-07-16 | 美商基利科學股份有限公司 | 磷脂醯肌醇3-激酶抑制劑 |
JP2019536471A (ja) | 2016-09-27 | 2019-12-19 | セロ・セラピューティクス・インコーポレイテッドCERO Therapeutics, Inc. | キメラエンガルフメント受容体分子 |
AU2017384134B2 (en) | 2016-12-19 | 2022-03-24 | Merck Patent Gmbh | Combination of a protein kinase inhibitor and an additional chemotherapeutic agent |
RS62456B1 (sr) | 2016-12-22 | 2021-11-30 | Amgen Inc | Derivati benzizotiazola, izotiazolo[3,4-b]piridina, hinazolina, ftalazina, pirido[2,3-d]piridazina i pirido[2,3-d]pirimidina kao kras g12c inhibitori za tretman raka pluća, pankreasa ili debelog creva |
TW201827077A (zh) | 2016-12-28 | 2018-08-01 | 美商建南德克公司 | 晚期her2表現癌症之治療 |
CN111714630B (zh) | 2017-01-17 | 2021-11-09 | 基因泰克公司 | 皮下her2抗体配制剂 |
JOP20190187A1 (ar) | 2017-02-03 | 2019-08-01 | Novartis Ag | مترافقات عقار جسم مضاد لـ ccr7 |
HUE064898T2 (hu) | 2017-03-02 | 2024-04-28 | Genentech Inc | HER2-pozitív emlõrák adjuváns kezelése |
EP3592868B1 (en) | 2017-03-06 | 2022-11-23 | Novartis AG | Methods of treatment of cancer with reduced ubb expression |
WO2018185618A1 (en) | 2017-04-03 | 2018-10-11 | Novartis Ag | Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment |
TW201902509A (zh) | 2017-04-24 | 2019-01-16 | 美商建南德克公司 | Erbb2/her2突變 |
AR111651A1 (es) | 2017-04-28 | 2019-08-07 | Novartis Ag | Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación |
JOP20190272A1 (ar) | 2017-05-22 | 2019-11-21 | Amgen Inc | مثبطات kras g12c وطرق لاستخدامها |
WO2018215937A1 (en) | 2017-05-24 | 2018-11-29 | Novartis Ag | Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer |
US20200362058A1 (en) | 2017-05-24 | 2020-11-19 | Novartis Ag | Antibody-cytokine engrafted proteins and methods of use |
EA201992765A1 (ru) | 2017-05-24 | 2020-03-25 | Новартис Аг | Белки на основе антител с привитым цитокином и способы их применения в лечении рака |
CA3071123A1 (en) | 2017-07-31 | 2019-02-07 | The Trustees Of Columbia University In The City Of New York | Compounds, compositionals, and methods for treating t-cell acute lymphoblastic leukemia |
MX2020001261A (es) * | 2017-08-02 | 2020-08-17 | Univ Northwestern | Compuestos de pirimidina fusionada sustituida y usos de los mismos. |
CN116003405A (zh) | 2017-09-08 | 2023-04-25 | 美国安进公司 | Kras g12c的抑制剂及其使用方法 |
CN111201223B (zh) | 2017-09-11 | 2024-07-09 | 克鲁松制药公司 | SHP2的八氢环戊二烯并[c]吡咯别构抑制剂 |
US11708423B2 (en) | 2017-09-26 | 2023-07-25 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules and methods of use |
CN108187055B (zh) * | 2018-03-06 | 2019-12-27 | 北京大学 | 一种具有协同增效作用的抗癌组合物 |
CA3093973A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Cellular immunotherapy compositions and uses thereof |
EP3774906A1 (en) | 2018-03-28 | 2021-02-17 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
CA3093969A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Expression vectors for chimeric engulfment receptors, genetically modified host cells, and uses thereof |
SG11202009443RA (en) | 2018-04-05 | 2020-10-29 | Sumitomo Dainippon Pharma Oncology Inc | Axl kinase inhibitors and use of the same |
CA3098574A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
MA52496A (fr) | 2018-05-04 | 2021-03-10 | Amgen Inc | Inhibiteurs de kras g12c et leurs procédés d'utilisation |
JP7361720B2 (ja) | 2018-05-10 | 2023-10-16 | アムジエン・インコーポレーテツド | がんの治療のためのkras g12c阻害剤 |
WO2019232419A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
EP4268898A3 (en) | 2018-06-11 | 2024-01-17 | Amgen Inc. | Kras g12c inhibitors for treating cancer |
JP7369719B2 (ja) | 2018-06-12 | 2023-10-26 | アムジエン・インコーポレーテツド | KRas G12C阻害剤及びそれを使用する方法 |
BR112020026947B1 (pt) | 2018-07-10 | 2022-11-22 | Novartis Ag | Derivados de 3-(5-hidróxi-1-oxoisoindolin-2-il)piperidina-2,6-diona, e composição farmacêutica |
AR116109A1 (es) | 2018-07-10 | 2021-03-31 | Novartis Ag | Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos |
EP3826684A4 (en) | 2018-07-26 | 2022-04-06 | Sumitomo Dainippon Pharma Oncology, Inc. | METHODS FOR TREATING DISEASES ASSOCIATED WITH ABNORMAL ACVR1 EXPRESSION AND ACVR1 INHIBITORS FOR USE THEREOF |
EP4219488A1 (en) | 2018-08-17 | 2023-08-02 | Novartis AG | Method for the preparation of urea compounds as smarca2/brm-atpase inhibitors |
CN113164466A (zh) | 2018-09-11 | 2021-07-23 | 柯瑞斯公司 | 使用具有锌结合部分的磷酸肌醇3-激酶抑制剂的联合治疗 |
BR112021005082A2 (pt) | 2018-09-18 | 2021-06-08 | Nikang Therapeutics, Inc. | derivados de anel tricíclico fundido como inibidores de src homologia-2 fosfatase |
JP2022502496A (ja) | 2018-09-25 | 2022-01-11 | ブラック ダイアモンド セラピューティクス,インコーポレイティド | チロシンキナーゼ阻害剤組成物、作製方法、および使用方法 |
AU2019346550A1 (en) | 2018-09-25 | 2021-04-22 | Black Diamond Therapeutics, Inc. | Quinazoline derivatives as tyrosine kinase inhibitor, compositions, methods of making them and their use |
WO2020065453A1 (en) | 2018-09-29 | 2020-04-02 | Novartis Ag | Process of manufacture of a compound for inhibiting the activity of shp2 |
EP3873532A1 (en) | 2018-10-31 | 2021-09-08 | Novartis AG | Dc-sign antibody drug conjugates |
JP7516029B2 (ja) | 2018-11-16 | 2024-07-16 | アムジエン・インコーポレーテツド | Kras g12c阻害剤化合物の重要な中間体の改良合成法 |
JP7377679B2 (ja) | 2018-11-19 | 2023-11-10 | アムジエン・インコーポレーテツド | がん治療のためのkrasg12c阻害剤及び1種以上の薬学的に活性な追加の薬剤を含む併用療法 |
MX2021005700A (es) | 2018-11-19 | 2021-07-07 | Amgen Inc | Inhibidores de kras g12c y metodos de uso de los mismos. |
US20220056015A1 (en) | 2018-12-20 | 2022-02-24 | Amgen Inc. | Kif18a inhibitors |
EP3898592B1 (en) | 2018-12-20 | 2024-10-09 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
WO2020132648A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Kif18a inhibitors |
MA54550A (fr) | 2018-12-20 | 2022-03-30 | Amgen Inc | Inhibiteurs de kif18a |
EP3897637A1 (en) | 2018-12-20 | 2021-10-27 | Novartis AG | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
AU2019409132A1 (en) | 2018-12-21 | 2021-07-15 | Novartis Ag | Antibodies to PMEL17 and conjugates thereof |
EP3908577A4 (en) * | 2019-01-11 | 2022-06-29 | The Board of Trustees of the Leland Stanford Junior University | Pi4-kinase inhibitors with anti-cancer activity |
AU2020221247A1 (en) | 2019-02-12 | 2021-08-05 | Sumitomo Pharma Oncology, Inc. | Formulations comprising heterocyclic protein kinase inhibitors |
US20220144798A1 (en) | 2019-02-15 | 2022-05-12 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
EP3924054A1 (en) | 2019-02-15 | 2021-12-22 | Novartis AG | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
EP3930845A1 (en) | 2019-03-01 | 2022-01-05 | Revolution Medicines, Inc. | Bicyclic heterocyclyl compounds and uses thereof |
MX2021010319A (es) | 2019-03-01 | 2021-12-10 | Revolution Medicines Inc | Compuestos biciclicos de heteroarilo y usos de estos. |
MX2021011289A (es) | 2019-03-22 | 2021-11-03 | Sumitomo Pharma Oncology Inc | Composiciones que comprenden moduladores de isoenzima m2 muscular de piruvato cinasa pkm2 y metodos de tratamiento que usan las mismas. |
EP3738593A1 (en) | 2019-05-14 | 2020-11-18 | Amgen, Inc | Dosing of kras inhibitor for treatment of cancers |
SG11202112855WA (en) | 2019-05-21 | 2021-12-30 | Amgen Inc | Solid state forms |
AU2020300619A1 (en) | 2019-07-03 | 2022-01-27 | Sumitomo Pharma Oncology, Inc. | Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof |
US20220281843A1 (en) | 2019-08-02 | 2022-09-08 | Amgen Inc. | Kif18a inhibitors |
MX2022001295A (es) | 2019-08-02 | 2022-02-22 | Amgen Inc | Inhibidores de kif18a. |
EP4007753A1 (en) | 2019-08-02 | 2022-06-08 | Amgen Inc. | Kif18a inhibitors |
WO2021026100A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Pyridine derivatives as kif18a inhibitors |
CN114787150A (zh) | 2019-08-15 | 2022-07-22 | 黑钻治疗公司 | 炔基喹唑啉化合物 |
WO2021055728A1 (en) | 2019-09-18 | 2021-03-25 | Merck Sharp & Dohme Corp. | Small molecule inhibitors of kras g12c mutant |
EP4034535A4 (en) | 2019-09-26 | 2023-11-22 | Novartis AG | AZACHINOLINE COMPOUNDS AND USES THEREOF |
US20240058446A1 (en) | 2019-10-03 | 2024-02-22 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
EP4045047A1 (en) | 2019-10-15 | 2022-08-24 | Amgen Inc. | Combination therapy of kras inhibitor and shp2 inhibitor for treatment of cancers |
AU2020369569A1 (en) | 2019-10-24 | 2022-04-14 | Amgen Inc. | Pyridopyrimidine derivatives useful as KRAS G12C and KRAS G12D inhibitors in the treatment of cancer |
BR112022007783A8 (pt) | 2019-10-28 | 2023-04-11 | Merck Sharp & Dohme | Composto, composição farmacêutica, e, métodos para inibir proteína g12c de kras e para tratar câncer |
EP4051266A1 (en) | 2019-10-31 | 2022-09-07 | Taiho Pharmaceutical Co., Ltd. | 4-aminobut-2-enamide derivatives and salts thereof |
US11608346B2 (en) | 2019-11-04 | 2023-03-21 | Revolution Medicines, Inc. | Ras inhibitors |
EP4054720A1 (en) | 2019-11-04 | 2022-09-14 | Revolution Medicines, Inc. | Ras inhibitors |
MX2022005359A (es) | 2019-11-04 | 2022-06-02 | Revolution Medicines Inc | Inhibidores de ras. |
US20210139517A1 (en) | 2019-11-08 | 2021-05-13 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
WO2021097207A1 (en) | 2019-11-14 | 2021-05-20 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
AU2020381492A1 (en) | 2019-11-14 | 2022-05-26 | Amgen Inc. | Improved synthesis of KRAS G12C inhibitor compound |
WO2021108683A1 (en) | 2019-11-27 | 2021-06-03 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
WO2021106231A1 (en) | 2019-11-29 | 2021-06-03 | Taiho Pharmaceutical Co., Ltd. | A compound having inhibitory activity against kras g12d mutation |
WO2021126816A1 (en) | 2019-12-16 | 2021-06-24 | Amgen Inc. | Dosing regimen of a kras g12c inhibitor |
KR20220116257A (ko) | 2019-12-20 | 2022-08-22 | 노파르티스 아게 | 골수섬유증 및 골수이형성 증후군을 치료하기 위한, 데시타빈 또는 항 pd-1 항체 스파르탈리주맙을 포함하거나 또는 포함하지 않는, 항 tim-3 항체 mbg453 및 항 tgf-베타 항체 nis793의 조합물 |
CN111057065B (zh) * | 2019-12-24 | 2021-04-23 | 沈阳药科大学 | 噻吩并嘧啶类化合物的制备方法和用途 |
JP2023509701A (ja) | 2020-01-07 | 2023-03-09 | レヴォリューション・メディスンズ,インコーポレイテッド | Shp2阻害剤投薬およびがんを処置する方法 |
WO2021195206A1 (en) | 2020-03-24 | 2021-09-30 | Black Diamond Therapeutics, Inc. | Polymorphic forms and related uses |
US20230174518A1 (en) | 2020-04-24 | 2023-06-08 | Taiho Pharmaceutical Co., Ltd. | Kras g12d protein inhibitors |
WO2021215545A1 (en) | 2020-04-24 | 2021-10-28 | Taiho Pharmaceutical Co., Ltd. | Anticancer combination therapy with n-(1-acryloyl-azetidin-3-yl)-2-((1h-indazol-3-yl)amino)methyl)-1h-imidazole-5-carboxamide inhibitor of kras-g12c |
US20230181756A1 (en) | 2020-04-30 | 2023-06-15 | Novartis Ag | Ccr7 antibody drug conjugates for treating cancer |
EP4161519A4 (en) * | 2020-06-03 | 2024-07-17 | Yumanity Therapeutics Inc | PURINES AND METHODS OF USE |
KR20230024967A (ko) | 2020-06-11 | 2023-02-21 | 노파르티스 아게 | Zbtb32 억제제 및 이의 용도 |
WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
US20230255972A1 (en) | 2020-07-15 | 2023-08-17 | Taiho Pharmaceutical Co., Ltd. | Pyrimidine compound-containing combination to be used in tumor treatment |
CN116134027A (zh) | 2020-08-03 | 2023-05-16 | 诺华股份有限公司 | 杂芳基取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途 |
AR123185A1 (es) | 2020-08-10 | 2022-11-09 | Novartis Ag | Compuestos y composiciones para inhibir ezh2 |
WO2022036287A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Anti-cd72 chimeric receptors and uses thereof |
WO2022036265A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Chimeric tim receptors and uses thereof |
WO2022036285A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase |
WO2022043556A1 (en) | 2020-08-31 | 2022-03-03 | Novartis Ag | Stable radiopharmaceutical composition |
WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
WO2022043558A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
AU2021344830A1 (en) | 2020-09-03 | 2023-04-06 | Revolution Medicines, Inc. | Use of SOS1 inhibitors to treat malignancies with SHP2 mutations |
CN116457358A (zh) | 2020-09-15 | 2023-07-18 | 锐新医药公司 | 作为ras抑制剂以治疗癌症的吲哚衍生物 |
IL301509A (en) | 2020-09-21 | 2023-05-01 | Prelude Therapeutics Inc | CDK inhibitors and their use as drugs |
TW202237638A (zh) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | 烏苷酸環化酶c(gcc)抗原結合劑之組成物及其使用方法 |
TW202237119A (zh) | 2020-12-10 | 2022-10-01 | 美商住友製藥腫瘤公司 | Alk﹘5抑制劑和彼之用途 |
CN117396472A (zh) | 2020-12-22 | 2024-01-12 | 上海齐鲁锐格医药研发有限公司 | Sos1抑制剂及其用途 |
CA3202355A1 (en) | 2020-12-22 | 2022-06-30 | Jiping Fu | Compounds for degrading cyclin-dependent kinase 2 via ubiquitin proteosome pathway |
WO2022170052A1 (en) | 2021-02-05 | 2022-08-11 | Black Diamond Therapeutics, Inc. | Quinazoline derivatives, pyridopyrimidine derivatives, pyrimidopyrimidine derivatives, and uses thereof |
EP4298114A1 (en) | 2021-02-26 | 2024-01-03 | Kelonia Therapeutics, Inc. | Lymphocyte targeted lentiviral vectors |
TW202304979A (zh) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途 |
PE20240327A1 (es) | 2021-04-13 | 2024-02-22 | Nuvalent Inc | Heterociclos con sustitucion amino para tratar canceres con mutaciones de egfr |
MX2023012277A (es) | 2021-04-16 | 2023-12-07 | Novartis Ag | Conjugados anticuerpo-fármaco y métodos para fabricar los mismos. |
JP2024517845A (ja) | 2021-05-05 | 2024-04-23 | レボリューション メディシンズ インコーポレイテッド | がん治療のためのras阻害剤 |
WO2022235866A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
WO2022235864A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Ras inhibitors |
AR125874A1 (es) | 2021-05-18 | 2023-08-23 | Novartis Ag | Terapias de combinación |
US20240317759A1 (en) | 2021-05-28 | 2024-09-26 | Taiho Pharmaceutical Co., Ltd. | Small molecule inhibitors of kras mutated proteins |
TW202317589A (zh) | 2021-07-14 | 2023-05-01 | 美商尼坎醫療公司 | 作為kras抑制劑的伸烷基衍生物 |
KR20240119868A (ko) | 2021-07-28 | 2024-08-06 | 세로 테라퓨틱스, 인코포레이티드 | 키메라 tim4 수용체 및 이의 용도 |
AR127308A1 (es) | 2021-10-08 | 2024-01-10 | Revolution Medicines Inc | Inhibidores ras |
TW202340214A (zh) | 2021-12-17 | 2023-10-16 | 美商健臻公司 | 做為shp2抑制劑之吡唑并吡𠯤化合物 |
EP4227307A1 (en) | 2022-02-11 | 2023-08-16 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
WO2023172940A1 (en) | 2022-03-08 | 2023-09-14 | Revolution Medicines, Inc. | Methods for treating immune refractory lung cancer |
US20230303509A1 (en) | 2022-03-28 | 2023-09-28 | Nikang Therapeutics, Inc. | Sulfonamido derivatives as cyclin-dependent kinase 2 inhibitors |
WO2023214325A1 (en) | 2022-05-05 | 2023-11-09 | Novartis Ag | Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors |
WO2023240024A1 (en) | 2022-06-08 | 2023-12-14 | Nikang Therapeutics, Inc. | Sulfamide derivatives as cyclin-dependent kinase 2 inhibitors |
WO2023240263A1 (en) | 2022-06-10 | 2023-12-14 | Revolution Medicines, Inc. | Macrocyclic ras inhibitors |
WO2024023666A1 (en) | 2022-07-26 | 2024-02-01 | Novartis Ag | Crystalline forms of an akr1c3 dependent kars inhibitor |
WO2024081916A1 (en) | 2022-10-14 | 2024-04-18 | Black Diamond Therapeutics, Inc. | Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives |
WO2024102849A1 (en) | 2022-11-11 | 2024-05-16 | Nikang Therapeutics, Inc. | Bifunctional compounds containing 2,5-substituted pyrimidine derivatives for degrading cyclin-dependent kinase 2 via ubiquitin proteasome pathway |
WO2024206858A1 (en) | 2023-03-30 | 2024-10-03 | Revolution Medicines, Inc. | Compositions for inducing ras gtp hydrolysis and uses thereof |
WO2024211663A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
WO2024211712A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
US20240352036A1 (en) | 2023-04-14 | 2024-10-24 | Revolution Medicines, Inc. | Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof |
US20240352038A1 (en) | 2023-04-14 | 2024-10-24 | Revolution Medicines, Inc. | Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065391A1 (en) * | 2003-01-23 | 2004-08-05 | Almirall Prodesfarma S.A. | 4-AMINOTHIENO[2,3-d]PYRIMIDINE-6-CARBONITRILE DERIVATIVES AS PDE7 INHIBITORS |
WO2005094358A2 (en) * | 2004-03-29 | 2005-10-13 | Roswell Park Cancer Institute | Method of treating solid tumors and leukemias using combination therapy of vitamin d and anti-metabolic nucleoside analogs |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608053B2 (en) * | 2000-04-27 | 2003-08-19 | Yamanouchi Pharmaceutical Co., Ltd. | Fused heteroaryl derivatives |
EP1748772A2 (en) * | 2004-04-09 | 2007-02-07 | University Of South Florida | Combination therapies for cancer and proliferative angiopathies |
EP2301533A1 (en) * | 2004-07-09 | 2011-03-30 | University of Pittsburgh | Wortmannin Analogs and Method of Using Same |
GB0423653D0 (en) * | 2004-10-25 | 2004-11-24 | Piramed Ltd | Pharmaceutical compounds |
BRPI0710866A2 (pt) | 2006-04-26 | 2012-08-14 | Hoffmann La Roche | compostos farmacÊuticos |
EP2046799B1 (en) * | 2006-04-26 | 2017-07-19 | Genentech, Inc. | Phosphoinositide 3-kinase inhibitor compounds and pharmaceutical compositions containing them |
ATE471940T1 (de) * | 2006-04-26 | 2010-07-15 | Hoffmann La Roche | Thienoä3,2-düpyrimidin-derivat geeignet als pi3k inhibitor |
CL2007001167A1 (es) * | 2006-04-26 | 2008-01-25 | Genentech Inc | Compuestos derivados de pirimidina condensada, inhibidores de p13-quinasa; procesos para preparar los compuestos; composicion farmaceutica que los comprende; uso de los compuestos en la preparacion de medicamentos; proceso para preparar la composicion farmaceutica; y kit que incluye a la composicionfarmaceutica. |
GB0608820D0 (en) | 2006-05-04 | 2006-06-14 | Piramed Ltd | Pharmaceutical compounds |
EP2518074B1 (en) * | 2006-12-07 | 2015-07-22 | F.Hoffmann-La Roche Ag | Phosphoinositide 3-kinase inhibitor compounds and methods of use |
TW200829594A (en) * | 2006-12-07 | 2008-07-16 | Piramed Ltd | Phosphoinositide 3-kinase inhibitor compounds and methods of use |
CA2692050A1 (en) | 2007-06-12 | 2008-12-18 | F.Hoffmann-La Roche Ag | Thiazoliopyrimidines and their use as inhibitors of phosphatidylinositol-3 kinase |
WO2008152387A1 (en) | 2007-06-12 | 2008-12-18 | F.Hoffmann-La Roche Ag | Quinazoline derivatives as pi3 kinase inhibitors |
WO2008152394A1 (en) | 2007-06-12 | 2008-12-18 | F.Hoffmann-La Roche Ag | Pharmaceutical compounds |
-
2008
- 2008-09-10 TW TW97134764A patent/TWI471134B/zh not_active IP Right Cessation
- 2008-09-10 AU AU2008298948A patent/AU2008298948B2/en not_active Ceased
- 2008-09-10 EP EP08799418.2A patent/EP2205242B1/en active Active
- 2008-09-10 RU RU2010112837/15A patent/RU2523890C2/ru not_active IP Right Cessation
- 2008-09-10 WO PCT/US2008/075883 patent/WO2009036082A2/en active Application Filing
- 2008-09-10 AR ARP080103927A patent/AR068402A1/es unknown
- 2008-09-10 PE PE2013001830A patent/PE20140100A1/es not_active Application Discontinuation
- 2008-09-10 CL CL2008002687A patent/CL2008002687A1/es unknown
- 2008-09-10 CA CA2699202A patent/CA2699202C/en not_active Expired - Fee Related
- 2008-09-10 BR BRPI0816769A patent/BRPI0816769A2/pt not_active Application Discontinuation
- 2008-09-10 KR KR1020107007940A patent/KR101584823B1/ko active IP Right Grant
- 2008-09-10 CN CN200880116412.4A patent/CN101939006B/zh not_active Expired - Fee Related
- 2008-09-10 JP JP2010524965A patent/JP5658565B2/ja not_active Expired - Fee Related
- 2008-09-10 PE PE2008001582A patent/PE20090678A1/es not_active Application Discontinuation
- 2008-09-10 ES ES08799418.2T patent/ES2537352T3/es active Active
- 2008-09-10 US US12/208,227 patent/US8247397B2/en not_active Expired - Fee Related
- 2008-09-10 MX MX2010002543A patent/MX338504B/es active IP Right Grant
-
2010
- 2010-03-07 IL IL204333A patent/IL204333A/en not_active IP Right Cessation
- 2010-04-08 ZA ZA2010/02475A patent/ZA201002475B/en unknown
- 2010-12-15 HK HK10111710.4A patent/HK1145287A1/zh not_active IP Right Cessation
-
2011
- 2011-05-17 US US13/109,670 patent/US8604014B2/en not_active Expired - Fee Related
-
2013
- 2013-08-28 US US14/012,673 patent/US20130345217A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065391A1 (en) * | 2003-01-23 | 2004-08-05 | Almirall Prodesfarma S.A. | 4-AMINOTHIENO[2,3-d]PYRIMIDINE-6-CARBONITRILE DERIVATIVES AS PDE7 INHIBITORS |
WO2005094358A2 (en) * | 2004-03-29 | 2005-10-13 | Roswell Park Cancer Institute | Method of treating solid tumors and leukemias using combination therapy of vitamin d and anti-metabolic nucleoside analogs |
Non-Patent Citations (2)
Title |
---|
Masahiko Hayakawa et. al. Synthesis and biological evaluation of pyrido[3’,2’:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110α inhibitors. Bioorganic & Medicinal Chemistry Letters, 2007, Vol. 17, No. 9, p.2438-2442 Zhou, Hong et. al. Effects of the EGFR/HER2 kinase inhibitor on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. International Journal of Radiation Oncology Biology Physics, 2004, Vol. 58, No. 2, p.344-352 Tianhong Li et. al. Schedule-Dependent Cytotoxic Synergism of Pemetrexed and Erlotinib in Human Non–Small Cell Lung Cancer Cells. Clinical Cancer Reseach, 2007, Vol. 13, No. 11, p.3413-3422 * |
Zhou, Hong et. al. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. International Journal of Radiation Oncology Biology Physics, 2004, Vol. 58, No. 2, p.344-352 * |
Also Published As
Publication number | Publication date |
---|---|
KR101584823B1 (ko) | 2016-01-22 |
PE20140100A1 (es) | 2014-02-12 |
BRPI0816769A2 (pt) | 2016-11-29 |
ZA201002475B (en) | 2011-06-29 |
JP5658565B2 (ja) | 2015-01-28 |
MX338504B (es) | 2016-04-20 |
US20090098135A1 (en) | 2009-04-16 |
WO2009036082A2 (en) | 2009-03-19 |
JP2010539177A (ja) | 2010-12-16 |
ES2537352T3 (es) | 2015-06-05 |
PE20090678A1 (es) | 2009-06-27 |
IL204333A (en) | 2016-08-31 |
KR20100085912A (ko) | 2010-07-29 |
RU2010112837A (ru) | 2011-10-20 |
MX2010002543A (es) | 2010-03-29 |
AU2008298948B2 (en) | 2014-09-04 |
US20130345217A1 (en) | 2013-12-26 |
EP2205242B1 (en) | 2015-04-15 |
AR068402A1 (es) | 2009-11-18 |
CA2699202A1 (en) | 2009-03-19 |
EP2205242A2 (en) | 2010-07-14 |
RU2523890C2 (ru) | 2014-07-27 |
US8247397B2 (en) | 2012-08-21 |
CN101939006A (zh) | 2011-01-05 |
HK1145287A1 (zh) | 2011-04-15 |
US20110223619A1 (en) | 2011-09-15 |
TW200920377A (en) | 2009-05-16 |
CN101939006B (zh) | 2015-09-16 |
US8604014B2 (en) | 2013-12-10 |
WO2009036082A3 (en) | 2009-11-19 |
CA2699202C (en) | 2016-09-27 |
CL2008002687A1 (es) | 2009-01-16 |
AU2008298948A1 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI471134B (zh) | 肌醇磷脂3-激酶抑制劑化合物及化療劑之組合及使用方法 | |
US9335320B2 (en) | Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents for the treatment of hematopoietic malignancies | |
JP6388859B2 (ja) | 抗her2抗体−薬剤コンジュゲートと化学療法剤の併用及び使用方法 | |
RU2665949C2 (ru) | Селективность в отношении мутантных форм и комбинации соединения, представляющего собой ингибитор фосфоинозитид-3-киназы, и химиотерапевтических агентов для лечения рака | |
KR20140025434A (ko) | Akt 억제제 화합물 및 화학요법제의 조합물, 및 사용 방법 | |
EP2890698B1 (en) | Dioxino- and oxazin-[2,3-d]pyrimidine pi3k inhibitor compounds and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |