Nothing Special   »   [go: up one dir, main page]

TWI462107B - Electronics system, memory and method for providing the same - Google Patents

Electronics system, memory and method for providing the same Download PDF

Info

Publication number
TWI462107B
TWI462107B TW100129641A TW100129641A TWI462107B TW I462107 B TWI462107 B TW I462107B TW 100129641 A TW100129641 A TW 100129641A TW 100129641 A TW100129641 A TW 100129641A TW I462107 B TWI462107 B TW I462107B
Authority
TW
Taiwan
Prior art keywords
diode
memory
coupled
doping
supply voltage
Prior art date
Application number
TW100129641A
Other languages
Chinese (zh)
Other versions
TW201225092A (en
Inventor
Chien Shine Chung
Original Assignee
Chien Shine Chung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien Shine Chung filed Critical Chien Shine Chung
Publication of TW201225092A publication Critical patent/TW201225092A/en
Application granted granted Critical
Publication of TWI462107B publication Critical patent/TWI462107B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

電子系統、記憶體及其提供方法 Electronic system, memory and method of providing same

本發明係有關於一記憶存儲單元,特別是記憶體陣列之可編程電阻元件。 The present invention relates to a memory storage unit, particularly a programmable resistor element of a memory array.

可編程電阻元件通常是指元件之電阻狀態可在編程後改變。電阻狀態可以由電阻值來決定。例如,電阻性元件可以是單次性可編程(One-Time Programmable,OTP)元件(如電性熔絲),而編程方法可以施用高電壓,來產生高電流通過OTP元件。當高電流經由打開的編程選擇器流過OTP元件,OTP元件將被燒成高或低電阻狀態(取決於是熔絲或反熔絲)而加以編程。 A programmable resistive element generally means that the resistive state of the component can be changed after programming. The resistance state can be determined by the resistance value. For example, the resistive element can be a One-Time Programmable (OTP) component (such as an electrical fuse), and the programming method can apply a high voltage to generate a high current through the OTP component. When a high current flows through the OTP component via the open programming selector, the OTP component will be programmed to be fired in a high or low resistance state (depending on whether it is a fuse or an antifuse).

電性熔絲是一種常見的OTP,而這種可編程電阻元件,可以是多晶矽、矽化多晶矽、矽化物、熱隔離的主動區、金屬、金屬合金或它們的組合。金屬可以是鋁,銅或其他過渡金屬。其中最常用的電性熔絲是矽化的多晶矽,其用互補式金氧半導體電晶體(CMOS)的閘極製成,用來作為內連接(interconnect)。電性熔絲也可以是一個或多個接點(contact)或層間接點(via),而不是小片段的內連接。高電流可把接點或層間接點燒成高電阻狀態。電性熔絲可以是反熔絲,其中高電壓使電阻降低,而不是提高電阻 。反熔絲可由一個或多個接點或層間接點組成,並含有絕緣體於其間。反熔絲也可由CMOS閘極耦合於CMOS本體,其含有閘極氧化層當做為絕緣體。 Electrical fuses are a common type of OTP, and such programmable resistive elements can be polycrystalline germanium, germanium polysilicon, germanium, thermally isolated active regions, metals, metal alloys, or combinations thereof. The metal can be aluminum, copper or other transition metal. The most commonly used electrical fuse is a deuterated polysilicon, which is made of a complementary MOS transistor gate for internal connections. The electrical fuse can also be one or more contacts or layer invias, rather than an internal connection of small segments. High current can burn contacts or layers indirectly to a high resistance state. The electrical fuse can be an anti-fuse, where the high voltage reduces the resistance rather than increasing the resistance . The antifuse may be composed of one or more contacts or layer indirect points and has an insulator therebetween. The antifuse can also be coupled to the CMOS body by a CMOS gate that contains a gate oxide layer as an insulator.

圖1所示為一種傳統的可編程電阻式記憶存儲單元。存儲單元10包含一電阻元件11和一N型金氧半導體電晶體(NMOS)編程選擇器12。電阻元件11一端耦合到NMOS的汲極,另一端耦合到正電壓V+。NMOS 12的閘極耦合到選擇信號SEL,源極耦合到負電壓V-。當高電壓加在V+而低電壓加在V-時,電阻元件10則可被編程,經由提高編程選擇信號SEL來打開NMOS 12。一種最常見的電阻元件是矽化多晶矽,乃是在同時製作MOS閘極時用的同樣材料。NMOS編程選擇器12的面積,需要足夠大,以使所需的編程電流可持續幾微秒。矽化多晶矽的編程電流通常是從幾毫安(對寬度約40奈米的熔絲)至20毫安(對寬度約0.6微米熔絲)。因此使用矽化多晶矽的電性熔絲存儲單元往往需有大的面積。 Figure 1 shows a conventional programmable resistive memory storage unit. The memory cell 10 includes a resistive element 11 and an N-type MOS transistor (NMOS) programming selector 12. The resistive element 11 is coupled at one end to the drain of the NMOS and at the other end to a positive voltage V+. The gate of NMOS 12 is coupled to select signal SEL and the source is coupled to a negative voltage V-. When a high voltage is applied to V+ and a low voltage is applied to V-, the resistive element 10 can be programmed to turn on the NMOS 12 by raising the program select signal SEL. One of the most common resistive components is deuterated polysilicon, which is the same material used in the fabrication of MOS gates at the same time. The area of the NMOS programming selector 12 needs to be large enough to allow the required programming current to last for a few microseconds. The programming current for deuterated polysilicon is typically from a few milliamps (for a fuse of about 40 nanometers in width) to 20 milliamps (for a fuse of about 0.6 micrometers in width). Therefore, an electrical fuse storage unit using a deuterated polysilicon tends to have a large area.

可編程電阻元件可以是可逆的電阻元件,可以重複編程且可逆編程成數位邏輯值“0”或“1”。可編程電阻元件可從相變材料來製造,如鍺(Ge)、銻(Sb)及碲(Te)的組成Ge2Sb2Te5(GST-225)或包括成分銦(In)、錫(Sn)或硒(Se)的GeSbTe類材料。經由高電壓短脈衝或低電壓長脈衝,相變材料可被編程成非晶體態高電阻狀態或結晶態低電阻狀態。可逆電阻元件可以是電阻式隨機存取記憶體(電阻式記憶體RRAM),存儲單元由在金屬或金屬合金電極之間的金屬氧化物,如鉑/氧化鎳/鉑(Pt/NiO/Pt)或氮化鈦/氧化鈦/氧化鉿/氮化鈦(TiN/TiOx/HfO2/TiN)製成。該電阻狀態可逆性的改變是經由電 壓或電流脈衝的極性、強度及持續時間,產生或消滅導電細絲。另一種類似電阻式隨機存取記憶體(RRAM)的可編程電阻元件是導電橋隨機存取記憶體(CBRAM)。此記憶體是基於電化學沉積和移除在金屬或金屬合金電極之間的固態電解質薄膜裏的金屬離子。電極可為一個可氧化陽極和惰性陰極,而且電解質可為摻銀或銅的硫系玻璃如硒化鍺(GeSe)或硒化硫(GeS)等。該電阻狀態可逆性的改變是經由電壓或電流脈衝的極性、強度及持續時間,產生或消滅導電橋。 The programmable resistive element can be a reversible resistive element that can be reprogrammed and reversibly programmable to a digital logic value of "0" or "1". The programmable resistive element can be fabricated from a phase change material such as germanium (Ge), germanium (Sb), and germanium (Te), Ge2Sb2Te5 (GST-225) or including the constituent indium (In), tin (Sn), or selenium ( Se) GeSbTe type material. The phase change material can be programmed to an amorphous high resistance state or a crystalline low resistance state via a high voltage short pulse or a low voltage long pulse. The reversible resistance element may be a resistive random access memory (resistive memory RRAM), and the memory unit is made of a metal oxide between metal or metal alloy electrodes, such as platinum/nickel oxide/platinum (Pt/NiO/Pt). Or made of titanium nitride/titanium oxide/yttria/titanium nitride (TiN/TiOx/HfO2/TiN). The reversible change of the resistance state is via electricity The polarity, intensity, and duration of a pulse or current pulse that produces or destroys the conductive filament. Another programmable resistive element like Resistive Random Access Memory (RRAM) is Conductive Bridge Random Access Memory (CBRAM). This memory is based on electrochemical deposition and removal of metal ions in a solid electrolyte film between metal or metal alloy electrodes. The electrode may be an oxidizable anode and an inert cathode, and the electrolyte may be a silver- or copper-containing chalcogenide glass such as strontium selenide (GeSe) or selenium sulphide (GeS). The reversible change in resistance state is the generation or elimination of a conductive bridge via the polarity, intensity and duration of the voltage or current pulse.

圖2a顯示了一個傳統雙極性電晶體22的截面圖。雙極性電晶體22包括一P+主動區(active region)23,一N淺井24,一N+主動區27,一P型基體25和用來隔離元件的一淺溝槽隔離(STI)26。P+主動區23和N+主動區27耦合到N井24,就是雙極性電晶體22裏射極和基極二極體的P和N端,而P型基體25是雙極性電晶體22的集極。這種存儲單元需要N淺井24比淺溝槽隔離26淺,來妥善隔離每個存儲單元,因而需要比標準CMOS邏輯制程多3-4道光罩,而使得它的製作比較昂貴。 Figure 2a shows a cross-sectional view of a conventional bipolar transistor 22. The bipolar transistor 22 includes a P+ active region 23, an N shallow well 24, an N+ active region 27, a P-type substrate 25, and a shallow trench isolation (STI) 26 for isolating components. P+ active region 23 and N+ active region 27 are coupled to N-well 24, which is the P and N terminals of the emitter and base diodes of bipolar transistor 22, while P-type substrate 25 is the collector of bipolar transistor 22. . Such a memory cell requires N shallow wells 24 to be shallower than shallow trench isolations 26 to properly isolate each memory cell, thus requiring 3-4 more photomasks than standard CMOS logic processes, making it more expensive to fabricate.

圖2b所示為另一相變記憶體(PCM)的可編程電阻元件。相變記憶體材料有相變薄膜21'和二極體22'編程選擇器。相變薄膜21'被耦合在二極體陽極22'和正電壓V+之間。二極體的陰極22'被耦合到負電壓V-。施加適當的電壓在V+和V-之間持續一段適當的時間,相變薄膜21'可以被編程為高或低電阻狀態,根據電壓和持續時間而定。請見“Kwang-Jin Lee et al.,“A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,”International Solid-State Circuit Conference,2007,pp. 472-273”。圖2c所示為使用一二極體作為相變記憶體(PCM)存儲單元的編程選擇器的例子。雖然這項技術可以減少PCM存儲單元尺寸到只有6.8 F2(F代表特徵大小),二極體需要非常複雜的製造過程,如選擇性磊晶成長(SEG)。如此一來對嵌入式PCM的應用,將變的非常貴。 Figure 2b shows a programmable resistive element of another phase change memory (PCM). The phase change memory material has a phase change film 21' and a diode 22' programming selector. The phase change film 21' is coupled between the diode anode 22' and the positive voltage V+. The cathode 22' of the diode is coupled to a negative voltage V-. Applying the appropriate voltage between V+ and V- for an appropriate period of time, the phase change film 21' can be programmed to a high or low resistance state, depending on voltage and duration. See "Kwang-Jin Lee et al., "A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput," International Solid-State Circuit Conference, 2007, pp. 472-273". Figure 2c shows an example of a programming selector using a diode as a phase change memory (PCM) memory cell. Although this technique can reduce the PCM memory cell size to only 6.8 F2 (F represents features) Size), the diodes require very complex manufacturing processes, such as selective epitaxial growth (SEG). As a result, the application of embedded PCM will become very expensive.

圖3a和3b顯示經由電流方向來編程磁記憶體(MRAM)存儲單元210成磁平行(或狀態0)和磁反平行(或狀態1)。MRAM存儲單元210由一個磁性隧道接面(MTJ)211和一NMOS的編程選擇器218組成。磁隧道接面211擁有多層次的鐵磁或反鐵磁疊與如Al2O3或MgO的金屬氧化物,作為多層次之間的絕緣體。磁隧道接面211包括自由堆疊層212和固定堆疊層213。打開編程選擇器CMOS 218且施加適當的電流到磁性隧道接面211,自由堆疊層212就可排列成磁平行或磁反平行於固定堆疊層213,根據電流的流出或流入固定堆疊層213而定。因此,磁狀態可以進行編程,而狀態結果可以由電阻值來決定磁平行狀態的低電阻或磁反平行狀態的高電阻。狀態0或1電阻值分別為約5kΩ或10KΩ,而且編程電流約+/-100-200mA。編程MRAM存儲單元的一個例子描述在”2Mb Spin-Transfer Torque RAM with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read,”International Solid-State Circuit Conference,2007,pp.480-481”。 Figures 3a and 3b show that the magnetic memory (MRAM) memory cell 210 is magnetically parallel (or state 0) and magnetic anti-parallel (or state 1) via current direction. The MRAM memory cell 210 is comprised of a magnetic tunnel junction (MTJ) 211 and an NMOS programming selector 218. The magnetic tunnel junction 211 has a multi-layered ferromagnetic or antiferromagnetic stack with a metal oxide such as Al2O3 or MgO as an insulator between multiple layers. The magnetic tunnel junction 211 includes a free stack layer 212 and a fixed stack layer 213. The programming selector CMOS 218 is turned on and an appropriate current is applied to the magnetic tunnel junction 211, and the freely stacked layers 212 can be arranged in magnetic parallel or magnetic anti-parallel to the fixed stacked layer 213, depending on whether the current flows out or flows into the fixed stacked layer 213. . Therefore, the magnetic state can be programmed, and the state result can be determined by the resistance value to determine the low resistance of the magnetic parallel state or the high resistance of the magnetic anti-parallel state. The state 0 or 1 resistance values are approximately 5 kΩ or 10 KΩ, respectively, and the programming current is approximately +/- 100-200 mA. An example of programming an MRAM memory cell is described in "2Mb Spin-Transfer Torque RAM with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read," International Solid-State Circuit Conference, 2007, pp. 480-481.

本發明之一目的為提供使用二極體作為編程選擇器的可編程電阻元件存儲單元,可編程的電阻元件可以使用標準CMOS邏輯製程, 以減少存儲單元的大小和成本。 It is an object of the present invention to provide a programmable resistive element memory cell that uses a diode as a programming selector, and a programmable resistive component can be fabricated using a standard CMOS logic process. To reduce the size and cost of the storage unit.

因此本發明提供一種記憶體,包括:多個記憶存儲單元,至少一記憶存儲單元包括:一記憶元件有第一端和第二端,該第一端被耦合到第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端;一第二二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二個類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端,其中該第一二極體的該第二端被耦合到一第二電源電壓線,其中該第二二極體的該第一端被耦合到該第二或一第三電源電壓線,其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 Therefore, the present invention provides a memory comprising: a plurality of memory storage units, the at least one memory storage unit comprising: a memory element having a first end and a second end, the first end being coupled to the first supply voltage line; and a The first diode includes at least a first end and a second end, wherein the first end has a first type of doping, the second end has a second type of doping, the first dipole a first end is coupled to the second end of the memory element; a second diode includes at least a first end and a second end, wherein the first end has a first type of doping, the second end Having a second type of doping, the second end of the second diode being coupled to the second end of the memory element, wherein the second end of the first diode is coupled to a second a supply voltage line, wherein the first end of the second diode is coupled to the second or a third supply voltage line, wherein the memory element is configured to be programmable to a different logic state via application of a voltage to The first, second, and/or third supply voltage lines to turn on the first diode The second diode is turned off to a logic state, or the second diode is turned on to cut the first diode to another logic state.

因此本發明提供一種記憶體,包括:多個記憶存儲單元,至少有一記憶存儲單元包括:一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,第二端具有一第二類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端;一第二二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端,其中該第一二極體的該第二端和該第二二極體的該第一端被耦合到一第 二電源電壓線,其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一和第二電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 Therefore, the present invention provides a memory comprising: a plurality of memory storage units, at least one memory storage unit comprising: a memory element having a first end and a second end, the first end being coupled to a first supply voltage line; The first diode includes at least a first end and a second end, wherein the first end has a first type of doping and the second end has a second type of doping, the first dipole a first end is coupled to the second end of the memory element; a second diode includes at least a first end and a second end, wherein the first end has a first type of doping, the second end Having a second type of doping, the second end of the second diode being coupled to the second end of the memory element, wherein the second end of the first diode and the second diode The first end is coupled to a first a power supply voltage line, wherein the memory element is configured to be programmable to a different logic state, by applying a voltage to the first and second supply voltage lines, thereby turning the first diode off and cutting the second The diode goes to a logic state, or turns on the second diode to cut the first diode to another logic state.

因此本發明提供一種電子系統,包括:一種處理器;及一種記憶體可操作地連接到處理器,這記憶體包括至少數個記憶存儲單元來提供數據存儲,每個記憶存儲單元包括:一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二個類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端,該第一二極體的該第二端被耦合一到第二電源電壓線;一第二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端,而該第二二極體的該第一端被耦合到該第二或一第三電源電壓線;其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 Accordingly, the present invention provides an electronic system comprising: a processor; and a memory operatively coupled to the processor, the memory comprising at least a plurality of memory storage units for providing data storage, each memory storage unit comprising: a memory The component has a first end and a second end, the first end is coupled to a first supply voltage line; and a first diode includes at least a first end and a second end, wherein the first end has a a first type doping, the second end having a second type doping, the first end of the first diode being coupled to the second end of the memory element, the first diode The second end is coupled to the second power voltage line; the second body includes at least a first end and a second end, wherein the first end has a first type of doping, and the second end has a first a second type of doping, the second end of the second diode being coupled to the second end of the memory element, and the first end of the second diode being coupled to the second or third Supply voltage line; wherein the memory element is configured to be programmable to different logic a state, by applying a voltage to the first, second, and/or third power voltage lines, thereby turning on the first diode to cut the second diode to a logic state, or turning on the second The polar body cuts off the first diode to another logic state.

因此本發明提供一種方法來提供一記憶體,包括:提供多個記憶存儲單元,至少有一記憶存儲單元包括至少(i)一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及(ii)一第一二極體包含至少一第一端和一第二端,該第一端具有第一類型摻雜,該第二端擁有第二類型摻雜,該第一二極體的該第 一端被耦合到該記憶元件的該第二端而該第一二極體的該第二端被耦合到一第二電源電壓線;(iii)一第二二極體包含至少一第一端和一第二端,該第一端具有第一類型摻雜,該第二端具有第二類型摻雜,該第一端提供了二極體的一第一端,第二端提供二極體的一第二端,該第二二極體的該第二端被耦合到該記憶元件的該第二端而該第二二極體的該第一端被耦合到該第二或一第三電源電壓線;及其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 Accordingly, the present invention provides a method of providing a memory comprising: providing a plurality of memory storage units, at least one memory storage unit comprising at least (i) a memory element having a first end and a second end, the first end being coupled to a first power supply voltage line; and (ii) a first diode comprising at least a first end and a second end, the first end having a first type of doping and the second end having a second type of doping The first of the first diode One end is coupled to the second end of the memory element and the second end of the first diode is coupled to a second supply voltage line; (iii) a second diode includes at least a first end and a second end having a first type of doping, the second end having a second type of doping, the first end providing a first end of the diode, and the second end providing a diode a second end, the second end of the second diode is coupled to the second end of the memory element and the first end of the second diode is coupled to the second or a third power source a voltage line; and wherein the memory element is configured to be programmable to a different logic state, by applying a voltage to the first, second, and/or third supply voltage lines to turn the first diode off The second diode is turned to a logic state, or the second diode is turned on to cut the first diode to another logic state.

[習知] [知知]

10‧‧‧存儲單元 10‧‧‧ storage unit

11‧‧‧電阻元件 11‧‧‧Resistive components

12‧‧‧NMOS編程選擇器 12‧‧‧ NMOS programming selector

20,20’‧‧‧可編程電阻元件 20,20'‧‧‧Programmable Resistive Components

21,21‧‧‧相變薄膜 21, 21‧‧‧ phase change film

22‧‧‧雙極性電晶體 22‧‧‧Bipolar transistor

23‧‧‧P+射極 23‧‧‧P+ emitter

27‧‧‧N型基極 27‧‧‧N type base

25‧‧‧集極 25‧‧‧

22'‧‧‧二極體 22'‧‧‧ Diode

210‧‧‧存儲單元 210‧‧‧ storage unit

211‧‧‧磁性隧道接面 211‧‧‧Magnetic tunnel junction

218‧‧‧NMOS的編程選擇器 218‧‧‧ NMOS programming selector

212‧‧‧自由堆疊層 212‧‧‧Free stacking layer

213‧‧‧固定堆疊層 213‧‧‧Fixed stacking layer

[本發明] [this invention]

30‧‧‧記憶體存儲單元 30‧‧‧Memory memory unit

30a‧‧‧記憶元件 30a‧‧‧ memory components

32a,32b‧‧‧二極體 32a, 32b‧‧‧ diode

32,32’,32”‧‧‧二極體 32,32’,32”‧‧‧dipole

33,33’,33”‧‧‧P+主動區 33,33’,33”‧‧‧P+ active zone

34,34’,34”‧‧‧N井 34,34’,34”‧‧‧N Well

37,37’,37”‧‧‧N+主動區 37,37’,37”‧‧N+ active zone

36,36’‧‧‧淺溝槽隔離 36,36’‧‧‧Shallow trench isolation

31',31”‧‧‧主動區 31', 31" ‧ ‧ active area

39’‧‧‧閘極 39’‧‧‧ gate

39”‧‧‧矽化物阻擋層 39"‧‧‧ Telluride barrier

35,35’,35”‧‧‧基體 35,35’,35”‧‧‧ base

45‧‧‧接面二極體 45‧‧‧Connected diode

31-1,31-2,31-3‧‧‧島狀區 31-1, 31-2, 31-3‧‧‧ islands

39-1,39-2,39-3‧‧‧MOS閘極 39-1, 39-2, 39-3‧‧‧ MOS gate

40-1‧‧‧矽區 40-1‧‧‧矽区

40-2‧‧‧矽區 40-2‧‧‧矽区

33-1,2,3,‧‧‧P+主動區 33-1, 2, 3, ‧‧‧P+ active zone

37-1,2,3‧‧‧N+主動區 37-1, 2, 3‧‧‧N+ active zone

38'‧‧‧P+植入層 38'‧‧‧P+ implant layer

310,310’‧‧‧MRAM存儲單元 310,310’‧‧‧MRAM storage unit

311,311’‧‧‧MTJ 311,311’‧‧‧MTJ

317,318,317’,318’‧‧‧接面二極體 317,318,317',318'‧‧‧Connected diode

312,312’‧‧‧自由堆疊層 312,312'‧‧‧Free stacking layer

313,313’‧‧‧固定堆疊層 313,313'‧‧‧ fixed stack

321,320,321’320’‧‧‧N井 321,320,321'320’‧‧‧N Well

315,316,315’,316’‧‧‧P+主動區 315,316,315’,316’‧‧‧P+ active zone

314,319,314’,319’‧‧‧N+主動區 314,319,314’,319’‧‧‧N+ active zone

330,330’‧‧‧STI 330,330’‧‧‧STI

310-00,310-01,310-10,310-11‧‧‧存儲單元 310-00, 310-01, 310-10, 310-11‧‧‧ storage unit

317-00‧‧‧編程1二極體 317-00‧‧‧Programming 1 diode

318-00‧‧‧編程0二極體 318-00‧‧‧Programming 0 diode

100‧‧‧可編程電阻記憶體 100‧‧‧Programmable Resistor Memory

101‧‧‧陣列 101‧‧‧Array

110‧‧‧記憶體存儲單元 110‧‧‧ memory storage unit

111‧‧‧電阻元件 111‧‧‧Resistive components

112‧‧‧編程0二極體 112‧‧‧Programming 0 diode

113‧‧‧編程1二極體 113‧‧‧Programming 1 diode

BLR0 175-0‧‧‧參考位元線 BLR0 175-0‧‧‧ reference bit line

150-i‧‧‧字元線驅動器 150-i‧‧‧ character line driver

BLj 170-j‧‧‧位元線 BLj 170-j‧‧‧ bit line

LWLNi 154-i‧‧‧局部字元線 LWLNi 154-i‧‧‧ local word line

WLPi 153-i‧‧‧字元線 WLPi 153-i‧‧‧ character line

LWLNi,LWLPi‧‧‧局部字元線 LWLNi, LWLPi‧‧‧ local word line

120-0j,125‧‧‧Y-write-0通道閘 120-0j, 125‧‧‧Y-write-0 channel gate

121-j,126‧‧‧Y-write-1通道閘 121-j, 126‧‧‧Y-write-1 channel gate

140‧‧‧感應放大器 140‧‧‧Sense amplifier

160,161‧‧‧輸入端 160,161‧‧‧ input

130-j,135‧‧‧Y-read通道閘 130-j, 135‧‧‧Y-read channel gate

S700-S760,S800-S870‧‧‧步驟 S700-S760, S800-S870‧‧‧ steps

700‧‧‧處理器系統 700‧‧‧Processor System

740‧‧‧記憶體 740‧‧‧ memory

744‧‧‧可編程電阻元件 744‧‧‧Programmable resistance element

742‧‧‧存儲單元陣列 742‧‧‧Memory Cell Array

710‧‧‧中央處理單元 710‧‧‧Central Processing Unit

715‧‧‧共同匯流排 715‧‧‧Common bus

720‧‧‧輸入輸出單元 720‧‧‧Input and output unit

730‧‧‧硬盤驅動器 730‧‧‧ Hard disk drive

750‧‧‧光碟 750‧‧‧DVD

740‧‧‧記憶體 740‧‧‧ memory

760‧‧‧其他記憶體 760‧‧‧Other memory

圖1顯示一種傳統的可編程電阻式記憶存儲單元電路圖。 Figure 1 shows a circuit diagram of a conventional programmable resistive memory cell.

圖2a顯示相變記憶體(PCM)用的另一種傳統可編程電阻式元件電路圖,其採用雙極型晶體管作為編程選擇器。 Figure 2a shows a circuit diagram of another conventional programmable resistive element for phase change memory (PCM) that uses a bipolar transistor as a programming selector.

圖2b顯示另一種傳統相變記憶體(PCM)存儲單元電路圖,其採用二極體作為編程選擇器。 Figure 2b shows a circuit diagram of another conventional phase change memory (PCM) memory cell that employs a diode as a programming selector.

圖3a和3b顯示經由電流方向來編程傳統磁記憶體(MRAM)存儲單元成平行(或狀態0)和反平行(或狀態1)的磁方向示意圖。 Figures 3a and 3b show schematic diagrams of magnetic directions for programming a conventional magnetic memory (MRAM) memory cell in parallel (or state 0) and anti-parallel (or state 1) via current direction.

圖4顯示一方塊圖,包含根據本發明之使用至少一二極體的記憶存儲單元。 Figure 4 shows a block diagram comprising a memory storage unit using at least one diode in accordance with the present invention.

圖5a顯示一接面二極體的橫截面。根據此實施例,二極體用淺溝槽隔離(STI)來隔離陽極和陰極,並當編程選擇器。 Figure 5a shows a cross section of a junction diode. According to this embodiment, the diode is isolated from the anode and cathode by shallow trench isolation (STI) and when the selector is programmed.

圖5b顯示一接面二極體的橫截面。根據此實施例,此二極體用假 CMOS閘極來隔離陽極和陰極,並當編程選擇器。 Figure 5b shows a cross section of a junction diode. According to this embodiment, the diode is dummy The CMOS gate is used to isolate the anode and cathode, and when programming the selector.

圖5c顯示了一接面二極體的橫截面。根據此實施例,此二極體用矽化阻擋層(SBL)來隔離陽極和陰極,並當編程選擇器。 Figure 5c shows a cross section of a junction diode. According to this embodiment, the diode is separated from the anode and cathode by a deuteration barrier (SBL) and when the selector is programmed.

圖6a顯示一接面二極體的橫截面。根據此實施例,此二極體用絕緣矽基體(SOI)技術裏的假CMOS閘極來隔離陽極和陰極,並當編程選擇器。 Figure 6a shows a cross section of a junction diode. According to this embodiment, the diode is isolated from the anode and cathode by a dummy CMOS gate in an insulating germanium (SOI) technique and when the selector is programmed.

圖6b顯示一接面二極體的橫截面。根據此實施例,此二極體用翅式場效應電晶體(FINFET)技術裏假CMOS閘極來隔離陽極和陰極,並當編程選擇器。 Figure 6b shows a cross section of a junction diode. According to this embodiment, the diode is insulated with a dummy CMOS gate in a fin field effect transistor (FINFET) technique to isolate the anode and cathode, and when programming the selector.

圖7顯示一實施例的MRAM存儲單元之採用至少一二極體作為編程選擇器之電路圖。 Figure 7 shows a circuit diagram of an MRAM memory cell of an embodiment employing at least one diode as a program selector.

圖8a顯示一MRAM單元的頂視圖。按照此實施例,以磁隧道接面(MTJ)為電阻元件和與標準CMOS製程之P+/N井二極體作為編程選擇器。 Figure 8a shows a top view of an MRAM cell. According to this embodiment, a magnetic tunnel junction (MTJ) is used as a resistive element and a P+/N well diode of a standard CMOS process is used as a program selector.

圖8b顯示另一MRAM存儲單元的頂視圖。按照此實施例,以磁隧道接面(MTJ)作為電阻元件和與淺井CMOS製程之P+/N井二極體作為編程選擇器。 Figure 8b shows a top view of another MRAM memory cell. According to this embodiment, a magnetic tunnel junction (MTJ) is used as a resistive element and a P+/N well diode of a shallow well CMOS process is used as a program selector.

圖9a顯示一具三端點之2X2 MRAM存儲單元陣列的實施例示意圖,其使用二極體作為編程選擇器。而且根據此一實施例,編程右上邊的存儲單元為1之條件。 Figure 9a shows a schematic diagram of an embodiment of a three-terminal 2X2 MRAM memory cell array that uses a diode as a programming selector. Moreover, according to this embodiment, the condition that the upper right memory cell is programmed is one.

圖9b顯示另一實施例狀態列表,把2X2 MRAM存儲單元陣列右上邊的存儲單元編程為1之條件。 Figure 9b shows another embodiment status list for programming a memory cell on the upper right side of a 2X2 MRAM memory cell array to a condition of one.

圖10a顯示一具三端點之2X2 MRAM存儲單元陣列的實施例示意圖,其使用接面二極體作為編程選擇器。而且根據此一實施例,編程右上邊的存儲單元為0之條件。 Figure 10a shows a schematic diagram of an embodiment of a three-terminal 2X2 MRAM memory cell array using junction diodes as a programming selector. Moreover, according to this embodiment, the condition that the upper right memory cell is 0 is programmed.

圖10b顯示另一實施例狀態列表,把2X2 MRAM存儲單元陣列右上邊的存儲單元編程為0之條件。 Figure 10b shows another embodiment status list for programming a memory cell on the upper right side of a 2X2 MRAM memory cell array to zero.

圖11a及11b顯示一實施例之示意圖,在一二端點之2X2 MRAM存儲單元陣列裏,分別把右上邊的存儲單元編程為1和0。 Figures 11a and 11b show a schematic diagram of an embodiment in which the upper right memory cell is programmed to 1 and 0, respectively, in a two-terminal 2X2 MRAM memory cell array.

圖12a顯示一可編程電阻式記憶體的一部分的示意圖。根據此實施例,MRAM陣列由3端點的存儲單元構成。 Figure 12a shows a schematic diagram of a portion of a programmable resistive memory. According to this embodiment, the MRAM array is composed of three endpoint memory cells.

圖12b顯示另一實施例之示意圖,由二端點的MRAM存儲單元構成一部分MRAM的記憶體。 Figure 12b shows a schematic diagram of another embodiment in which a portion of the MRAM memory is formed by a two-terminal MRAM memory cell.

圖13a描繪一種方法來編程可編程電阻式記憶體的流程圖。 Figure 13a depicts a flow diagram of a method for programming a programmable resistive memory.

圖13b描繪一種方法來讀取可編程電阻式記憶體的流程圖。 Figure 13b depicts a flow diagram of a method for reading a programmable resistive memory.

圖14顯示一種處理器(Processor)的系統的實施例示意圖。 Figure 14 shows a schematic diagram of an embodiment of a system of processors.

在本發明之實施例中,P+/N井接面二極體作為可編程電阻式元件的編程選擇器。此二極體可以包括在N井裏的P+和N+主動區(Active regions)。由於P+和N+主動區和N井都是以現成的標準CMOS邏輯製程,這些元件可用有效率及符合成本效益的方法做成且不需額外的光罩或製程步驟,以節省成本。這可編程電阻式元件可以包括在一個電子系統裏。 In an embodiment of the invention, the P+/N well junction diode acts as a programming selector for the programmable resistive element. This diode can include P+ and N+ active regions in the N well. Since the P+ and N+ active regions and the N-well are both off-the-shelf standard CMOS logic processes, these components can be fabricated in an efficient and cost-effective manner without the need for additional masks or process steps to save cost. This programmable resistive element can be included in an electronic system.

圖4所示為依據一實施例的使用至少一二極體的記憶體存儲單元30方塊圖。特別是,存儲單元30包括一記憶元件30a和二極體32a,32b。記憶元件30a可耦合在二極體32a的陽極和電壓V之間。二極體32a的陰極可耦合到負電壓V-。記憶元件30a可耦合在二極體32b的陰極和電壓V之間。二極體32b的陽極可耦合到正電壓V+。在一實施例裏,記憶體存儲單元30可為磁記憶體(MRAM)存儲 單元,其含有為磁性隧道接面(MTJ)的記憶元件30a。二極體32a或32b可以作為編程0或1選擇器。二極體可以用P型基體的標準CMOS製程的P+/N井來建造。作為二極體陽極和陰極的P+和N+主動區就是CMOS元件的源極或汲極。N井就是CMOS井用來嵌入PMOS元件。另外,二極體可以用P井CMOS製程裏的N+/P井來構造,其使用N型基體。記憶元件30a和二極體32a或32b於電源電壓V和V+/V-之間是可互換的。經由一適當的時間裏施加適當的電壓(在V+和V-之間),記憶元件30a可由導通(turn on)一二極體且切斷(cut off)另一二極體而被編程為高或低電阻狀態,因此編程記憶體存儲單元30可存儲數據值(例如,數據的位元)。二極體32a或32b可以是接面二極體。接面二極體的P+和N+主動區可以使用假CMOS閘極、淺溝槽隔離(STI)、局部氧化(LOCOS)或矽化物阻擋層(SBL)來隔離。如果沒有矽化物靠近第一和第二主動區的邊界,第一和第二主動區可以對接(butted)在一起或用摻雜低劑量的主動區來分離這兩種主動區。 4 is a block diagram of a memory storage unit 30 using at least one diode in accordance with an embodiment. In particular, memory unit 30 includes a memory element 30a and diodes 32a, 32b. The memory element 30a can be coupled between the anode of the diode 32a and the voltage V. The cathode of diode 32a can be coupled to a negative voltage V-. Memory element 30a can be coupled between the cathode of diode 32b and voltage V. The anode of diode 32b can be coupled to a positive voltage V+. In one embodiment, the memory storage unit 30 can be a magnetic memory (MRAM) storage device. A unit containing a memory element 30a that is a magnetic tunnel junction (MTJ). The diode 32a or 32b can be used as a programmed 0 or 1 selector. The diode can be constructed using a standard CMOS process P+/N well of a P-type substrate. The P+ and N+ active regions as the diode anode and cathode are the source or drain of the CMOS component. Well N is a CMOS well used to embed PMOS components. Alternatively, the diode can be constructed using an N+/P well in a P-well CMOS process using an N-type substrate. Memory element 30a and diode 32a or 32b are interchangeable between supply voltages V and V+/V-. By applying an appropriate voltage (between V+ and V-) over a suitable period of time, memory element 30a can be programmed to be high by turning on a diode and cutting off the other diode. Or a low resistance state, so the program memory storage unit 30 can store data values (eg, bits of data). The diode 32a or 32b may be a junction diode. The P+ and N+ active regions of the junction diode can be isolated using a dummy CMOS gate, shallow trench isolation (STI), local oxidation (LOCOS) or germanium blocking layer (SBL). If no germanide is near the boundary of the first and second active regions, the first and second active regions may be butted together or doped with a low dose active region to separate the two active regions.

磁性隧道接面(MTJ)的存儲單元可作為說明關鍵實現概念的範例。圖5a顯示了一二極體32的橫截面,在可編程電阻元件裏使用淺溝槽隔離的P+/N井二極體做為編程選擇器。分別構成二極體32的P和N終端的P+主動區33和N+主動區37就是在標準CMOS邏輯製程裏的PMOS和NMOS的源極或汲極。N+主動區37被耦合到N井34,此N井在標準CMOS邏輯製程裏嵌入PMOS。淺溝槽隔離36隔離不同元件的主動區。電阻元件(沒有顯示在5a圖),如MTJ,可以一端被耦合到P+區33而另一端被耦合到高電壓電源V+。為了編程這種可編程電阻式元件,高電壓加在V+,低電壓或地電位施加到 N+區37。因此,高電流流過熔絲元件和二極體32來編程電阻元件。 A magnetic tunnel junction (MTJ) memory cell can serve as an example to illustrate the key implementation concepts. Figure 5a shows a cross section of a diode 32 in which a shallow trench isolated P+/N well diode is used as a programming selector in a programmable resistive element. The P+ active region 33 and the N+ active region 37, which respectively constitute the P and N terminals of the diode 32, are the source or drain of the PMOS and NMOS in a standard CMOS logic process. The N+ active region 37 is coupled to an N-well 34 that embeds a PMOS in a standard CMOS logic process. Shallow trench isolation 36 isolates the active regions of the different components. A resistive element (not shown in Figure 5a), such as the MTJ, can be coupled to the P+ region 33 at one end and to the high voltage supply V+ at the other end. In order to program such a programmable resistive component, a high voltage is applied to V+, a low voltage or ground potential is applied to N+ zone 37. Therefore, a high current flows through the fuse element and the diode 32 to program the resistance element.

圖5b顯示了另一接面二極體32'實施例截面圖,其當做編程選擇器並以假CMOS閘極隔離。淺溝槽隔離36'提供其他主動區的隔離。主動區31'係以淺溝槽隔離36'來加以定義。這裡的N+和P+主動區37'和33'進一步分別由假CMOS閘極39',P+植入層38',和N+植入層(P+植入層38'之互補)混合來加以定義,構成二極體32'的N和P端。該二極體32’被製作成類似PMOS的元件包含了37'、39'、33'、34'作為源極、閘極、汲極和N井,然而源極37’上覆蓋有N+植入層而非真正的PMOS所覆蓋的P+植入層38'。假MOS閘極39'最好是偏壓在一固定的電壓,其目的為在製作過程中當作P+主動區33'和N+主動區37'之間的隔離。N+主動區37'被耦合到N井34',此井在標準CMOS邏輯製程裏是嵌入PMOS的本體。P基體35'是P型矽的基體。電阻元件(圖5b中沒有顯示,例如MTJ)可以一端被耦合到P+區33'而另一端被耦合到高電壓電源V+。為了編程這種可編程電阻元件,高電壓施加在V+,而低電壓或接地到N+主動區37'。因此,高電流流過熔絲元件與二極體32’來編程電阻元件。這實施例有理想的小尺寸和低電阻。 Figure 5b shows a cross-sectional view of another junction diode 32' embodiment as a programming selector and isolated by a dummy CMOS gate. Shallow trench isolation 36' provides isolation of other active regions. The active region 31' is defined by a shallow trench isolation 36'. Here, the N+ and P+ active regions 37' and 33' are further defined by a mixture of a dummy CMOS gate 39', a P+ implant layer 38', and an N+ implant layer (complementary to the P+ implant layer 38'), respectively. N and P terminals of the diode 32'. The diode 32' is fabricated like a PMOS-like component comprising 37', 39', 33', 34' as the source, gate, drain and N well, whereas the source 37' is covered with an N+ implant. The layer is replaced by a P+ implant layer 38' covered by a true PMOS. The dummy MOS gate 39' is preferably biased at a fixed voltage for the purpose of isolation between the P+ active region 33' and the N+ active region 37' during fabrication. The N+ active region 37' is coupled to the N-well 34', which is a body embedded in the PMOS in a standard CMOS logic process. The P substrate 35' is a matrix of P-type germanium. The resistive element (not shown in Figure 5b, such as MTJ) may be coupled to the P+ region 33' at one end and to the high voltage power supply V+ at the other end. To program such a programmable resistive element, a high voltage is applied to V+ and a low voltage or ground is applied to the N+ active region 37'. Therefore, a high current flows through the fuse element and the diode 32' to program the resistance element. This embodiment has an ideal small size and low resistance.

圖5c所示另一實施例的橫截面,其中接面二極體32”以矽化物阻擋層(SBL)39”隔離並作為編程選擇器。圖5c類似圖5b,然而在圖5b裏的假CMOS閘極39'被圖5c裏的矽化物阻擋層39“所取代,以阻止矽化物生長在主動區31“的頂部。如果沒有一個假CMOS閘極或矽化物阻擋層,N+和P+主動區將由主動區域31“表面的矽化物而被短路。 A cross-section of another embodiment, shown in Figure 5c, in which the junction diode 32" is isolated by a telluride barrier (SBL) 39" and serves as a programming selector. Figure 5c is similar to Figure 5b, however the dummy CMOS gate 39' in Figure 5b is replaced by a telluride barrier layer 39" in Figure 5c to prevent the growth of germanide on top of the active region 31". Without a dummy CMOS gate or germanium blocking layer, the N+ and P+ active regions will be shorted by the germanium on the surface of the active region 31.

圖6a所示另一實施例的橫截面,其中接面二極體32”作為編程選擇器,並採用絕緣矽基體(SOI)的技術。在SOI技術裏,基體35"是如二氧化矽或類似材料的絕緣體,此絕緣體包含一薄層矽生長在頂部。所有NMOS和PMOS都在矽井裏,由二氧化矽或類似的材料隔離彼此和基體35"。一整件(one piece)主動區31"經由假CMOS閘極39”、P+植入層38”和N+植入層(P+植入層38”之互補)的混合分為N+主動區37"、P+主動區33"和本體34"。因此,N+主動區37"和P+主動區33"分別構成接面二極體32”的N端和P端。N+主動區37"及P+主動區33"可以分別和標準CMOS邏輯製程裏NMOS和PMOS的源極或汲極相同。同樣,假CMOS閘極39“可以和標準CMOS製程建構的CMOS閘極相同。假MOS閘極39'可以偏壓在一固定的電壓,其目的為在製作過程中當作P+主動區33”和N+主動區37”之間的隔離。N+主動區37”被耦合到低電壓V-和N井34,此N井在標準CMOS邏輯製程裏是嵌入PMOS的本體。電阻元件(圖6a中沒有顯示),如MTJ,可以一端被耦合到P+主動區33'而另一端被耦合到高電壓電源V+。為了編程這種電性熔絲存儲單元,高和低電壓分別施加在V+和V-,導通大電流流過MTJ與接面二極體32”來編程電阻元件。CMOS隔離技術的其他實施例,如淺溝槽隔離、假CMOS閘極或矽化物阻擋層在一至四邊或任何一邊,可以很容易應用到相應的CMOS SOI技術。 Figure 6a shows a cross section of another embodiment in which the junction diode 32" acts as a programming selector and employs a technique of insulating germanium (SOI). In SOI technology, the substrate 35" is like cerium oxide or An insulator of similar material, the insulator comprising a thin layer of tantalum grown on top. All NMOS and PMOS are in the well, separated from each other and the substrate 35 by germanium dioxide or similar materials. One piece of active region 31" via dummy CMOS gate 39", P+ implant layer 38" The mixing with the N+ implant layer (complementary to the P+ implant layer 38) is divided into an N+ active region 37", a P+ active region 33" and a body 34". Therefore, the N+ active region 37" and the P+ active region 33" respectively constitute the N terminal and the P terminal of the junction diode 32". The N+ active region 37" and the P+ active region 33" can respectively be combined with the NMOS and the standard CMOS logic process. The source or drain of the PMOS is the same. Similarly, the dummy CMOS gate 39 "can be the same as the CMOS gate constructed in a standard CMOS process. The dummy MOS gate 39' can be biased at a fixed voltage for the purpose of isolation between the P+ active region 33" and the N+ active region 37" during fabrication. The N+ active region 37" is coupled to a low voltage V- and N well 34 that is embedded in the PMOS body in a standard CMOS logic process. The resistive component (not shown in Figure 6a), such as the MTJ, can be coupled to one end. The P+ active region 33' and the other end are coupled to a high voltage power supply V+. To program such an electrical fuse memory cell, high and low voltages are applied to V+ and V-, respectively, and a large current is conducted through the MTJ and the junction diode. Body 32" to program the resistive element. Other embodiments of CMOS isolation techniques, such as shallow trench isolation, dummy CMOS gates or germanium blocking layers on one to four sides or on either side, can be readily applied to corresponding CMOS SOI technologies.

圖6b顯示了另一接面二極體45實施例的一截面圖,該接面二極體45使用翅式場效應電晶體(FinFET)技術的編程選擇器。FinFET是指翅式(FIN)為基本的多閘極電晶體。FinFET技術類似傳統的CMOS,但是具有高瘦矽島,其升高在矽基體上以作為CMOS元件的 主體。主體像在傳統CMOS,分為源極,汲極和多晶矽或非鋁金屬閘極的通道。主要的區別是在FinFET技術中,MOS元件的本體被提升到基板之上,島狀區的高度即是通道的寬度,雖然電流的流動方向仍然是在平行於矽的表面。圖6b顯示了FinFET技術的一個例子,矽基體35是一外延層,建在類似SOI絕緣層或其他高電阻矽基體之上。矽基體35可以被蝕刻成幾個高大的長方形島狀區31-1、31-2和31-3。經由適當的閘極氧化層成長,島狀區31-1、31-2即31-3可分別以MOS閘極39-1、39-2和39-3來覆蓋升高的島狀區的兩邊及定義源極和汲極區。源極和汲極區形成於島狀區31-1、31-2及31-3,然後填充矽,如填充於填充區40-1和40-2,讓合併的源極和汲極面積大到足以放下接點。在圖6b中,40-1和40-2的填充區域只是用來說明及顯露橫截面,例如填充區域可以填充到島狀區31-1、31-2和31-3的表面。在此實施例,主動區33-1,2,3和37-1,2,3被P+植入層38,和N+植入層(P+植入層38之互補)分別覆蓋來構成接面二極體45的P和N端,而不是像傳統FinFET的PMOS全部被P+植入層38覆蓋。N+主動區37-1,2,3被耦合到低電壓電源V-。電阻元件(圖6b沒有顯示),如MTJ,一端被耦合到P+主動區33-1,2,3,另一端被耦合到高電壓電源V+。為了編程這種電性熔絲,高和低電壓分別施加在V+和V-上,導以通大電流流過電阻元件與接面二極體45,來編程電阻元件。CMOS主體技術隔離的其他實施例,如淺溝槽隔離、假CMOS閘極,或矽化物阻擋層,可以很容易應用到相應的FinFET技術。 Figure 6b shows a cross-sectional view of another junction diode 45 embodiment using a finned field effect transistor (FinFET) technology programming selector. FinFET is a basic multi-gate transistor with a fin (FIN). FinFET technology is similar to traditional CMOS, but has a high thin island, which is raised on the germanium substrate to serve as a CMOS component. main body. The body is like a traditional CMOS, divided into source, drain and polysilicon or non-aluminum metal gates. The main difference is that in FinFET technology, the body of the MOS device is lifted onto the substrate, and the height of the island is the width of the channel, although the direction of current flow is still parallel to the surface of the crucible. Figure 6b shows an example of a FinFET technique in which the germanium substrate 35 is an epitaxial layer built on top of an SOI insulating layer or other high resistance germanium substrate. The ruthenium substrate 35 can be etched into several tall rectangular island regions 31-1, 31-2, and 31-3. Through the growth of the appropriate gate oxide layer, the island regions 31-1, 31-2, ie, 31-3, can cover both sides of the raised island region with MOS gates 39-1, 39-2, and 39-3, respectively. And define the source and drain regions. The source and drain regions are formed in the island regions 31-1, 31-2, and 31-3, and then filled with germanium, such as filled in the filled regions 40-1 and 40-2, so that the combined source and drain regions are large. It is enough to put down the joint. In Fig. 6b, the filled regions of 40-1 and 40-2 are only used to illustrate and reveal the cross section, for example, the filled regions may be filled to the surfaces of the island regions 31-1, 31-2, and 31-3. In this embodiment, the active regions 33-1, 2, 3 and 37-1, 2, 3 are respectively covered by the P+ implant layer 38 and the N+ implant layer (complementary to the P+ implant layer 38) to form the junction two. The P and N terminals of the body 45, rather than the PMOS like a conventional FinFET, are all covered by the P+ implant layer 38. The N+ active regions 37-1, 2, 3 are coupled to a low voltage power supply V-. The resistive element (not shown in Figure 6b), such as the MTJ, is coupled at one end to the P+ active regions 33-1, 2, 3 and at the other end to the high voltage supply V+. In order to program such an electrical fuse, high and low voltages are applied to V+ and V-, respectively, to conduct a large current through the resistive element and junction diode 45 to program the resistive element. Other embodiments of CMOS body technology isolation, such as shallow trench isolation, dummy CMOS gates, or germanium blocking layers, can be readily applied to the corresponding FinFET technology.

圖7顯示一磁記憶體(MRAM)存儲單元310的一實施例,其使用二極體317和318作為編程選擇器。依據此實施例,MRAM存儲單元310 在圖7裏是三端點的MRAM存儲單元且具有磁隧道接面(MTJ)311,其中包括自由堆疊層312、固定堆疊層313與之間的介電質薄膜,以及兩二極體317和318。自由堆疊層312被耦合到電源電壓V和經由介電質薄膜(如金屬氧化物之氧化鋁(Al2O3)或氧化鎂(MgO))被耦合到固定堆疊層313。二極體317之N端耦合到固定堆疊層313且P端耦合到V+以編程(邏輯)1。二極體318之P端耦合到固定堆疊層313且N端被耦合到V-以編程(邏輯)0。如果V+電壓高於V,電流從V+流到V來編程MTJ 311到狀態1。同樣,如果V-電壓低於V,電流從V流到V-來編程MTJ 311進入狀態0。在編程過程中,另一二極體應該在截止區。在讀取時,V+和V-可以皆設為0V而節點V和V+/V-之間的電阻可被感應,以決定磁隧道接面311是在狀態0或1。 FIG. 7 shows an embodiment of a magnetic memory (MRAM) memory cell 310 that uses diodes 317 and 318 as programming selectors. According to this embodiment, the MRAM storage unit 310 In FIG. 7, there is a three-terminal MRAM memory cell and has a magnetic tunnel junction (MTJ) 311 including a free stack layer 312, a fixed stack layer 313 and a dielectric film therebetween, and two diodes 317 and 318. Free stack layer 312 is coupled to supply voltage V and coupled to fixed stack layer 313 via a dielectric film such as aluminum oxide (Al 2 O 3 ) or magnesium oxide (MgO). The N terminal of diode 317 is coupled to fixed stack layer 313 and the P terminal is coupled to V+ to program (logic) 1. The P terminal of diode 318 is coupled to fixed stack layer 313 and the N terminal is coupled to V- to program (logic) zero. If the V+ voltage is above V, current flows from V+ to V to program MTJ 311 to state 1. Similarly, if the V-voltage is below V, current flows from V to V- to program MTJ 311 into state 0. During the programming process, the other diode should be in the cutoff zone. At the time of reading, both V+ and V- can be set to 0V and the resistance between nodes V and V+/V- can be sensed to determine that the magnetic tunnel junction 311 is in state 0 or 1.

圖8a顯示了一MRAM存儲單元310實例的截面圖,其含有MTJ 311和作為編程選擇器之接面二極體317及318。照此實施例,MTJ 311有自由堆疊層312、固定堆疊層313及介電質於其間,以構成一磁性隧道接面。二極體317被用來編程1而二極體318被用來編程0。二極體317和318分別在N井321和320裡有P+和N+主動區,此N井可用於嵌入標準CMOS製程裏的PMOS。二極體317有P+主動區315和N+主動區314,來構成編程1的二極體317的P和N端。同樣,二極體318有P+主動區316和N+主動區319,來構成編程0的二極體318的P和N端。圖8a所示二極體317和318的P和N端由STI 330來隔離。對此技術熟知者可知,不同的隔離方法(例如假MOS閘極或SBL)亦可以應用。 Figure 8a shows a cross-sectional view of an example of an MRAM memory cell 310 that includes an MTJ 311 and junction diodes 317 and 318 as programming selectors. According to this embodiment, the MTJ 311 has a free stack layer 312, a fixed stack layer 313, and a dielectric therebetween to form a magnetic tunnel junction. Diode 317 is used to program 1 and diode 318 is used to program 0. The diodes 317 and 318 have P+ and N+ active regions in the N wells 321 and 320, respectively, which can be used to embed PMOS in a standard CMOS process. The diode 317 has a P+ active region 315 and an N+ active region 314 to form the P and N terminals of the diode 1 of the programming 1. Similarly, diode 318 has P+ active region 316 and N+ active region 319 to form the P and N terminals of diode 0 of programming 0. The P and N terminals of diodes 317 and 318 shown in Figure 8a are isolated by STI 330. It is known to those skilled in the art that different isolation methods (such as a dummy MOS gate or SBL) can also be applied.

MTJ 311的自由堆疊層312可被耦合到電源電壓V,二極體318的N 端可被耦合到電源電壓V-,而二極體317的P端可被耦合到另一電源電V+。在圖8a裏,編程1可以經由施加高電壓(即2V)到V+和V-,同時保持V在接地或0V來達成。為了編程1,電流從二極體317經由MTJ 311流過,當時二極體318處於截止狀態。同樣,編程0可以經由施加一個高電壓(即2V)到V,並保持V+和V-接地來達成。在這種情況下,電流從MTJ 311流經由二極體318,而當時二極體317處於截止狀態。 The free stacking layer 312 of the MTJ 311 can be coupled to the supply voltage V, the N of the diode 318 The terminal can be coupled to the supply voltage V- and the P terminal of the diode 317 can be coupled to another supply V+. In Figure 8a, Program 1 can be achieved by applying a high voltage (i.e., 2V) to V+ and V- while maintaining V at ground or 0V. For programming 1, current flows from diode 317 through MTJ 311, while diode 318 is in an off state. Similarly, programming 0 can be achieved by applying a high voltage (ie, 2V) to V and maintaining V+ and V-ground. In this case, current flows from the MTJ 311 through the diode 318, while the diode 317 is in the off state.

圖8b顯示一MRAM存儲單元310’的另一實施例的截面圖。依據此實施例,其包含MTJ 311’與作為編程選擇器之接面二極體317'和318'。MTJ 311’有自由堆疊層312’、固定堆疊層313’及於之間的介電質來構成一磁性隧道接面。二極體317'用來編程1而二極體318'是用來編程0。二極體317'和318'有分別在N井321'和320'之P+和N+主動區,該N井必需以額外處理的淺井來製造。雖然還需要更多的處理步驟,存儲單元體積可以更小。二極體317'有P+主動區315'和N+主動區314'來構成編程1二極體317'的P和N端。同樣地,二極體318'有P+主動區316'和N+主動區319'來構成編程0二極體318'的P和N端。STI 330’用來隔離不同的主動區。 Figure 8b shows a cross-sectional view of another embodiment of an MRAM memory cell 310'. According to this embodiment, it includes MTJ 311' and junction diodes 317' and 318' as programming selectors. The MTJ 311' has a free stacking layer 312', a fixed stack layer 313' and a dielectric therebetween to form a magnetic tunnel junction. Diode 317' is used to program 1 and diode 318' is used to program 0. The diodes 317' and 318' have P+ and N+ active regions in the N wells 321 ' and 320', respectively, which must be fabricated in shallow wells that are additionally treated. Although more processing steps are required, the memory cell size can be smaller. The diode 317' has a P+ active region 315' and an N+ active region 314' to form the P and N terminals of the programming 1 diode 317'. Similarly, diode 318' has P+ active region 316' and N+ active region 319' to form the P and N terminals of programming 0 diode 318'. The STI 330' is used to isolate different active zones.

MTJ 311’的自由堆疊層312’可以被耦合到電源電壓V,二極體318'的N端可以被耦合到電源電壓V-,而二極體317'的P端可以被耦合到電源電壓V+。在圖11b裏編程1時,可以經由施加高電壓(即2V)至V+和V-,同時保持V接地或0V來達成。為了編程1,電流經由MTJ 311'流過二極體317’,而二極體318’處於截止狀態。同樣,編程0可以經由施加高電壓(即為2V)至V,並保持 V+和V-接地來達成。在這種情況下,電流會從MTJ 311'流通過二極體318’,而二極體317'處於截止狀態。 The free stacking layer 312' of the MTJ 311' can be coupled to the supply voltage V, the N terminal of the diode 318' can be coupled to the supply voltage V-, and the P terminal of the diode 317' can be coupled to the supply voltage V+ . Programming 1 in Figure 11b can be achieved by applying a high voltage (i.e., 2V) to V+ and V- while maintaining V ground or 0V. For programming 1, current flows through diode 317' via MTJ 311', while diode 318' is in an off state. Similarly, programming 0 can be done by applying a high voltage (ie 2V) to V and keeping V+ and V- grounding are achieved. In this case, current will flow from the MTJ 311' through the diode 318' while the diode 317' is in the off state.

圖9a顯示一具三端點之2X2 MRAM存儲單元陣列的實施例,其使用二極體317和318作為編程選擇器,及顯示編程1於一存儲單元之條件。存儲單元310-00、310-01、310-10和310-11構成一二維陣列。存儲單元310-00具有一MTJ 311-00,一編程1二極體317-00和一編程0二極體318-00。MTJ 311-00一端被耦合到電源電壓V,另一端被耦合到編程1二極體317-00的N端和編程0二極體318-00的P端。編程1二極體317-00的P端被耦合到一電源電壓V+。編程0二極體318-00的N端被耦合到一電源電壓V-。其他存儲單元310-01、310-10及310-11都有類似的耦合。在同一行存儲單元310-00和310-10的電壓V被連接到位元線0(BL0)。在同一行存儲單元310-01和310-11的電壓V被連接到位元線1(BL1)。在同一列的存儲單元310-00和310-01的電壓V+和V-分別被連接到字元線WL0P和WL0N。在同一列的存儲單元310-10和310-11的電壓V+和V-分別被連接到字元線WL1P和WL1N。為了編寫1到存儲單元310-01,WL0P被設成高電壓,BL1被設成低電壓,而設定其他BL和WL在適當的電壓,如圖9a所示,來使其他編程1和編程0二極體除能(disable)。圖9a裏的黑粗線顯示電流的流動方向。 Figure 9a shows an embodiment of a three-terminal 2X2 MRAM memory cell array that uses diodes 317 and 318 as programming selectors and displays programming conditions for one memory cell. The storage units 310-00, 310-01, 310-10, and 310-11 constitute a two-dimensional array. The memory unit 310-00 has an MTJ 311-00, a programming 1 diode 317-00 and a programming 0 diode 318-00. One end of the MTJ 311-00 is coupled to the supply voltage V, and the other end is coupled to the N terminal of the programming 1 diode 317-00 and the P terminal of the programming 0 diode 318-00. The P terminal of the programming 1 diode 317-00 is coupled to a supply voltage V+. The N terminal of the programming 0 diode 318-00 is coupled to a supply voltage V-. Other memory units 310-01, 310-10, and 310-11 have similar couplings. The voltage V at the same row of memory cells 310-00 and 310-10 is connected to bit line 0 (BL0). The voltage V of the memory cells 310-01 and 310-11 in the same row is connected to the bit line 1 (BL1). The voltages V+ and V- of the memory cells 310-00 and 310-01 in the same column are connected to the word lines WL0P and WL0N, respectively. The voltages V+ and V- of the memory cells 310-10 and 310-11 in the same column are connected to the word lines WL1P and WL1N, respectively. In order to write 1 to memory cell 310-01, WL0P is set to a high voltage, BL1 is set to a low voltage, and other BL and WL are set at the appropriate voltage, as shown in Figure 9a, to make other programming 1 and programming 0 Polar body disability. The thick black line in Figure 9a shows the direction of current flow.

圖9b顯示另一實施例,係說明將一2X2 MRAM存儲單元陣列裏存儲單元310-01編程為1之另一條件。例如分別設BL1和WL0P成低電壓和高電壓,以將存儲單元310-01編程為1。如果於條件1中BL0被設置為高電壓,WL0N和WL1N可以是高電壓或浮動,並且WL1P可以是低電壓或浮動。MRAM在當今的技術的高和低電壓分別約為: 高電壓2-3V和低電壓0。如果於條件2中BL0是浮動,WL0N和WL1N能是高電壓,低電壓,或浮動,並且WL1P可以是低電壓或浮動。在實際執行,浮動節點通常是經由非常弱的元件被耦合到一個固定的電壓,以防止漏電。圖9a所示編程為1條件的實施例中,並無任何浮動節點。 Figure 9b shows another embodiment illustrating another condition for programming memory cell 310-01 in a 2X2 MRAM memory cell array to one. For example, BL1 and WL0P are respectively set to a low voltage and a high voltage to program the memory cell 310-01 to 1. If BL0 is set to a high voltage in Condition 1, WL0N and WL1N may be high voltage or floating, and WL1P may be low voltage or floating. The high and low voltages of MRAM in today's technology are approximately: High voltage 2-3V and low voltage 0. If BL0 is floating in Condition 2, WL0N and WL1N can be high voltage, low voltage, or floating, and WL1P can be low voltage or floating. In practice, floating nodes are typically coupled to a fixed voltage via very weak components to prevent leakage. In the embodiment shown in Figure 9a programmed to 1 condition, there are no floating nodes.

圖10a顯示一具三端點之2X2 MRAM存儲單元陣列的實施例,其包含MTJ 311和作為編程選擇器之接面二極體317和318,及顯示編程存儲單元為0之條件。這些存儲單元310-00、310-01、310-10和310-11構成一二維陣列。該存儲單元310-00具有一MTJ 311-00、編程1二極體317-00和編程0二極體318-00。MTJ 311-00一端被耦合到電源電壓V,另一端被耦合到編程1二極體317-00的N端和編程0二極體318-00的P端。編程1二極體317-00的P端被耦合到一電源電壓V+。編程0二極體318-00的N端被耦合到一電源電壓V-。其他存儲單元310-01、310-10及310-11都有類似的耦合。在同一行存儲單元310-00和310-10的電壓V被連接到位元線BL0。在同一行存儲單元310-01和310-11的電壓V被連接到BL1。在同一列的存儲單元310-00和310-01的電壓V+和V-分別被連接到字元線WL0P和WL0N。在同一列的存儲單元310-10和310-11的電壓V+和V-分別被連接到字元線WL1P和WL1N。如圖10a所示,為了編寫0到存儲單元310-01,WL0N被設成低電壓,BL1被設成高電壓,而設定其他BL和WL在適當的電壓,以使其他編程1和編程0二極體除能。圖10a裏的黑粗線顯示電流的流動方向。 Figure 10a shows an embodiment of a three-terminal 2X2 MRAM memory cell array including MTJ 311 and junction diodes 317 and 318 as programming selectors, and a condition that the programming memory cell is zero. These memory cells 310-00, 310-01, 310-10, and 310-11 form a two-dimensional array. The memory unit 310-00 has an MTJ 311-00, a programming 1 diode 317-00, and a programming 0 diode 318-00. One end of the MTJ 311-00 is coupled to the supply voltage V, and the other end is coupled to the N terminal of the programming 1 diode 317-00 and the P terminal of the programming 0 diode 318-00. The P terminal of the programming 1 diode 317-00 is coupled to a supply voltage V+. The N terminal of the programming 0 diode 318-00 is coupled to a supply voltage V-. Other memory units 310-01, 310-10, and 310-11 have similar couplings. The voltage V of the memory cells 310-00 and 310-10 in the same row is connected to the bit line BL0. The voltage V of the memory cells 310-01 and 310-11 in the same row is connected to BL1. The voltages V+ and V- of the memory cells 310-00 and 310-01 in the same column are connected to the word lines WL0P and WL0N, respectively. The voltages V+ and V- of the memory cells 310-10 and 310-11 in the same column are connected to the word lines WL1P and WL1N, respectively. As shown in FIG. 10a, in order to write 0 to the memory cell 310-01, WL0N is set to a low voltage, BL1 is set to a high voltage, and other BLs and WLs are set at appropriate voltages to enable other programming 1 and programming 0 Polar body depletion. The thick black line in Figure 10a shows the direction of current flow.

圖10b顯示另一實施例,係說明把三端點之2X2 MRAM存儲單元陣列裏存儲單元310-01編程為0之條件。例如,分別設BL1和WL0N成 低電壓和高電壓,可將存儲單元310-01編程為0。於條件1裏,如果BL0被設置為低電壓,WL0P和WL1P可以是低電壓或浮動,並且WL1N可以是高電壓或浮動。MRAM在當今的技術的高和低電壓分別約為:高電壓2-3V和低電壓0。於條件2裏,如果BL0是浮動的,WL0P和WL1P能是高電壓,低電壓,或浮動,並且WL1N可以是高電壓或浮動。在實際執行,浮動節點通常是經由非常弱的元件被耦合到到一固定的電壓,以防止漏電。圖10a顯示編程為0條件的一實施例,其中無任何浮動節點。 Figure 10b shows another embodiment illustrating the condition of programming memory cell 310-01 in a three-terminal 2X2 MRAM memory cell array to zero. For example, set BL1 and WL0N respectively. The low voltage and high voltage can be programmed to zero for memory cell 310-01. In Condition 1, if BL0 is set to a low voltage, WL0P and WL1P may be low voltage or floating, and WL1N may be high voltage or floating. The high and low voltages of MRAM in today's technology are approximately: high voltage 2-3V and low voltage 0. In Condition 2, if BL0 is floating, WL0P and WL1P can be high voltage, low voltage, or floating, and WL1N can be high voltage or floating. In practice, floating nodes are typically coupled to a fixed voltage via very weak components to prevent leakage. Figure 10a shows an embodiment programmed to a 0 condition without any floating nodes.

圖9a、9b、10a及10b所示的2x2 MRAM陣列存儲單元是三端存儲單元,即存儲單元具有V,V+和V-節點。但是,如果編程電壓VDDP小於兩倍的二極體臨界電壓Vd(即VDDP<2*Vd),同一存儲單元的V+和V-節點可以被連接在一起作為雙端存儲單元。由於在室溫下Vd約為0.6-0.7V,如果編程電壓低於1.2V,這種雙端存儲單元可正常工作。這是MRAM陣列在先進的CMOS技術裏常見的電壓配置,其具有約1.0V的電源電壓。圖11a及11b分別顯示在具有兩端的2X2 MRAM陣列裏編程1和0的電路圖。 The 2x2 MRAM array memory cells shown in Figures 9a, 9b, 10a, and 10b are three-terminal memory cells, i.e., the memory cells have V, V+, and V-nodes. However, if the programming voltage VDDP is less than twice the diode threshold voltage Vd (ie, VDDP<2*Vd), the V+ and V-nodes of the same memory cell can be connected together as a double-ended memory cell. Since Vd is about 0.6-0.7V at room temperature, such a double-ended memory cell can operate normally if the programming voltage is lower than 1.2V. This is a common voltage configuration of MRAM arrays in advanced CMOS technology with a supply voltage of approximately 1.0V. Figures 11a and 11b show circuit diagrams for programming 1 and 0, respectively, in a 2X2 MRAM array with two ends.

圖11a及11b顯示在具兩端的MRAM存儲單元的2X2陣列裏分別編程1和0的實例。這些存儲單元310-00、310-01、310-10和310-11構成一二維陣列。該存儲單元310-00具有MTJ 311-00,編程1二極體317-00和編程0二極體318-00。MTJ 311-00一端被耦合到電源電壓V,另一端被耦合到編程1二極體317-00的N端和編程0二極體318-00的P端。編程1二極體317-00的P端被耦合到一電源電壓V+。編程0二極體318-00的N端被耦合到另一電源電壓V-。若滿足VDDP<2*Vd條件,電壓V+和V-可在存儲單元層次連接在一起。其 他存儲單元310-01、310-10及310-11有類似的耦合。在同一行存儲單元310-00和310-10的電壓V被連接到BL0。在同一行存儲單元310-01和310-11的電壓V被連接到BL1。在同一列的存儲單元310-00和310-01的電壓V+和V-被連接到WL0。在同一列的存儲單元310-10和310-11的電壓V+和V-被連接到WL1。 Figures 11a and 11b show examples of programming 1 and 0, respectively, in a 2X2 array with MRAM memory cells at both ends. These memory cells 310-00, 310-01, 310-10, and 310-11 form a two-dimensional array. The memory unit 310-00 has an MTJ 311-00, a programming diode 317-00 and a programming 0 diode 318-00. One end of the MTJ 311-00 is coupled to the supply voltage V, and the other end is coupled to the N terminal of the programming 1 diode 317-00 and the P terminal of the programming 0 diode 318-00. The P terminal of the programming 1 diode 317-00 is coupled to a supply voltage V+. The N terminal of the programming 0 diode 318-00 is coupled to another supply voltage V-. If the VDDP<2*Vd condition is met, the voltages V+ and V- can be connected together at the memory cell level. its His storage units 310-01, 310-10, and 310-11 have similar couplings. The voltage V at the same row of memory cells 310-00 and 310-10 is connected to BL0. The voltage V of the memory cells 310-01 and 310-11 in the same row is connected to BL1. The voltages V+ and V- of the memory cells 310-00 and 310-01 in the same column are connected to WL0. The voltages V+ and V- of the memory cells 310-10 and 310-11 in the same column are connected to WL1.

為了編寫1到存儲單元310-01,WL0被設成高電壓,BL1被設成低電壓,而設定其他BL和WL在適當的電壓,如圖11a所示來使其他編程1和編程0二極體除能。圖11a裏的黑粗線顯示電流的流動方向。為了編寫0到存儲單元310-01,WL0被設成低電壓,BL1被設成高電壓,而設定其他BL和WL在適當的電壓,如圖11b所示,來使其他編程1和編程0二極體除能。圖11b裏的黑粗線顯示電流的流動方向。 In order to write 1 to memory cell 310-01, WL0 is set to a high voltage, BL1 is set to a low voltage, and other BL and WL are set at the appropriate voltage, as shown in Figure 11a to make other programming 1 and programming 0 dipoles Body can be removed. The thick black line in Figure 11a shows the direction of current flow. To write 0 to memory location 310-01, WL0 is set to a low voltage, BL1 is set to a high voltage, and other BL and WL are set to the appropriate voltage, as shown in Figure 11b, to enable other programming 1 and programming 0 Polar body depletion. The thick black line in Figure 11b shows the direction of current flow.

如圖9a-11b所示,構建MRAM存儲單元於一2x2陣列裏的實例僅用於說明目的。對此技術知悉者可對一記憶體裏存儲單元行或列的數目任意改變,並且行和列是可互換的。 As shown in Figures 9a-11b, an example of constructing an MRAM memory cell in a 2x2 array is for illustrative purposes only. Those skilled in the art can arbitrarily change the number of rows or columns of memory cells in a memory, and the rows and columns are interchangeable.

磁記憶體(MRAM)存儲單元成磁平行或磁反平行可能會隨時間而改變對存儲單元的穩定。但是,大多數應用需要保留數據10年,且從工作溫度0到85℃或-40到125℃。為了在元件的壽命期限和在如此寬的溫度範圍內維持存儲單元的穩定性,磁記憶體可以被定期讀取出,然後將數據寫回相同的存儲單元,此為更新機制。更新週期可能會相當長,如超過一秒鐘(如,分鐘,小時,天,星期,甚至月)。更新機制可由記憶體內部產生或從記憶體外部觸發。長時間的更新週期以維持存儲單元的穩定性,也可以應用於其他新興的記憶體,如電阻式記憶體(RRAM)、導電橋隨機存取 記憶體(CBRAM)和相變記憶體(PCM)等。 The magnetic parallelism or magnetic anti-parallel of magnetic memory (MRAM) memory cells may change the stability of the memory cells over time. However, most applications require data retention for 10 years and from an operating temperature of 0 to 85 ° C or -40 to 125 ° C. In order to maintain the stability of the memory cell over the life of the component and over such a wide temperature range, the magnetic memory can be periodically read out and then written back to the same memory cell, which is an update mechanism. The update cycle can be quite long, such as more than one second (eg, minutes, hours, days, weeks, or even months). The update mechanism can be generated internally by the memory or externally from the memory. Long-term update cycle to maintain the stability of the memory cell, can also be applied to other emerging memory, such as resistive memory (RRAM), conductive bridge random access Memory (CBRAM) and phase change memory (PCM).

根據另一實施例,可編程電阻元件可用於建立一記憶體。圖12a顯示一可編程電阻記憶體100的一部分,由n列x(m+1)行的3端MRAM存儲單元110的一陣列101和n對字元線驅動器150-i和151-i(i=0,1,...,n-1)所構建。記憶體陣列101有m個正常行和一參考行共用一感應放大器做差動感應。每個記憶體存儲單元110有一電阻元件111耦合到一編程0二極體112的P端和一編程1二極體113的N端。編程0二極體112和編程1二極體113用來當作編程選擇器。對那些記憶體存儲單元110在同一行的每個電阻元件111也耦合到一位元線BLj 170-j(j=0,1,..m-1)或參考位元線BLR0 175-0。對那些記憶體存儲單元於110於同一列的二極體112 N端被耦合到一字元線WLNi 152-i,經由局部字元線LWLNi 154-i(i=0,1,...,n-1)。對那些存儲單元於同一列的二極體113 P端被耦合到一字元線WLPi 153-i,經由局部字元線LWLPi 155-i(i=0,1,...,n-1)。每個字元線WLNi或WLPi分別被耦合到至少一個局部字元線LWLNi或LWLPi(i=0,1,...,n-1)。該LWLNi 154-i和LWLPi 155-i一般都是由一高電阻材料(如N井或多晶矽)來構建且連接到存儲單元,且分別經由導電接點或層間接點、緩衝器或後解碼器172-i或173-i(i=0,1,...,n-1)而被耦合到WLNi或WLPi(例如,低電阻金屬WLNi或WLPi)。當使用二極體作為編程選擇器,因為有電流流過WLNi或WLPi,緩衝器172-i或後解碼器173-i可能是必需的;尤其在一些實施例裏當一個WLNi或WLPi驅動多個存儲單元來同時編程和讀取時。字元線WLNi和WLPi分別由字元線驅動器150-i和151-i來驅動。為編 程和讀取,其電源電壓vddi可以在不同的電壓之間被切換。每個BLj 170-j或BLR0 175-0都經由一個Y-write-0通道閘120-j或125被耦合到一電源電壓VDDP來編程0,其中每個BLj 170-j或BLR0 175-0分別由YS0WBj(j=0,1,..,m-1)或YS0WRB0來選取。Y-write-0通道閘120-j(j=0,1,...,m-1)或125可用PMOS來建構;然而NMOS、二極體或雙極型元件也可在一些實施例裏使用。同樣,每一個BLj 170-j或BLR0 175-0都經由一個Y-write-1通道閘121-j或126被耦合到一電源電壓為0V來編程1,其中每個BLj 170-j或BLR0 175-0分別由YS1Wj(j=0,1,..,m-1)或YS1WR0來選取。Y-write-1通道閘121-j或126是可用NMOS來建構,然而PMOS、二極體或雙極型元件也可在一些實施例裏使用。每個BL或BLR0都經由一個Y-read通道閘130-j或135被耦合到數據線DLj或參考數據線DLR0,分別由YSRj(j=0,1,..,m-1)或YSRR0來選取。在記憶體陣列101這部分,m正常的數據線DLj(j=0,1,...,m-1)被連接到一個感應放大器140的一輸入端160。該參考數據線DLR0提供了感應放大器140的另一輸入端161,然而在參考分部裏一般不需要多工器。感應放大器140的輸出端是Q0。 According to another embodiment, a programmable resistive element can be used to create a memory. Figure 12a shows a portion of a programmable resistive memory 100, an array 101 of n-terminal MRAM memory cells 110 of n columns x (m + 1) rows and n pairs of word line drivers 150-i and 151-i (i =0,1,...,n-1) constructed. The memory array 101 has m normal lines and a reference line sharing a sense amplifier for differential sensing. Each of the memory storage units 110 has a resistive element 111 coupled to the P terminal of a programming 0 diode 112 and the N terminal of a programming 1 diode 113. Program 0 diode 112 and programming 1 diode 113 are used as programming selectors. Each of the resistive elements 111 in the same row of those memory storage units 110 is also coupled to one bit line BLj 170-j (j = 0, 1, .. m-1) or reference bit line BLR0 175-0. The memory cells are coupled to a word line WLNi 152-i at the N-terminal of the diode 112 at the same column 110, via local word line LWLNi 154-i (i=0, 1, ..., N-1). The P terminal of the diode 113 of the same column of the memory cells is coupled to a word line WLPi 153-i via the local word line LWLPi 155-i (i = 0, 1, ..., n-1) . Each word line WLNi or WLPi is coupled to at least one local word line LWLNi or LWLPi (i = 0, 1, ..., n-1), respectively. The LWLNi 154-i and LWLPi 155-i are typically constructed of a high-resistance material (such as N-well or polysilicon) and connected to the memory cell, and via conductive contacts or layer indirect points, buffers or post-decoders, respectively. 172-i or 173-i (i = 0, 1, ..., n-1) is coupled to WLNi or WLPi (eg, low resistance metal WLNi or WLPi). When a diode is used as the programming selector, a buffer 172-i or a post decoder 173-i may be necessary because of the current flowing through WLNi or WLPi; especially in some embodiments when one WLNi or WLPi drives multiple Memory cells are used for simultaneous programming and reading. Word lines WLNi and WLPi are driven by word line drivers 150-i and 151-i, respectively. For editing And read, its power supply voltage vddi can be switched between different voltages. Each BLj 170-j or BLR0 175-0 is coupled to a supply voltage VDDP via a Y-write-0 channel gate 120-j or 125 to program a 0, where each BLj 170-j or BLR0 175-0 respectively It is selected by YS0WBj (j=0,1,..,m-1) or YS0WRB0. Y-write-0 channel gate 120-j (j = 0, 1, ..., m-1) or 125 may be constructed with PMOS; however, NMOS, diode or bipolar components may also be implemented in some embodiments use. Similarly, each BLj 170-j or BLR0 175-0 is programmed via a Y-write-1 channel gate 121-j or 126 to a supply voltage of 0V, where each BLj 170-j or BLR0 175 -0 is selected by YS1Wj (j = 0, 1, .., m-1) or YS1WR0, respectively. The Y-write-1 channel gate 121-j or 126 can be constructed with NMOS, although PMOS, diode or bipolar components can also be used in some embodiments. Each BL or BLR0 is coupled to data line DLj or reference data line DLR0 via a Y-read channel gate 130-j or 135, respectively, by YSRj (j = 0, 1, .., m-1) or YSRR0 Select. In the portion of the memory array 101, m normal data lines DLj (j = 0, 1, ..., m-1) are connected to an input terminal 160 of a sense amplifier 140. The reference data line DLR0 provides the other input 161 of the sense amplifier 140, however a multiplexer is generally not required in the reference section. The output of sense amplifier 140 is Q0.

要編程一個0到一存儲單元,如圖10a或10b所示,特定的WLNi、WLPi和BLj被字元線驅動器150-i,151-i選上而Y-pass通道閘120-j被YS0WBj分別選上,其中i=0,1,..,n-1和j=0,1,...,m-1,而其他字元線和位元線也被適當的設定。一高電壓被施加於VDDP。在一些實例裏,參考存儲單元可以被編程為0,由設定適當電壓到WLRNi 158-i,WLRPi 159-i和YS0WRB0,其中,i= 0,1,...,n-1。要編程一個1到一存儲單元,如圖9a或9b所示,特定的WLNi,WLPi和BLj被字元線驅動器150-i,151-i選上,而Y-pass通道閘121-j被YS1WBj選上,其中i=0,1..n-1和j=0,1,...,m-1,而其他字元線和位元線也被適當的設定。在一些實施例裏,由設定適當電壓到WLRNi 158-i,WLRPi 159-i和YS1WR0(i=0,1,...,n-1),參考存儲單元可以被編程為1。要讀取一存儲單元,數據行160可以由打開特定的WLNi,WLPi和YSRj(其中i=0,1,...,n-1,和j=0,1,...,m-1)被選到,而一參考數據線DLR0 161可以由打開特定的參考存儲單元,皆被耦合到於感應放大器140來感應和比較160和DLR 161與接地之間的電阻差異,同時使所有YS0WBj,YS0WRB0,YS1Wj和YS1WR0除能,其中j=0,1,…,m-1。 To program a 0 to a memory cell, as shown in Figure 10a or 10b, the particular WLNi, WLPi, and BLj are selected by the word line drivers 150-i, 151-i and the Y-pass channel gates 120-j are separated by YS0WBj, respectively. Select, where i = 0, 1, .., n-1 and j = 0, 1, ..., m-1, and other word lines and bit lines are also appropriately set. A high voltage is applied to VDDP. In some examples, the reference memory cell can be programmed to zero by setting the appropriate voltage to WLRNi 158-i, WLRPi 159-i and YS0WRB0, where i= 0,1,...,n-1. To program a 1 to a memory cell, as shown in Figure 9a or 9b, the particular WLNi, WLPi and BLj are selected by the word line drivers 150-i, 151-i, and the Y-pass channel gates 121-j are YS1WBj. Select, where i = 0, 1.. n-1 and j = 0, 1, ..., m-1, and other word lines and bit lines are also appropriately set. In some embodiments, the reference memory cell can be programmed to one by setting the appropriate voltage to WLRNi 158-i, WLRPi 159-i and YS1WR0 (i = 0, 1, ..., n-1). To read a memory location, data row 160 can be opened by opening specific WLNi, WLPi and YSRj (where i = 0, 1, ..., n-1, and j = 0, 1, ..., m-1) Is selected, and a reference data line DLR0 161 can be turned on by a particular reference memory cell, coupled to sense amplifier 140 to sense and compare the difference in resistance between 160 and DLR 161 and ground, while making all YS0WBj, YS0WRB0, YS1Wj and YS1WR0 are disabled, where j=0, 1, ..., m-1.

圖12b顯示另一以二端點的MRAM存儲單元來構成MRAM記憶體的實施例。根據此一實施例,在高與低狀態之間的VDDP電壓差須小於二極體臨界電壓Vd的兩倍,即VDDP<2 *Vd。如圖12b所示,原本於圖12a中每列的兩個字元線WLNi 152-i和WLPi 153-i可以被合併成一字元線驅動器WLNi 152-i,其中i=0,1,…,n-1。此外如圖12b所示,原本於圖12a中每列的局部字元線LWLNi 154-i和LWLP 155-i於可以被合併成一局部字元線LWLNi 154-i,其中i=0,1,…,n-1。更進一步,在圖12a裏的兩個字元線驅動器150-i和151-i可以被合併成一個,即字元線驅動器150-i。未選的存儲單元的BL群和WLN群被安排適當的編程1和0的條件,如圖11a及11b分別所示。由於一半的字元線,局部字元線和字元線驅動器可以在此實施例裏被移除,存儲單元和記憶體的面積可以 大幅度減小。 Figure 12b shows another embodiment of a MRAM memory cell with two endpoints to form an MRAM memory. According to this embodiment, the VDDP voltage difference between the high and low states must be less than twice the diode threshold voltage Vd, that is, VDDP < 2 * Vd. As shown in Fig. 12b, the two word lines WLNi 152-i and WLPi 153-i of each column originally in Fig. 12a can be combined into a word line driver WLNi 152-i, where i = 0, 1, ..., N-1. Further, as shown in Fig. 12b, the local word lines LWLNi 154-i and LWLP 155-i of each column originally in Fig. 12a can be merged into a local word line LWLNi 154-i, where i = 0, 1, ... , n-1. Further, the two word line drivers 150-i and 151-i in Fig. 12a can be combined into one, i.e., word line driver 150-i. The BL group and the WLN group of unselected memory cells are arranged with appropriate programming conditions of 1 and 0, as shown in Figures 11a and 11b, respectively. Since half of the word lines, local word lines and word line drivers can be removed in this embodiment, the area of the memory cells and memory can be Significantly reduced.

圖13a和13b顯示流程圖實施例,分別描繪可編程電阻式記憶體的編程方法S700和讀取方法S800。方法S700和S800描述了在可編程電阻式記憶體情況下,如圖12a及12b所示可編程電阻記憶體100的編程和讀取。此外,雖然說是一個步驟流程,對此技術知悉者可知至少一些步驟可能會以不同的順序進行,包括同時或跳過。 Figures 13a and 13b show flow diagram embodiments depicting a programmable resistive memory programming method S700 and a read method S800, respectively. Methods S700 and S800 describe the programming and reading of the programmable resistive memory 100 as shown in Figures 12a and 12b in the case of a programmable resistive memory. In addition, although it is a step process, it is known to those skilled in the art that at least some of the steps may be performed in a different order, including simultaneous or skipping.

圖13a描繪了一種於一可編程電阻記憶體中編程方法S700的流程圖。根據此實施例,在第一步驟S710,選擇適當的電源選擇器以施加高電壓電源到字元線和位元線驅動器。在第二步驟S720,在控制邏輯(在圖12a和12b裏沒有顯示)裏進行分析要被編程的數據,根據什麼類型的可編程電阻元件。對於MRAM,電流流過MTJ的方向比持續時間更重要。控制邏輯決定字元線和位元線的適當電源選擇器並且啟動控制信號,以確保電流在所需的時間裏流過所需的方向。在第三步驟S730,選擇存儲單元的一列(群),所以相對的局部字元線可被開啟。在第四步驟S740,停用感應放大器,以節省電源和防止干擾到編程的運作。在第五步驟S750,存儲單元的一行(群),可以被選定並且相對應的Y-write通道閘可以被打開來耦合所選的位元線到一電源電壓。在最後一步驟S760,在已建立的傳導路徑來驅動所需的電流一段所需要的時間來完成編程的運作。對於大多數可編程電阻記憶體,這個傳導路徑是由高壓電源,通過被選的位元線,電阻元件,作為編程選擇器的二極體,以及局部字元線驅動器的NMOS下拉元件到接地。特別是對於編程1到一MRAM,傳導路徑是由高壓電源,通過局部字元線驅動器的PMOS上拉元件,作為編程選擇器的二極體,電阻元件,被 選的位元線到接地。 Figure 13a depicts a flow diagram of a programming method S700 in a programmable resistive memory. According to this embodiment, in a first step S710, an appropriate power supply selector is selected to apply a high voltage power supply to the word line and bit line drivers. In a second step S720, the data to be programmed is analyzed in the control logic (not shown in Figures 12a and 12b), depending on what type of programmable resistive element. For MRAM, the direction in which current flows through the MTJ is more important than the duration. The control logic determines the appropriate power selector for the word line and bit line and initiates a control signal to ensure that the current flows through the desired direction for the desired amount of time. In a third step S730, a column (group) of memory cells is selected, so the opposite local word lines can be turned on. In a fourth step S740, the sense amplifier is deactivated to save power and prevent interference to the programmed operation. In a fifth step S750, a row (group) of memory cells can be selected and the corresponding Y-write channel gate can be opened to couple the selected bit line to a supply voltage. At the last step S760, the programmed conduction operation is completed in the established conduction path to drive the required current for a period of time. For most programmable resistor memories, this conduction path is made by a high voltage power supply through the selected bit line, the resistive element, the diode as the programming selector, and the NMOS pull-down element of the local word line driver to ground. Especially for programming 1 to an MRAM, the conduction path is by a high voltage power supply, through the PMOS pull-up component of the local word line driver, as a diode of the programming selector, the resistive element, Select the bit line to ground.

圖13b描繪了一種依據一實施例而於一可編程電阻記憶體讀取方法S800流程圖。在第一步驟S810,提供合適的電源選擇器來選電源電壓給局部字元線驅動器,感應放大器和其他電路。在第二步驟S820,所有Y-write通道閘,例如位元線編程選擇器,可以被關閉。在第三步驟S830,所需的局部字元線驅動器(群)可以被選,使作為編程選擇器(群)的二極體(群)具有傳導路徑到接地。在第四步驟S840,啟動感應放大器(群)和準備感應的輸入信號。在第五步驟S850,數據線和參考數據線被預先充電到可編程電阻元件存儲單元的V-電壓。在第六步驟S860,選所需的Y-read通道閘,使所需的位元線被耦合到感應放大器的一個輸入端。一個傳導路徑於是被建立,從位元線(群)到所要的存儲單元的電阻元件,作為編程選擇器(群)的二極體(群)和局部字元線驅動器(群)的下拉元件到接地。這同樣適用於參考分支。在最後一步驟S870,感應放大器可以比較讀取電流與參考電流的差異來決定邏輯輸出是0或1以完成讀取操作。 Figure 13b depicts a flow diagram of a programmable resistive memory read method S800 in accordance with an embodiment. In a first step S810, a suitable power selector is provided to select the supply voltage to the local word line driver, sense amplifier and other circuitry. In a second step S820, all Y-write channel gates, such as bit line programming selectors, can be turned off. In a third step S830, the desired local word line driver (group) can be selected such that the diodes (groups) as programming selectors (groups) have a conductive path to ground. In a fourth step S840, the sense amplifier (group) and the input signal ready for sensing are activated. In a fifth step S850, the data line and the reference data line are precharged to the V-voltage of the programmable resistive element memory cell. In a sixth step S860, the desired Y-read pass gate is selected such that the desired bit line is coupled to an input of the sense amplifier. A conduction path is then established, from the bit line (group) to the desired resistive element of the memory cell, as a diode (group) of the programming selector (group) and a pull-down element of the local word line driver (group) to Ground. The same applies to the reference branch. At the last step S870, the sense amplifier can compare the difference between the read current and the reference current to determine whether the logic output is 0 or 1 to complete the read operation.

圖14顯示依據另一實施例的一種處理器系統700。根據此一實施例,處理器系統700可包括可編程電阻元件744,其在記憶體740中的存儲單元陣列742裏。處理器系統700例如可以屬於一電腦系統。電腦系統可以包括中央處理單元(CPU)710,它經由共同匯流排715來和多種記憶體和周邊裝置溝通,如輸入輸出單元720、硬碟驅動器730、光碟750、記憶體740和其他記憶體760。其他記憶體760是一種傳統的記憶體如靜態記憶體(SRAM)、動態記憶體(DRAM)或閃存記憶體(flash),通常經由一記憶體控制器來和與 中央處理單元710溝通。中央處理單元710一般是一種微處理器、數位信號處理器或其他可編程數位邏輯元件。記憶體740最好是以積體電路來構造,其中包括擁有至少有可編程電阻元件744的記憶體陣列742。通常,記憶體740經由記憶體控制器來接觸中央處理單元710。如果需要,可合併記憶體740與處理器(如中央處理單元710)在單片積體電路。 FIG. 14 shows a processor system 700 in accordance with another embodiment. In accordance with this embodiment, processor system 700 can include a programmable resistive element 744 in memory cell array 742 in memory 740. Processor system 700 can, for example, belong to a computer system. The computer system can include a central processing unit (CPU) 710 that communicates with various memory and peripheral devices via a common bus 715, such as input and output unit 720, hard disk drive 730, optical disk 750, memory 740, and other memory 760. . The other memory 760 is a conventional memory such as static memory (SRAM), dynamic memory (DRAM) or flash memory, usually via a memory controller. The central processing unit 710 communicates. Central processing unit 710 is typically a microprocessor, digital signal processor, or other programmable digital logic element. Memory 740 is preferably constructed in an integrated circuit that includes a memory array 742 having at least programmable resistive elements 744. Typically, memory 740 contacts central processing unit 710 via a memory controller. If desired, the memory 740 can be combined with a processor (e.g., central processing unit 710) in a monolithic integrated circuit.

本發明可以部分或全部實現於積體電路,印刷電路板(PCB)上,或系統上。該可編程電阻元件可以是熔絲、反熔絲或新出現的非揮發行性記憶體。熔絲可以是矽化或非矽化多晶矽熔絲、熱隔離的主動區熔絲、金屬熔絲、接點熔絲、或層間接點熔絲。反熔絲可以是閘極氧化層崩潰反熔絲、介電質於其間的接點或層間接點反熔絲。新出現的非揮發行性記憶體可以是磁性記憶體(MRAM)、相變記憶體(PCM)、導電橋隨機存取記憶體(CBRAM)或電阻隨機存取記憶體(RRAM)。雖然編程的機制不同,他們的邏輯狀態可以由不同的電阻值來區分。 The invention may be implemented in part or in whole on an integrated circuit, on a printed circuit board (PCB), or on a system. The programmable resistive element can be a fuse, an anti-fuse or an emerging non-volatile memory. The fuse may be a deuterated or non-deuterated polysilicon fuse, a thermally isolated active region fuse, a metal fuse, a contact fuse, or a layer indirect fuse. The antifuse may be a gate oxide breakdown antifuse, a dielectric contact therebetween or a layer indirect antifuse. Emerging non-volatile memory devices can be magnetic memory (MRAM), phase change memory (PCM), conductive bridge random access memory (CBRAM) or resistive random access memory (RRAM). Although the programming mechanisms are different, their logic states can be distinguished by different resistance values.

以上的說明和圖畫,只是用來說明認為是示範的實現,其實現本發明的特點和優勢。在沒有離開本發明的精神和範圍之下,特定的過程條件,結構的修改和替換可被達成。 The above description and drawings are merely illustrative of implementations that are believed to be illustrative of the features and advantages of the invention. Specific process conditions, structural modifications and alternatives can be achieved without departing from the spirit and scope of the invention.

30‧‧‧記憶體存儲單元 30‧‧‧Memory memory unit

30a‧‧‧記憶元件 30a‧‧‧ memory components

32a,32b‧‧‧二極體 32a, 32b‧‧‧ diode

Claims (15)

一種記憶體,包括:多個記憶存儲單元,至少一記憶存儲單元包括:一記憶元件有第一端和第二端,該第一端被耦合到第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端;一第二二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二個類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端;其中該第一二極體的該第二端被耦合到一第二電源電壓線;其中該第二二極體的該第一端被耦合到該第二或一第三電源電壓線;其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 A memory comprising: a plurality of memory storage units, at least one memory storage unit comprising: a memory element having a first end and a second end, the first end being coupled to the first supply voltage line; and a first diode The body includes at least a first end and a second end, wherein the first end has a first type doping, the second end has a second type doping, and the first end of the first dipole is Coupled to the second end of the memory element; a second diode includes at least a first end and a second end, wherein the first end has a first type doping and the second end has a second end Doping, the second end of the second diode is coupled to the second end of the memory element; wherein the second end of the first diode is coupled to a second supply voltage line; Wherein the first end of the second diode is coupled to the second or a third supply voltage line; wherein the memory element is configured to be programmable to a different logic state, via applying a voltage to the first a second and/or third supply voltage line to turn on the first diode and cut the first The diode is switched to a logic state, or the second diode is turned on to cut the first diode to another logic state. 如申請專利範圍第1項所述之記憶體,其中該記憶元件是一磁性隧道接面(MTJ)由擁有多層次的鐵磁或反鐵磁疊的固定堆疊層,和多層次的鐵磁或反鐵磁疊的自由堆疊層,而絕緣體在二堆疊層之間。 The memory of claim 1, wherein the memory element is a magnetic tunnel junction (MTJ) consisting of a fixed stack of multi-layered ferromagnetic or antiferromagnetic stacks, and multi-layer ferromagnetic or A freely stacked layer of antiferromagnetic stacks with insulators between the two stacked layers. 如申請專利範圍第2項所述之記憶體,其中該記憶元件是在矽表面為一橢圓形之磁性隧道接面(MTJ)。 The memory of claim 2, wherein the memory element is an elliptical magnetic tunnel junction (MTJ) on the surface of the crucible. 如申請專利範圍第2項所述之記憶體,其中該記憶元件是一磁性隧道接面(MTJ),且在矽表面對該第一或第二電源電壓線為一傾斜橢圓形。 The memory of claim 2, wherein the memory element is a magnetic tunnel junction (MTJ) and the first or second supply voltage line is inclined to an elliptical shape on the surface of the crucible. 如申請專利範圍第1項所述之記憶體,其中該記憶元件是金屬或金屬合金電極和電極之間的金屬氧化物。 The memory of claim 1, wherein the memory element is a metal oxide between a metal or metal alloy electrode and an electrode. 如申請專利範圍第1項所述之記憶體,其中該記憶元件是是電極和電極之間的固態電解質薄膜。 The memory of claim 1, wherein the memory element is a solid electrolyte membrane between the electrode and the electrode. 如申請專利範圍第1項所述之記憶體,其中至少有一二極體為接面二極體,其第一和第二主動區作為二極體的兩端存在井裡。 The memory of claim 1, wherein at least one of the diodes is a junction diode, and the first and second active regions are present in the well as both ends of the diode. 如申請專利範圍第1項所述之記憶體,其中至少有一二極體為接面二極體,其第一和第二主動區作為二極體的兩端存在井裡,其所在的井是用來製造金氧半導體(CMOS)元件。 The memory of claim 1, wherein at least one of the diodes is a junction diode, and the first and second active regions are present in the well as the ends of the diode, and the well in which the well is located It is used to manufacture metal oxide semiconductor (CMOS) components. 如申請專利範圍第1項所述之記憶體,其中至少有一二極體為接面二極體,其兩個主動區作為二極體的兩端,且被一個假MOS閘極分開。 The memory of claim 1, wherein at least one of the diodes is a junction diode, and two active regions are used as two ends of the diode and separated by a dummy MOS gate. 如申請專利範圍第1項所述之記憶體,其中至少有一二極體為接面二極體,其兩個主動區作為二極體的兩端,且被一個淺溝槽隔離分開。 The memory of claim 1, wherein at least one of the diodes is a junction diode, and two active regions are used as two ends of the diode, and are separated by a shallow trench. 如申請專利範圍第1項所述之記憶體,其中至少有一二極體為接面二極體,其兩個主動區作為二極體的兩端,且被一矽化物阻擋層分開。 The memory of claim 1, wherein at least one of the diodes is a junction diode, and the two active regions are both ends of the diode and separated by a telluride barrier layer. 一種記憶體,包括:多個記憶存儲單元,至少有一記憶存儲單元包括: 一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,第二端具有一第二類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端;一第二二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端;其中該第一二極體的該第二端和該第二二極體的該第一端被耦合到一第二電源電壓線;其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一和第二電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 A memory comprising: a plurality of memory storage units, at least one memory storage unit comprising: A memory component has a first end and a second end, the first end being coupled to a first supply voltage line; and a first diode comprising at least a first end and a second end, wherein the first end Having a first type of doping, the second end having a second type of doping, the first end of the first diode being coupled to the second end of the memory element; and the second diode comprising at least a first end and a second end, wherein the first end has a first type doping, the second end has a second type doping, and the second end of the second dipole is coupled to the The second end of the memory element; wherein the second end of the first diode and the first end of the second diode are coupled to a second supply voltage line; wherein the memory element is configured to Programmable to different logic states, by applying a voltage to the first and second supply voltage lines, thereby turning on the first diode to cut the second diode to a logic state, or turning on the second The diode cuts off the first diode to another logic state. 一種電子系統,包括:一處理器;及一記憶體可操作地連接到處理器,這記憶體包括至少數個記憶存儲單元來提供數據存儲,每個記憶存儲單元包括:一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及一第一二極體包括至少一第一端和一第二端,其中該第一端具有一第一類型摻雜,該第二端具有一第二個類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端,該第一二極體的該第二端被耦合到一第二電源電壓線;一第二二極體包括至少一第一端和一第二端,其中該第一端具有 一第一類型摻雜,該第二端具有一第二類型摻雜,該第二二極體的該第二端被耦合到該記憶元件的該第二端,而該第二二極體的該第一端被耦合到該第二或一第三電源電壓線;其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 An electronic system comprising: a processor; and a memory operatively coupled to the processor, the memory comprising at least a plurality of memory storage units for providing data storage, each memory storage unit comprising: a memory component having a first And the first end is coupled to a first supply voltage line; and the first diode includes at least a first end and a second end, wherein the first end has a first type of doping Miscellaneous, the second end has a second type of doping, the first end of the first diode is coupled to the second end of the memory element, and the second end of the first diode is Coupled to a second supply voltage line; a second diode includes at least a first end and a second end, wherein the first end has a first type doping, the second end having a second type of doping, the second end of the second diode being coupled to the second end of the memory element, and the second diode The first end is coupled to the second or a third supply voltage line; wherein the memory element is configured to be programmable to a different logic state, via applying a voltage to the first, second, and/or third power source And a voltage line, thereby turning on the first diode to cut off the second diode to a logic state, or turning on the second diode to cut the first diode to another logic state. 如申請專利範圍第13項所述之電子系統,其中電子系統被構建成定期讀取每個存儲單元的內容,並寫回內容。 The electronic system of claim 13, wherein the electronic system is configured to periodically read the contents of each storage unit and write back the content. 一種提供一記憶體的方法,包括:提供多個記憶存儲單元,至少有一記憶存儲單元包括至少(i)一記憶元件有第一端和第二端,該第一端被耦合到一第一電源電壓線;及(ii)一第一二極體包含至少一第一端和一第二端,該第一端具有第一類型摻雜,該第二端擁有第二類型摻雜,該第一二極體的該第一端被耦合到該記憶元件的該第二端而該第一二極體的該第二端被耦合到一第二電源電壓線;(iii)一第二二極體包含至少一第一端和一第二端,該第一端具有第一類型摻雜,該第二端具有第二類型摻雜,該第一端提供了二極體的一第一端,第二端提供二極體的一第二端,該第二二極體的該第二端被耦合到該記憶元件的該第二端而該第二二極體的該第一端被耦合到該第二或一第三電源電壓線;及其中,該記憶元件被配置為可編程到不同的邏輯狀態,經由施加電壓到該第一,第二和/或第三電源電壓線,從而導通該第一二極體而切斷了該第二二極體到一邏輯狀態,或導通該第二二極體而切斷了該第一二極體到另一邏輯狀態。 A method of providing a memory, comprising: providing a plurality of memory storage units, at least one memory storage unit comprising at least (i) a memory component having a first end and a second end, the first end being coupled to a first power source a voltage line; and (ii) a first diode comprising at least a first end and a second end, the first end having a first type of doping and the second end having a second type of doping, the first The first end of the diode is coupled to the second end of the memory element and the second end of the first diode is coupled to a second supply voltage line; (iii) a second diode Having at least a first end having a first type of doping, the second end having a second type of doping, the first end providing a first end of the diode, a second end providing a second end of the diode, the second end of the second diode being coupled to the second end of the memory element and the first end of the second diode being coupled to the second end a second or a third supply voltage line; and wherein the memory element is configured to be programmable to a different logic state via an applied voltage The first, second, and/or third power voltage lines, thereby turning on the first diode to cut off the second diode to a logic state, or turning on the second diode to cut off The first diode is in another logic state.
TW100129641A 2010-08-20 2011-08-18 Electronics system, memory and method for providing the same TWI462107B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37565310P 2010-08-20 2010-08-20

Publications (2)

Publication Number Publication Date
TW201225092A TW201225092A (en) 2012-06-16
TWI462107B true TWI462107B (en) 2014-11-21

Family

ID=45795081

Family Applications (3)

Application Number Title Priority Date Filing Date
TW100129641A TWI462107B (en) 2010-08-20 2011-08-18 Electronics system, memory and method for providing the same
TW100129642A TWI480881B (en) 2010-08-20 2011-08-18 One-time programmable memory, electronics system, and method for providing one-time programmable memory
TW100129640A TWI452680B (en) 2010-08-20 2011-08-18 Phase-change memory, electronics system, reversible resistive memory and method for providing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100129642A TWI480881B (en) 2010-08-20 2011-08-18 One-time programmable memory, electronics system, and method for providing one-time programmable memory
TW100129640A TWI452680B (en) 2010-08-20 2011-08-18 Phase-change memory, electronics system, reversible resistive memory and method for providing the same

Country Status (2)

Country Link
CN (3) CN102385932B (en)
TW (3) TWI462107B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
TW201417102A (en) 2012-10-23 2014-05-01 Ind Tech Res Inst Resistive random-access memory devices
TWI608483B (en) * 2012-12-07 2017-12-11 上峰科技股份有限公司 Circuit and system of 3d programmable resistive device and memory using diode as selector
US9922720B2 (en) * 2013-03-07 2018-03-20 Intel Corporation Random fuse sensing
CN104464816B (en) * 2013-09-21 2019-03-01 上峰科技股份有限公司 One-time programmable memory, operation method and programming method thereof and electronic system
CN106133841B (en) * 2013-09-21 2019-12-20 上峰科技股份有限公司 One-time programmable memory, electronic system, method for operating one-time programmable memory and method for programming one-time programmable memory
CN106374039B (en) * 2015-07-22 2019-03-12 旺宏电子股份有限公司 Memory device and manufacturing method thereof
CN107579087B (en) * 2016-07-04 2020-04-07 中芯国际集成电路制造(上海)有限公司 Memory cell array structure and electronic device
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
US10325991B1 (en) * 2017-12-06 2019-06-18 Nanya Technology Corporation Transistor device
CN109994137A (en) * 2019-03-20 2019-07-09 浙江大学 A fast writing method for single-tube single-resistance random access memory array
CN111739570B (en) * 2019-03-25 2022-05-31 中电海康集团有限公司 SOT-MRAM memory cell and SOT-MRAM memory
US11107859B2 (en) * 2019-08-05 2021-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell with unipolar selectors
GB2587089B (en) * 2019-09-03 2021-12-15 Attopsemi Tech Co Ltd One-time programmable memories with low power read operation and novel sensing scheme
CN111881640B (en) * 2020-07-31 2024-11-08 上海华力微电子有限公司 Electrically programmable fuse system and programming method and reading method thereof
US12046308B2 (en) 2021-04-23 2024-07-23 Changxin Memory Technologies, Inc. OTP memory and method for manufacturing thereof, and OTP circuit
CN115240746A (en) * 2021-04-23 2022-10-25 长鑫存储技术有限公司 OTP memory and manufacturing method thereof, and OTP circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072357A1 (en) * 2004-10-01 2006-04-06 Wicker Guy C Method of operating a programmable resistance memory array
US7391064B1 (en) * 2004-12-01 2008-06-24 Spansion Llc Memory device with a selection element and a control line in a substantially similar layer
US20080220560A1 (en) * 1997-10-01 2008-09-11 Patrick Klersy Programmable resistance memory element and method for making same
US20100142254A1 (en) * 2008-12-05 2010-06-10 Byung-Gil Choi Nonvolatile Memory Device Using Variable Resistive Element
US20100171086A1 (en) * 2009-01-07 2010-07-08 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130044A (en) * 1984-07-20 1986-02-12 Nippon Denso Co Ltd Semiconductor chip inspection method
JP2671503B2 (en) * 1989-06-01 1997-10-29 トヨタ自動車株式会社 Painting method
JPH09134974A (en) * 1995-09-08 1997-05-20 Fujitsu Ltd Ferroelectric memory device
TW388129B (en) * 1998-03-06 2000-04-21 Nation Science Council Novel process for producing polysilicon interlayer contact of polysilicon TFT SRAM
US6054344A (en) * 1998-10-30 2000-04-25 Taiwan Semiconductor Manufacturing Company OTP (open trigger path) latchup scheme using buried-diode for sub-quarter micron transistors
JP2000323669A (en) * 1999-03-10 2000-11-24 Sanyo Electric Co Ltd Semiconductor nonvolatile memory device
US6400540B1 (en) * 1999-03-12 2002-06-04 Sil.Able Inc. Clamp circuit to prevent ESD damage to an integrated circuit
US6541316B2 (en) * 2000-12-22 2003-04-01 The Regents Of The University Of California Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
US6646912B2 (en) * 2001-06-05 2003-11-11 Hewlett-Packard Development Company, Lp. Non-volatile memory
JP2002368136A (en) * 2001-06-06 2002-12-20 Sony Corp Semiconductor memory device and production method therefor
US6707729B2 (en) * 2002-02-15 2004-03-16 Micron Technology, Inc. Physically alternating sense amplifier activation
US6813182B2 (en) * 2002-05-31 2004-11-02 Hewlett-Packard Development Company, L.P. Diode-and-fuse memory elements for a write-once memory comprising an anisotropic semiconductor sheet
US7511982B2 (en) * 2004-05-06 2009-03-31 Sidense Corp. High speed OTP sensing scheme
US7212432B2 (en) * 2004-09-30 2007-05-01 Infineon Technologies Ag Resistive memory cell random access memory device and method of fabrication
US8179711B2 (en) * 2004-10-26 2012-05-15 Samsung Electronics Co., Ltd. Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell
US7035141B1 (en) * 2004-11-17 2006-04-25 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
US7402874B2 (en) * 2005-04-29 2008-07-22 Texas Instruments Incorporated One time programmable EPROM fabrication in STI CMOS technology
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7227233B2 (en) * 2005-09-12 2007-06-05 International Business Machines Corporation Silicon-on-insulator (SOI) Read Only Memory (ROM) array and method of making a SOI ROM
US7433247B2 (en) * 2005-09-26 2008-10-07 Macronix International Co., Ltd. Method and circuit for reading fuse cells in a nonvolatile memory during power-up
US7411810B2 (en) * 2005-12-11 2008-08-12 Juhan Kim One-time programmable memory
US20080036033A1 (en) * 2006-08-10 2008-02-14 Broadcom Corporation One-time programmable memory
US7508694B2 (en) * 2006-09-27 2009-03-24 Novelics, Llc One-time-programmable memory
US7489535B2 (en) * 2006-10-28 2009-02-10 Alpha & Omega Semiconductor Ltd. Circuit configurations and methods for manufacturing five-volt one time programmable (OTP) memory arrays
US7436695B2 (en) * 2006-11-21 2008-10-14 Infineon Technologies Ag Resistive memory including bipolar transistor access devices
KR100909537B1 (en) * 2007-09-07 2009-07-27 주식회사 동부하이텍 Semiconductor device and manufacturing method thereof
JP4482039B2 (en) * 2008-01-11 2010-06-16 株式会社東芝 Resistance change memory
US20100091546A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc High density reconfigurable spin torque non-volatile memory
US20100108980A1 (en) * 2008-11-03 2010-05-06 Industrial Technology Research Institute Resistive memory array
CN101667460A (en) * 2009-10-12 2010-03-10 中国科学院微电子研究所 One-time programming memory based on resistive variable memory and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080220560A1 (en) * 1997-10-01 2008-09-11 Patrick Klersy Programmable resistance memory element and method for making same
US20060072357A1 (en) * 2004-10-01 2006-04-06 Wicker Guy C Method of operating a programmable resistance memory array
US7391064B1 (en) * 2004-12-01 2008-06-24 Spansion Llc Memory device with a selection element and a control line in a substantially similar layer
US20100142254A1 (en) * 2008-12-05 2010-06-10 Byung-Gil Choi Nonvolatile Memory Device Using Variable Resistive Element
US20100171086A1 (en) * 2009-01-07 2010-07-08 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. P. Ng, M. C. Lee, K. C. Kwong and Mansun Chan,"Diode Based Gate Oxide Anti-fuse One Time^&rn^Programmable Memory Array in Standard CMOS^&rn^Process",Electron Devices and So *

Also Published As

Publication number Publication date
CN102385932A (en) 2012-03-21
CN102385917A (en) 2012-03-21
TWI480881B (en) 2015-04-11
TW201225092A (en) 2012-06-16
TWI452680B (en) 2014-09-11
TW201234379A (en) 2012-08-16
CN102385917B (en) 2014-11-26
CN102376739A (en) 2012-03-14
TW201230306A (en) 2012-07-16
CN102376739B (en) 2015-03-11
CN102385932B (en) 2016-03-02

Similar Documents

Publication Publication Date Title
TWI462107B (en) Electronics system, memory and method for providing the same
TWI479487B (en) Magnetic memory, electronic system, memory and method thereof
US9385162B2 (en) Programmably reversible resistive device cells using CMOS logic processes
US8913415B2 (en) Circuit and system for using junction diode as program selector for one-time programmable devices
US8830720B2 (en) Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices