TWI441490B - Digital video broadcast service discovery - Google Patents
Digital video broadcast service discovery Download PDFInfo
- Publication number
- TWI441490B TWI441490B TW097137897A TW97137897A TWI441490B TW I441490 B TWI441490 B TW I441490B TW 097137897 A TW097137897 A TW 097137897A TW 97137897 A TW97137897 A TW 97137897A TW I441490 B TWI441490 B TW I441490B
- Authority
- TW
- Taiwan
- Prior art keywords
- symbol
- frequency
- pilot
- sequence
- signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
- H04L27/2659—Coarse or integer frequency offset determination and synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/233—Demodulator circuits; Receiver circuits using non-coherent demodulation
- H04L27/2331—Demodulator circuits; Receiver circuits using non-coherent demodulation wherein the received signal is demodulated using one or more delayed versions of itself
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2675—Pilot or known symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2681—Details of algorithms characterised by constraints
- H04L27/2685—Speed of convergence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Television Systems (AREA)
- Circuits Of Receivers In General (AREA)
Description
實施例大體上有關於通訊網路。較特別地,實施例有關於數位視訊廣播服務探索技術。Embodiments are generally related to communication networks. More particularly, embodiments relate to digital video broadcast service discovery techniques.
數位寬頻廣播網路使終端使用者能夠接收包括視訊、音訊、資料等之數位內容。利用一行動終端機,一使用者可透過一無線數位廣播網路接收數位內容。數位內容可在一網路內的一蜂巢格中被傳輸。在一通訊網路中,一蜂巢格可代表可由一發射器覆蓋的一地理區域。一網路可具有多個蜂巢格,且蜂巢格可與其他蜂巢格相鄰。The digital broadband broadcast network enables end users to receive digital content including video, audio, data, and the like. With a mobile terminal, a user can receive digital content through a wireless digital broadcast network. Digital content can be transmitted in a nest in a network. In a communication network, a honeycomb cell can represent a geographic area that can be covered by a transmitter. A network can have multiple honeycomb cells, and the honeycomb cells can be adjacent to other honeycomb cells.
諸如一行動終端機之一接收裝置可以以一資料或傳輸流接收一節目或服務。該傳輸流攜帶該節目或服務之個別元素,諸如一節目或服務的音訊、視訊及資料成分。典型地,該接收裝置透過嵌在該資料流中的節目特定資訊(PSI)或服務資訊(SI)定位一資料流中的一特定節目或服務的不同成分。然而,PSI或SI發信在諸如手持式數位視訊廣播(DVB-H)系統之某些無線通訊系統中可能是不充分的。在該系統中PSI或SI發信的使用可能導致一個次最佳的終端使用者經驗,因為PSI及SI資訊中攜帶的PSI及SI表可能具有長的重複週期。另外,PSI或SI發信需要大量頻寬,這代價高且還減小該系統的效率。A receiving device, such as a mobile terminal, can receive a program or service in a data or transport stream. The transport stream carries individual elements of the program or service, such as audio, video and data components of a program or service. Typically, the receiving device locates different components of a particular program or service in a data stream via program specific information (PSI) or service information (SI) embedded in the data stream. However, PSI or SI signaling may not be sufficient in some wireless communication systems such as Handheld Digital Video Broadcasting (DVB-H) systems. The use of PSI or SI signaling in this system may result in a sub-optimal end-user experience, as PSI and SI tables carried in PSI and SI information may have long repetition periods. In addition, PSI or SI signaling requires a large amount of bandwidth, which is costly and also reduces the efficiency of the system.
為了提供對本發明的一些層面的一基本理解,下面提出一簡單概要。該概要中並沒有對本發明作大量的概括論述。它既不意欲指出本發明之重要或關鍵的元件,也非意欲描述本發明的範圍。下面概要僅僅以一簡單的形式提出本發明的一些概念作為對以下較詳細描述的一前序。In order to provide a basic understanding of some aspects of the invention, a brief summary is presented below. The present invention has not been extensively summarized in this summary. It is not intended to identify key or critical elements of the invention, and is not intended to limit the scope of the invention. The following summary merely presents some concepts of the invention in a simplified form as a
實施例係針對根據一參考序列調變一第一引導符號的二元相移鍵控,及調變一第二引導符號的微分二元相移鍵控。然後,在執行一反快速傅立葉變換及插入一保護間隔之前,該原始參考序列與該已延遲的微分調變序列被組合。接收器操作是剛剛被討論的發射器操作的一反向。該接收器不必知道該參考序列。實施例係針對,指定多個種源,該等種源是每一個具有r個位元的位元型樣,不是所有該等r個位元都具有一個零值;藉由對每一種源應用一遞迴公式將該等種源擴展成各自的序列;及使用該等序列的其中一個作為一梳序列且使用該梳序列以外的該等序列作為二元相移鍵控型樣。Embodiments are directed to modulating binary phase shift keying of a first pilot symbol according to a reference sequence, and modulating differential binary phase shift keying of a second pilot symbol. The original reference sequence is then combined with the delayed differential modulation sequence prior to performing an inverse fast Fourier transform and inserting a guard interval. The receiver operation is a reversal of the transmitter operation just discussed. The receiver does not have to know the reference sequence. Embodiments are directed to specifying a plurality of seed sources, each of which has a bit pattern of r bits, not all of which have a zero value; by applying to each source A recursive formula expands the sources into their respective sequences; and uses one of the sequences as a comb sequence and uses the sequences other than the comb sequence as a binary phase shift keying pattern.
藉由參考結合附圖的下面描述,對本發明及其優點的一較完整的理解可被獲得,在該等附圖中,相同的參考數字指示相同的特徵,且其中:A more complete understanding of the present invention and its advantages can be obtained by the description of the accompanying drawings in which <RTIgt;
第1圖說明本發明的一或較多個說明性實施例可在其中被實施的一適合的數位寬頻廣播系統。Figure 1 illustrates a suitable digital broadband broadcast system in which one or more illustrative embodiments of the present invention may be implemented.
第2圖根據本發明之一層面說明一行動裝置的一範例。Figure 2 illustrates an example of a mobile device in accordance with one aspect of the present invention.
第3圖根據本發明之一層面概要地說明蜂巢格的一範例,該等蜂巢格中的每一個可被一不同的發射器覆蓋。Figure 3 schematically illustrates an example of a honeycomb lattice in accordance with one aspect of the present invention, each of which may be covered by a different emitter.
第4圖根據本發明之一層面顯示符號(用於頻道搜尋及服務探索之同步符號)與資料的一訊框及超訊框。Figure 4 shows a frame (a symbol for channel search and service discovery) and a frame and a frame of information according to one aspect of the present invention.
第5圖顯示一信號中心頻率可如何與一頻道中心頻率相一致,或相對於一頻道中心頻率偏移。Figure 5 shows how a signal center frequency can coincide with a channel center frequency or with respect to a channel center frequency.
第6圖是根據至少一個實施例顯示由一接收器執行的步驟的一流程圖。Figure 6 is a flow chart showing the steps performed by a receiver in accordance with at least one embodiment.
第7圖根據本發明之一層面相對於一信號頻寬及一頻道光柵頻寬顯示一引導信號頻寬的大小的一範例。Figure 7 shows an example of the magnitude of a pilot signal bandwidth relative to a signal bandwidth and a channel raster bandwidth in accordance with one aspect of the present invention.
第8圖根據本發明之一層面說明一引導符號的一引導序列的稀疏引導間距。Figure 8 illustrates a sparse lead spacing of a pilot sequence of a pilot symbol in accordance with one aspect of the present invention.
第9圖是顯示由一接收器執行的用以在頻域中執行相關以檢測正被使用的粗略偏移的步驟的一流程圖。Figure 9 is a flow chart showing the steps performed by a receiver to perform correlation in the frequency domain to detect the coarse offset being used.
第10圖是根據一實施例顯示用以在時域中執行一服務探索相關的步驟的一流程圖。Figure 10 is a flow diagram showing the steps associated with performing a service discovery in the time domain, in accordance with an embodiment.
第11圖根據本發明之一層面顯示一引導/發信符號序列的一範例。Figure 11 shows an example of a sequence of pilot/telephone symbols in accordance with one aspect of the present invention.
第12圖是根據本發明的至少一層面顯示由一發射器執行的一方法的步驟的一流程圖。Figure 12 is a flow diagram showing the steps of a method performed by a transmitter in accordance with at least one level of the present invention.
第13圖根據本發明之一層面說明一封包結構。Figure 13 illustrates a packet structure in accordance with one aspect of the present invention.
第14圖根據本發明之一層面說明一發信窗偏移。Figure 14 illustrates a transmit window offset in accordance with one aspect of the present invention.
第15圖根據本發明之一層面說明一訊框的一目前子信 號與下一個子信號之間的一偏移。Figure 15 illustrates a current sub-letter of a frame in accordance with one aspect of the present invention. An offset between the number and the next sub-signal.
第16圖根據本發明之一層面說明可被用以攜帶發信資訊的附加封包結構。Figure 16 illustrates an additional packet structure that can be used to carry signaling information in accordance with one aspect of the present invention.
第17圖根據本發明之一層面說明用在服務探索中的一示範流程圖。Figure 17 illustrates an exemplary flow chart for use in service exploration in accordance with one aspect of the present invention.
第18及19圖根據本發明之一層面描述P1、P2及DATA符號之間的關係。Figures 18 and 19 depict the relationship between P1, P2 and DATA symbols in accordance with one aspect of the present invention.
第20圖根據本發明之一層面顯示一示範訊框及包括OFDM符號及蜂巢格的時槽結構。Figure 20 shows an exemplary frame and a time slot structure comprising OFDM symbols and a honeycomb cell in accordance with one aspect of the present invention.
第21圖說明一個引導符號內的同調頻寬及微分調變。Figure 21 illustrates the coherence bandwidth and differential modulation within a pilot symbol.
第22圖根據本發明之一層面描述兩個P1符號之間的微分調變。Figure 22 depicts the differential modulation between two P1 symbols in accordance with one aspect of the present invention.
第23圖根據一實施例顯示具有1/1保護間隔的兩個1K符號及該等符號之間的微分調變。Figure 23 shows two 1K symbols with a 1/1 guard interval and differential modulation between the symbols, according to an embodiment.
第24圖根據一或較多個實施例顯示從一或較多個引導符號接收的能量之和的計算。Figure 24 shows the calculation of the sum of energy received from one or more pilot symbols in accordance with one or more embodiments.
第25圖根據一或較多個實施例顯示一發射器。Figure 25 shows a transmitter in accordance with one or more embodiments.
第26圖根據一或較多個實施例顯示一接收器。Figure 26 shows a receiver in accordance with one or more embodiments.
第27圖是根據一或較多個實施例顯示可由一接收器執行的步驟的一流程圖。Figure 27 is a flow diagram showing the steps that can be performed by a receiver in accordance with one or more embodiments.
第28圖是根據一或較多個實施例的引導序列與它們的頻率偏移版本之間的自/互相關的一圖形。Figure 28 is a diagram of the auto/cross correlation between the pilot sequences and their frequency offset versions in accordance with one or more embodiments.
第29圖是第28圖的該圖形的一放大版本,顯示頻率偏移之低的互相關範圍。Figure 29 is an enlarged version of the figure of Figure 28 showing the low cross-correlation range of the frequency offset.
第30圖是根據至少一實施例顯示一第一引導符號信號的包絡振幅的一圖形。Figure 30 is a diagram showing the envelope amplitude of a first pilot symbol signal in accordance with at least one embodiment.
第31圖是第30圖的該圖形的一放大版本。Figure 31 is an enlarged version of the figure of Figure 30.
在對各種實施例的下面描述中請參考附圖,該等附圖形成本文的一部分,且其中藉由說明的方式顯示了本發明可被實施於其中的各種實施例。將被理解的是,在不背離本發明的範圍及精神的情況下,其他實施例可被利用,且結構的及功能的修改可被做出。In the following description of the various embodiments, reference is made to the accompanying drawings, in which FIG. It will be appreciated that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope and spirit of the invention.
實施例係針對數位廣播網路中的服務探索及頻道搜尋。從一使用者的角度來看,相對快的服務探索技術是所希望的。當然,首次利用接收裝置時,一盲目服務探索/頻道搜尋被執行。而且,當一終端機被關掉且移到一不同的位置時,一新的盲目搜尋又被執行。通常,為了檢測可能的新的服務,一行動TV應用程式有時還執行背景頻道搜尋。該盲目服務探索應該只花幾秒鐘以便不煩擾終端使用者而致能頻繁的再掃描。Embodiments are directed to service discovery and channel discovery in digital broadcast networks. From a user's perspective, relatively fast service discovery techniques are desirable. Of course, when the receiving device is used for the first time, a blind service discovery/channel search is performed. Moreover, when a terminal is turned off and moved to a different location, a new blind search is performed again. Typically, an action TV application sometimes performs a background channel search in order to detect possible new services. This blind service exploration should take only a few seconds to enable frequent rescans without bothering the end user.
與習知的數位視訊廣播服務探索有關的挑戰包括下面內容。DVB-H標準提供許多關於信號頻寬、FFT大小、保護間隔、內部調變等的靈活性。操作者可對該DVB-H信號使用偏移,即該信號不在一頻道的標稱中心頻率,而是偏移某一量。不同的國家使用不同的頻道光柵及信號頻寬。TPS(發射器參數發信)被包括在該標準中以有助於接收器 同步及頻道搜尋。遺憾的是,該接收器在它可解碼TPS資訊之前需要知道幾個參數。在該TPS可被解碼之前,信號頻寬、頻率偏移、FFT大小及保護間隔需要被知道。UHF頻帶中的大多數頻道不含有DVB-H服務。非DVB-H頻道使用嘗試錯誤法來檢測(使用所有模式試圖達到鎖定),且這花費許多時間。實際上檢測非DVB-H服務的時間主要設定頻道搜尋之可達到的速度,因為通常大多數該等頻道是空的或含有非DVB-H服務。Challenges associated with the discovery of conventional digital video broadcast services include the following. The DVB-H standard provides a lot of flexibility regarding signal bandwidth, FFT size, guard spacing, internal modulation, and more. The operator can use an offset for the DVB-H signal, ie the signal is not offset by a certain amount at the nominal center frequency of a channel. Different countries use different channel rasters and signal bandwidths. TPS (transmitter parameter signaling) is included in the standard to aid the receiver Sync and channel search. Unfortunately, the receiver needs to know several parameters before it can decode the TPS information. The signal bandwidth, frequency offset, FFT size, and guard interval need to be known before the TPS can be decoded. Most channels in the UHF band do not contain DVB-H services. Non-DVB-H channels use a trial error method to detect (using all modes to try to reach the lock), and this takes a lot of time. In fact, the time to detect non-DVB-H services primarily sets the speed at which channel searches can be achieved, since typically most of these channels are empty or contain non-DVB-H services.
對盲目服務探索的一範例計算如下:UHF中的頻道的數目35,(頻道21-55,470-750 MHz);頻率偏移的數目7(-3/6,-2/6,-1/6,0,+1/6,+2/6,+3/6 MHz);信號頻寬的數目3(6 MHz,7 MHz,8 MHz。5 MHz是只用於USA接收器的個別實例);FFT大小的數目3(2K,4K,8K);保護間隔的數目4(1/32,1/16,1/8及1/4);及對於一個模式而言解碼TPS時的平均時間120 ms(2K 50 ms,4K 100 ms,8K 200 ms)。該等數字是示範性的。An example of blind service exploration is calculated as follows: number of channels in UHF 35, (channel 21-55, 470-750 MHz); number of frequency offsets 7 (-3/6, -2/6, -1/) 6,0,+1/6,+2/6,+3/6 MHz); number of signal bandwidths 3 (6 MHz, 7 MHz, 8 MHz. 5 MHz is an individual instance for USA receiver only); FFT size The number of 3 (2K, 4K, 8K); the number of guard intervals 4 (1/32, 1/16, 1/8 and 1/4); and the average time to decode TPS for a mode is 120 ms (2K) 50 ms, 4K 100 ms, 8K 200 ms). These figures are exemplary.
在此範例中,由此產生的用於盲目服務探索的時間將是:35*7*3*3*4*120 ms=1058.4秒=17.64分鐘。In this example, the resulting time for blind service exploration would be: 35*7*3*3*4*120 ms=1058.4 seconds=17.64 minutes.
根據實施例,各種方法可被用以減少執行頻道搜尋/服務探索所花費的時間。該等各種方法的基本概念係引入一信號之具有已知的特性且保持與不同的數位視訊廣播操作模式相同的一部分(例如(多個)初始化/同步符號)。因此,在不必依靠嘗試錯誤法情況下,該信號的該已知部分可被解碼。信號的該已知部分含有關於該信號的剩餘部分的參 數;因此,在該已知部分被解碼之後,該信號的該剩餘部分可在不用嘗試錯誤法的情況下被解碼。該信號的該已知部分包含可用的副載波的一子集及它們的調變。預先定義的副載波(副載波數目)與它們的調變之組合被挑選以使得該組合對於每一偏移-FFT大小對而言是唯一的(或只對該等不同的FFT大小唯一),且這個組合可被使用來識別該信號作為該數位視訊廣播之一想要的信號。而且,利用該信號的該已知部分,含有數位視訊廣播服務的該等頻道可被高效地檢測。如果從所檢查的信號沒找到該固定已知部分,則該信號將被視為一非數位視訊廣播信號或一空頻道,且該接收器可迅速繼續至下一個頻道/頻率。以這種方式,檢測非數位視訊廣播及空頻道變得相對快。According to an embodiment, various methods can be used to reduce the time it takes to perform channel search/service exploration. The basic concept of these various methods introduces a portion of a signal that has known characteristics and maintains the same portion (e.g., initialization/synchronization symbol(s)) as the different digital video broadcast modes of operation. Thus, the known portion of the signal can be decoded without having to rely on the trial error method. The known portion of the signal contains the reference to the remainder of the signal The number; therefore, after the known portion is decoded, the remainder of the signal can be decoded without attempting an erroneous method. This known portion of the signal contains a subset of the available subcarriers and their modulation. The combination of pre-defined subcarriers (number of subcarriers) and their modulation is chosen such that the combination is unique for each offset-FFT size pair (or only unique for the different FFT sizes), And this combination can be used to identify the signal as a desired signal for one of the digital video broadcasts. Moreover, with the known portion of the signal, the channels containing the digital video broadcast service can be efficiently detected. If the fixed known portion is not found from the checked signal, the signal will be treated as a non-digital video broadcast signal or an empty channel, and the receiver can quickly proceed to the next channel/frequency. In this way, detecting non-digital video broadcasts and empty channels becomes relatively fast.
第1圖說明一或較多個說明性實施例可在其中被實施的一適合的數位寬頻廣播系統102。諸如在此所說明的該系統之系統可利用一數位寬頻廣播技術,例如手持式數位視訊廣播(DVB-H)或下一代DVB-H網路。數位寬頻廣播系統102可利用的其他數位廣播標準的範例包括地面數位視訊廣播(DVB-T)、地面整合服務數位廣播(ISDB-T)、先進電視系統委員會(ATSC)資料廣播標準、地面數位多媒體廣播(DMB-T)、地面數位多媒體廣播(T-DMB)、衛星數位多媒體廣播(S-DMB)、僅正向鏈接(FLO)、數位音訊廣播(DAB)、及數位無線電調幅聯盟(DRM)。現在已知的或以後開發的其他數位廣播標準及技術也可被使用。本發明的層面還可應用於其他諸如例如T-DAB、T/S-DMB、ISDB-T及ATSC之 多載波數位廣播系統、諸如高通(Qualcomm)MediaFLO/FLO之專屬系統、及諸如3GPP MBMS(多媒體廣播/多播服務)及3GPP2 BCMCS(廣播/多播服務)之非傳統系統。FIG. 1 illustrates a suitable digital broadband broadcast system 102 in which one or more illustrative embodiments may be implemented. A system such as the system described herein may utilize a digital broadband broadcast technology such as Handheld Digital Video Broadcasting (DVB-H) or a next generation DVB-H network. Examples of other digital broadcasting standards available to digital broadband broadcasting system 102 include terrestrial digital video broadcasting (DVB-T), terrestrial integrated services digital broadcasting (ISDB-T), advanced television system committee (ATSC) data broadcasting standard, terrestrial digital multimedia Broadcast (DMB-T), terrestrial digital multimedia broadcasting (T-DMB), satellite digital multimedia broadcasting (S-DMB), forward link only (FLO), digital audio broadcasting (DAB), and digital radio amplitude modulation alliance (DRM) . Other digital broadcast standards and technologies now known or later developed may also be used. The aspects of the present invention are also applicable to other such as, for example, T-DAB, T/S-DMB, ISDB-T, and ATSC. Multi-carrier digital broadcast systems, proprietary systems such as Qualcomm MediaFLO/FLO, and non-legacy systems such as 3GPP MBMS (Multimedia Broadcast/Multicast Service) and 3GPP2 BCMCS (Broadcast/Multicast Service).
數位內容可由數位內容源104建立及/或提供,且可包括視訊信號、音訊信號、資料等。數位內容源104可以以數位封包(例如網際網路協定(IP)封包)的形式提供內容給數位廣播發射器103。共享某一唯一IP位址或其他源識別符的相關IP封包之一群組有時被描述為一IP流。數位廣播發射器103可接收、處理、及轉送來自多個數位內容源104的多個數位內容資料流的傳輸。在各種實施例中,該等數位資料流可以是IP流。接著,該已處理的數位內容可被傳遞到用於無線傳輸的數位廣播塔105(或其他實體傳輸元件)。最後,行動終端機或裝置112可選擇性地接收且消費源自數位內容源104的數位內容。Digital content may be created and/or provided by digital content source 104 and may include video signals, audio signals, data, and the like. The digital content source 104 can provide content to the digital broadcast transmitter 103 in the form of a digital packet, such as an Internet Protocol (IP) packet. A group of related IP packets that share a unique IP address or other source identifier is sometimes described as an IP stream. The digital broadcast transmitter 103 can receive, process, and forward transmissions of a plurality of digital content streams from a plurality of digital content sources 104. In various embodiments, the digital data streams can be IP streams. The processed digital content can then be passed to a digital broadcast tower 105 (or other physical transport component) for wireless transmission. Finally, the mobile terminal or device 112 can selectively receive and consume digital content originating from the digital content source 104.
如第2圖中所顯示,行動裝置112可包括連接到使用者介面130的處理器128、記憶體134及/或其他儲存器,及可被用以向一行動裝置使用者顯示視訊內容、服務導引資訊等的顯示器136。行動裝置112還可包括電池150、揚聲器152及天線154。使用者介面130可進一步包括一鍵盤、觸摸螢幕、語音介面、一或較多個箭頭鍵、搖桿、數據手套、滑鼠、滾輪球等。As shown in FIG. 2, the mobile device 112 can include a processor 128, a memory 134, and/or other storage connected to the user interface 130, and can be used to display video content and services to a mobile device user. A display 136 that guides information and the like. The mobile device 112 can also include a battery 150, a speaker 152, and an antenna 154. The user interface 130 can further include a keyboard, a touch screen, a voice interface, one or more arrow keys, a rocker, a data glove, a mouse, a roller ball, and the like.
處理器128及行動裝置112內的其他元件所使用的電腦可執行指令及資料可被儲存在一電腦可讀記憶體134中。該記憶體可用可取捨地包括依電性及非依電性記憶體的唯讀 記憶體模組或隨機存取記憶體模組的任何組合來實施。軟體140可被儲存在記憶體134及/或儲存器內來提供指令給處理器128以使行動裝置112能夠執行各種功能。選擇性地,某些或所有行動裝置112的電腦可執行指令可以以硬體或韌體(未顯示出)來實施。Computer executable instructions and materials used by processor 128 and other components within mobile device 112 may be stored in a computer readable memory 134. The memory can optionally include read-only electrical and non-electrical memory Any combination of memory modules or random access memory modules is implemented. The software 140 can be stored in the memory 134 and/or storage to provide instructions to the processor 128 to enable the mobile device 112 to perform various functions. Alternatively, computer executable instructions for some or all of the mobile devices 112 may be implemented in hardware or firmware (not shown).
行動裝置112可被組配以透過一特定DVB接收器141接收、解碼及處理例如基於諸如DVB-H或DVB-T之數位視訊廣播(DVB)標準的數位寬頻廣播傳輸。該行動裝置還可被提供其他類型的用於數位寬頻廣播傳輸的接收器。此外,接收器裝置112還可被組配以透過FM/AM無線電接收器142、WLAN收發器143,及電信收發器144接收、解碼及處理傳輸。在本發明之一層面中,行動裝置112可接收無線電資料流(RDS)訊息。Mobile device 112 can be configured to receive, decode, and process digital wideband broadcast transmissions, for example, based on the Digital Video Broadcasting (DVB) standard, such as DVB-H or DVB-T, through a particular DVB receiver 141. The mobile device can also be provided with other types of receivers for digital broadband broadcast transmissions. In addition, receiver device 112 can also be configured to receive, decode, and process transmissions through FM/AM radio receiver 142, WLAN transceiver 143, and telecommunications transceiver 144. In one aspect of the invention, mobile device 112 can receive radio data stream (RDS) messages.
在該DVB標準的一範例中,一DVB 10Mbit/s傳輸可具有200個50 kbit/s音訊節目頻道或50個200 kbit/s視訊(TV)節目頻道。該行動裝置112可被組配以接收、解碼,及處理基於該手持式數位視訊廣播(DVB-H)標準或諸如DVB-MHP、衛星DVB(DVB-S)、或地面DVB(DVB-T)之其他DVB標準的傳輸。同樣地,其他數位傳輸格式可選擇性地被用以遞送諸如ATSC(先進電視系統委員會)、NTSC(國家電視系統委員會)、ISDB-T(地面整合服務數位廣播)、DAB(數位音訊廣播)、DMB(數位多媒體廣播)、FLO(僅正向鏈接)或DIRECTV之附加服務的可得性內容及資訊。此外,該數位傳輸可被時間分割,諸如以DVB-H技術。時間 分割可減小一行動終端機的平均功率消耗,且可致能平滑及無縫交遞。與若利用一傳統的串流機制傳輸資料時所需要的位元率相比較,時間分割必需使用一較高的瞬時位元率來以叢發發送資料。在該實例中,該行動裝置112可具有一或較多個緩衝記憶體以備在呈現之前儲存已解碼的時間分割傳輸。In an example of the DVB standard, a DVB 10 Mbit/s transmission may have 200 50 kbit/s audio program channels or 50 200 kbit/s video (TV) program channels. The mobile device 112 can be configured to receive, decode, and process based on the Handheld Digital Video Broadcasting (DVB-H) standard or such as DVB-MHP, Satellite DVB (DVB-S), or terrestrial DVB (DVB-T) The transmission of other DVB standards. Similarly, other digital transmission formats can be selectively used to deliver such as ATSC (Advanced Television Systems Committee), NTSC (National Television System Committee), ISDB-T (Ground Integrated Services Digital Broadcasting), DAB (Digital Audio Broadcasting), Availability of content and information on additional services such as DMB (Digital Multimedia Broadcasting), FLO (forward link only) or DIRECTV. Furthermore, the digital transmission can be time divided, such as in DVB-H technology. time Segmentation reduces the average power consumption of a mobile terminal and enables smooth and seamless handover. In contrast to the bit rate required to transmit data using a conventional streaming mechanism, time division must use a higher instantaneous bit rate to transmit data in bursts. In this example, the mobile device 112 can have one or more buffer memories in preparation for storing the decoded time division transmission prior to presentation.
此外,一電子服務導引(ESG)可被用以提供節目或服務相關資訊。一般地,一電子服務導引(ESG)使一終端機能夠傳達什麼服務對終端使用者是可得的及該等服務如何可被接取。該ESG包括獨立存在的多件ESG分割塊。傳統地,ESG分割塊包括XML及/或二進制文件,但最近,它們已經包含諸如例如一SDP(對話描述協定)描述、文本檔案,或一影像之大量項目。該等ESG分割塊描述目前可得(或將來)的服務或廣播節目的一或多個層面。這些層面可包括例如:自由正文描述、排程、地理可得性、價格、購買方法、類型、及諸如預視影像或剪輯之其他輔助資訊。根據許多不同的協定,音訊、視訊及包括該ESG分割塊的其他類型資料可透過各種類型的網路被傳輸。例如,利用該網際網路協定套組之諸如網際網路協定(IP)及用戶資料元協定(UDP)之協定,資料可透過通常被稱為“網際網路”的網路的一集合被傳輸。資料時常透過網際網路被傳輸,定址到一單一使用者。然而,它可被定址到一群使用者,通常被稱為多播。在該資料被定址到所有使用者的實例中,這被稱為廣播。In addition, an electronic service guide (ESG) can be used to provide program or service related information. In general, an electronic service guide (ESG) enables a terminal to communicate what services are available to the end user and how the services can be accessed. The ESG includes multiple ESG split blocks that exist independently. Traditionally, ESG partitioning blocks include XML and/or binary files, but more recently, they have included a large number of items such as, for example, an SDP (Dialog Description Protocol) description, a text file, or an image. The ESG partitioning blocks describe one or more layers of currently available (or future) services or broadcast programs. These levels may include, for example, free text descriptions, schedules, geographic availability, prices, purchase methods, types, and other ancillary information such as preview images or clips. According to many different protocols, audio, video, and other types of data including the ESG partition can be transmitted over various types of networks. For example, using protocols of the Internet Protocol Suite such as the Internet Protocol (IP) and the User Data Element Agreement (UDP), data can be transmitted through a collection of networks commonly referred to as "Internet." . Data is often transmitted over the Internet and addressed to a single user. However, it can be addressed to a group of users, often referred to as multicast. In the case where the material is addressed to all users, this is called broadcasting.
廣播資料的一種方式是利用一IP資料廣播(IPDC)網路。IPDC是數位廣播與網際網路協定的一組合。透過這樣一種IP為基的廣播網路,一或較多個服務提供者可供應包括線上報紙、收音機,及電視的不同類型的IP服務。這些IP服務被組織成呈音訊、視訊及/或其他類型資料的形式的一或較多個媒體流。為了判定這些串流何時及何地出現,使用者參考一電子服務導引(ESG)。DVB的一種類型是手持式數位視訊廣播(DVB-H)。該DVB-H被設計以遞送10 Mbps的資料到一電池供電的終端裝置。One way to broadcast material is to utilize an IP data broadcast (IPDC) network. IPDC is a combination of digital broadcast and internet protocols. Through such an IP-based broadcast network, one or more service providers can supply different types of IP services including online newspapers, radios, and televisions. These IP services are organized into one or more media streams in the form of audio, video, and/or other types of data. To determine when and where these streams occur, the user refers to an Electronic Service Guide (ESG). One type of DVB is Handheld Digital Video Broadcasting (DVB-H). The DVB-H is designed to deliver 10 Mbps of data to a battery powered terminal device.
DVB傳輸流透過第三方遞送網路傳送壓縮的音訊及視訊及資料給一使用者。藉由動畫專家組(MPEG)這樣一種技術,一單一節目內的已編碼的視訊、音訊、及資料與其他節目一起被多工到一傳輸流(TS)。該TS是包括一標頭的具有固定長度封包的一封包化資料流。一節目的個別元素(音訊及視訊)被攜帶在具有一唯一封包識別(PID)的封包內。為了使一接收裝置能定位該TS內的一特定節目的不同元素,嵌入在該TS中的節目特定資訊(PSI)被提供。此外,附加的服務資訊(SI)(依附到該MPEG私有區段語法的一組表)被併入該TS。這使一接收器裝置能夠正確地處理包含在該TS內的資料。The DVB transport stream transmits compressed audio and video and data to a user via a third party delivery network. By means of a technique such as the Motion Picture Experts Group (MPEG), encoded video, audio, and data in a single program are multiplexed into a transport stream (TS) along with other programs. The TS is a packetized data stream having a fixed length packet including a header. Individual elements of a program (intelligence and video) are carried in a packet with a unique packet identification (PID). In order for a receiving device to locate different elements of a particular program within the TS, program specific information (PSI) embedded in the TS is provided. In addition, additional service information (SI) (a set of tables attached to the MPEG private section syntax) is incorporated into the TS. This enables a receiver device to properly process the data contained within the TS.
如以上所說明,該等ESG分割塊可由IPDC透過諸如例如DVB-H之一網路被傳輸至目的裝置。該DVB-H可包括,例如分離的音訊、視訊及資料流。然後,該目的裝置必須再一次決定該等ESG分割塊的順序且將它們組合成有用的 資訊。As explained above, the ESG partitioning blocks can be transmitted by the IPDC to the destination device through a network such as, for example, DVB-H. The DVB-H may include, for example, separate audio, video, and data streams. Then, the destination device must once again determine the order of the ESG partitions and combine them into useful ones. News.
在一典型的通訊系統中,一蜂巢格可界定可由一發射器覆蓋的一地理區域。該蜂巢格可以是任意大小,且可具有相鄰的蜂巢格。第3圖概要地說明蜂巢格的一範例,該等蜂巢格中的每一個可被一不同的發射器覆蓋。在該範例中,蜂巢格1代表由用於一通訊網路的一發射器覆蓋的一地理區域。蜂巢格2緊鄰著蜂巢格1,且代表可由一不同的發射器覆蓋的一第二地理區域。蜂巢格2可以是,例如與蜂巢格1相同的網路內的一不同的蜂巢格。選擇性地,蜂巢格2可以在不同於蜂巢格1的一網路中。在該範例中,蜂巢格1、3、4及5是蜂巢格2的相鄰蜂巢格。In a typical communication system, a honeycomb frame can define a geographic area that can be covered by a transmitter. The honeycomb cell can be of any size and can have adjacent honeycomb cells. Figure 3 schematically illustrates an example of a honeycomb grid in which each of the honeycomb cells can be covered by a different emitter. In this example, the cellular grid 1 represents a geographic area covered by a transmitter for a communication network. The honeycomb grid 2 is adjacent to the honeycomb grid 1 and represents a second geographic area that can be covered by a different emitter. The hive cell 2 can be, for example, a different hive cell within the same network as the hive cell 1. Alternatively, the honeycomb grid 2 can be in a network different from the honeycomb grid 1. In this example, the honeycomb cells 1, 3, 4, and 5 are adjacent honeycomb cells of the honeycomb cell 2.
根據一或較多個實施例,利用至少在攜帶多媒體及用於服務的其他資料的一資料訊框的開始處的符號來發信號通知用於頻道搜尋及服務探索的資料。在其他實施例中,這些符號中的一或較多個符號還可被插入到該等資料訊框內。而且,這些符號中的一或較多個符號可被插入到由兩個或較多個資料訊框組成的一超訊框的開始及/或其內。In accordance with one or more embodiments, data for channel search and service discovery is signaled using symbols at least at the beginning of a data frame carrying multimedia and other materials for service. In other embodiments, one or more of the symbols may also be inserted into the data frames. Moreover, one or more of the symbols may be inserted into and/or within a hyperframe consisting of two or more data frames.
在一實施例中,該等符號包含可被用以識別該信號是想要的類型的一第一符號。而且,該第一符號可被用以檢測與無線電頻道中心頻率的一偏移。該等信號可包含一第二符號,該第二符號可攜帶與用在隨後的資料符號中的調變參數有關的資料。在另一實施例中,該等符號包含可被用於頻道估計的一第三符號。In an embodiment, the symbols include a first symbol that can be used to identify the type of signal that is desired. Moreover, the first symbol can be used to detect an offset from the center frequency of the radio channel. The signals may include a second symbol that carries data relating to modulation parameters used in subsequent data symbols. In another embodiment, the symbols include a third symbol that can be used for channel estimation.
第4圖顯示根據本發明之一層面的符號(用於頻道搜尋 及服務探索的同步符號,S1-S3)與資料D的一訊框及超訊框。Figure 4 shows symbols in accordance with one aspect of the invention (for channel searching) And the synchronization symbol for service discovery, S1-S3) and the frame and super frame of data D.
在各種數位廣播網路中,一多載波信號可相對於該頻道光柵來設置,使得該信號中心頻率(SCF)與該頻道中心頻率(CCF)一致,或它可偏移於該頻道中心頻率。由於頻譜使用原因(例如來自一相鄰頻道的干擾),該信號中心頻率可以被偏移。對於該第一符號而言,不是所有的可用副載波都被使用。在各種實施例中,為該第一符號選擇的該等副載波可被均勻地隔開,且位置可關於該頻道中心頻率或該偏移信號頻率對稱。In various digital broadcast networks, a multi-carrier signal can be set relative to the channel raster such that the signal center frequency (SCF) coincides with the channel center frequency (CCF), or it can be offset from the channel center frequency. The signal center frequency can be offset due to spectrum usage reasons (eg, interference from an adjacent channel). For this first symbol, not all available subcarriers are used. In various embodiments, the subcarriers selected for the first symbol can be evenly spaced and the location can be symmetric about the channel center frequency or the offset signal frequency.
第5圖顯示一信號中心頻率可如何與一頻道中心頻率(CCF)一致,或相對於一頻道中心頻率偏移。在第5圖中,SCF A與其相對應的CCF一致,SCF B及SCF C關於該等相對應的CCF是偏移的。第5圖中的矩形說明為該第一符號從該等可用副載波中選擇的該等副載波。對於SCF A、SCF B,及SCF C而言,該等已選定的副載波以各自的SCF為中心。然而,對於SCF D而言,該等已選定的副載波以與該SCF相對的該CCF為中心。Figure 5 shows how a signal center frequency can be consistent with a channel center frequency (CCF) or offset relative to a channel center frequency. In Figure 5, SCF A is consistent with its corresponding CCF, and SCF B and SCF C are offset with respect to the corresponding CCFs. The rectangle in Figure 5 illustrates the subcarriers selected by the first symbol from among the available subcarriers. For SCF A, SCF B, and SCF C, the selected subcarriers are centered on their respective SCFs. However, for SCF D, the selected subcarriers are centered on the CCF opposite the SCF.
對於用於頻道搜尋及服務探索的該第一符號而言,該等副載波可被選擇以使得它們可被找到而與該偏移無關。在該第一符號中,一固定的快速傅立葉變換(FFT)可被利用。該固定的FFT可從可用的FFT大小中來選擇,該等可用的FFT大小在目前數位視訊廣播系統中包括2K,4K,8K,但是還可包括在較低端的1K及在較高端的16K。在一實施例中,最低的可用FFT被使用。而且,該第一符號可使用一 固定的保護間隔(GI),該固定的保護間隔可從用於攜帶資料的該等符號的該等GI中來選擇。在一實施例中,該第一符號可以沒有保護間隔。For the first symbol for channel search and service discovery, the subcarriers can be selected such that they can be found regardless of the offset. In the first symbol, a fixed fast Fourier transform (FFT) can be utilized. The fixed FFT can be selected from available FFT sizes including 2K, 4K, 8K in current digital video broadcasting systems, but can also include 1K at the lower end and 16K at the higher end. In an embodiment, the lowest available FFT is used. Moreover, the first symbol can use one A fixed guard interval (GI) that can be selected from the GIs of the symbols used to carry the material. In an embodiment, the first symbol may have no guard interval.
用於該第一符號的副載波的數目可少於該等可用副載波的一半。The number of subcarriers used for the first symbol may be less than half of the available subcarriers.
當該第一符號被用於頻道偏移發信時,該等載波可利用二元相移鍵控(BPSK)或四相移鍵控(QPSK)被調變。對於不同的頻道偏移值,被選擇的引導型樣可以是不同的,且在一實施例中,該引導型樣及副載波調變可被選擇以使得不同的引導型樣互相正交且使彼此的不同最大化,從而提供檢測中的強健性。在一實施例中,該等不同的引導型樣可只發信號通知該FFT大小,且藉由檢測自該標稱中心頻率的移位,該頻率偏移被找到。When the first symbol is used for channel offset signaling, the carriers may be modulated using binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK). The selected steering pattern may be different for different channel offset values, and in one embodiment, the guiding pattern and subcarrier modulation may be selected such that different guiding patterns are orthogonal to one another and The differences between each other are maximized to provide robustness in detection. In an embodiment, the different steering patterns may only signal the FFT size and the frequency offset is found by detecting a shift from the nominal center frequency.
對於該第二(及第三,如果存在的話)符號而言,整個信號頻寬(實質上所有可用的載波)可被使用。在一實施例中,該第二(及第三)符號可使用與該第一符號相同的FFT大小及保護間隔。在某些實施例中,不是所有可用的副載波都被用於該第二(及第三)符號。在一實施例中,該第二及第三符號可具有與引導副載波相同的副載波,且在一進一步實施例中,具有用作引導的附加副載波。在一實施例中,該第二符號還攜帶發信資料,且進一步,可攜帶用於該發信資料的前向錯誤更正資料(FEC)。For this second (and third, if any) symbol, the entire signal bandwidth (essentially all available carriers) can be used. In an embodiment, the second (and third) symbol may use the same FFT size and guard interval as the first symbol. In some embodiments, not all available subcarriers are used for the second (and third) symbol. In an embodiment, the second and third symbols may have the same subcarriers as the pilot subcarriers, and in a further embodiment, have additional subcarriers for use as bootstrap. In an embodiment, the second symbol further carries a signaling material and, further, carries forward error correction data (FEC) for the signaling material.
根據實施例,一信號之具有已知的特性且保持與不同的數位視訊廣播操作模式相同的一部分(例如(多個)初始化 /同步符號)被引入。該信號的已知部分含有用於該信號的剩餘部分的參數;因此,在該已知部分被解碼之後,該信號的該剩餘部分可在不使用嘗試錯誤法的情況下被解碼。而且,利用該信號的該已知部分,含有數位視訊廣播服務的該等頻道可高效地被檢測到。如果從所檢查的信號中找不到該固定的已知部分,則該信號將被視為一非數位視訊廣播信號或一空頻道,且該接收器可迅速地繼續至下一個頻道/頻率。According to an embodiment, a signal has a known characteristic and maintains the same portion (eg, (multiple) initialization) as a different digital video broadcast mode of operation / sync symbol) was introduced. The known portion of the signal contains parameters for the remainder of the signal; therefore, after the known portion is decoded, the remainder of the signal can be decoded without using the trial error method. Moreover, with the known portion of the signal, the channels containing the digital video broadcast service can be efficiently detected. If the fixed known portion is not found from the checked signal, the signal will be treated as a non-digital video broadcast signal or a null channel, and the receiver can quickly proceed to the next channel/frequency.
第6圖是根據至少一實施例顯示由一接收器執行的步驟的一流程圖。根據該頻道光柵,該接收器中的一頻率合成器被規劃至該頻道的該標稱中心頻率,以接收該頻道上的一信號,如步驟602所顯示。藉由比較該已接收的信號與一組已儲存的已知信號,試圖判定該已接收的信號是否是一想要的類型及一偏移是否被使用,如步驟604所顯示。如果一匹配被找到,則該信號被判定是該想要的類型,且用於該信號的該偏移及FFT大小可被判定。關於一匹配是否被檢測到的一判定被做出,如步驟606所顯示。如果一匹配沒被檢測到,則接著是步驟606的“否”分支,該頻道被認為含有一非數位視訊廣播信號或該已接收的信號不是該想要的類型,且處理繼續至下一個頻道,如步驟608所顯示。Figure 6 is a flow chart showing the steps performed by a receiver in accordance with at least one embodiment. Based on the channel raster, a frequency synthesizer in the receiver is programmed to the nominal center frequency of the channel to receive a signal on the channel, as shown in step 602. By comparing the received signal with a set of stored known signals, an attempt is made to determine if the received signal is of a desired type and if an offset is used, as shown in step 604. If a match is found, the signal is determined to be the desired type, and the offset and FFT size for the signal can be determined. A determination as to whether a match is detected is made as shown in step 606. If a match is not detected, then the "NO" branch of step 606 is considered, the channel is considered to contain a non-digital video broadcast signal or the received signal is not of the desired type, and processing continues to the next channel. , as shown in step 608.
否則,如果一匹配被檢測到,則接著是步驟606的“是”分支,該已判定出的頻率偏移被用以再規劃該頻率合成器,如步驟610所顯示。下一個同步符號被解調以檢測關於資料符號的調變參數,如步驟612所顯示。最後,頻道估計 與校正及資料解調接著被執行,如步驟614所顯示。Otherwise, if a match is detected, then the "YES" branch of step 606 is used, and the determined frequency offset is used to re-plan the frequency synthesizer, as shown in step 610. The next sync symbol is demodulated to detect the modulation parameters for the data symbols, as shown in step 612. Finally, channel estimation And correction and data demodulation are then performed as shown in step 614.
假如該頻率合成器的再規劃花費一相當長的時間,則該接收器可等待下一組初始化/同步符號,且從該組解調該等調變參數。If the resynchronization of the frequency synthesizer takes a considerable amount of time, the receiver can wait for the next set of initialization/synchronization symbols and demodulate the modulation parameters from the group.
第7圖根據本發明之一層面相對於一信號頻寬及一頻道光柵頻寬顯示一引導信號頻寬的大小的一範例。在一實施例中,該第一符號是用於粗略頻率及時序同步的一引導符號。該引導符號的頻寬小於實際資料符號,例如在8MHz資料符號的實例中,該引導符號可為7MHz寬。該引導符號中心頻率可以與用於該等資料符號的頻率相同,即假如一偏移被用於資料符號,則該偏移也可被用於該引導符號。在使用該引導符號的較小的頻寬的情況下,該接收器的RF部分可在初始同步階段期間被規劃至該標稱頻道中心頻率,且仍被設定以接收該引導符號的整個頻寬。在沒有使用該引導符號的較小的頻寬的情況下,該接收器的RF頻道選擇濾波器將濾除該引導符號的部分。Figure 7 shows an example of the magnitude of a pilot signal bandwidth relative to a signal bandwidth and a channel raster bandwidth in accordance with one aspect of the present invention. In an embodiment, the first symbol is a pilot symbol for coarse frequency and timing synchronization. The pilot symbol has a bandwidth that is less than the actual data symbol, such as in the example of an 8 MHz data symbol, which may be 7 MHz wide. The pilot symbol center frequency can be the same as the frequency used for the data symbols, i.e., if an offset is used for the data symbol, the offset can also be used for the pilot symbol. Where a smaller bandwidth of the pilot symbol is used, the RF portion of the receiver can be scheduled to the nominal channel center frequency during the initial synchronization phase and still set to receive the entire bandwidth of the pilot symbol . In the case where the smaller bandwidth of the pilot symbol is not used, the RF channel selection filter of the receiver will filter out portions of the pilot symbol.
在一實施例中,該引導符號可利用已知的(固定的)FFT及保護間隔選擇。而且所利用的引導的數目可不同於用於資料符號的,即該等引導的部分可能會消失,例如256個引導可被使用。該等引導可被用一已知的序列調變。In an embodiment, the pilot symbols can be selected using known (fixed) FFT and guard interval. Moreover, the number of boots utilized may be different from that used for data symbols, ie, portions of such guidance may disappear, for example 256 boots may be used. These boots can be modulated with a known sequence.
第8圖根據本發明之一層面說明關於一引導符號的一引導序列的稀疏引導間距。對於該引導型樣的調變序列“指紋”可被該接收器知曉。除了調變之外,該等引導符號中的該等副載波還可具有不同的激增位準,如第8圖中所說明。Figure 8 illustrates a sparse lead spacing for a pilot sequence of a pilot symbol in accordance with one aspect of the present invention. The modulation sequence "fingerprint" for this guided pattern can be known by the receiver. In addition to modulation, the subcarriers in the pilot symbols may also have different surge levels, as illustrated in FIG.
第9圖是顯示由一接收器執行的用以在頻域中執行相關以檢測正被使用的粗略偏移的步驟的一流程圖。該接收器的一射頻部分(頻率合成器)被規劃至該頻道的該標稱中心頻率(根據該頻道光柵),如步驟902所顯示。Figure 9 is a flow chart showing the steps performed by a receiver to perform correlation in the frequency domain to detect the coarse offset being used. A radio frequency portion (frequency synthesizer) of the receiver is programmed to the nominal center frequency of the channel (according to the channel raster) as shown in step 902.
利用一已預先判定出的FFT大小,一FFT被計算,如步驟904所顯示。該引導信號的寬度小於該頻道頻寬。因此,該FFT能夠獲取該引導符號,即使當對頻率合成器的一初始設定由於偏移而錯誤時。An FFT is calculated using a pre-determined FFT size, as shown in step 904. The width of the pilot signal is less than the channel bandwidth. Therefore, the FFT can acquire the pilot symbol even when an initial setting to the frequency synthesizer is erroneous due to the offset.
基於在頻域中該引導同步符號的偏移,該頻率偏移被檢測,如步驟906所顯示。如果在頻域中不相關被發現,則該信號不是一數位視訊廣播信號,且頻道搜尋可繼續至下一個頻道。The frequency offset is detected based on the offset of the pilot sync symbol in the frequency domain, as shown in step 906. If no correlation is found in the frequency domain, the signal is not a digital video broadcast signal and the channel search can continue to the next channel.
藉由再規劃該接收器的頻率合成器,該偏移被補償,如步驟908所顯示。下一個同步符號被解調以檢測關於資料符號的調變參數,如步驟910所顯示。基於該頻道估計符號,頻道估計與校正被執行,如步驟912所顯示,且然後資料被解調,如步驟914所顯示。在一實施例中,該接收器可等待下一組同步符號組中的一同步符號,因而允許該頻率合成器被再規劃至該信號中心頻率。The offset is compensated by re-planning the frequency synthesizer of the receiver, as shown in step 908. The next sync symbol is demodulated to detect the modulation parameters for the data symbols, as shown in step 910. Based on the channel estimate symbols, channel estimation and correction are performed, as shown in step 912, and then the data is demodulated, as shown in step 914. In an embodiment, the receiver can wait for a sync symbol in the next set of sync symbols, thereby allowing the frequency synthesizer to be re-planned to the signal center frequency.
根據使用中的偏移,不同的引導序列(指紋)可被使用。例如,如果7個偏移是可能的(±3/6MHz、±2/6MHz、±1/6MHz、0),則7個不同的引導序列可被引入。幾種方法可被用以建立該引導序列,包括但不限於:偽隨機序列、每秒反向、激增該中心載波等。根據一實施例,該接收器 在時域中執行一相關以檢測所使用的引導序列,且從而檢測所使用的該偏移。根據係針對執行一時域相關的一或較多個實施例,該等指紋可被使用。但是,在頻域實施例中,藉由一滑動相關器,該偏移可在頻域中被檢測,那就是,一單一指紋可被使用。此外,對於頻域實施例而言,例如如果不同的指紋被用於不同的FFT大小,則可編碼像FFT大小之資訊。然後,一頻域相關可使用多個指紋來執行。在一實施例中,如果有多個指紋在使用中,則該已接收的指紋可同時被與多個已儲存的指紋相比。一已接收的引導序列可透過該頻道頻寬在頻域中被逐步轉譯,其中,當該等引導序列一致時,產生一高相關信號。Different boot sequences (fingerprints) can be used depending on the offset in use. For example, if 7 offsets are possible (±3/6 MHz, ±2/6 MHz, ±1/6 MHz, 0), then 7 different boot sequences can be introduced. Several methods can be used to establish the bootstrap sequence, including but not limited to: a pseudo-random sequence, reverse per second, augmenting the center carrier, and the like. According to an embodiment, the receiver A correlation is performed in the time domain to detect the boot sequence used and thereby detect the offset used. Such fingerprints may be used in accordance with one or more embodiments for performing a time domain correlation. However, in a frequency domain embodiment, the offset can be detected in the frequency domain by a sliding correlator, that is, a single fingerprint can be used. Moreover, for frequency domain embodiments, for example, if different fingerprints are used for different FFT sizes, information like FFT size can be encoded. Then, a frequency domain correlation can be performed using multiple fingerprints. In an embodiment, if there are multiple fingerprints in use, the received fingerprints can be compared to multiple stored fingerprints at the same time. A received pilot sequence can be progressively translated in the frequency domain by the channel bandwidth, wherein a high correlation signal is generated when the pilot sequences are identical.
第10圖是根據一實施例顯示用以在時域中執行一服務探索相關的步驟的一流程圖。該接收器的一射頻部分(頻率合成器)被規劃至該頻道的該標稱中心頻率(根據該頻道光柵),如步驟1002所顯示。Figure 10 is a flow diagram showing the steps associated with performing a service discovery in the time domain, in accordance with an embodiment. A radio frequency portion (frequency synthesizer) of the receiver is programmed to the nominal center frequency of the channel (according to the channel raster) as shown in step 1002.
在一實施例中,該已接收的引導序列與已知的引導序列的一相關在時域中被執行以檢測所用的該偏移,如步驟1004所顯示。例如,如果7個偏移在使用中,則7個不同的引導序列(指紋)被定義。每一粗略偏移對應於一特定引導序列指紋。基於該相關,所用的該指紋(即所用的該偏移)可被檢測。該引導序列將在該頻道的該標稱中心頻率(根據該頻道光柵)。在一實施例中,一組引導符號被定義,使得它們中的每一個對應於一頻率偏移-FFT大小對,其中,基於該已檢測到的相關,該偏移及FFT大小都可被檢測。In an embodiment, a correlation of the received pilot sequence with a known pilot sequence is performed in the time domain to detect the offset used, as shown in step 1004. For example, if 7 offsets are in use, then 7 different boot sequences (fingerprints) are defined. Each coarse offset corresponds to a particular boot sequence fingerprint. Based on this correlation, the fingerprint used (i.e., the offset used) can be detected. The pilot sequence will be at the nominal center frequency of the channel (according to the channel raster). In an embodiment, a set of pilot symbols are defined such that each of them corresponds to a frequency offset-FFT size pair, wherein the offset and FFT size can be detected based on the detected correlation .
基於已識別的引導序列指紋,該頻率偏移被檢測,如步驟1006所顯示。如果該等引導序列沒有一個顯示相關,則該信號不是一想要的數位視訊廣播信號,且搜尋可繼續至下一個頻道。Based on the identified boot sequence fingerprint, the frequency offset is detected, as shown in step 1006. If none of the boot sequences has a display correlation, then the signal is not a desired digital video broadcast signal and the search can continue to the next channel.
藉由再規劃該接收器的頻率合成器,該偏移被補償,如步驟1008所顯示。下一個同步符號被解調以檢測關於資料符號的調變參數,如步驟1010所顯示。基於該頻道估計符號的頻道估計與校正被執行,如步驟1012所顯示,且然後資料被解調,如步驟1014所顯示。在一實施例中,該接收器可等待下一組同步符號,因而允許該頻率合成器被再規劃。The offset is compensated by re-planning the frequency synthesizer of the receiver, as shown in step 1008. The next sync symbol is demodulated to detect the modulation parameters for the data symbols, as shown in step 1010. Channel estimation and correction based on the channel estimate symbols are performed, as shown in step 1012, and then the data is demodulated as shown in step 1014. In an embodiment, the receiver can wait for the next set of sync symbols, thus allowing the frequency synthesizer to be re-planned.
在該偏移已經被找到且該頻率合成器被再規劃之後,該第二符號(即跟隨在該引導符號之後的符號)可利用固定的FFT及保護間隔選擇,但是,會使用該整個信號頻寬。然後,該第二符號可包含關於用於其後的資料符號的調變參數的特定資訊。在另一實施例中,該第二符號可使用在該第一符號中發信號通知的該FFT。After the offset has been found and the frequency synthesizer is re-planned, the second symbol (ie, the symbol following the pilot symbol) can be selected using a fixed FFT and guard interval, but the entire signal frequency is used. width. The second symbol can then contain specific information about the modulation parameters for the data symbols that follow. In another embodiment, the second symbol can use the FFT signaled in the first symbol.
一可取捨的第三符號可被插在該等資料符號之前以促進頻道估計。A third symbol that can be traded can be inserted before the data symbols to facilitate channel estimation.
第11圖根據本發明之一層面顯示一引導/發信符號序列的一範例。該引導符號1102及該等發信符號1104及1106可在傳輸中足夠頻繁地被重複,例如每50ms,以使信號檢測及同步能如所期望的那麼快。該第一引導符號1102被用於粗略頻率及時間同步,及此外,它還可攜帶關於用於後 面符號的該FFT大小的資訊。對於該第一符號而言,該FFT、保護間隔及調變是固定的。在一實施例中,該第二符號1104包含與該第一符號相同的引導副載波,但是,此外還可具有被用作引導副載波的較多副載波。該第二發信符號還攜帶包含FFT大小、保護間隔及調變參數的發信資料。該第三發信符號包含更多個引導,被用於頻道估計及細微時序。Figure 11 shows an example of a sequence of pilot/telephone symbols in accordance with one aspect of the present invention. The pilot symbols 1102 and the transmit symbols 1104 and 1106 can be repeated frequently enough in transmission, for example every 50 ms, to enable signal detection and synchronization to be as fast as desired. The first pilot symbol 1102 is used for coarse frequency and time synchronization, and in addition, it can also carry about The information of the FFT size of the face symbol. For the first symbol, the FFT, guard interval, and modulation are fixed. In an embodiment, the second symbol 1104 includes the same pilot subcarrier as the first symbol, but may additionally have more subcarriers used as pilot subcarriers. The second signaling symbol also carries signaling data including FFT size, guard interval, and modulation parameters. The third signaling symbol contains more bootstraps and is used for channel estimation and fine timing.
對於資料符號的該調變參數(像QPSK對16QAM對64QAM之星象圖)可被頻繁地改變,因為該等被重複的發信符號攜帶關於該等已選定的參數的資訊。This modulation parameter for the data symbols (like the QPSK vs. 16QAM vs. 64QAM star map) can be changed frequently because the repeated transmit symbols carry information about the selected parameters.
第12圖是根據本發明的至少一層面顯示由一發射器執行的一方法的步驟的一流程圖。一符號序列被組成,其包括作為第一符號的一引導符號,緊接著是作為第二符號的下一個發信符號,其後是多個資料符號,其中該引導符號被組配以傳送粗略頻率及時序同步資訊,該下一個發信符號被組配以傳送調變參數,如步驟1202所顯示。在一實施例中,一第三發信符號可跟在該第二發信符號後面。然後,該符號序列在具有一引導信號頻寬的一廣播頻道上被傳送,該引導信號頻寬可比一資料信號頻寬窄,該資料信號頻寬進一步可以比該廣播頻道的一頻道光柵頻寬窄,如步驟1204所顯示。Figure 12 is a flow diagram showing the steps of a method performed by a transmitter in accordance with at least one level of the present invention. A sequence of symbols is included that includes a pilot symbol as a first symbol followed by a next signaling symbol as a second symbol followed by a plurality of data symbols, wherein the pilot symbols are combined to convey a coarse frequency And timing synchronization information, the next signaling symbol is configured to transmit modulation parameters, as shown in step 1202. In an embodiment, a third signaling symbol may follow the second signaling symbol. Then, the symbol sequence is transmitted on a broadcast channel having a pilot signal bandwidth, the pilot signal bandwidth may be narrower than a data signal bandwidth, and the data signal bandwidth may further be narrower than a channel raster frequency of the broadcast channel. As shown in step 1204.
根據一或較多個實施例,頻道搜尋時間通常相當低,例如幾秒鐘。如果該引導-符號重複率是50 ms,則對於3個頻寬(6,7及8 MHz)的平均時間大約是35*3*50 ms=5.25 s。 因為該等頻道光柵中心頻率不同,所以該等不同的頻寬被個別搜尋。According to one or more embodiments, the channel seek time is typically quite low, such as a few seconds. If the pilot-symbol repetition rate is 50 ms, the average time for 3 bandwidths (6, 7 and 8 MHz) is approximately 35*3*50 ms = 5.25 s. Because the center frequencies of the channel rasters are different, the different bandwidths are individually searched.
在本發明的再一實施例中,兩個引導符號P1及P2分別被定義以致能該訊框內的快速頻道搜尋及服務探索。此外,針對該P2符號內的OSI層1(實體層(L1))及訊框特定資訊之輸送,一P2-1封包結構被定義。除了該L1及訊框特定資訊之外,該P2-1封包還可攜帶OSI層2(資料鏈結層(L2))發信資訊(例如節目特定資訊/服務資訊(PSI/SI))或實際服務的資料。In still another embodiment of the present invention, two pilot symbols P1 and P2 are respectively defined to enable fast channel search and service discovery within the frame. In addition, a P2-1 packet structure is defined for the transmission of OSI layer 1 (physical layer (L1)) and frame specific information within the P2 symbol. In addition to the L1 and frame specific information, the P2-1 packet can also carry OSI layer 2 (data link layer (L2)) signaling information (such as program specific information / service information (PSI / SI)) or actual Service information.
在本發明的一層面中,引導符號P1可致能對信號的一快速初始掃描。在該初始信號掃描中,引導符號P1還可被用以發信號通知FFT-大小及頻率偏移給一接收器。此外,引導符號P1可被用以協助該接收器的粗略頻率及粗略時序同步。In one aspect of the invention, the pilot symbol P1 can enable a fast initial scan of the signal. In this initial signal scan, the pilot symbol P1 can also be used to signal the FFT-size and frequency offset to a receiver. In addition, pilot symbol P1 can be used to assist in coarse frequency and coarse timing synchronization of the receiver.
在本發明的再一層面中,除了用引導符號P1達到的初始同步之外,引導符號P2還可被用於粗略及細微頻率同步及時序同步。而且,引導符號P2還可攜帶實體層(L1)發信資訊,該實體層(L1)發信資訊可描述該傳輸的實體參數及該TFS-訊框的構造。此外,引導符號P2可提供解碼該P2符號中的資訊時可能需要的一初始頻道估計,且該初始頻道估計連同散佈的引導,可解碼該訊框中的前幾個資料符號中的資訊。最後,引導符號P2可提供用以攜帶層2(L2)發信資訊之一頻道。In yet another aspect of the invention, in addition to the initial synchronization achieved with the pilot symbol P1, the pilot symbol P2 can also be used for coarse and fine frequency synchronization and timing synchronization. Moreover, the pilot symbol P2 may also carry a physical layer (L1) signaling information, and the entity layer (L1) signaling information may describe the physical parameters of the transmission and the configuration of the TFS-frame. In addition, pilot symbol P2 may provide an initial channel estimate that may be needed to decode information in the P2 symbol, and the initial channel estimate, along with the scattered bootstrap, may decode information in the first few data symbols in the frame. Finally, the pilot symbol P2 can be provided to carry one of the layer 2 (L2) signaling information.
在本發明的一實施例中,兩個P2封包結構可被實施以 攜帶信號資訊。該等封包P2-1中的該第一個可攜帶在時間頻率分割(TFS)中所需要的主要發信資訊。該P2-1封包結構還可攜帶L2發信資訊及/或資料。在本發明的另一實施例中,一第二封包結構P2-n可被用以提供充分的間隔以封裝所有所需的L2發信資訊。該等P2-n封包可作為內容資料被攜帶在資料符號中。該等P2-n封包可緊跟在該P2-1封包之後。In an embodiment of the invention, two P2 packet structures can be implemented Carry signal information. The first one of the packets P2-1 can carry the primary signaling information needed in time-frequency segmentation (TFS). The P2-1 packet structure can also carry L2 signaling information and/or data. In another embodiment of the invention, a second packet structure P2-n can be used to provide sufficient spacing to encapsulate all of the required L2 signaling information. The P2-n packets can be carried as data content in the data symbols. The P2-n packets may follow the P2-1 packet.
第13圖說明該P2-1封包結構1301的結構。在P2-1中,對於各種實施例是示範性的欄位、長度的定義如下:Fig. 13 illustrates the structure of the P2-1 packet structure 1301. In P2-1, exemplary fields and lengths are defined for various embodiments as follows:
T(類型)此8位元欄位1302可指示該相關的P2符號的類型。該欄位可為該網路提供靈活性以傳送不同的P2符號。基於該類型值,某些規則及語意適用於該P2符號結構及用法。後者的範例是例如該系統所支援的不同的輸出串流類型(即TS與通用串流封裝(GSE)的不同組合)的影響。該類型值的某些範例可參見以下所說明的表1。T (Type) This 8-bit field 1302 may indicate the type of the associated P2 symbol. This field provides flexibility to the network to deliver different P2 symbols. Based on this type of value, certain rules and semantics apply to the P2 symbol structure and usage. An example of the latter is, for example, the impact of different output stream types supported by the system (i.e., different combinations of TS and Generic Stream Encapsulation (GSE)). Some examples of this type of value can be found in Table 1 as explained below.
該領域中具有通常知識者將瞭解,表1中所顯示的該等記法DVB-T2或T2及DVB-H2或H2可被用於意欲給地面(固定)接收的內容,分別用於利用本發明的各種實施例的行動手持式接收。Those of ordinary skill in the art will appreciate that the notation DVB-T2 or T2 and DVB-H2 or H2 shown in Table 1 can be used for content intended for ground (fixed) reception, respectively, for utilizing the present invention. The various embodiments of the mobile handheld reception.
L(長度)此欄位1304可指示該P2-1封包的長度,計數緊跟在該欄位之後的所有位元。根據該定義,該長度可被表示為位元或位元組的數目。L (Length) This field 1304 may indicate the length of the P2-1 packet, counting all bits immediately following the field. According to this definition, the length can be expressed as a number of bits or a group of bytes.
E(末尾)此欄位1306包含指示在此之後是否存在其他的P2-n封包的一個一位元旗標。當被設定為值‘1’時,則在該封包之後不存在任何P2-n封包。如果該欄位被設定為值‘0’,則在此欄位之後存在跟在該欄位之後的一或較多個P2-n封包。E (end) This field 1306 contains a one-bit flag indicating whether there are other P2-n packets after this. When set to the value '1', then there are no P2-n packets after the packet. If the field is set to a value of '0', then there is one or more P2-n packets following the field after this field.
N(通知)此4位元欄位1308可指示目前子信號內是否攜帶有通知。通知的詳細發信可在L2發信結構內被完成。N (Notification) This 4-bit field 1308 may indicate whether a notification is carried in the current sub-signal. The detailed notification of the notification can be completed within the L2 signaling structure.
Res此4位元欄位1310可被保留以備將來使用。Res This 4-bit field 1310 can be reserved for future use.
蜂巢格ID此8位元欄位1312可指示攜帶該目前訊框的信號的蜂巢格_id。蜂巢格_id與其他網路參數之間的映射在該L2發信內被完成。要注意的是,為了減小額外負擔,該欄位可小於傳統DVB系統中所使用的。Honeycomb ID This 8-bit field 1312 can indicate the cell _id of the signal carrying the current frame. The mapping between the cell _id and other network parameters is done within the L2 call. It should be noted that in order to reduce the additional burden, this field can be smaller than that used in conventional DVB systems.
網路ID此8位元欄位1314可指示攜帶目前訊框的信號所屬的網路_id。網路_id與其他網路參數之間的映射在該L2發信內被完成。要注意的是,為了減 小額外負擔,該欄位可小於傳統DVB系統中所使用的。Network ID This 8-bit field 1314 can indicate the network _id to which the signal carrying the current frame belongs. The mapping between network _id and other network parameters is done within the L2 call. It should be noted that in order to reduce With a small additional burden, this field can be smaller than that used in traditional DVB systems.
頻率索引此欄位1316可指示目前子信號的頻率索引。頻率索引可與實際頻率相映射,例如在L2發信資訊中(例如在PSI/SI中)。表2列出該後者映射的一範例。在該範例中,四個頻率被利用,但是在其他實施例中,數目可更小或更大。Frequency Index This field 1316 may indicate the frequency index of the current sub-signal. The frequency index can be mapped to the actual frequency, for example in L2 signaling (eg in PSI/SI). Table 2 lists an example of this latter mapping. In this example, four frequencies are utilized, but in other embodiments, the number can be smaller or larger.
GI該欄位1317可指示保護間隔。The GI field 1317 may indicate a guard interval.
訊框編號此8位元欄位1318可指示一超訊框中的目前訊框的編號。Frame Number This 8-bit field 1318 indicates the number of the current frame in a frame.
發信窗偏移此8位元欄位1320可指示該P2符號內所提供的該(時槽)發信的起點。自該目前子信號內的該訊框的開始的偏移以OFDM胞元的數量來指示。由該發信窗所覆蓋的時槽的總長度等於該目前訊框及子信號內的時槽的長度。例如,第14圖說明發信窗偏移的概念。在第14圖中,一發信窗1402可具有大約一個訊框的一長度,但是可能不從該訊框的第一時槽開始。偏移1404可定義該TFS-訊框內所攜帶的發信的起點。如果該偏移是零, 則該窗可直接指向該目前訊框,且發信號通知該訊框內的所有服務。如果該偏移是一個訊框,則該窗可指向下一個訊框。如果該偏移小於一個訊框,則該發信可起始於該發信偏移所指向的一服務,且可發信號通知在長度上大約與一訊框相對應的一些服務。The transmit window offset This 8-bit field 1320 can indicate the start of the (time slot) transmission provided within the P2 symbol. The offset from the beginning of the frame within the current sub-signal is indicated by the number of OFDM cells. The total length of the time slot covered by the signaling window is equal to the length of the time slot in the current frame and sub-signals. For example, Figure 14 illustrates the concept of a transmission window offset. In Fig. 14, a messaging window 1402 may have a length of approximately one frame, but may not begin with the first time slot of the frame. Offset 1404 can define the starting point of the transmission carried within the TFS-frame. If the offset is zero, The window can then point directly to the current frame and signal all services within the frame. If the offset is a frame, the window can point to the next frame. If the offset is less than a frame, the signaling may begin with a service pointed to by the signaling offset and may signal some services that are approximately corresponding in length to a frame.
發信時槽ID此欄位1322可識別攜帶該P1及P2發信資料的時槽。要注意,相同的時槽ID還可攜帶其他資料,諸如L2發信或含有實際服務的資料。Transmitting Time Slot ID This field 1322 identifies the time slot carrying the P1 and P2 signaling data. It should be noted that the same time slot ID can also carry other information, such as L2 signaling or data containing actual services.
時槽的數目此8位元欄位1324可指示該目前子信號的該發信窗內所包括的時槽的數目。Number of Time Slots This 8-bit field 1324 may indicate the number of time slots included in the messaging window of the current sub-signal.
時槽ID可以是一時槽迴路欄位1325的一部分的此欄位1326可識別該目前子信號的該發信窗內的一時槽。用該識別符識別出的一時槽可攜帶含有實際服務的資料或L2發信資料。The field 1326, which may be part of the time slot circuit field 1325, may identify a time slot within the messaging window of the current sub-signal. The one-time slot identified by the identifier can carry the data containing the actual service or the L2 signaling data.
調變可以是時槽迴路欄位1325的一部分的此欄位1328可指示該相關聯的時槽的調變類型。This field 1328, which may be part of the time slot loop field 1325, may indicate the modulation type of the associated time slot.
碼率可以是時槽迴路欄位1325的一部分的此欄位1330可指示該相關聯的時槽的碼率。This field 1330, which may be part of the time slot loop field 1325, may indicate the code rate of the associated time slot.
時槽長可以是時槽迴路欄位1325的一部分的此欄位1332可指示該相關聯的時槽的長度。根據定義,該長度可被表示為位元或位元組的數目。This field 1332, which may be part of the time slot circuit field 1325, may indicate the length of the associated time slot. By definition, this length can be represented as the number of bits or bytes.
OFDM填充位元此8位元欄位1334可指示該訊框的最後的OFDM胞元內的填充位元的數目。OFDM Fill Bits This 8-bit field 1334 may indicate the number of padding bits within the last OFDM cell of the frame.
與下一個T2 sub的偏移此4位元欄位1336可指示該訊框的該目前及下一個子信號之間的偏移。例如,第15圖說明與該下一個子信號欄位的偏移1502。Offset from the next T2 sub This 4-bit field 1336 may indicate the offset between the current and next sub-signals of the frame. For example, Figure 15 illustrates an offset 1502 from the next sub-signal field.
L2發信或資料此欄位1338可以被保留用以攜帶L2發信或資料。P2-1的該類型欄位可指示此欄位內所攜帶的資訊。L2 Sending or Data This field 1338 can be reserved for carrying L2 messages or data. This type of field in P2-1 indicates the information carried in this field.
在本發明的一實施例中,一單一P2-1封包可能不足夠大以攜帶所有L2發信資訊。因此,可能需要附加的P2-n封包以攜帶且封裝L2發信。第16圖說明可被用以攜帶諸如PS/SI之L2發信資訊的一P2-n封包1602的結構。P2-n中的欄位的定義如下,其中,對於各種實施例,欄位長度是示範性的:In an embodiment of the invention, a single P2-1 packet may not be large enough to carry all L2 signaling information. Therefore, additional P2-n packets may be required to carry and encapsulate L2 signaling. Figure 16 illustrates the structure of a P2-n packet 1602 that can be used to carry L2 signaling information such as PS/SI. The definition of the fields in P2-n is as follows, where for various embodiments, the field length is exemplary:
T(類型)此8位元欄位1604可指示該封包的酬載內所攜帶的該發信的類型。根據該類型值,一接收器可以能夠正確地解碼所攜帶的發信資料。根據本發明的實施例,該發信類型的範例可包括例如僅PSI/SI、PSI/SI及意欲用於行動手持式服務的發信。T (Type) This 8-bit field 1604 may indicate the type of the message carried within the payload of the packet. Based on this type of value, a receiver can correctly decode the carried message. Examples of the type of signaling may include, for example, only PSI/SI, PSI/SI, and signaling intended for mobile handheld services, in accordance with embodiments of the present invention.
L(長度)此欄位1606可指示該等P2-n封包的長度,計數緊跟在該欄位之後的所有位元。根據定義,該長度可被表示為位元或位元組的數目。L (Length) This field 1606 may indicate the length of the P2-n packets, counting all the bits immediately following the field. By definition, this length can be represented as the number of bits or bytes.
E(末尾)此欄位1608可包括一個一位元旗標,該一位元旗標指示目前的封包是否是最後的P2-n封包或是否存在跟在該封包之後的其他的P2-n封包。E (end) This field 1608 may include a one-bit flag indicating whether the current packet is the last P2-n packet or whether there are other P2-n packets following the packet. .
L2發信此欄位1610可被保留用以攜帶L2發信。該類型欄位1604可指示該欄位內所攜帶的資訊。L2 sends this field 1610 to be reserved for carrying L2 signaling. This type field 1604 can indicate the information carried within the field.
根據L2發信資料的數量,多個P2-n封包可被使用。A plurality of P2-n packets can be used depending on the number of L2 signaling materials.
第17圖描述了說明根據本發明之一層面的服務探索的一流程圖。在第17圖中,L2發信資訊被攜帶在兩個封包(即P2-1及P2-n)內。P2-n的其他變化可包括在任一個或兩個封包類型內所攜帶的資料與L2發信資訊的任何組合。Figure 17 depicts a flow chart illustrating service discovery in accordance with one aspect of the present invention. In Figure 17, the L2 signaling is carried in two packets (P2-1 and P2-n). Other changes to P2-n may include any combination of data carried in any one or two packet types with L2 signaling information.
在第17圖中,根據本發明的各種實施例,一接收器可從攜帶信號的一頻帶尋找信號,如1所顯示。藉由P1所提供的前文型樣,一適當的頻率可被檢測。In Fig. 17, in accordance with various embodiments of the present invention, a receiver can find a signal from a frequency band carrying a signal, as shown in FIG. With the preamble provided by P1, an appropriate frequency can be detected.
基於P1內所攜帶的資訊,一接收器可以能夠解碼後面的符號內所攜帶的P2-1封包1702及p2-n封包1704,如2所顯示。在本發明之一層面中,四個欄位可被包括在該P2封包標頭內。“T”欄位1706可指示目前信號的類型。“L”欄位1708可指示該P2的長度。假使‘E’欄位1710被設定為‘1’,則該目前的P2-1封包是‘最後一個’,即後面沒有隨之發生的P2-n封包跟隨。最後,‘N’欄位1712可指示目前信號是否攜帶通知資訊。Based on the information carried in P1, a receiver may be able to decode the P2-1 packet 1702 and the p2-n packet 1704 carried in the following symbols, as shown in 2. In one aspect of the invention, four fields can be included in the P2 packet header. The "T" field 1706 can indicate the type of current signal. The "L" field 1708 may indicate the length of the P2. If the 'E' field 1710 is set to '1', then the current P2-1 packet is the 'last', ie there is no subsequent P2-n packet following. Finally, the 'N' field 1712 can indicate whether the current signal carries notification information.
根據該等P2封包(即P2-1及P2-n),該接收器可以能夠接取該L2發信資料1714,該L2發信資料1714可被攜帶在P2-1及P2-n封包的酬載內,如3所顯示。According to the P2 packets (ie, P2-1 and P2-n), the receiver may be able to receive the L2 signaling data 1714, and the L2 signaling data 1714 may be carried in the P2-1 and P2-n packets. Within the load, as shown in 3.
然後,該L2發信資料1714,即在只攜帶該類型傳輸的情況下用於該類型傳輸的該特定PSI/SI,可使用網路及蜂巢格資訊1716映射該已發現信號,如4所顯示。藉由網路資訊 表(NIT)1720,相鄰蜂巢格的資訊(包括每一蜂巢格的地理位置1718)可被提供。Then, the L2 signaling material 1714, that is, the specific PSI/SI used for the type of transmission in the case of carrying only the type of transmission, may be mapped using the network and the cellular information 1716, as shown in FIG. . Network information Table (NIT) 1720, information about adjacent honeycomb cells (including the geographic location of each of the honeycomb cells 1718) can be provided.
而且,時間頻率分割(TFS)特定資訊可部分地被攜帶在PSI/SI內。一NIT可映射相同的TFS訊框的每一頻率部分,如5所顯示。該NIT可映射該相同的TFS訊框的每一頻率部分。最後,NIT將傳輸串流映射至不同的頻率,及此外,映射至不同的TFS訊框,如6所顯示。Moreover, time frequency partitioning (TFS) specific information may be partially carried within the PSI/SI. An NIT can map each frequency portion of the same TFS frame, as shown in Figure 5. The NIT can map each frequency portion of the same TFS frame. Finally, the NIT maps the transport stream to a different frequency and, in addition, maps to a different TFS frame, as shown in 6.
在本發明的一進一步層面中,藉由遵循傳統PSI/SI的語意,傳輸串流可被映射至服務描述表(SDT)1722內的服務,如7所顯示。如8所顯示,藉由利用PAT及PMT,服務可被進一步映射至每一傳輸串流的該等PID,與傳統DVB系統中類似。In a further aspect of the invention, the transport stream can be mapped to a service within a Service Description Table (SDT) 1722, as indicated by 7, by following the semantics of conventional PSI/SI. As shown in Figure 8, by utilizing PAT and PMT, services can be further mapped to the PIDs of each transport stream, similar to in conventional DVB systems.
藉由添加附加的描述符,每一服務與時槽_id 1724及訊框_編號1726組合的映射可在SDT的服務迴路內被完成,如9所顯示。By adding additional descriptors, the mapping of each service in combination with time slot _id 1724 and frame_number 1726 can be done within the service loop of the SDT, as shown at 9.
最後,如10所顯示,藉由為了接收該SDT內所通告的期望服務而檢查哪些時槽可能需要被接取,該接收器可繼續該P2-1封包內的服務探索程序。該等表NIT、SDT、PAT及PMT被用作相對應於目前(傳統)DVB表的範例。Finally, as shown at 10, the receiver may continue the service discovery procedure within the P2-1 packet by checking which time slots may need to be received in order to receive the desired service advertised within the SDT. The tables NIT, SDT, PAT, and PMT are used as examples corresponding to current (legacy) DVB tables.
在本發明的一進一步層面中,在該P2-1封包內所發信號通知的該L1資訊可有關於該特定發信窗。該發信窗的開始位置可用‘發信窗偏移-欄位’來指示。位於該給定的發信窗內的時槽的總數可被指示在‘時槽的數目欄位’中。為P1及P2-1封包的目的,一特定時槽ID可被發信號通知。該等P2-n封包可被攜帶在‘一般時槽’內,及因此還可含有實際 內容資料。該時槽迴路指示關於該迴路內所通告的每一時槽的調變、碼率及長度。另外,OFDM填充位元-欄位可被用以指示訊框結尾中的可能填充。最後,‘與下一個T2 sub的偏移’欄位可指示該相關聯的訊框的該目前與下一個子信號之間的偏移。In a further aspect of the invention, the L1 information signaled within the P2-1 packet may be related to the particular messaging window. The start position of the transmission window can be indicated by 'Signal Window Offset - Field'. The total number of time slots located within the given messaging window can be indicated in the 'Time slot number field'. For the purpose of P1 and P2-1 packets, a specific time slot ID can be signaled. The P2-n packets can be carried in the 'general time slot' and thus can also contain actual Content material. The time slot loop indicates the modulation, code rate, and length for each time slot advertised within the loop. In addition, the OFDM padding bit field can be used to indicate possible padding in the end of the frame. Finally, the 'Offset with Next T2 Sub' field may indicate the offset between the current and next sub-signals of the associated frame.
藉由舉例,第18及19圖描述了P1、P2及DATA符號(即OFDM符號)之間的關係。從第18及19圖可看出資料如何在P2及資料符號的持續期間已經被分割。該等資料封包可直接位在該最後的P2-n之後,且兩者都被攜帶在該等‘DATA符號’內。By way of example, Figures 18 and 19 depict the relationship between P1, P2, and DATA symbols (i.e., OFDM symbols). It can be seen from Figures 18 and 19 how the data has been segmented during the duration of P2 and data symbols. The data packets may be placed directly after the last P2-n and both are carried in the 'DATA symbols'.
第20圖根據本發明之至少一層面顯示一示範訊框及時槽結構。在第20圖中,一訊框2002可由一或較多個時槽2004構成。例如,訊框2002包括時槽1 2006至時槽4 2012。每一時槽2006-2012可包括多個OFDM(正交頻分多工)符號,通常從幾個符號到數十個符號。該等服務被分配給這些時槽,使得一或多個時槽被用於一服務。例如,時槽1 2006可包括一些OFDM符號2014至2024。此外,每一OFDM符號可包括許多OFDM胞元(cell)。例如,OFDM符號2014包括OFDM胞元2026至2034。Figure 20 shows an exemplary frame and time slot structure in accordance with at least one level of the present invention. In FIG. 20, a frame 2002 may be comprised of one or more time slots 2004. For example, frame 2002 includes time slot 1 2006 to time slot 4 2012. Each time slot 2006-2012 may include multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols, typically from a few symbols to tens of symbols. These services are assigned to these time slots such that one or more time slots are used for a service. For example, time slot 1 2006 may include some OFDM symbols 2014 through 2024. Furthermore, each OFDM symbol can include a number of OFDM cells. For example, OFDM symbol 2014 includes OFDM cells 2026 through 2034.
實施例係有關於下一代地面數位視訊廣播(DVB-T2)系統中的初始服務探索。該DVB-T2系統可包括一前文,該前文意欲對可用的T2信號的有效識別。該前文不應該消耗太多容量,但是它應該與不同的快速傅立葉變換(FFT)大小(2k,4k,6k,8k,及32k)相容。使額外負擔減到最小已經 致使對每一FFT-大小使用一2k符號(P1)且在該符號內發信號通知該實際FFT-大小,藉由用不同的偽隨機二進制序列(PRBS)調變該等載波。為了找出後面符號的FFT-大小,該接收器檢測該調變PRBS。該PRBS還指示整數頻移(與該標稱中心頻率相比,DVB-T2信號可被移位+/-1/6、+/-2/6、+/-3/6 MHz)。總之,該等P1符號被用在該初始掃描中以:(1)檢測T2信號的存在;(2)估計該頻率偏移;及(3)檢測所使用的FFT大小。The embodiment relates to initial service exploration in the next generation terrestrial digital video broadcasting (DVB-T2) system. The DVB-T2 system can include a preamble that is intended to effectively identify available T2 signals. This preamble should not consume too much capacity, but it should be compatible with different Fast Fourier Transform (FFT) sizes (2k, 4k, 6k, 8k, and 32k). Minimize the extra burden already A 2k symbol (P1) is used for each FFT-size and the actual FFT-size is signaled within the symbol by modulating the carriers with different pseudo-random binary sequences (PRBS). To find the FFT-size of the following symbol, the receiver detects the modulated PRBS. The PRBS also indicates an integer frequency shift (the DVB-T2 signal can be shifted by +/- 1/6, +/- 2/6, +/- 3/6 MHz) compared to the nominal center frequency. In summary, the P1 symbols are used in the initial scan to: (1) detect the presence of the T2 signal; (2) estimate the frequency offset; and (3) detect the FFT size used.
在該初始掃描之後,該P1符號在正規資料接收或交遞期間可不被使用,因為由P1所攜帶的參數(即FFT大小及頻率偏移)保持不變。關於交遞,這些參數在射頻(RF)頻道之間是相同的或它們在一交遞之前被發信號通知(例如在根據ETSI EN 300 468數位視訊廣播(DVB)的節目特定資訊/服務資訊(PSI/SI)中;DVB系統中的服務資訊(SI)的規格)。然而,P1可在正規資料接收期間被用以例如檢測該訊框開始或用以改善同步及頻道估計演算法。(多個)P2符號是位於該P1之後的一(多個)發信及頻道估計符號。After the initial scan, the P1 symbol may not be used during normal data reception or handover because the parameters carried by P1 (ie, FFT size and frequency offset) remain unchanged. Regarding handover, these parameters are the same between radio frequency (RF) channels or they are signaled prior to handover (eg, program specific information/service information according to ETSI EN 300 468 Digital Video Broadcasting (DVB) ( PSI/SI); Specification of Service Information (SI) in DVB systems). However, P1 can be used during normal data reception, for example, to detect the start of the frame or to improve synchronization and channel estimation algorithms. The P2 symbol(s) are one or more signaling and channel estimation symbols located after the P1.
對P1的檢測及因而對該DVB-T2信號的檢測基於一保護間隔相關(GIC)。在GIC中,該保護間隔被與該符號的結尾相關。該GIC中的一峰值指示一可能的DVB-T2信號,該可能的DVB-T2信號可從該P2符號來驗證。第一個問題是為了提供強健的檢測,該保護間隔應該是長的(即一長的保護間隔提供較高的信號雜訊比)。然而,一較長的保護間隔及因而一較長的P1降低資料容量。The detection of P1 and thus the detection of the DVB-T2 signal is based on a guard interval correlation (GIC). In GIC, this guard interval is associated with the end of the symbol. A peak in the GIC indicates a possible DVB-T2 signal from which the possible DVB-T2 signal can be verified. The first problem is that to provide robust detection, the guard interval should be long (ie, a long guard interval provides a higher signal-to-noise ratio). However, a longer guard interval and thus a longer P1 reduces the data capacity.
因為P1是要接收的第一個符號,所以通常沒有頻道情況的先備知識。因此,該P1符號應該包括用以克服頻道失真的某方法。實際上,這將意味著使用例如額外的引導載波,用於頻道估計或該等副載波之間的微分調變。Since P1 is the first symbol to be received, there is usually no prior knowledge of the channel situation. Therefore, the P1 symbol should include some method to overcome channel distortion. In practice, this would mean using, for example, an additional pilot carrier for channel estimation or differential modulation between the subcarriers.
由於較低的FFT-大小,該P1符號的載波間距可以不如後面的資料符號中那樣密集(例如P1時為2K及資料時為32K)。為了P1中一成功的PRBS檢測,該頻道的同調頻寬應該小於一2K符號的副載波間距。然而,網路可被設計適於32K模式,且長的單頻網路(SFN)延遲可產生高得多的頻率選擇性。Due to the lower FFT-size, the carrier spacing of the P1 symbols may not be as dense as in the following data symbols (eg, 2K for P1 and 32K for data). For a successful PRBS detection in P1, the coherence bandwidth of the channel should be less than the subcarrier spacing of a 2K symbol. However, the network can be designed for 32K mode, and long single frequency network (SFN) delays can produce much higher frequency selectivity.
載波索引k處的已接收的複數值的信號可被表示為rk =hk sk +nk ,這裏,sk 是被傳送的資料符號(例如利用四相移鍵控(QPSK)),hk 是在載波索引k處的頻道響應,及nk 是雜訊項。The received complex-valued signal at carrier index k can be represented as r k =h k s k +n k , where s k is the transmitted data symbol (eg, using quadrature phase shift keying (QPSK)), h k is the channel response at carrier index k, and n k is the noise term.
在同調解調中,利用引導,hk 首先被估計,且然後,藉由例如將rk 除以經估計的hk ,該頻道的效應被等化。At the same tune in the mediation, by the guide, h k is estimated first, and then, for example, by dividing the estimated r k h k, the effect of the channel is equalized.
如果我們考慮DVB-T2及P1符號,則沒有引導來估計hk 。因此,在沒有頻道估計的情況下,將通常使用非同調解調。這可藉由使用微分調變(例如微分二元相移鍵控(DBPSK))來完成,其中,資訊被編碼成兩個相鄰載波之間的相位差。這兩個相鄰載波可被表示為rk =hk sk +nk 及rk+1 =hk+1 sk+1 +nk+1 。該被發送的符號可被解碼自這兩個已接收的載波之間的相位差:rk+1 -rk ==hk+1 sk+1 -hk sk +n。If we consider DVB-T2 and P1 symbols, there is no guidance to estimate h k . Therefore, in the absence of channel estimation, non-coherent demodulation will typically be used. This can be done by using differential modulation, such as Differential Binary Phase Shift Keying (DBPSK), where the information is encoded into a phase difference between two adjacent carriers. These two adjacent carriers can be expressed as r k =h k s k +n k and r k+1 =h k+1 s k+1 +n k+1 . The transmitted symbol can be decoded from the phase difference between the two received carriers: r k+1 -r k ==h k+1 s k+1 -h k s k +n.
第21圖說明一引導(P1)OFDM符號內的同調頻寬及微分調變。假定該頻道響應hk 及hk+1 的相位大約與第21圖的上 面圖形中所顯示的相同。然而,在一高度頻率選擇性頻道中(例如第21圖的下面圖形),相鄰頻道響應之間的相關相當低。這使得在載波之間使用微分調變是行不通的。Figure 21 illustrates the coherent bandwidth and differential modulation within a pilot (P1) OFDM symbol. It is assumed that the phase of the channel response h k and h k+1 is approximately the same as that shown in the upper graph of Fig. 21. However, in a highly frequency selective channel (e.g., the lower graph of Figure 21), the correlation between adjacent channel responses is quite low. This makes it impractical to use differential modulation between carriers.
該同調頻寬(即,該頻道響應高度相關時所在之頻寬)可用來近似,這裏,τ d 是該頻道的延遲擴展。為了在載波之間使用DBPSK,該頻道的該同調頻寬應低於該載波間距。P1的該FFT大小是2K,且8 MHz頻道中的載波間距是4.46 kHz。從這些載波中,每第三或第九個載波被使用。因此,實際載波間距甚至可以是40.1 kHz。反之,大的SFN網路中的延遲擴展可以是448μs (具有1/4保護間隔的16k模式),產生2.2 kHz的一同調頻寬。The coherence bandwidth (ie, the bandwidth at which the channel response is highly correlated) is available To approximate, here τ d is the delay spread of the channel. In order to use DBPSK between carriers, the coherence bandwidth of the channel should be lower than the carrier spacing. The FFT size of P1 is 2K and the carrier spacing in the 8 MHz channel is 4.46 kHz. From these carriers, every third or ninth carrier is used. Therefore, the actual carrier spacing can even be 40.1 kHz. Conversely, the delay spread in a large SFN network can be 448 μs (16k mode with 1/4 guard interval), resulting in a 2.2 kHz co-modulation bandwidth.
根據本發明之一層面,兩個P1符號被使用,例如,具有GI=1/1的1k符號。這兩個符號被分離地用在GIC中。當GI=1/1時,整個符號持續時間可被利用在GIC中。According to one aspect of the invention, two P1 symbols are used, for example, a 1k symbol with GI = 1/1. These two symbols are used separately in the GIC. When GI = 1/1, the entire symbol duration can be utilized in the GIC.
根據本發明之一層面,微分調變被應用在兩個P1符號之間,如第22圖中所顯示。因為該微分調變目前以逐個副載波的方式被執行,所以不需要該同調頻寬。(可選擇地,該第一P1符號可被用於頻道估計,該頻道估計將允許對該第二P1符號的同調解調。)According to one aspect of the invention, differential modulation is applied between two P1 symbols, as shown in FIG. Since the differential modulation is currently performed on a subcarrier-by-subcarrier basis, the homology bandwidth is not required. (Optionally, the first P1 symbol can be used for channel estimation, which will allow for homology demodulation of the second P1 symbol.)
兩個P1符號的時間間隔相當短,藉此從該第一符號到該第二符號該頻道沒有改變。因此,根據一或較多個實施例,在時域中,該微分調變可在具有相同載波編號的載波之間被完成。The time interval of the two P1 symbols is relatively short, whereby the channel does not change from the first symbol to the second symbol. Thus, in accordance with one or more embodiments, in the time domain, the differential modulation can be done between carriers having the same carrier number.
實施例還支援行動接收。根據實施例,該頻道的同調時間比兩個P1符號的持續時間長。這使得rk (1)及rk (2)之間的相關性高。該頻道的同調時間可用來近似,這裏,Fd 是該頻道的都卜勒擴展,且它由給出,這裏,v是該接收器的速度,c是光的速度(3*10^8 m/s),及Fc 是載波頻率。如果v=120 km/h及Fc =666 MHz,則Fd =74 Hz及τ coh =13.5 ms,這明顯比一P1符號的持續時間(例如280μs)長。Embodiments also support action reception. According to an embodiment, the coherence time of the channel is longer than the duration of the two P1 symbols. This makes the correlation between r k (1) and r k (2) high. The channel's coherence time is available To approximate, here, F d is the Doppler extension of the channel, and it consists of Given, here v is the speed of the receiver, c is the speed of light (3*10^8 m/s), and F c is the carrier frequency. If v = 120 km/h and F c = 666 MHz, F d = 74 Hz and τ coh = 13.5 ms, which is significantly longer than the duration of a P1 symbol (eg 280 μs).
根據一或較多個實施例,P1的符號同步可被改善。該等P1符號可具有一1/1保護間隔,該1/1保護間隔可改善符號同步且使保護間隔相關長度關於額外負擔最大化。該等P1符號可使用一1k FFT,這與兩個2k符號相比可減小額外負擔。According to one or more embodiments, the symbol synchronization of P1 can be improved. The P1 symbols can have a 1/1 guard interval that improves symbol synchronization and maximizes the guard interval correlation length with respect to additional burden. These P1 symbols can use a 1k FFT, which reduces the additional burden compared to the two 2k symbols.
保護間隔相關(GIC)是用於正交頻分多工(OFDM)符號中的同步的一基本方法。因為該GI是該實際OFDM符號之最後部分的一循環複製,所以藉由檢測該相關,該接收器能夠找到一OFDM符號的開始。實際上,該接收器連續地使該已接收信號的兩個區塊相關,這兩個區塊被N 個樣本分開(N 是該FFT大小,且還是資料樣本的數目)。一相關峰值在正確的位置被檢測到。Guard Interval Correlation (GIC) is a basic method for synchronization in Orthogonal Frequency Division Multiplexing (OFDM) symbols. Since the GI is a cyclical copy of the last portion of the actual OFDM symbol, the receiver can find the beginning of an OFDM symbol by detecting the correlation. In effect, the receiver continuously correlates the two blocks of the received signal, the two blocks being separated by N samples ( N is the FFT size and is also the number of data samples). A correlation peak is detected at the correct location.
第23圖顯示具有1/1保護間隔的兩個1k符號及該等符號之間的微分調變。如可被看到的,該1/1保護間隔意指該GI及該資料部分具有相同的長度,且該等樣本也是相等的。相當於,在沒有保護間隔的情況下,該1/1保護間隔可 被認為具有兩個相等的符號。Figure 23 shows two 1k symbols with a 1/1 guard interval and differential modulation between the symbols. As can be seen, the 1/1 guard interval means that the GI and the data portion have the same length and the samples are also equal. Equivalent to the 1/1 guard interval without the guard interval It is considered to have two equal symbols.
由於微分調變,該等連續的符號P1及P1'是不同的,這意指一正規的GIC應該被應用在每一P1符號內。然而,該相關長度與一個2k 1/4 GI符號(1/4*2048=512)相比是其兩倍,且來自該兩個符號的該等相關可被組合以備進一步改善。該1k 1/1 GI符號還是令人滿意的,因為該保護間隔相關目前不匹配於該等資料模式(2k、4k等)。Due to the differential modulation, the consecutive symbols P1 and P1' are different, which means that a regular GIC should be applied within each P1 symbol. However, the correlation length is twice as large as a 2k 1/4 GI symbol (1/4*2048=512), and the correlations from the two symbols can be combined for further improvement. The 1k 1/1 GI symbol is still satisfactory because the guard interval correlation does not currently match the data patterns (2k, 4k, etc.).
另一實施例加速了該初始掃描。希望迅速檢測非T2信號以使該接收器可調諧到下一個頻率。這可透過檢測該P1符號內的零載波來完成,藉由:(1)計算已接收的屬於子集r3k 、r3k-1 ,及r3k+1 的載波的能量的三個和(參見第24圖,該第24圖根據一或較多個實施例顯示對從P1接收的能量的和的計算),這裏,r是(多個)P1符號的第k個載波且k=1,2,3...;及(2)藉由比較該三個子集的已接收的能量,檢測T2信號的存在;及(3)設定一能量臨界值(例如最大能量以下5 dB);及(4)只要一和超過該臨界值,則一可能的T2信號被檢測到。Another embodiment speeds up the initial scan. It is desirable to quickly detect a non-T2 signal to enable the receiver to tune to the next frequency. This can be done by detecting the zero carrier in the P1 symbol by: (1) calculating the three sums of the received energy of the carriers belonging to the subsets r 3k , r 3k-1 , and r 3k+1 (see 24th) Figure 24 illustrates the calculation of the sum of the energy received from P1 according to one or more embodiments, where r is the kth carrier of the P1 symbol and k = 1, 2, 3 ... and (2) detecting the presence of the T2 signal by comparing the received energy of the three subsets; and (3) setting an energy threshold (eg, 5 dB below the maximum energy); and (4) As soon as one sum exceeds the threshold, a possible T2 signal is detected.
第25圖顯示根據一或較多個實施例的一發射器。根據一參考序列,該第一P1被BPSK調變,且該第二P1如下被調變:如果PRBSk =0→bk,2 =bk,1 ;如果PRBSk =1→bk,2 =-bk,1 (或反之亦然),這裏,PRBSk 是該PRBS的第k個元素,且bk,m 是在第m P1符號處第k個載波上的發送符號。然後,該發射器在反快速傅立葉變換(IFFT)及保護間隔插入之前,組合該原始參考序列及該已延遲的經微分調變的序列。N指的是該FFT大小。Figure 25 shows a transmitter in accordance with one or more embodiments. According to a reference sequence, the first P1 is modulated by BPSK, and the second P1 is modulated as follows: if PRBS k =0→b k, 2 = b k,1 ; if PRBS k =1→b k, 2 = -b k,1 (or vice versa), where PRBS k is the kth element of the PRBS and b k,m is the transmitted symbol on the kth carrier at the mth P1 symbol. The transmitter then combines the original reference sequence and the delayed differentially modulated sequence prior to inverse fast Fourier transform (IFFT) and guard interval insertion. N refers to the FFT size.
第26圖顯示根據一或較多個實施例的一接收器。該接收器執行以上所討論的與第25圖有關的該發射器操作的反向。那就是,該接收器從該等P1符號(第一及第二引導符號)移除該保護間隔,對該等P1符號執行一快速傅立葉變換,且之後微分解調P1符號以獲得該已發送的偽隨機二進制序列的一估計值。該接收器不必知道該參考序列。Figure 26 shows a receiver in accordance with one or more embodiments. The receiver performs the inverse of the transmitter operation discussed above in relation to Figure 25. That is, the receiver removes the guard interval from the P1 symbols (first and second pilot symbols), performs a fast Fourier transform on the P1 symbols, and then micro-decomposes the P1 symbol to obtain the transmitted An estimate of a pseudo-random binary sequence. The receiver does not have to know the reference sequence.
第27圖是顯示根據一或較多個實施例可被一接收器執行的步驟的一流程圖。在該初始掃描中,該接收器可被調諧至該頻道的該標稱中心頻率,且可開始於尋找該P1符號。然後,下面的程序可在已選定的頻道(及頻寬)處被重複-但沒必要以每一個頻率偏移被重複,因為該P1符號可在該標稱中心頻率處被檢測而不管所使用的偏移。Figure 27 is a flow chart showing the steps that can be performed by a receiver in accordance with one or more embodiments. In this initial scan, the receiver can be tuned to the nominal center frequency of the channel and can begin looking for the P1 symbol. Then, the following procedure can be repeated at the selected channel (and bandwidth) - but it is not necessary to repeat at each frequency offset because the P1 symbol can be detected at the nominal center frequency regardless of the Offset.
頻寬及標稱中心頻率選擇之後的第一個任務是找到一T2信號的存在。例如藉由對頻率偏移免疫的保護間隔相關,該P1符號可被找到。使用保護間隔相關還有助於T2-信號檢測,因為缺少一個2k符號暗示一非T2頻道。The first task after bandwidth and nominal center frequency selection is to find the presence of a T2 signal. The P1 symbol can be found, for example, by a guard interval correlation that immunizes the frequency offset. The use of guard interval correlation also contributes to T2-signal detection because the absence of a 2k symbol implies a non-T2 channel.
保護間隔相關意欲用於該頻道的該延遲擴展保持在該保護間隔內之情況,而這不可能是P1符號在大規模SFN(例如以32k模式)中之實例。在該實例中,比該保護間隔長的延遲,特別是為該有用的符號持續時間的數倍的延遲,產生錯誤相關。The guard interval correlation is intended for the case where the delay spread of the channel remains within the guard interval, and this may not be an example of a P1 symbol in a large-scale SFN (e.g., in 32k mode). In this example, a delay that is longer than the guard interval, particularly a delay that is several times the duration of the useful symbol, produces an erroneous correlation.
然而,應被注意的是,強大SFN回波存在時的符號時序不只是一特定P1的問題,因為該接收器不管怎樣都需要能夠同步於正確的路徑。差別是由於較短的GIC窗,P1相關 具有較高的雜訊位準。However, it should be noted that the symbol timing in the presence of a powerful SFN echo is not just a specific P1 problem, since the receiver needs to be able to synchronize to the correct path anyway. The difference is due to the shorter GIC window, P1 related Has a high noise level.
粗略時間及分數頻率同步從該保護間隔相關被獲得。這些是用於該P1符號自身的粗略估計值,且利用後面的符號它們可被改進。假定這些估計值足夠準確以檢測該五個PRBS型樣中的一個而找到該FFT-大小。The coarse time and fractional frequency synchronization are obtained from the guard interval correlation. These are rough estimates for the P1 symbols themselves, and they can be improved with the latter symbols. The FFT-size is found assuming these estimates are accurate enough to detect one of the five PRBS patterns.
對於一快速初始掃描,不含有一T2-信號的該等頻道應該相當迅速地被拋棄。根據實施例的前文結構支援一逐步檢測,在該逐步檢測中,該等非T2頻道可被相當迅速地拋棄,且藉由讀取該L1靜態發信,一T2-信號的檢測可被確認。For a fast initial scan, those channels that do not contain a T2-signal should be discarded fairly quickly. The foregoing structure according to an embodiment supports a step-by-step detection in which the non-T2 channels can be discarded relatively quickly, and by reading the L1 static transmission, the detection of a T2-signal can be confirmed.
藉由該保護間隔相關,第一消除可被完成。P1信號可以每一訊框(大約200 ms)被重複,且就SNR需要而論,它相當強健,所以測試兩個連續的P1位置可以足夠可靠以檢測該T2信號。每個RF-頻道將花費大約500 ms。然後,一接收器可判定一可能的P1符號是否已經被找到。如果透過39個UHF-頻道且甚至用3個頻道頻寬來完成,則用於該掃描的總時間大概是58秒。要注意,試圖同時掃描不同的頻寬實際上是沒有幫助的,因為該等頻道光柵是不同的。With this guard interval correlation, the first cancellation can be completed. The P1 signal can be repeated every frame (approximately 200 ms) and is quite robust in terms of SNR requirements, so testing two consecutive P1 positions can be sufficiently reliable to detect the T2 signal. Each RF-channel will take approximately 500 ms. A receiver can then determine if a possible P1 symbol has been found. If done through 39 UHF-channels and even with 3 channel bandwidths, the total time for the scan is approximately 58 seconds. It is important to note that attempting to scan different bandwidths at the same time is actually not helpful because the channel rasters are different.
一旦一可能的P1符號已經被找到,則該接收器可執行粗略同步及FFT。接著,該接收器可使用稀疏載波光柵來區分T2及其他的2k信號。因而,該等非T2信號會最可能從該第一已接收的P1符號被檢測到。Once a possible P1 symbol has been found, the receiver can perform coarse synchronization and FFT. The receiver can then use a sparse carrier raster to distinguish between T2 and other 2k signals. Thus, the non-T2 signals will most likely be detected from the first received P1 symbol.
該頻率偏移的檢測是基於找到該被移位的引導型樣。藉由首先利用已假定的引導載波上的功率找到正確的偏移,及這之後,對該五種PRBS計算相關,對頻率偏移及FFT- 大小的檢測可被分離。在另一方面,當找到該頻率偏移時該等PRBS已經可以被使用。該稀疏載波光柵降低了搜尋演算法的複雜度。The detection of the frequency offset is based on finding the shifted guide pattern. The correct offset is first found by using the power on the assumed pilot carrier, and thereafter, the correlation is calculated for the five PRBSs, the frequency offset and the FFT- The detection of the size can be separated. On the other hand, the PRBSs can already be used when the frequency offset is found. This sparse carrier raster reduces the complexity of the search algorithm.
在該頻率偏移已經被檢測到之後,該接收器可被調諧以接收該等資料符號。另一個任務是找出所使用的保護間隔以解碼該P2符號。因為該P1符號不攜帶該GI的任何發信資訊,所以藉由利用該訊框期間的該等正規OFDM符號,該接收器可檢測該GI。緊接在該已檢測的P1之後的該P2符號不能被解碼。但是在下一個訊框之前有足夠的時間檢測該GI,因為該整個200 ms的訊框持續時間可被使用。這給該信號獲取時間添加了另外的200 ms,但是這很可能只對於該等已發現的T2-信號發生,而不是對於每個已測試的頻道都發生。因為並列多工的最大數目通常在7到8級,所以添加給該掃描序列的總時間小於2s。After the frequency offset has been detected, the receiver can be tuned to receive the data symbols. Another task is to find the guard interval used to decode the P2 symbol. Since the P1 symbol does not carry any signaling information of the GI, the receiver can detect the GI by utilizing the regular OFDM symbols during the frame. The P2 symbol immediately after the detected P1 cannot be decoded. However, there is enough time to detect the GI before the next frame because the entire 200 ms frame duration can be used. This adds an additional 200 ms to the signal acquisition time, but this is likely to occur only for the discovered T2-signals, not for each tested channel. Since the maximum number of parallel multiplexes is typically 7 to 8, the total time added to the scan sequence is less than 2 s.
假使該訊框持續時間是可組配的,則藉由辨識下一個P1符號,該訊框同步可被獲得。然後,來自該等P2符號中的該L1靜態發信之已檢測參數被確認。If the frame duration is configurable, the frame synchronization can be obtained by recognizing the next P1 symbol. The detected parameters of the L1 static transmission from the P2 symbols are then confirmed.
在一實施例中,該第一P1被用於一頻道估計,然後該頻道估計被用以等化該第二P1。這重複利用了各種實施例的一基本概念,雖然實施是不同的。N 指的是該FFT大小。In an embodiment, the first P1 is used for a channel estimate, and then the channel estimate is used to equalize the second P1. This reuses a basic concept of various embodiments, although the implementation is different. N refers to the FFT size.
根據DVB-T2標準,P1及P2符號作為對初始掃描及發信的傳輸的一種解決辦法被提出。根據實施例,兩個P1符號之間的微分調變可具有高度頻率選擇性頻道的優點。According to the DVB-T2 standard, the P1 and P2 symbols are proposed as a solution to the transmission of initial scanning and signaling. According to an embodiment, the differential modulation between two P1 symbols can have the advantage of a highly frequency selective channel.
如以上所討論,該等P1符號被用在該初始掃描中以: (1)檢測T2信號的存在;(2)估計該頻率偏移;及(3)檢測該所使用的FFT大小。估計該頻率偏移(及在某種程度上檢測T2信號的存在)的一可能的方法是使用一頻域‘梳’,即,使用該OFDM符號中的該等可用副載波的一子集。假使存在總共L個可用的副載波(=減去保護頻帶的FFT-大小)。而且,假定每第三個副載波可用於該引導/同步用途,所以,這將有L'=/3+1個有效副載波用於該同步信號。數學上,該梳可用一位元序列P(0)、P(1)、...、P(L' -1)來表示。在此,該位元P(k)告知,第(lowest )+3*k 號副載波是否含有一個二元相移鍵控(BPSK)信號:‘0’指示不含有功率的一副載波,且‘1’指示含有一已BPSK-調變的信號的一副載波。該概念是當操作者使用一頻道頻率偏移時,該梳被相應地移位。因此,達到時序同步及分數頻率同步之後,該接收器可執行FFT及搜尋該整數頻率偏移。在此,該接收器可使用該等假定的引導載波(即該梳)的已接收功率,且在沒有解調該偽隨機二進制序列的情況下,找到該頻率偏移。接著,在與該經移位的梳及該已量測的副載波信號功率的一相當充分的匹配存在的情況下,正確的整數頻率偏移(=副載波間距的一整數倍)可被檢測。然後,該FFT-大小(例如從5種選擇中挑選的)係由對5種BPSK-型樣S m (0)、S m (1)...S m (L '-1)(對於m=1,2,3,4或5)的一選擇來指示。As discussed above, the P1 symbols are used in the initial scan to: (1) detect the presence of the T2 signal; (2) estimate the frequency offset; and (3) detect the FFT size used. One possible way to estimate the frequency offset (and to some extent detect the presence of the T2 signal) is to use a frequency domain 'comb', i.e., use a subset of the available subcarriers in the OFDM symbol. Suppose there are a total of L available subcarriers (= minus the FFT-size of the guard band). Moreover, assuming that every third subcarrier is available for this boot/synchronization purpose, this will have L'= /3 +1 effective subcarriers are used for the synchronization signal. Mathematically, the comb is available one yuan sequence P (0), P (1 ), ..., P (L '-1) is represented. Here, the bit P(k) informs whether the ( lowest ) + 3* k subcarrier contains a binary phase shift keying (BPSK) signal: '0' indicates a subcarrier that does not contain power, and '1' indicates a subcarrier containing a BPSK-modulated signal. The concept is that when the operator uses a channel frequency offset, the comb is shifted accordingly. Therefore, after timing synchronization and fractional frequency synchronization are achieved, the receiver can perform FFT and search for the integer frequency offset. Here, the receiver can use the received power of the assumed pilot carrier (ie, the comb) and find the frequency offset without demodulating the pseudo-random binary sequence. Then, in the presence of a substantially sufficient match with the shifted comb and the measured subcarrier signal power, the correct integer frequency offset (= an integer multiple of the subcarrier spacing) can be detected . Then, the FFT-size (for example, selected from 5 choices) is based on 5 BPSK-types S m (0), S m (1)... S m ( L '-1) (for m A choice of =1, 2, 3, 4 or 5) is indicated.
該頻率偏移(在對它的分數部分調整之後)相當於對該等下標添加一常數偏移n。則和計算該梳 與它的移位版本之間的碰撞的數目,且S (0)=N 等於該梳中的副載波的數目N 。為了使對該整數頻率偏移的檢測有效,該碰撞總數S (n ),n ≠0與該正確匹配N 相比應該是小的。This frequency offset (after adjusting its fractional portion) is equivalent to adding a constant offset n to the subscripts. And The number of collisions between the comb and its shifted version is calculated, and S (0) = N is equal to the number N of subcarriers in the comb. In order to validate the detection of the integer frequency offset, the total number of collisions S ( n ), n ≠0 should be small compared to the correct match N.
理想地,該等P1信號的結構應該使得它也支援檢測的其他方法,因而為硬體設計者提供選擇的自由。用以檢測一P1-信號的存在的問題的另一種方法是基於時域相關。為了也支援此供選擇的方法,該等實際信號應該具有良好的互相關特性-不僅對於m的不同的值而且對於(m,n)對的不同的值,即對於(FFT-大小,頻率偏移)組合的不同的值。Ideally, the structure of the P1 signals should be such that it also supports other methods of detection, thus providing the hardware designer with freedom of choice. Another method to detect the problem of the presence of a P1-signal is based on time domain correlation. In order to also support this alternative method, these actual signals There should be good cross-correlation properties - not only for different values of m but also for different values of (m, n) pairs, ie for different values of (FFT-size, frequency offset) combination.
該組信號所需要的其他特性是合理的時域自相關特性及合理的峰均值功率比(PAPR)特性。理想地,應該還可能在不依靠大的查找表的情況下,迅速地且高效地再產生該梳及該等BPSK-序列。Other characteristics required for this set of signals are reasonable time domain autocorrelation properties and reasonable peak-to-average power ratio (PAPR) characteristics. Ideally, it should also be possible to reproduce the comb and the BPSK-sequences quickly and efficiently without relying on a large lookup table.
實施例係針對:1)受限於每第三個副載波的梳,及2)含有大概該等剩餘的副載波的二分之一的梳,所以,有效的副載波的數目N應該是大約L/6。由於這些適當的假設,長度為L '=/3+1的較短的梳型樣/序列是所感興趣的。Embodiments are directed to: 1) a comb limited to every third subcarrier, and 2) a comb containing approximately one-half of the remaining subcarriers, so the number N of effective subcarriers should be approximately L/6. Due to these appropriate assumptions, the length is L '= /3 A shorter comb pattern/sequence of +1 is of interest.
根據實施例,一適合的長度的一個二進制m-序列被用以產生該梳,且相同的m序列(目前相對於0/1被解釋為+1/-1)的已選定循環移位被用以產生5種BPSK-型樣。According to an embodiment, a binary m-sequence of a suitable length is used to generate the comb, and the selected cyclic shift of the same m-sequence (currently interpreted as +1/-1 with respect to 0/1) is used Five BPSK-types were produced.
六個位元型樣(每一個由不全為零的r個位元構成,其以後被稱為種源)被指定。然後,藉由應用由一階數為r的基元 多項式決定的一遞迴公式,該等種源被擴展成一長度為2 r -1的序列。要注意,該相同的遞迴公式被應用以形成該6個序列中的每一個。該等序列中的其中一個被挑出以決定該梳,且其他的5個決定該等BPSK-型樣,藉由將‘0’重新解譯為+1及將‘1’重新解譯為-1。理想地,則L '=2 r -1。不同的用法實例及用以建構該梳的一供選擇的方法也可以被使用。Six bit patterns (each consisting of r bits that are not all zero, which will later be referred to as seed sources) are specified. Then, by applying a recursive formula determined by a primitive polynomial of a first order r, the sources are expanded into a sequence of length 2 r -1. It is noted that this same recursive formula is applied to form each of the six sequences. One of the sequences is picked to determine the comb, and the other five determine the BPSK-type, by reinterpreting '0' as +1 and '1' reinterpreting -1 . Ideally, then L '= 2 r -1. Different usage examples and an alternative method for constructing the comb can also be used.
在DVB-T2的特定用法實例中,L=1531個副載波,所以L '=511=29 -1,r =9,且基元回授多項式1+x 4 +x 9 可被使用。示範性的一組種源由用於該梳的100 000 000及用於該等5種BPSK-型樣的000 110 101、110 001 100、101 111 101、101 101 111、111 100 111(所有被解譯為+/-1)組成。藉由重複應用該等遞迴公式P (k )=P (k -4)+P (k -9)(mod2)及S m (k )=S m (k -4)*S m (k -9)(對於k=9,10,...,510),這些序列被擴展成序列P及Sm (對於m=1、2、3、4及5)。In the specific usage example of DVB-T2, L = 1531 subcarriers, so L '= 511 = 2 9 -1, r = 9, and the primitive feedback polynomial 1 + x 4 + x 9 can be used. An exemplary set of provenances consists of 100 000 000 for the comb and 000 110 101, 110 001 100, 101 111 101, 101 101 111, 111 100 111 for the 5 BPSK-types (all Interpreted as +/-1) composition. By repeatedly applying the recursive formulas P ( k )= P ( k -4)+ P ( k -9)(mod2) and S m ( k )= S m ( k -4)* S m ( k - 9) (for k = 9,10, ..., 510) , these sequences are expanded into a sequence of P and S m (for m = 1,2,3,4, and 5).
選擇該等種源中的一設計準則是,當該等產生的序列是另一個的循環移位時,從一個到另一個所移位的量應該使其相對大。同樣地,該等種源可被設計使得它們中的一個不能從該梳序列與藉由一短的(例如小於45個位置)循環移位而得的另一序列的逐位互斥或運算(XOR)而被產生。One design criterion for selecting such sources is that when the generated sequences are cyclic shifts of the other, the amount shifted from one to the other should be relatively large. Likewise, the sources can be designed such that one of them cannot be mutually exclusive or exclusive from the comb sequence and another sequence obtained by cyclically shifting by a short (eg, less than 45 positions) ( XOR) is produced.
如果可用的載波L' 的數目不是2 r -1形式的,但是還相對接近這樣的一數目,則該梳及該等序列可藉由從該等m-序列的末尾截去一小的分割塊而被縮短,或者該型樣可藉由循環地重複它一相對短的時間而被擴展。在以上範例中,藉由循環地移位該梳型樣以及該等BPSK-序列一個位 置,副載波的數目可從1531減少到1507。為了實現這一點,藉由應用一次該遞迴關係,該等9位元種源可被擴展至10位元。這之後,該第一位元可被省去,因而產生一9位元種源。因此,用於該梳的該種源000 000 001及用於該等BPSK-序列的該等種源001 100 010、100 011 000、011 111 010、011 011 110、111 001 111可取替以上提議被使用。則該梳將以8個0開始,即24個空的副載波,且該P1-信號變窄而低至1507個連續的載波。要觀察到,該可用的頻寬所扮演的角色是較不重要的,因為在一較窄的頻帶(例如5MHz)應用中,副載波之間的間距也是較窄的,且仍然有空間用於大約相同數目的副載波。If the number of available carriers L ' is not in the form of 2 r -1, but is also relatively close to such a number, then the comb and the sequences can be truncated from the end of the m-sequence by a small segmentation It is shortened, or the pattern can be expanded by iteratively repeating it for a relatively short period of time. In the above example, the number of subcarriers can be reduced from 1531 to 1507 by cyclically shifting the comb pattern and one position of the BPSK-sequences. To achieve this, the 9-bit source can be extended to 10 bits by applying the recursive relationship once. After this, the first bit can be omitted, thus producing a 9-bit source. Therefore, the source 000 000 001 for the comb and the sources 001 100 010, 100 011 000, 011 111 010, 011 011 110, 111 001 111 for the BPSK-sequences can be replaced by the above proposals. use. Then the comb will start with 8 zeros, ie 24 empty subcarriers, and the P1-signal narrows down to as low as 1507 consecutive carriers. It is observed that the role played by the available bandwidth is less important because in a narrower frequency band (eg 5 MHz) application, the spacing between subcarriers is also narrower and there is still room for space About the same number of subcarriers.
產生一頻域梳的一供選擇的方法是使用該領域中已知的平方剩餘序列(=QR-序列)。該由此產生的梳共享具有基於m-序列之梳之多個移位版本之間的碰撞統計特性。該供選擇的方法具有如下優點:一QR-序列的長度是模4餘3的一質數p。因此,當QP-序列被使用時,該組可用的長度是較靈活的。該相同的序列的已循環移位版本在此還可被用以建構該等BPSK-序列。然而,即時地產生一相對長的QP-序列在計算上是較繁重的,且實際上一相對大的查找表可能必須被使用。An alternative method of generating a frequency domain comb is to use a squared residual sequence (=QR-sequence) known in the art. The resulting comb shares collision statistics between multiple shifted versions of the comb based on the m-sequence. This alternative method has the advantage that the length of a QR-sequence is a prime number p of modulo 4 and 3. Therefore, when the QP-sequence is used, the length available for the group is more flexible. The cyclically shifted version of the same sequence can also be used herein to construct the BPSK-sequences. However, generating a relatively long QP-sequence in real time is computationally cumbersome, and in fact a relatively large lookup table may have to be used.
根據至少一實施例,該所提出的5個P1-信號是,對於m=1,2,3,4及5。這裏,n表示該頻率偏移的整數部分。它以副載波間距的一倍 數來計數,所以在該所提出的用法實例中,n =±37、±75、±112對應於頻率偏移±1/6、±1/3、±1/2MHz (要注意,副載波間距的分數較早地被處理,而不管它們在此是否是一捨入誤差的一結果或該接收器與該發射器之間的一時鐘差異的一結果)。但是所提出的結構實際上允許上至134的任何整數值的n。這裏,P及Sm (對於m=1,2,3,4及5)是以上所討論的長度為511的該等序列。這些信號在1531個連續的副載波的一範圍內佔用256個副載波。According to at least one embodiment, the proposed five P1-signals are For m=1, 2, 3, 4 and 5. Here, n represents the integer part of the frequency offset. It is counted at a multiple of the subcarrier spacing, so in the proposed usage example, n = ±37, ±75, ±112 corresponds to a frequency offset of ±1/6, ±1/3, ±1/2 MHz (note that the fraction of subcarrier spacing is processed earlier, regardless of whether they are a result of a rounding error or a result of a clock difference between the receiver and the transmitter). But the proposed structure actually allows n to any integer value up to 134. Here, P and S m (for m = 1, 2, 3, 4 and 5) are the sequences of length 511 discussed above. These signals occupy 256 subcarriers within a range of 1531 consecutive subcarriers.
對於該等種源有效果同樣好的各種其他選擇。例如,在不改變相關特性的情況下,該6個m-序列中的每一個可被循環地移位相同的數量。當該頻率偏移的整數部分n 小於3*45=135時,種源的該等範例值效果良好。在該範圍內,該等序列的該等偏移版本中的互相關保持低的。一電腦搜尋已經顯露出具有同樣好的性能的其他的種源組。一稍微再寬些的低相關範圍的可能性未完全被排除,但是要知道,如果n 可以與3*51=153一樣大,則用該方法,這樣的一低相關範圍不能被實現,不管該等種源怎樣小心地被選擇。There are various other options that are equally effective for these sources. For example, each of the 6 m-sequences can be cyclically shifted by the same amount without changing the relevant characteristics. These example values of the seed source work well when the integer portion n of the frequency offset is less than 3*45=135. Within this range, the cross-correlation in the offset versions of the sequences remains low. A computer search has revealed other provenance groups with equally good performance. The possibility of a slightly wider range of low correlation is not completely ruled out, but it is known that if n can be as large as 3*51=153, with this method, such a low correlation range cannot be achieved, regardless of the How to choose the source carefully.
呈3的倍數的間距允許該頻率偏移的該整數部分被相當迅速地檢測,因為在該真實的梳與受測試的版本之間沒有碰撞,除非該受測試的與該實際的整數偏移之差是3的倍數。如果那個條件被滿足,則當我們具有正確的偏移時,碰撞的數目是256,否則碰撞的數目在範圍119...128中,即在最佳偽隨機中間點128附近。對於具有一相似的結構(=受限於每第三個副載波)及密度(=總共平均6個副載波中的一 個是‘有效的’)的一隨機產生的梳,對碰撞的數目的期望範圍(偏離該期望值+/-2標準偏差)是從104到144,所以藉由使變化進入一較窄的範圍,使用m-序列改善了這數目。A spacing of multiples of 3 allows the integer portion of the frequency offset to be detected relatively quickly because there is no collision between the actual comb and the tested version unless the tested is offset from the actual integer The difference is a multiple of 3. If that condition is met, then when we have the correct offset, the number of collisions is 256, otherwise the number of collisions is in the range 119...128, ie near the best pseudo-random intermediate point 128. For having a similar structure (= limited by every third subcarrier) and density (= one of a total of 6 subcarriers in total) a randomly generated comb of 'effective'), the expected range of the number of collisions (deviation from the expected value +/- 2 standard deviations) is from 104 to 144, so by making the change into a narrower range, This number is improved using m-sequences.
該等m-序列的基本代數結構有助於保證幾乎所有以此方式產生的該等序列具有相當好的PAPR-特性(例外的是,對於該梳及該等序列的其中一個使用相同的種源)及相當好的時域自相關。對該等種源的小心選擇進一步有助於保證該等各種序列的偏移版本中的良好的互相關特性。確實,該等非普通相關非常接近於零,與隨機向上浮動至32之+/-2 SD位準相對。The basic algebraic structure of the m-sequences helps to ensure that almost all of the sequences produced in this manner have fairly good PAPR-characteristics (with the exception that the same provenance is used for one of the combs and one of the sequences) ) and fairly good time domain autocorrelation. Careful selection of such sources further helps to ensure good cross-correlation properties in the offset versions of the various sequences. Indeed, these non-ordinary correlations are very close to zero, as opposed to random upswing to +/- 2 SD levels of 32.
第28圖是根據一或較多個實施例的引導序列與它們的頻率偏移版本之間的自/互相關的一圖形。Figure 28 is a diagram of the auto/cross correlation between the pilot sequences and their frequency offset versions in accordance with one or more embodiments.
第29圖是第28圖的該圖形的一放大版本,顯示頻率偏移之低的互相關範圍。Figure 29 is an enlarged version of the figure of Figure 28 showing the low cross-correlation range of the frequency offset.
第30圖是根據至少一實施例顯示一第一P1-信號(用666 MHz的一中心頻率及4464 Hz的載波間距計算的、以25 MHz被取樣而產生這些圖的一單一符號)的包絡振幅的一圖形。該比例被選擇使得均方振幅等於1。Figure 30 is a diagram showing the envelope amplitude of a first P1-signal (calculated with a center frequency of 666 MHz and a carrier spacing of 4464 Hz, sampled at 25 MHz to produce a single symbol of the graphs) in accordance with at least one embodiment. a graphic. This ratio is chosen such that the mean square amplitude is equal to one.
第31圖是第30圖的該圖形的一放大版本。第30及31圖一起顯示了該組的合理的PAPR-特性。Figure 31 is an enlarged version of the figure of Figure 30. Figures 30 and 31 together show the reasonable PAPR-characteristics of this group.
在對該等BPSK及P1序列的下面討論中,F =GF (512)將表示512個元素的有限欄位,而g 將是滿足方程式1+g 5 +g 9 =0的F的一基元元素,所以該等冪g i 即為F的該等非零元素,當該指數i取該等值i=0,1,...,510時。我們要進一步 注意,g -1 則將是該早先的回授方程式1+x 4 +x 9 =0的一根。讓tr :F →GF (2)為追蹤函數。該先前的0/1-取值的m-序列及所有它的循環移位被得到,如序列m α (i )=tr (αg i -1 ),對於i =1,2,...,511及α ≠0。我們寫為e (x )=(-1) tr (x ) ,及ω =e 2πj /511 。因此,我們可選擇元素α F 及β j F ,j =1,2,3,4,5,使得0及1的該梳被得到,如P (i )=tr (αg i -1 )=(1-e (αg i -1 ))/2,及該等BPSK-序列被得到,如S j (i )=e (β j g i -1 )。該等P1-序列因而由公式P 1 j (i )=(1-e (αg i -1 ))e (β jg i -1 )/2給出。In the following discussion of the BPSK and P1 sequences, F = GF (512) will represent a finite field of 512 elements, and g will be a primitive element of F satisfying Equation 1 + g 5 + g 9 =0 , so the power g i is the non-zero element of F, when the index i takes the equivalent value i=0, 1, ..., 510. We should further note that g -1 will be the one of the earlier feedback equations 1 + x 4 + x 9 =0. Let tr : F → GF (2) be the tracking function. The previous 0/1-valued m-sequence and all its cyclic shifts are obtained, such as the sequence m α ( i )= tr ( αg i -1 ), for i =1, 2,..., 511 and α ≠ 0. We write as e ( x )=(-1) tr ( x ) , and ω = e 2 πj /511 . Therefore, we can choose element α F and β j F , j =1, 2, 3, 4, 5, such that the comb of 0 and 1 is obtained, such as P ( i )= tr ( αg i -1 )=(1- e ( αg i -1 ))/ 2, and the BPSK-sequences are obtained, such as S j ( i ) = e ( β j g i -1 ). The P1-sequences are thus given by the formula P 1 j ( i )=(1- e ( αg i -1 )) e ( β jg i -1 )/2.
我們得到等式e (x ±y )=e (x ).e (y )及和(此後被稱為方程式(1)或和(1)),每當γ 非零時,及所謂的高斯和(Gauss’ sums)(此後被稱為方程式(2)或和(2)),其中,當γ 及k都非零時,該高斯和具有複數絕對值,且當它們中的一個,而不是兩個為零時,小於此值。We get the equation e ( x ± y ) = e ( x ). e ( y ) and (hereinafter referred to as equation (1) or (1)), whenever γ is non-zero, and the so-called Gauss sums (hereinafter referred to as equation (2) or (2)), wherein when both γ and k are non-zero, the Gauss sum Absolute absolute value And less than this value when one of them, instead of two zeros.
就此,我們記錄該所提出的梳對應於選擇α =1。In this regard, we record that the proposed comb corresponds to the choice α =1.
讓我們考慮型樣與它的移位版本P
(k
+n
)之間的碰撞的數目,這裏,n指示該移位量(最多12/3=37)。如果我們循環地以511為一週期繼續該梳的該型樣,則碰撞的數目可被計算。表示變數x
=g k
,且採取通常的慣例:F *
是欄位F中的非零元素的集合。則‘以511為模的碰撞’的數目是(所以,k+n以511為模被計算)
在此,該第一個和是511。在此,該第一個和是511。因為t<511,所以係數α ,αg ",α (1+g n )是非零的,且方程式(1)告訴我們該等剩餘的和全部都等於-1(適應如下事實:該等和中缺少項e (0)=1)。總之我們得到,該經移位的梳與該循環地被擴展的梳具有512/4=128個碰撞。當我們考慮到由於該和k+n溢出>511的尾部效應時,我們看到在碰撞的數目上之一期望的下降。在n=1,2,3,4,6,7,8時,有128個碰撞,且該數目隨著n的增加而近似線性地下降。當n達到最大值37時,碰撞的數目是125。隨著偏移n=36,最低值119個碰撞被達到。所以由於該梳,兩個偏移梳之間的碰撞的數目將接近該理想的中間點128。Here, the first sum is 511. Here, the first sum is 511. Since t < 511, the coefficients α , αg ", α (1 + g n ) are non-zero, and equation (1) tells us that the remaining sums are all equal to -1 (according to the fact that the items are missing in the sum e (0) = 1). In summary, we get that the shifted comb has 512/4 = 128 collisions with the looped comb. When we consider the tail effect due to the sum of k and n overflows > 511 , we see an expected drop in the number of collisions. At n = 1, 2, 3, 4, 6, 7, 8, there are 128 collisions, and the number is approximately linear with increasing n When n reaches the maximum value of 37, the number of collisions is 125. With the offset n=36, the lowest value of 119 collisions is reached. Therefore, due to the comb, the number of collisions between the two offset combs will be close. This ideal intermediate point 128.
我們可以計算兩個P1-序列之間的互相關(在頻域中,根據怕什法耳(Parseval’s)定理,這是否在頻域或時域中被完成無關緊要),如
如在碰撞的數目的計算中,我們首先在該頻域中循環地擴展了該序列,計算這樣一已擴展的信號對之間的互相關,且或多或少地忽略該短的‘尾部’,該短的‘尾部’是少量的偽隨機項的和,且將不會起太大作用。所以,一P1-信號與從該P1-信號偏移t個位置的另一P1-信號之間的該(頻域)互相關是=
觀察到,這裡,索引j及j’可以是相等的,即我們也對一序列與它的偏移版本之間的相關感興趣。從方程式(1),我們看到此主要項是零,除非方括號中的該等係數的其中一個為零。因為n在關於零的一範圍內取值,所以留給我們的是以如下一種方式來選擇該等係數β 1 ,...,β 5 的目標:該等係數本身且也是該等和α +β 1 ,...,α +β 5 的該等基數g 離散對數盡可能彼此遠離(循環地模511)。因為這裏總共有10個欄位元素,所以該等離散對數間的最小間隔不能高於11/10=51。由於對該樣本結構的選擇α =1=g 0 ,一小的試探搜尋給出以上討論中所使用的集合:β 1 =g 33 ,α +β 1 =g 181 ,β 2 =g 135 ,α +β 2 =g 499 ,β 3 =g 245 ,α +β 3 =g 398 ,β 4 =g 349 ,α +β 4 =g85 ,β 5 =g 445 ,α +β 5 =g 296 。在此,該等離散對數形成一列表{33,135,245,349,445,181,499,398,85,296}-該最前面的五個離散對數指定該等元素β 1 ,...,β 5 ,且該最後的五個 列出該等元素α +β 1 ,...,α +β 5 的離散對數。此處,最小循環間隔45在499與33之間,因為33-499+511=45。也具有最小循環間隔45的另一離散對數序列是{33,135,233,339,447,181,499,388,286,80}。未知的是,是否存在導致一更大的循環間隔的選擇。因為3*45=135(子載波間隔)大於112,所以這滿足了我們的目的。It is observed that here the indices j and j' can be equal, ie we are also interested in the correlation between a sequence and its offset version. From equation (1), we see that this main term is zero unless one of the coefficients in square brackets is zero. Since n takes values in a range about zero, what is left to us is to select the targets of the coefficients β 1 ,..., β 5 in such a way that the coefficients themselves are also the sum of α + These bases g discrete logarithm of β 1 ,..., α + β 5 are as far apart as possible from each other (cyclic model 511). Since there are a total of 10 field elements here, the minimum interval between the discrete logarithms cannot be higher than 11/10 =51. Due to the choice of the sample structure α = 1 = g 0 , a small heuristic search gives the set used in the above discussion: β 1 = g 33 , α + β 1 = g 181 , β 2 = g 135 , α + β 2 = g 499 , β 3 = g 245 , α + β 3 = g 398 , β 4 = g 349 , α + β 4 = g 85 , β 5 = g 445 , α + β 5 = g 296 . Here, the discrete logarithms form a list {33, 135, 245, 349, 445, 181, 499, 398, 85, 296} - the first five discrete logarithms specify the elements β 1 ,... , β 5 , and the last five lists the discrete logarithm of the elements α + β 1 ,..., α + β 5 . Here, the minimum cycle interval 45 is between 499 and 33 because 33-499+511=45. Another discrete logarithmic sequence that also has a minimum cycle interval of 45 is {33, 135, 233, 339, 447, 181, 499, 388, 286, 80}. What is unknown is whether there is a choice that leads to a larger loop interval. Since 3*45=135 (subcarrier spacing) is greater than 112, this satisfies our purpose.
這些數字解釋了第28圖中的間隙。由於在任一方向上與多到44的偏移都沒有匹配,所以第28圖中的接近零的區域的寬度是2*44+1=89個載波。我們要注意,該間隔45對應於方程式(3)中帶有一負號的項。對應於帶有一正號的項的該最小循環間隔是96,且它出現在該等對(45,349)及(181,85)之間。這解釋了為什麼最近的旁瓣都是負的,且還解釋了在該x-軸以上的2*96+1=193個載波的較寬的間隙。These figures explain the gap in Figure 28. Since there is no match with an offset of up to 44 in either direction, the width of the near zero region in Fig. 28 is 2*44 + 1 = 89 carriers. It is to be noted that this interval 45 corresponds to an item with a negative sign in equation (3). The minimum loop interval corresponding to the item with a positive sign is 96, and it appears between the pairs (45, 349) and (181, 85). This explains why the most recent side lobes are negative and also explains the wider gap of 2*96+1=193 carriers above the x-axis.
此處我們顯示界限意指該等所提出的信號的自相關如何保持在一低位準至少達一某一離散集合時間位移。該所提出的P1-信號的時域版本是,其中為方便,我們可以將頻率偏移包括到f
中,且讓△f
為該P1-信號的兩個可能的載波之間的間距(=該2k OFDM-符號的載波間距的3倍)。假定我們具有小於該保護間隔的一時間誤差△t
。則時域相關器查看
這裏,係數K及K’是為了正規化,且包含升次冪及來自DFT及該積分的常數。因此,該項的絕對值僅視該和而定(根據比例)。假定△t 具有使得對於某一整數n而言乘積△f △t =n/511的這樣一大小。那就是,該時間誤差是該等副載波的共同週期的1/511的一整數倍。所以我們可寫為e 2πjk (△f.△t ) =ω nk 。考慮到P 1 j (k +1)=(1-e (αg k ))/2僅取決於該梳的該型樣(且根本不取決於該BPSK-調變)之事實,我們看到,在該時間誤差的這些值處,該互相關等於(以後被稱為方程式(5))。Here, the coefficients K and K' are for normalization and contain the power of the ascending power and the constant from the DFT and the integral. Therefore, the absolute value of the item depends only on the sum (based on the ratio). △ t is assumed that such a size with respect to the product of some integer n △ f △ t = n / 511 in. That is, the time error is an integer multiple of 1/511 of the common period of the subcarriers. So we can write e 2 πjk (△f.△ t ) = ω nk . Considering the fact that P 1 j ( k +1)=(1- e ( αg k ))/2 depends only on the type of the comb (and does not depend on the BPSK-modulation at all), we see that At these values of the time error, the cross correlation is equal to (hereinafter referred to as equation (5)).
方程式(1)及(2)中的該等和則告訴我們(忽略該乘數K”-它的絕對值與n無關)當n=0時(即當沒有時序誤差時),該和具有值256,且否則具有絕對值。總之:由於我們的信號,這有一相對密集的時間誤差的離散集合,該相對密集的時間誤差的離散集合將致使自相關值低於該同步值大約10 dB。雖然這不是決定性的,但這高度示意了,我們的所提出的信號的自相關特性是相對好的。The sums in equations (1) and (2) tell us (ignoring the multiplier K) - its absolute value is independent of n) when n = 0 (ie when there is no timing error), the sum has a value of 256 And otherwise have absolute values . In summary: due to our signal, this has a discrete set of relatively dense time errors, and the discrete set of relatively dense time errors will cause the autocorrelation value to be approximately 10 dB below the synchronization value. Although this is not decisive, it is highly indicative that the autocorrelation properties of our proposed signals are relatively good.
此外,該等和(1)及(2)對於我們的估計是主要的。當我們比較兩個不同的P1-信號P1j
及P1j
’時,導出以上方程式(4)及(5)的計算這時將產生
要記得,我們操作在β j -β j ≠α 之假定下。如果這裏 n=0,則該和藉由公式(1)估計為0,且否則,我們在此具有兩個高斯和,所以藉由三角不等式,我們可估計。換句話說,在該離散的時間誤差集合處,該等互相關低於完美匹配256*K”至少7 db。Remember, we operate under the assumption of β j - β j ≠ α . If n = 0 here, the sum is estimated to be 0 by the formula (1), and otherwise, we have two Gauss sums here, so by trigonometric inequality, we can estimate . In other words, at the discrete set of time errors, the cross-correlations are less than a perfect match of 256*K" of at least 7 db.
此外,該和(2)允許我們對該等取樣瞬時△t =n/(511△f )(對所有n=0,1,...,510)處的該包絡功率作出一相對敏銳的估計。我們具有。Furthermore, the sum (2) allows us to make a relatively sharp estimate of the envelope power at the sampling instants Δ t = n / (511 Δ f ) (for all n = 0, 1, ..., 510) . We have .
因為α ≠β j ,所以我們在n=0時得到零,且由於關於高斯和的方程式(2)的結果,絕對值符號中的該和之上限為。總之,被取樣的包絡功率因而最大為1。這裏,總的信號能量是256,所以平均功率是。因此,在該(奈奎斯(Nyquist))取樣率下,該最大值與平均包絡功率比最大是。這存在一大體的界限,該大體的界限告訴我們,在最壞的情況下,該連續的峰值與平均包絡功率比最大為(且在實際中,非常可能會更好一點)。Since α ≠ β j , we get zero at n=0, and because of the result of equation (2) about Gauss sum, the upper limit of the sum in the absolute value sign is . In summary, the envelope power sampled is thus at most one. Here, the total signal energy is 256, so the average power is . Therefore, at this (Nyquist) sampling rate, the maximum ratio to the average envelope power is . There is a big bound here, and the general bounds tell us that in the worst case, the ratio of the continuous peak to the average envelope power is (And in practice, it is very likely to be better).
本發明的一或較多個層面可被實現在電腦可執行指令中,諸如由一或較多個電腦或其他裝置執行的一或較多個程式模組。一般地,程式模組包括當被一電腦或其他裝置中的一處理器執行時執行特定任務或實施特定抽象資料類型的常式、程式、物件、元件、資料結構等。該等電腦可執行指令可被儲存在諸如一硬碟、光碟、可移除儲存媒體、固態記憶體、RAM等之一電腦可讀媒體上。將被該技藝中 具有通常知識者理解的是,在各種實施例中,該等程式模組的功能可如所期望地被組合或分開。此外,該功能可整體或部分地被實現在諸如積體電路、場可規劃閘極陣列(FPGA)、特定應用積體電路(ASIC)等之韌體或硬體等效物中。One or more layers of the present invention can be implemented in computer executable instructions, such as one or more program modules executed by one or more computers or other devices. Generally, a program module includes routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions can be stored on a computer readable medium such as a hard disk, optical disk, removable storage medium, solid state memory, RAM, or the like. Will be in the art It will be understood by those of ordinary skill that, in various embodiments, the functions of the program modules can be combined or separated as desired. Moreover, the functionality may be implemented in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and the like.
實施例包括在此明確地或其任何概括化地所揭露的任何新穎特徵或特徵之組合。雖然實施例已經關於包括執行本發明的目前較佳模式的特定範例被描述,但是該技藝中具有通常知識者將理解的是,還存在以上所描述的系統及技術的許多變化及變更。因此,本發明的精神及範圍應該廣泛地被理解為該等後附申請專利範圍中所提出的。Embodiments include any novel feature or combination of features disclosed herein, either explicitly or in any generalized form. While the embodiments have been described in terms of specific examples of the presently preferred embodiments of the present invention, it will be understood by those of ordinary skill in the art that there are many variations and modifications of the systems and techniques described above. Therefore, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
102‧‧‧數位寬頻廣播系統102‧‧‧Digital Broadband Broadcasting System
103‧‧‧數位廣播發射器103‧‧‧Digital Broadcast Transmitter
104‧‧‧數位內容源104‧‧‧Digital content sources
105‧‧‧數位廣播塔105‧‧‧Digital Broadcasting Tower
112‧‧‧行動終端機或裝置、行動裝置、接收裝置112‧‧‧Mobile terminal or device, mobile device, receiving device
128‧‧‧處理器128‧‧‧ processor
130‧‧‧使用者介面130‧‧‧User interface
134‧‧‧電腦可讀記憶體134‧‧‧ computer readable memory
136‧‧‧顯示器136‧‧‧ display
140‧‧‧軟體140‧‧‧Software
141‧‧‧DVB接收器141‧‧‧DVB Receiver
142‧‧‧FM/AM無線電接收器142‧‧‧FM/AM radio receiver
143‧‧‧WLAN收發器143‧‧‧WLAN transceiver
144‧‧‧電信收發器144‧‧‧Telecom transceiver
150‧‧‧電池150‧‧‧Battery
152‧‧‧揚聲器152‧‧‧Speaker
154‧‧‧天線154‧‧‧Antenna
602-614‧‧‧步驟602-614‧‧‧Steps
902-914‧‧‧步驟902-914‧‧‧Steps
1002-1014‧‧‧步驟1002-1014‧‧‧Steps
1102‧‧‧引導符號/第一引導符號1102‧‧‧Guide symbol/first boot symbol
1104-1106‧‧‧發信符號1104-1106‧‧‧Signal symbol
1202-1204‧‧‧步驟1202-1204‧‧‧Steps
1301‧‧‧P2-1封包結構1301‧‧‧P2-1 packet structure
1302-1324‧‧‧欄位1302-1324‧‧‧ Field
1325‧‧‧時槽迴路欄位1325‧‧‧ time slot circuit field
1326-1338‧‧‧欄位1326-1338‧‧‧ Field
1402‧‧‧發信窗1402‧‧‧Send window
1404‧‧‧偏移1404‧‧‧Offset
1502‧‧‧偏移1502‧‧‧Offset
1602‧‧‧P2-n封包1602‧‧‧P2-n packet
1604-1610‧‧‧欄位1604-1610‧‧‧ Field
1702‧‧‧P2-1封包1702‧‧‧P2-1 packet
1704‧‧‧P2-n封包1704‧‧‧P2-n packet
1706‧‧‧‘T’欄1706‧‧‧‘T’ column
1708‧‧‧‘L’欄1708‧‧‧‘L’ column
1710‧‧‧‘E’欄1710‧‧‧‘E’ column
1712‧‧‧‘N’欄1712‧‧‧‘N’ column
1714‧‧‧L2發信資料1714‧‧‧L2 mailing information
1716‧‧‧網路及蜂巢格資訊1716‧‧‧Network and Honeycomb Information
1718‧‧‧地理位置1718‧‧‧Location
1720‧‧‧網路資訊表(NIT)1720‧‧‧Network Information Sheet (NIT)
1722‧‧‧服務描述表(SDT)1722‧‧‧Service Description Table (SDT)
1724‧‧‧時槽_id1724‧‧‧time slot_id
1726‧‧‧訊框-編號1726‧‧‧ Frame - Number
2002‧‧‧訊框2002‧‧‧ frame
2004-2012‧‧‧時槽2004-2012‧‧ ‧ slot
2014-2024‧‧‧OFDM符號2014-2024‧‧ OFDM symbol
2026-2034‧‧‧OFDM胞元2026-2034‧‧‧OFDM cells
第1圖說明本發明的一或較多個說明性實施例可在其中被實施的一適合的數位寬頻廣播系統。Figure 1 illustrates a suitable digital broadband broadcast system in which one or more illustrative embodiments of the present invention may be implemented.
第2圖根據本發明之一層面說明一行動裝置的一範例。Figure 2 illustrates an example of a mobile device in accordance with one aspect of the present invention.
第3圖根據本發明之一層面概要地說明蜂巢格的一範例,該等蜂巢格中的每一個可被一不同的發射器覆蓋。Figure 3 schematically illustrates an example of a honeycomb lattice in accordance with one aspect of the present invention, each of which may be covered by a different emitter.
第4圖根據本發明之一層面顯示符號(用於頻道搜尋及服務探索之同步符號)與資料的一訊框及超訊框。Figure 4 shows a frame (a symbol for channel search and service discovery) and a frame and a frame of information according to one aspect of the present invention.
第5圖顯示一信號中心頻率可如何與一頻道中心頻率相一致,或相對於一頻道中心頻率偏移。Figure 5 shows how a signal center frequency can coincide with a channel center frequency or with respect to a channel center frequency.
第6圖是根據至少一個實施例顯示由一接收器執行的步驟的一流程圖。Figure 6 is a flow chart showing the steps performed by a receiver in accordance with at least one embodiment.
第7圖根據本發明之一層面相對於一信號頻寬及一頻道光柵頻寬顯示一引導信號頻寬的大小的一範例。Figure 7 shows an example of the magnitude of a pilot signal bandwidth relative to a signal bandwidth and a channel raster bandwidth in accordance with one aspect of the present invention.
第8圖根據本發明之一層面說明一引導符號的一引導序列的稀疏引導間距。Figure 8 illustrates a sparse lead spacing of a pilot sequence of a pilot symbol in accordance with one aspect of the present invention.
第9圖是顯示由一接收器執行的用以在頻域中執行相關以檢測正被使用的粗略偏移的步驟的一流程圖。Figure 9 is a flow chart showing the steps performed by a receiver to perform correlation in the frequency domain to detect the coarse offset being used.
第10圖是根據一實施例顯示用以在時域中執行一服務探索相關的步驟的一流程圖。Figure 10 is a flow diagram showing the steps associated with performing a service discovery in the time domain, in accordance with an embodiment.
第11圖根據本發明之一層面顯示一引導/發信符號序列的一範例。Figure 11 shows an example of a sequence of pilot/telephone symbols in accordance with one aspect of the present invention.
第12圖是根據本發明的至少一層面顯示由一發射器執行的一方法的步驟的一流程圖。Figure 12 is a flow diagram showing the steps of a method performed by a transmitter in accordance with at least one level of the present invention.
第13圖根據本發明之一層面說明一封包結構。Figure 13 illustrates a packet structure in accordance with one aspect of the present invention.
第14圖根據本發明之一層面說明一發信窗偏移。Figure 14 illustrates a transmit window offset in accordance with one aspect of the present invention.
第15圖根據本發明之一層面說明一訊框的一目前子信號與下一個子信號之間的一偏移。Figure 15 illustrates an offset between a current sub-signal and a next sub-signal of a frame in accordance with one aspect of the present invention.
第16圖根據本發明之一層面說明可被用以攜帶發信資訊的附加封包結構。Figure 16 illustrates an additional packet structure that can be used to carry signaling information in accordance with one aspect of the present invention.
第17圖根據本發明之一層面說明用在服務探索中的一示範流程圖。Figure 17 illustrates an exemplary flow chart for use in service exploration in accordance with one aspect of the present invention.
第18及19圖根據本發明之一層面描述P1、P2及DATA符號之間的關係。Figures 18 and 19 depict the relationship between P1, P2 and DATA symbols in accordance with one aspect of the present invention.
第20圖根據本發明之一層面顯示一示範訊框及包括OFDM符號及蜂巢格的時槽結構。Figure 20 shows an exemplary frame and a time slot structure comprising OFDM symbols and a honeycomb cell in accordance with one aspect of the present invention.
第21圖說明一個引導符號內的同調頻寬及微分調變。Figure 21 illustrates the coherence bandwidth and differential modulation within a pilot symbol.
第22圖根據本發明之一層面描述兩個P1符號之間的微 分調變。Figure 22 depicts a microscopic relationship between two P1 symbols in accordance with one aspect of the present invention. The pitch changes.
第23圖根據一實施例顯示具有1/1保護間隔的兩個1K符號及該等符號之間的微分調變。Figure 23 shows two 1K symbols with a 1/1 guard interval and differential modulation between the symbols, according to an embodiment.
第24圖根據一或較多個實施例顯示從一或較多個引導符號接收的能量之和的計算。Figure 24 shows the calculation of the sum of energy received from one or more pilot symbols in accordance with one or more embodiments.
第25圖根據一或較多個實施例顯示一發射器。Figure 25 shows a transmitter in accordance with one or more embodiments.
第26圖根據一或較多個實施例顯示一接收器。Figure 26 shows a receiver in accordance with one or more embodiments.
第27圖是根據一或較多個實施例顯示可由一接收器執行的步驟的一流程圖。Figure 27 is a flow diagram showing the steps that can be performed by a receiver in accordance with one or more embodiments.
第28圖是根據一或較多個實施例的引導序列與它們的頻率偏移版本之間的自/互相關的一圖形。Figure 28 is a diagram of the auto/cross correlation between the pilot sequences and their frequency offset versions in accordance with one or more embodiments.
第29圖是第28圖的該圖形的一放大版本,顯示頻率偏移之低的互相關範圍。Figure 29 is an enlarged version of the figure of Figure 28 showing the low cross-correlation range of the frequency offset.
第30圖是根據至少一實施例顯示一第一引導符號信號的包絡振幅的一圖形。Figure 30 is a diagram showing the envelope amplitude of a first pilot symbol signal in accordance with at least one embodiment.
第31圖是第30圖的該圖形的一放大版本。Figure 31 is an enlarged version of the figure of Figure 30.
1702‧‧‧P2-1封包1702‧‧‧P2-1 packet
1704‧‧‧P2-n封包1704‧‧‧P2-n packet
1706‧‧‧‘T’欄1706‧‧‧‘T’ column
1708‧‧‧‘L’欄1708‧‧‧‘L’ column
1710‧‧‧‘E’欄1710‧‧‧‘E’ column
1712‧‧‧‘N’欄1712‧‧‧‘N’ column
1714‧‧‧L2發信資料1714‧‧‧L2 mailing information
1716‧‧‧網路及蜂巢格資訊1716‧‧‧Network and Honeycomb Information
1718‧‧‧地理位置1718‧‧‧Location
1720‧‧‧網路資訊表(NIT)1720‧‧‧Network Information Sheet (NIT)
1722‧‧‧服務描述表(SDT)1722‧‧‧Service Description Table (SDT)
1724‧‧‧時槽_id1724‧‧‧time slot_id
1726‧‧‧訊框-編號1726‧‧‧ Frame - Number
Claims (29)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/874,359 US8045628B2 (en) | 2007-10-18 | 2007-10-18 | Digital video broadcast service discovery |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200926704A TW200926704A (en) | 2009-06-16 |
TWI441490B true TWI441490B (en) | 2014-06-11 |
Family
ID=40510446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097137897A TWI441490B (en) | 2007-10-18 | 2008-10-02 | Digital video broadcast service discovery |
Country Status (9)
Country | Link |
---|---|
US (2) | US8045628B2 (en) |
EP (3) | EP2816770B1 (en) |
JP (1) | JP5368458B2 (en) |
AR (1) | AR068863A1 (en) |
DK (2) | DK2816770T3 (en) |
ES (1) | ES2698520T3 (en) |
PL (1) | PL2816770T3 (en) |
TW (1) | TWI441490B (en) |
WO (1) | WO2009050552A2 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8713623B2 (en) | 2001-09-20 | 2014-04-29 | Time Warner Cable Enterprises, LLC | Technique for effectively providing program material in a cable television system |
US9723267B2 (en) | 2004-12-15 | 2017-08-01 | Time Warner Cable Enterprises Llc | Method and apparatus for wideband distribution of content |
JP2009105536A (en) * | 2007-10-22 | 2009-05-14 | Toshiba Corp | Rds compatible receiver |
US7652980B2 (en) * | 2007-11-02 | 2010-01-26 | Nokia Corporation | Orthogonal frequency division multiplexing synchronization |
US8509355B2 (en) * | 2008-06-30 | 2013-08-13 | Medtronic, Inc. | Method and apparatus for low power simultaneous frequency, automatic gain control and timing acquisition in radio receivers |
US8391401B2 (en) | 2008-09-23 | 2013-03-05 | Qualcomm Incorporated | Highly detectable pilot structure |
GB2470755A (en) * | 2009-06-03 | 2010-12-08 | Sony Corp | Data processing apparatus and method |
JP5257249B2 (en) | 2009-06-04 | 2013-08-07 | ソニー株式会社 | Receiving apparatus, receiving method, program, and receiving system |
TWI429284B (en) * | 2009-07-06 | 2014-03-01 | Mstar Semiconductor Inc | Digital video signal parameters detecting apparatus and method thereof |
JP5294030B2 (en) * | 2009-07-24 | 2013-09-18 | ソニー株式会社 | Receiving apparatus and method, and program |
JP5299162B2 (en) * | 2009-08-13 | 2013-09-25 | ソニー株式会社 | Receiving apparatus and receiving method |
US8300736B2 (en) * | 2009-10-19 | 2012-10-30 | Issc Technologies Corp. | Method and apparatus for phase reference tracking of digital phase modulated signals in the receiver |
JP5493803B2 (en) * | 2009-12-15 | 2014-05-14 | ソニー株式会社 | Receiving apparatus and method, program, and receiving system |
US8811370B2 (en) | 2010-01-08 | 2014-08-19 | Panasonic Corporation | OFDM transmitter device having a symbol generator for generating non-zero control symbols, and OFDM transmission method including generating non-zero control symbols |
EP2346224A1 (en) | 2010-01-13 | 2011-07-20 | Panasonic Corporation | Pilot Patterns for OFDM Systems with Four Transmit Antennas |
WO2011086647A1 (en) * | 2010-01-13 | 2011-07-21 | パナソニック株式会社 | Transmitter, transmission method, receiver, reception method, program, and integrated circuit |
US8774294B2 (en) * | 2010-04-27 | 2014-07-08 | Qualcomm Incorporated | Compressed sensing channel estimation in OFDM communication systems |
US9300445B2 (en) | 2010-05-27 | 2016-03-29 | Time Warner Cable Enterprise LLC | Digital domain content processing and distribution apparatus and methods |
US9185341B2 (en) | 2010-09-03 | 2015-11-10 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
EP2627018B1 (en) * | 2010-10-05 | 2018-12-05 | Panasonic Intellectual Property Management Co., Ltd. | Ofdm reception device, ofdm reception circuit, ofdm reception method, and ofdm reception program |
JP5648440B2 (en) * | 2010-11-22 | 2015-01-07 | ソニー株式会社 | Data processing apparatus and data processing method |
EP3522541B1 (en) * | 2011-01-19 | 2021-03-03 | Samsung Electronics Co., Ltd. | Apparatus and method for receiving a control message in a broadcast system |
KR101764589B1 (en) * | 2011-01-19 | 2017-08-08 | 삼성전자주식회사 | Method for provisioning contents and services information for mepg media transport |
US20120216230A1 (en) * | 2011-02-18 | 2012-08-23 | Nokia Corporation | Method and System for Signaling Transmission Over RTP |
KR20120100078A (en) * | 2011-03-03 | 2012-09-12 | 삼성전자주식회사 | Apparatus and method for supportting frequency hopping in broadcasting communication system |
US8670505B2 (en) * | 2011-03-31 | 2014-03-11 | Subrahmanya Kondageri Shankaraiah | Early detection of segment type using BPSK and DBPSK modulated carriers in ISDB-T receivers |
US9461759B2 (en) | 2011-08-30 | 2016-10-04 | Iheartmedia Management Services, Inc. | Identification of changed broadcast media items |
US10498473B2 (en) * | 2011-10-13 | 2019-12-03 | Samsung Electronics Co. Ltd | Method and apparatus for transmitting and receiving multimedia service |
CA2852204C (en) * | 2011-10-13 | 2020-03-24 | Samsung Electronics Co., Ltd. | Apparatus and method for configuring control message in broadcasting system |
US8548497B2 (en) * | 2011-12-16 | 2013-10-01 | Microsoft Corporation | Indoor localization using commercial frequency-modulated signals |
WO2014038830A1 (en) | 2012-09-07 | 2014-03-13 | Samsung Electronics Co., Ltd. | Method and system for signalling resource allocation information in an asymmetric multicarrier communication network |
KR20160106613A (en) * | 2014-02-24 | 2016-09-12 | 인텔 아이피 코포레이션 | Circuit switched fallback |
CA3194847A1 (en) | 2014-08-25 | 2016-03-03 | ONE Media, LLC | Dynamic configuration of a flexible orthogonal frequency division multiplexing phy transport data frame preamble |
CN112737727B (en) | 2015-03-09 | 2024-04-02 | 第一媒体有限责任公司 | System discovery and signaling |
US9525477B1 (en) | 2015-09-24 | 2016-12-20 | Qualcomm Incorporated | Frequency tracking with sparse pilots |
CN108476078B (en) * | 2016-01-15 | 2020-10-27 | 苹果公司 | Evolved node B (eNB), User Equipment (UE) and method for communication of channel grid frequency offset |
KR101864543B1 (en) * | 2017-07-27 | 2018-06-04 | 삼성전자주식회사 | Method for provisioning contents and services information for mepg media transport |
US10736074B2 (en) | 2017-07-31 | 2020-08-04 | Qualcomm Incorporated | Systems and methods to facilitate location determination by beamforming of a positioning reference signal |
KR101875897B1 (en) * | 2017-08-24 | 2018-07-06 | 삼성전자주식회사 | Method for provisioning contents and services information for mepg media transport |
KR101962770B1 (en) * | 2018-07-02 | 2019-03-28 | 삼성전자주식회사 | Method for provisioning contents and services information for mepg media transport |
US11777764B2 (en) | 2019-03-28 | 2023-10-03 | Qualcomm Incorporated | Sounding reference signal waveform design for wireless communications |
US11239967B2 (en) | 2019-05-02 | 2022-02-01 | Qualcomm Incorporated | Patterns for reference signals used for positioning in a wireless communications system |
US11082183B2 (en) | 2019-09-16 | 2021-08-03 | Qualcomm Incorporated | Comb shift design |
CN111163460B (en) * | 2019-12-19 | 2021-04-09 | 北京交通大学 | Radio frequency fingerprint extraction method based on multiple interval difference constellation trajectory diagram |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59409422D1 (en) * | 1993-09-10 | 2000-08-10 | Thomson Brandt Gmbh | METHOD FOR TRANSMITTING REFERENCE SIGNALS IN AN OFDM SYSTEM |
JP3145003B2 (en) * | 1995-03-23 | 2001-03-12 | 株式会社東芝 | Orthogonal frequency division multiplexing transmission system and transmitter and receiver thereof |
US5732113A (en) | 1996-06-20 | 1998-03-24 | Stanford University | Timing and frequency synchronization of OFDM signals |
WO1999001956A1 (en) * | 1997-07-01 | 1999-01-14 | Advanced Digital Television Broadcasting Laboratory | Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver |
JP3940541B2 (en) * | 1999-02-25 | 2007-07-04 | ソニー株式会社 | Digital broadcasting equipment |
US6707856B1 (en) | 1999-10-07 | 2004-03-16 | Cisco Technology | Transmission of system configuration information |
WO2002063865A2 (en) * | 2001-02-02 | 2002-08-15 | Rosum Corporation | Services based on position location using broadcast digital television signals |
WO2004038956A1 (en) * | 2002-10-28 | 2004-05-06 | Mitsubishi Denki Kabushiki Kaisha | Diversity reception device and diversity reception method |
KR100510861B1 (en) * | 2003-01-18 | 2005-08-31 | 디지피아(주) | Training signal determining method in OFDM system and apparatus and method for receiving OFDM signal using the training signal |
JP2004304455A (en) * | 2003-03-31 | 2004-10-28 | Sony Corp | Ofdm demodulator and method |
KR20040110904A (en) * | 2003-06-20 | 2004-12-31 | 삼성전자주식회사 | Apparatus for assinging subcarrier of pilot channel for distinguishing base stations in communication systems using orthogonal frequency division multiplexing scheme and method thereof |
JP4347680B2 (en) * | 2003-12-19 | 2009-10-21 | パナソニック株式会社 | Energy diffusion circuit, packet number calculation circuit, and receiver |
CN1780276B (en) | 2004-11-25 | 2012-01-04 | 都科摩(北京)通信技术研究中心有限公司 | Combined time synchronizing and frequency bias evaluation and evaluating device for orthogonal frequency division duplex system |
JP4584756B2 (en) * | 2005-04-07 | 2010-11-24 | 日本放送協会 | Pilot signal detection apparatus and method |
KR100719112B1 (en) * | 2005-07-19 | 2007-05-17 | 삼성전자주식회사 | Sampling frequency offset estimation apparatus to be applied OFDM system and method thereof |
SG132533A1 (en) | 2005-11-21 | 2007-06-28 | St Microelectronics Asia | Ultra-thin quad flat no-lead (qfn) package and method of fabricating the same |
KR101026469B1 (en) * | 2005-11-29 | 2011-04-01 | 삼성전자주식회사 | Carrier frequency synchronization apparatus and method in ofdm system |
US8130726B2 (en) * | 2005-12-20 | 2012-03-06 | Qualcomm Incorporated | Coarse bin frequency synchronization in a communication system |
WO2007103183A2 (en) | 2006-03-01 | 2007-09-13 | Interdigital Technology Corporation | Method and apparatus for channel estimation in an orthogonal frequency division multiplexing system |
JP5092350B2 (en) * | 2006-10-26 | 2012-12-05 | 富士通株式会社 | Pilot signal transmission method and mobile communication system |
RU2441335C2 (en) * | 2007-03-15 | 2012-01-27 | Нокиа Корпорейшн | Correlation for detecting digital broadcast services |
US7796706B2 (en) | 2007-03-15 | 2010-09-14 | Nokia Corporation | Digital broadcast service discovery correlation |
US7787548B2 (en) | 2007-03-15 | 2010-08-31 | Nokia Corporation | Digital broadcast service discovery correlation |
-
2007
- 2007-10-18 US US11/874,359 patent/US8045628B2/en active Active
-
2008
- 2008-10-02 EP EP14174094.4A patent/EP2816770B1/en active Active
- 2008-10-02 DK DK14174094.4T patent/DK2816770T3/en active
- 2008-10-02 TW TW097137897A patent/TWI441490B/en active
- 2008-10-02 WO PCT/IB2008/002639 patent/WO2009050552A2/en active Application Filing
- 2008-10-02 PL PL14174094T patent/PL2816770T3/en unknown
- 2008-10-02 JP JP2010528499A patent/JP5368458B2/en active Active
- 2008-10-02 EP EP18193444.9A patent/EP3432531B1/en active Active
- 2008-10-02 DK DK18193444T patent/DK3432531T3/en active
- 2008-10-02 EP EP08807212A patent/EP2201734A2/en not_active Withdrawn
- 2008-10-02 ES ES14174094T patent/ES2698520T3/en active Active
- 2008-10-14 AR ARP080104474A patent/AR068863A1/en active IP Right Grant
-
2011
- 2011-09-22 US US13/239,465 patent/US8675752B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011501493A (en) | 2011-01-06 |
WO2009050552A3 (en) | 2010-01-28 |
US8045628B2 (en) | 2011-10-25 |
EP2201734A2 (en) | 2010-06-30 |
PL2816770T3 (en) | 2019-01-31 |
EP3432531B1 (en) | 2019-09-04 |
EP2816770B1 (en) | 2018-09-12 |
US20090103651A1 (en) | 2009-04-23 |
ES2698520T3 (en) | 2019-02-05 |
DK3432531T3 (en) | 2019-11-25 |
EP3432531A1 (en) | 2019-01-23 |
EP2816770A3 (en) | 2015-03-11 |
WO2009050552A2 (en) | 2009-04-23 |
TW200926704A (en) | 2009-06-16 |
DK2816770T3 (en) | 2018-12-03 |
JP5368458B2 (en) | 2013-12-18 |
EP2816770A2 (en) | 2014-12-24 |
US20120011548A1 (en) | 2012-01-12 |
AR068863A1 (en) | 2009-12-09 |
US8675752B2 (en) | 2014-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI441490B (en) | Digital video broadcast service discovery | |
US8130631B2 (en) | Orthogonal frequency division multiplexing synchronization | |
AU2008315659B2 (en) | Digital broadcast signaling metadata | |
JP6898290B2 (en) | Flexible Orthogonal Frequency Division Multiplexed PHY Transmission Data Frame Preamble Dynamic Configuration | |
KR101216673B1 (en) | digital broadcast service discovery correlation | |
US8054910B2 (en) | Digital broadcast service discovery correlation | |
US20090094356A1 (en) | Associating Physical Layer Pipes and Services Through a Program Map Table | |
JP2019506810A (en) | Transmitting apparatus, receiving apparatus, and method | |
US7787548B2 (en) | Digital broadcast service discovery correlation |