TWI323652B - - Google Patents
Download PDFInfo
- Publication number
- TWI323652B TWI323652B TW93137742A TW93137742A TWI323652B TW I323652 B TWI323652 B TW I323652B TW 93137742 A TW93137742 A TW 93137742A TW 93137742 A TW93137742 A TW 93137742A TW I323652 B TWI323652 B TW I323652B
- Authority
- TW
- Taiwan
- Prior art keywords
- blood pressure
- air bag
- waveform
- wave
- wrist
- Prior art date
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
I323652 六、發明說明: 【發明所屬之技術領域】 本發明係有關利用壓電感應器以量測手腕繞動 脈波型之非侵入性量測方法,尤其可同時適用於量測 心率變異,量測自律神經功能,個人身份辨識,呼吸 波型及咳嗽偵側’居家隔離,及醫院隔離之用途。 【先前技術】 心跳速度及血壓(收縮壓及舒張壓)為重要之人 體生理參數’一般係以習知腕式或臂式電子血壓計量 測獲得’由於操作簡便及價格合理,已成為居家必備 醫療器材之一,但另一重要生理參數,即血壓波型, 則仍未有準確度高,操作簡便之儀器系統可茲利用。 目前市面上之電子血壓計僅能量測並顯示收縮 壓(Systolic Blood Pressure,即血壓波上之最大值) 及舒張壓(Diastolic Blood Pressure,即血壓波上之最 小值)。 驾見之腕式電子血壓計,通常含有一個打氣的幫 浦,一個洩氣閥,一個氣壓計,一個導氣管,一個内 含氣袋的腕帶,一個電路模組,及一個外殼。在血壓 篁測過程中,幫浦及洩氣閥造成氣袋加壓及減壓,於 此同時手腕橈動脈之脈波透過氣袋及傳送至氣壓 計,電路上之軟硬體再將氣壓計之脈波訊號加以放 大,過濾及分析而計算出心跳速度(Heart Rate),收 縮壓(Systolic Blood Pressure)及舒張壓(Diast〇iicI323652 VI. Description of the Invention: [Technical Field] The present invention relates to a non-invasive measurement method for measuring a wrist-wound arterial waveform using a piezoelectric sensor, and is particularly suitable for measuring heart rate variability and measuring Autonomic nerve function, personal identification, respiratory waveform and cough detection side 'home isolation, and hospital isolation. [Prior Art] Heart rate and blood pressure (systolic and diastolic blood pressure) are important physiological parameters of the human body. 'Generally obtained by conventional wrist or arm electronic blood pressure measurement' has become a must-have for home use due to its simple operation and reasonable price. One of the medical devices, but another important physiological parameter, namely the blood pressure wave type, still has no high accuracy, and the instrument system that is easy to operate can be utilized. Currently, electronic sphygmomanometers on the market only measure energy and display the Systolic Blood Pressure (the maximum value on the blood pressure wave) and the Diastolic Blood Pressure (the minimum value on the blood pressure wave). The wrist-type electronic sphygmomanometer usually includes a pumping pump, a deflation valve, a barometer, an air tube, a wristband with an air bag, a circuit module, and a housing. During the blood pressure measurement, the pump and the deflation valve cause the air bag to be pressurized and decompressed. At the same time, the pulse wave of the wrist and iliac artery passes through the air bag and is sent to the barometer. The soft and hard body on the circuit will then be barometer. Pulse signal is amplified, filtered and analyzed to calculate heart rate, systolic blood pressure and diastolic pressure (Diast〇iic)
Blood Pressure) 〇 在生理學上除了心跳速率,收縮壓,及舒張壓 外,釦確的動脈血壓波型也是一個重要的生理參數, 其諸夕臨床應用容後再述。上述該現有血壓計量測技 術雖然可藉氣壓計記錄橈動脈之波型,但由於氣袋材 料特性及幾何形狀等因素,血壓波之原形無法完全傳 遞至氣袋之空氣中,再加上從氣袋經導氣管傳至氣壓 計之路徑中,血壓波之波型發生鈍化(Dampening)且 強度減弱,造成所測得之血壓波型失去敏感度 (Sensitivity)及準確度(Accuracy)。為測得較精確之橈 動脈波型,市面上之脈診儀採用一個約5 mm直徑之 圓型壓力感應器,測試時先將此圓型壓力感應器用膠 帶或橡皮筋固定於手腕橈動脈上方,再將其訊號導線 接於電路板或電腦,通常該圓型壓力感應器為電阻式 (Resistor-type)導電材料組成,與應力器⑼⑷打Blood Pressure) 〇 In addition to heart rate, systolic blood pressure, and diastolic blood pressure, the definite arterial blood pressure waveform is also an important physiological parameter, and its clinical application will be described later. Although the above-mentioned existing blood pressure measurement technology can record the waveform of the brachial artery by a barometer, due to the material characteristics and geometric shape of the air bag, the original shape of the blood pressure wave cannot be completely transmitted to the air of the air bag, and The air bag is transmitted to the path of the barometer through the airway tube, and the blood pressure wave pattern is degraded (Dampening) and the intensity is weakened, resulting in the measured blood pressure waveform loss sensitivity (Sensitivity) and accuracy (Accuracy). In order to measure the more accurate radial artery waveform, the pulse instrument on the market adopts a round pressure sensor of about 5 mm diameter. The test is to fix the round pressure sensor above the wrist artery with tape or rubber band. Then connect the signal wire to the circuit board or the computer. Usually, the round pressure sensor is made of a resistive (Resistor-type) conductive material and is used with the stressor (9) (4).
Gauge)之原理類似,内含有放大電路,溫度效應補 償,及線性化處理等元件。當電阻材料受壓時,電阻, 電流,或電壓之改變量與壓力成比例,因此可藉此關 係記錄壓力。上述技術在理想狀況下確能測得橈動脈 波型之細節及原形,但其缺點為無法精確地控制圓型 壓力感應器固定於手腕表面之壓力。 經測試發現’圓型壓力感應器固定於手腕表面之 壓力對於量測企壓波型而言相當重要,若此壓力過輕 (例如上述習知技術僅以膠帶或橡皮筋固定)’則遇到 1323652 》年> 月^/日科:'三督 手腕肥厚,橈動脈深沉,或脈波細弱等狀況時,壓力 感應器便無法取得清晰之血壓波型訊號。若此壓力過 重,則橈動脈之血流受到嚴重阻曉,造成測得之血壓 波,失真。此外,由於手腕形狀大小及橈動脈位置深 沉等因素,該圓形壓力器必需由受過訓練之醫師或護 理人員以手指把脈後才能找到動脈正確位置,加以固 定。此種操作上之不方便’是脈診儀或其他類似器材 無法像電子A壓計一樣成為居家醫療器材之因素之 〇 其次,習知個人身份辨識技術已有多種,包括臉 部影像分析,音聲辨識,指紋辨識,血型分析,眼睛 部位分析,毛髮分析,筆跡分析,及更先進之DNA 細胞鑑定分析等。本發明人經由實驗發現人體内之動 脈血壓波型因每個人心臟形狀大小,心肌結構,及樹 狀動脈(Arterial Tree)組織結構等差異,具獨特單一 之特性,可作為個人身份辨識之特徵。動脈血壓波型 雖然有時因情緒及環境等因素(例如緊張或憤怒時心 跳加快,血壓升高)發生變化,但只要將血壓波型對 〜跳值及灰壓值加以標準化,則波型 之特徵便趨於穩定而成為個人化特徵。 目前量測心率變異(Heart Rate Variability, RV)及自律神經糸統功能(Aut〇n〇mic Nervous System ,ANS)之標準儀器,為心電圖機 (Electrocardiograph,ECG,或另稱 EKG)。所謂心 1323652 .率變異性係指心臟跳動的速率(即心率),除了靜態恆 定維持在每分鐘約60-90次外,其中還隱藏了 一些規 則或不規則的波動。以心電圖機量測心率及其變異性 時,先將電極片貼於患者手腳(及胸部),量測其連續 週期性之心電訊號,再將量得心電波動中之波-波間 距(如R-R間距,R峰為心電波中之最高峰)算出,以 ^ 此所得之波-波間距之數列便可進一步算出心率及心 ' 率變異性之各項參數值。例如,波-波間距之數列之 ® 平均值即為心跳週期(Period),心跳週期之倒數即為 心率(Heart Rate,HR);波·波間距之數列之標準偏 差(Standard Deviation)即為心率變異性(Heart Rate Variability),而波-波間距之數列資料亦可利用快速 符立爾轉換法(Fast Fourier Transform)轉換成頻 譜。藉由此種頻譜分析的協助,心率變異性中之總變 異度(Total Power)可區分為兩種成分,一般稱為高頻 (High Frequency,0.15-0.4 Hz,HF)成分和低頻(Low -, Frequency,0.04-0.15 Hz,LF)成分。De Boer 等人 (Hemodynamic Fluctuations and Baroreflex Sensitivity in Humans : A Beat-to-Beat Model.; American Journal of Physiology ; 253 : H680-H689 ; 1987)經由動物及人體實驗,證實心率變異性(Heart Rate Variability,即前述峰-舉間距之數列之標準偏 差)及其總變異度(Total Power)代表自律神經總活 性,低頻成份代表交感神經功能,高頻成份代表副交 1323652 感神經功能,而低頻成份與高頻成份之比值(LF/HF). 則反應了自律神經平衡度。由於自律神經掌控人體多 項自覺或不自覺之重要活動,例如:心跳、血壓、血 糖、睡眠、流汗及支氣管收張等,醫學上極需一個操 作簡便,價格低廉之自律神經功能監視器。目前醫學 界使用心電圖機來量測心率變異性及自律神經功 能,不僅操作繁雜(大型儀器,特殊軟體,舖貼多個 電極片,受測者行動受到限制等),且成本較高(初期 儀器及軟體費用,後續訓練及電極片費用)。 當一個人呼吸時,由於人體腦部呼吸中心 (Respiratory Center)的訊號溢傳(Spillover)至腦部血 管中心(Vasomotor Center),此溢傳訊號透過自律神 經(交感神經(Sympathetic Nerve)及副交感神經 (Para-Sympathetic Nerve))之回饋(Reflex)機制,造成 心率及心臟收縮力隨著呼吸週期而有規律地增加與 減少,因此精確地記錄動脈血壓波型,並進一步計算 及分析心率變化,便可偵測出呼吸頻率及波型。此 外,動脈血壓的波峰(即對應於收縮壓之點)及波谷(即 對應於舒張壓之點)也會隨著呼吸週期而升降,也就 是醫學上所稱之動脈血壓呼吸波(Arterial Respiratory Waves)。此血壓呼吸波的來源除了上述 呼吸中心訊號溢傳之因素外,還包括另兩項生理機 構:(1)吸氣時,橫隔膜(Diaphragm)下降,呈現負壓, 胸腔内血管回流至心臟流量減少,造成心輸出 7 1323652 • (Cardiac Output)減少及血壓瞬間降低;(2)胸腔内血 管因橫隔膜上下移動而發生壓力變化,此變化經甴血 管壓力回饋機構(Baroreceptor Reflex),造成動脈血 壓隨呼吸頻率而升降(上述生理現象及原理,請參閱 Textbook of Medical Physiology" > Authored byThe principle of Gauge is similar, and it contains components such as amplification circuit, temperature effect compensation, and linearization processing. When the resistive material is stressed, the amount of change in resistance, current, or voltage is proportional to the pressure, so the pressure can be recorded by this relationship. The above technique can accurately measure the details and prototype of the radial artery waveform under ideal conditions, but has the disadvantage of not accurately controlling the pressure of the circular pressure sensor fixed to the wrist surface. It has been found that the pressure of the circular pressure sensor fixed on the wrist surface is very important for measuring the pressure waveform. If the pressure is too light (for example, the above-mentioned prior art is only fixed with tape or rubber band), it is encountered. 1323652 》年> 月^/日科: 'When the three supervised wrists are thick, the radial artery is deep, or the pulse is weak, the pressure sensor cannot obtain a clear blood pressure waveform signal. If this pressure is too heavy, the blood flow to the radial artery is severely blocked, causing the measured blood pressure and distortion. In addition, due to factors such as the size of the wrist and the deep location of the radial artery, the circular pressure device must be grasped by a trained physician or caregiver to find the correct position of the artery and fixed. This kind of inconvenient operation is the second factor that the pulse diagnosis instrument or other similar equipment can not become the home medical equipment like the electronic A pressure gauge. There are many kinds of personal identification technologies, including facial image analysis and sound. Acoustic recognition, fingerprint identification, blood group analysis, eye part analysis, hair analysis, handwriting analysis, and more advanced DNA cell identification analysis. The inventors have found through experiments that the blood pressure wave pattern in the human body has a unique and unique characteristic due to differences in heart shape, myocardial structure, and arterial tree structure of each person, and can be used as a feature of personal identification. Although the arterial blood pressure wave type sometimes changes due to factors such as mood and environment (such as increased heart rate and increased blood pressure when nervous or angry), as long as the blood pressure waveform is normalized to the value of the jump value and the gray pressure value, the waveform is The characteristics tend to be stable and become personalized. The current standard instrument for measuring Heart Rate Variability (RV) and Aut〇n〇mic Nervous System (ANS) is an electrocardiograph (ECG, or EKG). The so-called heart 1323652. Rate variability refers to the rate of heart beat (ie, heart rate), in addition to static constants maintained at about 60-90 times per minute, which also hides some rules or irregular fluctuations. When measuring the heart rate and its variability with an electrocardiograph, first attach the electrode piece to the patient's hands and feet (and the chest), measure its continuous periodic ECG signal, and then measure the wave-wave spacing in the ECG fluctuation ( For example, if the RR pitch is the highest peak of the ECG, the parameter values of the heart rate and the heart rate variability can be further calculated by the number of the wave-wave spacing obtained. For example, the average of the series of wave-wave spacing is the heartbeat period (Period), and the reciprocal of the heartbeat cycle is the heart rate (HR); the standard deviation of the series of wave-wave spacing is the heart rate. Heart Rate Variability, and the wave-wave spacing data can also be converted to spectrum using the Fast Fourier Transform. With the help of this spectrum analysis, the total variability of heart rate variability (Total Power) can be divided into two components, generally called high frequency (0.15-0.4 Hz, HF) components and low frequency (Low - , Frequency, 0.04-0.15 Hz, LF). De Boer et al. (Hemodynamic Fluctuations and Baroreflex Sensitivity in Humans: A Beat-to-Beat Model.; American Journal of Physiology; 253: H680-H689; 1987) Heart Rate Variability, confirmed by animal and human experiments. That is, the standard deviation of the series of peak-lift spacings and its total variability (Total Power) represents the total activity of the autonomic nerve, the low frequency component represents the sympathetic function, the high frequency component represents the parasitic intersection 1323652, and the low frequency component and the high The ratio of frequency components (LF/HF) reflects the degree of autonomic nervous balance. Since autonomic nerves control many important activities of the human body, such as heartbeat, blood pressure, blood sugar, sleep, sweating and bronchial obliteration, it is extremely necessary to have a simple and inexpensive autonomic nerve function monitor. At present, the medical community uses an electrocardiograph to measure heart rate variability and autonomic nerve function, which is not only complicated (large instruments, special software, multiple electrodes, and the action of the subject is limited), and the cost is high (initial instruments) And software costs, follow-up training and electrode film costs). When a person breathes, due to the Spillover of the Respiratory Center to the Vasomotor Center, the overflow signal passes through the autonomic nervous system (Sympathetic Nerve and parasympathetic nerves). Para-Sympathetic Nerve)) Reflex mechanism, which causes the heart rate and cardiac contractility to increase and decrease regularly with the respiratory cycle, so accurately record the arterial blood pressure waveform and further calculate and analyze the heart rate changes. The respiratory rate and waveform are detected. In addition, the peak of arterial blood pressure (ie, the point corresponding to systolic blood pressure) and the trough (ie, the point corresponding to diastolic blood pressure) will also rise and fall with the respiratory cycle, which is medically known as arterial blood pressure breathing wave (Arterial Respiratory Waves). ). In addition to the above-mentioned factors of respiratory center signal transmission, the source of this blood pressure respiratory wave includes two other physiological mechanisms: (1) When inhaling, the diaphragm (Diaphragm) drops, showing negative pressure, and the blood vessels in the thoracic cavity return to the heart flow. Decreased, causing cardiac output 7 1323652 • (Cardiac Output) reduction and instantaneous decrease in blood pressure; (2) pressure changes in the thoracic vessels due to the diaphragm moving up and down, this change causes arterial blood pressure through the vascular pressure feedback mechanism (Baroreceptor Reflex) Rise and fall with respiratory rate (for the above physiological phenomena and principles, please refer to Textbook of Medical Physiology"> Authored by
Arthur C· Cuyton,Eighth Edition,W.B. Saunders Company,ISBN 0-7216-3087-1,1991,Chapter 13)。 由上可知,藉由精確記錄動脈血壓波型,可分析波峰 或波谷的升降,而獲得呼吸頻率及波型。 又,傳染病預防與醫療照護,可說是醫療體系中 極為重要的一環。以近年來肆虐亞洲的嚴重急性呼吸 症候群(Severe Acute Respiratory Syndr〇me,SARS) 為例,由於傳染途徑為人與人間透過空氣媒介感染, 因此將病人與他人隔離成為防疫之最有效策略。其他 傳染性疾病,不管是透過空氣(如肺結核)或血液及體 液(愛滋病AIDS等)傳染,如何減少病人(或可疑病人) 與醫護人員或家人近距離接觸,可說是當前醫療界重 深n剖析’在醫院隔離及監控方 =目旦前醫院的標準步驟為每日由醫護人員進入隔離 =里測體溫,^跳及血4數次(例如—日四次),並 3病如I無啤吸困難及咳漱等),此種監控 :;s西濩人貝遭受感染的主要原因。因此,若 又隔離病患之生理訊號能夠自 增理Α , 功田h離病房傳出至 4理站,則可減少醫護人 哪為木/原。在一般傳染 1323652 病中’主要發病症徵包括發燒,心悍,呼吸急促,咳 漱,打喷嗓,血壓異常等。若能結合本發明中之非侵 入式手橈動脈波型技術,習知體溫量測技術,及習知 無線或有線訊號傳輸技術,則只要受隔離病患攜帶本 發明之腕式生理監視器(容後詳述),便可將生理訊號 (包括體溫,心跳,血壓,呼吸波型,是否咳漱等)傳 出病房,而達到減少近距離接觸之目標。 在居家隔離監控方面’以近年各國SARS防疫經 驗而論’防疫的最大漏洞在於依規定需自行居家隔離 的民眾違規外出。居家隔離的另一技術需求為定期 (如母曰)獲取受隔離民眾的生理訊號,並隨時掌握整 體疫情發展。目前各國衛生機關的作法是派人至隔離 民眾家中查訪’然而此項措施不僅需要大量人力,且 谷易發生接觸感染。若能結合本發明的(1)非侵入式 腕式血壓波型量測技術,(2)個人身份辨識技術,(3) 呼吸波型技術’及(4)咳嗽偵測技術;及習知之(1)體 溫量測技術,(2)無線或有線傳輸技術,及(3)血壓量 測技術’便可以定期將受隔離民眾之生理訊號(如體 溫,心跳,血壓,是否咳嗽等)從家中傳至醫院或衛 生主管機關’且可防止該民眾違規外出(且無法以他 人替代等)’並進一步隨時統計發病人數及其地點, 因而掌控疫情。 如上所述’當人正常呼吸時,血壓波型呈現週期 性的上下移動。但是若該人突然咳漱或打噴嘴時,因 1323652 •橫隔膜及胸腔急劇震動,造成血壓波型迅速地不規則 變化’而當咳嗷或噴嚏停止時,血壓波型又恢復正常 狀態。若能藉由分析個人之血壓波型基準線 (Baseline)及突然變化(Abrupt Change),應可以測知 受測者是否有咳嗽或打喷嚏之症狀。 中華民國第363404號專利揭示利用心率變異分 析心電轉換器(内含電極片)’量測病人心臟收縮時所 鲁 發出之電位訊號,再以符立爾轉換法(Fourier Transform)及頻譜分析計算出心律變異性,然而該發 明之目的在於提供一種新型的心率變異分析心電轉 換器’且其特徵在於新型軟硬體之設計及儀器系統。 中華民國第176323號專利揭示利用非侵入性自 律神經系統監測儀器系統量測服藥病人引發之自律 神經系統副作用及其監測人體老化程度或治療效果。 前述先前技藝中皆未曾揭示如本發明之非侵入 籲ϋ新型壓電感應器用於精確量測手腕棱動脈波型之 、儀器系統。前述先前技藝中亦未曾揭示或建議利用本 發明之非侵入性新型壓電感應器作為量測心率變 異,量測自律神經功能’個人身份辨識’呼吸波型及 咳们貞測,居家隔離,及醫院隔離之用途。 【發明内容】 ⑧ 10 1323652 測手腕橈動脈波型之量測方法。 本發明的另一目的為利用此非侵入 型技 :來量測血壓中之平均麗,其可精確量 : ::二用血壓波型—時間圖之積分及習知電子血壓計 之收鈿壓及舒張壓’可合併計算出平均血壓。 本:明的另一目的,即為利用此種非侵入,操作 格低,準確度高之手腕繞動脈波型量測儀器 糸、.先’來監測人體之心、律變異性及自律神經功能。 型之一目的為利用此非侵入式橈動脈波 1之里測儀杰系統,作為個人身份辨識之應用。 波型ί::之另一目的為利用此-非侵入式徺動脈 數之技術’來達到監測呼吸頻率及波型之生理參 本發明之另一目的為發展一套非侵入式,不需靠 控接觸,便能執行醫院傳染病患隔離與監 波型另一目的在於利用此非侵入式橈動脈 里μ儀态系統,達到監測咳嗽或打噴嚏之目標。 明之另一目的為發展-套非侵入式適用於 皿控居豕隔離民眾之儀器系統。 為達成本發明前述目的之技術手段,茲列舉實施 例,並配合圖式說明如後。 【實施方式】 1323652 本發明孓此種非侵入式確測量手腕橈動脈波型 量測方法,如第1圖所示,其包括: <a)量測手腕橈動脈之壓電感應器丨,其能連續記錄並 產生代表血麼脈波之電波; (b) 内含氣袋之腕帶2,係可配帶於手腕上,並施壓於 前述之壓電感應器1; (c) 含有可對前述氣袋充氣及洩氣之幫浦3,洩氣閥4 及導氣管5等組件; (d) 電路模組6,其含有中央計算器,記憶體,及連接 於氣袋導氣管之氣壓計7; (e) 載於電路模組之操作軟體8,其可控制氣袋氣壓, 找尋最適測試氣壓,在最適測試氣壓下量測橈動 脈波型,並將來自壓電感應器丨之電波加以過濾, 放大,及分析; (f) 電源91,及 (g) 具有外叙之儀益主機9,其將(c)至(f)之元件含納 其中。 根據本發明,其中之壓電感應器1可為,但不限 疋為 S 知之陶竟 Lead zirconate titanate (PZT)壓電 片’或高分子 polyvinylidene fluoride (PVDF)屋電 片’或應力型(Strain Gauge)壓電元件,或半導體型 (Semi-Conductor)矽壓電元件等;該感應器1可獨立 於腕帶或其他硬體,但透過連接器將電波訊號傳至電 路模組6。當測試時,先將該感應器1以膠布或彈性 又買 身丨卜 如鬆緊帶或橡皮圈等)固定於手腕之橈動脈上方 (如第2圖所示),再將帶有主機之腕帶套上手腕,而 腕帶内之氣袋正好壓住感應器。當氣袋接受幫浦£氣 加壓時’氣袋對感應器施加壓力,感應器再對橈動脈 如加壓力’而造成感應器所擷取之脈波訊號增強(請 參考圖 3a、3b、3c)。 本發明之技術重點之一在於利用幫浦逐步將氣 袋壓力由零增至一定壓(例如2〇〇 mmHg,第3a圖), 在這充氣期間記錄感應器所操取之血壓脈波(第3 b 圖)’並計算各脈波之主波高(Primary Peak Height, 第3 c圖)。一般而言,該主波高在充氣期間先是由小 變大’再由大變小,當主波高呈現最大值時(一般介 於70-150 mmHg之間’第3b圖),當時之氣袋壓力 依本發明定義為最適測試氣壓(Optimal Testing Air Pressure)。在此狀態下感應器之血壓波型訊號最強, 也就是訊號-雜訊比(Signal-to-Noise Ratio)最高。當 氣袋氣壓低於此值時,因壓電感應器與橈動脈間壓力 傳遞不良,造成脈波訊號較弱;當氣袋氣壓高於此值 時,因腕帶,氣袋,及感應器對橈動脈施壓過度,減 低動脈流量,也造成脈波訊號減弱及變型。 本發明施行之另一重要步驟之一是在量測橈動 脈波型之初,先以上述充氣步驟測得最適測試氣壓, 再將氣袋充壓至此氣壓值(或其附近),然後才進行血 壓波型監測。若將上述充氣步驟改為先迅速充至一 13 1323652 定氣壓值(例如200 mmHg), 低。在這洩氣期間依上述相同 找到最適測試氣塵。 前面所述之屢電感應器,其形狀及大小並益礙本 發明,施行。根據本發明’壓電感應器之感應主體可 為一圓型,方型為其他幾何圖形之薄片,盆厚产可從 (M mm至5嶋等範圍,其直徑或邊長可從至Arthur C. Cuyton, Eighth Edition, W. B. Saunders Company, ISBN 0-7216-3087-1, 1991, Chapter 13). It can be seen from the above that by accurately recording the arterial blood pressure waveform, the rise and fall of the peak or trough can be analyzed to obtain the respiratory frequency and the waveform. Moreover, infectious disease prevention and medical care can be said to be an extremely important part of the medical system. For example, Severe Acute Respiratory Syndr〇me (SARS), which has been ravaging Asia in recent years, is the most effective strategy for quarantining patients and others because of the infection route through human-infected media. Other infectious diseases, whether transmitted through the air (such as tuberculosis) or blood and body fluids (AIDS, AIDS, etc.), how to reduce the close contact of patients (or suspected patients) with medical staff or family members, it can be said that the current medical community is deeply n Anatomy of the 'in the hospital isolation and monitoring side = the standard steps of the hospital before the target is to enter the isolation by the medical staff daily = body temperature, ^ jump and blood 4 times (for example - four times a day), and 3 diseases such as I Difficulty in sucking beer and coughing, etc.), this kind of monitoring:; s Xiqiao people are the main cause of infection. Therefore, if the physiological signal of the isolated patient can be self-enhanced, and the power field is transferred from the ward to the 4th station, the medical person can be reduced to the wood/origin. In the general infection 1323652 disease, the main symptoms include fever, palpitations, shortness of breath, cough, sneezing, abnormal blood pressure, etc. If combined with the non-invasive hand-ankle artery wave pattern technique of the present invention, the conventional body temperature measurement technique, and the conventional wireless or wired signal transmission technology, the isolated patient carries the wrist-type physiological monitor of the present invention ( After detailed, you can pass the physiological signal (including body temperature, heart rate, blood pressure, respiratory waveform, cough, etc.) out of the ward to achieve the goal of reducing close contact. In terms of home isolation monitoring, the biggest vulnerability of the SARS epidemic prevention in recent years is that people who need to be separated by their own homes are required to go out in violation of regulations. Another technical need for home isolation is to obtain physiological signals from isolated people on a regular basis (such as a mother-in-law) and keep abreast of the overall epidemic. At present, the practice of health institutions in various countries is to send people to the isolation of people's homes. However, this measure not only requires a lot of manpower, but also susceptible to contact infection. If combined with (1) non-invasive wrist blood pressure wave measurement technology, (2) personal identification technology, (3) respiratory wave technology ' and (4) cough detection technology; and conventional knowledge ( 1) body temperature measurement technology, (2) wireless or wired transmission technology, and (3) blood pressure measurement technology can periodically pass the physiological signals (such as body temperature, heart rate, blood pressure, cough, etc.) of isolated people from home Go to the hospital or the health authority's and prevent the people from going out (and not being able to replace others), and further count the number of people and their locations at any time, thus controlling the epidemic. As described above, when a person breathes normally, the blood pressure waveform exhibits a periodic up and down movement. However, if the person suddenly coughs or hits the nozzle, the blood pressure waveform is returned to a normal state when the cough or sneeze stops when the diaphragm and the chest cavity vibrate sharply. If you can analyze your blood pressure baseline (Baseline) and sudden change (Abrupt Change), you should be able to detect whether the subject has symptoms of coughing or sneezing. The Republic of China No. 363404 discloses the use of heart rate variability analysis ECG converter (with electrode pad) to measure the potential signal emitted by the patient during cardiac contraction, and then calculate by Fourier Transform and spectrum analysis. Heart rhythm variability, however, the object of the invention is to provide a novel heart rate variability analysis ECG converter and is characterized by a novel soft and hard body design and instrument system. The Republic of China No. 176,323 patent discloses the use of a non-invasive autonomic nervous system monitoring instrument system to measure the autonomic nervous system side effects caused by a patient taking medication and to monitor the degree of aging or treatment of the human body. None of the foregoing prior art discloses a non-invasive new piezoelectric sensor according to the present invention for accurately measuring an instrumental system of a wrist-arc waveform. The prior art does not disclose or suggest the use of the non-invasive novel piezoelectric sensor of the present invention as a measure of heart rate variability, measuring autonomic nerve function 'personal identification' respiratory waveform and cough measurement, home isolation, and The purpose of hospital isolation. [Summary of the Invention] 8 10 1323652 Measuring method for measuring the brachial artery waveform of the wrist. Another object of the present invention is to utilize this non-invasive technique to measure the average glory in blood pressure, which can be accurately: :: the dual-use blood pressure waveform-time map integral and the conventional electronic sphygmomanometer And diastolic blood pressure ' can be combined to calculate the average blood pressure. Ben: Ming's other purpose is to use this non-invasive, low-operating, high-accuracy wrist around the arterial waveform measuring instrument ., first to monitor the heart of the human body, the law of variability and autonomic nerve function . One of the purposes is to use this non-invasive brachial artery wave 1 to measure the instrument system as an application for personal identification. Another purpose of the wave type ί:: is to use this technique of non-invasive radial artery number to achieve physiological parameters for monitoring respiratory frequency and wave pattern. Another object of the invention is to develop a non-invasive type without relying on Controlled contact, can perform hospital isolation and monitoring of infectious diseases. Another purpose is to use this non-invasive radial artery system to achieve the goal of monitoring cough or sneezing. Another purpose of Ming is to develop - a non-invasive instrument system suitable for the control of the population. In order to achieve the technical means for achieving the aforementioned objects of the present invention, the embodiments are enumerated and described in conjunction with the drawings. [Embodiment] 1323652 The present invention is a non-invasive method for measuring the brachial artery waveform of a wrist, as shown in Fig. 1, which includes: <a) a piezoelectric sensor for measuring the radial artery of the wrist, It can continuously record and generate electric waves representing blood waves; (b) a wristband 2 containing an air bag, which can be attached to the wrist and pressed to the piezoelectric sensor 1 described above; (c) contains The pump 3 can be inflated and deflated, the bleed valve 4 and the air duct 5, etc.; (d) The circuit module 6 includes a central calculator, a memory, and a barometer connected to the air bag air pipe 7; (e) The operating software 8 contained in the circuit module, which can control the air pressure of the air bag, find the optimum test air pressure, measure the radial artery wave shape under the optimum test pressure, and apply the electric wave from the piezoelectric sensor Filtering, amplifying, and analyzing; (f) Power source 91, and (g) having an externally-excited device 9 that includes components (c) through (f) therein. According to the present invention, the piezoelectric sensor 1 can be, but is not limited to, the singularity of the lead zirconate titanate (PZT) piezoelectric sheet or the polymerized polyvinylidene fluoride (PVDF) housing sheet or the stress type (Strain). Gauge) Piezoelectric element, or semiconductor type (Semi-Conductor), piezoelectric element, etc.; the sensor 1 can be independent of the wristband or other hardware, but transmits the electric wave signal to the circuit module 6 through the connector. When testing, first fix the sensor 1 with a tape or elastic body, such as an elastic band or a rubber band, etc., above the radial artery of the wrist (as shown in Figure 2), and then bring the wristband with the main unit. Put on the wrist, and the air bag inside the wristband just presses the sensor. When the air bag is pressurized by the pump, the air bag applies pressure to the sensor, and the sensor applies pressure to the brachial artery, which causes the pulse signal of the sensor to be enhanced (refer to Figures 3a and 3b, 3c). One of the technical points of the present invention is to gradually increase the pressure of the air bag from zero to a certain pressure by using a pump (for example, 2 〇〇 mmHg, Fig. 3a), during which the blood pressure pulse wave of the sensor is recorded (the first) 3 b Figure) 'And calculate the main peak height of each pulse (Primary Peak Height, Figure 3 c). In general, the main wave height is first changed from small to large during the inflation period, and then becomes larger and larger. When the main wave height shows a maximum value (generally between 70-150 mmHg 'Fig. 3b), the airbag pressure at that time According to the invention, it is defined as an Optimal Testing Air Pressure. In this state, the sensor's blood pressure waveform signal is the strongest, that is, the signal-to-noise ratio is the highest. When the air bag pressure is lower than this value, the pulse signal is weak due to poor pressure transmission between the piezoelectric sensor and the radial artery; when the air bag pressure is higher than this value, the wrist band, the air bag, and the sensor Excessive pressure on the brachial artery, reducing arterial flow, also caused the pulse signal to weaken and deform. Another important step in the implementation of the present invention is that, at the beginning of measuring the brachial artery waveform, the optimum test pressure is measured by the above aeration step, and then the air bag is pressurized to the pressure value (or its vicinity) before proceeding. Blood pressure waveform monitoring. If the above aeration step is changed to a first 13 1323652 constant pressure value (for example, 200 mmHg), it is low. During this deflation period, find the optimum test dust as above. The shape and size of the above-mentioned repeated electric sensor are beneficial to the present invention and are implemented. According to the invention, the sensing body of the piezoelectric inductor can be a round shape, and the square shape is a thin sheet of other geometric shapes. The thickness of the pot can be from (M mm to 5 嶋, etc., and the diameter or side length can be from
1〇〇 mm等範圍。壓電感應器之較佳狀態為一圓形薄 片’其直把為2〜5. _,厚度為〇」至3 _,其電 波訊號為透過兩條正負導線傳至電路模組,其電^ (應力型(Strain Gauge)壓電元件或半導、體&型' (Semi-Conductor)矽壓電元件需要外加電源,但 或PVDF 片不需電源)由電關組之電池或 電源透過導線供應。 ^測試時,先以手指把脈找出橈動脈位置,再將1 〇〇 mm and other ranges. The preferred state of the piezoelectric sensor is a circular sheet whose straight handle is 2~5. _, the thickness is 〇" to 3 _, and the electric wave signal is transmitted to the circuit module through two positive and negative wires, and the electric power is ^ (Strain Gauge Piezoelectric Element or Semi-Conductor Piezoelectric Element requires external power supply, but PVDF chip does not require power). The battery or power supply of the electric switch group is transmitted through the wire. supply. ^ When testing, first use the finger to find the radial artery position, and then
再逐步將氣袋壓力降 原理及步驟,一樣可以 壓電感應器固定於其上方。根據本發明第々圖所示, 壓電感應器1之另—較佳狀態為—長方形薄片, 度(沿手身方向)為1〜30顧,寬度(沿手寬方向、)為' :5〜60mm,其他連結或供電特性與上述無異。當測 试時’由於感應器涵蓋範圍夠大,不需先找出確切繞 動脈位置’只要將感應器在手腕棱動脈之大約位置固 定後即可進行測試β 根據本發明之第5圖所示,塵電感應器之另一較 佳狀態為將上述長方形薄片Θ置於腕帶2中,且其薄 片之面與腕帶内 5 層布料接觸。卷測3虱衣接觸,另一面則與腕帶之外 器主機9配帶時’只需將腕帶2及其連結之儀 扣4去丄 腕上方,即可進行測試。 根據本發明之坌 多個(至少兩個)壓電^所示,其壓電感應、器1可由 組,且内置於腕帶2:件11組成-個壓電感應模 中,其中每一元件為一長方形(或 h ^底為—軟性電路板(_ printed eireuit „步驟為將多個壓電元件u依手寬方向排 歹! 口疋於軟性電路板上,元件與元件中間則有 -微小空隙((U〜lmm)’以避免鄰近電波干擾。 另在本發明之電路模組上,加裝多重訊號掃描器 (Muh卜Plexer)及相關_軟體。上述軟性電路板將來 自各感應元件之電波訊號以導線或連接器 (Connector)傳至多重訊號掃描器,其再連接於訊號過 濾及放大電路。當進行血壓脈波量測時,多重訊號掃 描器依次擷取感應器模組上各壓電元件之電波訊 號’並比較選出具最強電波訊號之壓電元件。相較於 其他元件,該元件之位置必定正好在橈動脈上方或其 附近,因此所獲得之訊號最強。 根據本發明,具最強訊號之該元件被選為量測元 件,而其他元件之訊號則不再利用,至於其他量測步 驟(如最適量測氣壓等)則與上述其他較佳狀態相 同。上述多重元件數目,至少兩個,而以三至五個為 15 1323652 宜’以涵蓋10〜25mm之手寬笳圚氐 f 1 .粑圍為目軚。相較於上 述…交佳狀態範例,此壓電感應模組因利用軟性兩 ,板作為基底’測試受壓時可較貼近手腕表面,而: 感應範圍大,可適合各種手型尺寸。 前述三個較佳狀態之壓電感應器,其優點為酿波 偵測範圍擴大,可省卻手指把脈找位置之步驟,並可 適應不同手型大小。此外’ 一般大眾可自行量測,不 鲁須由受過訓練之醫師或護理人員代為操作。 根據本發明,其中之腕帶可為習知用於腕式電子 血壓計之布料腕帶,其内裝有一個氣袋,氣袋之大小 則依一般手腕血壓量測規定(其沿手身方向之寬度約 在60〜90mm之間,其沿手寬方向之週長約在^〇二 150mm之間此塑膠(或橡膠)不透氣之氣袋通常有 二個氣嘴,其中一個接至電路模組之氣壓計,另一個 接至通於幫浦及洩氣閥之導氣管。當幫浦接受本發明 • 之程式軟體指令開始打氣時,洩氣閥暫時關閉,^袋 氣壓升高,其值由氣壓計加以監控;當洩氣閥接受指 令開始洩氣時,洩氣閥開啟,氣袋氣壓因此下降。為 了配帶方便,腕帶内通常另裝置一片U型或匚型之 塑膠片,此塑膠片之開口大小與手腕之厚度及寬度相 當,便於將腕帶及其上主機配帶於手腕上,此塑膠片 另含有突出扣片,暴露於腕帶布料之外,其作用為结 合本發明之主機結構之外殼,將主機固定於腕帶之 上。另根據本發明之前述第4圖及第5圖之較佳狀態 ⑶3652 忒明,可在氣袋上加製一個口袋,再將壓電感應元件 裝於其内,當氣袋充氣時,可準確地施壓於壓電感應 器;同樣地,此壓電感應器之口袋也可固定於腕帶之 内之其他位置,例如介於腕帶布料及氣袋之間,以利 加壓。 根據本發明’其中之幫浦與一般電子血壓計使用 之空氣幫浦相似,其接受直流電源推動葉片而旋轉打 氣。根據本發明,其中之洩氣閥可為相似於一般電子 血壓計使用之〇n-〇ff電磁閥開關,其接受程控指令 打開或關閉氣閥;又該茂氣閥可以是類比(Anal〇g)電 磁閥開關,其閥開大小依電壓或電流值決定,此種類 ,閥比起Ο η - 〇 ff開關(只能全開或全關),更能調控茂 乳速度。根據本發明,其中之電路模組之基底可為一 印刷電路板(Printed Circuit B〇ard),其上植有中央計 算器(cpu)’記憶體(例如Flash或RAM等),氣壓計, 訊號過濾元件’訊號放大元件,嗡鳴器,真實時鐘 (Real-Time a〇ck),及其他電子零組件等。為便於顯 示測試過程及結果,電路模組可含有一個液晶(lcd) 或發光二極體(LED)顯示器。此外,該電路模組也可 加裝一個多重訊號掃描器(Multi_piexer),以符合前述 第6圖之較佳狀態之電路需求。 根據本發明,其中之電路模組載有一個操作 軟體,此軟體程式可依第7圖所示之操作流程圖驅動 相關硬體(如幫浦,茂氣閥,中央計 17 1323652 液晶顯示器,壓電感應器等)而達成以下目標:Then gradually reduce the air bag pressure drop principle and steps, and the piezoelectric sensor can be fixed above it. According to the second embodiment of the present invention, the other preferred state of the piezoelectric sensor 1 is a rectangular sheet, the degree (in the direction of the hand) is 1 to 30, and the width (in the direction of the hand width) is ':5. ~60mm, other links or power supply characteristics are no different from the above. When testing, 'Because the sensor coverage is large enough, it is not necessary to find the exact surrounding artery position first'. As long as the sensor is fixed at the approximate position of the wrist rib artery, the test can be performed. According to the fifth figure of the present invention, Another preferred state of the dust electric sensor is that the rectangular sheet is placed in the wristband 2, and the face of the sheet is in contact with the five layers of cloth in the wristband. When measuring the 3 coats and the other side is worn with the wristband outside the main unit 9, simply press the wristband 2 and its attached instrument to the top of the wrist to test. According to the invention, a plurality of (at least two) piezoelectric electrodes are shown, the piezoelectric sensor 1 can be assembled, and the wristband 2: the member 11 is composed of a piezoelectric induction mold, wherein each component It is a rectangle (or h ^ bottom - flexible circuit board (_ printed eireuit „ step is to arrange a plurality of piezoelectric elements u according to the width of the hand! The mouth is on the flexible circuit board, there is - tiny between the components and the components Void ((U~lmm)' to avoid adjacent radio wave interference. In addition, in the circuit module of the present invention, a multi-signal scanner (Muh Plexer) and related software are installed. The above flexible circuit board will come from each sensing element. The radio signal is transmitted to the multi-signal scanner by a wire or a connector, which is then connected to the signal filtering and amplifying circuit. When the blood pressure pulse wave is measured, the multi-signal scanner sequentially picks up the pressure on the sensor module. The electric wave signal of the electrical component 'and compares and selects the piezoelectric component with the strongest electric wave signal. Compared with other components, the component must be positioned just above or near the radial artery, so the signal obtained is the strongest. According to the present invention, The component of the strongest signal is selected as the measurement component, and the signals of other components are no longer used. As for the other measurement steps (such as the optimum measurement pressure, etc.), the other preferred states are the same. The number of the above multiple components is at least Two, and three to five are 15 1323652 should be 'covering 10~25mm hand width 1f 1 . 粑 为 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 軚 压电 压电 压电 压电 压电 压电 压电 压电 压电Due to the use of softness, the board as the base can be pressed closer to the wrist surface when tested, and the sensing range is large, which can be suitable for various hand sizes. The piezoelectric sensors of the above three preferred states have the advantage of brewing wave detection. The wide range of measurement can save the steps of finding the position of the finger and adapt to different hand sizes. In addition, the general public can measure it by itself, and it is not required to be operated by a trained physician or nursing staff. According to the present invention, The wristband can be a fabric wristband for the wrist-type electronic sphygmomanometer, which is equipped with an air bag. The size of the airbag is determined according to the general wrist blood pressure measurement (the width along the hand body is about 60). Between ~90mm, the circumference of the hand width is about 150mm between the two. The plastic (or rubber) airtight air bag usually has two air nozzles, one of which is connected to the barometer of the circuit module. The other is connected to the air pipe leading to the pump and the venting valve. When the pump receives the program software command of the invention, the vent valve is temporarily closed, the pressure of the bag is increased, and the value is monitored by the barometer; When the venting valve receives the command to start deflation, the venting valve is opened, and the air pressure of the air bag is lowered. For the convenience of the belt, a U-shaped or sturdy plastic piece is usually installed in the wristband, and the opening size of the plastic piece and the thickness of the wrist and The width is equivalent, and the wrist strap and the upper host are conveniently attached to the wrist. The plastic sheet further comprises a protruding buckle, which is exposed outside the wristband fabric, and functions to be combined with the outer casing of the host structure of the invention to fix the main body to the wrist. Above the wristband. According to the preferred state (3) 3652 of the above-mentioned 4th and 5th drawings of the present invention, a pocket can be added to the air bag, and the piezoelectric sensing element can be installed therein, and the air bag can be accurately inflated when the air bag is inflated. The pressure is applied to the piezoelectric sensor; similarly, the pocket of the piezoelectric sensor can be fixed at other positions within the wristband, for example, between the wristband fabric and the airbag for pressure. According to the present invention, the pump is similar to the air pump used in a general electronic sphygmomanometer, which receives a DC power source to push the blade and rotates to inhale. According to the present invention, the deflation valve may be a 〇n-〇ff solenoid valve switch similar to that used in general electronic sphygmomanometers, which accepts a programmed command to open or close the gas valve; and the vent valve may be analogous (Anal〇g) Solenoid valve switch, the size of the valve opening is determined by the voltage or current value. In this category, the valve can regulate the speed of the milking machine compared to the Ο η - 〇 ff switch (only fully open or fully closed). According to the invention, the substrate of the circuit module can be a printed circuit board (Printed Circuit B〇ard), which is embedded with a central calculator (cpu) memory (such as Flash or RAM, etc.), barometer, signal Filter components 'signal amplification components, buzzers, real-time clocks, and other electronic components. To facilitate the display of test procedures and results, the circuit module can contain a liquid crystal (lcd) or light emitting diode (LED) display. In addition, the circuit module can be retrofitted with a multi-signal scanner (Multi_piexer) to meet the circuit requirements of the preferred state of Figure 6 above. According to the invention, the circuit module carries an operating software, and the software program can drive the relevant hardware according to the operation flow chart shown in FIG. 7 (such as pump, gas valve, central meter 17 1323652 liquid crystal display, pressure Electric sensors, etc.) to achieve the following goals:
(1) 控制氣袋之氣壓; T (2) 尋找最適測試氣壓; (3) 在最適測試氣壓下量測橈動脈波型; (4) 將量得之波型訊號過濾及放大; (5) 將量得之波型訊號進行分析與演算。 、根據本發明,其中之電源可由-般乾電池(拋棄 式)’鋰電池(可重複充電使用),鎳氫電池(可重複充 電使用)或其他類型電池提供。又本發明所需之電源 可由一般交流電源(如110V或22〇V等)提供。若使用 父流電源,則本發明之電路模組上可加裝一個交流轉 直流之變壓器(Transf0rmer),以提供只接受直流之電 路元件所需之電源。 根據本發明,利用前述非侵入式脈波精確量測技 術,可依以下步驟量測血壓中之生理平均血壓 • (Physiological Mean Blood Pressure): .⑷依f知電子血壓計震盈技術(Oscillometric(1) Control the air pressure of the air bag; T (2) Find the optimum test pressure; (3) Measure the radial artery waveform at the optimum test pressure; (4) Filter and amplify the measured wave signal; (5) Analyze and calculate the measured wave signal. According to the present invention, the power source can be provided by a general dry battery (disposable) lithium battery (reusable for recharging), a nickel hydrogen battery (reusable for recharging) or other types of batteries. Further, the power source required by the present invention can be supplied by a general AC power source (e.g., 110V or 22 〇V, etc.). If a parent flow source is used, an AC to DC transformer (Transf0rmer) can be added to the circuit module of the present invention to provide the power required to receive only DC circuit components. According to the present invention, by using the aforementioned non-invasive pulse wave accurate measurement technique, the physiological mean blood pressure in blood pressure can be measured according to the following steps: (Physiological Mean Blood Pressure): (4) According to the electronic sphygmomanometer (Oscillometric)
Method)測得收縮壓(SBP)及舒張壓(DBP); (b) 依本發明:!:測精確一個血壓波型,並以χ_ γ平面 作圖(第8圖)’其中γ軸為相對之電壓值V,X軸 為真實時間t ; (c) 將(b)甲之血壓波型之相對電壓平均值以 下列公式算出。 V(mean)= V—t積分值/(t2 — tl)............⑴ 1323652 其中V(mean)為相對電麼平均值,V_t積分值為v _t波型圖在tl(波型起始點)至t2(波型結束點)之範 圍内之積分值,t2 — 11為單一波型之時間間距,(d) 依下列公式算出生理平均血壓: PMBP= V(mean)*(SBP- DBP)/(VS- VD).......⑺ 其中PMBP為生理平均血壓,V(mean)為相對電壓平均 值,SBP為收縮塵,DBP為舒張壓,VS為血壓波型之 最大值(波峰),VD為血壓波型之最小值(波谷)。 為取得更具代表性及準確度之生理平均血壓,本 發明之較佳狀態之一為擷取一個以上之血壓波型,算 出每個血壓波型之生理平均血壓PMBP,再將此多個 PMBP取平均值,依下列公式: PMBP(mean)= SUM(PMBP)/N.......--(3) 其中PMBP(mean)為生理平均血壓PMBP之平均值, SUM(PMBP)為N個PMBP之總和,N為血壓波型之數 目。上述習知電子血壓震盪技術(OscillometricMethod) measured systolic blood pressure (SBP) and diastolic blood pressure (DBP); (b) According to the invention: !: Measure a precise blood pressure waveform and plot it in the χ γ plane (Fig. 8) where the γ axis is relative The voltage value V, the X axis is the real time t; (c) The average value of the relative voltage of the blood pressure waveform of (b) is calculated by the following formula. V(mean)= V—t integral value/(t2 — tl)......(1) 1323652 where V(mean) is the relative electric mean value, V_t integral value is v _t wave type The integral value of the graph in the range of tl (waveform start point) to t2 (waveform end point), t2-11 is the time interval of a single wave pattern, and (d) the physiological mean blood pressure is calculated according to the following formula: PMBP=V (mean)*(SBP-DBP)/(VS-VD).......(7) where PMBP is the physiological mean blood pressure, V(mean) is the relative voltage average, SBP is the contraction dust, and DBP is the diastolic pressure. VS is the maximum value (peak) of the blood pressure waveform, and VD is the minimum value (valley) of the blood pressure waveform. In order to obtain a more representative and accurate physiological mean blood pressure, one of the preferred states of the present invention is to extract more than one blood pressure waveform, calculate the physiological mean blood pressure PMBP of each blood pressure waveform, and then perform the plurality of PMBPs. Take the average value according to the following formula: PMBP(mean)= SUM(PMBP)/N.......--(3) where PMBP(mean) is the average value of the physiological mean blood pressure PMBP, and SUM(PMBP) is The sum of N PMBPs, where N is the number of blood pressure waveforms. The above-mentioned conventional electronic blood pressure oscillation technique (Oscillometric
Method,參閱 US patent 4,860,760),一般之作法 簡述如下: (a) 將氣袋氣壓迅速升壓至一定值(如200mmHg); (b) 在逐步缓慢洩氣中記錄氣壓計之血壓波型,並計 算波高(Peak Height)及作出波高-時間X-Y圖; (c) 在該圖上找出洩氣期間波高之最大值; 1323652 (d) 以此波高之最大值為基準,循x軸氣壓升高方向 找出對應於最大波高之50%時之氣壓,此為收縮 M (Systolic Pressure » SBP); (e) 以此波高之最大值為基準,循χ軸氣壓降低方向 找出對應於最大波高之70%時之氣壓,此為舒張壓 (Diastolic Pressure,DBP); (f) 依臨床校正步驟將測得之收縮壓及舒張壓值加以 校正,以提高準確度。 參 由於本發明之儀器系統具有上述步驟所需之腕 帶,氣袋,氣壓計,中央運算器,幫浦,洩氣閥,及 操作軟體等,因此可依上述步驟先測得收縮壓及舒張 壓,再依本發明之企壓波型壓電感應器測得精確之血 壓波型,最後再依上述公式(1)至(3)算出醫學上極為 重要的生理平均血壓。 根據本發明,以非侵入式分式量測血壓脈波,並 '· 可依下列步驟量測心率變異及自律神經功能: .(a)在測試期内(如5分鐘或24小時)擷取受測者之連 續血壓波型; (b)選擇血壓波型中之一特 型參考點; 定點(如主波峰頂點)為波 (c)計算每一個波型參考點盥 加&讲丨4 + ,,.”5興下一個波型參考點之時 間間距(如主波峰-主波峰間距); (d) 計算出測試期内時間間 (e) 將時間間距以快速符 距之平均值及標準偏差; 立爾轉換法(Fast Fourier 20 1323652Method, see US patent 4,860,760), the general practice is as follows: (a) quickly increase the air pressure of the air bag to a certain value (such as 200mmHg); (b) record the blood pressure of the barometer in a gradually slow deflation Waveform, and calculate the Peak Height and make the wave height-time XY map; (c) Find the maximum value of the wave height during the deflation on the graph; 1323652 (d) Based on the maximum value of the wave height, follow the x-axis The direction of the air pressure rise finds the air pressure corresponding to 50% of the maximum wave height, which is the Systolic Pressure (SBP); (e) Based on the maximum value of the wave height, the direction of the pressure reduction of the x-axis is found to correspond to The pressure at 70% of the maximum wave height, which is Diastolic Pressure (DBP); (f) The measured systolic and diastolic pressure values are corrected according to the clinical calibration procedure to improve accuracy. The instrument system of the present invention has the wristband, the air bag, the barometer, the central calculator, the pump, the deflation valve, and the operating software required for the above steps, so that the systolic and diastolic pressures can be measured according to the above steps. According to the inductive waveform piezoelectric sensor of the present invention, the accurate blood pressure waveform is measured, and finally the medically important physiological mean blood pressure is calculated according to the above formulas (1) to (3). According to the present invention, the blood pressure pulse is measured by a non-invasive fraction, and the heart rate variability and autonomic nerve function can be measured according to the following steps: (a) during the test period (eg, 5 minutes or 24 hours) The continuous blood pressure waveform of the subject; (b) select one of the special reference points in the blood pressure waveform; the fixed point (such as the main peak apex) is the wave (c) calculate each waveform reference point plus & + ,,."5 The time interval of the next wave type reference point (such as the main peak-main peak spacing); (d) Calculate the time between the test period (e) and the time interval as the average of the fast pitch and Standard deviation; Lille conversion method (Fast Fourier 20 1323652
Transform)轉換成頻譜’並計算出高頻成份(HigllTransform) into a spectrum ' and calculate high frequency components (Higll)
Frequency Component,HF,0.15-0.4 Hz),低頻成 份(Low Frequency,LF,0.04-0.15 Hz),極低頻成 份(Very Low Frequency,VLF,0.0-0.04 Hz),及 總變異度(Total Power); (f)將(d)中之時間間距平均值定義為心跳週期 (Period),其倒數定義為心率(Heart Rate);將⑷ 中之時間間距之標準偏差(Standard Deviation)定 義為心率變異性(Heart Rate Variability,HRV);將· (f)中之心率變異性與(e)中之總變異度(Total Power)定義為代表自律神經總活性之指標;依(e) 中之參數計算出LF%( = LF/(LF + HF)*100o/〇)及 HF%(=HF/(LF + HF)*100%),並定義 LF%為代表 交感神經活性之指標,HF%為代表副交感神經活 性之指標,另定義LF/HF為交感-副交感神經平衡 之指標。以上各項心率變異之分析方法(包括時間 傷 範圍(Time Domain)及頻率範圍(Frequency Domain)),其參數之定義,及其與自律神經功能之 關連性,請參考"Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement » physiological interpretation,and clinical use. Circulation. 1996; 93: 1043-1065." 1323652 一般正常人手橈動脈波型可分為1-波型(第9a 圖),2-波型(第9b圖),及3-波型(第9c圖)。根據本發 明,第9a至9c圖,及表1所示,利用前述非侵入性精 確血壓波型量測技術,又可依下列步驟鑑別受測者之 身份: (a) 擷取一定期(如50秒至丨分鐘)之受測者之連續血 壓波型; (b) 依第9a至9c圖所示找出每個血壓波型之起點(即 波合),終點(即下一個波型之起點),及各個波峰 點及波谷點; (c) 依第9a至9c圖所示計算每個血壓波型之波峰數, 時間’愿力,斜角,面積,及其標準化(N〇rmalized) 等特性參數值(參考表丨); (d) 計算出這些參數值在測試期間内之平均值,並將 他們定義為該受測者血壓波型特徵基準線 (Characteristic Baseline) ⑷若下次身份不明之受測者之血遂波型#徵參數值 與(d)之特徵基準線具相當程度之相似性 (^imilarity),則判定該名受測者與前述⑷〜⑷之 受測者為同一人,否則為不同人; (0若有-群人(例如兩人以上)先各測得血麼波型特 徵基準線,日後若其中一人以不明身份接受測 試,則可依該受測者之血虔波型特徵參數值愈該 群組之個別資料一一比對,並選相似性最高者, ⑧ 22 1323652 據以判斷此受測者即為該已知身份者;上述所謂 相當程度之相似性’可依實驗及鑑別需求加以規 範。 本發明之較it狀態之一是將血壓波型特徵之所 有參數值同等看待(equal weighting),並且將每一來 數值之相似性定義為介於特徵基準線之正負百分比 定值内(如±20%),而當這些參數中有超過一事先預定 之數目比例(如80%)滿足參數相似性時,則判定達到 總相似性標準,因此進一部判定兩組血壓波型資料來 自同一人,否則為不同人。上述參數相似性,可依需 求定為特徵基準線之±10%或更低值,以增加身份鑑 別嚴謹度,或定為±30%或更高值,以減少身份鑑別 嚴謹度;同樣地,滿足相似性之參數數目比例也可定 在90%或更高值,以增加鑑別嚴謹度,或定在7〇%或 更低值’以減少嚴謹度。 一本發明之另一較佳狀態之一是將第9a至9c圖所 不參數中之波峰數(一般為1〇至3〇)及標準化後 (N〇n^alized)之時間,壓力,斜角,及面積之特性參 數值定義為符合相似性之重點參數,而其他未經標準 2之時間’壓力’斜角,及面積參數則為非重點參數。 當滿足參數相似性(例如介於特徵基準線之±2〇%内) =非重點參數超過事先預定數目比例(如80%)時則判 疋兩組血壓波型資料來自同一人。當滿足參數相似性 之非重點參數低於事先預定數目比例,但滿足參數相 23 1323652 似性之重點參數超過事先預定數目比例(如時, 則仍然判定兩組血壓波型資料來自同一人,否則為不 同人。如前所述,動脈血壓波型有時會因情緒及生理 等因素(例如緊張,憤怒或發燒時心跳加快,血壓升 高)發生些微變化,但本發明人發現標準化後 (Normalized)之時間,壓力,斜角,及面積之特性參 數值則相當穩定而成為個人化特徵。同時比對未經標 準化及標準化後(N〇rmaiizecj)之特性參數值,可以提 高身份鑑定之準確度。 上述標準化(Normaiization)步驟可遵照一般習知 數學或統計學之標準化步驟,其目標為將一個具有物 理單位之參數值轉化為不具單位(Dimensi〇nless)之 參數值。如第8a至8c圖及表!所示,本發明之標準 化步驟較佳狀態之一係將每一時間參數值除以血壓 波型之週期(Pedod;即波·波間距);每—壓力參數值 除以血壓波型之波峰高(參見第3c圖定義);每一斜 角參數值之分母除以血壓波型之波峰高(參見第氕圖 定義)’而f分子除以血壓波型之週期(Period;即波-波門距),每面積參數值除以血壓波型之總面積。 由於又到人體自然老化及急慢性疾病等影響,每個人 之血壓波型會隨時間逐步變化,因此前述血壓波型特 徵基準線應定期量測更新⑽如每—年或兩年),以維 持身份鑑定之準轉度。 24 1323652 表1 血壓波型特性參數值定義 參數/ 參數定義 1 -波型(圖8a) 2-波型(圖8b) 3-波型(圖8c) 波峰數 1 2 3 主波峰點 B B B 主波谷點 A, C A, E A, G 次波峰點 無 D D, F 次波谷點 無 C C, E Tl=ab Tl=ab Tl=ab T2=ac T2=bc T2=bc T3=cd T3=cd 時間參數 T4=de T4=de T5=ef T6=fg NTl=ab/ac NTl=ab/ae NTl=ab/ag NT2=bc/ae NT2=bc/ag 標準化 NT3=cd/ae NT3=cd/ag 時間參數 NT4=de/ae NT4=de/ag NT5=ef/ag NT6-fg/ag Pl=Aa Pl=Aa Pl=Aa P2=Bb P2=Bb P2=Bb P3=Cc P3=Cc P3=Cc 壓力參數 P4=Dd P4=Dd P5=Ee P6=Ff 25 1323652 標準化 壓力參數 NPl=Aa/Bb NP2=Cc/BB NPl=Aa/Bb NP2=Cc/BB NP3=Dd/Bb NPl=Aa/Bb NP2=Cc/BB NP3=Dd/Bb NP4=Ee/Bb NP5=Ff/Bb 斜角參數 Dl=(Bb-Aa)/ab D2=(Bb-Cc)/bc D3=D1+D2 Dl=(Bb-Aa)/ab D2=(Bb~Cc)/bc D3=(Dd-Cc)/cd D4=(Dd~Ee)/de D5=D1+D2 D6=D3+D4 Dl=(Bb-Aa)/ab D2=(Bb-Cc)/bc D3=( Cc-Dd)/cd D4=(Dd~Ee)/de D5=(Ff-Ee)/ef D6=(Ff-Aa)/fg D7=D1+D2 D8=D3+D4 D9=D5+D6 標準化 斜角參數 NDl=((Bb-Aa)/Bb) /(ab/ac) ND2=((Bb~Cc)/Bb) /(bc/ac) ND3=ND1+ND2 NDl=((Bb-Aa)/Bb) /(ab/ae) ND2=((Bb-Cc)/Bb) /(bc/ae) ND3=((Dd-Cc)/Bb) /(cd/ae) ND4=((Dd-Ee)/Bb) /(de/ae) ND5 = ND1+ND2 ND6 = ND3+ND4 ND1= ((Bb-Aa)/Bb) /(ab/ag) ND2=((Bb-Cc)/Bb) /(bc/ag) ND3=((Cc-Dd)/Bb) /(cd/ag) ND4=((Dd~Ee) /Bb) /(de/ag) ND5=((Ef-Ee)/Bb) /(ef/ag) ND6=((Ef-Aa)/Bb) /(fg/ag) ND7 = ND1+ND2 ND8 = MD3+ND4 ND9 = MD5+ND6 1323652 面積參數 A1 = AabB A2 =BbcC A3 = A1+A2 A1 = AabB A2 =BbcC A3 = CcdD A4 = DdeF A5 = A1+A2 A6 = A3+A4 A7 = A5+A6 A1 = AabB A2 =BbcC A3 = CcdD A4 = DdeF A5 = EefF A6 = FfgG A7 = A1+A2 A8 = A3+A4 A8 = A5+A6 A9 = A7+A8+A9 標準化 面積參數 ΝΑΙ = Α1/Α3 NA2 = A2/A3 NA1 = A1/A7 NA2 = A2/A7 NA3 = A3/A7 NA4 = A4/A7 NA5 = A5/A7 NA6 = A6/A7 NA1 = A1/A10 NA2 = A2/A10 NA3 = A3/A10 NA4 = A4/A10 NA5 = A5/A10 NA6 = A6/A10 NA7 = NA1+NA2 NA8 = NA3+NA4 NA9 = NA5+NA6 註:(1)小寫a,b,c,d,e,f,g等為時間點,單位 為秒。 (2) 大寫A,B,C,D,E,F,G等為血壓波型曲 線上之點,座標單位為(壓力,秒)或(電壓, 秒)。 (3) 面積參數(如AabB)為四角落點及曲線形成之 積分面碁(亦可簡化定義為四角落點形成之 27 梯形面積)。 根據本發明,第〗〇圖,第Π圖,及第1 2圖所示, J用别述非侵入式精確血壓波型量測技術,可依下列 步驟量測呼吸波型及頻率: (a)在洌試期内(如】〜〗〇分鐘)連續擷取受測者之血壓 波型並作成X_Y®(第1 圖),其中X值為時間,γ 值為電壓或壓力; (b)找出每一波型之主波峰點之X值(即時間值)與γ值 (即電壓或壓力值)(參見第1〇b圖); )字(b)之主波峰點之資料作成連續XY圖(第11圖), 即為該受測者之呼吸波型; ⑷中每定期(如一分鐘)内之波型數目(如八個) 开出,即為呼吸頻率或呼吸數(如每一分鐘八次呼 基礎上,)步财m波峰料所有計算分析之 二二改以主波谷(即每一波型之起始點,也是最 可依㈣為基礎點,同樣也 依=步驟獲得呼吸波型及頻率(或呼吸數)。 此外,依第10b圖及第D同私一 之主波峰主纽士帛12圖所不’若將受測者 將盆倒- 巨(參考第10b圖)算出,並 當成Γ值間心率)當成w,另將相對應之時間 田成X值,而作出連續X τ 圖)即為受測者之呼吸波型:同圖二該^圖(第12 圖中每定期(如—分鐘)=地,將此呼吸波型 之波型數目(如八個)算出, 28 1323652 即為,吸頻率或吟吸數(如每一分鐘八次呼吸卜 根據本發明第圖所示,利用前述非侵 確血壓波型量測技術,可依 稽 嘴之症狀: ^或打噴 (a)連續#|取受測者之血壓波型; ㈨計算出受測者在初期内(如一分鐘)之血虔波型之 數值(即主波峰_主波蜂之時間間距,主波峰 偏ί =值、:及主?谷之壓力值)之平均值及標準 、將平均值定義為此三參數值之基準線; ⑷在測試期間隨時監控血壓波型之三個參數值,若 广個(含以上)偏離其基準線達標準偏差之事 2 =數(例如三旬以上,則該波型稱為可疑不 規則資料點; ⑷右此可疑不規則資料點之發生具-定頻率(例如每 四個波型期間發生一次),則予於忽視; ⑷若此可疑不規則資料點隨機發生(不具— 率),則定義該資料點為咳嗷或打噴嚏點; (f)將⑷之亥嗷或打喷嚏點定期統計,則可獲得咳嗷 或打噴嚏頻率(如每分鐘三次)。 上述事先預定之標準偏差倍數,可由人體實驗加 以驗證。例如,較輕較淺之咳漱,其血錢型偏離平 均值之程度較低,因}卜宜止a 、 — 事先預疋之標準偏差倍數可以 疋為3至4 »而較重勒:、忽^ i , 早乂垔#又冰之咳嗷或打噴嚏,則 4至0。又前述且—宏心砀 ' 疋頻率之可疑不規則資料點,常 29 1323652 疋由於心率不整(Cardiac Arrhythmias)造成,因此應 排除在外。 本發明進一步提供一種用於醫院隔離病患之新 型生理訊號監控儀器系統(如第14圖所示),其包括: (a) 前述本發明之非侵入式精確血壓波型量測技術及 其儀器系統; (b) 習知體溫量測技術’且將溫度感應器置於(a)之腕 ' 帶之上; (c) I知無線訊號傳輸技術’並將一組無線傳輸收發 模組置於(a)之主機内,另一組置於病房内負責接 收病患生理訊號之床邊分析器内; (d) 以前述(a)之儀器系統量測隔離病患之心跳,血壓 (收縮壓,舒張壓,生理平均血壓),呼吸波型及頻 率,並判疋病患是否有心悸,呼吸急促,咳漱或 打喷嚏; • (e)以前述(b)之溫度感應器量測病患之手腕體溫,並 - 判定病患是否發燒; (f)將⑷及⑷之生理訊號以⑷之無線傳輸模組由⑷ 之主機傳送至(c)之床邊分析器; ω床邊分析器再將病患生理訊號及其分析結果透過 區域性網路(Local Area Network,Lαν)或網際網 路(Internet)傳出病房。 上述習知體溫量測技術,可u # ro 里n议彳ττ』以使用一個小型熱電偶, 一-個電阻式電子元件,或一 Vm λ ι,ι.»,. 什^個紅外線光電元件。三者 1323652 皆為熱感元件,可將體溫轉換成電壓或電流訊號。為 了提高體溫量測準確度及減少達到溫度平衡所需的 時間,除了前述熱感元件後,可在腕帶上增加一小片 金屬,此金屬片外表面裸露於腕帶布料之外,配戴時 與手腕皮膚直接接觸,並負責導熱。此金屬片另與熱 感元件在腕帶内相連,而熱感元件再與本發明之電路 模組相連,如此形成一個完整的體溫量測系統。上述 無線傳輸技術,可使用一般商用之RF(Radic) Frequency)無線模組,其頻率範圍可以在常用之 Band(即[工業,科學,醫療]共用頻帶),其中最常用 之通訊協定為藍芽(Blue Tooth,2.4 GHz) Wi-Fi (含 IEEE 802.11b,802.1 1a ’ 及 802.1 ig,2·4〜5 6 GHz), 及低頻ISM(433〜915MHz)。另外,美國食品藥物管 制局(FDA)也訂定一個醫療器材專用之WMTS頻道 (608〜1429 MHz)。通常RF無線模組以一對雙向互傳 方式操作。Frequency Component, HF, 0.15-0.4 Hz), low frequency component (Low Frequency, LF, 0.04-0.15 Hz), very low frequency component (Very Low Frequency, VLF, 0.0-0.04 Hz), and total variability (Total Power); (f) Define the average time interval in (d) as the heartbeat period (Period), the reciprocal of which is defined as the heart rate (Heart Rate); and the standard deviation of the time interval in (4) (Standard Deviation) as the heart rate variability ( Heart Rate Variability (HRV); defines the heart rate variability in (f) and Total variability in (e) as an indicator representing the total activity of the autonomic nerve; calculating LF according to the parameters in (e) %( = LF/(LF + HF)*100o/〇) and HF%(=HF/(LF + HF)*100%), and define LF% as an indicator of sympathetic activity, and HF% as a representative of parasympathetic nerve The indicator of activity, another definition of LF/HF is an indicator of sympathetic-parasympathetic balance. For the above analysis of heart rate variability (including Time Domain and Frequency Domain), the definition of its parameters, and its relationship with autonomic nervous function, please refer to "Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement » physiological interpretation, and clinical use. Circulation. 1996; 93: 1043-1065." 1323652 Generally normal human hand artery waveform can be divided It is a 1-wave type (Fig. 9a), a 2-wave type (Fig. 9b), and a 3-wave type (Fig. 9c). According to the present invention, as shown in Figures 9a to 9c, and Table 1, by using the aforementioned non-invasive precise blood pressure waveform measurement technique, the identity of the subject can be identified by the following steps: (a) taking a regular period (e.g. Continuous blood pressure waveform of the subject from 50 seconds to 丨 minutes; (b) Find the starting point (ie, the coincidence) of each blood pressure waveform as shown in Figures 9a to 9c, and the end point (ie, the next waveform) (starting point), and each peak point and trough point; (c) Calculate the number of peaks of each blood pressure waveform as shown in Figures 9a to 9c, time 'willing force, bevel angle, area, and its normalization (N〇rmalized) And other characteristic parameter values (refer to Table 丨); (d) Calculate the average value of these parameter values during the test period and define them as the subject's blood pressure waveform characteristic baseline (Characteristic Baseline) (4) If the next identity If the blood sputum type of the unknown subject has a considerable degree of similarity (^imilarity) with the characteristic reference line of (d), it is determined that the subject and the subjects of (4) to (4) above are The same person, otherwise different people; (0 if there are - group of people (such as two or more people) first measured blood The wave-shaped feature baseline, if one of the people is tested in an unidentified manner in the future, the individual data of the group can be compared according to the blood-wave characteristic parameter value of the subject, and the highest similarity is selected. 8 22 1323652 It is judged that the subject is the known identity; the so-called "degree of similarity" can be specified according to the experimental and identification requirements. One of the more stable states of the present invention is to characterize the blood pressure waveform. All parameter values are equal weighting, and the similarity of each value is defined as the positive and negative percentage value of the feature baseline (eg ±20%), and when more than one of these parameters is predetermined If the proportion of the number (such as 80%) satisfies the similarity of the parameters, then the total similarity criterion is determined. Therefore, the blood pressure waveform data of the two groups are determined to be from the same person, otherwise they are different people. The similarity of the above parameters can be determined according to the needs. Is ±10% or less of the characteristic baseline to increase the identity discrimination, or to be ±30% or higher, to reduce the identity rigor; likewise, to satisfy the similarity The number ratio can also be set at 90% or higher to increase the discriminating degree of discrimination, or set at 7% or lower to reduce the stringency. One of the other preferred states of the invention is that the 9a The number of peaks in the parameters of the 9c graph (generally 1〇 to 3〇) and the time after normalization (N〇n^alized), the values of the characteristic parameters of pressure, bevel, and area are defined as the focus of similarity. Parameters, while other 'pressure' angles without the standard 2, and area parameters are non-key parameters. When the parameter similarity is satisfied (for example, within ±2〇% of the characteristic baseline) = non-key parameters exceed the prior When the predetermined number of proportions (such as 80%), the blood pressure waveform data of the two groups are judged to be from the same person. When the non-key parameter satisfying the parameter similarity is lower than the predetermined number of proportions, but the key parameter satisfying the parameter phase 23 1323652 is more than the predetermined number of proportions (if the time is still determined, the two sets of blood pressure waveform data are from the same person, otherwise For different people. As mentioned above, the arterial blood pressure waveform sometimes changes slightly due to emotional and physiological factors (such as nervousness, anger or rapid heartbeat when fever, elevated blood pressure), but the inventors found that after normalization (Normalized The time, pressure, bevel, and area characteristic parameters are quite stable and become a personal feature. At the same time, the accuracy of the identification can be improved by comparing the characteristic parameters of the unnormalized and standardized (N〇rmaiizecj). The above-mentioned Normaiization step can follow the normalized mathematical or statistical standardization steps, and the goal is to convert a parameter value having a physical unit into a parameter value without a unit. For example, Figures 8a to 8c. And the table shows that one of the preferred states of the normalization step of the present invention divides each time parameter value by blood. The period of the wave pattern (Pedod; wave-wave spacing); the value of each pressure parameter divided by the peak height of the blood pressure waveform (see definition in Figure 3c); the denominator of each oblique parameter value divided by the peak of the blood pressure waveform High (see the definition of Figure ))' and f molecules divided by the period of the blood pressure waveform (Period; that is, the wave-wave gate distance), the value of each area parameter divided by the total area of the blood pressure waveform. Because of the natural aging of the human body and For acute and chronic diseases, each person's blood pressure waveform will gradually change with time. Therefore, the above-mentioned blood pressure waveform characteristic baseline should be periodically updated (10), such as every year or two, to maintain the quasi-rotation of identification. 24 1323652 Table 1 Blood pressure waveform characteristics Parameter value definition parameters / Parameter definition 1 - Wave type (Fig. 8a) 2-wave type (Fig. 8b) 3-wave type (Fig. 8c) Number of peaks 1 2 3 Main peak point BBB Main wave valley Point A, CA, EA, G secondary peak no DD, F secondary valley no CC, E Tl=ab Tl=ab Tl=ab T2=ac T2=bc T2=bc T3=cd T3=cd Time parameter T4= De T4=de T5=ef T6=fg NTl=ab/ac NTl=ab/ae NTl=ab/ag NT2=bc/ae NT2=bc/ag Normalized NT3=cd/ae NT3=cd/ag Time Parameter NT4= De/ae NT4=de/ag NT5=ef/ag NT6-fg/ag Pl=Aa Pl=Aa Pl=Aa P2=Bb P2=Bb P2=Bb P3=Cc P3=Cc P3=Cc Pressure parameter P4=Dd P4=Dd P5=Ee P6=Ff 25 1323652 Normalized pressure parameter NPl=Aa/Bb NP2=Cc/BB NPl=Aa/Bb NP2=Cc/BB NP3=Dd/Bb NPl=Aa/Bb NP2=Cc/BB NP3 =Dd/Bb NP4=Ee/Bb NP5=Ff/Bb Angle parameter Dl=(Bb-Aa)/ab D2=(Bb-Cc)/bc D3=D1+D2 Dl=(Bb-Aa)/ab D2 =(Bb~Cc)/bc D3=(Dd-Cc)/cd D4=(Dd~Ee)/de D5=D1+D2 D6=D3+D4 Dl=(Bb-Aa)/ab D2=(Bb- Cc)/bc D3=( Cc-Dd)/cd D4=(Dd~Ee)/de D5=(Ff-Ee)/ef D6=(Ff-Aa)/fg D7=D1+D2 D8=D3+D4 D9=D5+D6 standardized oblique angle NDl=((Bb-Aa)/Bb) /(ab/ac) ND2=((Bb~Cc)/Bb) /(bc/ac) ND3=ND1+ND2 NDl=((Bb-Aa)/Bb) /(ab/ae) ND2=((Bb-Cc)/Bb) /(bc/ae) ND3=((Dd-Cc)/Bb) /(cd/ae) ND4=((Dd-Ee)/Bb /(de/ae) ND5 = ND1+ND2 ND6 = ND3+ND4 ND1= ((Bb-Aa)/Bb) /(ab/ag) ND2=((Bb-Cc)/Bb) /(bc/ag ND3=((Cc-Dd)/Bb) /(cd/ag) ND4=((Dd~Ee) /Bb) /(de/ag) ND5=((Ef-Ee)/Bb) /(ef/ Ag) ND6=((Ef-Aa)/Bb) /(fg/ag) ND7 = ND1+ND2 ND8 = MD3+ND4 ND9 = MD5+ND6 1323652 Area parameter A1 = AabB A2 =BbcC A3 = A1+A2 A1 = AabB A2 =BbcC A3 = CcdD A4 = DdeF A5 = A1+A2 A6 = A3+A4 A7 = A5+A6 A1 = AabB A2 =BbcC A3 = CcdD A4 = DdeF A5 = EefF A6 = FfgG A7 = A1+A2 A8 = A3+A4 A8 = A5+A6 A9 = A7+A8+A9 Normalized area parameter ΝΑΙ = Α1/Α3 NA2 = A2/A3 NA1 = A1/A7 NA2 = A2/A7 NA3 = A3/A7 NA4 = A4/A7 NA5 = A5/A7 NA6 = A6/A7 NA1 = A1/A10 NA2 = A2/A10 NA3 = A3/A10 NA4 = A4/A10 NA5 = A5/A10 NA6 = A6/A10 NA7 = NA1+NA2 NA8 = NA3+NA4 NA9 = NA5+NA6 Note: (1) Lowercase a, b, c, d, e, f, g, etc. are time points in seconds. (2) Uppercase A, B, C, D, E, F, G, etc. are points on the blood pressure waveform curve, and the coordinate unit is (pressure, second) or (voltage, second). (3) The area parameter (such as AabB) is the integration of the four corner points and the curve (which can also be simplified as 27 trapezoidal areas formed by four corner points). According to the present invention, the first diagram, the second diagram, and the second diagram, J uses a non-invasive accurate blood pressure waveform measurement technique to measure the respiratory waveform and frequency according to the following steps: (a During the trial period (eg, ~ 〇 〇 minutes), continuously take the blood pressure waveform of the subject and make X_Y® (Fig. 1), where X is time and γ is voltage or pressure; (b) Find the X value (ie time value) of the main peak point of each waveform and the γ value (ie voltage or pressure value) (see Figure 1〇b); ) The data of the main peak point of the word (b) is made continuous XY map (Fig. 11), which is the respiratory waveform of the subject; (4) The number of waveforms (such as eight) in each periodic (such as one minute) is the respiratory rate or the number of breaths (such as per On the basis of eight times a minute, the calculation of all the calculations of the m-wave peaks is changed to the main trough (that is, the starting point of each wave type, which is also the most basic (4) basis, and also depends on the step = Respiratory waveform and frequency (or number of breaths). In addition, according to Figure 10b and D, the main peak of the main peak of the New Zealand map is not 'if the subject will be poured - Ju (refer to Figure 10b) to calculate, and as a heart rate between Γ) as w, the corresponding time Tian Cheng X value, and make a continuous X τ diagram) is the subject's respiratory waveform: the same figure 2. In the figure (in Figure 12, for each periodic (such as - minutes) = ground, calculate the number of waveforms of this respiratory waveform (such as eight), 28 1323652 is the frequency of suction or sucking (such as each According to the figure of the present invention, the above-mentioned non-invasive blood pressure wave type measurement technique can be used to detect the symptoms of the blood pressure waveform of the subject: ^ or spray (a) continuous #| (9) Calculate the value of the blood clot type of the subject in the initial period (such as one minute) (ie, the time interval of the main peak _ main wave bee, the main peak ί = value, and the pressure value of the main valley) The average value and the standard, the average value is defined as the baseline of the three-parameter value; (4) The three parameter values of the blood pressure waveform are monitored at any time during the test, and if a wide (including above) deviates from the baseline to the standard deviation 2 = number (for example, above 30 degrees, the waveform is called a suspicious irregular data point; (4) right this suspicious irregular data point The aid-fixed frequency (for example, once every four wave types) is ignored; (4) If the suspected irregular data point occurs randomly (without rate), then the data point is defined as coughing or sneezing. (f) The frequency of coughing or sneezing (such as three times per minute) can be obtained by regularly counting the sneeze or sneezing point of (4). The above-mentioned predetermined standard deviation multiple can be verified by human experiments. For example, lighter For a shallower cough, the blood money type deviates from the average value to a lower degree, because the standard deviation multiple of the pre-predicted can be reduced to 3 to 4 » and the heavier:早乂垔#And ice coughing or sneezing, then 4 to 0. And the above-mentioned - macro heart 砀 ' 可 frequency of suspicious irregular data points, often 29 1323652 疋 due to heart rate irregularities (Cardiac Arrhythmias), therefore should Excluded. The invention further provides a novel physiological signal monitoring instrument system for hospital isolation patients (as shown in FIG. 14), which comprises: (a) the non-invasive accurate blood pressure wave type measuring technology and instrument thereof according to the present invention. (b) conventional body temperature measurement technology 'and place the temperature sensor on the wrist of the (a); (c) I know the wireless signal transmission technology' and place a set of wireless transmission transceiver modules (a) in the host, the other group is placed in the bedside analyzer in the ward responsible for receiving the patient's physiological signals; (d) measuring the heartbeat, blood pressure (systolic blood pressure) of the isolated patient using the instrument system (a) above , diastolic blood pressure, physiological mean blood pressure), respiratory waveform and frequency, and determine whether the patient has heart palpitations, shortness of breath, coughing or sneezing; • (e) measuring the patient with the temperature sensor of (b) above The body temperature of the wrist, and - determine whether the patient has a fever; (f) the physiological signals of (4) and (4) are transmitted by the host of (4) to the bedside analyzer of (c); (ω) bedside analyzer Transmitting the patient's physiological signals and their analysis results through a regional network (Local Area Network, Lαν) or Internet (Internet) out of the ward. The above-mentioned conventional body temperature measurement technology can be used to use a small thermocouple, a resistive electronic component, or a Vm λ ι, ι.»,. . All three 1323652 are thermal components that convert body temperature into voltage or current signals. In order to improve the accuracy of the body temperature measurement and reduce the time required to reach the temperature balance, in addition to the aforementioned thermal sensing element, a small piece of metal can be added to the wristband, the outer surface of the metal piece is exposed outside the wristband fabric, when worn Direct contact with the wrist skin and responsible for heat conduction. The metal sheet is additionally connected to the thermal sensing element in the wristband, and the thermal sensing element is coupled to the circuit module of the present invention to form a complete body temperature measuring system. The above wireless transmission technology can use a commercially available RF (Radic) Frequency wireless module, and the frequency range can be in the commonly used Band (ie [industry, science, medical] shared frequency band), and the most commonly used communication protocol is Bluetooth. (Blue Tooth, 2.4 GHz) Wi-Fi (including IEEE 802.11b, 802.1 1a 'and 802.1 ig, 2·4 to 5 6 GHz), and low frequency ISM (433 to 915 MHz). In addition, the US Food and Drug Administration (FDA) has also established a WMTS channel (608~1429 MHz) for medical devices. Usually the RF wireless module operates in a pair of two-way inter-transmission mode.
以上述本心明之應用為例,其中一個無線收發模 組裝置於本發明之腕式主機内,另一個則安置於隔離 病房内之床邊分析器上。上述床邊分析器可以為一部 桌上型或攜帶型之電腦,或其他具運算,儲存,顯示, 及傳輸功能之儀器系統,而無線收發模組與床邊分析 态可透過標準介面(如rS_232(c〇m Port),USB,IEEE Ϊ323652 1 3 9 4 4 )連結。前述病患之心跳若超過一般醫學定義 之正常心率(如每分鐘最高100次),則判定該病患有 心悸現象;前述咳嗽或打喷嚏之判斷已有說明,不再 重複。另可定義一個呼吸頻率上限(如每分鐘20次), 當受測者之呼吸頻率超過此上限時,即判定為呼吸急 促; 此外’可另根據一般醫學規範,當病患體溫超過 3 8度c時,即判定為發燒。當病患之生理訊號傳達床 邊分析器後,可在其上經過儲存,分析,及顯示後, 再透過邊p元内之區域網路(L〇cai Area Network,LAN) 或網際網路(lnternet)傳出病房(例如傳至集中護理站 或醫院病患資料伺服器等)。 本發明進一步提供一種用於監控居家隔離民眾 之儀器系統(如第15圖所示),其包括: ()引it本發明之非侵入式精讀企壓波型量測技術及 其系統儀器系統; (b) 以(a)之儀器系統量測居家隔離民眾之心跳,血壓 (收縮壓’舒張壓’平均壓),血壓波型,呼吸波型 及頻率等生理訊號’並據此判斷該民眾是否有心 悍’劇烈血壓變化,呼吸急促,咳嗽或打噴嚏; (c) 以習知體溫量測技術量測該民眾之體溫,並據此 判斷是否有發燒症狀; 32 1323652 (d)以習知無線傳輸技術將(a)〜(c)之生 a 至擺置於家中之訊號接收分析器;胃sfl定期傳 ⑷訊=接收分析器將生理資訊儲存,分析 後定期以網際網路(Int⑽et)傳輸或電話數據 (:dem隐衛生機關(如衛“,衛生署,^院 (f)衛生機關定期收集,整理’ ϋ統計未發病 病’及已復原之隔離民眾人數。 χ 為防止違規外出,衛生機關可再任何時間利用網 =路或電話數據機下達測試指令給床邊分析器,而 床邊分_器再以無、線傳輸方式將 若該格離民眾此時在家,在IS 公$腕式生理監視态主機之通知聲響(透過其含 〜之嗍鳴态)之後便應配帶腕式生理監視器主機,進 該隔離民幕違規外出,衛生機關在下達抽 :7後疋期内(如十分鐘内)沒有收到生理訊號,應 據以判斷該民眾違規外出,而進一步進行管制措 也。若該隔離民眾違規外出,但由他人在家中代為測 則衛生機關藉由本發明提供之身份鑑別技術,可 以判斷並相-人之數據,而採取必要管制措施。 述訊號接收分析器可以是一部桌上型或手提電 =’或隨身數位輔助器(PDA) ’或具有傳輸,儲存, :析:及顯?力能之其他儀器。上述未發病,已發病, 已復原之定義,可由衛生主管機關依血壓變化,呼 33 ,頻率,咳嗽與打噴嚏,及體溫等上述生理參數之規 範加以控制。又有關體溫,血壓,無線傳輸及網路傳 輪等技術,前面已有詳盡說明,不再贅述。 下述η施怨樣僅係用於例示本發明,而非限定本 發明。 橈動脈波$丨眚剃太沐 使用的儀器系統範例由以下零組件構成(如第1 6 圖所示,各元件依標號): (a)—個由應力器(Strain Gauge)組成之壓電感應器 la ’、主脱大小為5mm圓形薄片(3mm厚),内含 訊號過濾,放大,校正,溫度補償等電路。除圓 升>/感應器主體外,另有一導線連結至腕式生理監 視器主機(待描述)之電路模組。此導線之作用為提 供壓電感應器電源及傳送壓電訊號至電路模組。 .· (b)腕式生理監視器主機2a,其内含有打氣幫浦,洩 .. 氣閥,標準2A乾電池(兩個),RS232連接埠,氣 壓計,及含有中央處理器,記憶體,及訊號處理(過 慮’放大’校正)之電路模組。此主機另含有上蓋 及下蓋之外殼’該外殼含扣片及小口,其可固定 於手腕腕帶(待述)之上,上蓋並有可操作本儀器之 按鍵。 (c)腕帶3a,其内含有一個氣袋及一個us塑膠薄 片’此塑膠薄片具扣片及小孔,可與腕式主機之 34 1323652 下蓋結合。此腕帶之長度較一般手腕周長還長, 因此在環繞手腕一周後剩餘長度可以反折,以魔 鬼枯固定。 本儀益糸統之操作步驟’描述如下: (d) 以手指把脈於一個健康志願受測者之手腕(左右手 均可),並測得橈動脈之確切位置。 (e) 將(a)之圓形壓電感應器主體以膠布固定於繞動脈 上方。 (f) 將(b)之腕式主機以(c)之腕帶配帶於受測者之手 腕。 (g) 按(b)之儀器主機之”開始”鍵,啟動測試,此時操 控軟體下達指令給打氣幫浦’開始打氣(此時茂氣 閥關閉)’當氣袋被加壓至200 mmHg(氣壓計值) 時’操控軟體下達指令給洩氣閥進行緩慢洩氣。 於此同時’操控軟體及電路模組以每秒5〇〇資料 點之速度讀取及儲存氣壓計之壓力值及壓電感應 器之脈波訊號,操控軟體並計算洩氣期間(2〇〇降 至30 mmHg,約20秒鐘)之每一脈波之波高(即波 峰-波谷),並且決定最大波高發生時之氣壓值,此 氣壓值(93 mmHg)即為最適測試氣壓。 (h) 操控軟體再下達指令給打氣幫浦,將氣袋氣壓從 30 mmHg升至最適測試氣壓(93 mmHg)’之後操控 軟體及電路模組同樣以每秒5〇〇資料點速率讀取 壓電感應器之脈波訊號,共取樣5秒,並將該資 35 料及相對應之時間值(取自Real-Time Clock)儲存 於電路模組之記憶體内。 ⑴啟開一台個人電腦,並以其RS-232(COM Port)連 接線接於腕式主機之RS-232連接埠。個人電腦之 刼作軟體下達指令給腕式主機之電路模組及其操 作軟體’開始進行資料下載(Data Download)。 ⑴個人電腦操控程式將下載資料以X_Y方式作圖, 其中X軸為時間(單位為秒),γ軸為壓電感應器之 血壓值(單位為mmHg),其結果如圖17所示。 橈動脈浊创景測方法於哇理 f均血愿量測之麻用 本範例使用之儀器軟硬體,操作部驟’及健康志 願受測者均類似實例丨,但壓電感應器由實例丨之 5-mm圓形主體改為一個由陶瓷ρζτ作成之5_爪爪長 (/口手長方向)X 2〇_mm寬(沿手寬)χ 2_mm厚之壓電 兀件,此外,腕式主機另增加一個LCD顯示器。依 照實例1之操作步驟獲得洩氣期間最大波高(當時氣 壓值為93 mmHg),即實例!之步驟(幻後,再繼續操 作以下步驟: (a)腕式主機之操控分析軟體以最大波高發生點為基 準γ逆著洩壓方向(即往氣壓上升方向)找尋波高恰 好是最大波高之50%之血壓波型,該血壓波型發 生時之氣壓值(138 mmHg)即為收縮壓;操控分析 36 軟體另沿著浅氣方向(即氣麼下降方向)找尋波高 恰好是最大波高之70%之血壓波型,該血壓波型 發生打之氣壓值(83 mmHg)即為張壓。 ㈦另依據相關人體實驗得知,⑷之收㈣需向下修 正25 mmHg ’舒張壓需向下修正1〇mmHg,才能 成為正確之收縮壓(】13 mmHg)及舒張壓(73 mmHg)。 ⑷依’,本發明之詳細說明”中之公式⑴〜⑺,計算出 本範例測試5秒鐘内之,,生理平均血壓"之平均值( 86 mmHg)。 ⑷腕式主機將生理平均血壓之平均值(86侧取)顯 示於LCD顯示器。 (e)另依據相關人體實驗得知,該健康志願受測者以 侵入式插管手動脈所測得之收縮壓,舒張壓,及 生理平均血壓分別為11〇, 68,及85 mmHg。結果 顯不標準侵入式插管手動脈測試法與本發明之非 侵入式橈動脈波型技術所測得之收縮壓,舒張 壓,及生理平均血壓具高度相似性。 UP :非侵脈波型量測方法^ 功能景沏丨夕應、用 本範例使用之儀器硬體與實例2類似,但共 有兩名健康志願受測者參加。此外,壓電感應器由實 例2之PZT壓電材料改為高分子pvDF材料,且其形 37 丄 片J為5 mm長(沿手長方向)X 20-mm寬(沿手寬方 =)X 〇.5mm厚。另外,此壓電感應器事先裝置於腕 ▼内"於氣袋上方及腕帶外布之間,其尾端連接器 (Tail Connector,由軟性電路板構成)經由腕帶内部及 其小開口,腕式主機外殼下蓋,最後連結於主機内之 電路模組。電路模組之訊號處理電路及LCD顯示器 與貫例2無異,配帶時,只要將腕式主機以腕帶固定 於手腕即可。操作時依照實例1之步驟獲取連續式血 壓波型後’再執行以下步驟: (a) 連續擷取受測者之血壓波型,共5分鐘。腕式主 機之操控分析軟體計算出測試期間内每一血壓波 型之波峰-波峰時間間距。 (b) 依文獻 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation,and clinical use. Circulation. 1996; 93: 1043-1065.”所描述之方法 計算受測者之時間範圍(Time Domain)之心率變異 參數,即心跳週期,心率,心率變異性(HRV)。 (c) 依上述文獻計算受測者之頻率範圍(Frequency Domain)之心率變異參數,即總變異度(Total Power) ’高頻成份(HF),低頻成份(LF),及低頻成 份/高頻成份比值。Taking the above-mentioned application of the present invention as an example, one of the wireless transceiver modules is placed in the wrist type host of the present invention, and the other is placed on the bedside analyzer in the isolation ward. The bedside analyzer can be a desktop or portable computer, or other instrumentation system with computing, storage, display, and transmission functions, and the wireless transceiver module and the bedside analysis state can pass through a standard interface (eg, rS_232(c〇m Port), USB, IEEE Ϊ 323652 1 3 9 4 4 ) Link. If the heartbeat of the aforementioned patient exceeds the normal heart rate as defined by the general medical definition (e.g., up to 100 times per minute), the patient is judged to have palpitations; the above judgment of coughing or sneezing has been explained and will not be repeated. In addition, an upper respiratory frequency limit (such as 20 times per minute) can be defined. When the respiratory rate of the subject exceeds the upper limit, it is determined to be shortness of breath; in addition, 'other medical standard can be used when the patient's body temperature exceeds 38 degrees When c, it is judged to be a fever. When the patient's physiological signal is transmitted to the bedside analyzer, it can be stored, analyzed, and displayed on it, and then transmitted through the local area network (LAN) or the Internet (in the p-unit). Lnternet) out of the ward (for example, to a centralized nursing station or hospital patient data server, etc.). The present invention further provides an instrument system for monitoring a home-segregating population (as shown in FIG. 15), which comprises: () introducing the non-invasive precision reading pressure waveform measurement technology of the present invention and a system instrument system thereof; (b) Using the instrument system of (a) to measure the heartbeat of the home, the blood pressure (systolic pressure 'diastolic pressure' average pressure), blood pressure waveform, respiratory waveform and frequency and other physiological signals' and judge whether the public Have a heartbeing 'severe blood pressure changes, shortness of breath, coughing or sneezing; (c) measuring the body temperature of the person using a known body temperature measurement technique, and judging whether there is a fever symptom; 32 1323652 (d) by knowing wireless Transmission technology will (a) ~ (c) a to the signal receiving analyzer placed in the home; stomach sfl periodic transmission (4) = receiving analyzer to store physiological information, analysis and regular Internet (Int (10) et) transmission Or telephone data (: dem hidden health institutions (such as Wei, the Department of Health, ^ hospital (f) health agencies regularly collect, sort out 'ϋ statistics no disease' and the number of isolated people who have been restored. χ To prevent irregularities, health organ At any time, use the network = road or telephone data machine to issue test instructions to the bedside analyzer, and the bedside _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The notification sound of the monitoring host (through its 含 态 ) ) ) ) ) ) ) 便 便 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理 生理Within a minute, no physiological signals were received, and the people should be judged to go out in violation of the regulations, and further control measures were taken. If the segregated people went out in violation of the rules, they were judged by others at home to identify the identity authentication technology provided by the health agency. It is possible to judge the data of the phase-to-person and take the necessary control measures. The signal receiving analyzer can be a desktop or laptop = 'or portable digital assistant (PDA)' or have transmission, storage, analysis : and other instruments that show the power, the above-mentioned non-onset, has been onset, the definition of recovery, can be changed by the health authority according to blood pressure, call 33, frequency, cough and sneezing, and body temperature, etc. The specifications of the physiological parameters are controlled. The techniques of body temperature, blood pressure, wireless transmission and network transmission are described in detail above and will not be described again. The following η grievances are only used to illustrate the invention, not limited The invention is composed of the following components (as shown in Fig. 16 and the components are labeled): (a) one consisting of a strainer (Strain Gauge). Piezoelectric sensor la ', the main off-size is 5mm round sheet (3mm thick), including signal filtering, amplification, correction, temperature compensation and other circuits. In addition to the round up > / sensor body, there is another wire connection A circuit module to the wrist physiological monitor host (to be described). The wire serves to supply the piezoelectric sensor power and transmit the piezoelectric signal to the circuit module. (b) Wrist physiological monitor main unit 2a, which contains a pumping pump, a venting valve, a standard 2A dry battery (two), an RS232 port, a barometer, and a central processing unit, memory, And circuit processing (signaling 'amplification' correction) circuit module. The main body further includes an outer cover and a lower cover housing. The outer casing includes a buckle and a small opening, which can be fixed on the wrist wristband (to be described), and has a button for operating the instrument. (c) Wrist strap 3a, which contains an air bag and a us plastic sheet. The plastic sheet has a buckle and a small hole, which can be combined with the 34 1323652 lower cover of the wrist type main body. The length of this wristband is longer than the circumference of the wrist, so the remaining length can be reversed after a week around the wrist, and the devil is fixed. The procedure of the instrument is described as follows: (d) The finger is placed on the wrist of a healthy volunteer (both left and right hands) and the exact position of the radial artery is measured. (e) Fix the circular piezoelectric actuator body of (a) above the artery with a tape. (f) Attach the wrist strap of (b) to the wrist of the subject with the wrist strap of (c). (g) Press the “Start” button of the instrument main unit (b) to start the test. At this time, the control software gives the command to the pumping pump to start pumping (the gas valve is closed). When the air bag is pressurized to 200 mmHg. (Barometer value) When the 'manipulation software release command' is given to the bleed valve for slow deflation. At the same time, the 'control software and circuit module reads and stores the pressure value of the barometer and the pulse signal of the piezoelectric sensor at a speed of 5 每秒 per second, and controls the software and calculates the deflation period (2 〇〇 drop) The wave height (ie, peak-valley) of each pulse wave up to 30 mmHg (about 20 seconds), and determines the gas pressure value at which the maximum wave height occurs. This gas pressure value (93 mmHg) is the optimum test gas pressure. (h) Control the software and then give the command to the pumping pump to raise the air pressure from 30 mmHg to the optimum test pressure (93 mmHg). After that, the control software and circuit module also read the voltage at 5 每秒 per second. The pulse signal of the electric sensor is sampled for 5 seconds, and the material and corresponding time value (taken from Real-Time Clock) are stored in the memory of the circuit module. (1) Open a personal computer and connect it to the RS-232 port of the wrist host with its RS-232 (COM Port) connection. The personal computer's software release command is given to the circuit module of the wrist host and its operating software' to start data download. (1) The PC control program plots the downloaded data in X_Y mode, where the X-axis is time (in seconds) and the γ-axis is the piezoelectric sensor's blood pressure value (in mmHg). The result is shown in Figure 17. The brachial artery turbidity and smear method is based on the instrumental soft and hard body used in this example. The operation part and the healthy volunteers are similar examples, but the piezoelectric sensor is an example. 55-mm circular body is changed to a 5_ claw length made by ceramic ρζτ (/ mouth length direction) X 2〇_mm width (along hand width) χ 2_mm thick piezoelectric element, in addition, wrist The main unit adds an LCD display. According to the procedure of Example 1, the maximum wave height during the deflation period (the current gas pressure value is 93 mmHg) is obtained, that is, an example! Steps (after the illusion, continue with the following steps: (a) The steering analysis software of the wrist host is based on the maximum wave height occurrence point. The γ is opposite to the pressure relief direction (ie, the direction of the air pressure rise). The wave height is exactly 50 of the maximum wave height. The blood pressure waveform of %, the pressure value (138 mmHg) at the time of the blood pressure waveform is the systolic blood pressure; the manipulation analysis 36 software and the search for the wave height in the direction of the shallow gas (that is, the direction of the gas drop) is exactly 70% of the maximum wave height. The blood pressure wave type, the pressure value of the blood pressure wave type (83 mmHg) is the tension. (7) According to the relevant human experiment, (4) the harvest (4) needs to be corrected downward 25 mmHg 'diastolic pressure needs to be corrected downward 1 〇mmHg, can be the correct systolic pressure (] 13 mmHg) and diastolic blood pressure (73 mmHg). (4) According to the formula (1)~(7) in the 'Detailed Description of the Invention', calculate the test within 5 seconds. (average mean physiological blood pressure " ( 86 mmHg). (4) The wrist-type main unit displays the average value of the physiological mean blood pressure (86 side) on the LCD display. (e) According to relevant human experiments, the health volunteer is Invasive The systolic blood pressure, diastolic blood pressure, and physiological mean blood pressure measured by the hand artery were 11〇, 68, and 85 mmHg, respectively. The results showed a non-standard invasive cannula artery test method and the non-invasive radial artery wave of the present invention. The systolic blood pressure, diastolic blood pressure, and physiological mean blood pressure measured by the type of technique are highly similar. UP : Non-invasive pulse type measurement method ^ Function Jing Qi Xi Ying, instrument hardware and examples used in this example 2 Similarly, there were two healthy volunteers participating. In addition, the piezoelectric sensor was changed from the PZT piezoelectric material of Example 2 to the polymer pvDF material, and its shape 37 J J was 5 mm long (along the length of the hand) X 20-mm wide (along the hand width =) X 〇.5mm thick. In addition, the piezoelectric sensor is pre-installed in the wrist ▼ between the airbag and the outer wristband of the wristband, and its tail connector (Tail Connector, consisting of a flexible circuit board) through the inside of the wristband and its small opening, the lower cover of the wrist-type mainframe, and finally connected to the circuit module in the mainframe. The signal processing circuit of the circuit module and the LCD display and the example 2 No problem, when you wear it, just fix the wrist host with a wrist strap. It can be used on the wrist. After the operation, follow the steps in Example 1 to obtain the continuous blood pressure waveform type. Then perform the following steps: (a) Continuously extract the blood pressure waveform of the subject for 5 minutes. The control software of the wrist host is analyzed. The peak-to-peak time interval of each blood pressure waveform during the test period is calculated. (b) According to the literature Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, , and clinical use. Circulation. 1996; 93: 1043-1065. The method described calculates the heart rate variability parameters of the subject's time domain (Time Domain), ie heartbeat cycle, heart rate, heart rate variability (HRV). (c) Calculate the heart rate variability parameter of the subject's frequency domain according to the above literature, ie total power (Total Power) 'high frequency component (HF), low frequency component (LF), and low frequency component / high frequency Component ratio.
38 ί。了 r\ 1 丨 Elf ___ j 77 (d)依上述文獻將時間範圍之心率變異性與頻率範圍 之總變異度定義為自律神經活性指標;將頻率範 圍之向頻成份(HF)及高頻成份百分比(HF/(CHF + ?))x 100%)定義為副交感神經活性指標;將頻率 範圍之低頻成份(LF)及低頻成份百分比 X 100%)定義為交感神經活性指 標;將低頻成份/高頻成份比值(LF/HF)定義為交感 /副交感神經平衡指標。 (e)此外,受測者在上述血壓波型測試之同時,也接 受5分鐘標準心電圖機(ECG)測試(連接法為標準 之三電極法,LeadI,II,及爪,且以Leadn之 貝料為計算來源),並依上述文獻計算時間及頻率 範圍之各心率變異參數。 (0測試結果如表2。兩名健康志願受測者(代號A, B)之結果顯示標準心電圖機(ECG)測試法與本發 之非么"入式棱動脈波型技術所測得之心率變異 及自律神經活性指標結果具高度相似性。 39 132365238 ί. r\ 1 丨Elf ___ j 77 (d) According to the above literature, the total variability of heart rate variability and frequency range in the time range is defined as the index of autonomic nervous activity; the frequency component (HF) and high frequency components of the frequency range The percentage (HF/(CHF + ?)) x 100%) is defined as the indicator of parasympathetic activity; the low frequency component (LF) of the frequency range and the percentage of low frequency component X 100%) are defined as indicators of sympathetic activity; low frequency components/high The frequency component ratio (LF/HF) is defined as the sympathetic/parasympathetic balance indicator. (e) In addition, the subject also received a 5-minute standard electrocardiograph (ECG) test at the same time as the above-mentioned blood pressure waveform test (the connection method was a standard three-electrode method, LeadI, II, and claws, and was taken as Leadn's Bay). The material is calculated as the source), and the heart rate variability parameters of the time and frequency ranges are calculated according to the above documents. (0 test results are shown in Table 2. The results of two healthy volunteers (codes A, B) show that the standard electrocardiograph (ECG) test method and the original is not the same as the "inductive ridge wave type technology" The heart rate variability and autonomic nerve activity index results are highly similar. 39 1323652
^心率變異及自律神經活性指標測試結果 • Γ _____ 受測者代號 A 測試方法 hcg 本發明 ECG 木發明 測試姿勢 仰躺 仰 ’t、W /1 身尚 心跳週期(S) .^910 0.907 0.723 0.723 心率(次/min) s66 66 83 83 心率變異性(HRV) (ms);即標準偏差 45.1 46.0 57.1 55.4 總變異度 -— (Total Power) (ms*ms) 2037 2120 3265 3073 LF (ms*ms) ___420 426 413 418 LF% 63 61 32 31 HF (ms*ms) 275 894 943 ' HF% 38 39 68 69 LF/HF ___1.67 1.55 0.46 0.44 貫例4 :用_^受暖^身份辨識 本範例之儀H硬體與實例2類似,但M電感應器 改由以下之元件構成: (a)—個軟性電路版,作為壓電感應器之基底及基本 電路,其主體大小為6mm長(沿手長方向)x2〇mm 寬(沿手寬方向)X 0.5_厚;另其尾端連接器大小 ⑧ 40 1323652 為 6mm X 50mm x 〇.5mm。 ⑻三個陶曼PZT厂堅電元件’其中每個元件 長)χ4雌(寬)xImm厚,且沿手寬方向排列 、軟性電路版上,元件與元件之财 (可參考第5圖)。 之間距 該壓電感應器事先裝置於腕帶内’其步 3類似’另外,電路模峰了訊號處卵卩㈣,放大, 二,正)電路外,另增加一個多重訊號掃描写 (Multi-Plex外置於訊號處理電路之前。當料 二腕二主機之操控軟體驅動多重訊號掃描器依次操 i電感應益上之各個元件之電波訊號,並 個元件之血壓波型之波高( :二 -步選擇具最大波高之壓電呆控軟體進 门心&冤疋件作為血壓波形資料 = 其广兩個元件則不再利用。之後操控 订找哥最適測試氣壓步驟’如實例i所示,在最適測 成氣壓下,進行十秒鐘之連續血壓波型測試。受測者 A,B ’及C各接受第一次測試(第17, 18, 19圖), Γ第天測者之一以不明身份再接受第二次測試 :20圖);測試結果之血壓波型及其參數值列於圖 17-20及表3。由圖18,20艿主, .al ⑽ 及表3可以發現,三個受 剩者之血壓波㈣性參數值均各不相同。再進一部八 該不明身份受測者具2_波血壓波型,顯然與受二 者C之3-波血壓波型極為不同(參考第19,2〇圖及表 皮型之所有41個特徵參數值(包^ 1323652 波峰數’時間,壓力’斜角,面積,及其標準化 (Normalized)特性參數值)同等看待(q ^ weighting),並且將每一參數值之相似性定義為八 特徵基準線之±20%内,則該不明身份受測者妓、丨於 個參數值(93%)與受測者A滿足相似性,而:^ 38 :ί,(61%)與受測者B滿足相似性,因此進有25 Ν疋该不明身份受測者 匕進一步 設計吻合)。 …為党測者Α(其結果與實驗 ⑧ 42 表3 受測者血壓波型特性參數值 受測者/ 參數 A B C 不明身分 波峰數 2 2 3 2 主波峰點 B B B B 主波谷點 A,E A,E A,G A,E 次波峰點 D D D,F D 次波谷點 C C C,E C Tl=0.155 Tl=0.095 Tl=0.090 Tl=0.160 時間參數 T2=0.195 T2=0.230 T2=0.100 T2=0.165 T3=0.055 T3=0.060 T3=0.045 T3=0.055 (sec) T4=0.345 T4=0.360 T4=0.100 T5=0.085 T6=0.590 T4=0.385 NT1=0.21 ΝΤ1=0·15 NT1=0.09 NT1-0.21 標準化 NT2=0.26 NT2=0.35 NT2=0.10 NT2=0.22 NT3=0.07 NT3=0.09 NT3=0.04 NT3=0.07 時間參數 NT4=0.46 NT4=0.55 NT4=0.10 NT5=0.08 NT6=0.58 NT4=0.50 Pl=34.1 Pl=37.5 Pl=25.7 Pl=34.2 壓力參數 P2=37.3 P2=40.4 P2=29.6 P2=37.4 P3=35.1 P3=38.7 P3=28.4 P3=35.2 (mV) P4=35.2 P4=38.8 P4=28.5 P5=27.3 P6=27.8 P4=35.3 43 1323652^ Heart rate variability and autonomic nerve activity index test results • Γ _____ Subject code A test method hcg The invention ECG wood invention test posture reclining 't, W / 1 body still heartbeat cycle (S) . ^ 910 0.907 0.723 0.723 Heart rate (times/min) s66 66 83 83 Heart rate variability (HRV) (ms); ie standard deviation 45.1 46.0 57.1 55.4 Total variability - (Total Power) (ms*ms) 2037 2120 3265 3073 LF (ms*ms ) ___420 426 413 418 LF% 63 61 32 31 HF (ms*ms) 275 894 943 ' HF% 38 39 68 69 LF/HF ___1.67 1.55 0.46 0.44 Example 4: Identification with _^ Heating ^ The instrument H hardware is similar to the example 2, but the M inductor is composed of the following components: (a) a flexible circuit board, as the base and basic circuit of the piezoelectric inductor, the body size is 6mm long (along Hand length direction) x2〇mm width (along the hand width direction) X 0.5_ thick; the other end connector size 8 40 1323652 is 6mm X 50mm x 〇.5mm. (8) Three Taoman PZT plant electrical components 'each of which is long) χ 4 female (wide) xImm thick, and arranged along the width of the hand, on the flexible circuit board, components and components (refer to Figure 5). The piezoelectric sensor is pre-installed in the wristband with the same 'step 3'. In addition, the circuit is peaked at the signal (4), amplified, two, positive) circuit, and a multi-signal scan is added (Multi- The Plex is placed outside the signal processing circuit. When the control software of the second wrist and the second host drives the multi-signal scanner, the electric wave signals of the various components of the electric induction sensor are sequentially operated, and the blood pressure wave type of the components is high (: 2 - Step select the piezoelectric control software with the maximum wave height into the door center & as a blood pressure waveform data = its two components are no longer used. After that, the operation of the optimal pressure test step is shown as shown in example i. Under the optimum pressure measurement, a continuous blood pressure wave test was performed for ten seconds. Subjects A, B' and C each received the first test (Figs. 17, 18, 19), and one of the testers on the first day Unidentified and accept the second test: 20)); the blood pressure waveform and its parameter values of the test results are listed in Figure 17-20 and Table 3. From Figure 18, 20 艿 main, .al (10) and Table 3 can be found, The blood pressure wave (four) parameter values of the three remaining people are all different. Into a part of the unidentified person with a 2_ wave blood pressure waveform, apparently very different from the 3-wave blood pressure waveform of the two C (refer to the 19th, 2nd map and the skin type all 41 characteristic parameter values (Package ^ 1323652 peak number 'time, pressure 'bevel angle, area, and its normalized characteristic parameter value) are treated equally (q ^ weighting), and the similarity of each parameter value is defined as eight feature baseline Within ±20%, the unidentified subject 妓, 丨, a parameter value (93%) and the subject A satisfy the similarity, and: ^ 38 : ί, (61%) and the subject B satisfies similarity Sex, so there are 25 Ν疋 the unidentified subjects 匕 further design fits.) ... for the party tester 其 (the results and the experiment 8 42 Table 3 test subjects blood pressure wave characteristics parameter value testee / parameter ABC Unknown identity peak number 2 2 3 2 Main peak point BBBB Main wave valley point A, EA, EA, GA, E secondary peak point DDD, FD secondary valley point CCC, EC Tl=0.155 Tl=0.095 Tl=0.090 Tl=0.160 Time parameter T2=0.195 T2=0.230 T2=0.100 T2=0.165 T3=0.055 T3=0.060 T3=0.045 T3=0.055 (sec) T4=0.345 T4=0.360 T4=0.100 T5=0.085 T6=0.590 T4=0.385 NT1=0.21 ΝΤ1=0·15 NT1=0.09 NT1-0.21 Normalized NT2=0.26 NT2=0.35 NT2=0.10 NT2=0.22 NT3=0.07 NT3= 0.09 NT3=0.04 NT3=0.07 Time parameter NT4=0.46 NT4=0.55 NT4=0.10 NT5=0.08 NT6=0.58 NT4=0.50 Pl=34.1 Pl=37.5 Pl=25.7 Pl=34.2 Pressure parameter P2=37.3 P2=40.4 P2=29.6 P2=37.4 P3=35.1 P3=38.7 P3=28.4 P3=35.2 (mV) P4=35.2 P4=38.8 P4=28.5 P5=27.3 P6=27.8 P4=35.3 43 1323652
標準化 壓力參數 NP1=0.914 NP2=0.941 NP3=0.944 NP 卜 0.928 NP2=0.958 NP3=0.960 NP1=0.869 NP2=0.959 NP3=0.963 NP4=0.938 NP5=0.940 NP1=0.914 NP2=0.942 NP3=0.945 Dl=20.65 Dl=30.10 Dl:43.00 Dl=20.06 D2=11.28 D2=7.39 D2=12.00 D2=13.09 D3=1.82 D3=1.67 D3=2.44 D3=2.00 D4=3.19 D4=3.89 D4= 7.50 D4= 2.65 斜角參數 D5=31.93 D5=37.49 D5=0.82 D5=33.15 D6=5.01 D6=5.56 D6=3.68 D6=4.65 D7=55.00 D8=9.94 D9=4.50 ND 1=0.415 ND 卜 0.484 ND1=1.469 ND1=0.411 ND2=0.227 ND2=0.119 ND2=0.410 ND2=0.268 ND3=0.037 ND3=0.027 ND3=0.083 ND3=0.040 標準化 ND4= 0.064 ND4=0.063 ND4= 0.256 ND4= 0.054 々、隊么么各L ND5=0.642 ND5=0.603 ND5=0.028 ND5=0.679 斜角參数 ND6=0.101 ND6=0.090 ND6=0.126 ND6=0.094 ND7=1.879 ND8=0.339 ND9=0.154 面積參數 Al=5.53 A卜 3.70 A1 = 2.49 Al-5.72 A2= 7.06 A2=9.10 A2 = 2.90 A2= 5.99 A3= 1.10 A3= 1.162 A3 = 1.28 A3= 1.94 A4= 11.95 A4= 13.72 A4 = 2.81 A4= 13.40 A5= 12.59 A5= 12.80 A5 = 2.36 A5= 11.71 A6= 13.05 A6= 14.88 A6= 15.76 A6= 15.34 44 1323652 A7= 25.64 Α7= 27.68 Α7 = 5.39 Α8 = 4.09 Α9 = 18.12 Α10=27.60 Α7= 27.05 標準化 ΝΑ 1=0.216 ΝΑ1=0.134 ΝΑ1=0·090 ΝΑ1=0.211 面積參數 ΝΑ2=0.275 ΝΑ2=0.329 ΝΑ2=0.105 ΝΑ2=0.221 ΝΑ3=0·043 ΝΑ3=0.042 ΝΑ3=0.046 ΝΑ3=0.072 ΝΑ4=0.466 ΝΑ4=0.496 ΝΑ4=0.102 ΝΑ4=0.495 ΝΑ5=0.491 ΝΑ5=0.462 ΝΑ5=0.086 ΝΑ5=0.433 ΝΑ6=0.509 ΝΑ6=0.538 ΝΑ6=0.571 ΝΑ7=0.195 ΝΑ8=0.148 ΝΑ9=0.657 ΝΑ6=0.567 註:(1)小寫a,b,c,d,e,f,g等為時間點,單位 為秒。 (2) 大寫八,;8,(:,0,£,?,0等為血壓波型 曲線上之點,座標單位為(mV,秒)。 (3) 面積參數(如AabB)簡化定義為四角落點形成 之梯形面積。 45 【圖式簡單說明】 第1圖係本發明之系統方塊圖。 第2圖係本發明使用壓電感應之實施例圖。 第3a圖係本發明使用時氣袋氣壓與時間之關係 第3b圖係本發明使用時血壓波形訊號與氣壓關 係圖。 ⑧ 第 3c :圖係本發明使用時手聣橈動脈波型圖 〇 第 4 圖係本發明使用壓電感應之另一實 施例 圖< > 第 5 圖係本發明使用壓電感應之再一實 施例 圖。 第 6 圖係本發明使用壓電感應之又一實 施例 圖。 第 7 圖係本發明之操作軟體動作流程圖。 第 8 圖係本發明以血壓脈波量測平均血壓 之示 圖。 第 9a 圖係使用本發明測得之橈動脈波型一 示範 圖。 第 9b 圖係使用本發明測彳^動脈波型另 一示 範圖 〇 第 9c 圖係使用本發明測得之^㈣㈣ 一示 範圖 〇 第 10 1 圖係使用本發明—, 3 46 1323652 第11圖係使用本發明測得之呼吸波型示圖。 第12圖係使用本發明測得之另一呼吸波型示 圖 第13圖係使用本發明利用橈動脈波型偵測咳嗷 及打噴嚏示圖。 第14圖係本發明使用於醫院隔離病房生理訊號 之監控系統圖。 第15圖係本發明使用於居家隔離民眾生理訊號 之監控糸統圖。 第16圖係本發明之另—使用示圖。 第17圖係使用本發明測得之手聣橈動脈波型 圖。 第18a圖係使用本發明測得之第一手脱燒動脈 波型圖。 弟18b圖係使用本發明測媒 > 妨 4β州侍之第二手脘橈動脈 波型圖。 型圖 第19圖係使用本發明測得之第 手脘橈動脈波 型圖 第20圖係使用本發明測得之第四手脱橈動脈波 47 1323652 【主要元件符號說明】 1 ' 1 a :壓電感應 11 :壓電元件 2、 3a :腕帶 2a :監視器主機 3 : 幫浦 4 : 洩氣閥 5 : 導氣管 6 : 電路模組 7 : 氣壓計 8 : 操作軟體 91 :電源 9 : 儀器主機 ⑧Normalized pressure parameters NP1=0.914 NP2=0.941 NP3=0.944 NP BU 0.928 NP2=0.958 NP3=0.960 NP1=0.869 NP2=0.959 NP3=0.963 NP4=0.938 NP5=0.940 NP1=0.914 NP2=0.942 NP3=0.945 Dl=20.65 Dl= 30.10 Dl:43.00 Dl=20.06 D2=11.28 D2=7.39 D2=12.00 D2=13.09 D3=1.82 D3=1.67 D3=2.44 D3=2.00 D4=3.19 D4=3.89 D4= 7.50 D4= 2.65 Oblique angle parameter D5=31.93 D5 =37.49 D5=0.82 D5=33.15 D6=5.01 D6=5.56 D6=3.68 D6=4.65 D7=55.00 D8=9.94 D9=4.50 ND 1=0.415 ND Bu0.484 ND1=1.469 ND1=0.411 ND2=0.227 ND2=0.119 ND2= 0.410 ND2=0.268 ND3=0.037 ND3=0.027 ND3=0.083 ND3=0.040 Normalized ND4= 0.064 ND4=0.063 ND4= 0.256 ND4= 0.054 々,队么么 each L ND5=0.642 ND5=0.603 ND5=0.028 ND5=0.679 Bevel Parameter ND6=0.101 ND6=0.090 ND6=0.126 ND6=0.094 ND7=1.879 ND8=0.339 ND9=0.154 Area parameter Al=5.53 Ab 3.70 A1 = 2.49 Al-5.72 A2= 7.06 A2=9.10 A2 = 2.90 A2= 5.99 A3 = 1.10 A3= 1.162 A3 = 1.28 A3= 1.94 A4= 11.95 A4= 13.72 A4 = 2.81 A4= 13.40 A5= 12.59 A5= 12.80 A5 = 2.36 A5= 11.71 A6= 13.0 5 A6= 14.88 A6= 15.76 A6= 15.34 44 1323652 A7= 25.64 Α7= 27.68 Α7 = 5.39 Α8 = 4.09 Α9 = 18.12 Α10=27.60 Α7= 27.05 Normalization ΝΑ 1=0.216 ΝΑ1=0.134 ΝΑ1=0·090 ΝΑ1=0.211 Area Parameter ΝΑ2=0.275 ΝΑ2=0.329 ΝΑ2=0.105 ΝΑ2=0.221 ΝΑ3=0·043 ΝΑ3=0.042 ΝΑ3=0.046 ΝΑ3=0.072 ΝΑ4=0.466 ΝΑ4=0.496 ΝΑ4=0.102 ΝΑ4=0.495 ΝΑ5=0.491 ΝΑ5=0.462 ΝΑ5=0.086 ΝΑ5= 0.433 ΝΑ6=0.509 ΝΑ6=0.538 ΝΑ6=0.571 ΝΑ7=0.195 ΝΑ8=0.148 ΝΑ9=0.657 ΝΑ6=0.567 Note: (1) Lowercase a, b, c, d, e, f, g, etc. are time points in seconds. (2) Uppercase eight,; 8, (:, 0, £, ?, 0, etc. are the points on the blood pressure waveform, and the coordinate unit is (mV, sec.) (3) The area parameter (such as AabB) is simplified as The trapezoidal area formed by the four corner points. 45 [Simplified description of the drawings] Fig. 1 is a block diagram of the system of the present invention. Fig. 2 is a view showing an embodiment of the present invention using piezoelectric induction. Fig. 3a is a gas used in the present invention. The relationship between the pressure of the bag and the time is shown in Fig. 3b as a relationship between the blood pressure waveform signal and the air pressure when the present invention is used. 8 3c: Fig. 4 is a diagram showing the waveform of the iliac artery when used in the present invention. Fig. 4 is a piezoelectric sensor used in the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a view showing still another embodiment of the present invention using piezoelectric sensing. FIG. 6 is a view showing still another embodiment of the present invention using piezoelectric sensing. Fig. 8 is a diagram showing the measurement of mean blood pressure by blood pressure pulse wave. Fig. 9a is an exemplary diagram of the radial artery waveform measured by the present invention. Fig. 9b is a diagram showing the use of the present invention Measuring 彳^ artery waveform Exemplary Fig. 9c is a model measured using the present invention. (4) (4) An exemplary diagram 〇 10 1 is the use of the present invention - 3 46 1323652 Fig. 11 is a respiratory waveform pattern measured using the present invention. Fig. 13 is a diagram showing the use of the present invention to detect cough and sneeze using a radial artery pattern. Fig. 14 is a physiological signal used in a hospital isolation ward according to the present invention. Figure 15 is a monitoring system diagram of the present invention for isolating the physiological signals of the people at home. Figure 16 is a further diagram of the use of the present invention. Figure 17 is a handcuff measured using the present invention. Arterial waveform pattern. Fig. 18a is a first-hand deflagration arterial waveform pattern measured by the present invention. Brother 18b is a second-hand radial artery waveform diagram using the present invention> Fig. 19 is a first hand radial artery waveform measured using the present invention. Fig. 20 is a fourth hand dislocation arterial wave measured using the present invention 47 1323652 [Explanation of main component symbols] 1 ' 1 a : Piezoelectric induction 11 : Piezoelectric element 2, 3a : Wrist strap 2a : Monitor main unit 3 : Pump 4 : Vent valve 5 : Air duct 6 : Circuit module 7 : Barometer 8 : Operating software 91 : Power supply 9 : Instrument main unit 8
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093137742A TW200618772A (en) | 2004-12-07 | 2004-12-07 | Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093137742A TW200618772A (en) | 2004-12-07 | 2004-12-07 | Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200618772A TW200618772A (en) | 2006-06-16 |
TWI323652B true TWI323652B (en) | 2010-04-21 |
Family
ID=45074086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093137742A TW200618772A (en) | 2004-12-07 | 2004-12-07 | Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200618772A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI409051B (en) * | 2007-12-10 | 2013-09-21 | Univ Nat Yang Ming | A device and a method of improved estimation of pressure at remote site by brachial oscillometric waveform analysis |
TWI475977B (en) * | 2012-06-20 | 2015-03-11 | Univ Nat Yang Ming | A method for estimating central aortic pulse pressure by cuff pressure pulse wave oscillation signals and device thereof |
-
2004
- 2004-12-07 TW TW093137742A patent/TW200618772A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200618772A (en) | 2006-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10986465B2 (en) | Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation | |
US20230072213A1 (en) | Systems and methods for multivariate stroke detection | |
US20220192513A1 (en) | Remote Physiological Monitor | |
Khan et al. | Biometric systems utilising health data from wearable devices: applications and future challenges in computer security | |
US10770182B2 (en) | Systems and methods for assessing the health status of a patient | |
US8706464B2 (en) | Health data dynamics, its sources and linkage with genetic/molecular tests | |
US8855757B2 (en) | Mobile wellness device | |
JP5859979B2 (en) | Health indicators based on multivariate residuals for human health monitoring | |
US20060195035A1 (en) | Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof | |
US20150057512A1 (en) | Wearable heart failure monitor patch | |
US20170143268A1 (en) | Aggregation and analysis of scale-based user data and remote user-physiologic device-based user data | |
US20130131465A1 (en) | Biomeasurement device, biomeasurement method, control program for a biomeasurement device, and recording medium with said control program recorded thereon | |
CN108882870A (en) | Biont information analytical equipment, system and program | |
JP2015512754A (en) | e-card ECG monitor | |
CN113784666A (en) | Patch-based physiological sensor | |
WO2021154936A1 (en) | Simultaneous monitoring of ecg & bioimpedance via shared electrodes | |
WO2017117739A1 (en) | Sleep monitoring system | |
US20170146389A1 (en) | Scale-based biometric authorization of multiple communication modes of the scale | |
TWI323652B (en) | ||
TWI421057B (en) | Apparatus for measuring opening and closing functions of a heart valve | |
Singh et al. | Making sleep study instrumentation more unobtrusive | |
KR101593684B1 (en) | Personal authentication device and method using film-type bio-signal measurement device |