1305980 九、發明說明: -【發明所屬之技術領域】 本發明涉及通訊系統,尤其涉及一種無線收發系統。 【先前技術】 參閱圖1,為傳統無線收發系統之示意圖。傳統的無線收 發系統包括一收發器10、一塔頂放大器(Tower Mounted1305980 IX. Description of the invention: - [Technical field to which the invention pertains] The present invention relates to a communication system, and more particularly to a wireless transceiver system. [Prior Art] Referring to Figure 1, a schematic diagram of a conventional wireless transceiver system. A conventional wireless transceiver system includes a transceiver 10 and a tower top amplifier (Tower Mounted)
Amplifier ’ TMA) 20及一天線30。天線30與塔頂放大器20 ®位於室外,且塔頂放大器20連接於天線30,收發器1〇位於室 内。室内之收發器10藉由一電纜(Cable)連接於室外之塔頂 放大器20。故,在收發器10與塔頂放大器2〇之間存在傳輸損 失’其包括電繞損失(Cable Loss)及連接損失(Connector Loss )。 由於收發器10與塔頂放大器20之間的傳輸損失在無線收 I發系統安裝完成之前不能精確測量,所以塔頂放大器2〇不能 精確補償傳輸損失,可能會導致塔頂放大器2〇之輸出功率超 出法定之輸出功率,也可能導致塔頂放大器2〇不能工作於線 性區域,從而降低無線收發系統之效能。 【發明内容】 ' 有鑑於此,需要提供一種無線收發系統,其可用於精確補 償無線收發系統中的傳輸損失,提高無線收發系統之效能。 一種無線收發系統,用於補償傳輸損失,其包括一收發 器、一塔頂放大器及一傳輸損失檢測器。收發器用於以一傳送 Ϊ305980 •功率傳送一第一訊號。塔頂放大器藉由一電纜連接於收發器, '用於從收發器接收一第二訊號,並對第二訊號進行放大,第二 .訊號為第一訊號經由電纜衰減後之訊號。傳輸損失檢測器連接 於塔頂放大器,用於計算收發器與塔頂放大器之間的傳輸損 失。傳輸損失檢測器包括一第一射頻功率檢測器及一微控制 盗。第一射頻功率檢測器用於檢測第二訊號強度。微控制器用 於根據第二訊號強度及收發器之傳送功率計算收發器與塔頂 .放大器之間的傳輸損失,並根據傳輸損失產生一第一控制訊 號。塔頂放大器還用於根據第一控制訊號補償收發器與塔頂放 大器之間的傳輸損失。 藉由以下對具體實施方式詳細的描述結合附圖,將可輕易 的瞭解上述内容及此項發明之諸多優點。 【實施方式】 參閱圖2,為本發明無線收發系統(Wireless Transceiving B System) —實施方式之模組圖。在本實施方式中,無線收發系 統可精確補償傳輸損失,其包括一收發器(Transceiver) 100、 一塔頂放大器(Tower Mounted Amplifier,TMA) 200、一天 線(Antenna ) 300及一傳輸損失檢測器(Transport Loss Detector) 400。天線300與塔頂放大器200位於室外,且塔頂 放大器200連接於天線300,收發器100位於室内。室内之收 發器100藉由一電纜(Cable)連接於室外之塔頂放大器200, 故,在收發器100與塔頂放大器200之間存在傳輸損失。在本 8 1305980 實施方式中,傳輸損失包括電纜線路損失(Cable Loss)及連 -接損失(Connector Loss)。在其他實施方式中,傳輸損失可能 .還包括其他損失。 天線300用於收發訊號。收發器100用於以一傳送功率傳 送一第一訊號給塔頂放大器200。在收發器100與塔頂放大器 200之間存在傳輸損失,第一訊號經由電纜傳送到塔頂放大器 200時,衰減成為一第二訊號。故,收發器1〇〇之傳送功率與 籲第二訊號強度之差即為收發器100與塔頂放大器200之間的傳 輸損失。 塔頂放大器200用於從收發器100接收第二訊號,並對第 二訊號進行放大,第二訊號經由塔頂放大器200放大後成為一 第三訊號,再藉由天線300發射第三訊號。傳輸損失檢測器400 連接於塔頂放大器200,用於計算收發器100與塔頂放大器200 之間的傳輸損失,即用於計算收發器100之傳送功率與第二訊 號強度之差。傳輸損失檢測器400可包括於塔頂放大器200的 成品中。塔頂放大器200還用於根據傳輸損失檢測器400之計 算結果,精確補償收發器100與塔頂放大器200之間的傳輸損 失。 ' 塔頂放大器200包括一傳送放大模組210、一第一雙工器 (Duplexer) 220、一接收放大模組230、一第二雙工器240及 一避雷器(Lightning Protection) 250。第一雙工器220連接於 故發器100、傳送放大模組210及接收放大模組230之間,用 1305980 於將來自於收發器100之訊號傳送給傳送放大模組210,及將 來自於接收放大模組230之訊號傳送給收發器100。第二雙工 器240連接於傳送放大模組210、接收放大模組230及避雷器 250之間,用於將來自於傳送放大模組210之訊號經由避雷器 250傳送給天線300,及將來自於天線300之訊號經由避雷器 250傳送給接收放大模組230。避雷器250連接於天線300與 第二雙工器240之間,用於保護塔頂放大器200,以避免雷擊。 傳送放大模組210連接於第一雙工器220與第二雙工器 240之間,用於將第二訊號放大成為第三訊號,並藉由天線3〇〇 發射第三訊號。在本實施方式中’傳送放大模組21〇包括一可 調增益放大器(Variable Gain Amplifier ) 211及一固定增益放 大器(Fixed Gain Amplifier) 212。 在其他實施方式中’傳送放大模組210可根據需要而省略 所包括之放大器’亦可根據需要而包括其他濾波器、其他可調 增益放大器及其他固定增益放木器。 可調增益放大器211連接於第一雙工器220,用於對第二 訊號進行放大。固定增益放大器212連接於可調增益放大器 211與第二雙工器240之間,用於對來自於可調增益放大器 之訊號進行放大。 接收放大模組230連接於第一雙工器220與第二雙工器 240之間,用於對來自於天線300之訊號進行放大,並將所放 大之訊號經由電纜傳送給收發器1〇〇。在本實施方式中,接收 1305980 t 放大模組230包括一濾波器(Filter)231、一低雜訊放大器(Low ¥ • Noise Amplifier) 232、一可調增益放大器233及一固定增益放 .大器234。 在其他實施方式中’接收放大模組230可根據需要而省略 所包括之放大器或濾波器,亦可根據需要而包括其他濾波器、 其他可調增益放大器及其他固定增益放大器。 濾、波器231連接於第二雙工器240 ’用於對來自於天線3〇q •之訊號進行濾波,而得到有用之訊號。低雜訊放大器232連接 於濾波器231,用於對來自於濾波器231之訊號進行放大。可 調增ϋ放大器233連接於低雜訊放大器232,用於對來自於低 雜訊放大器232之訊號進行放大。固定增益放大器234連接於 可調增益放大器233與第一雙工器220之間,用於對來自於可 調增益放大器233之訊號進行放大。 在本實細*方式中,無線收發系統更包括一輕合器500,輕 籲合於第一雙工器220與傳送放大模組210之間,並連接於傳輸 損失檢測器400’用於將第二訊號耦合到傳輸損失檢測器4〇〇。 在本實施方式中,耦合器500為一方向耦合器。在其他實施方 式中,耦合器500亦可為其他耦合器。 傳輸損失檢測器400藉由耦合器500連接於塔頂放大器 200’用於計算收發器1〇〇與塔頂放大器2〇〇之間的傳輸損失, 亚將所計算之傳輸損失傳送給塔頂放大器200。在本實施方式 中,傳輸損失檢測器400包括一射頻功率檢測器(歸〇 11 1305980Amplifier ''TMA) 20 and an antenna 30. The antenna 30 and the tower amplifier 20® are located outdoors, and the tower amplifier 20 is connected to the antenna 30, and the transceiver 1 is located in the chamber. The indoor transceiver 10 is connected to the outdoor tower top amplifier 20 by a cable. Therefore, there is a transmission loss between the transceiver 10 and the tower amplifier 2', which includes cable loss and connection loss (Connector Loss). Since the transmission loss between the transceiver 10 and the tower amplifier 20 cannot be accurately measured before the installation of the wireless transceiver system is completed, the tower amplifier 2〇 cannot accurately compensate for the transmission loss, which may result in the output power of the tower amplifier 2〇. Exceeding the legal output power may also cause the tower amplifier 2 to not operate in a linear region, thereby reducing the performance of the wireless transceiver system. SUMMARY OF THE INVENTION In view of the above, it is desirable to provide a wireless transceiver system that can be used to accurately compensate for transmission loss in a wireless transceiver system and improve the performance of the wireless transceiver system. A wireless transceiver system for compensating for transmission loss, comprising a transceiver, a tower amplifier, and a transmission loss detector. The transceiver is configured to transmit a first signal at a power of Ϊ305980. The tower top amplifier is connected to the transceiver by a cable, 'for receiving a second signal from the transceiver and amplifying the second signal, and the second signal is the signal after the first signal is attenuated via the cable. The transmission loss detector is connected to the tower amplifier and is used to calculate the transmission loss between the transceiver and the tower amplifier. The transmission loss detector includes a first RF power detector and a micro-control thief. The first RF power detector is configured to detect the second signal strength. The microcontroller is configured to calculate a transmission loss between the transceiver and the tower and the amplifier based on the strength of the second signal and the transmission power of the transceiver, and generate a first control signal according to the transmission loss. The tower top amplifier is also used to compensate for transmission losses between the transceiver and the tower top amplifier based on the first control signal. The above and many of the advantages of the invention will be readily apparent from the Detailed Description of the Detailed Description. [Embodiment] FIG. 2 is a block diagram of a wireless transceiver system (Wireless Transceiving B System) according to an embodiment of the present invention. In the present embodiment, the wireless transceiver system can accurately compensate for transmission loss, and includes a transceiver (Transceiver) 100, a Tower Mounted Amplifier (TMA) 200, an antenna (Antenna) 300, and a transmission loss detector. (Transport Loss Detector) 400. The antenna 300 is located outdoors with the tower amplifier 200, and the tower amplifier 200 is connected to the antenna 300, and the transceiver 100 is located indoors. The indoor transceiver 100 is connected to the outdoor tower amplifier 200 by a cable, so that there is a transmission loss between the transceiver 100 and the tower amplifier 200. In the 8 1305980 embodiment, transmission losses include cable loss (Cable Loss) and Connector Loss (Connector Loss). In other embodiments, transmission loss may be. Other losses are also included. The antenna 300 is used to transmit and receive signals. The transceiver 100 is configured to transmit a first signal to the tower amplifier 200 with a transmission power. There is a transmission loss between the transceiver 100 and the tower amplifier 200, and the first signal is attenuated to a second signal when transmitted to the tower amplifier 200 via the cable. Therefore, the difference between the transmit power of the transceiver 1 and the strength of the second signal is the transmission loss between the transceiver 100 and the tower amplifier 200. The tower top amplifier 200 is configured to receive the second signal from the transceiver 100 and amplify the second signal. The second signal is amplified by the tower amplifier 200 to become a third signal, and the third signal is transmitted by the antenna 300. The transmission loss detector 400 is coupled to the tower amplifier 200 for calculating the transmission loss between the transceiver 100 and the tower amplifier 200, i.e., for calculating the difference between the transmission power of the transceiver 100 and the strength of the second signal. Transmission loss detector 400 can be included in the finished product of tower amplifier 200. The tower amplifier 200 is also used to accurately compensate for transmission losses between the transceiver 100 and the tower amplifier 200 based on the calculation results of the transmission loss detector 400. The tower amplifier 200 includes a transmission amplifying module 210, a first duplexer 220, a receiving amplifying module 230, a second duplexer 240, and a lightning protection device 250. The first duplexer 220 is connected between the transceiver 100, the transmission amplifying module 210 and the receiving and amplifying module 230, and transmits the signal from the transceiver 100 to the transmitting and amplifying module 210 by using 1305980, and will be from the transmitting amplifying module 210. The signal received by the amplification module 230 is transmitted to the transceiver 100. The second duplexer 240 is connected between the transmission amplifying module 210, the receiving and amplifying module 230, and the lightning arrester 250 for transmitting the signal from the transmitting and amplifying module 210 to the antenna 300 via the lightning arrester 250, and from the antenna. The signal of 300 is transmitted to the receiving amplification module 230 via the lightning arrester 250. A lightning arrester 250 is coupled between the antenna 300 and the second duplexer 240 for protecting the tower amplifier 200 from lightning strikes. The transmission amplifying module 210 is connected between the first duplexer 220 and the second duplexer 240 for amplifying the second signal into a third signal and transmitting a third signal through the antenna 3. In the present embodiment, the 'transmission amplifying module 21' includes a variable gain amplifier (211) and a fixed gain amplifier (Capable Gain Amplifier) 212. In other embodiments, the transmit amplification module 210 may omit the included amplifiers as needed. Other filters, other adjustable gain amplifiers, and other fixed gain placers may be included as desired. The adjustable gain amplifier 211 is coupled to the first duplexer 220 for amplifying the second signal. A fixed gain amplifier 212 is coupled between the adjustable gain amplifier 211 and the second duplexer 240 for amplifying the signal from the adjustable gain amplifier. The receiving and amplifying module 230 is connected between the first duplexer 220 and the second duplexer 240 for amplifying the signal from the antenna 300 and transmitting the amplified signal to the transceiver via the cable. . In this embodiment, the receiving 1305980 t amplification module 230 includes a filter 231, a low noise amplifier (Low ¥ • Noise Amplifier) 232, an adjustable gain amplifier 233, and a fixed gain amplifier. 234. In other embodiments, the receiving amplifier module 230 may omit the included amplifier or filter as needed, and may include other filters, other adjustable gain amplifiers, and other fixed gain amplifiers as needed. The filter and waver 231 is connected to the second duplexer 240' for filtering the signal from the antenna 3〇q to obtain a useful signal. A low noise amplifier 232 is coupled to the filter 231 for amplifying the signal from the filter 231. The adjustable booster amplifier 233 is coupled to the low noise amplifier 232 for amplifying the signal from the low noise amplifier 232. A fixed gain amplifier 234 is coupled between the adjustable gain amplifier 233 and the first duplexer 220 for amplifying the signal from the adjustable gain amplifier 233. In the present embodiment, the wireless transceiver system further includes a light clutch 500 that is slid between the first duplexer 220 and the transmission amplification module 210, and is connected to the transmission loss detector 400' for The second signal is coupled to the transmission loss detector 4A. In the present embodiment, the coupler 500 is a directional coupler. In other embodiments, coupler 500 can also be other couplers. The transmission loss detector 400 is coupled to the tower amplifier 200' by the coupler 500 for calculating the transmission loss between the transceiver 1 and the tower amplifier 2, and transmits the calculated transmission loss to the tower amplifier. 200. In the present embodiment, the transmission loss detector 400 includes a radio frequency power detector (guidance 11 1305980)
Frequency Power Detector ) 410、一類比 / 數位轉換器 -(Anal〇g/Digital Converter,A/D) 420、一微控制器(Micro -Controller ) 430 及兩個數位 / 類比轉換器(Digital /Analog Converter ’ D/A) 440、450。 在本實施方式中,微控制器430需知道第二訊號強度,則 需將第二訊號強度量化為一第一類比訊號,再將第一類比訊號 轉換為一第一數位訊號,然後,微控制器430根據第一數位訊 籲號即可得知第二訊號強度。 射頻功率檢測器410連接於耦合器500,用於檢測第二訊 號強度,並將第二訊號強度量化為第一類比訊號。在本實施方 式中,第一類比訊號為電壓訊號。在其他實施方式中,第一類 比訊號亦可為電流訊號。 類比/數位轉換器420連接於射頻功率檢測器410,用於將 第一類比訊號轉換為第一數位訊號。 鲁 微控制器430用於根據第二訊號強度及收發器wo之傳送 功率計算收發器100與塔頂放大器200之間的傳輸損失。在本 實施方式中’微控制器430連接於類比/數位轉換器420,用於 根據第一數位訊號及收發器1〇〇之傳送功率計算收發器1〇〇與 塔頂放大器200之間的傳輸損失。 在本實施方式中’收發器1〇〇之傳送功率已知,微控制器 43〇根據收發器100之屬性,如收發器ι00之型號,可得知收 發器100之傳送功率。 12 1305980 , 在其他實施方式中,若收發器100之傳送功率未知,則在 無線收發系統安裝前,傳輸損失檢測器400可藉由一已知傳輪 損失之電纜連接於收發器100。收發器100以其傳送功率傳送 —第四訊號到傳輸損失檢測器400。傳輸損失檢測器400從收 發器100接收一第五訊號,第五訊號為第四訊號經由電纜衰減 後之訊號’故,收發器1〇〇之傳送功率為第五訊號強度與電纜 之已知傳輸損失之和。微控制器430可藉由射頻功率檢測器 > 41〇與類比/數位轉換器420測得第五訊號強度,再計算第五訊 號強度與已知傳輸損失之和,即計算收發器1〇〇之傳送功率。 從而,微控制器430可得知收發器100之傳送功率。 在本實施方式中,微控制器430根據第一數位訊號可知第 二訊號強度’又由於收發器1〇〇之傳送功率與第二訊號強度之 差為收發器100與塔頂放大器200之間的傳輸損失。從而,微 控制器430可根據第一數位訊號及收發器1〇〇之傳送功率計算 >出收發器100與塔頂放大器200之間的傳輸損失。微控制器430 還儲存有一第一查詢表432及一第二查詢表433。 第一查詢表432包括可調增益放大器211之控制訊號與增 益之間的對照關係。微控制器430還用於根據第一查詢表432 及收發器100與放大器200之間的傳輸損失產生一第一數位控 制訊號。舉例而言,如果可調增益放大器211之控制訊號與增 益之間的對照關係為:控制電壓(即控制訊號)〇_l〇V線性對 應增益0-10dB’若收發器1〇〇與放大器200之間的傳輸損失為 13 1305980 6dB ’為了使可調增益放大器211補償6dB的傳輸損失,則第 .一數位控制訊號應為6V電壓訊號。 第二查詢表433包括可調增益放大器233之控制訊號與增 益之間的對照關係。微控制器430還用於根據第二查詢表433 及收發器100與放大器200之間的傳輸損失產生一第二數位控 制訊號。為了使可調增益放大器233能夠在塔頂放大器200接 收訊號時,對所接收之訊號預補償塔頂放大器200至收發器 ♦ 100的傳輸損失,微控制器430需要一直提供第二數位控制訊 號。 數位/類比轉換器440用於將第一數位控制訊號轉換為第 一類比控制訊號。在本實施方式中,第一類比控制訊號為電壓 訊號。在其他實施方式中,第一類比控制訊號亦可為電流訊號。 數位/類比轉換器450用於將第二數位控制訊號轉換為第 二類比控制訊號。在本實施方式中,第二類比控制訊號為電壓 籲訊號。在其他實施方式中,第二類比控制m號亦可為電流訊號。 塔頂放大器200還用於根據第一類比控制訊號補償收發器 100至塔頂放大器200的傳輸損失,及根據第二類比控制訊號 預補償塔頂放大器200至收發器1〇〇的傳輸損失。在本實施方 式中’當無線收發系統發送訊號時’可調增益放大器211還用 於根據第一類比控制訊號補償收發器100至塔頂放大器200的 傳輸損失。在上述舉例中’可調增益放大器200根據6V電壓 訊號補償6dB的傳輸損失。當無線收發系統接收訊號時’可調 14 1305980 -增益放大器233還用於根據第二類比控制訊號預補償塔頂放大 .器200至收發器100的傳輸損失。 . 參閱圖3,為本發明無線收發系統另一實施方式之模組 圖。本實施方式中的無線收發系統與圖2中的無線收發系統相 似。惟,本實施方式中的塔頂放大器200,更包括一射頻功率檢 測器600,傳輸損失檢測器400’更包括一開關460。本實施方 式之其他模組與圖2之實施方式相同,因此省略說明。 • 在本實施方式中,無線收發系統還可藉由傳輸損失檢測器 400’監控塔頂放大器200’之輸出功率。在無線收發系統初始安 裝階段,傳輸損失檢測器400’用於計算收發器1〇〇與塔頂放大 器200’之間的傳輸損失,其他時間則可以用於監控塔頂放大器 200之輸出功率。傳輸損失可能會由於一些非常狀況(例如, 颱風)或時間太久而發生變化’故,當非常裝狀況發生後或需 要定期檢測時,傳輸損失檢測器4〇〇,再次用於計算收發器1〇〇 •與塔頂放大器2〇〇,之間的傳輸損农,計算完成後,則繼續用於 監控塔頂放大器200’之輸出功率。 開關460連接於類比/數位轉換器42〇、射頻功率檢測器 410及射頻功率檢測器600之間,其受微控制器43〇控制,用 •於連接射頻功率檢測器410與類比/數位轉換器42〇,或連接射 頻功率檢測器600與類比/數位轉換器42〇。當開關46〇連接射 頻功率檢測器410與類比/數位轉換器42〇時,傳輸損失檢測 器400,用於計算收發器100與塔頂放大器2〇〇,之間的傳輸損 15 1305980 -失。當開關460連接射頻功率檢測器600與類比/數位轉換器 420時’傳輸損失檢測器4〇〇,用於監控塔頂放大器2〇〇,之輸出 功率。故’微控制器430可根據需要而使傳輸損失檢測器4〇〇, 用於計算收發器1〇〇與塔頂放大器2〇〇,之間的傳輸損失,或用 於監控塔頂放大器200,之輸出功率。 在本實施方式中’第二訊號經由傳送放大器21〇放大後成 為第三訊號。第三訊號強度等於塔頂放大器2〇〇,之輸出功率。 ►微控制器430需知道塔頂放大器2〇〇,之輸出功率,則需將第三 訊號強度量化為一第二類比訊號,再將第二類比訊號轉換為一 第二數位訊號’然後’微控制器43〇根據第二數位訊號即可得 知塔頂放大器200,之輸出功率。 射頻功率檢測器600連接於傳送放大模組21〇與第二雙工 器240之間,用於檢測第三訊號強度,並將第三訊號強度量化 為第二類比訊號。在本實施方式中,第二類比訊號為一電壓訊 唬.。在其他實施方式中,第二類比訊號亦可為一電流訊號。 類比/數位轉換器420還用於將第二類比訊號轉換為第二 數位訊號。 微控制器430還用於根據一法定功率與第二數位訊號監控 塔頂放大器200’之輸出功率,即監控傳送放大模組21〇之輸出 功率。在本實施方式中,微控制器43〇根據第二數位訊號可知 塔頂放大器200’之輸出功率。然後,微控制器430比較法定功 率與塔頂放大器200’之輸出功率。如果塔頂放大器2〇〇,之輸出 1305980 功率超過法定功率,則微控制器430根據法定功率、第二數位 汛號及第一查詢表432產生一第三數位控制訊號,以使塔頂放 大器200’調整其增益。舉例而言,若塔頂放大器之輸出功率超 過法定功率2dB,則為了使塔頂放大器2〇〇之輸出功率不超過 法疋功率,需使可調增益放大器211之增益降低2dB。若此時 可調增盃放大器211之增益為6dB,則為了使可調增益放大器 211之增益降低2dB,需使可調增益放大器211之增益為4dB。 右可調增盈放大器211之控制訊號與增益之間的對照關係為: 控制電壓(即控制訊號)〇_1〇v線性對應增益〇_1〇dB,則第三 數位訊號應為4V電壓訊號。 數位/類比轉換器440還用於將第三數位控制訊號轉換為 第二類比控制訊號。在本實施方式中,第三類比控制訊號為電 壓訊號。在其他實施方式中,第三類比控制訊號亦可為電流訊 號。 塔頂放大器200,還用於根據第三類比控制訊號調整其增 益’以使塔頂放大器200,之輸出功率不超過法定功率。在上述 舉例中’可調增益放大器211根據第三類比控制訊號降低其增 益。從而’使塔頂放大器200,之輸出功率不超出法定功率,進 而達到監控塔頂放大器200,之輸出功率之目的。 本發明實施方式之無線收發系統可藉由傳輸損失檢測器 400’精確計算收發器100與塔頂放大器200,之間的傳輸損失, 再藉由塔頂放大器200,精確補償傳輸損失,從而提高無線收發 17 1305980 :系統之效能。 . 此外,本發明實施方式之無線收發系統還可藉由傳輸損失 . 檢測器400’監控塔頂放大器200’之輸出功率,從而進一步提高 無線收發系統之效能。 綜上所述,本發明符合發明專利要件,爰依法提出專利申 請。惟,以上所述者僅為本發明之較佳實施方式,舉凡熟悉本 案技藝之人士,在援依本案發明精神所作之等效修飾或變化, • 皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 圖1係傳統無線收發系統之示意圖。 圖2係本發明無線收發系統一實施方式之模組圖。 圖3係本發明無線收發系統另一實施方式之模組圖。 【主要元件符號說明】 收發器 10 > 100 塔頂放大器 20 ' 200 ' 200, 天線 30 、 300 傳送放大模組 210 可調增益放大器 211 、 233 固定增益放大器 212 、 234 第一雙工器 220 接收放大模組 230 濾、波器 231 18 400,Γ305980 « :低雜訊放大器 .第二雙工器 . 避雷器 傳輸損失檢測器 射頻功率檢測器 A/D 微控制器 •第一查詢表 第二查詢表 D/A 開關 耦合器 232 240 250 400、 410、 420 430 432 433 440 460 500 600 、450Frequency Power Detector 410, a analog/digital converter-(Anal〇g/Digital Converter, A/D) 420, a Micro-Controller 430 and two digital/analog converters (Digital /Analog Converter 'D/A) 440, 450. In this embodiment, the microcontroller 430 needs to know the second signal strength, and then quantizes the second signal strength into a first analog signal, and then converts the first analog signal into a first digital signal, and then, the micro control. The device 430 can know the second signal strength according to the first digital call number. The RF power detector 410 is coupled to the coupler 500 for detecting the second signal strength and quantizing the second signal strength to the first analog signal. In this embodiment, the first analog signal is a voltage signal. In other embodiments, the first analog signal can also be a current signal. The analog/digital converter 420 is coupled to the RF power detector 410 for converting the first analog signal to the first digital signal. The Lu microcontroller 430 is configured to calculate the transmission loss between the transceiver 100 and the tower amplifier 200 based on the second signal strength and the transmit power of the transceiver. In the present embodiment, the microcontroller 430 is coupled to the analog/digital converter 420 for calculating the transmission between the transceiver 1 and the tower amplifier 200 based on the first digital signal and the transmission power of the transceiver 1〇〇. loss. In the present embodiment, the transmission power of the transceiver 1 is known, and the microcontroller 43 can know the transmission power of the transceiver 100 according to the attributes of the transceiver 100, such as the model of the transceiver ι00. 12 1305980, in other embodiments, if the transmit power of the transceiver 100 is unknown, the transmit loss detector 400 can be coupled to the transceiver 100 by a known loss of cable prior to installation of the wireless transceiver system. Transceiver 100 transmits a fourth signal to transmission loss detector 400 at its transmit power. The transmission loss detector 400 receives a fifth signal from the transceiver 100, and the fifth signal is the signal after the fourth signal is attenuated via the cable. Therefore, the transmission power of the transceiver 1 is the fifth signal strength and the known transmission of the cable. The sum of the losses. The microcontroller 430 can measure the fifth signal strength by the RF power detector > 41〇 and the analog/digital converter 420, and then calculate the sum of the fifth signal strength and the known transmission loss, that is, calculate the transceiver 1〇〇 Transmission power. Thus, the microcontroller 430 can know the transmit power of the transceiver 100. In this embodiment, the microcontroller 430 knows the second signal strength according to the first digital signal. The difference between the transmit power of the transceiver 1 and the second signal strength is between the transceiver 100 and the tower amplifier 200. Transmission loss. Therefore, the microcontroller 430 can calculate the transmission loss between the transceiver 100 and the tower amplifier 200 based on the first digital signal and the transmission power of the transceiver 1〇〇. The microcontroller 430 also stores a first lookup table 432 and a second lookup table 433. The first lookup table 432 includes a control relationship between the control signal and the gain of the adjustable gain amplifier 211. The microcontroller 430 is further configured to generate a first digital control signal based on the first lookup table 432 and the transmission loss between the transceiver 100 and the amplifier 200. For example, if the control signal and the gain of the adjustable gain amplifier 211 are in a control relationship: the control voltage (ie, the control signal) 〇_l〇V linearly corresponds to the gain 0-10 dB' if the transceiver 1 〇〇 and the amplifier 200 The transmission loss between the two is 13 1305980 6dB 'In order for the adjustable gain amplifier 211 to compensate for the 6dB transmission loss, the first digital control signal should be a 6V voltage signal. The second lookup table 433 includes a control relationship between the control signal and the gain of the adjustable gain amplifier 233. The microcontroller 430 is further configured to generate a second digital control signal based on the second lookup table 433 and the transmission loss between the transceiver 100 and the amplifier 200. In order for the adjustable gain amplifier 233 to receive the signal at the tower amplifier 200 and pre-compensate the transmission loss of the tower amplifier 200 to the transceiver ♦ 100 for the received signal, the microcontroller 430 needs to always provide the second digital control signal. Digital/analog converter 440 is used to convert the first digital control signal into a first analog control signal. In this embodiment, the first analog control signal is a voltage signal. In other embodiments, the first analog control signal can also be a current signal. The digital/analog converter 450 is operative to convert the second digital control signal into a second analog control signal. In this embodiment, the second analog control signal is a voltage signal. In other embodiments, the second analog control m number may also be a current signal. The tower top amplifier 200 is also operative to compensate for the transmission loss of the transceiver 100 to the tower amplifier 200 based on the first analog control signal and to precompensate the transmission loss of the tower amplifier 200 to the transceiver 1 根据 according to the second analog control signal. In the present embodiment, the 'adjustable gain amplifier 211' is used to compensate the transmission loss of the transceiver 100 to the tower amplifier 200 according to the first analog control signal when the wireless transceiver system transmits a signal. In the above example, the adjustable gain amplifier 200 compensates for 6 dB of transmission loss based on the 6V voltage signal. When the wireless transceiver system receives the signal, the tunable 14 1305980-gain amplifier 233 is also used to pre-compensate the transmission loss of the tower-top amplifier 200 to the transceiver 100 according to the second analog control signal. Referring to FIG. 3, it is a block diagram of another embodiment of a wireless transceiver system according to the present invention. The wireless transmission and reception system in this embodiment is similar to the wireless transmission and reception system in Fig. 2. However, the tower amplifier 200 in the present embodiment further includes a radio frequency power detector 600, and the transmission loss detector 400' further includes a switch 460. The other modules of the present embodiment are the same as those of the embodiment of Fig. 2, and thus the description thereof will be omitted. • In the present embodiment, the wireless transceiver system can also monitor the output power of the tower amplifier 200' by the transmission loss detector 400'. In the initial installation phase of the wireless transceiver system, the transmission loss detector 400' is used to calculate the transmission loss between the transceiver 1" and the tower amplifier 200', and other times can be used to monitor the output power of the tower amplifier 200. Transmission loss may change due to some extraordinary conditions (for example, typhoon) or time too long. Therefore, when a very loaded condition occurs or when periodic detection is required, the transmission loss detector 4〇〇 is used again to calculate the transceiver 1传输•The transmission loss between the tower and the tower amplifier 2,, after the calculation is completed, continues to monitor the output power of the tower amplifier 200'. The switch 460 is connected between the analog/digital converter 42A, the RF power detector 410 and the RF power detector 600, and is controlled by the microcontroller 43 to connect the RF power detector 410 with the analog/digital converter. 42〇, or connect the RF power detector 600 with the analog/digital converter 42〇. When the switch 46 is connected to the RF power detector 410 and the analog/digital converter 42A, the transmission loss detector 400 is used to calculate the transmission loss between the transceiver 100 and the tower amplifier 2〇〇. When the switch 460 is connected to the RF power detector 600 and the analog/digital converter 420, the transmission loss detector 4 is used to monitor the output power of the tower amplifier 2A. Therefore, the microcontroller 430 can cause the transmission loss detector 4 to calculate the transmission loss between the transceiver 1 and the tower amplifier 2, or to monitor the tower amplifier 200, as needed. Output power. In the present embodiment, the second signal is amplified by the transmission amplifier 21 to become a third signal. The third signal strength is equal to the output power of the tower amplifier 2〇〇. ► The microcontroller 430 needs to know the output power of the tower amplifier 2〇〇, and then quantize the third signal strength to a second analog signal, and then convert the second analog signal into a second digital signal 'and then' micro The controller 43 can know the output power of the tower amplifier 200 based on the second digital signal. The RF power detector 600 is connected between the transmission amplifying module 21A and the second duplexer 240 for detecting the third signal strength and quantizing the third signal strength to the second analog signal. In this embodiment, the second analog signal is a voltage signal. In other embodiments, the second analog signal can also be a current signal. The analog/digital converter 420 is also operative to convert the second analog signal to a second digital signal. The microcontroller 430 is further configured to monitor the output power of the tower amplifier 200' according to a legal power and a second digital signal, that is, to monitor the output power of the transmission amplification module 21'. In the present embodiment, the microcontroller 43 可 knows the output power of the tower amplifier 200' based on the second digital signal. Microcontroller 430 then compares the legal power to the output power of tower amplifier 200'. If the tower amplifier 2〇〇, the output 1305980 power exceeds the legal power, the microcontroller 430 generates a third digit control signal according to the legal power, the second digit nickname and the first lookup table 432 to enable the tower amplifier 200. 'Adjust its gain. For example, if the output power of the tower amplifier exceeds the legal power by 2 dB, the gain of the adjustable gain amplifier 211 should be reduced by 2 dB in order to make the output power of the tower amplifier 2〇〇 not exceed the normal power. If the gain of the adjustable booster amplifier 211 is 6 dB at this time, in order to reduce the gain of the adjustable gain amplifier 211 by 2 dB, the gain of the adjustable gain amplifier 211 is required to be 4 dB. The control relationship between the control signal and the gain of the right adjustable gain amplifier 211 is: control voltage (ie, control signal) 〇_1〇v linear corresponding gain 〇_1〇dB, then the third digital signal should be 4V voltage signal . The digital/analog converter 440 is also operative to convert the third digital control signal to a second analog control signal. In this embodiment, the third analog control signal is a voltage signal. In other embodiments, the third analog control signal can also be a current signal. The tower top amplifier 200 is also operative to adjust its gain based on the third analog control signal such that the output power of the tower amplifier 200 does not exceed the legal power. In the above example, the 'adjustable gain amplifier 211 reduces its gain based on the third analog control signal. Thus, the output power of the tower amplifier 200 does not exceed the legal power, thereby achieving the purpose of monitoring the output power of the tower amplifier 200. The wireless transceiver system of the embodiment of the present invention can accurately calculate the transmission loss between the transceiver 100 and the tower amplifier 200 by the transmission loss detector 400', and then accurately compensate the transmission loss by the tower amplifier 200, thereby improving the wireless Transceiver 17 1305980: System performance. In addition, the wireless transceiver system of the embodiment of the present invention can also monitor the output power of the tower amplifier 200' by transmission loss. The detector 400' further improves the performance of the wireless transceiver system. In summary, the present invention complies with the requirements of the invention patent, and proposes a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of a conventional wireless transceiver system. 2 is a block diagram of an embodiment of a wireless transceiver system of the present invention. 3 is a block diagram of another embodiment of a wireless transceiver system of the present invention. [Main component symbol description] Transceiver 10 > 100 Tower amplifier 20 ' 200 ' 200, Antenna 30, 300 Transmit amplification module 210 Adjustable gain amplifier 211, 233 Fixed gain amplifier 212, 234 First duplexer 220 Receive Amplifier Module 230 Filter, Wave 231 18 400, Γ305980 « : Low Noise Amplifier. Second Duplexer. Lightning Arrester Transmission Loss Detector RF Power Detector A/D Microcontroller • First Query Table Second Query Table D/A Switch Coupler 232 240 250 400, 410, 420 430 432 433 440 460 500 600 , 450
1919