TWI301617B - Method and apparatus to improve nonvolatile memory data retention - Google Patents
Method and apparatus to improve nonvolatile memory data retention Download PDFInfo
- Publication number
- TWI301617B TWI301617B TW95118673A TW95118673A TWI301617B TW I301617 B TWI301617 B TW I301617B TW 95118673 A TW95118673 A TW 95118673A TW 95118673 A TW95118673 A TW 95118673A TW I301617 B TWI301617 B TW I301617B
- Authority
- TW
- Taiwan
- Prior art keywords
- reference current
- data
- result
- sense
- memory
- Prior art date
Links
Landscapes
- Read Only Memory (AREA)
Description
J301617 九、發明說明: 【發明所屬之技術領域】 本發明之技術領域係關於非揮發記憶體。呈 電細或其它造成資料儲存錯誤(如讀而;择: 邊界喪失)所影響之非揮發記憶細胞内資料保存之技術^役及 【先前技術】 藉由賴-纽階臨界賴演算法,可増加於 咖細胞中之儲存密度,通常每-非揮發記憶細胞編有丄少 二位7L。對電荷捕捉記憶細胞、奈米微晶記憶細胞及其它且 有局部電荷結構之記憶細胞而言,每—局部電荷部份多 階臨界電壓演算法中每一細胞編碼至少二位元。 、7 ”,而,如此之多階臨界電壓演算法需許多不同之臨界電 壓狀悲。例如,一 2-位元設計需要四個臨界電壓狀•能、一 3 位元設計需要人健界電壓狀態等。若欲於非揮發;;憶細胞 允許之臨界電壓範圍内擠壓出這些多個臨界電壓狀態,介於 鄰近臨界電壓狀態之間之邊界將受窄縮,而造成不^臨界電 壓狀態聚集並更為接近。然而,如此之一臨界電壓演算法將 更谷易因電荷洩漏、邊界喪失及干擾而造成資料錯誤。 第1圖顯示一用於一非揮發記憶細胞之臨界電壓設計演 算法例。第1圖顯示:一低臨界電壓狀態110之〇·8ν最初分 佈、循環邊界120為0.4V、室溫與讀出干擾13〇為〇15V、 最終臨界電壓區間140為0.7V、電荷損失邊界15〇為〇·7 v 及-局臨界電壓狀態16〇為〇·7ν之分佈。下表顯示對應於沿 電壓軸線不同點之臨界電壓。 5 J301617J301617 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The technical field of the present invention relates to non-volatile memory. Techniques for preservation of data in non-volatile memory cells affected by electrical thinning or other data storage errors (such as reading; selection: loss of boundary) and [prior art] by Lai-Newton Critical Lay algorithm The storage density added to the cells in the coffee cells is usually reduced by two 7L per non-volatile memory cells. For charge trapping memory cells, nanocrystalline memory cells, and other memory cells with localized charge structures, each cell in the partial charge partial multi-step threshold voltage algorithm encodes at least two bits. , 7", and, so many multi-step threshold voltage algorithms require many different threshold voltages. For example, a 2-bit design requires four threshold voltages, and a 3-bit design requires human boundary voltage. State, etc. If you want to squeeze out these multiple threshold voltage states within the threshold voltage range allowed by the cell, the boundary between adjacent critical voltage states will be narrowed, resulting in a non-critical voltage state. Aggregation is closer. However, such a threshold voltage algorithm will cause data errors due to charge leakage, boundary loss and interference. Figure 1 shows an example of a threshold voltage design algorithm for a non-volatile memory cell. Figure 1 shows: 低·8ν initial distribution of a low threshold voltage state 110, loop boundary 120 is 0.4V, room temperature and readout interference 13〇 is 〇15V, final threshold voltage interval 140 is 0.7V, charge loss boundary 15〇 is 〇·7 v and - the local critical voltage state 16〇 is the distribution of 〇·7ν. The following table shows the threshold voltage corresponding to different points along the voltage axis. 5 J301617
邊界模式15μΑ 目標元件ΙμΑ Vth 111 115 —^_1^5V 1.90V 2.3V 125 2.7V 135 __4.0V 2.85V 145 3.55V 155 5.4 V 4.25V 165 L__6.1V _ 4.95V 因此’較佳為能將不同臨界電壓狀態聚集而更接近在一 起’且不會因擾亂鄰近臨界電壓狀態而使資料儲存錯誤之危 險增加。 【發明内容】 本發明之一目的係關於一非揮發記憶體積體電路,其包 含非揮發記憶細胞,比較記憶細胞,感測放大器電路及控制 電路。 魯 非揮發記憶細胞包括資料細胞及邊界檢測細胞。資料細 胞係設成資料群。於某些實施例中,資料群係藉由控制特定 非揮發性記憶細胞之字元線而決定。資料細胞具有一第一工 作邊界。於某些實施例中,資料細胞具有一少於0.7V之電荷 損失邊界、一約為0.2V之電荷損失邊界、一少於〇·4ν之循 環邊界、及該資料細胞係具有至少二邏輯位階之多位階細胞。 此參考電流電路產生參考電流。每一參考電流具有一高 感測區間以感測該高臨界電壓及一低感測區間以感測該低臨 界電壓。這些參考電流是1)一標準參考電流,相關聯於一具 有一第一高感測區間及一第一低感測區間之第一工作區間, 6 J301617 2)一第一監控參考電流,相關聯於一第二工作區間,該第二 工作區間具有一較窄於該第一高感測區間之第二高感測區間 及較見於該弟一低感測區間之第二低感測區間,·及3)一第 二監控參考電流,相關聯於一第三工作區間,該第三工作區 =具有二較寬於該第一高感測區間之第三高感測區間及一較 窄於該第一低感測區間之第三低感測區間。 乂於某些實施例中,第一及第二監控參考電流兩者至少之 一係高於標準參考電流與一高臨界電壓細胞之低邊界。於另 一些實施例中,第一及第二監控參考電流兩者至少之一係低 於標準參考電流與一低臨界電壓細胞之高邊界。 ^ 此感測放大器電路利用該標準參考電流來感測自該些 複數個資料細胞之一記憶電流,以產生一第一結果。此感測 放大器電路也會利用下列兩者之一來感測記憶電流:利用第 一監控參考電流以產生一第二結果,及利用第二監控參考電 流以產生一第三結果。 、某些實施例中,感測放大器包括一單一組感測放大器以 感測自該些資料細胞之記憶電流,與該標準參考電流,及與 至J a亥第一及弟·一監控參考電流之一串聯之。某另一些實施 例中,感測放大器包括一多組感測放大器以分別感測利用該 標準參考電流,及利用至少該第一及第二監控參考電流之一 自該些負料細胞之5己憶電流。而在另一些實施例中,感測放 大器包括一多組感測放大器以分別感測利用該標準參考電 流,及利用該第一及第二監控參考電流自該些資料細胞之記 憶電流。 此比較邏輯,以比對該第一結果與自該感測放大器電路 的該第二結果及該第三結果之至少之一。在不同的實施例 中,該比較邏輯當該記憶電流落於該第二工作邊界之外或是 電荷自一非揮發記憶細胞損失時,會回應之一比對結果係為 7 J301617 錯誤的。 觸,ίίϋ施例/包含―該㈣電路之外部可存取姑 1…、有一顯不该積體電路係於使用中之輸出妝r取接 ΐ=:ί;==Γτ;:4 以: 口示該频—料 些實施例中’該第一結果控制應以該第二έ士果1笛 結果中哪一個與該第—結果作比對 ;= ,ί-資料細胞。舉例而言,此標準參考電 多工器以選取第二結果或第三結果。在其他實’j貝抖 田4 4西、住么V & 士 一、、、口木。长具他實施例中,若利 用她準參考電流之鄉—結果為該高臨界電壓,則該= 結果與該第二絲作_,及若該標轉考電流^ ^結果為該低臨界電壓,職第—結果與該第三結果作 1 二實?例中’在一記憶操作中’僅有利用該第-監 控參考電颇_及_鄉二監控參考電流兩者之一。 在某些實施例中,更包含控制電路,其藉由施加偏壓配 置至該些資料細胞⑽應一記憶體使用者模式指令。豆" 使用者模式齡之該㈣電路之接收使該控制電路施ς偏壓 ,置至雜貧料細胞之至少—資料細胞以產生該記憶電流。 该巧制電路更新該至少-資料細胞,以回應與該第二結果或 該弟二結果之一相符之該第一結果之一錯誤。 本發明之另一目的為提供一種操作非揮發記憶體之方 法,包含回應一記憶體使用者模式指令,以執行·· 施加一偏壓配置的步驟,至一非揮發記憶資料細胞以產 生表示儲存於該一非揮發記憶細胞中資料值之一記憶電流, 該些資料值係相關聯於一低臨界電壓及一高臨界電壓。 產生參考電流的步驟,每一該參考電流具有一高感測區 8 J301617 間以感測該高臨界·及-域職間喊_低臨界電 壓,包括: 產生-標準參,電流的子步驟,其相關聯於—具有 一高感測區間及一第一低感測區間之第一工作區間。 產生-第-&控參考電流的子麵,其相關聯於二 工作區間,該第二I作區間具有—較窄於該第_高 之第二高感測區間及-較寬於該第一低感測區間之 測區間。及Boundary mode 15μΑ Target component ΙμΑ Vth 111 115 —^_1^5V 1.90V 2.3V 125 2.7V 135 __4.0V 2.85V 145 3.55V 155 5.4 V 4.25V 165 L__6.1V _ 4.95V Therefore 'it is better to be different The threshold voltage states are clustered closer together' and there is no increased risk of data storage errors due to disturbing adjacent threshold voltage conditions. SUMMARY OF THE INVENTION One object of the present invention is directed to a non-volatile memory volume circuit that includes non-volatile memory cells, memory cells, sense amplifier circuits, and control circuitry. Lu non-volatile memory cells include data cells and border detection cells. The data cell system is set as a data group. In some embodiments, the data set is determined by controlling the word line of a particular non-volatile memory cell. The data cells have a first working boundary. In some embodiments, the data cell has a charge loss boundary of less than 0.7V, a charge loss boundary of about 0.2V, a loop boundary of less than 〇·4ν, and the data cell line has at least two logic steps. Many levels of cells. This reference current circuit produces a reference current. Each reference current has a high sensing interval to sense the high threshold voltage and a low sensing interval to sense the low critical voltage. The reference current is 1) a standard reference current associated with a first operating interval having a first high sensing interval and a first low sensing interval, 6 J301617 2) a first monitoring reference current, associated In a second working interval, the second working interval has a second high sensing interval narrower than the first high sensing interval and a second low sensing interval shorter than the low sensing interval of the younger brother. And 3) a second monitoring reference current associated with a third working area, the third working area=having a third high sensing interval that is wider than the first high sensing interval and a narrower than the The third low sensing interval of the first low sensing interval. In some embodiments, at least one of the first and second monitored reference currents is at a lower boundary than the standard reference current and a high threshold voltage cell. In other embodiments, at least one of the first and second monitored reference currents is lower than a high boundary between the standard reference current and a low threshold voltage cell. ^ The sense amplifier circuit uses the standard reference current to sense a memory current from one of the plurality of data cells to produce a first result. The sense amplifier circuit also senses the memory current using one of: a first monitor reference current to generate a second result, and a second monitor reference current to generate a third result. In some embodiments, the sense amplifier includes a single set of sense amplifiers to sense the memory current from the data cells, and the standard reference current, and to the first and the second monitor current One of them is connected in series. In some other embodiments, the sense amplifier includes a plurality of sets of sense amplifiers for respectively sensing the standard reference current, and utilizing at least one of the first and second monitored reference currents from the negative cells Recall current. In still other embodiments, the sense amplifier includes a plurality of sets of sense amplifiers for sensing the utilization of the standard reference current, respectively, and utilizing the first and second monitor reference currents to record current from the data cells. The comparison logic compares the first result with at least one of the second result and the third result from the sense amplifier circuit. In various embodiments, the comparison logic responds to one of the comparison results as 7 J301617 when the memory current falls outside the second working boundary or the charge is lost from a non-volatile memory cell. Touch, ίίϋexample/contains the external accessibility of the circuit (4), and there is an output of the integrated circuit that is used in the output makeup r =: ί;==Γτ;:4 to: The frequency is shown in the embodiment - the first result control should compare which of the second gentleman 1 flute results with the first result; =, ί - data cells. For example, this standard refers to an electrical multiplexer to select a second result or a third result. In the other real 'j 抖 田 田 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 In his embodiment, if the home of her quasi-reference current is used - the result is the high threshold voltage, then the result = the second wire is _, and if the standard conversion current ^ ^ is the low threshold voltage , the position - the result and the third result of the first two cases in the 'in a memory operation' only use one of the first - monitoring reference and the second monitoring reference current. In some embodiments, a control circuit is further included that is configured by applying a bias voltage to the data cells (10) in response to a memory user mode command. Bean" The user mode age (4) The receipt of the circuit causes the control circuit to bias and place at least the data cells of the poor cells to generate the memory current. The craft circuit updates the at least-data cell in response to an error in the first result that is consistent with one of the second result or the second result. It is another object of the present invention to provide a method of operating a non-volatile memory, comprising: responding to a memory user mode command to perform a step of applying a bias configuration to a non-volatile memory data cell to generate a representation store The memory value is one of the data values in the non-volatile memory cell, and the data values are associated with a low threshold voltage and a high threshold voltage. a step of generating a reference current, each of the reference currents having a high sensing region 8 J301617 to sense the high critical and/or domain interrogation_low threshold voltage, comprising: generating a standard parameter, a substep of the current, It is associated with a first working interval having a high sensing interval and a first low sensing interval. Generating a sub-plane of the -first-controlled reference current, which is associated with a second working interval, the second I-interval having a second high sensing interval narrower than the first high and - wider than the first A measurement interval of a low sensing interval. and
產生-第二監控參考電麵子步驟,其相_於一第三 工作區間,、該第三卫作區間具有—較寬於該第—高感測區間 之第王減測區間及-較窄於該第—低_區間之第三低感 測區間; 利用該標準參考電流以感測該至少一記憶電流,來產生 一第一結果的步驟,並進一步執行至少以下之一 · 、利用該第-監控參考電流以感測該至少—記憶電流,來 以產生一第二結果的子步驟,·及Generating a second monitoring reference electrical sub-step, the phase being in a third working interval, the third guarding interval having a wider throne than the first high sensing interval and - narrower than a third low-sensing interval of the first-low_interval; using the standard reference current to sense the at least one memory current to generate a first result, and further performing at least one of the following: a substep of monitoring a reference current to sense the at least one-memory current to produce a second result, and
利用該該第二監控參考電流感測該至少一記憶, 產生一第三結果的子步驟;及 〜;,L 牛驟比對該第一結果,與該第二結果與第三結果至少之一的 笛-ίίί?施财’彻該標準參考電流_係與利用該 :::控參考電流以感測及利用該第二監控參考電流以感測 行°衫—些實施射,彻雜準參考電流感 者第—監控參考電流以感測及利用該第二監控參 兩者之—串聯。而在另—些實施例中,在至少 僅有利用該第一監控參考電流以《及利用 μ弟一i控參考電流以感測兩者之一發生。 在某些實施例中,該第一結果控制應以該第二結果或第 9 1301617 三結果中哪一個與該第一結果作比對,以決定是否需要更新 該至少一資料細胞。 在其他實施例中,若利用該標準參考電流之該第一結果 為該高臨界電壓,則該第一結果與該第二結果作比對,及若 利用該標準參考電流之該第一結果為該低臨界電壓,則該第 一結果與該第三結果作比對。 其他的實施例更包括: 更新該至少一資料細胞,以回應與該第二結果或該第三 結果之一相符之該第一結果之一錯誤。 【實施方式】 第1圖顯示一非揮發記憶細胞之臨界電壓分佈圖。105 係最初臨界電壓之低界限。11〇係最初分佈區間。m係最初 臨界電壓之中間值。115係最初臨界電壓之高界限。12〇係低 臨界電壓之循環邊界。130係臨界電壓之室溫漂移及讀出干 擾。140係電路讀出區間及陣列細胞之最終臨界電塵區間。 150係電荷損失區間。155係高臨界電壓分佈之低界限。16〇 係受程式化細胞之臨界電壓。165係高臨界電壓分佈之高界 限。 第2圖顯示非揮發記憶細胞分別區分為一資料記憶體部 分及一邊界檢測記憶體部分之示意圖,其内容分別由一資料 感測放大|§部分及一邊界檢測感測放大器部份所決定。非揮 發記憶細胞之該資料記憶體部分包括1至N 21()之資料區 巧。非揮發記憶細胞之此資料部份之内容乃由資料感測放大 為部分215讀出。而非揮發記憶細胞之邊界檢測記憶體部分 220包括複數個部位,且每一部位係對應於不同之一資料記 憶區段1至N 210。如此,每一資料記憶區段具有至少一對 應之邊界檢測記憶細胞。資料記憶體之每一區段包括複數條 1301617 之可分別被字元線取得之記憶細胞。在一實施例中,記憶細 胞之每一字元線具有至少一對應之邊界檢測記憶細胞。非揮 發記憶細胞之邊界檢測記憶體部分之内容係由邊界檢測感測 放大器部分225讀出。因此,資料記憶體部分21〇之一特定 部位之内容可與邊界檢測記憶體部分220之相對應部位之内 容平行讀出。然後’感測到之邊界檢測記憶體部分220之内 谷係與比較方塊235之初始内容作比較。若比較發生錯誤, 則對應之資料細胞方塊需被更新。藉由儲存自邊界檢測陣列 之至少一初始值至比較方塊235中,邊界檢測陣列資料可與Sensing the at least one memory by the second monitoring reference current to generate a third result substep; and wherein the L is compared to the first result, and the second result and the third result are at least one of Flute- ̄ ί ί ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ The current senser - monitors the reference current to sense and utilize the second monitor parameter - in series. In still other embodiments, at least only the first monitored reference current is utilized to "and utilize one of the reference currents to sense one of the two." In some embodiments, the first result control should compare which of the second result or the ninth 1301617 third result is compared to the first result to determine whether the at least one data cell needs to be updated. In other embodiments, if the first result of using the standard reference current is the high threshold voltage, the first result is compared with the second result, and if the first result of using the standard reference current is The low threshold voltage is then compared to the third result. Other embodiments further include: updating the at least one data cell in response to an error in the first result that is consistent with the second result or one of the third results. [Embodiment] Fig. 1 shows a graph of a critical voltage distribution of a non-volatile memory cell. 105 is the low limit of the initial threshold voltage. 11〇The initial distribution interval. The m system is the intermediate value of the initial threshold voltage. The 115 system is the high limit of the initial threshold voltage. 12〇 is the cyclic boundary of the low threshold voltage. Room temperature drift and readout interference of the 130 series threshold voltage. The 140 series circuit reads the interval and the final critical dust interval of the array cells. 150 series charge loss interval. The low limit of the 155 series high threshold voltage distribution. 16〇 is the critical voltage of the stylized cells. The high limit of the 165 series high threshold voltage distribution. Figure 2 shows a schematic diagram of the non-volatile memory cells divided into a data memory portion and a boundary detection memory portion, respectively, which are determined by a data sense amplification | § portion and a boundary detection sense amplifier portion. The data memory portion of the non-volatile memory cells includes data regions from 1 to N 21 (). The content of this data portion of the non-volatile memory cells is amplified by data sensing to a portion 215. The boundary detection memory portion 220 of the non-volatile memory cells includes a plurality of portions, and each portion corresponds to a different one of the data memory segments 1 to N 210. Thus, each data memory segment has at least one pair of boundary detection memory cells. Each section of the data memory includes a plurality of memory cells of 1301617 that are respectively taken by the word line. In one embodiment, each word line of the memory cell has at least one corresponding boundary detection memory cell. The content of the boundary detection memory portion of the non-volatile memory cell is read by the boundary detection sense amplifier portion 225. Therefore, the content of a specific portion of the data memory portion 21 can be read in parallel with the content of the corresponding portion of the boundary detecting memory portion 220. The valley within the boundary detection memory portion 220 sensed is then compared to the initial content of comparison block 235. If an error occurs in the comparison, the corresponding data cell block needs to be updated. By storing at least one initial value from the boundary detection array to the comparison block 235, the boundary detection array data can be
初始值作比較,其中該比較方塊235包括比較記憶體及比較 電路。 第3圖顯示記憶細胞之示意圖,該等記憶細胞分為一資 料記憶體部分及一邊界檢測記憶體部分,其内容係由一感測 放大器部分決定。然後,邊界檢測記憶體部分之感測到之内 容與比較記憶體335之初始内容作比較。第3圖之記憶細胞 類似於第2圖之記憶細胞。然而,感測放大器部分315係同 時被包含資料區段1至N210之非揮發記憶細胞之資料記憶 體部分以及包含複數個部位之非揮發記憶細胞22〇之邊界檢 測記憶體部分所使用,其中所述複數個部位之每一部位係對 應於不同資料記憶區段1至N210。因此,資料記憶體部分 21〇之一特定部位之内容可與邊界檢測記憶體部分220之對 應部份之内容串聯讀出。自邊界檢測記憶體部分220所感測 到的資料可以與比較方塊235内之原本值相比較。 ^ 第4圖顯示一用於一非揮發記憶細胞之臨界電壓設計演 算法,該非揮發記憶細胞具有較第1圖之臨界電壓設計演算 法為窄之電荷損失邊界。155係資料陣列之臨界電壓分^之 低4界限。411係邊界檢測細胞之最初分佈。441係資料細胞之 循環邊界D1。442係邊界檢測細胞之循環邊界D2。451係邊 J301617 界檢測陣列之高臨界電壓分佈。該較窄之臨界電壓分佈411 及452分別對應於邊界檢測細胞之低臨界電壓狀態及高臨界 電壓狀態。資料細胞之高臨界電壓狀態對應於一標準參考電 流位階及一較寬之電荷損失邊界441。邊界檢測細胞之高臨 界電壓狀態452之低界限對應於一監控電流參考位階442。 因邊界檢測高臨界電壓狀態452具有一比標準電流參考位階 441較窄之區間,無法保持電荷於對應之邊界檢測細胞中之 錯誤將較於資料細胞之錯誤能更早被偵測發現。相對應於 界檢測細胞之較窄邊界將因此控制資料記憶細胞之^新日士 間。下表顯示對應至電壓軸線上不同點之臨界電壓。$ 演算法,-資料細胞無需長時間維持—較大電荷損失^ 基於此演算法,資料細胞可維持—較小之魏邊界並改進 揮發記憶細胞之卫倾間。監控參考f Μ (_it 可調整以監控C.M·狀Τ·伽·區FaW乂窄縮此:g) 之細胞是否有電荷損失及受抹除之細胞是否=The initial values are compared, wherein the comparison block 235 includes a comparison memory and a comparison circuit. Figure 3 shows a schematic diagram of memory cells divided into a data memory portion and a boundary detection memory portion, the content of which is determined by a sense amplifier portion. Then, the sensed content of the boundary detection memory portion is compared with the initial content of the comparison memory 335. The memory cells of Figure 3 are similar to the memory cells of Figure 2. However, the sense amplifier portion 315 is simultaneously used by the data memory portion of the non-volatile memory cells including the data segments 1 to N210 and the boundary detection memory portion of the non-volatile memory cells 22 including a plurality of portions. Each of the plurality of parts corresponds to a different data memory section 1 to N210. Therefore, the contents of a specific portion of the data memory portion 21 can be read in series with the contents of the corresponding portion of the boundary detecting memory portion 220. The data sensed from the boundary detection memory portion 220 can be compared to the original value in the comparison block 235. ^ Figure 4 shows a threshold voltage design algorithm for a non-volatile memory cell having a narrow charge loss boundary compared to the threshold voltage design algorithm of Figure 1. The threshold voltage of the 155 Series data array is divided by the lower 4 limits. The 411 line boundary detects the initial distribution of cells. The circulatory boundary of the 441-series data cell D1. The boundary boundary of the 442-line boundary detection cell D2. 451-line side J301617 The high-threshold voltage distribution of the boundary detection array. The narrower threshold voltage distributions 411 and 452 correspond to the low threshold voltage state and the high threshold voltage state of the boundary detection cells, respectively. The high threshold voltage state of the data cells corresponds to a standard reference current level and a wider charge loss boundary 441. The low boundary of the high critical voltage state 452 of the boundary detection cell corresponds to a monitored current reference level 442. Since the boundary detection high threshold voltage state 452 has a narrower range than the standard current reference level 441, errors that cannot maintain the charge in the corresponding boundary detection cells will be detected earlier than the error of the data cell. Corresponding to the narrower boundaries of the bounded cells, thus controlling the new plasma of the data memory cells. The table below shows the threshold voltages corresponding to different points on the voltage axis. $ Algorithm, - data cells do not need to be maintained for a long time - large charge loss ^ Based on this algorithm, the data cells can maintain - smaller Wei boundaries and improve the memory of the volatilized memory cells. Monitor the reference f Μ (_it can be adjusted to monitor the C.M. Τ·············································
目標元件ΙμΑTarget component ΙμΑ
12 j3〇l617 #t $ —用於—非揮發記憶細胞之臨界_設計 演Π'ϊ揮發記憶細胞具有較窄之循環邊界及電荷損失 邊界^較乍之臨界電壓分佈511及552分別對應界 測細胞,恤界賴狀態及高臨界賴狀態。轉細J 臨界電錄,係被程式化至—臨界電壓位階β3 155。此邊界 檢ΐίΐί *臨界電壓位階係B3,55G。介於邊界檢測細胞之 高j電昼位階B,550及最終臨界電壓區間B2,551之間具有 -車乂乍之邊界。而介於資料細胞之高臨界電壓位階B3 及 最終臨界,壓區間B2 165之間具有—較寬之邊界。 因此,無 >呆持電何於對應之參考細胞巾之錯誤將會比於資料細胞之 錯誤能較早被_發現。對應於邊界檢測細胞之較窄邊界將 ,此控制資料記憶細胞之更新時間。下表顯示對應至電壓轴 ^上不同點之臨界電壓。根據此演算法,—資料細胞無需長 日才間^持-大電荷損失邊界。基於此演算法,資料細胞可維 持I,小5循環邊界並改進非揮發記憶細胞之工作區間。臨 界電壓狀恕511也可調整以監控CM&RT+RD·區間,以窄 縮此區間,並改進工作區間。12 j3〇l617 #t $ —for the threshold of non-volatile memory cells _ design deduction ϊ ϊ ϊ 记忆 memory cells have narrow cycle boundaries and charge loss boundaries ^ 临界 threshold voltage distribution 511 and 552 respectively corresponding to the boundary Cell, shirt, and high-critical state. The fine J critical record is programmed to the critical voltage level β3 155. This boundary check ΐίΐί *critical voltage level system B3, 55G. Between the high-throttle level B, 550 of the boundary detection cells and the final critical voltage interval B2, 551 has a - rut boundary. And between the high critical voltage level B3 of the data cell and the final critical, the pressure interval B2 165 has a wider boundary. Therefore, no > staying with the corresponding reference cell towel error will be detected earlier than the data cell error. Corresponding to the narrower boundary of the border detection cells, this controls the update time of the data memory cells. The table below shows the threshold voltages corresponding to different points on the voltage axis ^. According to this algorithm, the data cells do not need to be long-lasting - large charge loss boundaries. Based on this algorithm, data cells can maintain I, small 5 cycle boundaries and improve the working range of non-volatile memory cells. The critical voltage 511 can also be adjusted to monitor the CM&RT+RD· interval to narrow this interval and improve the working range.
13 130161713 1301617
Ll^J_^l6v 1 — 4,45V ] 第6圖顯示一控制R/B端(pin)信號之輸出之作業流程圖 以顯示更新功能之狀態。於610中,接收一使用者模式指令, 如讀出、程式化、抹除、讀取識別碼等。於62〇中,執行感 測動作。於630中,從感測放大器之結果以確認更新循環& 界是否因工作邊界之窄縮而失敗。若無誤,則635等待下一 感測操作。若有誤’於640中,待機/使用中(ready/busy)腳位 的信號到低準位。因此,一狀態機器控制該待機/使用中腳位 k號以回應彳貞測到之錯誤。最後,於650中,該錯誤所對廡 • 至之資料細胞係被更新。 〜 第7圖顯示一控制複數個R/B腳位信號之作業流程圖以 顯示更新功能之狀態。此作業建立起於記憶體中之更新功 能。於702中,接收一使用者模式指令,如程式化一特定資 料記憶細胞。R一Μ腳位的信號(Pin R_bl)到低準位。於7〇4 中,使用者模式開始。於706中,確認該資料記憶細胞是否 需要更新。若需要更新,則該作業繼續至7〇8並儲存區段位 址(sector address)。若無需更新,則於7丨〇中停止使用者模式。 同理地,在708之後,該作業於71〇中繼續並停止使用者模 籲 式。於712巾,依是否有更新之需要。若無更新之需要,則 該作業於720中結束,R—bl及R—b2腳位信號到高準位。若 有更新之需要,則該作業繼續至714。於714中,R—M腳位 信,到高準位,及R—b2腳位信號到低準位。於716中,在 無第一更新情況下,系統將輸出並完結最後模式之結果,但 將無法輸入任何新的使用者指令。於718中,記憶體係被更 新,其經由區段位址所定位並儲存於7〇8中。該作業於72〇 中結束’且R一Μ及R—b2腳位信號皆到高準位。以下真值表 顯示由R—Μ及R—b2腳位信號所指示之記憶體狀態。 14 J301617 R—bl RJ)2 待機(Ready) 1 1 使用中(Busy) 0 X 更新(Refresh) 1 0Ll^J_^l6v 1 — 4, 45V ] Fig. 6 shows a job flow chart for controlling the output of the R/B pin signal to display the status of the update function. In 610, a user mode command is received, such as reading, programming, erasing, reading an identification code, and the like. In 62〇, the sensing action is performed. In 630, the result of the sense amplifier is used to confirm whether the update cycle & bound fails due to the narrowing of the working boundary. If there is no error, 635 waits for the next sensing operation. If there is an error in 640, the signal of the standby/busy pin is at the low level. Therefore, a state machine controls the standby/in-use pin k number in response to the detected error. Finally, in 650, the error cell is updated to the data cell line. ~ Figure 7 shows a job flow diagram for controlling a plurality of R/B pin signals to show the status of the update function. This job establishes an update function in the memory. In 702, a user mode command is received, such as stylizing a particular data memory cell. The R-pin signal (Pin R_bl) goes to the low level. In 7〇4, the user mode starts. In 706, it is confirmed whether the data memory cell needs to be updated. If an update is required, the job continues to 7〇8 and stores the sector address. If no update is required, the user mode is stopped in 7丨〇. Similarly, after 708, the job continues in 71〇 and the user mode is stopped. At 712, depending on whether there is an update. If there is no need for updating, the job ends in 720, and the R-bl and R-b2 pin signals go to the high level. If there is a need for an update, the job continues to 714. In 714, the R-M pin signals to the high level, and the R-b2 pin signals to the low level. In 716, in the absence of the first update, the system will output and complete the final mode result, but will not be able to enter any new user commands. In 718, the memory system is updated, located via the segment address and stored in 7-8. The job ends in 72〇' and the R-and R-b2 pin signals go to the high level. The following truth table shows the state of the memory indicated by the R-Μ and R-b2 pin signals. 14 J301617 R—bl RJ)2 Standby 1 1 In use (Busy) 0 X Update (Refresh) 1 0
第8圖顯示一記憶細胞之臨界電壓分佈。8〇1係低臨界 電壓分佈B1之低界限。802係低臨界電壓分佈B2之高界限\ 8〇5係高臨界電壓分佈B3之低界限。8〇6係高臨界電壓分佈 B4之高界限。一標準感測放大器將藉使用一標準參考電流 (normal—Iref) 807以感測記憶體資料並有一用於高臨界電壓 細胞之電荷損失之邊界D1 810及用於低臨界電壓細胞之電 荷增益之邊界D2 811。在無更新的情況下,記憶體需提供一 大區間以使記憶細胞以獲得電荷損失或電荷增益,例如經過 1 οκ循環及1 〇年後。此設計對一寬電路感測區間造成相當嚴 重的損失’尤其對在一細胞中之多個位階(multi_levels)而言。 因此’運用額外的監控參考電流一 1 (monitor一Irefl) 808及監 控參考電流一2 (monit〇Uref2) 809於記憶體感測中可縮減記 憶細胞之臨界電壓邊界。例如,監控參考電流808具有一 相較於D1 810為窄之感測邊界Dl,812及一相較於D2 811為 寬之感測邊界D2’813,因此監控參考電流j具有一對於高臨 界電壓細胞之較小感測區間及一對於低臨界電壓細胞之較大感測區 間。因使用監控參考電流一1時,一高臨界電壓細胞比一低臨 界電壓細胞較容易失敗,故監控參考電流j係用於檢測高臨 界電壓之邊界。當記憶細胞之高臨界電壓產生電荷損失後, 用監控參考電流一 1之感測將失效,但用標準參考電流之感測 仍將可通過。若由標準參考電流所感測之邏輯資料為一高臨 15 •1301617 界電壓叶’略準參考電流感測 電流1感測之第-邏輯眘·詩=貝竹皿控參考 時’則該f憶體將了解此記憶細胞之記憶方塊需= 更 之感測邊界m,,816及一相對於D2 8 ^Figure 8 shows the critical voltage distribution of a memory cell. 8〇1 is the low limit of the low critical voltage distribution B1. The high limit of the 802 series low threshold voltage distribution B2 \ 8 〇 5 is the low limit of the high threshold voltage distribution B3. 8〇6 series high threshold voltage distribution B4 high limit. A standard sense amplifier will use a standard reference current (normal-Iref) 807 to sense memory data and have a boundary D1 810 for charge loss of high threshold voltage cells and charge gain for low threshold voltage cells. Boundary D2 811. In the absence of an update, the memory needs to provide a large interval to allow the memory cells to obtain charge loss or charge gain, for example, after 1 ε cycle and 1 year later. This design imposes a considerable loss on a wide circuit sensing interval, especially for multiple levels in a cell. Therefore, the use of additional monitoring reference currents 1 (monitor-Irefl) 808 and monitoring reference currents 2 (monit〇Uref2) 809 can reduce the threshold voltage boundary of memory cells in memory sensing. For example, the monitoring reference current 808 has a sensing boundary D1, 812 that is narrower than D1 810 and a sensing boundary D2' 813 that is wider than D2 811, so the monitoring reference current j has a high threshold voltage. A smaller sensing interval for cells and a larger sensing interval for cells with low threshold voltage. Since the monitoring reference current is one, a high threshold voltage cell is more likely to fail than a low critical voltage cell, so the monitoring reference current j is used to detect the boundary of the high critical voltage. When the high threshold voltage of the memory cell produces a charge loss, the sensing with the monitoring reference current of 1 will fail, but the sensing with the standard reference current will still pass. If the logic data sensed by the standard reference current is a high pro 15 • 1301617 boundary voltage leaf 'slightly accurate reference current sensing current 1 sense of the first - logic caution · poetry = Bei Zhu dish control reference ' then the f The body will understand that the memory cell of this memory cell needs = more sensing boundary m, 816 and one relative to D2 8 ^
D2,,^7,因此監控參考電流—2具有—對於低臨界電^= 較小^則3及-對於高臨界電壓細胞之較大感測區間。因 使用巧彡考電流—2時,—低臨界電壓細胞比—高臨界電壓 細胞較J易故障,故監控參考電流—2制於檢測低臨界電壓 邊界。*記憶細胞<低臨界電壓產生電荷增益後,用監控參 考電流—2之感測將失效,但用標準參考電流之感測仍將$通 過。若由標準參考钱域測之麵:#_—低臨界電壓 時,用標準參考電流制之邏輯資料將與賴控參考電流2 感測之第二邏輯資料作比較。若此比較結果為不匹配時,則 該記憶體將了解此記憶細胞之記憶方塊需要執行更新。監控 參考電流—1及監控參考統—2可分別地_使用或同時使 用。例如·當負料=1時,則與第一邏輯資料作比較;若資料 =0時,則,第二邏輯資料作比較。此說明形容了高臨界電壓 細胞之電何彳貝失及低臨界電壓細胞之電荷增益。另一實施例 則具有自低臨界電壓細胞之電荷損失及於高臨界電壓細胞中 之電荷增益。 ' 第9A圖顯示一執行平行感測之作業流程圖以決定是否 執行更新功能。資料細胞910經由字元線及位元線取得。一 選取自資料細胞910之資料細胞提供經由一位元線之一測量 電流記憶體電流細胞(memory_Icell) 911。此測量電流記憶電 流細胞911係藉由標準感測放大器922使用標準參考電流912 以取得標準資料(normal一data) 901而被感測;而藉由監控感 測放大器923使用監控參考電流-1 913則取得第一邏輯資料 16 •1301617 902而被感測,而藉由監控感測放大器924使用監控參考電 流一2 914以取得第二邏輯資料903而被感測。該第一邏輯資 料902及該第二邏輯資料903係輸入至一資料多工器 (data—MUX) 925並由標準資料901所選取。若標準資料9〇1 係一高臨界電壓,則資料多工器925將輸出第一邏輯資料9〇2 作為比較邏輯930之輸入。若該標準資料9〇1係一低臨界電 壓,則資料多工器925輸出第二邏輯資料903作為比較邏輯 930之輸入。比較邏輯方塊930也會接收標準資料9〇1作為 輸入。k準感測放大器922將記憶電流細胞911與參考電^ • 之標準參考電流912作比較,並產生標準資料9〇1輸出。監 控感測放大器1 923將記憶電流細胞911與監控參考電流1 913作比較,並產生第一資料9〇2輸出。監控感測放大器 ,記憶電流細胞911與監控參考電流一2 914作比較,並產生 第二邏輯資料903輸出。根據藉由比較邏輯930來比較標準 為料901與資料多工裔925之輸出的比較結果,比較邏輯930 輸出一匹配或不匹配結果至狀態機器或微控制器,且狀 悲機裔或微控制器940會決定是否更新自資料記憶細胞91〇 所選之資料記憶細胞。第9B圖及第9C圖分別顯示使用監控 • 參考電流-1而非監控參考電流一2,及使用監控參考電流^ 而非監控參考電流一 1之相關圖式。若僅應用一監控袁考電 流,則資料多工器925將為非必要。 / 第10A圖顯示一執行串聯感測之作業流程圖以決定是 〒要執行更新功能。於串連感測中,記憶體並不需要額外的 皿控測放大态923及924。標準感測放大器則是用不同參考 電,··標準參考電流、監控參考電流及監控參考電流2 於複數個循環中感測。此作業流程係可執行於非揮發記憶體 中(如第8圖所示之設計),且無需監控感測放大器。於ι〇ι〇 中’根據標準資料記憶體作業,標準感測之執行係用標準參 .1301617 ΐϋ參考電如產生制之標較料之輸出。於1015 賴㈣轉存11 g㈣电°)。祕讎中, 係用監控參考電流12之監控電流以產生感測 -貝料之輸出。於中,儲存第一邏輯資料至暫 i^rglsterJ)。而於1030中’第二監控感測係用監控參 =控電流以產生感測之第二邏輯資料之輸出。於 中,檢杳邏輯資料至暫存器2㈣咖-2)。如1040 資料;若標準資料為高臨界時,則在1045比較 梦、t :、暫存益1 ’若標準資料為低臨界時’則在1050比 ‘二Tnlf暫存态2。於1〇55中,檢查資料為匹配或不匹 心f +,若資料不匹配,則進行更新。第10B圖及 Λ f"7雌示使紐控參考魏」_無驗參考電流 參考電流-2㈣無監控參考紐1之圖式。 右僅應用—監控參考電流,則不會用到步驟1040—。 心ϋ f係—具有非揮發記憶細胞及更新電路之積體電 2間早,思圖。積體電路測包括一記憶體陣列 1150, 於二ί體基板上之陣列使用非揮發記憶細胞之資料及 ΐϊίϋϊί。該_115G之記憶細胞可為單獨細胞,其相 連接於辦列巾,或相互連接於複數 ==偶合至沿記碰陣列1150之行所設置之複數個字 讀1102。-列解碼器係搞合至沿記憶體陣列ιΐ5〇之 ,所,置之複數個位元線_。位址係提供於匯流排聰 哭以歹,ίΓ馬111103及行解碼器110卜資料感測放大 益、邊界檢測感測放大器、資料輸入結構、及於方塊ιι〇 之比較方塊經由資料匯流器膽偶合至列解碼器聰 ^係ί白由線1111自於積體電路1100上之輸入/輸出 &,或自積體電路1100之其它内部或外部資料來源,提供至 於方塊11G6巾之資機人結構。#料係經由㈣輸出線⑴5 18 J301617 方塊11G6中之感測放大ϋ至於積體電路η⑻上之輸入/ f =,或至積體電路_之其它内部或外部資料目的地。 、八堅配置狀祕器1109控制偏壓配置供應電壓η〇8之用 =如用於抹除確認及程式化確認之電壓,及用於程式化、 抹除、及讀取記憶細胞之配置。 .ί上圖係—具有非揮發記憶細胞及更新電路之積體電 間早示思圖。積體電路12〇〇包括一記憶體陣列115〇,D2,, ^7, therefore monitoring the reference current - 2 has - for low critical power ^ = smaller ^ then 3 and - for a larger sensing interval of high threshold voltage cells. Due to the use of the 彡 电流 — — — — — — — — — — 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低* Memory cells <A low threshold voltage produces a charge gain, and the sense with the monitor reference current of -2 will fail, but the sense with the standard reference current will still pass. If the standard reference money domain is measured: #_—low threshold voltage, the logic data of the standard reference current system will be compared with the second logic data sensed by the reference current 2 . If the comparison result is a mismatch, then the memory will know that the memory cell of the memory cell needs to perform an update. Monitoring Reference Current-1 and Monitoring Reference System-2 can be used separately or simultaneously. For example, when the negative material is 1, it is compared with the first logical data; if the data is =0, the second logical data is compared. This description describes the high threshold voltage of the cells and the charge gain of the cells with low threshold voltages. Another embodiment has charge loss from low threshold voltage cells and charge gain in high threshold voltage cells. Figure 9A shows a job flow diagram for performing parallel sensing to determine whether to perform the update function. The data cells 910 are obtained via word lines and bit lines. A data cell selected from the data cell 910 provides measurement of current memory current cells (memory_Icell) 911 via one of the one-dimensional lines. The measured current memory current cell 911 is sensed by the standard sense amplifier 922 using the standard reference current 912 to obtain the normal data 901; and the monitor sense amplifier 923 is used to monitor the reference current -1 913 Then, the first logic data 16 • 1301617 902 is obtained and sensed, and is sensed by the monitoring sense amplifier 924 using the monitoring reference current one 2 914 to obtain the second logic 903. The first logic 902 and the second logic 903 are input to a data multiplexer (data_MUX) 925 and selected by the standard data 901. If the standard data 9〇1 is a high threshold voltage, the data multiplexer 925 will output the first logic data 9〇2 as the input to the comparison logic 930. If the standard data 9.1 is a low threshold voltage, the data multiplexer 925 outputs the second logic 903 as an input to the comparison logic 930. The comparison logic block 930 also receives the standard data 9〇1 as an input. The k-quasi-sensing amplifier 922 compares the memory current cell 911 with a reference current 912 of the reference voltage and produces a standard data 9〇1 output. The supervisory sense amplifier 1 923 compares the memory current cell 911 with the monitor reference current 1 913 and produces a first data 9〇2 output. The monitor sense amplifier, the memory current cell 911 is compared with the monitor reference current one 2 914, and the second logic data 903 is output. Based on the comparison logic 930 comparing the output of the standard 901 to the data multiplexed 925 output, the comparison logic 930 outputs a match or mismatch result to the state machine or microcontroller, and the sorrow or micro control The device 940 will determine whether to update the data memory cells selected from the data memory cells. Figures 9B and 9C show the correlation diagrams for the use of monitoring • reference current -1 instead of monitoring reference current -2, and the use of monitoring reference current ^ instead of monitoring reference current-1. If only one monitoring test current is applied, the data multiplexer 925 will be unnecessary. / Figure 10A shows a job flow diagram for performing serial sensing to determine if the update function is to be performed. In tandem sensing, the memory does not require additional dish control amplification states 923 and 924. The standard sense amplifier is sensed in multiple cycles with different reference voltages, standard reference current, monitoring reference current, and monitoring reference current 2 . This workflow can be performed in non-volatile memory (as shown in Figure 8) and there is no need to monitor the sense amplifier. In ι〇ι〇 中' according to the standard data memory operation, the standard sensing implementation system uses the standard reference .1301617 ΐϋ reference electricity such as the production of the standard output. In 1015 Lai (four) dumped 11 g (four) electricity °). In the secret, the monitoring current of the reference current 12 is monitored to produce a sensing-being output. In the middle, the first logical data is stored to the temporary i^rglsterJ). In 1030, the second monitoring sensing system monitors the control data to generate an output of the sensed second logic data. In , check the logic data to the scratchpad 2 (four) coffee-2). For example, 1040 data; if the standard data is high critical, then compare dreams at 1045, t:, temporary savings 1 ’ if the standard data is low critical, then at 1050 than ‘two Tnlf temporary state 2. In 1〇55, the check data is matched or not f +, if the data does not match, it is updated. Figure 10B and Λ f"7 female display to the new control reference Wei" _ no test reference current reference current -2 (four) no monitoring reference button 1 pattern. Applying only the right-monitoring reference current will not use step 1040. Heart ϋ f series - integrated non-volatile memory cells and updated circuits 2 early, thinking. The integrated circuit test includes a memory array 1150, and the array on the two-body substrate uses non-volatile memory cells and ΐϊίϋϊί. The _115G memory cells can be individual cells that are connected to a row of towels, or are connected to each other at a complex number == coupling to a plurality of words read 1102 set along the row of the array 1150. - The column decoder is integrated into the memory array, and a plurality of bit lines _ are placed. The address is provided in the busbar Cong Cry, Γ 111 111 111103 and row decoder 110 data sensing amplification, boundary detection amp, data input structure, and comparison block in the box 经由 via the data concentrator The coupled-to-column decoder is provided by the line 1111 from the input/output & on the integrated circuit 1100, or other internal or external data source from the integrated circuit 1100, to the operator of the block 11G6. structure. #料 is via (4) output line (1) 5 18 J301617 The sense amplification in block 11G6 is the input / f = on the integrated circuit η (8), or to other internal or external data destinations of the integrated circuit _. , eight hard configuration device 1109 control bias configuration supply voltage η 〇 8 = such as used to erase the confirmation and stylization confirmation voltage, and used to stylize, erase, and read memory cell configuration. ί上图—The integrated circuit with non-volatile memory cells and updated circuits. The integrated circuit 12A includes a memory array 115A,
ίΐί 一半導體基板上之_制非揮發職細胞之資料及 測區域。該_ 之記憶細胞可為單獨細胞,其相 於該陣列巾’或相互連接於複數個陣列巾。資料感測 比較方塊、及於方塊聰中之資料輸入結構經由資 排1107耦合至列解碼器11〇3。資料係經由資料輸入 線自於積體電路1200上之輸入/輸出端,或自積體電路 之八匕内,或外部資料來源’提供至於方塊1106中之資料輸 入結構。資料係經由資料輸出線1115自方塊題至於積體 電路1200上之輸入/輸出端,或至積體電路12⑻之其它内部 或外部資料目的地。 、 圖係一具有非揮發記憶細胞及更新電路之積體電 路,簡單示意圖。積體電路測包括—記憶體_ 135〇, 半導縣板上之_使用資料記憶細胞。該陣列 1350之記憶細胞可為單獨細胞,其相互連接於該陣列中,或 相互連接於缝辦财。—行解碼^ 11Q1健合至沿記憶 體陣列1350之行所設置之複數個字元、線1102。一列解碼器 Π03係偶合至沿記憶體陣列1350之列所設置之複數個位^ i ^104。位址係提供於匯流排11〇5上以提供至列解碼器n〇3 及行解碼n iim。鮮細獻H、監控制放A|i、比較 方塊、及於方塊1306中之資料輸入結構經由資料匯流排11〇7 I馬合至列解碼器1103。#料係經由資料輸人線1U1自於積 19 •1301617 體電路1300上之輸入/輸出端,或自積體電路13〇〇之其它内 部或外部資料來源,提供至於方塊13〇6中之資料輸入結構。 資料係經由資料輸出線1115自於方塊13〇6中之感測放大器 至於積體電路1300上之輸入/輸出端,或至積體電路η⑻之 其它内部或外部資料目的地。 苐14圖係一具有非揮發記憶細胞及更新電路之積體電 路之簡單示意圖。積體電路14〇〇包括一記憶體陣列135〇, 該設於一半導體基板上之陣列使用資料記憶細胞。位址係提 供於匯流排1105上以提供至列解碼器11〇3及行解碼器 hoi。感測放大器、比較方塊、及於方塊14〇6中之資料輸入 結構經由資料匯流器11〇7麵合至列解碼器·。資料係經 由資料輸入線1111自於積體電路14〇〇上之輸入/輸出端,或 自積體電路—1400之其它内部或外部資料來源,提供至於方塊 1406中之資料輸入結構。資料係經由資料輸出線n15自於 方塊1406中之感測放大器至於積體電路剛上之輸入/輸出 端,或至積體電路1400之其它内部或外部資料目的地。 a本發明雖參照上述具體實施例得以描述,但可以理解的 是本案實施方式之揭露為_本發明原狀具體實施例,應 不,限本發明於所揭示之實施例。故不同的變型、改盆 他實施例皆是可能的實施例,並且所有的這些變型、改進二戈 組合皆可能,且不悖於本發明之精神與範圍。 【圖式簡單說明】 佑甘第^齡—麟—轉發輯細胞之臨界電壓設計分 ^其中CM指循環邊界、RT指室溫漂移、及奶指讀出干 第2圖顯71T -轉發記憶體分為—資料記憶體部分及一 •1301617 邊界檢測記憶體部分之示意圖,其 放大器部分及一邊界檢測放夫哭部八J刀貝枓感利 隐體之邊界檢…枓係與在—比較記憶體之初始資料作比 竿父0 、 第3圖顯示一非揮發記憶體分 邊界檢測記憶體部分之示音似⑽σΡ刀及 八圖其内容乃由—感測放大器部 f^ ί檢測記舰之邊界檢嘴㈣與在-比較 吕己憶體之初始資料作比較。 μ第4 BU、頁*帛於一非揮發記憶細胞之臨界電壓設計渖 ^法,其運用,準參考電流及監控參考電 較 窄之電荷損失邊界。 a 了白八名早乂 斤第5圖』示另-用於一非揮發記憶細胞之臨界電壓設計 演J法,ΐ具有較窄之電荷損失邊界,該邊界控制了邊界檢 測陣列之_界賴分佈界限及伽界賴分佈界限。 狀態之第控獅接腳信號之輸出以顯示更新功能 第7圖顯示一控制複數個r/b接腳信號之輸出以顯示 新功能狀態之作業流程。 第8圖顯示一用於非揮發記憶細胞之臨界電壓分佈,其 藉運用 normaljref、monitorJrefl 及 m〇nit〇r一Iref2 但不用& 外之邊界檢測記憶體而具有較窄之電荷損失邊界及 CM+RT+RD 邊界。 /第9A圖顯示一執行並行感測之作業流程以決定是否應 執行更新魏,其巾更新功能麵鮮感測放大器、及具有g 二及第二監控參考電流之監控感測放大器(如利用第8圖之 設計)。 第9B圖顯示一類似於第9A圖之執行並行感測之作業 流程,唯其使用該第一監控參考電流而無使用第二監控參^ 21 -1301617 電流。 大=:===:= °又5十)/料聯感測侧第-及第二監控參考電流。ΐ 资料 A data and measurement area of a non-volatile cell on a semiconductor substrate. The memory cells of the cells may be individual cells that are attached to the array of towels or interconnected to a plurality of arrays of towels. The data sensing comparison block and the data input structure in the box are coupled to the column decoder 11〇3 via the resource 1107. The data is supplied to the data input structure in block 1106 via the data input line from the input/output terminals on the integrated circuit 1200, or from the gossip of the integrated circuit, or from an external data source. The data is passed from the block header to the input/output terminals on the integrated circuit 1200 via the data output line 1115, or to other internal or external data destinations of the integrated circuit 12 (8). Figure 1 is a simplified schematic diagram of an integrated circuit with non-volatile memory cells and a renewed circuit. The integrated circuit test includes - memory _ 135 〇, using the data memory cells on the semi-conductor plate. The memory cells of the array 1350 can be individual cells that are interconnected to the array or interconnected to each other. - Line Decoding ^11Q1 is conjugated to a plurality of characters, lines 1102 set along the line of memory array 1350. A column of decoders Π03 is coupled to a plurality of bits ^ i ^ 104 disposed along the column of memory array 1350. The address is provided on the bus 11〇5 to provide to the column decoder n〇3 and the row decoding n iim. The fine-grained H, the monitor-made A|i, the comparison block, and the data input structure in block 1306 are coupled to the column decoder 1103 via the data bus. The material is supplied to the data in block 13〇6 via the data input line 1U1 from the input/output terminal on the 19/1301617 body circuit 1300, or other internal or external data source from the integrated circuit 13〇〇. Input structure. The data is from the sense amplifier in block 13〇6 via data output line 1115 to the input/output terminal on integrated circuit 1300, or to other internal or external data destinations of integrated circuit η(8). Figure 14 is a simplified schematic diagram of an integrated circuit with non-volatile memory cells and a renewed circuit. The integrated circuit 14A includes a memory array 135, and the array disposed on a semiconductor substrate uses data memory cells. The address is provided on bus 1105 to provide to column decoder 11〇3 and row decoder hoi. The sense amplifier, the comparison block, and the data input structure in block 14〇6 are flanked by the data combiner 11〇7 to the column decoder·. The data is supplied to the data input structure in block 1406 via data input line 1111 from the input/output terminals on integrated circuit 14 or other internal or external data sources from integrated circuit 1400. The data is passed from the sense amplifier in block 1406 to the input/output terminal just above the integrated circuit via data output line n15, or to other internal or external data destinations of integrated circuit 1400. The present invention has been described with reference to the specific embodiments described above, but it is understood that the embodiments of the present invention are intended to be illustrative of the present invention. Therefore, the various embodiments are possible embodiments, and all of these variations and improvements are possible without departing from the spirit and scope of the invention. [Simple description of the diagram] The threshold voltage design of the cells of the 甘 第 龄 麟 麟 转发 转发 转发 转发 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中Divided into a data memory part and a • 1301617 boundary detection memory part of the schematic diagram, the amplifier part and a boundary detection of the cries of the eight J-knife 枓 枓 枓 隐 隐 之 枓 枓 枓 枓 枓 枓 比较 比较 比较The initial data of the body is compared with the parent 0, and the third figure shows the sound of the non-volatile memory boundary detection memory. (10) σ Ρ 及 八 八 八 八 八 及 及 及 及 及 及 及 及 及 及 及 及 及 感 感 感 感 感 感 感 感The boundary check nozzle (4) is compared with the initial data of the comparison. μ 4th BU, page * 临界 in a non-volatile memory cell threshold voltage design 渖 ^ method, its application, quasi-reference current and monitoring reference power narrower charge loss boundary. a white eight early 乂 乂 第 第 第 第 另 - - - - - - 用于 用于 用于 用于 用于 用于 用于 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界 临界Distribution boundaries and gamma-bound distribution boundaries. The output of the lion's pin signal in the state to display the update function. Figure 7 shows the operation flow of controlling the output of a plurality of r/b pin signals to display the new function status. Figure 8 shows a critical voltage distribution for non-volatile memory cells with a narrow charge loss boundary and CM by using normaljref, monitorJrefl, and m〇nit〇r-Iref2 but without &B; +RT+RD boundary. / Figure 9A shows a workflow for performing parallel sensing to determine whether an update should be performed, the wiper updates the functional fresh sense amplifier, and the monitor sense amplifier with g 2 and the second monitor reference current (eg, 8 design). Fig. 9B shows a workflow similar to that of Fig. 9A for performing parallel sensing, except that it uses the first monitor reference current without using the second monitor parameter 21 - 1301617 current. Large =:===:= ° and 5)) / sense sensing side - and second monitoring reference current.
程,1GA圖之串糊之作業流 流。韻―1"控參考f流而無使用第二監控參考電 第10C圖顯示-類似於第10A圖之串聯感測之作業流 唯其使贱第二監控參考電流而無使用第-監控參 流0 一第11圖顯示一用於執行平行感測之方塊圖以決定是否 執1Γ更新功能,該感測包括有邊界檢測細胞及一邊界檢測放 大器。 第12圖顯示一用於執行串聯感測之方塊圖以決定是否 執行更新功能’該感測包括有邊界檢測細胞。 第13圖顯示一執行並行感測之方塊圖以決定是否執行 更新功能,該感測同時包括有一標準感測放大器及一監控感 測放大器。該標準感測放大器感測normal-Iref及該監控感測 放大器感測monitor_Iref。 第14圖顯示一執行串聯感測之方塊圖以決定是否執行 更新功能,該感測包括有一感測放大器以感測於不同循環中 之 normal一Iref 及 monitor一Iref〇 22 1301617 * 【主要元件符號說明】 105最初臨界電壓之低界限 110最初分佈區間 111最初臨界電壓之中間值 115最初臨界電壓之高界限 120低臨界電壓之循環邊界 130臨界電壓之室溫漂移及讀出干擾 140電路f買出區間及陣列細胞之最終臨界電壓區間 φ 150電荷損失區間 155高臨界電壓分佈之低界限 160受編程細胞之臨界電壓 165高臨界電壓分佈之高界限 210資料記憶體部分 215資料感測放大器部分 220邊界檢測記憶體部分 225邊界檢測感測放大器部分 235 比較方塊 ^ 315感測放大器部分 335 比較記憶體 411低臨界電壓分佈 441電荷損失邊界 452南臨界電壓狀悲 511低臨界電壓狀態 550高臨界電壓位階 551最終臨界電壓區間 552高臨界電壓狀態 801低臨界電壓分佈之低界限 23 •1301617 802低臨界電壓分佈之高界限 805南臨界電壓分佈之低界限 806南臨界電壓分佈之南界限 807標準參考電流 808、809 監控參考電流 810電荷損失之邊界 811電荷增益之邊界 812、813、815、816、817 感測邊界 901 標準資料 902第一邏輯資料 903第二邏輯資料 910 資料細胞 911測量電流記憶體電流細胞 913、914 監控參考電流 923、924監控感測放大器 925資料多工器 930 比較邏輯 940狀態機器/微控制器 1100、1200、1300、1400 積體電路 1101 行解碼器 1102 字元線 1103 列解碼 1104位元線 1105 匯流排 1106、1206、1306、1406 方塊 1107 資料匯流排 1108偏壓配置供應電壓 1109偏壓配置狀態機器 24 •1301617 1111資料輸入線 1115資料輸出線 1150、1350記憶體陣列 B卜ΒΓ、B2、B2’、B3、B4 臨界電壓分佈 D1、D1’、D2、D2’ 感測邊界 normal_Iref標準參考電流 monitor—Iref (1、2) 監控參考電流 CM循環邊界 RT 室溫漂移 RD讀出干擾Cheng, the flow of the 1GA chart of the paste. Rhyme - 1 " control reference f flow without using the second monitoring reference power 10C picture display - similar to the series sensing operation flow of Figure 10A, which enables the second monitoring reference current without using the first monitoring channel 0 - 11 shows a block diagram for performing parallel sensing to determine whether to perform an update function including boundary detection cells and a boundary detection amplifier. Figure 12 shows a block diagram for performing tandem sensing to determine whether to perform an update function. The sensing includes border detection cells. Figure 13 shows a block diagram of parallel sensing to determine whether to perform an update function that includes both a standard sense amplifier and a monitor sense amplifier. The standard sense amplifier senses normal-Iref and the monitor sense amplifier senses monitor_Iref. Figure 14 shows a block diagram of performing series sensing to determine whether to perform an update function, the sensing includes a sense amplifier to sense normal-Iref and monitor-Iref〇22 1301617 in different cycles. [Main component symbol Explanation] 105 initial threshold voltage low limit 110 initial distribution interval 111 initial threshold voltage intermediate value 115 initial threshold voltage high limit 120 low threshold voltage cycle boundary 130 threshold voltage room temperature drift and readout interference 140 circuit f buy Interval and array cell final critical voltage interval φ 150 charge loss interval 155 high threshold voltage distribution low limit 160 threshold voltage of programmed cell 165 high threshold voltage distribution high limit 210 data memory portion 215 data sense amplifier portion 220 boundary Detection Memory Portion 225 Boundary Detection Sense Amplifier Portion 235 Comparison Block 315 Sense Amplifier Section 335 Comparison Memory 411 Low Threshold Voltage Distribution 441 Charge Loss Boundary 452 South Critical Voltage Sorrow 511 Low Threshold Voltage State 550 High Threshold Voltage Level 551 Final threshold voltage interval 552 high threshold voltage state 801 Low threshold of low threshold voltage distribution 23 • 1301617 802 low threshold voltage distribution high limit 805 South critical voltage distribution low limit 806 South critical voltage distribution south limit 807 standard reference current 808, 809 monitoring reference current 810 charge loss boundary 811 Charge gain boundary 812, 813, 815, 816, 817 sensing boundary 901 standard data 902 first logic data 903 second logic data 910 data cell 911 measurement current memory current cell 913, 914 monitoring reference current 923, 924 monitoring sense Amplifier 925 Data Multiplexer 930 Compare Logic 940 State Machine/Microcontroller 1100, 1200, 1300, 1400 Integrated Circuit 1101 Row Decoder 1102 Word Line 1103 Column Decode 1104 Bit Line 1105 Bus 1106, 1206, 1306 1406 Block 1107 Data Bus 1108 Bias Configuration Supply Voltage 1109 Bias Configuration State Machine 24 • 1301617 1111 Data Input Line 1115 Data Output Line 1150, 1350 Memory Array B Bu, B2, B2', B3, B4 Threshold Voltage Distribution D1, D1', D2, D2' sensing boundary normal_Iref standard reference current monitor-Iref (1, 2) monitoring parameters Test current CM cycle boundary RT room temperature drift RD readout interference
2525
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95118673A TWI301617B (en) | 2006-05-25 | 2006-05-25 | Method and apparatus to improve nonvolatile memory data retention |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95118673A TWI301617B (en) | 2006-05-25 | 2006-05-25 | Method and apparatus to improve nonvolatile memory data retention |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI301617B true TWI301617B (en) | 2008-10-01 |
Family
ID=45070286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95118673A TWI301617B (en) | 2006-05-25 | 2006-05-25 | Method and apparatus to improve nonvolatile memory data retention |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI301617B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8867289B2 (en) | 2012-11-08 | 2014-10-21 | Industrial Technology Research Institute | Chip with embedded non-volatile memory and testing method therefor |
-
2006
- 2006-05-25 TW TW95118673A patent/TWI301617B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8867289B2 (en) | 2012-11-08 | 2014-10-21 | Industrial Technology Research Institute | Chip with embedded non-volatile memory and testing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4129170B2 (en) | Semiconductor memory device and memory data correction method for memory cell | |
TWI261261B (en) | Sensing circuit for multi-level flash memory | |
TWI313007B (en) | Non-volatile semiconductor memory device and reference scheme for the same | |
US7852665B2 (en) | Memory cell with proportional current self-reference sensing | |
US20140104933A1 (en) | Semiconductor memory | |
JP5357387B2 (en) | MRAM device and control method thereof | |
EP1446807B1 (en) | Sense amplifier for multilevel non-volatile integrated memory devices | |
US20200226073A1 (en) | Random code generator with non-volatile memory | |
TW200300259A (en) | Non-volatile memory with temperature-compensated data read | |
US9064548B2 (en) | Method for reading a third-dimensional embedded re-writeable non-volatile memory and registers | |
JP2012531004A (en) | Write reversible resistance switching element | |
CN103366790A (en) | Trimmable reference generator used for sense amplifier | |
CN103794252B (en) | Low-voltage current for sense amplifier refers to generator | |
TW200425149A (en) | Semiconductor memory device and data write method | |
TW200917266A (en) | Charge loss compensation methods and apparatus | |
CN108172250A (en) | High speed and low-power sense amplifier | |
TW201730743A (en) | Reducing verification checks when programming a memory device | |
TW201027333A (en) | A memory controller and a method of operating an electrically alterable non-volatile memory device | |
CN106062881A (en) | Nonvolatile semiconductor storage device | |
JP5406920B2 (en) | Method for electrical trimming of non-volatile memory reference cells | |
TW201225083A (en) | Semiconductor memory apparatus and method of driving the same | |
TWI301617B (en) | Method and apparatus to improve nonvolatile memory data retention | |
KR20060110742A (en) | Rfid device having a memory for correcting a fail cell and method for correcting a fail cell thereof | |
CN108346449B (en) | eFuse storage circuit | |
CN111489779A (en) | Double-separation-gate flash memory circuit, storage device and reading method |