TWI386831B - Touch panel and displaying device using the same - Google Patents
Touch panel and displaying device using the same Download PDFInfo
- Publication number
- TWI386831B TWI386831B TW96151275A TW96151275A TWI386831B TW I386831 B TWI386831 B TW I386831B TW 96151275 A TW96151275 A TW 96151275A TW 96151275 A TW96151275 A TW 96151275A TW I386831 B TWI386831 B TW I386831B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- touch screen
- display device
- film
- disposed
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
- Laminated Bodies (AREA)
Description
本發明涉及一種觸摸屏及顯示裝置,尤其涉及一種採用奈米碳管作透明導電層的觸摸屏及使用該觸摸屏的顯示裝置。 The invention relates to a touch screen and a display device, in particular to a touch screen using a carbon nanotube as a transparent conductive layer and a display device using the same.
近年來,伴隨著移動電話與觸摸導航系統等各種電子設備的高性能化和多樣化的發展,在液晶等顯示設備的前面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的顯示設備的顯示內容進行視覺確認,一邊利用手指或筆等方式按壓觸摸屏來進行操作。故,可以操作電子設備的各種功能。 In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display device such as a liquid crystal are gradually increasing. The user of such an electronic device operates the display content of the display device located on the back surface of the touch panel by visually checking the touch panel while pressing the touch panel by a finger or a pen. Therefore, various functions of the electronic device can be operated.
按照觸摸屏的工作原理和傳輸介質的不同,先前技術中的觸摸屏分為四種類型,分別為電阻式、電容式、紅外線式以及表面聲波式。其中電容式觸摸屏因準確度較高、抗幹擾能力強應用較為廣泛。 According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability.
先前技術中的電容式觸摸屏(請參見“連續薄膜電容式觸摸屏的研究”,李樹本等,光電子技術,Vol.15,p62(1995))包括一玻璃基板,一透明導電層,以及多個金屬電極。在該電容式觸摸屏中,玻璃基板的材料為鈉鈣玻璃。透明導電層為例如銦錫氧化物(ITO)或銻錫氧化物(ATO)等透明材料。電極為通過印製具有低電阻的導電金屬(例如銀)形成。電極間隔設置在透明導電層的各個角處。此外,透明導電層上塗覆有防護層。該防 護層由液體玻璃材料通過硬化或緻密化工藝,並進行熱處理後,硬化形成。 Prior art capacitive touch screens (see "Research on Continuous Thin Film Capacitive Touch Screens", Li Shuben et al., Optoelectronics Technology, Vol. 15, p. 62 (1995)) include a glass substrate, a transparent conductive layer, and a plurality of metal electrodes. . In the capacitive touch panel, the material of the glass substrate is soda lime glass. The transparent conductive layer is a transparent material such as indium tin oxide (ITO) or antimony tin oxide (ATO). The electrode is formed by printing a conductive metal (for example, silver) having a low electrical resistance. The electrode spacing is disposed at each corner of the transparent conductive layer. Further, the transparent conductive layer is coated with a protective layer. The defense The sheath is formed by a hardening or densification process of the liquid glass material, followed by heat treatment.
當手指等觸摸物觸摸在觸摸屏表面上時,由於人體電場,手指等觸摸物和觸摸屏中的透明導電層之間形成一個耦合電容。對於高頻電流來說,電容為直接導體,手指等觸摸物的觸摸將從接觸點吸走一個很小的電流。這個電流分別從觸摸屏上的電極中流出,並且流經這四個電極的電流與手指到四角的距離成正比,觸摸屏控制器通過對這四個電流比例的精確計算,得出觸摸點的位置。 When a touch object such as a finger touches the surface of the touch screen, a coupling capacitance is formed between the touch object such as a finger and the transparent conductive layer in the touch screen due to the human body electric field. For high-frequency currents, the capacitor is a direct conductor, and the touch of a finger or the like will draw a small current from the contact point. This current flows out of the electrodes on the touch screen, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen controller obtains the position of the touch point by accurately calculating the ratio of the four currents.
故,透明導電層對於觸摸屏為一必需的部件,先前技術中透明導電層通常採用ITO層,然,ITO層作為透明導電層具有機械和化學耐用性不够好等缺點。進一步地,採用ITO層作透明導電層存在電阻阻值分布不均勻的現象,導致先前技術中的電容式觸摸屏存在觸摸屏的分辨率低、精確度不高等問題。 Therefore, the transparent conductive layer is an essential component for the touch screen. In the prior art, the transparent conductive layer usually adopts an ITO layer. However, the ITO layer as a transparent conductive layer has disadvantages such as insufficient mechanical and chemical durability. Further, the use of the ITO layer as the transparent conductive layer has a phenomenon in that the resistance value distribution is uneven, which causes the capacitive touch screen of the prior art to have problems such as low resolution and low precision of the touch screen.
有鑒於此,確有必要提供一種分辨率高、精確度高及耐用的觸摸屏,以及使用該觸摸屏的顯示裝置。 In view of this, it is indeed necessary to provide a touch screen having high resolution, high precision, and durability, and a display device using the touch screen.
一種觸摸屏,該觸摸屏包括一基體;一透明導電層,該透明導電層設置於上述基體的一表面;以及兩個第一電極和兩個第二電極。其中,所述透明導電層包括多個奈米碳管帶狀膜結構分別沿第一方向和第二方向平行且間隔設置,且第一方向與第二方向交叉。所述沿第一方向設置的奈米碳管帶狀膜結構的兩端分別與兩個第一電極電連接,所述沿第二方向設置的奈米碳管帶狀膜結構的 兩端分別與兩個第二電極電連接。 A touch screen includes a substrate; a transparent conductive layer disposed on a surface of the substrate; and two first electrodes and two second electrodes. Wherein, the transparent conductive layer comprises a plurality of carbon nanotube strip film structures respectively arranged in parallel and spaced apart along the first direction and the second direction, and the first direction intersects with the second direction. The two ends of the carbon nanotube film structure disposed along the first direction are electrically connected to the two first electrodes, respectively, and the carbon nanotube film structure disposed along the second direction The two ends are electrically connected to the two second electrodes, respectively.
一種顯示裝置,其包括一觸摸屏,該觸摸屏包括一基體;一透明導電層,該透明導電層設置於上述基體的一表面;兩個第一電極和兩個第二電極;以及一顯示設備,該顯示設備正對且靠近觸摸屏的基體設置。其中,所述透明導電層包括多個奈米碳管帶狀膜結構分別沿第一方向和第二方向平行且間隔設置,且第一方向與第二方向交叉。所述沿第一方向設置的奈米碳管帶狀膜結構的兩端分別與兩個第一電極電連接,所述沿第二方向設置的奈米碳管帶狀膜結構的兩端分別與兩個第二電極電連接。 A display device comprising a touch screen, the touch screen comprising a substrate; a transparent conductive layer disposed on a surface of the substrate; two first electrodes and two second electrodes; and a display device The display device is facing and close to the base of the touch screen. Wherein, the transparent conductive layer comprises a plurality of carbon nanotube strip film structures respectively arranged in parallel and spaced apart along the first direction and the second direction, and the first direction intersects with the second direction. The two ends of the carbon nanotube film structure disposed along the first direction are electrically connected to the two first electrodes, respectively, and the two ends of the carbon nanotube film structure disposed along the second direction are respectively The two second electrodes are electrically connected.
與先前技術相比較,本技術方案提供的觸摸屏及顯示裝置具有以下優點:其一,由於透明導電層中的多個奈米碳管帶狀膜結構相互交織或重叠且交叉設置,因此,所述透明導電層具有較好的力學性能,從而使得上述的透明導電層具有較好的機械強度和韌性,故,採用上述的奈米碳管帶狀膜結構作透明導電層,可以相應的提高觸摸屏的耐用性,進而提高了使用該觸摸屏的顯示裝置的耐用性。其二,上述透明導電層中的多個奈米碳管帶狀膜結構平行且間隔設置,從而使得透明導電層具有均勻的阻值分布和透光性,從而提高觸摸屏及使用該觸摸屏的顯示裝置的分辨率和精確度。 Compared with the prior art, the touch screen and the display device provided by the technical solution have the following advantages: First, since the plurality of carbon nanotube film-like film structures in the transparent conductive layer are interlaced or overlapped and cross-shaped, the The transparent conductive layer has good mechanical properties, so that the transparent conductive layer has good mechanical strength and toughness. Therefore, the above-mentioned carbon nanotube film structure is used as the transparent conductive layer, and the touch screen can be correspondingly improved. Durability, which in turn increases the durability of display devices using the touch screen. Second, the plurality of carbon nanotube film-like films in the transparent conductive layer are parallel and spaced apart, so that the transparent conductive layer has a uniform resistance distribution and light transmittance, thereby improving the touch screen and the display device using the touch screen. Resolution and accuracy.
以下將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.
請參閱圖1、圖2及圖3,觸摸屏20包括一基體22、一透明 導電層24、一防護層26、兩個第一電極28和兩個第二電極29。所述基體22具有一第一表面221以及與第一表面221相對的第二表面222。所述透明導電層24設置在基體22的第一表面221上。所述透明導電層24包括多個奈米碳管帶狀膜結構240分別沿第一方向L1和第二方向L2平行設置。且第一方向L1不同於第二方向L2,即第一方向L1與第二方向L2交叉。可以理解,沿第一方向L1和第二方向L2設置的奈米碳管帶狀膜結構240可無間隙地接觸設置或間隔一定距離設置。本實施例中,所述多個奈米碳管帶狀膜結構240分別沿第一方向L1和第二方向L2間隔設置,且間隔距離為5奈米~1毫米。 Referring to FIG. 1 , FIG. 2 and FIG. 3 , the touch screen 20 includes a base 22 and a transparent surface. Conductive layer 24, a protective layer 26, two first electrodes 28 and two second electrodes 29. The base 22 has a first surface 221 and a second surface 222 opposite the first surface 221 . The transparent conductive layer 24 is disposed on the first surface 221 of the substrate 22. The transparent conductive layer 24 includes a plurality of carbon nanotube strip film structures 240 disposed in parallel in the first direction L1 and the second direction L2, respectively. And the first direction L1 is different from the second direction L2, that is, the first direction L1 intersects with the second direction L2. It can be understood that the carbon nanotube film structure 240 disposed along the first direction L1 and the second direction L2 can be disposed without a gap or at a certain distance. In this embodiment, the plurality of carbon nanotube strip film structures 240 are respectively disposed along the first direction L1 and the second direction L2, and the spacing distance is 5 nm to 1 mm.
所述沿第一方向L1設置的奈米碳管帶狀膜結構240的兩端分別與兩個第一電極28電連接,所述沿第二方向L2設置的奈米碳管帶狀膜結構240的兩端分別與兩個第二電極29電連接,用以在透明導電層24上形成等電位面。防護層26可直接設置在透明導電層24、兩個第一電極28以及兩個第二電極29上。 The two ends of the carbon nanotube film structure 240 disposed along the first direction L1 are electrically connected to the two first electrodes 28, respectively, and the carbon nanotube film structure 240 disposed along the second direction L2 The two ends are electrically connected to the two second electrodes 29 respectively to form an equipotential surface on the transparent conductive layer 24. The protective layer 26 can be disposed directly on the transparent conductive layer 24, the two first electrodes 28, and the two second electrodes 29.
其中,所述基體22為一曲面型或平面型的結構。該基體22由玻璃、石英、金剛石或塑料等硬性材料或柔性材料形成。所述基體22主要起支撑的作用。 The base 22 is a curved or planar structure. The base 22 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support.
所述透明導電層24包括相互交叉的多個奈米碳管帶狀膜結構240。所述奈米碳管帶狀膜結構240為一奈米碳管薄膜,該奈米碳管薄膜包括多個定向排列的奈米碳管。另外所述奈米碳管帶狀膜結構也可為重叠設置的多層奈米碳管薄膜,每一奈米碳管薄膜包括多個定向排列的奈米 碳管,且相鄰的兩層奈米碳管薄膜中的奈米碳管沿同一方向排列或沿不同方向排列。所述奈米碳管薄膜進一步包括多個首尾相連的奈米碳管束片段,每個奈米碳管束片段具有相等的長度且每個奈米碳管束片段由多個相互平行的奈米碳管束構成,所述多個奈米碳管束片段兩端通過凡德瓦爾力相互連接。該相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括多個長度相等且平行排列的奈米碳管。所述奈米碳管可以為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述奈米碳管帶狀膜結構的寬度為1毫米~10厘米。所述奈米碳管帶狀膜結構的厚度為0.5奈米~100微米。所述奈米碳管帶狀膜結構之間的間距為5奈米~1毫米。本實施例中,所述透明導電層24包括多個相互交叉設置的奈米碳管帶狀膜薄膜結構。所述每一奈米碳管帶狀膜結構為一奈米碳管薄膜。優選地,所述透明導電層24中的多個奈米碳管帶狀膜分別沿所述第一方向和第二方向平行且間隔設置。 The transparent conductive layer 24 includes a plurality of carbon nanotube ribbon film structures 240 that intersect each other. The carbon nanotube film structure 240 is a carbon nanotube film comprising a plurality of aligned carbon nanotubes. In addition, the carbon nanotube film structure may also be a stacked multi-layer carbon nanotube film, and each carbon nanotube film comprises a plurality of aligned nanometers. Carbon tubes, and the carbon nanotubes in the adjacent two layers of carbon nanotube film are arranged in the same direction or in different directions. The carbon nanotube film further comprises a plurality of end-to-end carbon nanotube bundle segments, each of the carbon nanotube bundle segments having equal lengths and each of the carbon nanotube bundle segments being composed of a plurality of mutually parallel carbon nanotube bundles The two ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes of equal length and arranged in parallel. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube film structure has a width of 1 mm to 10 cm. The carbon nanotube ribbon film structure has a thickness of 0.5 nm to 100 μm. The spacing between the carbon nanotube film structures is 5 nm to 1 mm. In this embodiment, the transparent conductive layer 24 includes a plurality of carbon nanotube film film structures that are disposed to intersect each other. Each of the carbon nanotube strip film structures is a carbon nanotube film. Preferably, the plurality of carbon nanotube film films in the transparent conductive layer 24 are respectively disposed in parallel and spaced apart along the first direction and the second direction.
此外,由於所述透明導電層24中的多個奈米碳管帶狀膜平行且間隔設置。優選地,所述透明導電層24中的奈米碳管帶狀膜平行且等間距設置,從而使得所述透明導電層24具有均勻的阻值分布和透光特性,提高了觸摸屏20的分辨率和準確率。 Further, a plurality of carbon nanotube film films in the transparent conductive layer 24 are disposed in parallel and spaced apart. Preferably, the carbon nanotube strip films in the transparent conductive layer 24 are arranged in parallel and at equal intervals, so that the transparent conductive layer 24 has a uniform resistance distribution and light transmission characteristics, and the resolution of the touch screen 20 is improved. And accuracy.
可以理解,為了使得觸摸屏20具有更加均一的透明度,可以在所述間隔設置的奈米碳管帶狀膜240之間設置有光學補償膜。 It can be understood that in order to make the touch screen 20 have more uniform transparency, an optical compensation film may be disposed between the spaced-apart carbon nanotube film films 240.
本技術方案實施例透明導電層24的製備方法主要包括以下步驟: The preparation method of the transparent conductive layer 24 of the embodiment of the technical solution mainly includes the following steps:
步驟一:提供一奈米碳管陣列形成於一基底,優選地,該陣列為超順排奈米碳管陣列。 Step 1: providing a carbon nanotube array formed on a substrate, preferably the array is a super-sequential carbon nanotube array.
本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。該奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)在基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底在700℃~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,在保護氣體環境下加熱到500℃~740℃,然後通入碳源氣體反應約5分鐘~30分鐘,生長得到奈米碳管陣列,其高度為100微米左右。該奈米碳管陣列為多個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。該奈米碳管陣列與上述基底面積基本相同。通過上述控制生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 The carbon nanotube array provided by the embodiments of the present technical solution is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate having an oxide layer formed thereon. Preferably, the present embodiment adopts a 4-inch germanium substrate; (b) uniformly forms a catalyst layer on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. One of the alloys; (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace in a protective gas atmosphere The mixture is heated to 500 ° C to 740 ° C, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array having a height of about 100 μm. The carbon nanotube array is an array of pure carbon nanotubes formed by a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The carbon nanotube array is substantially the same area as the above substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above.
本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon.
可以理解,本技術方案實施例提供的奈米碳管陣列不限於上述製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸發沈積法等等。 It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method or the like.
步驟二:採用一拉伸工具從奈米碳管陣列中拉取奈米碳管獲得一奈米碳管薄膜。 Step 2: Pulling a carbon nanotube from the carbon nanotube array using a stretching tool to obtain a carbon nanotube film.
該奈米碳管薄膜的製備具體包括以下步驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈米碳管片斷,本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的多個奈米碳管束;(b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸多個該奈米碳管束,以形成一連續的奈米碳管薄膜。 The preparation of the carbon nanotube film specifically includes the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array, and in this embodiment, preferably contacting the nano tape with a tape having a certain width. The carbon tube array selects a plurality of carbon nanotube bundles of a certain width; (b) stretching the plurality of carbon nanotube bundles at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth to form a continuous nanocarbon Tube film.
在上述拉伸過程中,該多個奈米碳管束在拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的多個奈米碳管束分別與其他奈米碳管束首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該奈米碳管薄膜包括多個首尾相連且定向排列的奈米碳管束。該奈米碳管帶狀膜中的奈米碳管的排列方向基本平行於奈米碳管薄膜的拉伸方向。 In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundles are respectively combined with other nanocarbons due to the van der Waals force. The tube bundles are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotube bundles connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film.
請參閱圖4,該奈米碳管薄膜為擇優取向排列的多個奈米碳管束首尾相連形成的具有一定寬度的奈米碳管薄膜。該直接拉伸獲得的擇優取向的奈米碳管薄膜比無序的奈米碳管薄膜具有更好的均勻性,即具有更均勻的厚度以及具有更均勻的導電性能。同時該直接拉伸獲得奈米碳管薄膜的方法簡單快速,適宜進行工業化應用。 Referring to FIG. 4, the carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation. The preferentially oriented carbon nanotube film obtained by the direct stretching has better uniformity than the disordered carbon nanotube film, that is, has a more uniform thickness and has more uniform electrical conductivity. At the same time, the direct stretching method for obtaining the carbon nanotube film is simple and rapid, and is suitable for industrial application.
本實施例中,所述奈米碳管薄膜的寬度與奈米碳管陣列所生長的基底的尺寸以及選取的奈米碳管片段的寬度有關,該奈米碳管薄膜的長度不限,可根據實際需求製得。當該奈米碳管薄膜中的奈米碳管為單壁奈米碳管、雙壁奈米碳管和雙壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~50奈米。所述雙壁奈米碳管的直徑為1.0奈米~50奈米。所述多壁奈米碳管的直徑為1.5奈米~50奈米。 In this embodiment, the width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown and the width of the selected carbon nanotube segment, and the length of the carbon nanotube film is not limited. According to actual needs. When the carbon nanotubes in the carbon nanotube film are one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a double-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm. The double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm. The multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm.
步驟三:製備多個上述奈米碳管薄膜,形成一奈米碳管帶狀膜結構,將該奈米碳管帶狀膜結構平行且間隔鋪設在所述基體22的表面,從而形成所述透明導電層24。 Step 3: preparing a plurality of the above-mentioned carbon nanotube film to form a carbon nanotube film structure, and laying the carbon nanotube film structure in parallel and at intervals on the surface of the substrate 22, thereby forming the Transparent conductive layer 24.
所述奈米碳管帶狀膜結構240為一奈米碳管薄膜或重叠設置的多個奈米碳管薄膜。所述重叠設置的多個奈米碳管薄膜中相鄰兩層奈米碳管薄膜中的奈米碳管的排列方式不限,可沿同一方向排列,也可沿不同方向排列。所述奈米碳管帶狀膜結構240之間的設置間距為5奈米~1毫米,具體可根據觸摸屏20的透光性進行選擇。 The carbon nanotube film structure 240 is a carbon nanotube film or a plurality of carbon nanotube films arranged in an overlapping manner. The arrangement of the carbon nanotubes in the adjacent two layers of the carbon nanotube film in the plurality of stacked carbon nanotube films is not limited, and may be arranged in the same direction or in different directions. The arrangement distance between the carbon nanotube film-like film structures 240 is 5 nm to 1 mm, which can be selected according to the light transmittance of the touch screen 20.
其中,採用多個上述的奈米碳管帶狀膜結構240製備透明導電層24的方法有以下兩種。其一,取多個上述的奈米碳管帶狀膜結構240,沿第一方向L1間隔且平行地設置在基體22的第一表面221上;另取多個上述的奈米碳管帶狀膜結構240,沿第二方向L2間隔且平行地設置在基體22的第一表面221上。其中,第一方向L1與第二方向L2具有一交叉角度α,0<α 90度。其二,取多個上述的奈米碳管帶狀膜結構240相互交織,並使得上述的多個奈米碳管 帶狀膜結構240分別沿第一方向L1和第二方向L2間隔且平行設置。 There are two methods for preparing the transparent conductive layer 24 by using the plurality of the above-described carbon nanotube strip film structures 240. First, a plurality of the above-mentioned carbon nanotube film structures 240 are disposed, which are disposed on the first surface 221 of the substrate 22 at intervals and in parallel in the first direction L1; and a plurality of the above-mentioned carbon nanotube strips are taken. The film structures 240 are disposed on the first surface 221 of the substrate 22 at intervals and in parallel along the second direction L2. The first direction L1 and the second direction L2 have an intersection angle α, and 0<α is 90 degrees. Second, a plurality of the above-mentioned carbon nanotube film structures 240 are intertwined with each other, and the plurality of carbon nanotubes described above are made. The strip film structure 240 is spaced apart and arranged in parallel in the first direction L1 and the second direction L2, respectively.
由於本實施例超順排奈米碳管陣列中的奈米碳管非常純淨,且由於奈米碳管本身的比表面積非常大,所以該奈米碳管薄膜本身具有較強的黏性。因此,由該奈米碳管薄膜組成的奈米碳管帶狀膜結構作為透明導電層24可直接黏附在所述基體22的表面。 Since the carbon nanotube in the super-sequential carbon nanotube array of the present embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. Therefore, the carbon nanotube film structure composed of the carbon nanotube film can be directly adhered to the surface of the substrate 22 as the transparent conductive layer 24.
另外,可使用有機溶劑處理上述黏附在所述基體22上的奈米碳管帶狀膜結構240。具體地,可通過試管將有機溶劑滴落在奈米碳管帶狀膜結構240表面浸潤整個奈米碳管帶狀膜結構240。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。該奈米碳管帶狀膜結構240經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的作用下,該奈米碳管帶狀膜結構可牢固地貼附在基體表面,且表面體積比减小,黏性降低,具有良好的機械強度及韌性。 Alternatively, the carbon nanotube film structure 240 adhered to the substrate 22 may be treated with an organic solvent. Specifically, the entire carbon nanotube film structure 240 can be infiltrated by the surface of the carbon nanotube film structure 240 by dropping an organic solvent through a test tube. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. After the carbon nanotube ribbon film structure 240 is infiltrated by an organic solvent, the carbon nanotube film structure can be firmly attached to the surface of the substrate under the action of the surface tension of the volatile organic solvent, and the surface volume is The ratio is reduced, the viscosity is lowered, and the mechanical strength and toughness are good.
所述透明導電層24中的沿第一方向L1設置的奈米碳管帶狀膜結構240的兩端與所述第一電極28電連接,所述沿第二方向L2設置的奈米碳管帶狀膜結構240的兩端與所述第二電極29電連接。優選地,所述沿第一方向L1設置的奈米碳管帶狀膜結構平行且等間距設置。所述沿第二方向L2設置的奈米碳管帶狀膜結構240平行且等間距設置。 Two ends of the carbon nanotube strip film structure 240 disposed in the first direction L1 of the transparent conductive layer 24 are electrically connected to the first electrode 28, and the carbon nanotubes disposed along the second direction L2 Both ends of the strip film structure 240 are electrically connected to the second electrode 29. Preferably, the carbon nanotube film structures disposed along the first direction L1 are arranged in parallel and at equal intervals. The carbon nanotube film structures 240 disposed along the second direction L2 are disposed in parallel and at equal intervals.
另外,所述多個奈米碳管薄膜也可通過以下步驟製備:採用一拉伸工具從奈米碳管陣列中拉取奈米碳管獲得一 奈米碳管薄膜;將該奈米碳管薄膜切割成大小尺寸相等的多個奈米碳管薄膜。 In addition, the plurality of carbon nanotube films can also be prepared by the following steps: using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a a carbon nanotube film; the carbon nanotube film is cut into a plurality of carbon nanotube films of equal size and size.
可以理解,本技術方案實施例提供的所述奈米碳管薄膜的製備不限於上述製備方法,也可通過碾壓法製備一奈米碳管薄膜,該談奈米管帶狀薄膜中的多個奈米碳管沿同一方向排列、沿不同方向排列或各相同性排列。此外,還可採用絮化法製備一奈米碳管薄膜,該奈米碳管薄膜包括多個相互纏繞的奈米碳管。 It can be understood that the preparation of the carbon nanotube film provided by the embodiment of the present technical solution is not limited to the above preparation method, and a carbon nanotube film can also be prepared by a rolling method, and the film of the nanotube film is more The carbon nanotubes are arranged in the same direction, arranged in different directions or arranged in the same order. In addition, a carbon nanotube film can be prepared by a flocculation method, and the carbon nanotube film comprises a plurality of intertwined carbon nanotubes.
可以理解,所述透明導電層24和基體22的形狀可以根據觸摸屏20的觸摸區域的形狀進行選擇。例如觸摸屏20的觸摸區域可為具有一長度的長線形觸摸區域、三角形觸摸區域及矩形觸摸區域等。本實施例中,觸摸屏20的觸摸區域為矩形觸摸區域。 It can be understood that the shapes of the transparent conductive layer 24 and the base 22 can be selected according to the shape of the touch area of the touch screen 20. For example, the touch area of the touch screen 20 may be a long line touch area having a length, a triangular touch area, a rectangular touch area, or the like. In this embodiment, the touch area of the touch screen 20 is a rectangular touch area.
對於矩形觸摸區域,透明導電層24和基體22的形狀也可為矩形。為了在上述的透明導電層24上形成均勻的電阻網絡,需在該透明導電層24中的沿第一方向L1平行且間隔設置的奈米碳管帶狀膜結構240的兩端連接兩個第一電極28,在沿第二方向L2平行且間隔設置的奈米碳管帶狀膜結構240的兩端連接兩個第二電極29。可以理解,上述的兩個第一電極28和兩個第二電極29的設置方式不限,只需確保與透明導電層24電連接即可。本實施例中,基體22為玻璃基板,所述兩個第一電極28和兩個第二電極29為由銀或銅等低電阻的導電金屬鍍層或者金屬箔片組成的條狀電極。 For the rectangular touch area, the shape of the transparent conductive layer 24 and the base 22 may also be rectangular. In order to form a uniform resistance network on the transparent conductive layer 24, two ends of the carbon nanotube film structure 240 disposed in parallel and spaced apart in the first direction L1 in the transparent conductive layer 24 are required to be connected to the two ends. An electrode 28 connects the two second electrodes 29 at both ends of the carbon nanotube film structure 240 which are disposed in parallel and spaced apart in the second direction L2. It can be understood that the arrangement manner of the two first electrodes 28 and the two second electrodes 29 described above is not limited, and only needs to ensure electrical connection with the transparent conductive layer 24. In this embodiment, the base 22 is a glass substrate, and the two first electrodes 28 and the two second electrodes 29 are strip electrodes composed of a low-resistance conductive metal plating such as silver or copper or a metal foil.
本實施例中,所述兩個第一電極28為兩個條狀電極,且設置在沿第一方向L1平行且間隔設置的奈米碳管帶狀膜結構240的兩端;所述兩個第二電極29也為兩個條狀電極,且設置在沿第二方向L2平行且間隔設置的奈米碳管帶狀膜結構240的兩端。所述第一電極28和第二電極29可以採用濺射、電鍍、化學鍍等沈積方法直接形成在透明導電層24上。另外,也可用銀膠等導電黏結劑將上述的第一電極28和第二電極29黏結在透明導電層24上。 In this embodiment, the two first electrodes 28 are two strip electrodes, and are disposed at two ends of the carbon nanotube strip film structure 240 disposed in parallel and spaced apart along the first direction L1; The second electrode 29 is also two strip electrodes, and is disposed at both ends of the carbon nanotube film structure 240 which are disposed in parallel and spaced apart in the second direction L2. The first electrode 28 and the second electrode 29 may be directly formed on the transparent conductive layer 24 by a deposition method such as sputtering, electroplating, or electroless plating. Alternatively, the first electrode 28 and the second electrode 29 may be bonded to the transparent conductive layer 24 by a conductive adhesive such as silver paste.
可以理解,所述兩個第一電極28和兩個第二電極29亦可設於透明導電層24與基體22之間或設置在基體22的一個表面上,只要能使上述的兩個第一電極28和兩個第二電極29與透明導電層24上之間形成電連接即可。 It can be understood that the two first electrodes 28 and the two second electrodes 29 may be disposed between the transparent conductive layer 24 and the base 22 or on one surface of the base 22, as long as the two firsts described above can be The electrical connection between the electrode 28 and the two second electrodes 29 and the transparent conductive layer 24 may be made.
進一步地,為了延長透明導電層24的使用壽命和限製耦合在接觸點與透明導電層24之間的電容,可以在透明導電層24和兩個第一電極28及兩個第二電極29之上設置一透明的防護層26,防護層26可由氮化矽、氧化矽、苯並環丁烯(BCB)、聚酯膜或丙烯酸樹脂等形成。該防護層26具有一定的硬度,對透明導電層24起保護作用。可以理解,還可通過特殊的工藝處理,從而使得防護層26具有以下功能,例如减小炫光、降低反射等。 Further, in order to extend the service life of the transparent conductive layer 24 and limit the capacitance coupled between the contact point and the transparent conductive layer 24, the transparent conductive layer 24 and the two first electrodes 28 and the two second electrodes 29 may be disposed. A transparent protective layer 26 is provided, and the protective layer 26 may be formed of tantalum nitride, cerium oxide, benzocyclobutene (BCB), a polyester film or an acrylic resin or the like. The protective layer 26 has a certain hardness and protects the transparent conductive layer 24. It will be appreciated that processing may also be performed by a special process such that the protective layer 26 has the following functions, such as reducing glare, reducing reflection, and the like.
在本實施例中,防護層26為一二氧化矽層,該防護層26的硬度達到7H(H為洛氏硬度試驗中,卸除主試驗力後,在初試驗力下壓痕殘留的深度)。可以理解,防護層26的硬度和厚度可以根據需要進行選擇。所述防護層26可以通過導電銀膠直接黏結在透明導電層24上。 In this embodiment, the protective layer 26 is a ruthenium dioxide layer, and the hardness of the protective layer 26 reaches 7H (H is the depth of the indentation residual under the initial test force after the main test force is removed in the Rockwell hardness test. ). It will be appreciated that the hardness and thickness of the protective layer 26 can be selected as desired. The protective layer 26 can be directly bonded to the transparent conductive layer 24 by a conductive silver paste.
此外,為了减小由顯示設備產生的電磁干擾,避免從觸摸屏20發出的信號產生錯誤,還可在基體22的第二表面222上設置一屏蔽層25。該屏蔽層25可由銦錫氧化物(ITO)薄膜、銻錫氧化物(ATO)薄膜、鎳金薄膜、銀薄膜或奈米碳管層等透明導電材料形成。所述的奈米碳管薄膜可以為定向排列的或其它結構的奈米碳管薄膜。本實施例中,該屏蔽層25的具體結構可與透明導電層24相同。該奈米碳管薄膜作為電接地點,起到屏蔽的作用,從而使得觸摸屏20能在無干擾的環境中工作。 Furthermore, in order to reduce the electromagnetic interference generated by the display device and to avoid errors in the signal emitted from the touch screen 20, a shielding layer 25 may also be provided on the second surface 222 of the substrate 22. The shield layer 25 may be formed of a transparent conductive material such as an indium tin oxide (ITO) film, an antimony tin oxide (ATO) film, a nickel gold film, a silver film, or a carbon nanotube layer. The carbon nanotube film may be a aligned or other structured carbon nanotube film. In this embodiment, the specific structure of the shielding layer 25 can be the same as that of the transparent conductive layer 24. The carbon nanotube film acts as an electrical grounding point and acts as a shield, thereby enabling the touch screen 20 to operate in an interference-free environment.
請參閱圖5及圖2,本技術方案實施例提供一顯示裝置100,該顯示裝置100包括一觸摸屏20,一顯示設備30。該顯示設備30正對且靠近觸摸屏20的基體第二表面222設置。進一步地,上述的顯示設備30與觸摸屏20間隔一預定距離設置或集成設置。 Referring to FIG. 5 and FIG. 2 , an embodiment of the present disclosure provides a display device 100 . The display device 100 includes a touch screen 20 and a display device 30 . The display device 30 is disposed adjacent to and adjacent to the base second surface 222 of the touch screen 20. Further, the display device 30 described above is spaced apart from the touch screen 20 by a predetermined distance or integrated setting.
顯示設備30可以為液晶顯示器、場發射顯示器、電漿顯示器、電致發光顯示器、真空螢光顯示器及陰極射線管等顯示設備中的一種。 The display device 30 may be one of display devices such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube.
請參閱圖6及圖2,進一步地,當顯示設備30與觸摸屏20間隔一定距離設置時,可在觸摸屏20的屏蔽層25遠離基體22的一個表面上設置一鈍化層104,該鈍化層104可由氮化矽、氧化矽、苯並環丁烯、聚酯膜或丙烯酸樹脂。該鈍化層104與顯示設備30的正面間隔一間隙106設置。具體地,在上述的鈍化層104與顯示設備30之間設置兩個支撑體108。該鈍化層104作為介電層使用,所述鈍化層104與間隙106可保護顯示設備30不致於由於外力過大而 損壞。 Referring to FIG. 6 and FIG. 2 , further, when the display device 30 is disposed at a distance from the touch screen 20 , a passivation layer 104 may be disposed on a surface of the shielding layer 25 of the touch screen 20 away from the substrate 22 , and the passivation layer 104 may be Tantalum nitride, yttria, benzocyclobutene, polyester film or acrylic resin. The passivation layer 104 is spaced apart from the front side of the display device 30 by a gap 106. Specifically, two support bodies 108 are disposed between the passivation layer 104 and the display device 30 described above. The passivation layer 104 is used as a dielectric layer, and the passivation layer 104 and the gap 106 can protect the display device 30 from being excessive due to external force. damage.
當顯示設備30與觸摸屏20集成設置時,可將上述的支撑體108直接除去,而將鈍化層104直接設置在顯示設備30上。即,上述的鈍化層104與顯示設備30之間無間隙地接觸設置。 When the display device 30 is integrated with the touch screen 20, the above-described support body 108 can be directly removed, and the passivation layer 104 can be directly disposed on the display device 30. That is, the passivation layer 104 described above is disposed in contact with the display device 30 without a gap.
另外,上述的顯示裝置100進一步包括一觸摸屏控制器40、一顯示設備控制器60及一中央處理器50。其中,觸摸屏控制器40、中央處理器50及顯示設備控制器60三者通過電路相互連接,觸摸屏控制器40連接電極28,顯示設備控制器60連接顯示設備30。 In addition, the display device 100 further includes a touch screen controller 40, a display device controller 60, and a central processing unit 50. The touch screen controller 40, the central processing unit 50, and the display device controller 60 are connected to each other through a circuit, the touch screen controller 40 is connected to the electrode 28, and the display device controller 60 is connected to the display device 30.
本實施例觸摸屏20及顯示裝置100在應用時的原理如下:觸摸屏20在應用時可直接設置在顯示設備30的顯示面上。觸摸屏控制器40根據手指等觸摸物70觸摸的圖標或菜單位置來定位選擇信息輸入,並將該信息傳遞給中央處理器50。中央處理器50通過顯示器控制器60控制顯示設備30顯示。 The principle of the touch screen 20 and the display device 100 in this embodiment is as follows: The touch screen 20 can be directly disposed on the display surface of the display device 30 when applied. The touch screen controller 40 positions the selection information input based on an icon or menu position touched by the touch object 70 such as a finger, and transmits the information to the central processing unit 50. The central processor 50 controls the display of the display device 30 through the display controller 60.
具體地,在使用時,透明導電層24上施加一預定電壓。電壓通過兩個第一電極28和兩個第二電極29施加到透明導電層24上,從而在該透明導電層24上形成等電位面。使用者一邊視覺確認在觸摸屏20後面設置的顯示設備30的顯示,一邊通過手指或筆等觸摸物70按壓或接近觸摸屏20的防護層26進行操作時,觸摸物70與透明導電層24之間形成一耦合電容。對於高頻電流來說,電容為直接導體,於為手指從接觸點吸走了一部分電流。這個電流 分別從觸摸屏20上的電極中流出,觸摸屏控制器40通過對這四個電流比例的精確計算,得出觸摸點的位置。之後,觸摸屏控制器40將數字化的觸摸位置數據傳送給中央處理器50。然後,中央處理器50接受上述的觸摸位置數據並執行。最後,中央處理器50將該觸摸位置數據傳輸給顯示器控制器60,從而在顯示設備30上顯示接觸物70發出的觸摸信息。 Specifically, a predetermined voltage is applied to the transparent conductive layer 24 when in use. A voltage is applied to the transparent conductive layer 24 through the two first electrodes 28 and the two second electrodes 29, thereby forming an equipotential surface on the transparent conductive layer 24. The user visually confirms the display of the display device 30 disposed behind the touch screen 20, and when the user touches or approaches the protective layer 26 of the touch screen 20 by a touch object 70 such as a finger or a pen, the touch object 70 and the transparent conductive layer 24 are formed. A coupling capacitor. For high-frequency currents, the capacitor is a direct conductor that draws a portion of the current from the contact point for the finger. This current Flowing out from the electrodes on the touch screen 20, respectively, the touch screen controller 40 derives the position of the touch point by accurately calculating the ratio of the four currents. Thereafter, the touch screen controller 40 transmits the digitized touch location data to the central processor 50. Then, the central processing unit 50 accepts the above-described touch position data and executes it. Finally, the central processor 50 transmits the touch location data to the display controller 60 to display the touch information emitted by the contact 70 on the display device 30.
本技術方案實施例提供的顯示裝置100具有以下優點:其一,由於透明導電層24中的多個奈米碳管帶狀膜結構240相互交織或重叠且交叉設置,因此,所述透明導電層24具有較好的力學性能,從而使得上述的透明導電層24具有較好的機械強度和韌性,故,採用上述的奈米碳管帶狀膜結構240作透明導電層,可以相應的提高觸摸屏20的耐用性,進而提高了使用該觸摸屏20的顯示裝置100的耐用性。其二,上述透明導電層20中的多個奈米碳管帶狀膜結構240平行且間隔設置,從而使得透明導電層24具有均勻的阻值分布和透光性,從而提高觸摸屏20及使用該觸摸屏20的顯示裝置100的分辨率和精確度。 The display device 100 provided by the embodiment of the present technical solution has the following advantages: First, since the plurality of carbon nanotube film-like film structures 240 in the transparent conductive layer 24 are interlaced or overlapped with each other and are disposed at the intersection, the transparent conductive layer 24 has better mechanical properties, so that the above transparent conductive layer 24 has better mechanical strength and toughness. Therefore, by using the above-mentioned carbon nanotube strip film structure 240 as a transparent conductive layer, the touch screen 20 can be correspondingly improved. The durability further improves the durability of the display device 100 using the touch screen 20. Secondly, the plurality of carbon nanotube strip-shaped film structures 240 in the transparent conductive layer 20 are arranged in parallel and spaced apart, so that the transparent conductive layer 24 has a uniform resistance distribution and light transmittance, thereby improving the touch screen 20 and using the same. The resolution and accuracy of the display device 100 of the touch screen 20.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限製本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
100‧‧‧顯示裝置 100‧‧‧ display device
104‧‧‧鈍化層 104‧‧‧ Passivation layer
106‧‧‧間隙 106‧‧‧ gap
108‧‧‧支撑體 108‧‧‧Support
20‧‧‧觸摸屏 20‧‧‧ touch screen
22‧‧‧基體 22‧‧‧ base
221‧‧‧第一表面 221‧‧‧ first surface
222‧‧‧第二表面 222‧‧‧ second surface
24‧‧‧透明導電層 24‧‧‧Transparent conductive layer
240‧‧‧奈米碳管長線 240‧‧‧Non carbon tube long line
25‧‧‧屏蔽層 25‧‧‧Shield
26‧‧‧防護層 26‧‧‧Protective layer
28‧‧‧第一電極 28‧‧‧First electrode
29‧‧‧第二電極 29‧‧‧second electrode
30‧‧‧顯示設備 30‧‧‧Display equipment
40‧‧‧觸摸屏控制器 40‧‧‧ touch screen controller
50‧‧‧中央處理器 50‧‧‧ central processor
60‧‧‧顯示設備控制器 60‧‧‧Display device controller
70‧‧‧觸摸物 70‧‧‧ touching objects
L1‧‧‧第一方向 L1‧‧‧ first direction
L2‧‧‧第二方向 L2‧‧‧ second direction
圖1為本技術方案實施例的觸摸屏的結構示意圖。 FIG. 1 is a schematic structural diagram of a touch screen according to an embodiment of the present technical solution.
圖2為沿圖1所示的線II-II的剖視圖。 Fig. 2 is a cross-sectional view taken along line II-II shown in Fig. 1.
圖3為本技術方案實施例的透明導電層的結構示意圖。 FIG. 3 is a schematic structural diagram of a transparent conductive layer according to an embodiment of the present technical solution.
圖4為本技術方案實施例製備的奈米碳管薄膜的掃描電鏡圖。 4 is a scanning electron micrograph of a carbon nanotube film prepared according to an embodiment of the present technical solution.
圖5為本技術方案實施例的顯示裝置的結構示意圖。 FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present technical solution.
圖6為本技術方案實施例顯示裝置的工作原理示意圖。 FIG. 6 is a schematic diagram of the working principle of the display device according to the embodiment of the present technical solution.
20‧‧‧觸摸屏 20‧‧‧ touch screen
22‧‧‧基體 22‧‧‧ base
221‧‧‧第一表面 221‧‧‧ first surface
222‧‧‧第二表面 222‧‧‧ second surface
24‧‧‧透明導電層 24‧‧‧Transparent conductive layer
25‧‧‧屏蔽層 25‧‧‧Shield
26‧‧‧防護層 26‧‧‧Protective layer
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96151275A TWI386831B (en) | 2007-12-31 | 2007-12-31 | Touch panel and displaying device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96151275A TWI386831B (en) | 2007-12-31 | 2007-12-31 | Touch panel and displaying device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200928912A TW200928912A (en) | 2009-07-01 |
TWI386831B true TWI386831B (en) | 2013-02-21 |
Family
ID=44864292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96151275A TWI386831B (en) | 2007-12-31 | 2007-12-31 | Touch panel and displaying device using the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI386831B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI419028B (en) * | 2009-10-07 | 2013-12-11 | Wintek Corp | Touch panel and display device using the same |
CN103373719B (en) | 2012-04-25 | 2015-11-25 | 北京富纳特创新科技有限公司 | The preparation method of carbon nano-tube film |
CN103377774B (en) * | 2012-04-25 | 2015-11-25 | 北京富纳特创新科技有限公司 | The preparation facilities of conducting element and preparation method |
CN103377755B (en) | 2012-04-25 | 2015-12-09 | 北京富纳特创新科技有限公司 | Conducting element |
CN103377749B (en) | 2012-04-25 | 2016-08-10 | 北京富纳特创新科技有限公司 | Electronic component |
CN103813554B (en) * | 2012-11-06 | 2016-01-13 | 北京富纳特创新科技有限公司 | Defrosting glass and apply the automobile of this defrosting glass |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM284963U (en) * | 2005-06-21 | 2006-01-01 | Mei-Ying Chen | Input/output device of a laptop computer |
US20060002221A1 (en) * | 2004-06-18 | 2006-01-05 | Elpida Memory Inc. | Refresh counter circuit and control method for refresh operation |
WO2006130366A2 (en) * | 2005-06-02 | 2006-12-07 | Eastman Kodak Company | Touchscreen with one carbon nanotube conductive layer |
TWI284927B (en) * | 2003-07-17 | 2007-08-01 | Seiko Epson Corp | Thin-film transistor, method of producing thin-film transistor, electronic circuit, display, and electronic apparatus |
-
2007
- 2007-12-31 TW TW96151275A patent/TWI386831B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI284927B (en) * | 2003-07-17 | 2007-08-01 | Seiko Epson Corp | Thin-film transistor, method of producing thin-film transistor, electronic circuit, display, and electronic apparatus |
US20060002221A1 (en) * | 2004-06-18 | 2006-01-05 | Elpida Memory Inc. | Refresh counter circuit and control method for refresh operation |
WO2006130366A2 (en) * | 2005-06-02 | 2006-12-07 | Eastman Kodak Company | Touchscreen with one carbon nanotube conductive layer |
TWM284963U (en) * | 2005-06-21 | 2006-01-01 | Mei-Ying Chen | Input/output device of a laptop computer |
Also Published As
Publication number | Publication date |
---|---|
TW200928912A (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI364860B (en) | Touch panel, method for making the same, and displaying device adopting the same | |
CN101470565B (en) | Touch screen and display equipment | |
CN101458594B (en) | Touch screen and display device | |
CN101470559B (en) | Touch screen and display equipment | |
TWI354921B (en) | Touch panel and displaying device using the same | |
CN101470558B (en) | Touch screen and display equipment | |
CN101464765B (en) | Touch screen and display equipment | |
CN101470560B (en) | Touch screen and display equipment | |
CN101458593B (en) | Touch screen and display device | |
CN101458603B (en) | Touch screen and display device | |
CN101458607B (en) | Touch screen and display device | |
TWI416380B (en) | Touch panel | |
CN101464764B (en) | Touch screen and display equipment | |
TW200926471A (en) | Touch panel and displaying device using the same | |
CN101458604B (en) | Touch screen and display device | |
TWI386831B (en) | Touch panel and displaying device using the same | |
CN101464766B (en) | Touch screen and display equipment | |
TWI408575B (en) | Touch panel and displaying device using the same | |
TWI423083B (en) | Touch panel and displaying device using the same | |
TWI436510B (en) | Touch panel and displaying device using the same | |
TWI423084B (en) | Touch panel and displaying device using the same | |
CN101458605B (en) | Touch screen and display device | |
TWI354920B (en) | Touch panel and displaying device using the same | |
TWI412962B (en) | Touch panel and displaying device using the same | |
TWI482324B (en) | Touch panel and displaying device using the same |