Nothing Special   »   [go: up one dir, main page]

TWI376813B - Solar cell with backside passivation - Google Patents

Solar cell with backside passivation Download PDF

Info

Publication number
TWI376813B
TWI376813B TW098113378A TW98113378A TWI376813B TW I376813 B TWI376813 B TW I376813B TW 098113378 A TW098113378 A TW 098113378A TW 98113378 A TW98113378 A TW 98113378A TW I376813 B TWI376813 B TW I376813B
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
substrate
passivation layer
passivation
Prior art date
Application number
TW098113378A
Other languages
Chinese (zh)
Other versions
TW201039450A (en
Inventor
Kueiwu Huang
Original Assignee
Gintech Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gintech Energy Corp filed Critical Gintech Energy Corp
Priority to TW098113378A priority Critical patent/TWI376813B/en
Publication of TW201039450A publication Critical patent/TW201039450A/en
Application granted granted Critical
Publication of TWI376813B publication Critical patent/TWI376813B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

1376813 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池*且特別是有關於一 種太陽能電池背光面的結構。 【先前技術】 由於環保意識的抬頭加上其他石化能源逐漸枯竭,開 發安全的新能源就成為目前最迫切的工作。能用於開發之 新能源需同時具備兩個要件:新能源蘊藏豐富,不易枯竭; 以及新能源為安全、乾淨,不會威脅人類和破壞環境。而 例如太陽能、風力、水力等之再生性能源正好符合前述要 件。此外,臺灣缺乏能源資源,百分之九十以上的能源必 須仰賴國外進口,惟臺灣地處亞熱帶,陽光充足、曰照量 大,非常適合研究及發展太陽能,而且利用太陽能發電更 兼具節能與環保的優點。 最直接將太陽能轉換成能源的方式就是使用太陽能電 池(solar cells),又稱為光伏打元件(photovoltaic devices)。 現今廣泛使用中的太陽能電池其設計係具有一種p/n接面 成形於受光面(揍收光線之表面)附近,並於電池吸收光能 時產生電子流。普通常見的電池設計在其前後二側分別形 成電極。然後,這些太陽能電池再以串聯方式互相作電氣 連接以增加電壓。 傳統之太陽電池採用具有第一種摻質的矽基板,然後 再利用高溫熱擴散的處理,使基板上形成一層薄薄的具有 第二種摻質的半導體。舉例來說,矽基板可為P型基板, 其上所形成的半導體為N型半導體。 由於矽晶體在表面县吝a 1龄 格缺陷,易太陽能電池產易生產的生電=鍵人—等晶 因此,生的電子結合,減少輸出的電量。 <τ*ΐε>5 :面上,尤其是受光面上一般會進行氫 性厂現二體中的缺陷和雜質作用’純化其電活 時進行了,*丨田發氫鈍化通常和氮化矽抗反射膜的製備同 備片 '漿加強化學氣相沉積(PECVD)製程製 2會=射膜時,儲存在一的氫原子= 擴散進入矽晶體中,達到鈍化的作用。 ^光©通常會塗佈上—層轉1燒結後,轉與背 =面處⑽會形成共晶。當太陽能電池作用時,背光面的 、日日會產生者面電場(back surface ; bsf )。背面 電場可吸引載子以增加載子的收集,並可排斥電子達到純 化的效果》 為了達到理想的鈍化效果,矽鋁共晶層的厚度必須增 厚。然而,當矽鋁共晶層增厚時,由於矽與鋁的熱膨脹^ 數不同’矽基板易受熱彎曲使得太陽能電池彎折受損。兩 相權衡之下,為了保全整體太陽能電池,只好限制矽鋁共 晶的厚度,其鈍化效果便較不理想了。 有鑑於此’需要一種新的太陽能電池,其背光面形成 有鈍化層’可提供較好的鈍化效果’以提高太陽能電池的 效能。 【發明内容】 本發明一方面提出一種具背面鈍化的太陽能電池,可 &供較好的鈍化效果。太t 單晶矽或多晶矽。 犯池具有一基板。基板可為1376813 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell* and particularly to a structure of a solar cell backlight surface. [Prior Art] Due to the rise of environmental awareness and the depletion of other petrochemical energy sources, the development of safe new energy sources has become the most urgent task at present. New energy that can be used for development needs to have two elements at the same time: new energy is abundant and not easy to be exhausted; and new energy is safe, clean, and does not threaten humans and damage the environment. Renewable energy sources such as solar energy, wind power, and water power are in line with the aforementioned requirements. In addition, Taiwan lacks energy resources, and more than 90% of its energy must rely on foreign imports. However, Taiwan is located in the subtropical zone, with abundant sunshine and large amount of exposure. It is very suitable for research and development of solar energy, and it is more energy-efficient to use solar power. With the advantages of environmental protection. The most direct way to convert solar energy into energy is to use solar cells, also known as photovoltaics. Solar cells, which are widely used today, are designed with a p/n junction formed near the light-receiving surface (the surface of the light-receiving surface) and generating electron flow when the battery absorbs light energy. Commonly used battery designs form electrodes on the front and rear sides. These solar cells are then electrically connected to each other in series to increase the voltage. Conventional solar cells use a germanium substrate having a first dopant and then a high temperature thermal diffusion process to form a thin semiconductor having a second dopant. For example, the germanium substrate may be a P-type substrate, and the semiconductor formed thereon is an N-type semiconductor. Because the 矽 crystal is on the surface of the county 吝a 1 age defect, the easy solar cell production is easy to produce electricity generation = key person - equal crystal, therefore, the combination of raw electrons, reducing the output of electricity. <τ*ΐε>5: On the surface, especially on the light-receiving surface, defects and impurities in the hydrogen-based plant are generally performed. 'Purification of the electro-activation is carried out, * Putian hydrogen passivation is usually and nitriding The anti-reflection film is prepared by the same method as the slurry-reinforced chemical vapor deposition (PECVD) process. When the film is sprayed, the hydrogen atoms stored in the film are diffused into the germanium crystal to achieve passivation. ^Light© will usually be coated with a layer-to-layer 1 sintered, and a eutectic will form at the back (face). When the solar cell acts, the back surface; bsf will be generated on the backlight surface. The electric field on the back side attracts the carrier to increase the collection of the carrier and can repel the electrons to achieve the effect of purity. In order to achieve the desired passivation effect, the thickness of the yttrium aluminum eutectic layer must be increased. However, when the yttrium aluminum eutectic layer is thickened, since the thermal expansion coefficient of bismuth and aluminum is different, the 矽 substrate is susceptible to thermal bending, which causes the solar cell to be bent and damaged. Under the two-phase trade-off, in order to preserve the overall solar cell, it is only necessary to limit the thickness of the yttrium aluminum eutectic, and the passivation effect is less than ideal. In view of the need for a new solar cell, the backlight surface is formed with a passivation layer to provide a better passivation effect to improve the performance of the solar cell. SUMMARY OF THE INVENTION One aspect of the present invention provides a solar cell having a back passivation that provides a better passivation effect. Too monocrystalline or polycrystalline germanium. The pool has a substrate. The substrate can be

〜純化層堆眷右其h M 含量的氫原子。氫原土子板可的自者光面上。鈍化層中具有適當 中,達到表⑽化和體鈍化;^的背光面擴散進入基板 貫穿孔。貫穿孔貫穿鈍化層,^。純化層上财至少一 1晶梦層堆疊在鈍化课:部分該背光面。 觸背光面。非㈣填滿貫穿孔中,且接 的一實_中,非轉層巾^%3量的氫原子。在本發明 %之間。非晶石夕層中的氣原二=量可介於,16 中,達到氫鈍化的作I 门樣可透過擴散進入基板 中,ϊϋΐί膠2在非晶石夕層上,且對齊貫穿孔。其 、屬膠可為一銀膠、一鋁膠或一 备 金屬膠與非晶矽層和基板合 ’夕田’ 、、·口 電池心Μ… 成共晶結構,可作為太陽能 屬電極。在燒結的同時,燒結的溫度有助於純化 層和非晶料㈣氫軒的㈣,加強聽化作用。 ,另-方面提供一種具背面鈍化的太陽能電池, 、八 基板。基板可為單晶矽或多晶矽。一純化層堆疊 在基板的背光面上。鈍化層中具有適當含量的氫原子。氫 原子可自基㈣背光面擴散進人基板t,制表面純化和 體鈍化的作用。 鈍化層上設有至少-貫穿孔。貫穿孔貫穿純化層,以 裸露基板的部分背光面。至少一金屬膠填滿貫穿孔中,且 接觸裸露的基板的背光面。金屬膠可為一鋁膠或一銀鋁 膠。當燒結後,金屬膠與基板會形成共晶結構,可作為太 1376813 陽能電池的金屬電極。在燒結的同時,燒結的溫度有助於 鈍化層中的氫原子的擴散,加強氫鈍化作用。 本發明另一方面提供一種背面鈍化之太陽能電池的製 作方法,其步驟依序如下。首先,形成一鈍化層於一基板 的一背光面。接著’蝕刻鈍化層以形成至少一個貫穿鈍化 層的貫穿孔。接著,形成一非晶矽層於鈍化層上,並填滿 貫穿孔中’且接觸基板的背光面。接著,塗佈至少一金屬 膠於非晶矽層上且對齊貫穿孔。最後,燒結基板,使得金 屬膠與非晶矽層和基板形成共晶結構。 本發明另一方面提供一種背面鈍化之太陽能電池的製 作方法。首先,形成一鈍化層於一基板的一背光面。接著, 蝕刻鈍化層,以形成至少一個貫穿鈍化層的貫穿孔。接著, 塗佈至少一金屬膠於鈍化層,並填滿貫穿孔中,且接觸背 光面。塗佈金屬膠的方式可利用如網版印刷技術。其中, 金屬膠為一鋁膠或一銀鋁膠。最後,燒結基板,使得金屬 膠與基板形成共晶結構。 、由此可知,本發明所提供之具背面鈍化之太陽能電 池’透過富含氫原子的鈍化層或非晶矽層,對基板的背光 =進行氫鈍化。透過貫穿鈍化層的貫穿孔,金屬膠、非晶 石層和基板得以形成共晶結構,使得電路得以導通。 【實施方式】 昔品。月參考第1圖,其緣示根據本發明—實施例的一種具 =化的太陽能電池⑽的剖面示意圖。太陽能電池1〇〇 /、 土板Π0。基板110的材質可為單晶矽或多晶矽。 基板110具有兩個 光面"4,另-表面為/光=的f二其中-表面為受 繪示)可設置於受朵 般而δ’ρ-η接面(未 或純化層(树示)。& 4 其切設有抗反射層122 以廣為本技術領域中二Μ的鈍化處理技術 多加贅述。 一有通力知識者所熟知,在此便不再 基板110的背光面1 發明之實施例中,鈍化上層層12。。在本 112。純化層120的材遮覆了絲110整個背光面 访#几麻μ #質可為氧化物,像是氧化石夕如二氧化 r Μ 〇的材質也可為氮化物,像是氮化矽如 (Si3N4)。 純化層120的製備方法有很多種,依據其材質不同, 製備方法也略有不同。當鈍化層12G的材質為氧化物時, 其製備方法可彻如化學氣相沉積製程(CVD)、濕式氧化 製程(Wet Oxide)、乾式氧化製程(Dry 〇xide)或電聚加強化 學氣相沉積製程(PECVD)等製程。當鈍化層12〇的材質為 氮化物時,其製備方法可利用化學氣相沉積製程或電漿加 強化學氣相沉積製程等製程。在本發明之實施例中,鈍化 層120係利用電漿加強化學氣相沉積製程製作而成,其反 應溫度介於攝氏約300度到約400度之間,其反應氣體可 包含矽曱烷(SiH4)。 鈍化層120的厚度可依照實際需求而改變❶在本發明 之實施例中’鈍化層120的厚度介於約10奈米到約15〇奈 米之間。 由於在製備鈍化層120的製程中,會有大量的氫原子 1376813 存在於鈍化層120内。當氫原子自基板110的背光面112 擴散進入基板11〇中時,氫原子可與基板11〇中的雜質、 晶格缺陷以及懸鍵(dangling bond)結合,去除雜質、晶格缺 陷和懸鍵的電活性,進而鈍化背光面112和基板11〇。 基板110背面可設置電極,使受光作用而產生的電得 以導出。由於氧化物或氮化物導電性不佳,因此在本發明 之實施例中,鈍化層120上設有貫穿孔130,以便設置電 極來將基板110中的電流導出。 貫穿孔130貫穿整個純化層120,並且裸露部分基板 110的背光面112。鈍化層120上的貫穿孔130可透過蝕刻 製程來製作’例如濕式蝕刻製程或乾式蝕刻製程。本發明 之實施例係透過濕式餘刻製程來製作貫穿孔130。透過網 版印刷將適當的蝕刻膏塗佈於鈍化層12〇上,而侵蝕鈍化 層120 ’進而形成一個個貫穿鈍化層12〇的貫穿孔13〇。依 據純化層120的材質不同,银刻膏的材質也不同,如氫氧 酸(HF ; Hydrofluoric Acid)或其他化合物。基本上,在本發 明之實施例中,蝕刻膏160的材質為可產生氫氟酸的化合 物或混合物所組成。 請參考第1圖。在本發明之實施例中,鈍化層丨2〇上 堆疊有金屬膠150。金屬膠15〇填入貫穿孔13〇中且接觸 基板110的背光面112。其中,金屬膠15〇可為鋁膠或銀鋁 膠。 塗佈金屬膠150的方法有很多種。在本發明之實施例 中,係利用網版印刷將金屬朦丨50塗佈在鈍化層120上且 對齊貫穿孔130的位置。 1376813 塗上金屬膠150後,整個太陽能電池1〇〇可進行燒結。 藉由高溫使得金屬膠150與其所接觸的基板11〇產生共^曰曰 結構152,以穩固兩者之間的實體與電性連接。換言ςΒ,Β 金屬膠150與基板110經燒結而共晶後,可作為電^。 請參考第2圖,㈣示根據本發明另—實施例的一種 具背面鈍化的太陽能電池1〇〇的剖面示意圖。太陽能電池 100具有基板110、鈍化層120以及貫穿孔13〇。Α 鈍化層no以及貫穿孔130均已詳述如上,在此土不再重複 贅述。 在本發明之實施例中,太陽能電池1〇〇進一步包含一 非晶矽層140。非晶矽層140堆疊在鈍化層12〇上,並填 滿貫穿孔13G +,且接觸基板11G$背光面112。由於石夕與 金屬膠150㈣著能力佳,故可使金屬膠15〇穩固地附著 於其上而不易脫落。 非晶石夕層140的厚度可依照實際需求而改變。在本發 明之實施射非㈣層14()的厚度介於約1()奈米到約15〇 奈米之間。 -般製備非晶發的製程中,因其反應溫度較低,故所 製成的非晶矽層140中可含有較高濃度的氫原子。在本發 明之實施例中’非晶發層14〇中氫原子的含量可介於8% 到16%之間。非晶石夕層14〇中的氫原子可透過擴散的方式 進入基板110的#光面112以及基板11〇内部,進而鈍化 背光面112和基板11〇。 非晶石夕層140可利用化學氣相沉積製程、電漿加強化 學氣相沉積製程、光化學氣相沉積製程(ph()tQ_CVD)或熱絲 9 1376813 (SiH4) 化學氣相沉積製程(HW-CVD)等製程製作。在本發明之 例中,係利用電漿加強化學沉積製程沉積非晶矽層14耳〇施 其反應溫度在攝氏約400度以下’反應氣體包含發甲户 而不易脫 在本發明之實施例中’非晶發層140上堆疊有金 150。其中’金屬膠150可為紹膠、銀膠或銀鋁膠。金^ 150的製程以詳述如上,在此不再重複贅述。相較於純化 層120如氧化物’金屬膠150如鋁膠與矽的附著能力較佳 故金屬膠150可穩固地附著於非晶矽層14〇上 °~ Purification layer stacks the right hydrogen atom of its h M content. The hydrogen original soil board can be on the glossy surface. In the passivation layer, the backlight surface of the substrate (10) and the body passivation is diffused into the substrate through-hole. The through hole penetrates the passivation layer, ^. Purify the layer on the at least one crystal mask layer stacked in the passivation class: part of the backlight surface. Touch the back side. Non-fourth fills the through-hole, and a real _ medium, non-transferable towel ^% 3 amount of hydrogen atoms. Between the present invention %. The amount of gas in the amorphous layer can be between 16, and the hydrogen passivation can be diffused into the substrate by diffusing into the substrate, and the gel 2 is on the amorphous layer and aligned with the through holes. The glue can be a silver glue, an aluminum glue or a metal glue combined with an amorphous layer and a substrate, and the octagonal structure of the battery can be used as a solar energy electrode. At the same time of sintering, the sintering temperature contributes to the purification layer and the amorphous material (4) Hydrogen Xuan (4), enhancing the auditory effect. In addition, a solar cell having a back passivation, and an eight-substrate are provided. The substrate may be a single crystal germanium or a polycrystalline germanium. A purification layer is stacked on the backlight side of the substrate. The passivation layer has an appropriate amount of hydrogen atoms. Hydrogen atoms can diffuse into the substrate t from the base (four) backlight surface to effect surface purification and bulk passivation. At least a through hole is provided in the passivation layer. The through hole penetrates the purification layer to expose a portion of the backlight surface of the substrate. At least one metal glue fills the through hole and contacts the back surface of the exposed substrate. The metal glue can be an aluminum glue or a silver aluminum glue. When sintered, the metal paste and the substrate form a eutectic structure, which can be used as a metal electrode for the 1376813 cation battery. While sintering, the sintering temperature contributes to the diffusion of hydrogen atoms in the passivation layer and enhances hydrogen passivation. Another aspect of the present invention provides a method of fabricating a backside passivated solar cell, the steps of which are as follows. First, a passivation layer is formed on a backlight of a substrate. The passivation layer is then etched to form at least one through via extending through the passivation layer. Next, an amorphous germanium layer is formed on the passivation layer and fills the through-holes' and contacts the back surface of the substrate. Next, at least one metal paste is applied to the amorphous germanium layer and aligned through the vias. Finally, the substrate is sintered to form a eutectic structure between the metal paste and the amorphous germanium layer and the substrate. Another aspect of the present invention provides a method of fabricating a backside passivated solar cell. First, a passivation layer is formed on a backlight surface of a substrate. Next, the passivation layer is etched to form at least one through via extending through the passivation layer. Next, at least one metal paste is applied to the passivation layer, and fills the through holes and contacts the back surface. The manner in which the metal glue is applied can be utilized, for example, by screen printing techniques. Wherein, the metal glue is an aluminum glue or a silver aluminum glue. Finally, the substrate is sintered so that the metal paste forms a eutectic structure with the substrate. Therefore, it can be seen that the back-passivated solar cell provided by the present invention transmits a passivation layer or an amorphous germanium layer rich in hydrogen atoms, and performs hydrogen passivation on the backlight of the substrate. Through the through holes penetrating the passivation layer, the metal paste, the amorphous layer and the substrate are formed into a eutectic structure, so that the circuit is turned on. [Embodiment] A product. Referring to Fig. 1, there is shown a schematic cross-sectional view of a solar cell (10) having a chemical conversion according to the present invention. Solar cell 1 〇〇 /, earth plate Π 0. The material of the substrate 110 may be a single crystal germanium or a polycrystalline germanium. The substrate 110 has two smooth faces "4, the other surface is /light=f2, wherein the surface is drawn) can be placed on the δ'ρ-η junction (not or purified layer (tree) It is shown that the anti-reflection layer 122 is cut into a wide range of passivation treatment techniques in the technical field. As is well known to those skilled in the art, the backlight surface 1 of the substrate 110 is no longer invented. In the embodiment, the upper layer 12 is passivated. In the present 112, the material of the purification layer 120 covers the entire backlight surface of the wire 110. The surface may be an oxide, such as an oxidized stone such as a ruthenium oxide. The material of the crucible may also be a nitride such as tantalum nitride (Si3N4). There are many methods for preparing the purification layer 120, and the preparation method is slightly different depending on the material thereof. When the passivation layer 12G is made of an oxide The preparation method can be completely processed by a chemical vapor deposition process (CVD), a wet oxidation process (Wet Oxide), a dry oxidation process (Dry 〇xide) or an electropolymerization enhanced chemical vapor deposition process (PECVD). When the material of the passivation layer 12 is nitride, the preparation method can be performed by a chemical vapor deposition process. The plasma is reinforced by a chemical vapor deposition process, etc. In an embodiment of the invention, the passivation layer 120 is formed by a plasma enhanced chemical vapor deposition process, and the reaction temperature is between about 300 degrees Celsius and about 400 degrees Celsius. The reaction gas may include decane (SiH4). The thickness of the passivation layer 120 may vary depending on actual needs. In the embodiment of the present invention, the thickness of the passivation layer 120 is from about 10 nm to about 15 Å. Between the meters, since a large amount of hydrogen atoms 1376813 are present in the passivation layer 120 in the process of preparing the passivation layer 120, when hydrogen atoms diffuse from the backlight surface 112 of the substrate 110 into the substrate 11 , the hydrogen atoms can be Impurities, lattice defects, and dangling bonds in the substrate 11 are combined to remove the electrical activity of impurities, lattice defects, and dangling bonds, thereby passivating the backlight surface 112 and the substrate 11A. The electrodes on the back surface of the substrate 110 can be disposed. The electric power generated by the light is derived. Since the oxide or the nitride has poor conductivity, in the embodiment of the present invention, the passivation layer 120 is provided with a through hole 130 for disposing the electrode to be in the substrate 110. The current is derived. The through hole 130 extends through the entire purification layer 120 and exposes the backlight surface 112 of the portion of the substrate 110. The through hole 130 on the passivation layer 120 can be formed by an etching process, such as a wet etching process or a dry etching process. In the embodiment, the through holes 130 are formed through a wet engraving process. A suitable etching paste is applied to the passivation layer 12 by screen printing, and the passivation layer 120' is etched to form a through-passivation layer 12〇. The pores are 13 〇. The material of the silver paste is different depending on the material of the purification layer 120, such as Hydrofluoric Acid (HF) or other compounds. Basically, in the embodiment of the present invention, the etching paste 160 is made of a compound or a mixture which produces hydrofluoric acid. Please refer to Figure 1. In an embodiment of the invention, a metal paste 150 is stacked on the passivation layer 丨2〇. The metal paste 15 is filled in the through hole 13A and contacts the backlight surface 112 of the substrate 110. Among them, the metal glue 15 can be aluminum glue or silver aluminum glue. There are many ways to apply the metal glue 150. In an embodiment of the invention, the metal crucible 50 is applied to the passivation layer 120 by screen printing and aligned with the position of the through hole 130. 1376813 After the metal glue 150 is applied, the entire solar cell can be sintered. The high temperature causes the metal paste 150 to form a common structure 152 with the substrate 11 that it contacts to stabilize the physical and electrical connection between the two. In other words, after the metal paste 150 and the substrate 110 are sintered and eutectic, they can be used as electricity. Please refer to FIG. 2, which shows a cross-sectional view of a solar cell 1 背面 having a back passivation according to another embodiment of the present invention. The solar cell 100 has a substrate 110, a passivation layer 120, and a through hole 13A.钝化 Passivation layer no and through-hole 130 have been described in detail above, and the details are not repeated here. In an embodiment of the invention, the solar cell 1 further comprises an amorphous germanium layer 140. The amorphous germanium layer 140 is stacked on the passivation layer 12, and fills the through hole 13G + and contacts the substrate 11G $ backlight surface 112. Since Shi Xi and metal glue 150 (4) have good ability, the metal glue 15 can be firmly attached thereto without being easily peeled off. The thickness of the amorphous slab layer 140 can be varied according to actual needs. The thickness of the non-(four) layer 14() in the practice of the present invention is between about 1 () nm and about 15 nm. In the process of preparing amorphous hair, since the reaction temperature is low, the amorphous germanium layer 140 produced may contain a relatively high concentration of hydrogen atoms. In the embodiment of the present invention, the content of hydrogen atoms in the amorphous layer 14 可 may be between 8% and 16%. The hydrogen atoms in the amorphous iridium layer 14 进入 can diffuse into the #光面 112 of the substrate 110 and the inside of the substrate 11 ,, thereby passivating the backlight surface 112 and the substrate 11 〇. The amorphous slab layer 140 can utilize a chemical vapor deposition process, a plasma enhanced chemical vapor deposition process, a photochemical vapor deposition process (ph()tQ_CVD), or a hot wire 9 1376813 (SiH4) chemical vapor deposition process (HW). -CVD) and other process manufacturing. In the example of the present invention, the amorphous germanium layer 14 is deposited by a plasma enhanced chemical deposition process, and the reaction temperature is below about 400 degrees Celsius. The reaction gas contains a hairpin and is not easily removed in the embodiment of the present invention. A gold 150 is stacked on the amorphous layer 140. Wherein the metal glue 150 can be a plastic, a silver glue or a silver aluminum glue. The process of the gold 150 is detailed as above, and the details are not repeated here. Compared with the purification layer 120 such as the oxide 'metal glue 150 such as aluminum glue and bismuth, the metal glue 150 can be firmly adhered to the amorphous enamel layer 14 °.

落0 塗上金屬膠150後,整個太陽能電池丨〇〇可進行燒鈐。 藉由尚溫使得金屬膠150與其所接觸的非晶發層mo和其 板110產生共晶結構152 ’而可作為電極。 土 本發明另一方面提出製作具背面鈍化的太陽能電池 100的方法。第3圖繪示根據本發明另一實施例的一種具 背面鈍化的太陽能電池100的製作方法300的流程圖。第 4A圖到第5B圖分別繪示本發明一實施例的具背面鈍化的 太陽能電池100的製程剖面示意圖。 請同時參考第3圖和第4A圖。具背面鈍化的太陽能 電池100的製作方法300的第一個步驟310為形成一鈍化 層120於基板110的背光面112上。 如前所述,基板110的材質可為單晶矽或多晶矽。基 板110的受光面114上可設置有P-n接面、抗反射層122 或鈍化層。在本發明之實施例中’是在基板11〇上與受光 面114相對的背光面112上形成鈍化層120。 在步驟310中’可利用化學氣相沉積製程(CVD)、濕 ^ —化製程(Wet 〇xide)、乾式氧化製程(Dry 〇xide)或電漿 化學氣相沉積製程(PECVD)來製作鈍化層12G。詳細來 ^,製,方法可隨著鈍化層120的材質不同而選擇不同的 程。當鈍化層12〇的材質為氧化物時,其製備方法可利 如化學氣相沉積製程(CVD)、濕式氧化製程(Wet Xlde)、乾式氧化製程(Dry Oxide)或電漿加強化學氣相沉 =製程(PECVD)等製程。當鈍化層丨2〇的材質為氮化物時, ,、製備方法可利用化學氣相沉積製程或電漿加 沉積製程等製程。 風友在本發明之實施例中,純化層12〇係利用電漿加強化 學氣相沉積製程f作*成,其反應溫度介於攝氏約3〇〇度 到約伽度之間,其反應氣體可包含梦曱烧(SiH4)。由於 製作鈍化層120的反應溫度較為低溫,鈍化層12〇中可包 含大量的氫原子。當氫原子藉由擴散的方式進入基板11〇 中’可達到鼠純化的作用。 請同時參考第3圖、第4B圖和第4C圖。接著為執行 步驟320,蝕刻鈍化層12〇以形成貫穿孔13〇。蝕刻鈍化層 120可透過如濕式蝕刻製程或乾式蝕刻製程來製作。在: 發明之實施例中,係透過濕式蝕刻製程來製作貫穿孔13()。 具體而言,透過網版印刷將適當的蝕刻膏16〇塗佈於 鈍化層120上,如第4Β圖所示^蝕刻膏16〇會侵蝕鈍化層 120,進而形成一個個貫穿鈍化層12〇的貫穿孔13〇,如第 4C圖所示。 依據鈍化層120的材質不同,蝕刻膏16〇的材質也不 1376813 同。在本發明之實施例中,蝕刻膏160的材質基本上為可 產生氫氟酸(HF ; Hydrofluoric Acid)的化合物或混合物所组 成。 请同時參考苐3圖和弟5A圖。完成貫穿孔130後, 接著執行步驟340,塗佈金屬膠15〇於鈍化層120上並填 滿貫穿孔130且接觸基板11〇的背光面112。其中,金屬膠 150可為鋁膠或銀鋁膠。 塗佈金屬膠150的方法有很多種,可利用網版印刷技 術、黃光微影製程或其他塗佈方式。在本發明之實施例中, 係利用網版印刷將金屬膠150塗佈在鈍化層120對齊貫穿 孔130的位置上,如第5A圖所示。 請同時參考第3圖和第5B圖。塗上金屬膠150後,接 著執行步驟350,燒結基板11〇。將整個基板110進行燒結, 透過高溫使金屬膠150與其所接觸的基板11〇產生共晶反 應’進而形成共晶結構152。 請參考第6圖以及第7A圖到第7C圖。.第6圖綠示本 發明另一實施例的具背面鈍化的太陽能電池100的製作方 法3〇〇的流程圖。第7A圖到第7c圖繪示本發明另一實施 例的具背面鈍化的太陽能電池100的製程剖面示意圖。 具背面鈍化的太陽能電池100的製作方法3〇〇的前兩 個步驟為步驟310 :形成一鈍化層120於基板11〇的背光 面112上和步驟320 :蝕刻鈍化層120以形成貫穿孔13〇。 :^驟310和步驟320均已詳細描述如上,在此不再重複贅 述。 請同時參考第6圖和第7A圖。步驟330為开彡士 12 1376813 晶矽層140於鈍化層120上,並填滿貫穿孔13〇且接觸基 板110的背光面112。製備非晶矽層140的方法有很多種, 諸如化學氣相沉積製程、電漿加強化學氣相沉積製程、光 化學氣相沉積製程(ph〇t〇_CVD)或熱絲化學氣相沉積製程 (HW-CVD)等製程。Falling 0 After applying the metal glue 150, the entire solar cell can be burned. The eutectic structure 152' can be produced as an electrode by the temperature at which the metal paste 150 is brought into contact with the amorphous layer mo and its plate 110. Soil Another aspect of the invention proposes a method of making a solar cell 100 having a back passivation. FIG. 3 is a flow chart showing a method 300 of fabricating a solar cell 100 having a back passivation in accordance with another embodiment of the present invention. 4A to 5B are schematic cross-sectional views showing a process of a solar cell 100 having a back passivation according to an embodiment of the present invention. Please also refer to Figure 3 and Figure 4A. The first step 310 of the method 300 of fabricating the backside passivated solar cell 100 is to form a passivation layer 120 on the backlight surface 112 of the substrate 110. As described above, the material of the substrate 110 may be a single crystal germanium or a polycrystalline germanium. A light-receiving surface 114 of the substrate 110 may be provided with a P-n junction, an anti-reflection layer 122 or a passivation layer. In the embodiment of the present invention, a passivation layer 120 is formed on the backlight surface 112 of the substrate 11 opposite to the light receiving surface 114. In step 310, a passivation layer can be formed by a chemical vapor deposition process (CVD), a wet process (Wet 〇xide), a dry oxidation process (Dry 〇xide), or a plasma chemical vapor deposition process (PECVD). 12G. In detail, the method can select different processes depending on the material of the passivation layer 120. When the passivation layer 12 is made of an oxide, the preparation method may be, for example, a chemical vapor deposition process (CVD), a wet oxidation process (Wet Xlde), a dry oxidation process (Dry Oxide), or a plasma enhanced chemical vapor phase. Process such as sink = process (PECVD). When the material of the passivation layer 为2〇 is nitride, the preparation method may be a chemical vapor deposition process or a plasma addition deposition process. In the embodiment of the present invention, the purification layer 12 is made by a plasma enhanced chemical vapor deposition process, and the reaction temperature is between about 3 Torr and about gamma, and the reaction gas is It can include Nightmare Burning (SiH4). Since the reaction temperature at which the passivation layer 120 is formed is relatively low, the passivation layer 12 may contain a large amount of hydrogen atoms. When the hydrogen atoms enter the substrate 11 by diffusion, the effect of mouse purification can be achieved. Please refer to Figure 3, Figure 4B and Figure 4C at the same time. Next, in step 320, the passivation layer 12 is etched to form a through hole 13A. The etch passivation layer 120 can be fabricated by, for example, a wet etch process or a dry etch process. In the embodiment of the invention, the through hole 13 () is formed through a wet etching process. Specifically, a suitable etching paste 16 is applied to the passivation layer 120 by screen printing. As shown in FIG. 4, the etching paste 16 etches the passivation layer 120 to form a pass through the passivation layer 12 . The through hole 13 is as shown in Fig. 4C. Depending on the material of the passivation layer 120, the material of the etching paste 16〇 is not the same as 1376813. In an embodiment of the invention, the material of the etch paste 160 is substantially comprised of a compound or mixture that produces hydrofluoric acid (HF). Please refer to 苐3 map and brother 5A at the same time. After the through hole 130 is completed, step 340 is performed to apply the metal paste 15 to the passivation layer 120 and fill the through hole 130 and contact the backlight surface 112 of the substrate 11A. The metal glue 150 may be aluminum glue or silver aluminum glue. There are many ways to apply the metal paste 150, and screen printing techniques, yellow light lithography processes, or other coating methods can be utilized. In an embodiment of the invention, the metal paste 150 is applied by screen printing to a position where the passivation layer 120 is aligned with the through holes 130, as shown in Fig. 5A. Please also refer to Figures 3 and 5B. After the metal glue 150 is applied, step 350 is performed to sinter the substrate 11〇. The entire substrate 110 is sintered, and the metal paste 150 is subjected to a eutectic reaction by a high temperature to form a eutectic structure 152. Please refer to Figure 6 and Figures 7A through 7C. Fig. 6 is a flow chart showing a method of fabricating a back surface passivated solar cell 100 according to another embodiment of the present invention. 7A to 7c are schematic cross-sectional views showing a process of a solar cell 100 having a back passivation according to another embodiment of the present invention. The first two steps of the method for fabricating the back surface passivated solar cell 100 are step 310: forming a passivation layer 120 on the backlight surface 112 of the substrate 11A and step 320: etching the passivation layer 120 to form the through holes 13〇 . Both the steps 310 and 320 have been described in detail above, and the description thereof will not be repeated here. Please also refer to Figure 6 and Figure 7A. Step 330 is to open the gentleman 12 1376813 wafer layer 140 on the passivation layer 120 and fill the through holes 13 and contact the backlight surface 112 of the substrate 110. There are many methods for preparing the amorphous germanium layer 140, such as a chemical vapor deposition process, a plasma enhanced chemical vapor deposition process, a photochemical vapor deposition process (ph〇t〇_CVD), or a hot wire chemical vapor deposition process. (HW-CVD) and other processes.

】在本發明之實施例中,係利用電漿加強化學氣相沉積 製程沉積非晶矽於鈍化層120和基板110的背光面112上, 進而形成一層非晶矽層H0堆疊在純化層120上並填滿貫 穿孔130中且接觸貫穿孔130底部的基板110的背光面 112 °電裝加強化學氣相沉積製程的反應溫度在攝氏約400 度以下,反應氣體包含矽甲烷(SiH4)。 $於製備非晶矽層14〇的製程反應溫度較低,所製成 =非晶@層14〇巾可含有較高濃度的氫原子。在本發明之 施例中’非晶矽層14〇中氫原子的含量可介於8%到16 %之間。 8守參考第6圖和第7B圖。完成非晶矽層140後,In the embodiment of the present invention, the amorphous germanium is deposited on the passivation layer 120 of the passivation layer 120 and the substrate 110 by using a plasma enhanced chemical vapor deposition process, thereby forming an amorphous germanium layer H0 stacked on the purification layer 120. The backlight surface of the substrate 110 which fills the through hole 130 and contacts the bottom of the through hole 130 is 112 °. The reaction temperature of the electro-chemical enhanced vapor deposition process is below about 400 ° C, and the reaction gas contains methane (SiH 4 ). The process temperature for preparing the amorphous ruthenium layer 14 较低 is relatively low, and the resulting amorphous = layer 14 〇 towel may contain a relatively high concentration of hydrogen atoms. In the embodiment of the present invention, the content of hydrogen atoms in the amorphous ruthenium layer 14 可 may be between 8% and 16%. 8 Guard refers to Figure 6 and Figure 7B. After the amorphous germanium layer 140 is completed,

對恭二步驟342,塗佈金屬膠150於非晶石夕層140上且 對齊貫穿孔13〇。 由於金屬膠150 之實施例中的金屬膠 銀膠或銀紐膠等。 與矽的附著能力較佳,映用於本發明 的種類可較為多元,諸如鋁膠、 術、屬膠15G的方法有很多種’可利賴版印刷技 讀程或其他塗佈方^。在本發明之實施例中, '、矛】用肩版印刷將金屬膠150塗佈在鈍化層120對齊貫穿 孔130的位置上,如第7B圖所示。 13 1376813 請同時參考第6圖和第7C圖。塗上金屬膠150後,接 著執行步驟350,燒結基板11〇。將整個基板110進行燒結, 透過高溫使金屬膠15〇與非晶矽層140和基板11〇產生共 晶反應’進而形成共晶結構152。 由上述各個實施例可知,本發明所提供之具背面鈍化 之太陽能電池1〇〇及其製作方法300,可在基板110的背 光面112上形成富含氫原子的純化層12〇或非晶梦層mo。 鈍化層120或非晶矽層14〇的氳原子可藉由擴散進入基板In the second step 342, the metal glue 150 is coated on the amorphous layer 140 and aligned with the through holes 13A. Metallic silver glue or silver gum or the like in the embodiment of the metal glue 150. The adhesion to ruthenium is better, and the types that can be used in the present invention can be more diverse. For example, there are a variety of methods for aluminum glue, lacquer, and lacquer 15G, and there are many kinds of stencil printing techniques or other coating methods. In the embodiment of the present invention, ', spears' coat metal is applied to the position where the passivation layer 120 is aligned with the through holes 130 by shoulder printing, as shown in Fig. 7B. 13 1376813 Please also refer to Figure 6 and Figure 7C. After the metal glue 150 is applied, step 350 is performed to sinter the substrate 11〇. The entire substrate 110 is sintered to cause a eutectic reaction between the metal paste 15 and the amorphous germanium layer 140 and the substrate 11 by high temperature, thereby forming a eutectic structure 152. It can be seen from the above various embodiments that the back surface passivated solar cell 1〇〇 and the manufacturing method 300 thereof can form a purified layer 12 or an amorphous dream rich in hydrogen atoms on the backlight surface 112 of the substrate 110. Layer mo. The passivation layer 120 or the amorphous germanium layer 14 germanium atoms can diffuse into the substrate by diffusion

110中,對基板11〇及其背光面112進行氫鈍化。 另一方面,透過貫穿鈍化層120的貫穿孔13〇,使得 金屬膠150得以與基板110電性連接。金屬膠15〇進一步 可與基板11G <非晶㈣14〇形成共晶結構152 實體及電性連接。 滅八In 110, hydrogen passivation is performed on the substrate 11A and its backlight surface 112. On the other hand, the metal paste 150 is electrically connected to the substrate 110 through the through holes 13 through the passivation layer 120. The metal paste 15 is further physically and electrically connected to the substrate 11G <amorphous (tetra) 14 〇 to form a eutectic structure 152. Kill eight

雖然本發明已以多個實施例揭露如上,鈇 限定本發明,任何熟習此技藝者,在不脫離:藤昍' 和範圍内,當可作各種之更動與潤飾,之精神 範圍當視後附之φ請專利範圍所界定者為準。日之保護 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、 能更明顯易懂,所附圖式之說明如下: 優點與實施例 第1圖係繪示依照本發明一 陽能電池的剖面示意圖。 第2圖係繪示根據本發明另 太陽能電池的剖面示意圖。 實施例的具背面鈍化的太 一實施例的具背面鈍化的 1376813 第3圖係繪示根據本發明另一實施例的具背面鈍化的 太陽能電池的製作方法的流程圖。 第4A圖到第4C圖分別繪示本發明另一實施例的具背 面鈍化的太陽能電池的製程剖面示意圖。 第5A圖到第5B圖分別繪示本發明另一實施例的具背 面鈍化的太陽能電池的製程剖面示意圖。 第6圖係繪示根據本發明另一實施例的具背面鈍化的 太陽能電池的製作方法的流程圖。 第7A圖到第7C圖分別繪示本發明另一實施例的具背 面鈍化的太陽能電池的製程剖面示意圖。 【主要元件符號說明】 100 太陽能電池 110 基板 112 背光面 114 受光面 120 純化詹 122 抗反射層 130 貫穿孔 140 非晶矽層 150 金屬膠 152 共晶結構 160 钱刻膏 300 製作方法 310-350 :步驟 15Although the present invention has been disclosed in various embodiments as described above, the present invention is defined by those skilled in the art, and the scope of the invention may be varied and retouched without departing from the scope of the invention. The φ is subject to the definition of patent scope. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The above and other objects, features, and advantages of the present invention will become more apparent and understood. The description of the drawings is as follows: Advantages and Embodiments Figure 1 shows a yang energy according to the present invention. A schematic view of the cross section of the battery. Figure 2 is a schematic cross-sectional view showing another solar cell according to the present invention. 1376813 with back side passivation of the embodiment of the back side passivation of the embodiment. FIG. 3 is a flow chart showing a method of fabricating a solar cell having back side passivation according to another embodiment of the present invention. 4A to 4C are schematic cross-sectional views showing processes of a solar cell having a back passivation according to another embodiment of the present invention. 5A to 5B are respectively schematic cross-sectional views showing a process of a solar cell having a back passivation according to another embodiment of the present invention. Figure 6 is a flow chart showing a method of fabricating a solar cell having a back passivation according to another embodiment of the present invention. 7A to 7C are schematic cross-sectional views showing a process of a solar cell having a back passivation according to another embodiment of the present invention. [Main component symbol description] 100 Solar cell 110 Substrate 112 Back surface 114 Light-receiving surface 120 Purification Zhan 122 Anti-reflection layer 130 Through-hole 140 Amorphous germanium layer 150 Metal glue 152 Eutectic structure 160 Money engraving paste 300 Production method 310-350 : Step 15

Claims (1)

1376813 . 101年9月3 $修正替換頁_ 七、申請專利範圍: 卢年1月3¾篆哥本) . 1. 一種具背面鈍化的太陽能電池,至少包含: 一基板,包含一背光面; 一純化層,堆疊在該背光面,並包含至少一貫穿孔貫 穿該鈍化層以裸露部分該背光面; 一非晶矽層,堆疊在該鈍化層,並填滿該貫穿孔中, . 且接觸該背光面;以及 至少一金屬膠,堆疊在該非晶矽層且對齊該貫穿孔, *其中當燒結後,該金屬膠與該非晶矽層和該基板形成共晶 結構。 2. 如請求項1所述之太陽能電池,其中該基板的材 質為旱晶矽或多晶矽。 3. 如請求項1所述之太陽能電池,其中該鈍化層包 0含複數個氫原子。 4. 如請求項3所述之太陽能電池,其中該鈍化層的 材質為氧化物或氮化物。 5. 如請求項1所述之太陽能電池,其中該鈍化層的 厚度介於10奈米到150奈米之間。 6. 如請求項1所述之太陽能電池,其中該非晶石夕層 16 1376813 101年9月3曰修正替換頁 的厚度介於10奈米到150奈米之間。 7. 如請求項1所述之太陽能電池,其中該非晶矽層 包含複數個氫原子,該些氫原子的含量介於8%到16%之 間。 8. 如請求項1所述之太陽能電池,其中該金屬膠為 一銀膠、一鋁膠或一銀鋁膠。 9. 一種背面鈍化之太陽能電池的製作方法,至少包 含: 形成一純化層於一基板的一背光面; 蝕刻該鈍化層以形成至少一貫穿孔貫穿該鈍化層; 形成一非晶矽層於該鈍化層,並填滿該貫穿孔中,且 接觸該背光面; 塗佈至少一金屬耀·於該非晶石夕層且對齊該貫穿孔;以 及 燒結該基板,使得該金屬膠與該非晶矽層和該基板形 成共晶結構。 10. 如請求項9所述之背面鈍化之太陽能電池的製作 方法,其中形成該鈍化層的步驟包含: 利用一電漿加強化學沉積製程或一濕式氧化製程形成 該鈍化層於該背光面。 17 1376813 101年9月3日條正替換頁 11. 如請求項10所述之背面鈍化之太陽能電池的製 作方法,其中該電漿加強化學沉積製程的作用溫度介於攝 氏300度到攝氏400度之間。 12. 如請求項10所述之背面鈍化之太陽能電池的製 . 作方法,其中該純化層的材質為氧化矽或氮化矽。 13. 如請求項9所述之背面鈍化之太陽能電池的製作 方法,其中蝕刻該鈍化層的步驟包含: 利用一網版印刷製程塗佈一蝕刻膏於該鈍化層。 14. 如請求項9所述之背面鈍化之太陽能電池的製作 方法,其中形成該非晶矽層的步驟包含: 利用一電漿加強化學沉積製程沉積該非晶矽層於該鈍 鲁化層。 15. 如請求項14所述之背面鈍化之太陽能電池的製 作方法,其中其中該非晶矽層包含複數個氫原子,該些氫 原子的含量介於8%到16%之間。 16. 如請求項9所述之背面鈍化之太陽能電池的製作 方法,其中塗佈該金屬膠的步驟包含: I 利用一網版印刷製程塗佈該金屬膠於該非晶矽層。 18 1376813 八、圖式: 101年9月3日倏正替換百1376813 . September 3, 2010 $Revision replacement page _ VII, the scope of application for patent: January 33⁄4 篆 哥本) 1. A solar cell with backside passivation, comprising at least: a substrate comprising a backlight surface; a purification layer stacked on the backlight surface and including at least a uniform through hole through the passivation layer to expose a portion of the backlight surface; an amorphous germanium layer stacked on the passivation layer and filling the through hole, and contacting the backlight And at least one metal paste stacked on the amorphous germanium layer and aligned with the through hole, wherein the metal paste forms a eutectic structure with the amorphous germanium layer and the substrate after sintering. 2. The solar cell of claim 1, wherein the material of the substrate is apatite or polycrystalline germanium. 3. The solar cell of claim 1, wherein the passivation layer package 0 comprises a plurality of hydrogen atoms. 4. The solar cell of claim 3, wherein the passivation layer is made of an oxide or a nitride. 5. The solar cell of claim 1, wherein the passivation layer has a thickness of between 10 nm and 150 nm. 6. The solar cell of claim 1, wherein the amorphous slab layer has a thickness of between 10 nanometers and 150 nanometers. 7. The solar cell of claim 1, wherein the amorphous germanium layer comprises a plurality of hydrogen atoms, the hydrogen atoms having a content of between 8% and 16%. 8. The solar cell of claim 1, wherein the metal glue is a silver paste, an aluminum glue or a silver aluminum glue. 9. A method of fabricating a backside passivated solar cell, comprising: forming a purification layer on a backlight of a substrate; etching the passivation layer to form at least a uniform via through the passivation layer; forming an amorphous germanium layer on the passivation layer a layer filling the through hole and contacting the backlight surface; coating at least one metal layer on the amorphous layer and aligning the through hole; and sintering the substrate such that the metal paste and the amorphous germanium layer The substrate forms a eutectic structure. 10. The method of fabricating a backside passivated solar cell according to claim 9, wherein the step of forming the passivation layer comprises: forming the passivation layer on the backlight surface by a plasma enhanced chemical deposition process or a wet oxidation process. 17 1376813 September 3, pp. 31. The replacement of the solar cell of the back passivation described in claim 10, wherein the plasma enhanced chemical deposition process has a working temperature of between 300 degrees Celsius and 400 degrees Celsius between. 12. The method of claim 10, wherein the material of the purification layer is tantalum oxide or tantalum nitride. 13. The method of fabricating a backside passivated solar cell of claim 9, wherein the step of etching the passivation layer comprises: applying an etching paste to the passivation layer using a screen printing process. 14. The method of fabricating a backside passivated solar cell according to claim 9, wherein the step of forming the amorphous germanium layer comprises: depositing the amorphous germanium layer on the blunt layer by a plasma enhanced chemical deposition process. 15. The method of producing a backside passivated solar cell according to claim 14, wherein the amorphous germanium layer comprises a plurality of hydrogen atoms, the hydrogen atoms having a content of between 8% and 16%. 16. The method of fabricating a backside passivated solar cell according to claim 9, wherein the step of coating the metal paste comprises: I coating the metal paste on the amorphous germanium layer by a screen printing process. 18 1376813 VIII. Schema: September 3, 101 100 122100 122 120120 100 122100 122 第2圖 1376813 101年9月3日倏正替換百 300Figure 2 1376813 On September 3, 101, Yongzheng replaced 100 310 320 340 第3圖 350 122 100 1376813 101年9月3日倏捣苜310 320 340 Figure 3 350 122 100 1376813 September 3, 2011 倏捣苜 第4A圖 100Figure 4A Figure 100 120 第4B圖 100120 Figure 4B 100 第4C圖 1376813 101年9月3日倐正替換百 1004C Figure 1376813 September 3, 101 Yongzheng Replacement 100 120 第5A圖 100120 Figure 5A 100 第5B圖 120 1376813 ]01年9月3日倐iL替換百 300Figure 5B 120 1376813] September 3, 2001 倐iL replacement hundred 300 310 320 330 34-2 350 100 1376813 101年9月3日倐正替換百 110- 112 --- 130 J f 1 ( / J V_ 120 140310 320 330 34-2 350 100 1376813 September 3, 2011 Yongzheng Replacement 100 110-112 --- 130 J f 1 ( / J V_ 120 140 第7A圖Figure 7A 第7C圖 VFigure 7C V
TW098113378A 2009-04-22 2009-04-22 Solar cell with backside passivation TWI376813B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098113378A TWI376813B (en) 2009-04-22 2009-04-22 Solar cell with backside passivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098113378A TWI376813B (en) 2009-04-22 2009-04-22 Solar cell with backside passivation

Publications (2)

Publication Number Publication Date
TW201039450A TW201039450A (en) 2010-11-01
TWI376813B true TWI376813B (en) 2012-11-11

Family

ID=44995501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098113378A TWI376813B (en) 2009-04-22 2009-04-22 Solar cell with backside passivation

Country Status (1)

Country Link
TW (1) TWI376813B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201340347A (en) * 2012-03-22 2013-10-01 Motech Ind Inc Solar cell
TWI491054B (en) * 2012-08-08 2015-07-01 Sino American Silicon Prod Inc Manufacturing method of solar cell
CN105190903B (en) * 2013-03-15 2017-07-14 太阳能公司 The contact resistance of solar cell reduction and the life-span of extension
CN112687763B (en) * 2020-12-28 2022-12-09 天合光能股份有限公司 Preparation method of passivated contact crystalline silicon cell

Also Published As

Publication number Publication date
TW201039450A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
TWI423462B (en) Method of manufacturing back electrode of silicon bulk solar cell
CN101622717B (en) Back contacted solar cell
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
EP2648235B1 (en) Method of manufacturing photoelectric device by ion implantation
TWI353065B (en) Method for manufacturing solar cell and solar cell
CN103718276A (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
TW200830567A (en) Solar cell and method for manufacturing the same
TWI376813B (en) Solar cell with backside passivation
Aurang et al. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
CN101752455B (en) Manufacturing method of solar cell
TW201218394A (en) Photovoltaic device and method for manufacturing same
TW200304231A (en) Photovoltaic conversion device and production process therefor
KR101370225B1 (en) Method of preparing solar cell and solar cell prepared by the same
JP5623131B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
KR101484620B1 (en) Silicon solar cell
JP2009253269A (en) Photoelectric conversion device using semiconductor nanomaterials, and method of manufacturing the same
TW201244144A (en) Improved a-Si:H absorber layer for a-Si single-and multijunction thin film silicon solar cell
JP5224470B2 (en) Photoelectric conversion member
CN101459206A (en) Manufacturing process for high-efficiency multi-junction solar cell
KR100995654B1 (en) Solar cell and method for manufacturing the same
TW201225309A (en) Method of fabricating rear surface point contact of solar cells
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
KR101116340B1 (en) A Structure Of High Efficiency Solar Cell And Method For Manufacturing Thereof
TWI296859B (en) Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof
CN114068751B (en) GaAs double-sided double-junction thin film solar cell structure and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees