Nothing Special   »   [go: up one dir, main page]

TWI361553B - Controller for a switching voltage regulator, method to compensate for variations in a supply voltage level in a voltage regulator, and pwm controller - Google Patents

Controller for a switching voltage regulator, method to compensate for variations in a supply voltage level in a voltage regulator, and pwm controller Download PDF

Info

Publication number
TWI361553B
TWI361553B TW96137068A TW96137068A TWI361553B TW I361553 B TWI361553 B TW I361553B TW 96137068 A TW96137068 A TW 96137068A TW 96137068 A TW96137068 A TW 96137068A TW I361553 B TWI361553 B TW I361553B
Authority
TW
Taiwan
Prior art keywords
signal
current
voltage
error
error signal
Prior art date
Application number
TW96137068A
Other languages
Chinese (zh)
Other versions
TW200820575A (en
Inventor
David K Lacombe
Chii-Fa Chiou
George C Henry
Original Assignee
Microsemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsemi Corp filed Critical Microsemi Corp
Publication of TW200820575A publication Critical patent/TW200820575A/en
Application granted granted Critical
Publication of TWI361553B publication Critical patent/TWI361553B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

1361553 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種切換電壓調整器之脈寬調變(pulse Width modulation,PWM)控制器,且特別是關於一種前饋 電路,則I貝電路逆向調整有關於供應電壓而言之輸出脈 寬,以補償供應電壓之變動或瞬變(transient)。 【先前技術】 一般的切換電麗調整器於第一位準接受一直流(Dc)供 應電壓,並於第二位準產生一調整後輸出電壓。第二位準 能高於或低於第-位準。如電池或交流(AC)電源轉接器的 不同電源能提供直流供應電壓。不同電源可提供不同的直 流供應電壓位準,且同一電源之直流供應電壓位準能因時 間而變動。在PWM式切換電麼調整器中,調整後輸出電廢 之升向或降低趨向於愈吉、、 與直机供應電塵之升高或降低成比 :。切換電麗調整器之™控制器通常包括-回授回路, 1回授回路迫使調整後輸出㈣恢復至-較位準。缺 應電壓中之快速變;通常對於直流供 快到防止調整後輸出雷龎兄’其反應經常不足以 π正便翰出電壓之過量或不足量。 電流供_中之瞬變。-種前饋 供應電屢中之變動提/補,中斜波信號之斜率來為直流 變,其用以控制以迫使PWM輸出的脈寬之改 斜羊-般受到電容所充 m唬之 _8 “之電—制’且横跨電容器之電 6 1361553 壓不能在瞬間改變’因而此種脈寬校正—般存在較大的延 遲二例如,-實用PWM斜波產生器使用電流源或電阻器為 電容器充電’以產生橫跨電容哭之钮,t ‘·“ ^ 合之斜波電壓。將此斜波雷 壓與來自誤差放大器之控制作辦士击1 工制乜唬比較,以調變一 pwM輸 之脈寬。由於當充電電流變動時,斜 种及電壓(即橫跨電容 裔之電壓)不能即時改變,因而斜由 u而针波電壓不能即時步階跟 上並校正此快速供應電壓的瞬變。而此種修正可能 斜波電壓之達半個週期之最小量及多達幾個週期。 【發明内容】 在-實施射,本發明提出—種脈寬調變(邮㈣仙 m〇dulation,PWM)控制器,⑽控制器逆向地調整有關於 供應電壓之誤差㈣(或PWM控制信號),以快速補償供 應電壓中之變動或瞬.變。PWM㈣器產生至少一輸出信 號,而輸出信號驅動在切換電壓調整$ (⑽“咖二 voltage regulator)中一個或多個半導體開關。切換電 壓調整器接收供應電壓’並為負載產生—調整後輸出電壓 (regulated output voltage)e調整輸出電壓位準取決 於供應電壓位準及來自PWM控制器之輸出信號之工作週 期Uutycycle)(或脈寬)。來自pwM控制器之輸出信號 之工作週期部分地由在回授回路中之誤差信號所控制。因 應供應電壓之瞬變而迅速調整誤差信號之能力有助於保 持-實質當恒定調整輸出電而+會因供應電壓波動或 突然變動所造成之不要的過量(〇versh〇〇t)或不足量 (undershoot)° 96137068 7 1361553 在一只施例中,PWM控制器包括輸入端,其配置用以接 收切換電壓调整器指示輸出條件之回授信號(例如輸出電 壓或負載電流)。誤差放大器(例如跨導放大器 (transconductance amplifier))依據比較回授信號與 參考仏號而產生誤差信號,而參考信號指示切換電壓調整 器所需之輸出條件。前饋電路接收該誤差信號及接收指示 (、應電;£位準之供應感測信號(如卯17 5丨如&amp;1 )。 别饋電路產生一調整後誤差信號,調整誤差信號具有與誤 差#號實質上成比例關係,並與供應感測信號實質上反比 例關係。調整誤差信號被提供給pwM比較器之第一輸入 端,而週期性斜波信號(peri〇dic ramp signal)被提供 !該PWM比較器之第二輸入端,以便產生一脈寬調變輸出 信號(pulse-width modulated output signal)。在一實 施例中’前饋電路快速為供應電壓變動提供補償(例如, 在週期性斜波信號的半週期内或在奈秒之内),使得供應 電壓位準與脈寬調變輸出信號之工作週期之乘積對於;^ 一特定參考信號在週期到週期之間係實質上恒定。 在一實施例中,前饋電路包括電壓控制電流源 (v〇ltage-controlled current s〇urce),電壓控制電流 移電流(〇ffset current),以便根據供應感二 仏唬追蹤供應電壓的變動。供應感測信號可為該供應電壓 本身。實施此電壓控制電流源之方式為在供應電壓^電流 鏡電路(current mirror circuit)之間耦接電阻器。= 流鏡電路傳導偏移電流,且耦接誤差玫大器之輸出及電浐 96137068 8 1361553 鏡電路之輸出之間的加法電阻器(summingresist〇d亦 .傳導偏移電流來產生偏移電壓(〇ffset voUage)。在— •實施例中,加法電阻具有—直流搞接至誤差放大器的輪出 •的第;'端,及耦接至P·比較器之第一輸入端的一第二 .端。誤差放大器之輸出之誤差信號被與橫跨加法電阻器之 偏移電壓有效合併(或相加),以在加法電阻之第二ς產 生調整誤差信號。在一實施例中,調整誤差信號逆向地變 動有關於供電感測信號,以便在供應電壓位準之預定範圍 ’内維持實質恒定調整輸出電壓。 在另一實施例中,前饋電路包括一個線性跨導電路 (transiinearcircuit)(例如,複數個電晶體以線性跨 導配置方式排列)’以追蹤供應電壓,並回應供應電壓中 之瞬變而迅速調整誤差信號。線性跨導電路傳導至少第一 電流信號、第二電流信號和第三電流信號。第一電流信號 與第二電流信號和第三電流信號之乘積係實質上成比 鲁例。在一實施例中,第一電流信號是從誤差信號中獲得(如 •使用第一電壓電流變換器(v〇itage-to—current converter )),第二電流信號是從供應感測信號中獲得(如 使用弟一電壓電流變換器)’而使用第三電流信號以產生 •調整誤差信號。如此,調整誤差信號直接與誤差信號成比 - 例’而與供應感測信號成反比。由線性跨導電路產生調整 誤差信號也可快速反映在供應電壓中的變動(例如在週期 性斜波電壓之半週期内)。 96137068 9 1361553 哭(DC to DC &amp;调整益為直流對直流電源變換 ;(to—DC p⑽er converter )(例弁 壓變換器),直流對直流電源變換琴且二:換-或升 _ 疗支換益具有隨脈寬調變輪屮 ㈣之工作週期而變動之輸出電壓位準, = 之回授信號指示直流對直产雷 放大态 m。/里— 耵直/爪電源變換器之輸出電壓位 只%例中,切換電壓調整器為換流器 (職rter )(或直流對交流電源變換器),換流器包括产 脈寬調變輸出信號之工作週期而變動之輸出電塵振幅,: =號指示由負載所傳導的電流。-種負载為冷陰極營 ^(c〇ld cathode fluorescent lamp, CCFL) ^ . 免顯示器(如液晶顯示器)之背光系統,且至誤差放大器、 之參考信號可由用戶控制來決定CCFLi希望明亮程度 ▲為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂,下文特舉本發明之實施例,並配合所附圖式,作詳細 說明如下。 【實施方式】 圖1為根據本發明一實施例之切換電壓調整器之方塊 圖=換電壓5周整S包括切換電路i Q2,其配置為接收供 應電壓(vSUPPly)並提供給負載104 一調整輸出電壓(v。^)。 回授電路1 〇6感測一輸出條件,用以產生控制器^ 之回 授信號(FB)。在一實施例中,控制器1〇〇使用pwM(puise width modulation)技術產生一個或多個PWM驅動信號 (Vm)以控制切換電路1〇2中的一個或多個半導體開關。 而此調整輸出電壓之位準或振幅與PWM驅動信號之脈寬 96137068 10 1361553 (或工作週期)成比例。此控制器1G0接收參考信號 (REF) &gt;考尭號指示調整輸出電壓的希望之位準或 •振巾田 &gt; 並且一調整器回路包括此PWM電路,PWM電路根據 &gt;考4 口 5虎REF與回授仏號之差異來調整ρ·驅動信號之工 .·作週期,以達到預期的位準或振幅。 調正輸出電壓之位準或振幅亦與供應電壓成比例。希望 在供應電壓及PWM驅動信號之工作週期之間保持一個倒 鲁數乘積關係(inverse Product relationship),以有助 於穩定調整輸出電壓。如圖1所示的實施例中,控制器 100接收指示供應電壓位準之供應感測信號(supply sensed signa 1 )’並藉由與供應感測信號有關之逆向地調 整PWM 4區動信號之工作週期用以供應電 之 前饋補償。 在一實施例令,控制器1〇〇使用偏移補償技術(offset compensation technique)以快速地(例如,瞬間或奈秒 # 1)降低或提高PWM驅動信號之工作週期來回應供應感測 •化號,改變。例如,可由不同的電源(例如,電池、電池 充電益或AC電源轉接器)來提供供應電壓。不同電源可 /、不同之供應電壓位準的範圍(例如,AC電源轉接器 • y般比電池輸出更高的電壓)。在切換電壓調整器動作的 _ =時在不同電源之間切換時,供應電壓位準可以突然改 =。例如,在使用期間插上AC電源轉接器時大多數電子 設備自動斷開其電池’而使用AC電源轉接器作為電源。 96137068 11 1361553 另外’此供應電壓可因β , 變動。 U因其他原因(如雜訊或電池放電)而 ▲偏移補償技術允許控制器⑽對供應電壓中之瞬間改 變迅速回應》從而減少式Ρ大| , 旦+ ^止5周整輸出電壓中輸出電壓過 里:換句話說,偏移補償技術對於供應電壓位準與 PWM驅動信號之工作调如維姓 ㈣期維持—近似恒定的乘積,以減少 调正輸出電壓之過量及不足量。在另一實施例中,控制器 10 0使用一線性跨導電路爽媒5丨徂 ° 一 守电峪术付到供應電壓位準與PWM驅動 信號Vm之工作週期之近似恒定的乘積,以維持一實質恒 定調整輸出電壓。偏移補償技術和線性跨導電路皆可也被 用來修正供應中之漸變(例如,電池在使用期間緩慢 放電)。下面進一步詳細說明偏移補償技術和線性跨導電 路。 圖1之切換電塵調整器在可以為一直流對直流電源變 換(DC-t0-DC卿erconverter)或直流對交流電源變 換器(DC-to-AC power converter )(例如換流器)。在某 些應用中,換流器是使用於供電在背光系統中之冷陰極螢 光燈(cold cathode fIU0rescent lamp,CCFL),並在供 應電壓Vsupply與PWM驅動信號之工作週期之間維持: 倒數乘積闕係’以確保光照強度在一供應電磨位準(或所 施用電池電塵)之範圍内為近似恒定。另外,回應供應電 壓t之瞬變(或快速改變)而維持倒數乘積關係,避免了 不要的燈閃爍。 96137068 12 圖M和2β 5兒明各種直流對直流電源變換哭&lt; * KM ^ 具體地說,圖2A給- 文供口。之貝鈀例。 升&gt;1變換-甘降壓變換器,而圖2心會示-種 型Μ ^ 類型之直流對直流變換器(例如,結合 , combined buck-boost converter) 也可以採用本發明之優點主 常提供一周…=優,“參考圖2A’降壓變換器通 應電壓(Vsupply)之較低仿i 十电h 匕直抓供 車乂低位準。在只施例中,降壓變換器包 L ^ 關(或高側開關(hlgh_Side switch)) 204夕:一半導體開關2〇0耦接於直流供應電壓和電感器 出電電感器204之第二端提供調整直流輸 ^剧電谷杰(Cout) 206和輸出電阻器(Rl〇ad) =8並聯橫跨輕直流輸出電壓,以表示—負載(例如, f處理器)。輸出電容器咖也可表示遽波電容器,以減 &gt;、調整直流輸出電愿之漣波。二極體(例如,一甜位 (cl卿)或飛輪二極體(free_wheeHng di〇de)) 2〇2 搞接於電感器204之第-端與—參考端(例如,接地)。 二極體202可交替更換為第二半導體開關(或同步開關)。 回授電路216感測調整直流輸出電壓,並產生一簡控 制器210之回授電壓(Vfb)qPWM控制器2iq亦接收參考電 壓(V—,參考㈣Vref指示調整直流輸出電壓之所要位 準。PWM控制器210產生一個可變脈寬驅動信號(v_), 以控制高側開關200。調整直流輸出電壓之位準取決 於驅動信號之脈寬(或工作週期)及直流供應電壓位準。 PWM控制器210基於回授電麗與參考電壓之間的差異而改 96137068 13 1361553 :驅動k號之脈寬。此外,P而控制器21 〇接收一指示直 流供應電壓位準之供應感測信號,並能快速鱼供 號有關逆向地調整驅動信號之脈衝寬度,以補;流供應: 電壓位準之變動。 圖2Β具有與如圖2Α類似之組件,然該組件排列不同, 以形成提供一調整直流輸出電壓之升壓變換器,該調整直 流輸出電壓具有比直流電源電壓高的位準。例如,輸入電 感218耦合於直流供應電壓及一中間節點(intermediate node )之間。半導體開關212搞合於中間節點和接地之籲 間。隔離二極體(isolation diode) 214具有一辆合於 中間節點的陽極,以及一耦合於調整直流輸出電壓的陰 極。升壓變換器之pwM控制器22〇產生一可變脈寬驅動信 號(VpwM〇,以驅動半導體開關212,並以與降壓變換器之 PWM控制器21 〇類似方式操作,以補償直流供應電壓之變 動。 圖3A及3B說明用於驅動螢光燈312之換流器拓撲鲁 (top〇l〇gies)之範例。特別地,圖3A繪示一在推挽拓 撲(push-pull topology)中使用兩個半導體開關300、 302的換流器;而圖3B繪示一在一全橋拓撲(full-bridge topology)中使用4個半導體開關300、301、302、303 - 之換流器。其他具有相同或不同數量之半導體開關之換流 . 器拓撲(例如,半橋(ha 1 f -br i dge ))也可以利用本發明 之優點。例如,圖3A及3B中之PWM控制器308、318都 接收指示供應電壓位準之供應感測信號,並能快速調整與 96137068 14 Ϊ361553 =導體開關300、3(Π、3〇2、303之驅動信號相聯繫之工 ’ 乍週期’以補償供應電壓中之變動。 . 在—實施例中,一換流器用於供電在背光系統中之螢光 ' 例如,CCFLs),而PWM電路為換流器控制器晶片之部 77在某些應用中’至換流器之輸入電源供應電愿在時間 上可迅速並任意改變。例如’當AC電源轉接器被「熱拔 f (hot plugged)」時在筆記本電腦中可見到輸入電壓之 鲁陕,憂動。AC電源轉接器之直流輸出電壓一般高於電也 $壓,以方便電池再充電,並迅速提高用於CCFL的換流 奋之一供電軌(supply rail)。在某些應用中,在以電池 運作時,供電轨係介於10-15伏特,而以AC電源轉接器 運作,則供電軌介於18-24伏特。當AC電源轉接器最 初插入時,供電軌從電池電壓以一快速瞬變之步階跳到 AC電源轉接器輸出電壓。 圖4為具有逆前饋補償器400之PWM控制器的實施例之 鲁簡化方塊圖,逆前饋補償器4〇〇藉由逆向調整誤差信號來 、對供應電壓瞬變作出快速反應。在一實施例中,pWM控制 裔包括跨導放大器(或誤差放大器)402和PWM比較器 404。跨導放大器402接收指示負荷情況(例如,在背光 * 源應用中的燈管電流感測)之回授信號(FB),和接收指示 - 希望或參考負荷情況(如一燈管調整電壓)之參考信號 (REF)。跨導放大器402根據回授信號與參考信號之間的 差額產生誤差信號。電容器406可耦合到跨導放大器402 之輸出’以根據跨導放大器之電流輸出產生一誤差電壓。 96137068 15 1361553 當PWM控制器以積體電路(IC)晶片實施時,電容器4〇6 — 般為耦合到ic晶片之一封裝接腳(package pin)(如標 有EA—OUT之接腳)之外部組件。 誤差電壓被提供給逆前饋補償器。逆前饋補償界 400亦接收指示一供應電壓位準(或電池電壓)之一供電 感測信號(VBAT乂,並產生一調整誤差信號(例如Vad〗), 以便用以PWM比較器404之一 PWM輸出(PWM-OUT)來維 持一供應電壓位準與一工作週期(或脈寬)之近似恒定乘 積。例如,PWM比較器404將調整誤差信號與由一鋸齒振 盈器(未顯示)所產生之斜波信號(Vramp)比較,以產生 PWM輸出。在一實施例中,PWM輸出之工作週期,則以供 應電壓由略為相同百分比的升高(或降低)而降低(或升 高)’以維持用以切換電壓調整器之減少過量(〇versh〇〇t) 和不足量(undershoot)之一穩定調整輸出電壓。ρ·輸 出被提供給一驅動電路(未顯示),以產生一個或多個驅 動h號來控制用於切換電壓調整器之一個或多個半導體 開關(如場效應電晶體,field effect transistors)。 逆前饋補償器400可使用偏移技術(offset techniques) 或線性跨導原理(translinear principles)來逆向地調 整與供應電壓之改變有關之PWM輸出之脈寬,並提供用於 供應電壓之瞬變提供實質上瞬間補償。 圖5說明一誤差信號如何以一可從7V至28V之範圍的 供應電壓(或電池電壓)被逆向調整之實施例。展示一鋸 齒波形以供參考,並表示一圖4中比較器404之輸入上之 96137068 16 1361553 範圍從0.5V到4.0V的斜波信號。對於 、奋a a t 玎於如下不例方程式經 適“多改’而具有其他振幅之斜波信號或峰對峰電壓 (peak to peak voltages)亦是可能沾 t U 400之-輸出之調整誤差信號在第一供應電麗(例 如’ VBAT1 = 10V)具有一初始電壓(例如,νι)。备供鹿 電壓改變到-新位準(例如’ VBAT2 = 19V),則調;誤: 信號改變至如下關係之第二電壓(例如,V2 ): l^2 = 0.5F + (n-0.5F)x1361553 IX. Description of the Invention: [Technical Field] The present invention relates to a pulse width modulation (PWM) controller for a switching voltage regulator, and more particularly to a feedforward circuit, The reverse adjustment has an output pulse width with respect to the supply voltage to compensate for variations or transients in the supply voltage. [Prior Art] A general switching galvanic regulator receives a DC (Dc) supply voltage at a first level and an adjusted output voltage at a second level. The second level is above or below the first level. Different power supplies, such as batteries or alternating current (AC) power adapters, can provide a DC supply voltage. Different power supplies can provide different DC supply voltage levels, and the DC supply voltage level of the same power supply can vary with time. In the PWM type switching regulator, the rising or decreasing of the output electrical waste after the adjustment tends to be higher and lower than the increase or decrease of the electric dust supplied by the straight machine: The TM controller that switches the galvanic regulator usually includes a feedback loop, and the 1 feedback loop forces the adjusted output (4) to return to the -level. The rapid change in the voltage of the deficiency; usually for the DC supply is fast enough to prevent the output of the output after the adjustment, the response is often insufficient to exceed or exceed the voltage. The current is supplied to the transient in _. - The feedforward supply is repeatedly changed/compensated, and the slope of the mid-slope wave signal is DC change, which is used to control the pulse width of the PWM output to be biased by the capacitor. 8 "Electric-system" and the power across the capacitor 6 1361553 The voltage cannot be changed instantaneously' thus the pulse width correction has a large delay. For example, the utility PWM ramp generator uses a current source or resistor. Charge the capacitor 'to generate a cross-capacitor crying button, t '·“ ^ the ramp voltage. This ramp-wave lightning pressure is compared with the control from the error amplifier as a system to adjust the pulse width of a pwM output. Since the ramp and voltage (i.e., the voltage across the capacitor) cannot be changed instantaneously when the charging current fluctuates, the chirp voltage cannot be immediately stepped up by u and the transient of the fast supply voltage is corrected. This correction may be the minimum of half a cycle of the ramp voltage and up to several cycles. SUMMARY OF THE INVENTION In the implementation of the radiation, the present invention proposes a pulse width modulation (mail (four) centimeter, PWM) controller, (10) the controller reversely adjusts the error about the supply voltage (four) (or PWM control signal) To quickly compensate for variations or transients in the supply voltage. The PWM (four) device generates at least one output signal, and the output signal drives one or more semiconductor switches in the switching voltage adjustment $ ((10) "coffee voltage regulator". The switching voltage regulator receives the supply voltage 'and generates for the load - the adjusted output voltage (regulated output voltage) e adjusts the output voltage level depending on the supply voltage level and the duty cycle Uutycycle (or pulse width) of the output signal from the PWM controller. The duty cycle of the output signal from the pwM controller is partially The error signal in the feedback loop is controlled. The ability to quickly adjust the error signal in response to transients in the supply voltage helps to maintain - substantially constant adjustment of the output power and + excessive supply due to supply voltage fluctuations or sudden changes (〇versh〇〇t) or undershoot° 96137068 7 1361553 In one embodiment, the PWM controller includes an input configured to receive a feedback signal indicative of an output condition of the switching voltage regulator (eg, an output) Voltage or load current). Error amplifiers (such as transconductance amplifiers) based on comparison The feedback signal and the reference nickname generate an error signal, and the reference signal indicates an output condition required for the switching voltage regulator. The feedforward circuit receives the error signal and receives the indication (the power supply; the supply sensing signal ( For example, 别17 5丨和&1). The feed-in circuit generates an adjusted error signal, and the adjustment error signal has a substantially proportional relationship with the error #, and is substantially inversely proportional to the supply sensing signal. The adjustment error signal is Provided to the first input of the pwM comparator, and a periodic ramp signal is provided! The second input of the PWM comparator is used to generate a pulse width modulated output signal (pulse-width) Modulated output signal). In one embodiment, the feedforward circuit quickly compensates for supply voltage variations (eg, within a half cycle of a periodic ramp signal or within nanoseconds) such that the supply voltage level and pulse width The product of the duty cycle of the modulated output signal is for a particular reference signal to be substantially constant from cycle to cycle. In one embodiment, the feedforward circuit includes voltage control. A current source (v〇ltage-controlled current s〇urce), a voltage control current shift current (〇 set current current , , , , , , , 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬 仏唬The voltage is controlled by the current source by coupling a resistor between the supply voltage and the current mirror circuit. The flow mirror circuit conducts the offset current and is coupled to the output of the error amplifier and the power supply 96137068. 1361553 The summing resistor between the outputs of the mirror circuit (summingresist〇d also conducts the offset current to generate the offset voltage (〇ffset voUage). In the embodiment, the summing resistor has a first end that is coupled to the output of the error amplifier, and a second end that is coupled to the first input of the P· comparator. The error signal at the output of the error amplifier is effectively combined (or summed) with the offset voltage across the summing resistor to produce an adjustment error signal at the second pass of the summing resistor. In one embodiment, the adjustment error signal is inversely varied with respect to the power supply sense signal to maintain a substantially constant adjusted output voltage within a predetermined range ' of the supply voltage level. In another embodiment, the feedforward circuit includes a linear transiaxis circuit (eg, a plurality of transistors arranged in a linear transconductance configuration) to track the supply voltage and respond to transients in the supply voltage. Adjust the error signal. The linear transconductance circuit conducts at least a first current signal, a second current signal, and a third current signal. The product of the first current signal and the second current signal and the third current signal is substantially abbreviated. In an embodiment, the first current signal is obtained from the error signal (eg, using a first voltage current converter (v〇itage-to-current converter)), and the second current signal is obtained from the supply sensing signal The third current signal is used to generate an adjustment error signal (eg, using a voltage-current converter). Thus, the adjustment error signal is directly proportional to the error signal - and is inversely proportional to the supply sense signal. The adjustment error signal generated by the linear transconductance circuit can also quickly reflect fluctuations in the supply voltage (e.g., during the half cycle of the periodic ramp voltage). 96137068 9 1361553 crying (DC to DC &amp; adjustment benefits for DC to DC power conversion; (to - DC p (10) er converter) (for example, squeezing converter), DC to DC power conversion piano and two: change - or rise _ treatment The conversion has an output voltage level that varies with the duty cycle of the pulse width modulation rim (4), and the feedback signal of the = indicates the DC to direct lightning amplification state m. / Lane - the output voltage of the straight/claw power converter In the case of only %, the switching voltage regulator is an inverter (or a DC-to-AC power converter), and the inverter includes an output dust amplitude that varies depending on the duty cycle of the pulse width modulated output signal. : = indicates the current conducted by the load. - The load is cold cathode camp (CCFL) ^. The backlight system of the display (such as liquid crystal display), and the reference signal to the error amplifier The above and other objects, features and advantages of the present invention will become more apparent and understood by the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 1 is a block diagram of a switching voltage regulator according to an embodiment of the present invention. The voltage change 5 includes a switching circuit i Q2 configured to receive a supply voltage (vSUPPly) and provide it to the load 104. Output voltage (v.^). The feedback circuit 1 〇6 senses an output condition for generating a feedback signal (FB) of the controller. In one embodiment, the controller 1 uses pwM (puise width) The modulation technique generates one or more PWM drive signals (Vm) to control one or more semiconductor switches in the switching circuit 1〇2. The adjustment of the level or amplitude of the output voltage to the pulse width of the PWM drive signal is 96137068 10 1361553 (or duty cycle) is proportional. This controller 1G0 receives the reference signal (REF) &gt; the reference number indicates the desired level of adjustment of the output voltage or • vibrating field &gt; and a regulator loop includes this PWM circuit, PWM The circuit adjusts the ρ· drive signal according to the difference between the test 5 and the feedback apostrophe. The cycle is used to achieve the desired level or amplitude. The level or amplitude of the output voltage is also adjusted. The supply voltage is proportional. It is desirable to maintain an inverse Product relationship between the supply voltage and the duty cycle of the PWM drive signal to help stabilize the output voltage. As in the embodiment shown in Figure 1, the controller 100 receives the indication. The supply sense signal (supply sensed signa 1 ) is supplied and the duty cycle of the PWM 4 zone motion signal is reversely adjusted in relation to the supply of the sense signal for supplying the power feed forward compensation. In an embodiment, the controller 1 uses an offset compensation technique to quickly or (eg, instantaneous or nanosecond #1) reduce or increase the duty cycle of the PWM drive signal in response to the supply sensing. No. Change. For example, the supply voltage can be provided by a different power source (e.g., battery, battery charging benefit, or AC power adapter). Different power supplies can range from different supply voltage levels (for example, AC power adapters • y are higher voltages than battery outputs). When switching between different power sources when switching the _ = of the voltage regulator action, the supply voltage level can be suddenly changed to =. For example, most electronic devices automatically disconnect their batteries when plugged into an AC power adapter during use, and use an AC power adapter as a power source. 96137068 11 1361553 In addition, this supply voltage can vary due to β. U for other reasons (such as noise or battery discharge) and ▲ offset compensation technology allows the controller (10) to respond quickly to the instantaneous change in the supply voltage, thus reducing the size of the large |, + + 5 weeks output of the output voltage Overvoltage: In other words, the offset compensation technique maintains an approximately constant product for the supply voltage level and the PWM drive signal to reduce the excess and undershoot of the regulated output voltage. In another embodiment, the controller 100 uses a linear transconductance circuit to charge the product to a nearly constant product of the supply voltage level and the duty cycle of the PWM drive signal Vm to maintain A substantially constant adjustment of the output voltage. Both offset compensation techniques and linear transconductance circuits can also be used to correct for gradual changes in the supply (for example, the battery is slowly discharged during use). The offset compensation technique and the linear transconductance path are described in further detail below. The switching dust adjuster of Figure 1 can be a DC-to-DC power converter (DC-to-DC erconverter) or a DC-to-AC power converter (such as an inverter). In some applications, the inverter is used in a cold cathode fIU0rescent lamp (CCFL) powered in a backlight system and maintained between the supply voltage Vsupply and the duty cycle of the PWM drive signal: reciprocal product The tether 'to ensure that the light intensity is approximately constant over a range of supply electrogrind levels (or applied battery dust). In addition, the reciprocal product relationship is maintained in response to transients (or rapid changes) in the supply voltage t, avoiding unwanted lamp flicker. 96137068 12 Figure M and 2β 5 children Ming various DC to DC power conversion crying * * KM ^ Specifically, Figure 2A gives - text supply. Palladium case. l &gt; 1 transform - Gan buck converter, and Figure 2 shows that the type of DC-DC converter (for example, combined buck-boost converter) can also use the advantages of the present invention Provide one week...=Excellent, "Refer to Figure 2A' buck converter with the corresponding voltage (Vsupply), the lower the imitation i, the ten electric h, and the straight supply to the low level. In the only example, the buck converter package L ^ Off (or high side switch (hlgh_Side switch)) 204: A semiconductor switch 2〇0 is coupled to the DC supply voltage and the second end of the inductor output inductor 204 provides adjustment of the DC output. ) 206 and output resistor (Rl〇ad) = 8 parallel across the light DC output voltage to represent - load (for example, f processor). Output capacitors can also represent chopper capacitors to reduce &gt; adjust DC The output of the wish is chopping. The diode (for example, a sweet bit (cl_cle) or a flywheel diode (free_wheeHng di〇de)) 2〇2 is connected to the first end of the inductor 204 and the reference end ( For example, grounding. The diode 202 can be alternately replaced with a second semiconductor switch (or synchronous switch) The feedback circuit 216 senses the adjusted DC output voltage and generates a feedback voltage (Vfb) of the controller 210. The PWM controller 2iq also receives the reference voltage (V-, reference (4) Vref indicates the desired level of the DC output voltage. The PWM controller 210 generates a variable pulse width drive signal (v_) to control the high side switch 200. The level of the regulated DC output voltage depends on the pulse width (or duty cycle) of the drive signal and the DC supply voltage level. The controller 210 changes 96137068 13 1361553 to drive the pulse width of the k-number based on the difference between the feedback battery and the reference voltage. In addition, the controller 21 receives a supply sensing signal indicating the DC supply voltage level. And can quickly adjust the pulse width of the drive signal to compensate; the flow supply: the voltage level changes. Figure 2Β has a similar component as Figure 2, but the components are arranged differently to form an adjustment a DC output voltage boost converter, the adjusted DC output voltage has a higher level than a DC power supply voltage. For example, the input inductor 218 is coupled to a DC supply voltage and a medium Between the intermediate nodes, the semiconductor switch 212 is engaged between the intermediate node and the grounding. The isolation diode 214 has an anode coupled to the intermediate node, and a coupling coupled to the regulated DC output voltage. The cathode. The boost converter's pwM controller 22 generates a variable pulse width drive signal (VpwM〇 to drive the semiconductor switch 212 and operates in a similar manner to the PWM controller 21 of the buck converter to compensate for the DC Changes in supply voltage. 3A and 3B illustrate an example of a converter top topology for driving the fluorescent lamp 312. In particular, FIG. 3A illustrates an inverter using two semiconductor switches 300, 302 in a push-pull topology; and FIG. 3B illustrates a full-bridge topology. Four inverters of semiconductor switches 300, 301, 302, 303 - are used. Other commutations having the same or different number of semiconductor switches (e.g., half bridges (ha 1 f - br i dge )) may also take advantage of the advantages of the present invention. For example, the PWM controllers 308, 318 of Figures 3A and 3B both receive a supply sense signal indicative of the supply voltage level and can be quickly adjusted with 96137068 14 Ϊ 361553 = conductor switches 300, 3 (Π, 3〇2, 303 The drive signal is associated with a '乍 cycle' to compensate for variations in the supply voltage. In an embodiment, an inverter is used to power the fluorescent light in the backlight system 'eg CCFLs', and the PWM circuit is a commutation The portion 77 of the controller chip in some applications 'to the input power supply to the converter can be changed quickly and arbitrarily in time. For example, when the AC power adapter was "hot plugged", the input voltage was seen in the laptop, and it was worried. The DC output voltage of the AC power adapter is generally higher than the voltage and voltage to facilitate battery recharging and to quickly increase the supply rail for the CCFL. In some applications, the supply rail is between 10-15 volts when operating on a battery and 18-24 volts on an AC power adapter. When the AC power adapter is initially inserted, the power rail jumps from the battery voltage to the AC power adapter output voltage in a fast transient. 4 is a simplified block diagram of an embodiment of a PWM controller having an inverse feedforward compensator 400 that reacts rapidly to supply voltage transients by inversely adjusting the error signal. In one embodiment, the pWM controller includes a transconductance amplifier (or error amplifier) 402 and a PWM comparator 404. The transconductance amplifier 402 receives a feedback signal (FB) indicating a load condition (eg, lamp current sensing in a backlight* source application), and a reference to receive an indication-desired or reference load condition (eg, a lamp adjustment voltage) Signal (REF). Transconductance amplifier 402 produces an error signal based on the difference between the feedback signal and the reference signal. Capacitor 406 can be coupled to the output of transconductance amplifier 402 to generate an error voltage based on the current output of the transconductance amplifier. 96137068 15 1361553 When the PWM controller is implemented as an integrated circuit (IC) chip, the capacitor 4〇6 is typically coupled to one of the package pins of the ic chip (such as the pin labeled EA-OUT). External components. The error voltage is supplied to the inverse feedforward compensator. The inverse feedforward compensation boundary 400 also receives a power sensing signal (VBAT乂) indicating one of the supply voltage levels (or battery voltages) and generates an adjustment error signal (eg, Vad) for use in one of the PWM comparators 404. The PWM output (PWM-OUT) maintains an approximately constant product of a supply voltage level and a duty cycle (or pulse width). For example, the PWM comparator 404 adjusts the error signal with a sawtooth oscillator (not shown) The resulting ramp signal (Vramp) is compared to produce a PWM output. In one embodiment, the duty cycle of the PWM output is reduced (or increased) by a slight increase (or decrease) in the supply voltage by a slightly equal percentage. The output voltage is stably adjusted to maintain one of the reduced excess (〇versh〇〇t) and undershoot of the switching voltage regulator. The output is supplied to a driving circuit (not shown) to generate one or more Drive the h number to control one or more semiconductor switches (such as field effect transistors) for switching the voltage regulator. The inverse feedforward compensator 400 can use the offset technique (offs Et techniques) or linear translinear principles to inversely adjust the pulse width of the PWM output associated with the change in supply voltage and provide transients for supply voltage to provide substantially instantaneous compensation. Figure 5 illustrates an error signal How to reverse-adjust a supply voltage (or battery voltage) from a range of 7V to 28V. A sawtooth waveform is shown for reference and represents a 96137068 16 1361553 range on the input of comparator 404 in FIG. The ramp signal from 0.5V to 4.0V. It is also possible for the rake wave signal or the peak to peak voltages with other amplitudes to be “over-changed” in the following equations. The t U 400 - output adjustment error signal has an initial voltage (eg, νι) at the first supply voltage (eg 'VBAT1 = 10V'). The deer voltage is changed to the new level (eg 'VBAT2 = 19V) , tune; error: The signal changes to the second voltage of the relationship (for example, V2): l^2 = 0.5F + (n-0.5F)x

VBATI VBAT2 表1所示為範例計算,其為兩種不同供應電壓位準,以 進一步說明調整誤差信號與PWM輸出工作週期(或脈寬) 如何隨供應電壓之升高而降低,以維持供應電壓與ρ·輸 出工作週期一實質上恒定乘積。 表1 VBATI = 7V …… VBAT2 = 19V -- VI = 4. 0V η ^ , , 4.0V - 0.SV Dutycycle_l = —x 1〇〇 = 1〇〇〇/0 VBAT\ X Dutycycle_\ = 7F χ 1 〇〇〇/〇 = η V2 = 0.5F ^-{AX)V — Q,SV)x^~ == 1.789K &quot; 1.789F-0.5F Dutycycle_2 = —〇-^_〇^ x 100 = 36.8% KR4:T2 x £&gt;«卿也一 2 = 19F x 36.8% = 7 圖6說明具有一逆前饋補償電路之pWM控制器之一實 施’逆前饋補償電路產生一基於供應電壓之偏移信號,並 將偏移彳§號與一誤差信號組合,以逆向地調整與供應電壓 有關之一 PWM輸出。在一實施例中,逆前饋補償電路包括 一電壓 控制電 流 源 96137068 17 1361553 (voltage-controlled-current-source,VCCS),電壓控 制電流源產生一偏移電流以追縱供應電壓瞬變或改變。例 如,電阻R1耦合於供應電壓(VBAT)和一電流鏡電路(Q1 Q2)之間’其傳導一與供應電壓成比例之第一電流(例如: IBAT= (VBAT-VGS)/R1))。電流鏡電路在一輸入側(例如, 經由Q1 )傳導第一電流,並在輸出側(例如,通過Q2) 傳導一相應之第二電流。加法電阻器R2亦傳導第二電流 (或偏移電流)。加法電阻R2串聯耦合於誤差放大哭之輪 出與PWM比較器404之輸入之間,而不使用具有固^延^ (例如,用直流耦合,DC-coupiing)之電容器。在ρ· 比較器404之輸入之一電壓(例如,⑽,調整誤差電壓 或補償PWM控制信號)係約等於誤差放大器之輸出之誤差 電壓(Verr或原PWM控制信號)減去橫跨加法電阻R2('或 偏移電壓谓XR2)上之電壓降。因此,偏移電壓係盥 決差電壓組合以產生-補償簡控制信號(或調整後誤差 電壓),其有利地快速回應對於供應電壓中之改變。 „適田^擇電阻益R1、R2的電阻值’可即時對PWM比 =404之-輸出進行瞬變校正或改變脈寬(或工作週 塑麻夕姐* 產生一誤差電壓之相對於較慢 電ς ' 口路和產生―斜波電-(Vr卿)之斜波產生器 正之部genera1^係㈣地非為此瞬變校 之誤差放大器之輪出與提供給酬比較器4〇4之 輪出的斜波改變不如偏移電壓之改變快速。在— 96137068 1361553 Ά例中’上述的逆前饋補償電路在斜波電愿之 週期之内提供輸出脈寬補償。 衣 數„礎之電細器的脈寬校正為理想的1/χ之函 數、、中X對應於電源輸入電壓。與曲線相稱,上述之⑨ η 型的操作電源輸入電愿範圍上提供可接受: 換=中/線性)。例如,在上述實施例之一個測試 換“ 相對於具有大約10微秒之過渡時間之 伏特之線瞬變(iine transients)中一調 示低於”的過量或不足量。 ’整輸出電屋顯 在以PWM為基礎的電麈調整器卜在操作條件下,在供 應電壓及PWM工作週期之間之—倒數乘積關係是希望有 助於穩定調整輸出電廢。一些前饋校正電路使用複雜的電 路設計以實施倒數乘積關係。一些前饋校正電路可以將讓 v於不理想之倒數乘積關係的電路設計之複雜性,或需 要外部電路組件。在本發明之一實施例中,逆前饋補償器 (inverse feed_f〇rward c〇mpensat〇r)使用線性跨導原 理來實施倒數乘積關係。逆前饋補償器可有利地實施為 PWM控制器ic之部分而無需外部組件,且使用不超過一 個的額外封裝接腳(package pin)以顯示供應電壓位準 (或電池輸入電壓)。 圖7說明一般線性跨導電路。例如,將4個雙載子接面 電日日體(bipolar junction transistor,BJT) (Qi、Q2、 Q3、Q4)排列為分別傳導4個集極電流(In、 ^、、VBATI VBAT2 Table 1 shows an example calculation for two different supply voltage levels to further illustrate how the adjustment error signal and PWM output duty cycle (or pulse width) decrease with increasing supply voltage to maintain supply voltage A substantially constant product of the ρ· output duty cycle. Table 1 VBATI = 7V ...... VBAT2 = 19V -- VI = 4. 0V η ^ , , 4.0V - 0.SV Dutycycle_l = —x 1〇〇= 1〇〇〇/0 VBAT\ X Dutycycle_\ = 7F χ 1 〇〇〇/〇= η V2 = 0.5F ^-{AX)V — Q,SV)x^~ == 1.789K &quot; 1.789F-0.5F Dutycycle_2 = —〇-^_〇^ x 100 = 36.8% KR4:T2 x £&gt;«Qingyi-2 = 19F x 36.8% = 7 Figure 6 illustrates one of the pWM controllers with an inverse feedforward compensation circuit implementing an 'inverse feedforward compensation circuit to generate a supply voltage based offset The signal is combined with an offset 彳§ number and an error signal to inversely adjust one of the PWM outputs associated with the supply voltage. In one embodiment, the inverse feedforward compensation circuit includes a voltage controlled current source 96137068 17 1361553 (voltage-controlled-current-source, VCCS), and the voltage controlled current source generates an offset current to track the supply voltage transient or change. . For example, resistor R1 is coupled between a supply voltage (VBAT) and a current mirror circuit (Q1 Q2) that conducts a first current proportional to the supply voltage (e.g., IBAT = (VBAT - VGS) / R1). The current mirror circuit conducts a first current on one input side (eg, via Q1) and a corresponding second current on the output side (eg, via Q2). The addition resistor R2 also conducts a second current (or offset current). The summing resistor R2 is coupled in series between the error amplification crying wheel and the input of the PWM comparator 404 without the use of a capacitor having a solid junction (e.g., DC-coupiing). The voltage at the input of the ρ· comparator 404 (eg, (10), the adjusted error voltage or the compensated PWM control signal) is approximately equal to the error voltage of the output of the error amplifier (Verr or the original PWM control signal) minus the averaging resistance R2. ('or offset voltage is said to be XR2) voltage drop. Thus, the offset voltage is combined with the step voltage to produce a compensated simple control signal (or adjusted error voltage) that advantageously responds quickly to changes in the supply voltage. „Apparel ^Resistance Benefits R1, R2 resistance value' can instantly correct the PWM ratio = 404 - output or change the pulse width (or work week plastic maternal * generate an error voltage relative to the slower Electric ς 'Broken and generated - ramp wave - (Vr Qing) ramp generator is the main part of the genera1 ^ system (four) ground is not for this transient correction error amplifier wheel and provide the compensation comparator 4〇4 The change of the ramp wave is not as fast as the change of the offset voltage. In the example of 96137068 1361553, the above-mentioned inverse feedforward compensation circuit provides the output pulse width compensation within the period of the oblique wave power. The pulse width correction of the thinner is an ideal function of 1/χ, and the middle X corresponds to the input voltage of the power supply. Aligning with the curve, the above-mentioned 9 η-type operating power input input range is acceptable: Change = medium / linear ). For example, in one of the above embodiments, "excessive or insufficient amount of "less than" is indicated in "iine transients" with respect to volts having a transition time of about 10 microseconds. The whole output electric house shows a PWM-based electric 麈 adjuster. Under the operating conditions, the reciprocal product relationship between the supply voltage and the PWM duty cycle is intended to help stabilize the output of the electrical waste. Some feedforward correction circuits use complex circuit designs to implement a reciprocal product relationship. Some feedforward correction circuits can complicate the design of circuits that do not ideally reciprocal product relationships, or require external circuit components. In one embodiment of the invention, the inverse feedforward compensator (inverse feed_f〇rward c〇mpensat〇r) uses a linear transconductance principle to implement a reciprocal product relationship. The inverse feedforward compensator can advantageously be implemented as part of the PWM controller ic without external components and using no more than one additional package pin to display the supply voltage level (or battery input voltage). Figure 7 illustrates a general linear transconductance circuit. For example, four bipolar junction transistors (BJT) (Qi, Q2, Q3, Q4) are arranged to conduct four collector currents (In, ^, ,, respectively).

Ic4) ’其基極-射極電壓(Vbei、Vbe2、Vbe3、Vbe4)具有如下 96137068 19 1361553 關係: ^ΒΕΙ +^β£3 ~^ΒΕ2 ~~^ΒΕ4 ( \ ) 根據雙載子接面電晶體(BjT)的Ebers-Moll模型,基極 -射極電壓及集極電流有如下之一般關係: 2)Ic4) 'The base-emitter voltage (Vbei, Vbe2, Vbe3, Vbe4) has the following 96137068 19 1361553 relationship: ^ΒΕΙ +^β£3 ~^ΒΕ2 ~~^ΒΕ4 ( \ ) According to the double carrier junction For the Ebers-Moll model of crystal (BjT), the base-emitter voltage and collector current have the following general relationship: 2)

^s(eVr -\)^ ! evT 「Vt」項對應於約等於kT/q (例如,在大約T= 300凱氏 溫度(kelvin)之室溫下約為26mV)之熱電壓(thermal v〇ltage)。「Is」項對應於1〇_15安培至1(Γ12安培等級之基 極射極一極脰(base-emitter diode)之反向飽和電流 (reverse saturation current)。 根據集極電流之結果重寫方程式⑴,得出 式: ι^~ + ίη^--\ηί£1_]ηΙ£± Sl S3 I si lsa,^s(eVr -\)^ ! evT The "Vt" term corresponds to a thermal voltage (thermal v〇 approximately equal to kT/q (for example, approximately 26 mV at room temperature of approximately T = 300 Kelvin). Ltage). The "Is" term corresponds to the reverse saturation current of the base-emitter diode from 1 〇15 amps to 1 (Γ12 amp level. Rewritten according to the result of collector current) Equation (1), the resulting formula: ι^~ + ίη^--\ηί£1_]ηΙ£± Sl S3 I si lsa,

kT 0 q 使用代數操作,方程式(3 ) ( 3 ) ΘΕ _ y j,·勺分後而在隼極雷汽夕ρ 顯不如下關係: 卞位罨/爪之月 lcJc3 ^S1^S3 I SI!S4 也就是說,第一對集極電流(例々 一般線性跨導電路中與第二對隹丨和10之乘積 之乘積成比例。 來β電’机(例如’ IC2和Ic (4)kT 0 q Use algebraic operation, equation (3) (3) ΘΕ _ yj, · spoon after the difference and not in the following relationship: 卞 position 爪 / claw month lcJc3 ^S1^S3 I SI! S4 is that the first pair of collector currents (for example, the ratio of the product of the second pair of 隹丨 and 10 in the general linear transconductance circuit is proportional to the β electric machine (eg 'IC2 and Ic (4)

K T C〇之乘積&gt; 96137068 20 1361553 1361553Product of K T C〇&gt; 96137068 20 1361553 1361553

48=圖88說明配置成提供一輸出電流!。之線性跨導 …輪出…與輸入轉換電流(1咖c_erted 啊…Πΐ)或電池轉換電流(battery c〇nverted m) (lBAT)成反比。例如,將4個電晶體n 、)如圖8A所示排列,使得其基極_射極電壓具有如 上述方程式⑴所定義之關係。在圖8A之排列中,第一和 第三電晶體⑼、⑹具有集極端,其麵接於二極體配置中 f基極端’且第一和第三電晶體(Q1、Q3)係串聯耦接以傳 導-偏移(或參考)電流(例如,In = Ic3=lR)。第二電晶 體(⑻傳導對應於跨導輸出之輸入轉換電流。例如,電 流源(或電流槽(current sink))被耦接到第二個電晶 體之射極端,且可基於由PWM控制器中誤差放大器所產生 之控制信號而產生輸入轉換電流。第四電晶體(Q4)傳導輸 出電流。根據方程式(4),並假設這些電晶體具有可比較 的反向飽和電流’則圖8 A中電流有下列關係:48 = Figure 88 illustrates the configuration to provide an output current!. The linear transconductance ... turns out... is inversely proportional to the input switching current (1 coffee c_erted ah...Πΐ) or battery switching current (battery c〇nverted m) (lBAT). For example, four transistors n, are arranged as shown in Fig. 8A such that their base-emitter voltages have a relationship as defined by the above equation (1). In the arrangement of Figure 8A, the first and third transistors (9), (6) have a collector terminal that is connected to the f-base terminal in the diode configuration and the first and third transistors (Q1, Q3) are coupled in series. Conduction-offset (or reference) current (eg, In = Ic3 = lR). a second transistor ((8) conducts an input switching current corresponding to the transconductance output. For example, a current source (or current sink) is coupled to the emitter of the second transistor and can be based on a PWM controller The input signal is generated by the control signal generated by the error amplifier. The fourth transistor (Q4) conducts the output current. According to equation (4), and assumes that these transistors have comparable reverse saturation currents, then Figure 8A The current has the following relationship:

h II (5) 那就是,由圖8A中線性跨導電路(translinearcircuit) 所產生之輸出電〃II·與偏壓電流之平方成比例,且與輪入轉 換電流成反比。 圖8B繪示一與圖8A實質上相似之電晶體排列,且包括 額外之電流源以產生輸出電流I。’輸出電流1〇與輸入轉換 電流(I i)成比例’並與電池轉換電流(IBAT)成反比。與圖 8A相似,在圖8B中第一電晶體(qi )傳導偏壓電流(, 96137068 21 :第四電晶體Q4提供輸出電流Π〇)β與圖8A不同, 轉換電流之電流源和傳導偏壓電流之電流槽被麵 8:二電晶體⑽之集極端’使得在第三電晶體傳導圖 8”輪入轉換電流。與圖8A不同,在圖扑中,第二: = (Q2)傳導電池轉換電流。例如,電池轉換電流由電流 ,電机槽所產生,電流源或電流槽感測供應電壓( 如’來自電池或AC電源轉接器之輸出)且電池轉換 與供應電壓之#進+ y, ^ I之位丰成比例。因此,圖8β之線性跨導 中之電流具有下列關係: 1 bat 6) 如上所輸人轉換電流可從控制信號或由誤差放大器所 產生之誤差信號獲得,而電池轉換電流從供應電壓獲得。 將士圖8B中之線性跨導電路配置成在輸出電流和電池轉 換電流之間維持一倒數乘積的關係。就是說,輸出電流與 ,入轉換電流成比例,而與電池轉換電流成反比。偏壓電 流或參考電流為—常數項,用以比例縮小輸出電流。輸出 可被提供給-電阻器網路,以產生-電壓(例如,調 !為差U ) ’此電壓被提供給削控制器中&amp;剛比 器。 圖^為以,線性跨導電路9〇6來實施之一逆前饋補償電 路的只%例之不意圖。基於對應於輸人電壓之第一電流 (例如來自誤差放大器之誤差電壓)和對應於供應電壓 之第二電流(例如,购或電池電壓)之二電流,線性 96137068 22 1361553 跨導電路906產生一輸出(例如,p丽比較器之調整誤差 信號)。在一實施例中,第—電流由第一電壓電流變換器 900所提供,第一電壓電流變換器9〇〇有一與誤差放大器 之輸出耦接之輸入,且第二電流是由耦接到供應電壓之第 一電壓電流變換器902提供。在一實施例中,逆前饋補償h II (5) That is, the output current II· generated by the linear translinear circuit in Fig. 8A is proportional to the square of the bias current and inversely proportional to the wheel-in conversion current. Figure 8B illustrates a transistor arrangement substantially similar to that of Figure 8A and including an additional current source to produce an output current I. The output current 1 成 is proportional to the input switching current (I i ) and is inversely proportional to the battery switching current (IBAT). Similar to FIG. 8A, in FIG. 8B, the first transistor (qi) conducts a bias current (96137068 21: the fourth transistor Q4 provides an output current Π〇) β, which is different from that of FIG. 8A, and converts the current source and the conduction bias of the current. The current sink of the galvanic current is turned on by the collector 8: the collector's terminal of the two transistors (10) so that the switching current is turned in the third transistor conduction diagram 8. Unlike in Fig. 8A, in the graph, the second: = (Q2) conduction Battery switching current. For example, battery switching current is generated by current, motor slot, current source or current tank sensing supply voltage (such as 'output from battery or AC power adapter) and battery conversion and supply voltage #进+ y, ^ The position of I is abundance. Therefore, the current in the linear transconductance of Figure 8β has the following relationship: 1 bat 6) The input current can be obtained from the control signal or the error signal generated by the error amplifier. And the battery switching current is obtained from the supply voltage. The linear transconductance circuit in Figure 8B is configured to maintain a reciprocal product relationship between the output current and the battery switching current. That is, the output current is proportional to the input switching current. It is inversely proportional to the battery switching current. The bias current or reference current is a constant term used to scale down the output current. The output can be supplied to the resistor network to generate a voltage (eg, tuned to the difference U) 'This voltage is supplied to the &amp; just ratior in the trim controller. Fig. 2 is a schematic diagram of the implementation of one of the inverse feedforward compensation circuits by the linear transconductance circuit 9〇6. The first current of the voltage (eg, the error voltage from the error amplifier) and the second current corresponding to the second current of the supply voltage (eg, purchased or battery voltage), linear 96137068 22 1361553 transconductance circuit 906 produces an output (eg, p The adjustment error signal of the comparator is). In an embodiment, the first current is provided by the first voltage current converter 900, and the first voltage current converter 9 has an input coupled to the output of the error amplifier, and The second current is provided by a first voltage current converter 902 coupled to the supply voltage. In one embodiment, the inverse feed forward compensation

器(inverse feed-forward compensator)是在一 BiCMOS ‘私中以雙載子接面電晶體和金屬氧化物半導體電晶體 (metal oxide semiconductor transistor, M0S)來實 現。在圖9所示之實施,逆前饋補償器還包括電路網路 904,電路網路904降低線性跨導電路9〇6中之電晶體誤 差,下面將詳述之。 在第一電壓電流變換器900中,電晶體p4〇(例如為pM〇s 電晶體)之位準位移一輸入電壓ΙΝρυτ,而電晶體p44之 位準位移2.25V的參考電壓(V2P25)。在一應用中,輸入 電壓對應來自於誤差放大器之誤差電壓,且輸入電壓為介 於0. 5V和4. 0V之直流電壓。2. 25V參考電壓為輸入電壓 範圍之中點。電晶體的、Q9、N17、N18和電阻器r〇將 輸入電&gt;£轉換成一相對應的電流。例如,轉換電流是根據 輸入電壓與2.25V參考電壓之間之差動電壓而產生的。當 $入電壓約為0.5V時,差動電壓約為_175V,且轉換電 流約為20μΑ (或最大轉換電流)。當輸入電壓約為4 〇v 時,差動電壓約為+丨.75V,且轉換電流約為卟A (或最 小轉換電流)。 96137068 23 1361553 轉換電流由電晶體P15、P18鏡射。由電晶體p 18所傳 導之電流與由電晶體N19所傳導之20μΑ的電流源進行比 車父’且差額由電晶體Ρ19傳導。此有效地重新映射(remap ) 轉換電流。就是說’當轉換電流為2 〇 μ A時,電晶體p 1 9 傳導ΟμΑ ’當轉換電流為〇μΑ時,電晶體Pi 9傳導20μΑ。 重新映射轉換電流有助於當輸入電壓為高(例如,4. 〇ν ) 時確保電晶體Q9不會飽和。電晶體Ν26為用以電晶體N1 9 電流源之串疊(casc〇de )。由電晶體P19所傳導之電流(例 如對應輸入電壓之第一電流或輸入電流)被鏡射至線性跨籲 導電路906。 取決於電池電壓之第二電流(或VBAT電流)亦被鏡射 至線性跨導電路906。第二電壓電流變換器9〇2根據電晶 體Q1之電池電壓VBE,與橫跨電阻ri上之電壓降之間的 差異來產生第二電流。VBAT電流經電晶體Q1至一電晶體 Q2被鏡射到線性跨導電路9〇6。VBAT電流亦被鏡射到電 日曰虹Q7,電晶體Q7連接電路網路9〇4,以減少線性跨導 電路906中之NPN基極電流誤差。 · 在一實施例中,高電壓PM0S開關M2在一失能模式斷開 電池電壓。M2 P#關由橫跨電阻器R6之電厘開啟或關閉。· 當逆前饋補償器致能時,電晶體N28送出電流至電阻器. Μ ’以產生一 Vgs電壓來開啟M2開關。當逆前饋補償器失. 月匕時’電晶體N28不傳導電流’且橫跨電阻器R6上不產 生電壓來開啟M2開關。 96137068 24 1361553 在一實施例中,在線性跨導電路9Ο6中之NPN基極電流 由電路網路904來補償,電路網路904由電晶體Q7、Q8、 P41、P42所形成。NPN基極電流誤差取決於來自第二電壓 .. 電流變換器902之VBAT電流的強度。隨著VBAT電流增 加,NPN基極電流誤差亦有所增加。VBAT電流被從電晶體 Q1至Q7鏡射,並送出至電晶體Q8。電晶體Q8之集極電 流與基極電流隨(或追蹤)VBAT電流之改變而改變。電 晶體Q8的基極與一二極體連接方式(diode-connected) ® 的PMOS P41連接,PMOS P41被鏡射到電晶體P42。由電 晶體P42所傳導之電流被傳送到線性跨導電路906,且用 以減少線性跨導電路906中之基極電流誤差。 以下對線性跨導電路906之描述與圖4和圖5所繪示之 電路相關聯。參考電流h是由電晶體P0傳導,並由電晶 體N13所汲取(sunk)。電池轉換電流IBAT由電晶體Q2 所汲取。輸入轉換電流I i由電晶體P20所獲得 • ( sourced )。圖5包括一些附加電晶體以提高電路精確 性。例如,電晶體Q12、Q13、Q10是用來為各一次線性跨 導電晶體(primary translinear transistor)匹配集極 至射極電壓(collector to emitter voltage, VCE)。就 .是說,電晶體Q10是用來匹配一次線性跨導電晶體Q3、 . Q6之VCE。電晶體Q12、Q13是用來匹配一次線性跨導電 晶體Q4、Q5之VCE。電晶體Q10之集極電流為線性跨導 電路906之輸出電流I。。輸出電流由電晶體P5、P6鏡射, 並由電阻器R 3轉換為電壓(例如為調整誤差電壓)。 96137068 25 1361553 上’然其並非用以限定本 發明, 任何所屬技術領域中具有通常知識者,在不脫離太 在不脫離太The inverse feed-forward compensator is implemented in a BiCMOS ‘private with a double-carrier junction transistor and a metal oxide semiconductor transistor (MOS). In the implementation shown in Figure 9, the inverse feedforward compensator also includes a circuit network 904 that reduces the transistor error in the linear transconductance circuit 9〇6, as will be described in more detail below. In the first voltage current converter 900, the level of the transistor p4 〇 (for example, a pM 〇s transistor) is shifted by an input voltage ΙΝρ υτ, and the level of the transistor p44 is shifted by a reference voltage of 2.25 V (V2P25). In the case of the application, the input voltage is the voltage of the error voltage from the error amplifier, and the input voltage is a DC voltage of 0.5 V and 4. 0 V. 2. The 25V reference voltage is the midpoint of the input voltage range. The transistors Q9, N17, N18 and resistor r〇 convert the input power into a corresponding current. For example, the switching current is generated based on the differential voltage between the input voltage and the 2.25V reference voltage. When the input voltage is approximately 0.5V, the differential voltage is approximately _175V and the conversion current is approximately 20μΑ (or maximum switching current). When the input voltage is approximately 4 〇v, the differential voltage is approximately +丨.75V and the switching current is approximately 卟A (or minimum switching current). 96137068 23 1361553 The switching current is mirrored by transistors P15 and P18. The current conducted by the transistor p 18 is compared to the current source of 20 μΑ conducted by the transistor N19 and the difference is conducted by the transistor Ρ19. This effectively remaps (remap) the conversion current. That is to say, when the switching current is 2 〇 μ A , the transistor p 1 9 conducts ΟμΑ ', when the switching current is 〇μΑ, the transistor Pi 9 conducts 20 μΑ. Re-mapping the conversion current helps ensure that transistor Q9 does not saturate when the input voltage is high (eg, 4. 〇ν). The transistor 26 is a cascade of current sources for the transistor N1 9 . The current conducted by transistor P19 (e.g., the first current or input current corresponding to the input voltage) is mirrored to linear cross-talk circuit 906. A second current (or VBAT current) that is dependent on the battery voltage is also mirrored to the linear transconductance circuit 906. The second voltage current converter 9〇2 generates a second current based on the difference between the battery voltage VBE of the electric crystal Q1 and the voltage drop across the resistor ri. The VBAT current is mirrored to the linear transconductance circuit 9〇6 via the transistor Q1 to a transistor Q2. The VBAT current is also mirrored to the electric switch Q7, and the transistor Q7 is connected to the circuit network 9〇4 to reduce the NPN base current error in the linear transconductance circuit 906. In one embodiment, the high voltage PMOS switch M2 turns off the battery voltage in a disabling mode. M2 P# is turned on or off by the voltage across the resistor R6. • When the inverse feedforward compensator is enabled, transistor N28 sends current to the resistor. Μ ' to generate a Vgs voltage to turn on the M2 switch. When the inverse feedforward compensator is lost, the transistor N28 does not conduct current and the voltage does not generate across the resistor R6 to turn on the M2 switch. 96137068 24 1361553 In one embodiment, the NPN base current in linear transconductance circuit 9Ο6 is compensated by circuit network 904, which is formed by transistors Q7, Q8, P41, P42. The NPN base current error is dependent on the strength of the VBAT current from the second voltage: current transformer 902. As the VBAT current increases, the NPN base current error also increases. The VBAT current is mirrored from the transistors Q1 to Q7 and sent to the transistor Q8. The collector current and base current of transistor Q8 change as a function of (or tracking) the VBAT current. The base of the transistor Q8 is connected to a diode-connected dio-connected PMOS P41, and the PMOS P41 is mirrored to the transistor P42. The current conducted by transistor P42 is passed to linear transconductance circuit 906 and used to reduce the base current error in linear transconductance circuit 906. The following description of the linear transconductance circuit 906 is associated with the circuits illustrated in Figures 4 and 5. The reference current h is conducted by the transistor P0 and is sunk by the transistor N13. The battery switching current IBAT is taken by the transistor Q2. The input switching current I i is obtained by the transistor P20 • ( sourced ). Figure 5 includes some additional transistors to improve circuit accuracy. For example, transistors Q12, Q13, and Q10 are used to match the collector to emitter voltage (VCE) for each primary linear translinear transistor. That is to say, the transistor Q10 is used to match the VCE of the linear trans-conducting crystal Q3, .Q6. The transistors Q12, Q13 are used to match the VCE of the linear linear transconducting crystals Q4, Q5. The collector current of transistor Q10 is the output current I of linear transconductance circuit 906. . The output current is mirrored by transistors P5, P6 and converted to a voltage by resistor R3 (for example, to adjust the error voltage). 96137068 25 1361553 is not intended to limit the invention, any person having ordinary knowledge in the art, without leaving too much

圖1為根據本發明之一實施例之切換電壓調整器之方 雖然本發明已以實施例揭露如 塊圖。 圖2A說明一種降壓變換器之實施例。 圖2B說明一種升壓變換器之實施例。 圖3A說明一種推挽換流器之實施例。 圖3B說明一種全橋換流器之實施例。 圖4是具有逆前饋補償電路之pwM控制器的實施例之簡 化方塊圖’逆前饋補償電路調整誤差信號以補償供應電壓 之瞬變。 圖5說明在一應用上如何與供應電壓之變動有關之逆 向調整誤差信號的實施例。 圖6說明逆前饋補償電路之實施例,逆前饋補償電路基 於供應電壓來產生偏移信號’並纟且合偏移信號與誤差信號 以逆向調整有關於供應電壓之PWM輸出。 b 圖7說明一般線性跨導電路。 圖8A和圖8B說明線性跨導電路,其配置成產生與—輸 入轉換電流或一電池轉換電流成反比之輸出電流。 ] 96137068 26 1361553 圖9為以一線性跨導電路所實施之逆前饋補償電路的 . 實施例之示意圖。 【主要元件符號說明】 100、210、220、308、318 : PWM 控制器 •- 102 :切換電路 104 :負載 106 :回授電路 200 :第一半導體開關 鲁202 :二極體 204 :電感器 206 :輸出電容器 208 :輸出電阻器 212 :半導體開關 214 :隔離二極體 216 :回授電路 鲁 218 :輸入電感器 300〜303 :半導體開關 312 :螢光燈 ' 400 :逆前饋補償器 . 402 :跨導放大器 . 404 : PWM比較器 406 :電容器 900 :第一電壓電流變換器 902 :第二電壓電流變換器 96137068 27 1361553 904 :電路網路 906 :線性跨導電路 F B :回授信號 I BAT :電池轉換電流1 is a diagram of a switching voltage regulator in accordance with an embodiment of the present invention. Although the present invention has been disclosed in the embodiments as a block diagram. Figure 2A illustrates an embodiment of a buck converter. Figure 2B illustrates an embodiment of a boost converter. Figure 3A illustrates an embodiment of a push-pull converter. Figure 3B illustrates an embodiment of a full bridge converter. 4 is a simplified block diagram of an embodiment of a pwM controller with an inverse feedforward compensation circuit. The inverse feedforward compensation circuit adjusts the error signal to compensate for transients in the supply voltage. Figure 5 illustrates an embodiment of how the reverse adjustment error signal relates to variations in supply voltage in an application. Figure 6 illustrates an embodiment of a reverse feedforward compensation circuit that generates an offset signal based on the supply voltage and combines the offset signal with the error signal to inversely adjust the PWM output with respect to the supply voltage. b Figure 7 illustrates a general linear transconductance circuit. 8A and 8B illustrate a linear transconductance circuit configured to generate an output current that is inversely proportional to an input switching current or a battery switching current. 96137068 26 1361553 FIG. 9 is a schematic diagram of an embodiment of an inverse feedforward compensation circuit implemented by a linear transconductance circuit. [Main component symbol description] 100, 210, 220, 308, 318: PWM controller • - 102: switching circuit 104: load 106: feedback circuit 200: first semiconductor switch Lu 202: diode 204: inductor 206 Output capacitor 208: output resistor 212: semiconductor switch 214: isolation diode 216: feedback circuit 218: input inductor 300 to 303: semiconductor switch 312: fluorescent lamp '400: inverse feedforward compensator. 402 Transconductance amplifier. 404: PWM comparator 406: capacitor 900: first voltage current converter 902: second voltage current converter 96137068 27 1361553 904: circuit network 906: linear transconductance circuit FB: feedback signal I BAT : battery switching current

Ici、Ic2、Ic3、Ic4 :集極電流 I i :輸入轉換電流 INPUT :輸入電壓 1〇 :輸出電流 h :偏壓電流 M2 :開關 N13、N14、N17〜N19、N25、N26、N28、P0 〜P2、P5〜P6、 P10 、 P14〜P16 、 P18〜P20 、 P37 、 P40〜P42 、 P44 、 Q0〜 Q10、Q12、Q13 :電晶體 PWM-OUT : PWM 輸出 R0、Rl、R6 :電阻器 R2 :加法電阻器 REF :參考信號 V2P25 :參考電壓Ici, Ic2, Ic3, Ic4: Collector current I i : Input switching current INPUT : Input voltage 1〇: Output current h : Bias current M2 : Switches N13, N14, N17~N19, N25, N26, N28, P0 ~ P2, P5~P6, P10, P14~P16, P18~P20, P37, P40~P42, P44, Q0~Q10, Q12, Q13: Transistor PWM-OUT: PWM output R0, Rl, R6: Resistor R2: Addition resistor REF : Reference signal V2P25 : Reference voltage

Vadj :調整誤差信號 VBAT :供電感測信號Vadj: Adjusting the error signal VBAT: Power supply sensing signal

VbEI、VbE2、VbE3、VbE4 :基極-射極電壓VbEI, VbE2, VbE3, VbE4: base-emitter voltage

Verr :誤差信號Verr: error signal

Vfb :回授電壓Vfb: feedback voltage

Vout :調整後輸出電壓 96137068 28 1361553 ( • &lt; ( 修麟減 Vpwm :脈寬調變驅動信號 Vramp :斜波信號 Vref :參考電壓 Vsupply ·供應電遥 VpWMI、VpffM2 :可變脈寬驅動信號 • 96137068 29Vout : Adjusted output voltage 96137068 28 1361553 ( • &lt; ( Xiu Lin minus Vpwm : Pulse width modulation drive signal Vramp : Ripple signal Vref : Reference voltage Vsupply · Supply electric remote VpWMI, VpffM2 : Variable pulse width drive signal • 96137068 29

Claims (1)

I I MAR 1 5 2fil1 替換本 车月日修(更)止替换頁 40ΰ-Β__1_5_Ζ__ 十、申請專利範圍: 1.—種用於切換電壓調螫哭 供庫雷汽姑吝斗认 D&lt;1工制态,該控制器接收一 供應電[,亚產生一輸出電壓給負载,該 一輪入端,配置為接收—° °。已括. 认, 才曰不用於該切換電壓镅敕哭令 輸出條件的回授信號; 乃正之 一 s吳差放大器,配置a麻祕+ι 轳决“… 據比車父該回授信號與-參考俨 :厂虎’其中該參考信號指示-用於該切換 電壓調整器之希望輸出條件; 用於a切換 一前饋電路,配置為以—古 直接轉接於該誤差放大器之第 一輸入端接收來自該誤差放大 第 八裔的5哀決差化號’以及以一 直接輕接於該供應電壓之第:輸人端接收—指示 ^位=感測信號,其中該前饋電路以—輸出產生;:實 、上與心差k #υ成比例關係之調整誤差信號,以及盆中 ,該前饋電路所輸,之該調整,差㈣在該㈣供應電 $位準之感測信號減少時係增加,而在該指示供應電壓位 〖,感測信號增加時係減少’使得該調整誤差信號係相關 於该接收到之誤差信號、以實質上與該感測到之供應電壓 位準成反比例之關係而作調整; 振盪裔,配置為產生一頻率不會根據該 而改變的週期性斜波電壓;以及 说 ,:脈寬調變比較器’配置為以一第一輸入端接收來自該 逆則饋電路之輸出的該調整誤差信號,及以一直接耦接於 °亥振盪=之第一輸入端接收來自該振盪器之該週期性 斜波電壓’其巾該脈寬調變tb較H係配置為基於該調整誤 96137068 差H更)正替換wl 唬及垓週期性斜波電壓而產生--- 號,並由兮加十 脈見頌^輪出作 〃中戎供應電壓位準及該脈寬調變 1。 期的乘積對於H夫老^虎之工作週 ^ 4寸疋參考h唬而言係實質 2·如申請專利範圍第!項之控制器,其㈣: 整器包括至少一半導體開關,且該壓調 該半導,朋夂翰出k 5虎控制 導體開關,以因應該供應電壓中之 電塵調整器實質上恒定之輸出電愿。 ,准持该切換 括1如申請專利範圍第1項之控制器,其中該前馈電路包 :電壓控制電流源,配置為接收 之感測信號以及產生一诘炉祝_ $ 1八愿屯壓位準 流,盆tf應—中之龍的偏移電 電路;以及 ^ t阻益和一電流鏡 一加法電阻,具有一吉垃才 的第一端及一轉接射^ 該誤差放大器之一輸出 接U f M控制電流源之-輸出的第二 二:tr法電阻傳導該偏移電流,以及該調整誤差信 唬係在该加法電阻之該第二端提供。 括利祀圍第1項之控制器,其中該前饋電路包 ;、二v配置之複數個電晶體,以傳導至少一第一電 ::::帛一電流信號和-第三電流信號,其中該第- —妨^ 、—電机彳§嬈和該第三電流信號之乘積 貫賀上成比例。 =如申請專利範圍第4項之控制器,其中該第一電流信 魏料㈣’該第二電流信號係衍生自指示該 96137068 31 从次該第 电流信號係用 供應電壓位準之該感測信號 產生該調整誤差信號。 3申請專利範圍第i項之控制器,其中該前饋電路包 •法t性跨導電路,配置為根據-第—電流信號和一第二 來產生—輸出電流信號’其中該輸出電流信號係 二该電流信號成比例’而與該第二電流信號成反比 電流信號對應於該誤差放大器所產生的該誤差 I丄而°亥第一電流信號對應於指示該供應電壓位準之該 欺須1Ms號。 一^二請專利範圍第6項之控制器,其中該前饋電路進 第二=一配置為從該誤差信號產生該第-電流信號之 第吳益以及配置為從該感測信號產生該 電々ids唬之第二電壓電流變換器。 請專利範圍第1項之控制器,其中該調整誤差作 :變^週期性斜波電壓之—半週期内該供應㈣位準。 整9二=:=圍第1項之控制器,其中該切換電壓調 輸出信號之工作週期而變動 脈n文 該誤差於士。。 电昼位準,以及傳送至 換器之該輸出電壓位準。 m對直流電源變 1 〇.如申請專利範圍帛1項之控制芎,J:中’ 調整器為一換μ “士 心其中该切換電壓 你.月地 ’其具有一心該脈寬調變輪出信!卢之工 作週期而變動之铪φ带两γ 山l現之工 之輸出電昼振幅,以及傳送至該誤 • 96137068 ^ ^ 32 1361553 • »II MAR 1 5 2fil1 Replace the car on the day of repair (more) stop replacement page 40ΰ-Β__1_5_Ζ__ Ten, the scope of application for patent: 1. - kind of used for switching voltage tuning crying for Kulei steam aunts to recognize D &lt; 1 system State, the controller receives a supply of electricity [, sub-generating an output voltage to the load, the one-in-one terminal, configured to receive - ° °. It has been included. It is not used for the feedback signal of the switching voltage 镅敕 令 输出 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; - reference 俨: factory tiger 'where the reference signal indicates - the desired output condition for the switching voltage regulator; for a switching a feedforward circuit, configured to directly transfer to the first input of the error amplifier The terminal receives the 5 singularity difference ' from the error-amplified VIII, and the first directly connected to the supply voltage: the receiving end receives the indication ^ bit = the sensing signal, wherein the feedforward circuit takes - The output is generated; the adjustment error signal of the real and upper and the difference of the heart difference k #υ, and the adjustment of the feedforward circuit in the basin, the adjustment, the difference (4) in the (four) supply electric energy level sensing signal The decrease time is increased, and the indication supply voltage level is decreased when the sense signal is increased, such that the adjustment error signal is related to the received error signal to substantially correspond to the sensed supply voltage level In inverse proportion Adjusting; oscillating, configured to generate a periodic ramp voltage whose frequency does not change according to the; and wherein: the pulse width modulation comparator is configured to receive from the inverse feed circuit with a first input Outputting the adjusted error signal, and receiving the periodic ramp voltage from the oscillator with a first input coupled to the oscillation of the oscillation threshold, the pulse width modulation tb is configured based on the H system The adjustment error 96137068 difference H is more than the replacement of wl 唬 and 垓 periodic ramp voltage to produce the --- number, and by the 兮 plus ten pulse see 颂 ^ turn out for the 戎 supply voltage level and the pulse width adjustment Change 1. The product of the period for the work of H Fu Laohuhu ^ 4 inch 疋 reference h唬 is the essence 2 · as claimed in the scope of the scope of the controller, (4): The whole device includes at least one semiconductor switch, And the pressure regulates the semi-conductor, and the friend of the k5 tiger controls the conductor switch to have a substantially constant output power due to the electric dust regulator in the supply voltage. Controller of item 1, wherein the feedforward circuit pack: voltage control The flow source is configured to receive the sensing signal and generate a furnace _ $ 1 八 屯 屯 位 , , , 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 盆 中 中 中 中An addition resistor having a first end and a switching emitter. The output of the error amplifier is connected to the U f M control current source - the second of the output: the tr method resistor conducts the offset current, and the Adjusting the error signal is provided at the second end of the adding resistor. The controller of the first item, wherein the feedforward circuit package; and the plurality of transistors configured by the second v are configured to conduct at least one first The electric::::帛 current signal and the third current signal, wherein the product of the first---, the motor 彳§娆 and the third current signal are proportional to each other. = The controller of claim 4, wherein the first current signal (4) 'the second current signal is derived from the sensing of the 96137068 31 secondary current signal supply voltage level The signal produces the adjustment error signal. 3 The controller of claim i, wherein the feedforward circuit package method is configured to generate an output current signal according to a -first current signal and a second one, wherein the output current signal system The current signal is proportional to and inversely proportional to the second current signal. The current signal corresponds to the error I generated by the error amplifier, and the first current signal corresponds to the bullying 1Ms indicating the supply voltage level. number. The controller of claim 6, wherein the feedforward circuit is configured to generate a second current from the error signal and configured to generate the power from the sensing signal. Ids 唬 second voltage current converter. Please refer to the controller of the first item of the patent scope, wherein the adjustment error is made as follows: the periodicity of the periodic ramp voltage - the supply (four) level in the half cycle. The whole 9==== controller of the first item, wherein the switching voltage adjusts the duty cycle of the output signal and changes the pulse. . The power level and the output voltage level delivered to the converter. m to DC power supply becomes 1 〇. As in the scope of patent application 帛1, J, J: 中' adjuster is a change μ "Shixin which switch voltage you. Month" it has a heart pulse width modulation wheel Write a letter! Lu's work cycle and change 铪 φ with two γ l 现 现 现 现 现 现 现 现 现 现 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 根據一回授信號和一 號; 以一前饋電路之第一 器之該誤差信號; 參考信號之間的差產生一誤差信 輸入端接收直接來自該誤差放大According to a feedback signal and a number; the error signal of the first device of a feedforward circuit; the difference between the reference signals generates an error signal, and the input end receives directly from the error amplification 、以該前饋電路之直接純於該供應電壓的第二輸入端 感測一供應電壓位準; 根據該接收到之誤差信號和該感測到之供應電屋位 準’以該前饋電路產生一調整誤差信號,其中該產生之調 信,係與該誤差信號成比例,以及其中該調整誤差 仏虎在该感測到之供應電壓位準減少時係增加,而在嗲感 供應電壓位準增加時係減少,使得該調整誤差^ 於該接㈣之誤差信號、以與該感測到之供應電壓 ::反比例之方式作調整,且該調整誤差信號係相關於 違接收到之誤差信號、以與該感測到之供應電壓 上成反比例之關係作調整; 以一振盪器產生一頻率不會根據該調整誤差信妒改 變的週期性斜波電壓;以及 ° 7ϋ 96137068 33 丄 *361 m 一一 - [年月日緣(更)正替換頁 L4g〇_2L^l_5„.__ 一根據,整誤差信號與朗期性斜波信號之比較,使用 =乂态來產生一脈寬調變輪出信號’直接來自該振盪器 週期性斜波信號係由該比較器純,其中該感測到之 供應電壓位準與該脈寬調變輸出信號之工作週期的乘積 對於一特定參考信號而言係實質上恒定。 =如申請專利範圍第12項之方法,其中產生該調整誤 β唬包括.產生一追蹤該供應電壓位準之偏移信號,以 及合併該偏移信號與該誤差信號以產生該調整誤差信號。 I Η.如申請專利範圍第12項之方法,其中產生 差信號包括: 產生一追蹤該誤差信號之第一電流信號; 產生一追蹤該供應電壓位準之第二電流信號;以及 將該第一電流信號和該第二電流信號提供至一線性跨 ^電路’以產生—與該第—電流信號成比例且與該第二電 流信號成反比例之第三電流信號,其中該第三電流信號係 用來產生該調整誤差信號。 15·如申請專利範圍第12項之方法,進一步包括以該脈 寬調變輸出信號驅動一半導體開關,以產生一給該電壓調 整器的輸出電壓。 16. 如申請專利範圍第12項之方法,其中該電壓調整器 為控制燈官功率之換流器,該回授信號係指示一燈管電 流,以及該參考信號係指示該燈管之希望明亮程度。 17. 如申^專利範圍第12項之方法,其中該電壓調整器 為一直流對直流電壓調整器,該回授信號係指示一輸出電 96137068 34 1361553 • % 壓位準,以錢參考信號係指示— - 18.一種脈寬調變控制器,包括: 根據一回授信號和一參考信號,產生一誤差信號之 、段; 。儿 產生一調整誤差信號之手段,以產生該調整誤差信號之 手段的第一輸入端接收直接來自該產生一誤差信號之手 段的該誤差信號,以及以該產生該調整誤差信號之手段之 直接耦接於該供應電壓的第二輸入端接收一供應電壓1 準來產生該調整誤差信號,其中產生該調整誤差信號係根 據該誤差信號和一供應電壓位準而為之,其中該調整誤差 ^唬係與該誤差信號成比例,以及其中該調整誤差信號在 X供應-¾壓位準減少時係增加,而在該供應電壓位準增加 時係減少,使得該調整誤差信號係藉由該產生一調整^差 七號之手#又而相關於該接收到之誤差信號、以與感測到之 供應電壓位準實質上成反比例之關係作調整; • 產生—頻率不會根據該調整誤差信號而改變的週期性 斜波電壓之手段;以及 產生一脈寬調變輸出信號之手段,該脈寬調變輸出信號 之工作週期隨該調整誤差信號而變動,其中該產生該脈寬 調變輸出信號之手段係配置為接收直接來自該產生該週 期性斜波電壓之手段的該週期性斜波電壓。 如申請專利範圍第18項之脈寬調變控制器,其中該 產生該調整誤差信號之手段包括:產生一追縱該供應電壓 位準之變動之偏移信號之手段,以及合併該偏移信號與該 96137068 1¾ 日射更)正瞀換頁 m 1 51^- 誤差信號之手段。 20.如申請專利範圍第18項之脈寬調變控制器,其中$ 產生該調整誤差信號之手段包括:產生一追蹤該誤差作^ 之苐一電流彳s號之手段’產生一追蹤該供應電壓位準之第 二電流信號之手段,以及產生一與該第一電流信號成比例 且與該第二電流信號成反比例之第三電流作號之手段。 96137068 36Sensing a supply voltage level with the second input terminal of the feedforward circuit directly pure to the supply voltage; and the feedforward circuit according to the received error signal and the sensed supply electric house level Generating an adjustment error signal, wherein the generated modulation is proportional to the error signal, and wherein the adjustment error is increased when the sensed supply voltage level decreases, and the sense supply voltage level is increased When the quasi-increase is reduced, the adjustment error is adjusted in the manner that the error signal of the connection (4) is inversely proportional to the sensed supply voltage: and the adjustment error signal is related to the error signal received Adjusting in inverse proportion to the sensed supply voltage; generating, by an oscillator, a periodic ramp voltage whose frequency does not change according to the adjusted error signal; and ° 7ϋ 96137068 33 丄*361 m一一- [Year of the Moon (more) is replacing the page L4g〇_2L^l_5„.__ According to the comparison of the whole error signal and the Langer-Rock signal, using the =乂 state to generate a pulse width modulation Turn out signal' The periodic ramp signal directly from the oscillator is pure by the comparator, wherein the product of the sensed supply voltage level and the duty cycle of the pulse width modulated output signal is substantially for a particular reference signal The method of claim 12, wherein the generating the error β includes generating an offset signal that tracks the supply voltage level, and combining the offset signal with the error signal to generate the adjustment error The method of claim 12, wherein the generating the difference signal comprises: generating a first current signal that tracks the error signal; generating a second current signal that tracks the supply voltage level; The first current signal and the second current signal are provided to a linear cross circuit ' to generate a third current signal proportional to the first current signal and inversely proportional to the second current signal, wherein the third current signal Used to generate the adjustment error signal. 15. The method of claim 12, further comprising driving the pulse width modulated output signal A semiconductor switch for generating an output voltage to the voltage regulator. 16. The method of claim 12, wherein the voltage regulator is an inverter that controls a lamp power, the feedback signal indicating a lamp The tube current, and the reference signal is indicative of the desired brightness of the tube. The method of claim 12, wherein the voltage regulator is a DC-to-DC voltage regulator, the feedback signal is indicative An output power 96137068 34 1361553 • % pressure level, indicated by the money reference signal system - 18. A pulse width modulation controller, comprising: generating a segment of the error signal according to a feedback signal and a reference signal; And generating a method for adjusting the error signal, wherein the first input end of the means for generating the error signal receives the error signal directly from the means for generating an error signal, and directly by means for generating the adjusted error signal The second input end coupled to the supply voltage receives a supply voltage 1 to generate the adjustment error signal, wherein the adjustment error signal is generated According to the error signal and a supply voltage level, wherein the adjustment error is proportional to the error signal, and wherein the adjustment error signal is increased when the X supply -3⁄4 pressure level decreases, and When the supply voltage level is increased, the adjustment error signal is caused by the generation of an adjustment error 7 and related to the received error signal to the sensed supply voltage level. Substantially inversely proportional to the adjustment; • generation—a means by which the frequency does not change the periodic ramp voltage according to the adjusted error signal; and means for generating a pulse width modulated output signal, the pulse width modulated output signal The duty cycle varies with the adjustment error signal, wherein the means for generating the pulse width modulated output signal is configured to receive the periodic ramp voltage directly from the means for generating the periodic ramp voltage. The pulse width modulation controller of claim 18, wherein the means for generating the adjustment error signal comprises: generating a means for tracking a variation of the supply voltage level, and combining the offset signals With the 96137068 13⁄4 day shot more) is the means of changing the page m 1 51^- error signal. 20. The pulse width modulation controller of claim 18, wherein the means for generating the adjusted error signal comprises: generating a means for tracking the error as a current 彳s number to generate a tracking of the supply And means for generating a second current signal of a voltage level and for generating a third current proportional to the first current signal and inversely proportional to the second current signal. 96137068 36
TW96137068A 2006-10-04 2007-10-03 Controller for a switching voltage regulator, method to compensate for variations in a supply voltage level in a voltage regulator, and pwm controller TWI361553B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84925406P 2006-10-04 2006-10-04
US84921106P 2006-10-04 2006-10-04

Publications (2)

Publication Number Publication Date
TW200820575A TW200820575A (en) 2008-05-01
TWI361553B true TWI361553B (en) 2012-04-01

Family

ID=44770221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96137068A TWI361553B (en) 2006-10-04 2007-10-03 Controller for a switching voltage regulator, method to compensate for variations in a supply voltage level in a voltage regulator, and pwm controller

Country Status (1)

Country Link
TW (1) TWI361553B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841226B (en) * 2009-03-17 2012-09-19 立锜科技股份有限公司 Power supply circuit for improving response to transient changes, control circuit and method thereof
TWI508437B (en) * 2013-01-25 2015-11-11 Richtek Technology Corp Voltage adjusting circuit for amplifier circuit and method thereof
US10141841B1 (en) * 2017-08-30 2018-11-27 Apple Inc. DC-DC converter with a dynamically adapting load-line
TWI756891B (en) * 2020-10-29 2022-03-01 和碩聯合科技股份有限公司 Buck-boost converter

Also Published As

Publication number Publication date
TW200820575A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US7868603B2 (en) Method and apparatus to compensate for supply voltage variations in a PWM-based voltage regulator
US8824167B2 (en) Self synchronizing power converter apparatus and method suitable for auxiliary bias for dynamic load applications
JP5573454B2 (en) Power factor improved switching power supply
US8314598B2 (en) Control for regulator fast transient response and low EMI noise
US8829868B2 (en) Power converter apparatus and method with output current sensing and compensation for current limit/current share operation
US8368475B2 (en) Oscillator circuit
JP5298050B2 (en) Switching power supply circuit
JP6794250B2 (en) Phase compensation circuit and DC / DC converter using it
Ghosh et al. High gain DC-DC step-up converter with multilevel output voltage
JP2017184598A (en) Switching power supply device
TWI361553B (en) Controller for a switching voltage regulator, method to compensate for variations in a supply voltage level in a voltage regulator, and pwm controller
JP2013062947A (en) Dc/dc converter, and power-supply device and electronic apparatus using the same
US10291120B2 (en) Boost DC-DC converter having digital control and reference PWM generators
CN103762842A (en) Adaptive compensation ramp generator
JP2014207741A (en) Switching regulator
US20100225385A1 (en) Active power filter method and apparatus
JP6177813B2 (en) DC-DC converter
JP6064634B2 (en) Voltage compensation circuit
JP6794249B2 (en) Phase compensation circuit and DC / DC converter using it
US20120313604A1 (en) Efficient bias power supply for non-isolated dc/dc power conversion applications
CN106571741B (en) Power system and control circuits providing constant current limit protection
Hsieh et al. A dual phase charge pump with compact size
JP2016046931A (en) Electric power conversion system
CA2746803A1 (en) Self synchronizing power converter apparatus and method suitable for auxiliary bias for dynamic load applications
TW563387B (en) Discharge lamp lighting device