1352548 玖、發明說明: 【發明所屬之技術領域】 本發明係關於採用多種通信標準之無線通信系統,尤其 係關於多標準無線通信系統中之射頻資源分配之方法及裝 置。 【先前技術】 隨著行動通信系統的發展,湧現出愈來愈多的通信系統 的標準,例如:屬於第二代通信系統(2G)的GSM標準(GSM: 全球行動通信系統)、IS-95標準及CDMA標準(CDMA:劃碼 多向近接),屬於第二代與第三代通信系統之間過渡的 GPRS 標準(GPRS:分組資料業務)、TSM 標準 (TSM:TD-SCDMA System for Moblie),屬於第三代通信系 統(3G)的TD-SCDMA標準(TD-SCDMA:分時-同步劃碼多向 近接)、W-CDMA標準(W-CDMA:寬帶劃碼多向近接)及 cdma 2000標準,及目前非常流行的WLAN標準等。 按照國際電信聯盟的規定,採用不同通信標準的行動通 信系統應當使用不同頻段内的載波傳輸資料。然而,隨著 通信業務的發展,出現了多種通信標準,即:不同的通信 體制,使用同一頻段内之不同載波傳送資料的情況。一典 型之實例係由中國無線通信標準組織(CWTS: China Wireless Communication Standard group)提出的 TSM 標準 與TD-SCDMA標準使用同一頻段之實例。1352548 发明, INSTRUCTION DESCRIPTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to wireless communication systems employing a variety of communication standards, and more particularly to methods and apparatus for radio frequency resource allocation in a multi-standard wireless communication system. [Prior Art] With the development of mobile communication systems, more and more standards for communication systems have emerged, such as the GSM standard (GSM: Global System for Mobile Communications) belonging to the second generation communication system (2G), IS-95. Standard and CDMA standards (CDMA: coded multi-directional proximity), a GPRS standard for transition between second-generation and third-generation communication systems (GPRS: packet data service), TSM standard (TSM: TD-SCDMA System for Moblie) , belongs to the TD-SCDMA standard of the third generation communication system (3G) (TD-SCDMA: time-sharing-synchronous code-multidirectional proximity), W-CDMA standard (W-CDMA: wideband coded multi-directional proximity) and cdma 2000 Standards, and currently very popular WLAN standards. In accordance with the provisions of the International Telecommunication Union, mobile communication systems using different communication standards should use carrier transmission data in different frequency bands. However, with the development of communication services, a variety of communication standards have emerged, namely, different communication systems, using different carriers in the same frequency band to transmit data. A typical example is an example in which the TSM standard proposed by the China Wireless Communication Standard Group (CWTS: China Wireless Communication Standard Group) uses the same frequency band as the TD-SCDMA standard.
TD-SCDMA標準,係一種在分時雙工模式下,採用同步 劃碼多向近接技術進行資料傳送之行動通信系統,而TSM 89805-1000616.doc 1352548 標準’係設計用來自現有的GSM系統向TD-SCDMA系統 演化之一過渡標準,作爲一僅向TD-SCDMA系統平滑過渡 之臨時標準,TSM使用與TD-SCDMA相同的頻段進行資料 傳輸。 由於無線頻率的資源有限,同時,又由於在自TSM向 TDSCDMA系統演化之過程中,TSm及TD-SCDMA的使用 者數目在不斷變化,即:在演化的開始,主要係TSM之使 用者,在演化的過程中,TSM使用者不斷減少,td-SCDMA 使用者逐漸增多’直至演化接近完成時,TSM使用者極少, 絕大部分將是TD-SCDMA的使用者,在演化的不同階段, TSM及TD-SCDMA系統之使用者數目迥異,因此所需要之 頻率資源亦不相同’所以,應當根據不同需求,動態地在 共存的無線通信體制之間分配有限的頻率資源,實現無線 資源的合理分配及重複使用。 【發明内容】 本發明之一目的係提供一種多標準無線通信系統中的射 頻資源分配之方法及裝置,該方法及裝置能夠根據需求, 動態地在共存的無線通信體制之間分配有限的頻率資源。 本發明之另一目的係提供一種具體的多標準無線通信系 統中的射頻資源分配之方法及裝置,該方法及裝置能在漫 長的演化過程中’對共存的無線通信體制共用的頻率資源 實現統δ十配置,以提高頻譜之利用率。 本發明之另一目的係提供一種具體的多標準無線通信系 統中的射頻資源分配之方法及裝置,該方法及裝置能在演 89805-1000616.docThe TD-SCDMA standard is a mobile communication system that uses synchronous coded multi-directional proximity technology for data transmission in time-sharing duplex mode, while TSM 89805-1000616.doc 1352548 standard design is used from existing GSM systems. A transitional standard for the evolution of TD-SCDMA systems, as a temporary standard for smooth transition to TD-SCDMA systems, TSM uses the same frequency band as TD-SCDMA for data transmission. Due to the limited resources of radio frequency, and the evolution of TSM and TDSCDMA systems, the number of users of TSm and TD-SCDMA is constantly changing, that is, at the beginning of evolution, mainly users of TSM, During the evolution process, TSM users are decreasing and td-SCDMA users are gradually increasing. 'Until evolution is nearing completion, there are very few TSM users. Most of them will be users of TD-SCDMA. At different stages of evolution, TSM and The number of users in the TD-SCDMA system is very different, so the required frequency resources are also different. Therefore, the limited frequency resources should be dynamically allocated between the coexisting wireless communication systems according to different needs, so as to realize the reasonable allocation of wireless resources. reuse. SUMMARY OF THE INVENTION One object of the present invention is to provide a method and apparatus for radio frequency resource allocation in a multi-standard wireless communication system, which can dynamically allocate limited frequency resources between coexisting wireless communication systems according to requirements. . Another object of the present invention is to provide a method and apparatus for radio frequency resource allocation in a specific multi-standard wireless communication system, which can implement a frequency resource shared by a coexisting wireless communication system during a long evolution process. δ ten configuration to improve spectrum utilization. Another object of the present invention is to provide a method and apparatus for radio frequency resource allocation in a specific multi-standard wireless communication system, which can be performed at 89805-1000616.doc
S 13.52548 化開始及結束階段,對共存的無線通信體制所共用之頻率 貝源實現預期配置,以提高頻譜之利用率。 為實現上述目的,根據本發明之—種多標準無線通信系 統中的射頻資源分配方法,包括步驟: 檢測所接收的多個來自上行鏈路的信號,該多個信號中 匕3有關於所請求存取不同無線通信體制_的資訊; 根據檢測到的所請求存取之無線通信體_㈣㈣, 子所j不同無線通信體制共用的射頻資源進行分配。 爲貫現上述目的,根攄本發明 ,.^ 嫁不發月之一種多標準無線通信系 、、先中的射頻資源分配裝置,包括: —狀態檢測器, 信號,該等信號中 體制類型之資訊; —資源分配器, 信體制類型的資訊 源進行分配。 爲貫現上述目的 括: 用於檢測所接㈣多個來自上行鏈路之 包含有關於所言旁求存取的不同無線通信 用於根據檢測到的所請求存取之無線通 對該不同無線通信體制共用的射頻資 根據本發明之一種無線通信系統,包 器所接收或 多個傳送接收器,用 多個射頻處理單元, 待發送之信號; 於接收及發送射頻信號 用於處理該等傳送接收 射頻資源分配裝置 &號中包含的關於所 資訊,並根據檢挪到 ,用於檢測所接收的來自上行鏈路的 請求存取的不同無線通信體制類型的 的所請求存取之無線通信體制類型的 89805-l〇〇〇6I6.d〇c 1352548 資訊,對該不同無線通信體制共用的射頻資源進行分配。 【實施方式】 本發明提供一種在共存的無線通信體制的基地台中,根 據共存的無線通信體制的不同需求,動態地分配無線資源 之方法及裝置。卩tSM、TD-SCDMA#存的無線通信系統 爲例,該方法及裝錢用在該等兩個共存的無線通信體制 的不同的演化階段,分別具有不同的特點。 下面,將結合隨附圖式,分別描述在TSM、td_scdma 共存系統裏,在演化過程中,本發明所提出之對共用的無 線資源進行統計配置之方法及裝置,以及在演化初期與末 期,本發明所提出的對共用的無線資源進行預期配置的方 法及裝置。 如圖1所示,圖1係一個蜂巢行動通信系統的示意圖, 圖中的A、B、C、D、E、Z分別表示6個通信區域,這6 個區域構成了一個行動通信系統,其中區域z係中心區 域’區域A-E係區域Z的相鄰區域。 圖1中的每個區域都包含—基地台1〇(或節點B)及一個 或多個行動終端20,如圖2所示。 圖3中顯不了圖2中的一區域基地台1〇(或節點B)之組 成。如圖3所示,每個基地台1〇包括:N根用於接收及發 送無線信號的天線30、N組射頻單元4〇及一控制器5〇。 其中: 每個射頻單兀40,包括:一收發器、一調變器及一解調 器。該收發器的一輸入/輸出端耦合至相應的天線3〇上, 89805-1000616.doc 0 1352548 以接收來自天線30之射 « . ' 5號或將無線信號經由天έ泉;3 0 發运出去;該收發器的另—认山 田大淥30 端,以你mu 輸出端耦合至該解調器的輸入 AT信號;該收發器之另-輸― 行^ 以將調製的信號傳送至天線30進 送。母個射頻單元4〇具有各自的射 该控制器5〇’包括…處理器6。,一分配器二己 憶體7〇及-系統狀態檢測器9〇。其中:該處 至該各射頻單元4〇中 耦口 赞态之另—輸入/輸出端,以接 /自各射頻單7C 40之信號’同時該處理器6〇還盘分配 器肋、記憶體70及系統狀態檢測器9〇㈣通信,具體地: 狀態檢測器9G根據來自處理器6〇之信號,檢測所請求之 無線通信體制的類型:記憶體7〇,在儲存多標準無線通信 系統中的射頻資源分配資訊的同時,若基地台選擇的係統 什配置射頻資源的方法’則還用於記錄在一段時間内狀態 檢測器90檢測至的每種無線通信系統的請求存取的次數; 資源分配器80’根據在統計配置方法中,記憶體記錄的不 同無線通信系統請求存取的次數,或根據在預期配置方法 中,狀態檢測器90檢測至的無線通信系統請求類型與記憶 體中儲存的射頻資源分配資訊,動態地分配該TSM及 TD-SCDMA無線通信體制共用的射頻資源;然後處理器 6〇 ’再根據資源分配器80的分配指示,控制調整相應射頻 單元40的載波頻率。 下面,按照TSM及TD-SCDMA演化的不同階段,分別 對上述的統計配置方法與預期配置方法進行詳細的描述。 89805-1000616.doc 1352548 統計配置方法 通常,自TSM至TD_SCDMA之演化係一個漫長的過程, 很有可能該過程會持續若干年。在此情況下,兩種無線通 信體制的使用者數目不會急遽變化’因此,射頻資源的配 置可以母隔一段時間進行,例如每隔一個月進行一欠。 育源分配器80,根據在這段時間中,記憶體7〇中累計 記錄的TSM& TD-SCDMA無線通信體制被請求存取的次 數,重新分配每個區域的射頻載波,其中記憶體中累計 記錄的係該等兩種無線通信體制在這段時間中的全部時段 上的業務負荷。記憶體70中的累積次數,在開始下一個週 期的頻率分配過程時,將被清除,以重新記錄在新的—段 時間中,狀態檢測器90檢測到的TSM及td_scdma通信 體制被請求存取的次數。 下面將給出統計配置方法的兩個實例,在實例中,分配 器80根據上述的無線通信體制請求存取的記錄,進行動態 地分配射頻載波資源。 實例1 : S分配^§ 80在經過一段n* pg _ 、权呀間之後需要進行載波配置 時’分配器80首先訪問記憶體7〇,查詢該記憶體7〇中記 錄的由狀態檢測器90檢_的在這段時間裏全部時段上, 兩種無線通信體制被請求存#的次數,並計# tsm對 TD-SCDMA的鞏路I:卜r。. 〃 後’假定一區域的射頻載波的 數量爲配器80將取的載波數量分配爲m,將 TD-SCDMA的載波數量分配爲m,ni+n2=n,並計算 89805-1000616.docS 13.52548 Beginning and ending phases, the frequency shared by the coexisting wireless communication system is expected to be configured to improve spectrum utilization. In order to achieve the above object, a radio resource allocation method in a multi-standard wireless communication system according to the present invention includes the steps of: detecting a plurality of received signals from an uplink, wherein the plurality of signals are related to the requested Accessing information of different wireless communication systems _; according to the detected wireless communication body (4) (4) of the requested access, the radio resources shared by the different wireless communication systems are allocated. In order to achieve the above object, according to the present invention, a multi-standard wireless communication system, a prior-known radio frequency resource allocation device, includes: - a state detector, a signal, and an institutional type of the signals. Information; - Resource allocator, information source type information source for distribution. For the purpose of the above-mentioned purposes: for detecting that (four) multiple wireless communications from the uplink containing different wireless communications for the requested access are used for the different wireless according to the detected requested access Radio frequency resource shared by a communication system according to the present invention, a wireless communication system of the present invention, a packet receiver receiving or a plurality of transmission receivers, using a plurality of radio frequency processing units, signals to be transmitted; receiving and transmitting radio frequency signals for processing the transmissions Receiving the requested wireless communication of the different wireless communication system types included in the RF resource allocation device & The system type 89805-l〇〇〇6I6.d〇c 1352548 information distributes the radio frequency resources shared by different wireless communication systems. [Embodiment] The present invention provides a method and apparatus for dynamically allocating radio resources according to different needs of a coexisting wireless communication system in a base station of a coexisting wireless communication system.无线tSM, TD-SCDMA# stored wireless communication system as an example, the method and the money used in the different evolution stages of the two coexisting wireless communication systems have different characteristics. In the following, the method and device for statistically configuring the shared radio resources proposed by the present invention in the TSM and td_scdma coexistence systems, and in the initial and final stages of evolution, will be described in conjunction with the accompanying drawings. A method and apparatus for predictive configuration of shared wireless resources as proposed by the invention. As shown in FIG. 1, FIG. 1 is a schematic diagram of a cellular mobile communication system. A, B, C, D, E, and Z respectively represent six communication areas, and the six areas constitute a mobile communication system. The area z is the central area 'the area adjacent to the area AE system area Z. Each of the regions in Figure 1 includes a base station 1 (or node B) and one or more mobile terminals 20, as shown in Figure 2. The composition of a regional base station 1 (or node B) in Fig. 2 is not shown in Fig. 3. As shown in FIG. 3, each base station 1 includes: N antennas 30 for receiving and transmitting wireless signals, N sets of radio frequency units 4A, and a controller 5A. Wherein: each radio frequency unit 40 includes: a transceiver, a modulator and a demodulator. An input/output terminal of the transceiver is coupled to the corresponding antenna 3〇, 89805-1000616.doc 0 1352548 to receive the radiation from the antenna 30. or to transmit the wireless signal via Tianzhu Spring; Going out; the other end of the transceiver recognizes the input terminal AT signal of the demodulator with your mu output; the other-transmission of the transceiver transmits the modulated signal to the antenna 30. Feed. The parent RF unit 4 has its own camera controller 5' including the processor 6. , a distributor of two memories 7 〇 and - system state detector 9 〇. Wherein: the other input/output terminal of the coupling of the RF unit 4〇 is connected to the signal of each RF single 7C 40. At the same time, the processor 6 〇 分配器 分配器 分配器 记忆, memory 70 And the system state detector 9 (four) communication, specifically: the state detector 9G detects the type of the requested wireless communication system based on the signal from the processor 6: memory 7〇, in the storage multi-standard wireless communication system At the same time as the radio resource allocation information, if the system selected by the base station configures the radio resource method, it is also used to record the number of request accesses of each wireless communication system detected by the state detector 90 over a period of time; 80' according to the statistical configuration method, the number of times the different wireless communication system records the access requested by the memory, or according to the expected configuration method, the wireless communication system request type detected by the state detector 90 and the stored in the memory Radio frequency resource allocation information, dynamically allocating radio frequency resources shared by the TSM and the TD-SCDMA wireless communication system; then the processor 6' is further based on the resource allocator The allocation indication of 80 controls the adjustment of the carrier frequency of the corresponding radio unit 40. In the following, according to the different stages of TSM and TD-SCDMA evolution, the above statistical configuration method and expected configuration method are described in detail. 89805-1000616.doc 1352548 Statistical Configuration Method In general, the evolution from TSM to TD_SCDMA is a lengthy process, and it is likely that the process will continue for several years. In this case, the number of users of the two wireless communication systems does not change rapidly. Therefore, the configuration of the radio frequency resources can be performed at intervals, for example, every other month. The source distributor 80 re-allocates the RF carrier of each area according to the number of times the TSM&TD-SCDMA wireless communication system accumulated in the memory 7〇 is requested to be accessed during this period of time, wherein the memory is accumulated The recorded traffic load of the two wireless communication systems over the entire time period during this time. The cumulative number of times in the memory 70 will be cleared when the frequency allocation process of the next cycle is started to be re-recorded in the new time period, and the TSM and td_scdma communication systems detected by the state detector 90 are requested to be accessed. The number of times. Two examples of statistical configuration methods will be given below. In an example, the distributor 80 dynamically allocates radio frequency carrier resources according to the records requested by the wireless communication system described above. Example 1: S-distribution § 80 When a carrier configuration is required after a period of n* pg _, and the right time, the distributor 80 first accesses the memory 7 〇, and queries the state detector 90 recorded in the memory 7 〇. Check the number of times that the two wireless communication systems are requested to store # during all time periods of this period, and count #tsm to TD-SCDMA's Gong I: bu. 〃 After the assumption that the number of RF carriers in a region is the number of carriers that the adapter 80 will take is allocated m, the number of carriers in the TD-SCDMA is allocated as m, ni+n2=n, and the calculation is 89805-1000616.doc
S •10. 1352548 N1/N2的值,分配器80分別爲TSM及TD-SCDMA分配幾 組N1及N2的值(爲了保證兩種無線通信體制均可存取, N1及N2應不小於1),並得到幾個不同的N1/N2的值,然 後,根據該計算的TSM對TD-SCDMA的業務比R,分配 器80挑選N1/N2之最接近R的值,將N個載波分配至TSM 及TD-SCDMA兩種無線通信體制。 例如,TSM的業務記錄爲3.4Er卜TD-SCDMA的業務記 錄爲8.5Erl,並且N=8 ’則R=0.4。若分配2個載波至TSM, 分配6個載波至TD-SCDMA,將得到Ν1/Ν2=0·3333。若分 配3個載波給TSM,分配5個載波至TD-SCDMA,將得到 Ν1/Ν2 = 0·6。如上所述,分配器80應當選擇第一種分配方 法,因爲它更接近於R。 實例2 : 在實例1中,分配器80係用一段時間裏全部時段上的記 錄來計算TSM及TD-SCDMA的業務比R。然而,由於最 重要的資料係來自高峰時間的資料,因爲它與阻塞率最相 關,所以在實例2中,可以對實例1進行稍微的修正,即: 僅用高峰時間的業務資料代替全部時段的業務資料來計算 所述R,其餘部分均相同。 預期配置方法 在演化的開始階段,TD-SCDMA之使用者遠遠少於TSM 之使用者。這種情況下,若在每個區域裏仍保留TD-SCDMA 射頻的載波係低效率的。本發明的預期配置方法之實例1 即係來解決該問題的。 89805-1000616.doc 1352548 實例1 : 根據該預期配置方法,一區域中的所有射頻載波將分配 給 TSM,僅在下列情況下,才有一載波被分配至 TD-SCDMA : (1) 在該區域裏,一 TD-SCDMA使用者發出一連接請求; (2) 在該區域裏,一 TD-SCDMA使用者自一鄰近區域移入 該區域,並且在該區域發出一切換請求。 該預期配置方法如圖4所示。在一區域中,當無任何 TS-SCDMA使用者連接時,所有的射頻載波都被分配至 TSM系統(S1)。當在該區域裏有一 TD-SCDMA使用者發出 一連接請求或發出一切換請求時(S10),區域中的基地台首 先判斷是否有空閒的TD-SCDMA資源(S20),若有,則將該 資源分配至該請求(S30);若無,則判斷是否有空閒的載波 (S40);若有空閒的載波,則將該載波分配至 TS-SCDMA(S5 0),然後將該射頻資源分配至該請求(S60); 若無空閒的載波,則拒絕該請求(S70),從而中斷呼叫請求 (S1001)。 一旦區域中的所有TD-SCDMA呼叫都已結束(S1000), 即:在該區域中無TD-SCDMA使用者的連接,則由 TD-SCDMA系統所佔用的射頻載波將被重新分配至TSM。 在演化的最後階段,情況正好相反。除了極少數TSM使 用者之外,幾乎所有的使用者都爲TD-SCDMA之使用者。 在此情況下,在每個區域裏仍然保留TSM的射頻載波係低 效率的。本發明之預期配置方法的實例2即係來解決該問 89805-1000616.doc -12- 1352548 題·的。 實例2 : 根據該預期配置方法,一區域中的所有射頻載波將分配 至TD-SCDMA,僅在下列情況下,才有一載波被分配至 TSM : (1) 在該區域裏,一 TSM使用者發出一連接請求; (2) 在該區域裏,一 TSM使用者自一鄰近區域移入該區 域,並且在該區域發出一切換請求。 该預期配置方法如圖5所示。在一區域中,當無TSM之 使用者連接時’所有的射頻載波都被分配至td_scdma系 統的(si)。當在該區域裏有一 TSM使用者發出—連接請求 或發出一切換請求時(S100)’首先判斷是否有空閒的tsm 資源(S200) ’若有,則將該資源分配至該請求(S3〇〇);若無, 則進一步判斷是否有空閒的載波(S4〇〇),若有空閒的載 波,則將該載波分配至TSM(S500),然後將該射頻資源分 配至該請求(S600);若無空閒的載波,則拒絕該請求 (S700),從而中斷啤叫請求(§ι〇〇1)。 一旦區域中所有TSM呼叫都已結束(sl〇〇〇),即:在該區 域中無TSM使用者的連接’則由TSM所佔用的射頻載波 將被重新分配至TD-SCDMA。 在實際操作中,一般採用統計配置方法對大部分可用的 射頻載波進行分配,而預期配置方法通常應用在少數保留 的載波上,以適應不同無線通信體制中使用者數目的快速 變化。 、 89805-1000616.doc -13- 1352548 根據本發明之多標準無線通信系統中的射頻資源分配之 方法及裝置,由於該裝置中的資源分配器可根據狀態檢測 器檢測到的不同無線通信體制之請求,適時地分配共存的 無線通信體制所共用之射頻資源,因此,該方法及裝置能 夠動態地在共存的無線通信體制之間分配有限的頻率資 源。 根據本發明之具體的多標準無線通信系統中的射頻資源 分配之方法及裝置,由於該方法及裝置能夠根據系統演化 之不同階段及系統業務的不同需求比例,分別採用統計配 置與預期配置或統計配置與預期配置相結合的方式,因 此,該方法及裝置能夠實現對共存的無線通信體制所共用 之頻率資源貫現合理配置,提高了有限頻率資源的利用率。 當然,對於熟悉此項技術者而言,本發明所提供之多標 準無線通k系統中的射頻資源分配方法,應不僅限於採用 TSM及TD-SCDMA標準之系統中,其還可應用於其它多標 準共存的無線通信系·統中。 热悉此項技術者應理解,對上述本發明所公開之多標準 無線通信系統中的射頻資源分配方法,還可在不脫離本發 明之内容的基礎上作出各種改進。因此,本發明的保護範 圍應由隨附之申請專利範圍之内容確定。 【圖式簡單說明】 以下將結合隨附圖式對本發明進行進一步地描述,其中: 圖1係蜂巢通信系統之結構圖; 圖2係圖1所示的蜂巢通信系統中的每個區域之結構圖. 89805-1000616.doc -14· 1352548 圖3係圖2所示的每個區域中的一基地台/節點之結構方 塊圖; 圖4係預期配置方法一的流程圖; 圖5係預期配置方法二的流程圖。 【圖式代表符號說明】 10 基地台 20 行動終端 30 天線 40 射頻單元 50 控制器 60 處理器 70 記憶體 80 分配器 90 系統狀態檢測器 89805-1000616.doc -15-S 10.1352548 N1/N2 value, the distributor 80 allocates several sets of values of N1 and N2 for TSM and TD-SCDMA respectively (in order to ensure that both wireless communication systems can be accessed, N1 and N2 should be not less than 1) And get several different values of N1/N2. Then, according to the calculated TSM to TD-SCDMA traffic ratio R, the allocator 80 picks the value of N1/N2 closest to R, and assigns N carriers to TSM. And TD-SCDMA two wireless communication systems. For example, the business record of the TSM is 3.4Er, the business record of TD-SCDMA is 8.5Erl, and N=8' then R=0.4. If 2 carriers are allocated to the TSM and 6 carriers are allocated to TD-SCDMA, Ν1/Ν2=0·3333 will be obtained. If 3 carriers are allocated to the TSM and 5 carriers are allocated to TD-SCDMA, Ν1/Ν2 = 0·6 will be obtained. As mentioned above, the distributor 80 should select the first method of distribution because it is closer to R. Example 2: In Example 1, the distributor 80 calculates the traffic ratio R of TSM and TD-SCDMA using the records on all time periods over a period of time. However, since the most important data is from peak time data, because it is most relevant to the blocking rate, in Example 2, Example 1 can be slightly modified, ie: only the peak time business data is used instead of the full time period. The business data is used to calculate the R, and the rest are the same. Expected Configuration Method At the beginning of the evolution, users of TD-SCDMA are far fewer than users of TSM. In this case, the carrier system of the TD-SCDMA radio is still inefficient in each area. Example 1 of the intended configuration method of the present invention solves this problem. 89805-1000616.doc 1352548 Example 1: According to this expected configuration method, all RF carriers in a region will be assigned to TSM, and only one carrier will be assigned to TD-SCDMA in the following cases: (1) In this region A TD-SCDMA user sends a connection request; (2) In the area, a TD-SCDMA user moves into the area from a neighboring area and issues a handover request in the area. The expected configuration method is shown in Figure 4. In an area, when no TS-SCDMA user is connected, all RF carriers are assigned to the TSM system (S1). When a TD-SCDMA user sends a connection request or issues a handover request in the area (S10), the base station in the area first determines whether there is an idle TD-SCDMA resource (S20), and if so, The resource is allocated to the request (S30); if not, it is judged whether there is an idle carrier (S40); if there is an idle carrier, the carrier is allocated to TS-SCDMA (S50), and then the radio resource is allocated to The request (S60); if there is no idle carrier, the request is rejected (S70), thereby interrupting the call request (S1001). Once all TD-SCDMA calls in the zone have ended (S1000), i.e., there are no TD-SCDMA subscriber connections in the zone, the RF carriers occupied by the TD-SCDMA system will be reassigned to the TSM. In the final stages of evolution, the opposite is true. Except for a very small number of TSM users, almost all users are users of TD-SCDMA. In this case, the TSM's RF carrier is still inefficient in each region. Example 2 of the intended configuration method of the present invention solves the problem of the problem 89805-1000616.doc -12- 1352548. Example 2: According to the expected configuration method, all RF carriers in an area will be allocated to TD-SCDMA, and only one carrier is allocated to the TSM in the following cases: (1) In this area, a TSM user sends out A connection request; (2) In the area, a TSM user moves into the area from a neighboring area and issues a handover request in the area. The expected configuration method is shown in Figure 5. In an area, when no TSM user connects, all RF carriers are assigned to the (si) of the td_scdma system. When a TSM user sends a connection request or issues a handover request in the area (S100), it first determines whether there is an idle tsm resource (S200) 'If yes, allocates the resource to the request (S3〇〇) If not, further determining whether there is an idle carrier (S4〇〇), if there is an idle carrier, assigning the carrier to the TSM (S500), and then allocating the radio resource to the request (S600); If there is no idle carrier, the request is rejected (S700), thereby interrupting the beer call request (§ι〇〇1). Once all TSM calls in the zone have ended (sl〇〇〇), ie, there are no connections for TSM users in the zone, then the RF carriers occupied by the TSM will be reassigned to TD-SCDMA. In actual operation, most of the available RF carriers are generally allocated by statistical configuration methods, and the expected configuration method is usually applied to a small number of reserved carriers to adapt to the rapid changes in the number of users in different wireless communication systems. 89805-1000616.doc -13- 1352548 A method and apparatus for allocating radio frequency resources in a multi-standard wireless communication system according to the present invention, since the resource allocator in the device can be based on different wireless communication systems detected by the state detector The method and apparatus are capable of dynamically allocating limited frequency resources between coexisting wireless communication systems by requesting timely allocation of radio frequency resources shared by the coexisting wireless communication systems. The method and device for allocating radio frequency resources in a specific multi-standard wireless communication system according to the present invention, the method and the device can adopt statistical configuration and expected configuration or statistics according to different stages of system evolution and different demand ratios of system services. The method is combined with the expected configuration. Therefore, the method and the device can realize the reasonable configuration of the frequency resources shared by the coexisting wireless communication system, and improve the utilization of the limited frequency resources. Of course, for those skilled in the art, the radio frequency resource allocation method in the multi-standard wireless communication k system provided by the present invention should not be limited to the system adopting the TSM and TD-SCDMA standards, and can be applied to other systems. The standard wireless communication system coexists. It will be understood by those skilled in the art that various modifications can be made to the method of allocating radio frequency resources in the multi-standard wireless communication system disclosed above in the present invention without departing from the scope of the present invention. Accordingly, the scope of the invention should be determined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be further described in conjunction with the accompanying drawings in which: FIG. 1 is a structural diagram of a cellular communication system; FIG. 2 is a structure of each region in the cellular communication system shown in FIG. Fig. 3 is a block diagram of a base station/node in each area shown in Fig. 2; Fig. 4 is a flow chart of the first configuration method 1; Fig. 5 is an expected configuration The flow chart of method two. [Description of Symbols] 10 Base Station 20 Mobile Terminal 30 Antenna 40 RF Unit 50 Controller 60 Processor 70 Memory 80 Distributor 90 System Status Detector 89805-1000616.doc -15-