TWI233619B - Circuits and methods for changing page length in a semiconductor memory device - Google Patents
Circuits and methods for changing page length in a semiconductor memory device Download PDFInfo
- Publication number
- TWI233619B TWI233619B TW92131236A TW92131236A TWI233619B TW I233619 B TWI233619 B TW I233619B TW 92131236 A TW92131236 A TW 92131236A TW 92131236 A TW92131236 A TW 92131236A TW I233619 B TWI233619 B TW I233619B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory
- control signal
- block
- address
- memory device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4087—Address decoders, e.g. bit - or word line decoders; Multiple line decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4085—Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1015—Read-write modes for single port memories, i.e. having either a random port or a serial port
- G11C7/1018—Serial bit line access mode, e.g. using bit line address shift registers, bit line address counters, bit line burst counters
- G11C7/1021—Page serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled column address stroke pulses each with its associated bit line address
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1015—Read-write modes for single port memories, i.e. having either a random port or a serial port
- G11C7/1045—Read-write mode select circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/12—Group selection circuits, e.g. for memory block selection, chip selection, array selection
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/14—Word line organisation; Word line lay-out
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Dram (AREA)
Abstract
Description
Ϊ233619 狄、發明說明: 相關申請案之交互參考 本申請案係為聲稱對2002年11月19日於韓國智慧財產局 提出之韓國專利申請案第2002-72093號之優先權。 【發明所屬之技術領域】 本發明指向一種半導體記憶裝置,其架構讓使用者得以 改變半導體裝置分頁長度。此外,本發明尚指向用以改變 t導體裝置分頁長度之電路與方法,其中定址機制與控制 電路系統可啟動記憶單元陣列之記憶單元陣列區塊之一或 多條對應字元線(具相同列位址),藉以依律定操作模式改變 分頁長度。 【先前技術】Ϊ233619 D. Description of the Invention: Cross Reference to Related Applications This application claims the priority of Korean Patent Application No. 2002-72093 filed with the Korean Intellectual Property Office on November 19, 2002. [Technical field to which the invention belongs] The present invention is directed to a semiconductor memory device whose architecture allows a user to change the page length of a semiconductor device. In addition, the present invention is directed to a circuit and method for changing the page length of a t-conductor device, in which the addressing mechanism and the control circuit system can activate one or more corresponding word lines (with the same column) of the memory cell array block of the memory cell array. Address) to change the page length in accordance with the operating mode. [Prior art]
目前半導體記憶裝置提供具廣泛應用之各類操作模式 例如同步半導體記憶裝置(諸如SDRAM(同步動態隨機存! 記憶體))可制模式暫存器組(聰)支援可變行位址頻f 觀測器潛伏(CL)與突波長度(BL)模式。這些半導體記憶$ 置係用於各種裝置與應用中,諸如電子設備、網路系I 通訊系統、控制系、絶、多媒體應用集PC(個人電腦)之主$ 憶體。 σ "1C闡釋依先前技#之半導體記憶裝置之階肩 隐木構。如圖1Α所不’半導體記憶裝置1〇〇包含複數個託 庫 100Α、100Β、i00r、办 〇C、100D。各記憶庫均代表例如p( 之記憶體之邏輯單开,0女&认 、科早X ’且各庫均可由一或多個記憶模組 成(例如DIMM(雙線φ # _ y 、 •甲σ己隐換組)、SIMM(單線中記憶At present, semiconductor memory devices provide various operating modes with a wide range of applications. For example, synchronous semiconductor memory devices (such as SDRAM (Synchronous Dynamic Random Access! Memory)) can be made to register mode registers (Satoshi) to support variable line address frequency f observation. Device latency (CL) and surge length (BL) modes. These semiconductor memory devices are used in various devices and applications, such as the main memory of electronic devices, network communication systems, control systems, multimedia applications, and PCs (personal computers). σ " 1C explains the hidden shoulder wooden structure of the semiconductor memory device according to the prior art #. As shown in FIG. 1A, the semiconductor memory device 100 includes a plurality of banks 100A, 100B, i00r, OC, and 100D. Each memory bank represents, for example, the logical single open of the memory of p (, 0 female & recognition, section early X ', and each bank can be composed of one or more memory modules (such as DIMM (double line φ # _ y, • A σ has hidden change group), SIMM (single line memory
O:\89\89II3 DOC 1233619 組))。各記憶庫100A、100B、1〇〇c、1〇〇D進一步邏輯分割 為複數個圮憶單元陣列區塊。例如:圖丨B之示例性具體實 施例所不,記憶庫1〇〇A包括四記憶單元陣列區塊、 100b、100c、l〇〇d 〇 此外,各記憶單元陣列區塊1〇〇8、1〇〇b、1〇〇c、1〇別進 一步邏輯分割為複數個次記憶單元陣列區塊,其中各次記 憶單元陣列區塊均受控於相關控制電路系統。例如:圖1(:〆 之不例性具體實施例所示,記憶單元陣列區塊1〇〇a包括四 · 個次έ己憶單元陣列區塊i i 0、i 20、i 30、i 4〇。記憶單元陣 列區塊1〇〇a進一步包括複數個字元線驅動器111、121、 131 141其中各子元線驅動器均與次記憶單元陣列區塊 110、120、130、140之一以及複數個次解碼器112、122、 132、142和一列解碼器15〇有關。 圖1A - C中所示記憶架構一般係於部分啟動之半導體記憶 裝置中施行,例如快速循環動態隨機存取記憶體 (FCRAM) ’藉以利用例如行區塊位址(CBAs)啟動次記憶單 元陣列區塊110、12〇、13〇、140之一,俾施行資料存取或 更新操作。 _ 由範例可知,為施行記憶體存取操作,響應於預定庫位 - 址,初始選擇記憶庫u〇A、10〇b、i〇〇c、100D之一,接著 響應於預定位址(例如列位址),於所選之記憶庫内選擇一記 憶單元陣列區塊l00a、100b、100c、1〇〇d。接著響應於例 如一仃區塊位址(CBA),選擇一次記憶單元陣列區塊(在所 選之記憶單元陣列區塊中)。例如在圖1C之示例性具體實施O: \ 89 \ 89II3 DOC 1233619 group)). Each memory bank 100A, 100B, 100c, 100D is further logically divided into a plurality of memory cell array blocks. For example, as shown in the exemplary embodiment of FIG. 丨 B, the memory bank 100A includes four memory cell array blocks, 100b, 100c, 100d. In addition, each memory cell array block 1008, 100b, 100c, and 10 are further logically divided into a plurality of secondary memory cell array blocks, where each secondary memory cell array block is controlled by the related control circuit system. For example, as shown in FIG. 1 (: an example of a concrete example), the memory cell array block 100a includes four memory cell array blocks ii 0, i 20, i 30, and i 4. The memory cell array block 100a further includes a plurality of word line drivers 111, 121, 131 141, where each sub-line driver is connected to one of the secondary memory cell array blocks 110, 120, 130, 140 and a plurality of The secondary decoders 112, 122, 132, 142 and a row of decoders 15 are related. The memory architecture shown in Figures 1A-C is generally implemented in partially activated semiconductor memory devices, such as fast-cyclic dynamic random access memory (FCRAM) ) 'By using, for example, bank block addresses (CBAs) to start one of the secondary memory cell array blocks 110, 120, 13 and 140, perform data access or update operations. _ From the example, it is known that the memory is implemented The access operation, in response to a predetermined location-address, initially selects one of the memory banks u0A, 100b, i00c, 100D, and then responds to the predetermined address (such as a column address) in the selected one. Select a memory cell array block 100a, 100b, 100 in the memory bank c, 100d. Then, in response to, for example, a block address (CBA), a memory cell array block is selected once (in the selected memory cell array block). For example, in the exemplary implementation of FIG. 1C
O:\89\891t3.DOC 1233619 例中由於。己憶單凡陣列區塊i術包括四個次記憶區塊 110 120 130、140 ’故利用兩行區塊位址(CBAS)選擇次 s己憶區塊之一。 更特別3之,在寫入或讀取操作期間(記憶體存取),將 列位址RAi(i 2,3,···,!!)輸入列解碼器“ο並解碼之。接 著,根據解碼結果,列解碼器15〇將啟動對應於輸入列位址 RAi之複數個正規字元線致動信號(nwe)之一。響應於另一 / 列位址 RA1(i=〇,l)與 CBA,此解碼器 112、122、132、142 之 · 一將產生具預定提昇位準之字元線電源信號,並輸出字元 〇 線電源信號至字元線驅動器m、121、131、141中相對應 者。響應於子元線電源信號與字元線致動信號NEW,字元 線經一預定切換電路(未圖示)啟動字元線WL_〇、、 WL—2、WL一3中對應者。只要字元線一啟動所選之次記憶 單元陣列區塊’即輸入行位置並將之解碼,以讀取或寫入 資料於所選之次記憶區塊。 在具有如圖1A-1C所示記憶架構之DRAM中,由於在任何 痛 給定時間下,僅可啟動次記憶單元陣列區塊丨1〇、12〇、13〇、 140之一’故半導體裝置之分頁長度固定。如此技藝中已知 者’分頁”係指可自一列位址存取之位元數,且行位置數 - 可決定π分頁’’大小。例如:在圖1C之記憶單元陣列區塊丨〇〇a 中,假設外部輸入位址總數為η,則用以選擇各次記憶單元 陣列區塊之行選擇線(CSL)之行位址總數為η-2。此係因利 用兩行位址選擇四個次記憶單元陣列區塊100a、l〇〇b、 100c、100d之一所致。故對應於一所選次記憶單元陣列區O: \ 89 \ 891t3.DOC due to 1233619 cases. Jiyi Shanfan array block i technique includes four secondary memory blocks 110 120 130, 140 ′. Therefore, two rows of block addresses (CBAS) are used to select one of the secondary s memory blocks. More specifically, during a write or read operation (memory access), the column address RAi (i 2,3, ...) is input to the column decoder "ο and decoded. Then, According to the decoding result, the column decoder 15 will start one of a plurality of regular word line activation signals (nwe) corresponding to the input column address RAi. In response to the other / column address RA1 (i = 0, l) With CBA, one of the decoders 112, 122, 132, and 142 will generate a character line power signal with a predetermined boost level, and output a character 0 line power signal to the character line driver m, 121, 131, 141 Corresponding to the middle. In response to the sub-line power supply signal and the word line actuation signal NEW, the word line activates the word lines WL_〇, WL-2, WL-3 via a predetermined switching circuit (not shown). The corresponding one. As long as the character line is activated, the selected secondary memory cell array block is inputted to the row position and decoded to read or write data to the selected secondary memory block. In the DRAM of the memory architecture shown in -1C, since the memory cell array block can only be activated at any given time, 10, 12, 10, 13 ’, 140’, the paging length of a semiconductor device is fixed. Known in the art ’paging’ refers to the number of bits that can be accessed from a column of addresses, and the number of row positions-determines the size of the π paging. For example: In the memory cell array block in FIG. 1C, assuming that the total number of external input addresses is η, the total number of row addresses of the row selection line (CSL) used to select each memory cell array block is η-2. This is because one of the four secondary memory cell array blocks 100a, 100b, 100c, 100d is selected using two rows of addresses. Corresponding to a selected secondary memory cell array area
O:\89\89113.DOC 1233619 塊之-啟動字元線之分頁長度固定為广 1C所示架構而提供广2固定分頁長产 ’ 一有如圖 置與具有例如2n或广丨分頁長度之半導體 己&衣 SDRAM)不相容。 _思衣置(例如 爰此,具有可針對給定應用 „ 门正刀頁長度之架構之半 V體圯丨思裝置之向度優點。 【發明内容】 本發明指向-財導體記憶裝置,其架構讓使用者得以 =半導體裝置分頁長度。此外,本發明尚指向 半導體裝置分頁長度之電路與方法…定址機制與控制 電路系統可啟動記憶單元陣狀記憶單㈣龍塊之一或 多條對應字元線(具相同列位址),藉以依律㈣作 變 分頁長度。 優點在於藉由分頁長度之得以改變,本發明適於在具有 不同分寅長度之半導體裝置間運作。 -種依本發明之半導體m括—被邏輯分割為i㈣ 記憶區塊之記憶單元陣列,#中各記憶區塊均為—對應區 塊位址所定址,·複數個字元線控制電路,丨中各字元線控 制=均與該等記憶區塊之—有關,以啟動相關記憶區塊 之-字元線;及一用以選擇控制該等字元線控制電路之控 制電路,俾啟動具相同列位址之一或多條對應字元線,以 改變一該半導體記憶裝置之分頁長度。 較佳為該控制電路接收一行區塊位址(例如一行區塊位 置)與一第一控制信號為輸入,並接著產生一第二控制信號O: \ 89 \ 89113.DOC 1233619 The page length of the block-starting character line is fixed to the structure shown in the wide 1C to provide a long fixed page 2 long production.-A semiconductor with a page length of 2n or wide &Amp; clothing SDRAM). _Siyizhi (for example, this has the advantage of the orientation of a semi-V-shaped device that can be used for a given application, the length of the front door blade.) [Summary of the invention] The present invention is directed to a financial conductor memory device, which The architecture allows the user to = the page length of the semiconductor device. In addition, the present invention also refers to the circuit and method of the page length of the semiconductor device ... The addressing mechanism and control circuit system can activate one or more corresponding words of the memory unit array memory single dragon block The element line (with the same column address) is used to change the page length in accordance with the rules. The advantage is that by changing the page length, the present invention is suitable for operating between semiconductor devices with different page lengths. The semiconductor m includes—a memory cell array logically divided into i㈣ memory blocks. Each memory block in # is addressed by a corresponding block address, a plurality of character line control circuits, and each character line Control = all related to the-of these memory blocks to activate the-character lines of the relevant memory blocks; and a control circuit for selecting and controlling the control lines of these word lines, One or more corresponding word lines with the same column address to change the page length of a semiconductor memory device. Preferably, the control circuit receives a row of block addresses (such as a row of block positions) and a first control Signal is input, and then a second control signal is generated
O:\89\89I13.DOC 1233619 中2τΓΓ動^多個字元線控制電路。在—具體實施例 產:2、於預&指令與外部位址,㈣模式暫存器組動態 全屬二控制信號。在其它具體實施例中,藉由線接合、 ! 口或熔絲切割造成之控制信號產生器程式化而固定 弟一控制信號。 輯明之另—具體實施例中,記憶系統包括具有被邏 2 =為複數個記憶區塊之記憶單元陣列之第—記憶裝 f /中各記憶區塊均為—對應區塊位址所定址,·複數個 子元線控制電路,盆中久空- ,、中各子疋線控制電路均與該等記憶區 ▲之—有關’以啟動相關記憶區塊之一字元線,·及一用以 選擇控制該等字元線控制電路之控制電路,俾啟動具相同 Z位=之-或多條對應字元線,以改變—該半導體記憶裝 置之为頁長度。 在本發明之另-具體實施例中,提供一種用以改變一具 有被邏輯分割為複數個記憶區塊之記憶單元陣列之體 圮隐哀置之刀頁長度之方法,其中各記憶區塊係由一對鹿 區塊:址所定址。該方法包括產生-律定複數個分頁長 #作模式之第-控制信號;以及根據該第—控制信號及2 e塊位址產生一第二控制信號。響應於該第二控制信號, 選擇啟動具一相同列位址之該等記憶區塊中之一或多條字 儿線以提供—對應於該律定分頁長度操作模式之該 記憶裝置之分頁長度。 即將描述本發明之這些及其它具體實施例、態樣、 及優點,參閱隨附圖式即可瞭解下列較佳具體實施例之^O: \ 89 \ 89I13.DOC 1233619 2τΓΓ moves multiple word line control circuits. In-specific embodiment Product: 2. In the pre- & instruction and external address, the dynamic mode register group dynamics are all two control signals. In other specific embodiments, the control signal generator is fixed by programming the control signal generator caused by wire bonding,! Port or fuse cutting. In addition, in a specific embodiment, the memory system includes a memory cell array having a memory cell array that is logically 2 = a plurality of memory blocks. Each memory block in the memory pack f / is a corresponding block address, · A plurality of sub-element line control circuits, Penzhong Jiukong-, and Zhong-sub-line control circuits are related to these memory areas ▲ of-related 'to start a character line of the relevant memory block, and one for Select the control circuit that controls the word line control circuits, and start with the same Z bit =-or multiple corresponding word lines to change—the semiconductor memory device is the page length. In another embodiment of the present invention, a method for changing the length of a hidden page of a memory cell array having a memory cell array logically divided into a plurality of memory blocks is provided, wherein each memory block is Addressed by a pair of deer blocks: address. The method includes generating a first control signal of a plurality of page length # operation modes; and generating a second control signal according to the first control signal and a 2 e-block address. In response to the second control signal, one or more word lines in the memory blocks with an identical column address are selected to be provided to provide a page length of the memory device corresponding to the regular page length operation mode. . These and other specific embodiments, aspects, and advantages of the present invention will be described shortly, and the following preferred specific embodiments can be understood by referring to the accompanying drawings ^
O:\89\89113.DOC -10- 1233619 細敛述。 【實施方式】 本發明指向一種半導體記憶裝 农夏具木構讓使用者得 改變半導體裝置分頁長度。 又付別a之,依本發明之較佳 具體實施例之電路與方法,伤舾嫉〜 土 ^係根據得以選擇啟動記憶單元 區塊之次記憶單元區塊之一哎吝一 4夕條對應字兀線(具相同列 位址),以依律定操作模式改變半導體記憶裝置分頁長度。 圖2係依本發明之一具體實施例之記憶單元陣列架^之 高階簡圖,其可改變半導體記憶裝置分頁長度。可將⑸之 不例性具體實施例視為圖1C所示記憶架構之延伸,其中控 制與定址機制致使分頁長度得以改變(與具固定分頁長度 之圖1C架構相反)。參閱圖2,半導體記憶裝置包括具有被 邏輯分割為複數個次記憶單元陣列區塊11〇、12〇、13〇、 140(或”次記憶區塊”)之記憶陣列之記憶單元陣列區塊 2〇〇(或"記憶區塊”),其中各次記憶區塊均為一對應區塊位 址(例如CBA(行區塊位址))所定址。在示例性具體實施例 中,所示4個次記憶區塊(區塊〇、丨、2與3)係供闡釋之用, 但已知記憶區塊2〇〇可包括較多或較少次記憶區塊。 吕己憶區塊200進一步包括複數個字元線驅動器111、12 1、 131、141,其中各字元線驅動器lu、ι21、ι31、ι41均與 複數個次記憶區塊110、12〇、130、140之一以及複數個次 解碼器212、222、232、242有關,其中各次解碼器212、222、 232、242均與字元線驅動器m、121、131、141之一有關。 各對應之次解碼器/字元線驅動器對均具一用以啟動一相 O:\89\89113.DOC -11 - 1233619 關次記憶區塊之一字元線之字元線控制電路。 概言之,控制電路250選擇控制字元線控制電路,以選擇 啟動列位址與列解碼器150解碼之列位址相同之次記憶區 塊110、120、130、140之一或多條對應字元線…二―〇、WL—i、 WL—2、WL一3,藉以改變半導體記憶裝置之分頁長度。更 特別吕之,列解碼器15〇接收並解碼一第二輸入列位址 RAi(其中卜2,3,···,η),並根據解碼結果,啟動一對應於該輸 入列位置之正規字元線致動信號(NWE)。控制電路25〇接收 一行區塊位址(CBA)與一控制信號為輸入,並因之響應輸出 對應之控制信號至次解碼器212、222、232、242。次解碼 器212、222、232、242接收來自控制電路25〇之控制信號與 一第一列位址RAi(其中丨::^與丨),並接著產生輸出至字元線 驅動器111、121、131、141之控制信號。 根據來自次解碼器212、222、232、242之控制信號以及 來自列解碼器15 0之NWE信號,字元線驅動器丨丨i、;[ 2 1、 1 3 1、141將選擇啓動具相同列位址之次記憶區塊1丨〇、12〇、 130、140之一或多條對應字元線wl—〇、WL—1、WL—2、 WL一3,以改變半導體記憶裝置之分頁長度。例如在圖2之 不例性具體實施例中,假設各次記憶區塊之行位址數為 η-2,接著⑴可啟動次記憶區塊之一之字元線以獲得2η·2分 頁長度;(11)可啟動兩個次記憶區塊之對應字元線以獲得 2η 1分頁長度;(iii)可啟動所有四個次記憶區塊之對應字元 線以獲得2n分頁長度。 故在圖2之示例性具體實施例中,可根據控制信號以及至O: \ 89 \ 89113.DOC -10- 1233619 Concise. [Embodiment] The present invention is directed to a semiconductor memory device. The wooden structure of agricultural and summer equipment allows users to change the page length of a semiconductor device. I would also like to say “a”, according to the circuit and method of the preferred embodiment of the present invention, it ’s jealous. It is based on one of the second memory cell blocks that can be selected to start the memory cell block. Word line (with the same column address) to change the page length of the semiconductor memory device in a regular operation mode. FIG. 2 is a high-level diagram of a memory cell array frame according to a specific embodiment of the present invention, which can change the page length of a semiconductor memory device. The exemplified specific embodiment can be regarded as an extension of the memory architecture shown in FIG. 1C, in which the control and addressing mechanism causes the page length to be changed (as opposed to the structure of FIG. 1C with a fixed page length). Referring to FIG. 2, a semiconductor memory device includes a memory cell array block 2 having a memory array logically divided into a plurality of secondary memory cell array blocks 11, 12, 13, 140 (or “secondary memory block”). 〇〇 (or " memory block "), where each memory block is addressed by a corresponding block address (such as a CBA (line block address)). In an exemplary embodiment, shown The 4 secondary memory blocks (blocks 0, 丨, 2 and 3) are for explanation, but it is known that the memory block 2000 may include more or less secondary memory blocks. Lu Jiyi Block 200 It further includes a plurality of word line drivers 111, 12 1, 131, 141, wherein each of the word line drivers lu, ι21, ι31, ι41 and one of a plurality of secondary memory blocks 110, 12, 130, 140, and a plurality of The secondary decoders 212, 222, 232, and 242 are related, and each of the secondary decoders 212, 222, 232, and 242 is related to one of the word line drivers m, 121, 131, and 141. Each corresponding secondary decoder / word The yuan line driver pair has a word for starting one phase O: \ 89 \ 89113.DOC -11-1233619 one word of the memory block The word line control circuit of the element line. In brief, the control circuit 250 selects the control word line control circuit to select the secondary memory block 110, 120, which has the same column address as the column address decoded by the column decoder 150, One or more corresponding character lines of 130 and 140 ... two-zero, WL-i, WL-2, WL-3, thereby changing the paging length of the semiconductor memory device. More specifically, the column decoder 15 receives and Decode a second input column address RAi (wherein 2, 3, ..., η), and activate a normal word line activation signal (NWE) corresponding to the position of the input column according to the decoding result. Control circuit 25. Receive a row of block address (CBA) and a control signal as inputs, and accordingly output the corresponding control signal to the secondary decoders 212, 222, 232, 242 in response. The secondary decoders 212, 222, 232, 242 receive The control signal from the control circuit 25 and a first column address RAi (where 丨 :: ^ and 丨) are generated, and then control signals are output to the word line driver 111, 121, 131, 141. According to the secondary decoding Control signals of the decoders 212, 222, 232, and 242 and from the column decoder 15 0 NWE signal, word line driver 丨 丨, [2 1, 1, 3 1, 1, 141 will choose to start one or more of the secondary memory blocks 1 丨 0, 120, 130, 140 with the same column address Corresponds to the character lines wl-0, WL-1, WL-2, and WL-3 to change the page length of the semiconductor memory device. For example, in the exemplary embodiment of FIG. 2, it is assumed that the rows of each memory block The number of addresses is η-2, and then the character line of one of the secondary memory blocks can be activated to obtain a 2η · 2 page length; (11) The corresponding character line of two secondary memory blocks can be activated to obtain 2η 1 Page length; (iii) The corresponding character lines of all four secondary memory blocks can be activated to obtain a 2n page length. Therefore, in the exemplary embodiment of FIG. 2, according to the control signal and to
O:\89\89113.DOC -12- 1233619 控制電路250之CBA輸入之組合,以控制電路25〇選擇驅動 —或多個字元線驅動器lu、121、131、141。故可調整具 相同列位址之啟動字元線數,藉以如所期般改變半導體記 憶裝置分頁長度。 “圖3係依本發明之一具體實施例之記憶單元陣列區塊之 %路圖,其可利用根據律定操作模式改變半導體記憶裝置 分頁長度。圖3之電路圖闡釋圖2之一般架構之一特別施 行。例如圖3闡釋圖2之控制電路25〇之一具體實施例。此 外,在圖3中,利sMRS(模式暫存器組)產生輸入至控制電 路之控制信號,其中可由使用者設定與控輸出之 控制#號,以如所期般改變分頁長度。 更特別言之,參閱圖3,半導體記憶裝置之記憶區塊3〇〇 包括邏輯分割為複數個次記憶體區塊110、12〇、13〇、14〇 之記憶陣列,其中可利用區塊位址CBA0、CBA;uf次記憶 區塊定址。在示例性具體實施例中,所示4個次記憶區塊(區 塊0、1、2與3)係供闡釋之用,但已知記憶區塊3〇〇可具較 多或較少次記憶區塊。 記憶區塊300進一步包括複數個字元線驅動器m、121、 131、141,其中各字元線驅動器lu、121、、i4i均與 複數個次記憶區塊110、12〇、13〇、14〇之一以及複數個次 解碼器312、322、332、342有關,其中各次解瑪器3 12、322、 332、342均與字元線驅動器m、ni、m、ι4ι之一有關。 各對應之次解碼器/字元線驅動器對均具一字元線控制電 路,俾根據自控制電路360輸出之控制信號啟動一相關次記O: \ 89 \ 89113.DOC -12-1233619 The combination of the CBA inputs of the control circuit 250 selects the drive by the control circuit 250—or multiple word line drivers lu, 121, 131, 141. Therefore, the number of start word lines with the same column address can be adjusted to change the page length of the semiconductor memory device as expected. "Figure 3 is a% road map of a memory cell array block according to a specific embodiment of the present invention, which can change the paging length of a semiconductor memory device according to the law of operation mode. The circuit diagram of Figure 3 illustrates one of the general architectures of Figure 2 Special implementation. For example, FIG. 3 illustrates a specific embodiment of the control circuit 25 in FIG. 2. In addition, in FIG. 3, the sMRS (mode register group) generates a control signal input to the control circuit, which can be set by the user. The control # of the control output changes the page length as expected. More specifically, referring to FIG. 3, the memory block 300 of the semiconductor memory device includes logical division into a plurality of secondary memory blocks 110, 12 Memory arrays of 0, 13, and 14, in which block addresses CBA0, CBA can be used; uf times of memory block addressing. In the exemplary embodiment, 4 times of memory blocks (block 0, block 0, 1, 2 and 3) are for explanation, but it is known that the memory block 300 may have more or less memory blocks. The memory block 300 further includes a plurality of word line drivers m, 121, 131 , 141, where each character line driver lu 121, and i4i are related to one of a plurality of secondary memory blocks 110, 120, 13 and 14, and a plurality of secondary decoders 312, 322, 332, and 342, among which each of the decoders 3, 12, 322, 332 and 342 are related to one of the word line drivers m, ni, m, and ι4ι. Each corresponding decoder / word line driver pair has a word line control circuit, and according to the control output from the control circuit 360 output Signal start-up
O:\89\89113.DOC -13- 1233619 憶區塊之一字元線。 概言之,控制電路360選擇控制字元線控制電路,以選擇 啟動列位址與列解石馬器! 5 〇解碼之列位址相同之次記憶區 塊^(^^(^^(^扣之一或多條對應字元線界^卜…/卜 WL_2、WL_3,藉以改變半導體記憶裝置之分頁長度。一更 特別言之,列解碼器150接收並解碼一第二輸入列位址 1^(其中卜2,3,.",11),並根據解碼結果,啟動—對應於該輸 入列位置之正規子元線致動信號(NWE)。控制電路接收 行區塊位址CBA0與CBA1以及由控制信號產生器35〇產生 之控制信號PL0B與PL1B為輸入,並接著根據輸入區塊位址 與控制信號輸出控制信號至次解碼器3 12、322、332、342。 次解碼器312、322、332、342接收來自控制電路36〇之控制 信號與一第一列位址RAi(其中丨钊與丨),並接著產生輸出至 子元線驅動器111、12 1、13 1、141之控制信號。 根據來自次解碼器312、322、332、342之控制信號以及 來自列解碼器150之NWE信號,字元線驅動、ι21、 13 1、141將選擇啓動具相同列位址之次記憶區塊丨丨〇、丨2〇、 130、140之一或多條對應字元線wl__〇、WL—l、WL—2、 WL一3 ’以改變半導體記憶裝置之分頁長度。 控制信號產生器350包括一指令緩衝器35 1、一位址缓衝 器352及一模式暫存器組(MRS) 353。一記憶體控制器(或例 如CPU)傳遞一預定指令信號及位址信號至控制信號產生器 350 °指令緩衝器351接收預定指令信號,位址緩衝器352自 記憶體控制器接收外部位址信號。MRS 353自指令緩衝器 O:\89\89113.DOC -14- 1233619 351與位址緩衝器352接收指令與位址信號,接著根據輸入 指令與位址信號輸出控制信號PLOB與PL1B。O: \ 89 \ 89113.DOC -13- 1233619 One character line of the memory block. In summary, the control circuit 360 selects the control word line control circuit to select the activation of the column address and the column calcite horse! 5 〇 Decoded sub-memory block with the same address ^ (^^ (^^ (^ buckle one or more of the corresponding character line boundaries ^… / WL_2, WL_3, to change the page length of the semiconductor memory device More specifically, the column decoder 150 receives and decodes a second input column address 1 ^ (wherein 2, 3,. &Quot;, 11), and starts according to the decoding result—corresponding to the input column position The normal sub-element line activation signal (NWE). The control circuit receives as input the row block addresses CBA0 and CBA1 and the control signals PL0B and PL1B generated by the control signal generator 35, and then according to the input block address and The control signal outputs the control signal to the secondary decoder 3 12, 322, 332, 342. The secondary decoder 312, 322, 332, 342 receives the control signal from the control circuit 36 and a first column address RAi (where丨), and then generate control signals output to the sub-line drivers 111, 12 1, 13 1, 141. According to the control signals from the secondary decoders 312, 322, 332, 342 and the NWE signals from the column decoder 150, Word line driver, ι21, 13 1, 141 will choose to start with the same column address One or more corresponding word lines wl__〇, WL-1, WL-2, WL-3 'of the secondary memory block 丨 丨 〇, 丨 20, 130, 140 to change the page length of the semiconductor memory device. Control The signal generator 350 includes an instruction buffer 351, an address buffer 352, and a mode register group (MRS) 353. A memory controller (or, for example, a CPU) transmits a predetermined instruction signal and an address signal. To the control signal generator 350 ° instruction buffer 351 receives the predetermined instruction signal, and the address buffer 352 receives the external address signal from the memory controller. MRS 353 from the instruction buffer O: \ 89 \ 89113.DOC -14-1233619 351 and address buffer 352 receive instructions and address signals, and then output control signals PLOB and PL1B according to the input instructions and address signals.
控制電路360較佳包括複數個反相器361、362、365、366 及複數個NAND電路363、364、367、368。反相器361接收 一行區塊位址補數為輸入,反相器362接收一行區塊位址 CBA0為輸入。NAND電路363接收反相器361之輸出信號及 控制信號PL0B與PL1B為輸入。NAND電路364接收反相器 362之一輸出信號及控制信號PL0B與PL1B為輸入。反相器 365接收一行區塊位址補數CBA1B為輸入,反相器366接收 一行區塊位址CBA1為輸入。NAND電路367接收反相器365 之一輸出信號及控制信號PL1B為輸入。NAND電路368接收 反相器366之一輸出信號及控制信號凡⑺為輸入。 §己憶區塊3 0 0進一步包括一預解碼器3 7 5、複數個行解碼 器371、372、373、374及複數個邏輯電路381、382、383、 3 84、39i、392、393、394、395、396、397、3 98,以下將The control circuit 360 preferably includes a plurality of inverters 361, 362, 365, 366 and a plurality of NAND circuits 363, 364, 367, 368. Inverter 361 receives a row of block address complements as input, and inverter 362 receives a row of block address CBA0 as input. The NAND circuit 363 receives the output signals of the inverter 361 and the control signals PL0B and PL1B as inputs. The NAND circuit 364 receives as input an output signal from one of the inverters 362 and control signals PL0B and PL1B. The inverter 365 receives a row of block address complements CBA1B as an input, and the inverter 366 receives a row of block address CBA1 as an input. The NAND circuit 367 receives an output signal of an inverter 365 and a control signal PL1B as inputs. The NAND circuit 368 receives an output signal and a control signal from one of the inverters 366 as inputs. § The memory block 3 0 0 further includes a pre-decoder 3 75, a plurality of row decoders 371, 372, 373, 374 and a plurality of logic circuits 381, 382, 383, 3 84, 39i, 392, 393, 394, 395, 396, 397, 3 98, the following will
闡釋其功能。除供行區塊位址用之位址外,預解碼器3 7 5接 收並預解碼一行位址。例如在圖3之示例性具體實施例中, 假設位址總數為η,則因兩位址係供CB A使用,故輸入n-2 個行位址於預解碼器375。 邏輯電路392接收行區塊位址CBA0B與CBA1B為輸入。邏 輯電路394接收行區塊位址CBA0與CBA1B為輸入。邏輯電 路396接收行區塊位址CBA0B與CBA1為輸入。邏輯電路398 接收行區塊位址CBA0與CBA1為輸入。邏輯電路392、394、 396與398分別為反相器391、393、395與397反相。 O:\89\89113.DOC -15- 1233619 遴輯電路381接收反相器391之一於山> ^ 輸出^號與預解碼器 3乃之一輸出信號為輸入,並輸出一 虎至與第一次記憶體 £塊110有關之行解碼器371。邏輯 L饵電路382接收反相器393 之一輪出信號與預解碼器375之一輪 丄σ 铡出L唬為輸入,並輸出 一仏號至與第二次記憶體區塊丨2〇 。 ’關之仃解碼器372。邏 輯電路383接收反相器395之一輸出仿 别出L唬與預解碼器375之 一輸出信號為輸入,並輸出一信號 u主興弟二次記憶體區塊 13〇有關之行解碼器373。冑輯電路384接收反相器397之一 輸出信號與預解碼器375之—輸出信號為輸人,並輸出一信 號至與第四個次記憶體區塊丨4〇有關之行解碼器374。 。。在上述圖3之示例性具體實施例中,利用在控制信號產生 為350中之MRS 353產生之控制信號之改變,以如所期般調 整分頁長度。MRS 353將控制電路36()處理過之控制信號輸 出’俾如控制信號產生器350自記憶體控制器或例如⑽接 收之外部指令與位址之律定,施行一操作模式。 藉由範例可知,圖4A_4C闡釋各種操作模式,其中圖3之 半導體記憶裝置分頁長度可根據控制信號PL0B與PL1B而 變。特別言之,圖4A係用以闡釋一操作模式之表,其中兩 拴制L號PL0B與plib均被關閉/切斷(例如邏輯位準高),俾 獲得2分頁長度,其中視所示行區塊位址CBA0與CBA1之 k輯位準僅啟動次記憶體區塊之一。此外,圖4B係用以 闡釋操作模式之表,其中僅啟動/開啟控制信號PL〇B(例 如邏輯位準低),俾獲得211-1分頁長度,其中當行區塊位址 CB A1之邏輯位準低時,啟動兩個次記憶體區塊〇與1,或者Explain its function. In addition to the address for the row block address, the pre-decoder 375 receives and pre-decodes a row address. For example, in the exemplary embodiment of FIG. 3, assuming that the total number of addresses is n, since two bits are used by CB A, n-2 row addresses are input to the pre-decoder 375. The logic circuit 392 receives the row block addresses CBA0B and CBA1B as inputs. The logic circuit 394 receives the row block addresses CBA0 and CBA1B as inputs. Logic circuit 396 receives row block addresses CBA0B and CBA1 as inputs. The logic circuit 398 receives the row block addresses CBA0 and CBA1 as inputs. Logic circuits 392, 394, 396, and 398 are inverters 391, 393, 395, and 397, respectively. O: \ 89 \ 89113.DOC -15- 1233619 The selection circuit 381 receives one of the inverters 391 Yushan > ^ output ^ and the pre-decoder 3 or one output signal as input, and outputs a tiger to the The first memory is £ 110 for a trip to decoder 371. The logic L bait circuit 382 receives one round signal from the inverter 393 and one round from the pre-decoder 375, and outputs L 铡 as input, and outputs a sign to the second memory block. 'Guanzhiyu decoder 372. Logic circuit 383 receives the output of one of the inverters 395 and imitates the output signal of one of the pre-decoders 375 and the input signal, and outputs a signal u related to the secondary memory block 13. Decoder 373 . The edit circuit 384 receives one of the output signal of the inverter 397 and the pre-decoder 375-the output signal is input, and outputs a signal to the decoder 374 related to the fourth memory block 4o. . . In the above-mentioned exemplary embodiment of FIG. 3, the change of the control signal generated by the MRS 353 in the control signal generation 350 is used to adjust the page length as expected. The MRS 353 outputs the control signal processed by the control circuit 36 (), such as the rule of the control signal generator 350 from the memory controller or the external command and address received, for example, to implement an operation mode. As can be seen from the examples, FIGS. 4A-4C illustrate various operation modes, in which the page length of the semiconductor memory device of FIG. 3 can be changed according to the control signals PL0B and PL1B. In particular, FIG. 4A is a table for explaining an operation mode, in which the two tied L numbers PL0B and plib are both closed / cut off (for example, the logic level is high), and the page length is 2 pages. The k-levels of block addresses CBA0 and CBA1 only activate one of the secondary memory blocks. In addition, FIG. 4B is a table for explaining the operation mode, in which only the control signal PL0B is enabled / disabled (for example, the logic level is low), and the page length of 211-1 is obtained, in which the logic of the block address CB A1 When the level is low, start two secondary memory blocks 0 and 1, or
O:\89\89113.DOC -16- 1233619 田行區塊位址CB A1之邏輯位準高時,啟動兩個次記憶體區 塊2與3(在此模式下,與CBA〇無涉)。此外,圖4(::係用以闡 釋一操作模式之表,其中僅啟動/開啟控制信號pL1B(例如 ㉔輯位準低),俾獲得分頁長度,其中所有的次記憶體區 塊(〇、1、2與3)均啟動,與行區塊位址CB〇AACBA1之邏輯 位準無涉。 即將參閱圖3與圖4A、4B及4C之示例性具體實施例,進 一步詳述依本發明之半導體記憶裝置之各操作模式。參閱 圖3,控制信號產生器35〇接收一外部指令與位址,並利用 MRS 353響應於指令與位址產生預定控制信號凡⑽與 PL1B。控制電路36〇接收行區塊位址^^八〇與〔]8八1以及控制 乜唬PL0B與PL1B,接著輸出控制信號至次解碼器312、 322 332、342。次解碼器312、322、332、342根據來自控 制電路360之控制信號以及一第一列位址RAi(其中1=〇、 t擇啟動對應之字元線驅動器111、121、m、141。當自 解馬器1 5 0產生正規字元線致動信號NWE時,啟動之次解 :器輸出一字元線電源信號(ρχι)至一對應之字元線驅動 器俾啟動所選次記憶區塊之一對應纟元線机―〇、机—1、 WL—2、WL—3。換言之,字元線驅動器111、121、131、141 響應於自列解碼H 350產生之正規字元線致動信號nwe,將 對應之次解媽器312、322、332、342之輸出信號切換至一 被啟動之字元線,藉以啟動相關次記憶區塊之一字元線。 以下將參閱圖5與6進-步詳述依本發明之次解碼器與字元 線驅動器之示例性且體膏妳彳f 1夕J f生八體貫施例,例如可於圖3之裝置中施行O: \ 89 \ 89113.DOC -16- 1233619 When the logic level of the Tianxing block address CB A1 is high, two secondary memory blocks 2 and 3 are activated (in this mode, it has nothing to do with CBA〇) . In addition, FIG. 4 (: is a table used to explain an operation mode, in which only the control signal pL1B is activated / enabled (for example, the editing level is low), and the page length is obtained, in which all the sub-memory blocks (0, 1, 2 and 3) are all activated, regardless of the logical level of the row block address CB0AACBA1. Refer to the exemplary embodiments of FIGS. 3 and 4A, 4B, and 4C, which will be described in further detail in accordance with the present invention. Each operation mode of the semiconductor memory device. Referring to FIG. 3, the control signal generator 35o receives an external command and address, and uses MRS 353 to generate predetermined control signals Fan and PL1B in response to the command and address. The control circuit 36o receives The row block addresses are ^^ 80 and [] 88, 1 and the control bluffs PL0B and PL1B, and then output control signals to the secondary decoders 312, 322, 332, and 342. The secondary decoders 312, 322, 332, and 342 are based on The control signal of the control circuit 360 and a first column address RAi (where 1 = 0, t selects the corresponding word line driver 111, 121, m, 141 to start. When the self-horse dissector 1 50 generates regular word lines When the signal NWE is activated, the secondary solution is activated: the device outputs a word line of electricity Signal (ρχι) to a corresponding character line driver. Activate one of the selected secondary memory blocks corresponding to the line driver-0, machine-1, WL-2, WL-3. In other words, the character line driver 111, 121, 131, 141 In response to the normal word line activation signal nwe generated by the column decoding H 350, the output signals of the corresponding secondary decoders 312, 322, 332, 342 are switched to a activated word line, One of the character lines of the related secondary memory block is activated. The following will refer to FIGS. 5 and 6 for further details of an exemplary decoder and character line driver according to the present invention. The example of the occult body can be implemented in the device of FIG. 3, for example
O:\89\89ll3.DOC -17- 1233619 者。 一種具圖3示例性架構之半導體記憶裝置之操作模式可 選擇啟動次記憶區塊110、120、130、140之一,以獲得2n_2 分頁長度。特別言之,當關閉控制信號PL0B與PL 1B時(例 如邏輯”高’’狀態),僅有次記憶區塊110、120、130、140之 一根據行區塊位址CBA0與CBA1之邏輯狀態關閉,示如圖 4A。此外,在此操作模式下,根據行區塊位址CBA0與CBA1 之邏輯狀態啟動行解碼器371、372、3 73、374之一。 藉由示例,假設兩控制信號PL0B與PL1B均關閉(例如在 邏輯高狀態),且行區塊位址CBA0與CBA1均處於邏輯”低” 狀怨。在此情況下’ NAND閘363與367之輸出將為邏輯,’高,’, 導致次解碼器312被啟動(假設理所當然,輸入所需位址信 號RAi至次解碼器312)。接著次解碼器312將產生適當控制 信號,俾使字元線驅動器111啟動次記憶區塊丨丨〇之一字元 線WL一0。此外,由於行區塊位址〇]8八〇與(^]8人1均處於邏輯 低狀怨’故僅有邏輯電路3 92、3 91與3 8 1將運作,並因而 啟動行解碼器37:1。行解碼器371接收預解碼器375之行位址 貧汛,並接著於次記憶區塊11〇上之2n·2條行選擇線(csl) 中選擇一行選擇線(CSL)。亦即,對應於啟動之次記憶區塊 之半導體記憶裝置具2“分頁長度。例如在分頁模式操 作下,維持字元線(列)啟動,同時依序施加心2個行位址, 以存取被啟動列之記憶單元。 另-種具圖3不例性架構之半導體記憶裝置之操作模式 可選擇啟動兩個次記憶區塊,以獲得2„]分頁長度。特別言 O:\89\89U3.DOC -18- 1233619 之,若啟動控制信號PLOB(例如邏輯”低”狀態)並關閉控制 信號PL 1B(例如邏輯’’高狀態),則根據行區塊位址CB A1 B與 CBA1之邏輯狀態,將啟動兩個次記憶區塊,與行區塊位址 CBA0及CBA0B之邏輯狀態無涉,示如圖4B。更特別言之, 若行區塊位址CBA1具邏輯"低’’狀態,則啟動次記憶區塊 110與120之字元線WL—0與WL—1,與行區塊位址CBA0之邏 輯狀態無涉。此外,若行區塊位址CBA1具邏輯”高”狀態, 則啟動次記憶區塊130與140之字元線WL_2與WL—3,與行 區塊位址CBA0之邏輯狀態無涉。再者,在此操作模式下, 根據行區塊位址CBA0之邏輯狀態,可選擇啟動與啟動之次 記憶區塊有關之行解碼器。 藉由示例,假設器動控制信號PL0B(例如邏輯’f低π狀 態),並關閉控制信號PL1B(例如邏輯”高”狀態)。在此情況 下,由於將具”高”邏輯位準之控制信號PL1B輸入至控制電 路 360之兩NAND閘 363與 364,故各NAND電路之輸出將為 邏輯”高”狀態,與行區塊位址CBA0及CBA0B之邏輯狀態無 涉。進一步假設行區塊位址CBA1具邏輯”低’’狀態,故NAND 電路367之輸出將處於邏輯”高”狀態。在此情況下,由於各 NAND電路363、3 64與3 67之輸出為邏輯”高",故次解碼器 31 2與322被啟動(假設理所當然,輸入所需位址信號RAi至 次解碼器)。接著次解碼器3 12與322將產生適當控制信號, 俾使對應之字元線驅動器111與121啟動次記憶區塊110與 120之各字元線WL_0與WL_1。 此夕卜,當行區塊位址CBA1處於邏輯”低’’狀態並啟動次記 O:\89\89113.DOC -19- 1233619 隐區塊11G與12G時’行解碼器371與372應分別啟動,以獲 知刀頁長度。在一較佳具體實施例中,可根據行區塊位 址CBAG之邏輯狀㉟,於次記憶區塊1⑺或η◦之—上啟動一 仃k擇線(CSL)。例如在圖3中,若行區塊位址cba〇處於邏 輯低狀L,則至NAND電路392之輸入將為邏輯”高,,,因 此於_人σ己丨思單兀陣列區塊11〇上啟動自行解碼器371產生 之灯選擇線(CSL),並響應於行選擇線(CSL)選擇次記憶區 塊110之行線。接著,藉由改變行區塊位址cba〇為邏輯”高,,, 將因NAND電路394之所有輸入均為邏輯”高,,而關次記憶 區塊110之行解碼器37丨,並將啟動次記憶區塊12〇之行解碼 器 372 〇 因此,對圖4B所示之示例性操作模式而言,與啟動之字 元線有關之分頁長度為2n弋其係以圖4A之操作模式所得之 分頁長度的兩倍。亦即,若使用者需要具分頁長度之半 導體記憶裝置,則以控制信號產生器35〇產生一啟動控制信 號PL0B,並輸入至控制電路36〇,藉以改變半導體記憶裝 置分頁長度。 u ' 另一種具圖3示例性架構之半導體記憶裝置之操作模式 可選擇啟動四個次記憶區塊,以獲得2n分頁長度。特別古 之,若啟動控制信號PL 1B(例如邏輯,,低,’狀態),則將器動 所有的次記憶區塊11〇、120、130與140,與行區塊位址 CBAOB、CBAO、CBA1B及CBA1之邏輯狀態無涉,示如圖 4C。更特別言之,若控制信號PL1B為邏輯”低”,則控制電 路360之各NAND電路363、364、367與368之輸出將為邏輯 O:\89\89113 DOC -20- 1233619 ’’高’’,與行區塊位址CBAOB、CBAO、CBA1B及CBA1之邏 輯狀態無涉。在此操作模式下,將啟動次記憶區塊1丨〇、 120、130與 140之字元線 WL—0、WL—1、WL-2與 WL一3,與 行區塊位址CBA0及CBA1之邏輯狀態無涉。 此外’在此操作模式下,可根據行區塊位址CBA0及CBA1 之邏輯狀態’選擇啟動與啟動之次記憶區塊有關之行解碼 器。故是否啟動一次記憶區塊之一給定行選擇線(CSL),係 取決於行區塊位址CBA0及CBA1之邏輯狀態。故在此情況 下’半導體裝置具2n分頁長度。 圖3之示例性具體實施例之優點在於,由於控制信號產生 器350之施行具模式暫存器組353,故模式暫存器組353可輸 出控制信號’以根據位址與指令控制改變半導體裝置分頁 長度。 現將參閱圖5與6討論圖3中所示次解碼器與字元線驅動 器之示例性具體實施例。圖5係闡釋一本發明之一具體實施 例之次解碼器之電路圖。為闡釋與解析之故,圖5顯示圖3 之次解碼器312之一具體實施例。圖6係依本發明之一具體 實施例之一字元線驅動器之部分驅動器電路系統之電路 圖。 參閱圖5,次解碼器3 1 2包括一 NAND電路510、第一與第 一反相器520與530。NAND電路510接收一第一列位址 RAi(其中i=〇、1),並自控制電路36〇之财助電路363與367 輸出之控制信號。第一反相器52〇接收NAND電路51〇之輸出 信號,並產生一第一閘信號PXIDG。第二反相器53〇接收O: \ 89 \ 89ll3.DOC -17-1233619. An operation mode of a semiconductor memory device with the exemplary structure of FIG. 3 can be selected to activate one of the secondary memory blocks 110, 120, 130, and 140 to obtain a 2n_2 page length. In particular, when the control signals PL0B and PL 1B are turned off (for example, the logic “high” state), only one of the secondary memory blocks 110, 120, 130, and 140 is in accordance with the logical states of the row block addresses CBA0 and CBA1. Close, as shown in Figure 4A. In addition, in this operating mode, one of the row decoders 371, 372, 3 73, and 374 is activated according to the logical state of the row block addresses CBA0 and CBA1. By way of example, suppose two control signals PL0B and PL1B are both closed (for example, in a logic high state), and the row block addresses CBA0 and CBA1 are both logic "low". In this case, the outputs of NAND gates 363 and 367 will be logic, 'high,' , Causing the secondary decoder 312 to be activated (assuming, of course, the required address signal RAi is input to the secondary decoder 312). Then the secondary decoder 312 will generate an appropriate control signal to cause the word line driver 111 to start the secondary memory block 丨丨 〇 One word line WL-0. In addition, because the row block address 0] 800 and (^) 8 people 1 are in a low level of complaint, so there are only logic circuits 3 92, 3 91, and 3 8 1 will operate and thus activate the row decoder 37: 1. The row decoder 371 receives The row address of the decoder 375 is poor, and then a row selection line (CSL) is selected from the 2n · 2 row selection lines (csl) on the secondary memory block 110. That is, the secondary memory area corresponding to the activation The semiconductor memory device of the block has a 2 "page length. For example, in the paging mode operation, the word line (column) is maintained to be activated, and at the same time, two row addresses are sequentially applied to access the memory cell of the activated column. Another- The operation mode of a semiconductor memory device with the exemplary structure of FIG. 3 can be activated by two secondary memory blocks to obtain a 2 „] page length. In particular, O: \ 89 \ 89U3.DOC -18-1233619, if Start the control signal PLOB (for example, the logic “low” state) and turn off the control signal PL 1B (for example, the logic “high” state). According to the logic state of the row block addresses CB A1 B and CBA1, two secondary memory areas will be activated. The block has nothing to do with the logical state of the row block address CBA0 and CBA0B, as shown in Figure 4B. More specifically, if the row block address CBA1 has a logic "low" state, the secondary memory block 110 is started. And 120 word lines WL-0 and WL-1, and the logical state of the row block address CBA0 In addition, if the row block address CBA1 has a logic "high" state, the character lines WL_2 and WL-3 of the secondary memory blocks 130 and 140 are activated, and there is no relation with the logic state of the row block address CBA0. In addition, in this operating mode, according to the logical state of the row block address CBA0, it is possible to choose to start the row decoder related to the next-time memory block. By way of example, suppose the control signal PL0B (such as logic 'f low π state), and turn off the control signal PL1B (for example, logic "high" state). In this case, since the control signal PL1B with a "high" logic level is input to the two NAND gates 363 and 364 of the control circuit 360, the output of each NAND circuit will be in a logic "high" state, which is in line with the block level. The logic states of addresses CBA0 and CBA0B are not involved. It is further assumed that the row block address CBA1 has a logic "low" state, so the output of the NAND circuit 367 will be in a logic "high" state. In this case, since the outputs of the NAND circuits 363, 3 64, and 3 67 are logic "High", so the secondary decoders 31 2 and 322 are activated (assuming, of course, that the desired address signal RAi is input to the secondary decoder). Then the secondary decoders 3 12 and 322 will generate appropriate control signals, so that the corresponding word line drivers 111 and 121 activate the word lines WL_0 and WL_1 of the secondary memory blocks 110 and 120. Furthermore, when the row block address CBA1 is in a logic "low" state and the secondary record is started: O: \ 89 \ 89113.DOC -19- 1233619 The hidden block 11G and 12G 'row decoders 371 and 372 should be respectively Start to know the length of the blade page. In a preferred embodiment, according to the logical state of the row block address CBAG, start a k-selection line (CSL) on the next memory block 1⑺ or η◦. For example, in FIG. 3, if the row block address cba0 is at a logic low L, the input to the NAND circuit 392 will be a logic "high". The lamp selection line (CSL) generated by the self-decoder 371 is started at 110, and the row line of the secondary memory block 110 is selected in response to the row selection line (CSL). Next, by changing the row block address cba0 to a logic "high," all inputs of the NAND circuit 394 are logic "high," and the decoder 37 of the row memory block 110 is closed, and The decoder 372 of the secondary memory block 12 is activated. Therefore, for the exemplary operation mode shown in FIG. 4B, the page length related to the activated character line is 2n, which is obtained by the operation mode of FIG. 4A. Twice the page length. That is, if the user needs a semiconductor memory device with a page length, the control signal generator 35o generates an activation control signal PL0B and inputs it to the control circuit 36o to change the page length of the semiconductor memory device. u 'Another operation mode of the semiconductor memory device with the exemplary structure of FIG. 3 The memory can be activated four times to obtain a 2n page length. In particular, if the control signal PL 1B is activated (for example, logic, low, 'state), all secondary memory blocks 11, 120, 130, and 140 will be activated, and the row block addresses CBAOB, CBAO, The logic states of CBA1B and CBA1 are not involved, as shown in Figure 4C. More specifically, if the control signal PL1B is logic "low", the output of each NAND circuit 363, 364, 367, and 368 of the control circuit 360 will be logic O: \ 89 \ 89113 DOC -20-1233619 `` High '' ', Has nothing to do with the logical state of the row block addresses CBAOB, CBAO, CBA1B and CBA1. In this operation mode, the character lines WL-0, WL-1, WL-2, and WL-3 of the secondary memory blocks 1 丨 〇, 120, 130, and 140 will be activated, and the row block addresses CBA0 and CBA1 The logical state is not involved. In addition, in this operation mode, the row decoder related to the secondary memory block to be started can be selected according to the logic state of the row block addresses CBA0 and CBA1. Therefore, whether to start a given row selection line (CSL) for one memory block depends on the logic state of the row block addresses CBA0 and CBA1. Therefore, in this case, the 'semiconductor device has a 2n page length. The advantage of the exemplary embodiment of FIG. 3 is that, since the mode register group 353 is implemented by the control signal generator 350, the mode register group 353 can output a control signal 'to change the semiconductor device according to the address and instruction control. Page length. Exemplary embodiments of the secondary decoder and word line driver shown in FIG. 3 will now be discussed with reference to FIGS. 5 and 6. Fig. 5 is a circuit diagram illustrating a secondary decoder according to an embodiment of the present invention. For the sake of explanation and analysis, FIG. 5 shows a specific embodiment of the secondary decoder 312 of FIG. 3. FIG. 6 is a circuit diagram of a part of a driver circuit system of a word line driver according to a specific embodiment of the present invention. Referring to FIG. 5, the secondary decoder 3 1 2 includes a NAND circuit 510, first and first inverters 520 and 530. The NAND circuit 510 receives a first column of addresses RAi (where i = 0, 1) and outputs control signals from the financial assistance circuits 363 and 367 of the control circuit 36. The first inverter 52 receives the output signal of the NAND circuit 51 and generates a first gate signal PXIDG. The second inverter 53〇 receives
O:\89\89ll3 DOC -21 - 1233619 NAND電路510之輸出信號,並以一提昇位準產生一字元線 電源信號ΡΧί。次解碼器3丨2亦輸出一第二閘信號ρχΐΒ(其係 NAND電路510之輸出)。O: \ 89 \ 89ll3 DOC -21-1233619 The output signal of the NAND circuit 510 generates a word line power signal Pχί at an elevated level. The secondary decoders 3 and 2 also output a second gate signal ρχΐΒ (which is the output of the NAND circuit 510).
參閱圖6,一字元線驅動器600包括複數個M〇s電晶體 MN1、MN2、MN3、MN4。供應電源電壓vcc至M〇s電晶 體MN1之閘極。MOS電晶體MN1之第〜端子搞合至正規字 元線致動信號(NWE)線(如上述,NWE係由列解碼器150產 生)。MOS電晶體MN1之第二端子連結至m〇S電晶體MN2之 閘極端子。MOS電晶體MN2之第一端子連結至字元線電源 信號PXI(例如自次解碼器312輸出)。MOS電晶體MN2之第 二端子連結至字元線WL。MOS電晶體MN3之閘極連結至第 一閘信號卩又100(例如自解碼器312輸出)。]^03電晶體^^4 之閘極連結至第二閘信號PXIB(例如自解碼器3 12輸出)。於 圖3中之一給定字元線驅動器ill、121、131、141中施行之 字元線驅動器電路600數等於在對應之次記憶區塊上之字 元線數。 次解碼器3 12與字元線驅動器600(屬於字元線驅動器111) 響應於第一列位址RAi(其中i = 〇與1)與控制電路360之輸出 信號啟動字元線WL_0。更特別言之,次解碼器3 12與字元 線驅動器600操作如後。次解碼器3 12根據輸入控制信號與 列位址產生第一閘信號PXIDG、第二閘信號PXIB,及字元 線電源信號PXI。特別言之,僅當第一列位址RAi(其中i = 〇 與1)與圖3之NAND電路363及367之輸出信號處於邏輯,,高,, 狀態時,第一閘信號PXIDG與字元線電源信號PXI處於邏輯 O:\89\89U3.DOC -22- 1233619 π高"狀態。在此情況下,用於預充電字元線WL之第二閘信 號PXIB處於邏輯’’低”狀態。 在圖6之字元線驅動器600中,供應電源電壓VCC至MOS 電晶體MN1之閘極,故MOS電晶體MN1恒導通。當第一閘 信號PXIDG與字元線電源信號PXI處於邏輯’’高’’狀態,且第 二閘信號PXIB處於邏輯”低”狀態時,MOS電晶體MN3導 通,且MOS電晶體MN4關閉。因而在此情況下,字元線電 源信號PXI與字元線WL互相連結,並啟動字元線WL。 換言之,若第一閘信號PXIDG與字元線電源信號PXI處於 邏輯”低”狀態,且第二閘信號PXIB處於邏輯”高’’狀態,則 MOS電晶體MN3關閉,且MOS電晶體MN4導通。因而在此 情況下,字元線WL關閉。 在上述圖3之示例性具體實施例中,控制信號產生器350 之施行具半導體記憶裝置之MRS 353,俾產生可改變分頁 長度之控制信號。已知其它用以產生控制信號之方法與裝 置均可依本發明施行之。例如圖7闡釋依本發明之另一具體 實施例,利用線接合施行之控制信號產生器電路700 ;圖8 則闡釋依本發明之另一具體實施例,利用熔絲施行之控制 信號產生器。 更特別言之,圖7所示控制信號產生器700包含複數個接 合墊 710a、710b、710c、720a、720b、720c及反相器 711、 721。接合墊710a與720a連結於電源電壓VCC,接合墊710b 與720b則接地。反相器711之一輸入端子連結至接合墊 710c,反相器721之一輸入端子則連結至接合墊720c。反相 O:\89\89113.DOC -23 - 1233619 器711與721分別輸出控制信號杜⑽與凡⑺。 連結接合墊71〇c至墊71〇a或墊71〇b,以及連結接合墊 720c至墊720a或720b之製程,係於半導體記憶裝置製造期 間施行。第一控制信號PL0B與第二控制信號凡⑺之邏輯狀 態將視接合墊之連結而定。例如圖7所示,其中接合墊71 k 連結至接合墊710b,接合墊720c連結至接合墊72〇a,設定 控制#唬PL1B於邏輯”高”狀態,並設定控制信號孔⑽於邏 輯”低”狀態。因此,若圖7之控制信號產生器電路7〇〇係於 圖3之示例性具體實施例中施行,則半導體記憶裝置分頁長 度將為2n](見圖4B)。理所當然地,各接合墊間連結可變, 以產生不同邏輯狀態之控制信號,獲得所要的分頁長度。 已知接合墊與電力接腳(VCC、VSS)間之連結,可由金屬或 線接合為之。 參閱圖8,依本發明之另一具體實施例之控制信號產生器 800具二極體耦合MOS電晶體MP1與MP2、雷射溶絲812與 822,及反相器813與823。MOS電晶體MP1具二極體輕合連 結,其中Μ Ο S電晶體Μ P1之閘極與汲^極相互連結,且甘源 極連結至電源電壓VCC。雷射熔絲812連結於MOS電晶體 Μ Ρ 1之〉及極與接地電壓間。反相8 1 3將Μ Ο S電晶體Μ ρ 1及 極端子之信號反相,並輸出控制信號PL 1B。 類似地,MOS電晶體MP2亦具二極體耦合連結,其中M〇s 電晶體MP2之閘極與汲極相互連結,且其源極連結至電源 電壓VCC。雷射熔絲822連結於MOS電晶體MP2之汲極與接 地電壓間。反相器823將MOS電晶體MP2汲極端子之信號反 O:\89\89U3.DOC -24- 1233619 相’並輸出控制信號PLOB。 控制信號PL0B與PL1B之邏輯狀態端視雷射熔絲狀態而 定。更特別言之,若切斷雷射熔絲812或822,則對應之控 制信號將具邏輯,,低,,狀態,若未切斷雷射熔絲812或822, 則對應之控制信號將具邏輯”高”狀態。例如假設雷射熔絲 連、、Ό且给射熔絲822切斷,則控制信號pl〇b處於邏輯,, 低"狀態,且控制信號孔⑶處於邏輯,,高”狀態。在此情況 下,若控制信號產生器電路800係於圖3之示例性具體實施 例中施行,則半導體記憶裝置分頁長度將為2n、見圖4Β)。 理所當然地,控制信號產生器800適於根據雷射熔絲812與 822邏輯狀態產生具不同邏輯狀態之控制信號。 圖9係依本發明之一具體實施例之用以改變半導體記憶 波置刀頁長度之方法之高階流程圖。概言之,一種用以改 ’交半導體C憶裝置分頁長度之方法包括產生律定複數個分 頁長度操作模式之一之第一控制信號(步驟91〇);根據第一 控制k唬與一區塊位址產生第二控制信號(步驟92〇);以及 接著依律疋之分頁長度操作模式,利用第二控制信號改變、 半導體裝置分頁長度(步驟930)。 在本毛明之一具體實施例中,產生第一控制信號之步驟(步 驟910)包括根據例如由記憶體控制器或cpu接收之外部指令 ”位址產生第一控制信號。例如步驟可利用M3,由 圖3所不控制彳§號產生器35〇為之。在本發明之其它具體實 施例中’可利用裝置或方法如控制信號產生器電路以及例 如參閱圖7或8所述方法產生第_控制信號。Referring to FIG. 6, a word line driver 600 includes a plurality of Mos transistors MN1, MN2, MN3, and MN4. The power supply voltage vcc is supplied to the gate of the Mos transistor MN1. The first ~ terminals of the MOS transistor MN1 are connected to the regular word line actuation signal (NWE) line (as described above, the NWE is generated by the column decoder 150). The second terminal of the MOS transistor MN1 is connected to the gate terminal of the MOS transistor MN2. The first terminal of the MOS transistor MN2 is connected to the word line power signal PXI (e.g., output from the secondary decoder 312). The second terminal of the MOS transistor MN2 is connected to the word line WL. The gate of the MOS transistor MN3 is connected to the first gate signal 卩 100 (for example, output from the decoder 312). The gate of the ^ 03 transistor ^^ 4 is connected to the second gate signal PXIB (for example, output from the decoder 3 12). The number of word line driver circuits 600 implemented in a given word line driver ill, 121, 131, 141 in FIG. 3 is equal to the number of word lines on the corresponding secondary memory block. The secondary decoder 312 and the word line driver 600 (belonging to the word line driver 111) activate the word line WL_0 in response to the first column address RAi (where i = 0 and 1) and the output signal of the control circuit 360. More specifically, the sub-decoder 312 and the word line driver 600 operate as follows. The secondary decoder 312 generates a first gate signal PXIDG, a second gate signal PXIB, and a word line power signal PXI according to the input control signal and the column address. In particular, only when the first column address RAi (where i = 0 and 1) and the output signals of the NAND circuits 363 and 367 of FIG. 3 are in the logic, high, and state, the first gate signal PXIDG and the character The line power signal PXI is in a logic O: \ 89 \ 89U3.DOC -22-1233619 π high " state. In this case, the second gate signal PXIB for the pre-charged word line WL is in a logic “low” state. In the word line driver 600 of FIG. 6, the power supply voltage VCC is supplied to the gate of the MOS transistor MN1. Therefore, the MOS transistor MN1 is always on. When the first gate signal PXIDG and the word line power signal PXI are in a logic "high" state, and the second gate signal PXIB is in a logic "low" state, the MOS transistor MN3 is on. And the MOS transistor MN4 is turned off. Therefore, in this case, the word line power signal PXI is connected to the word line WL and the word line WL is activated. In other words, if the first gate signal PXIDG and the word line power signal PXI In the logic "low" state and the second gate signal PXIB is in the logic "high" state, the MOS transistor MN3 is turned off and the MOS transistor MN4 is turned on. Therefore, in this case, the word line WL is turned off. In the exemplary embodiment of FIG. 3 described above, the control signal generator 350 implements the MRS 353 with a semiconductor memory device, and generates a control signal that can change the page length. It is known that other methods and devices for generating control signals can be implemented according to the present invention. For example, FIG. 7 illustrates a control signal generator circuit 700 implemented by wire bonding according to another embodiment of the present invention, and FIG. 8 illustrates a control signal generator implemented by fuses according to another embodiment of the present invention. More specifically, the control signal generator 700 shown in FIG. 7 includes a plurality of bonding pads 710a, 710b, 710c, 720a, 720b, 720c, and inverters 711, 721. The bonding pads 710a and 720a are connected to the power supply voltage VCC, and the bonding pads 710b and 720b are grounded. One input terminal of the inverter 711 is connected to the bonding pad 710c, and one input terminal of the inverter 721 is connected to the bonding pad 720c. Inverted O: \ 89 \ 89113.DOC -23-1233619 The controllers 711 and 721 output control signals Du and Fan respectively. The process of connecting the bonding pads 71oc to 71oa or 71b, and the bonding pads 720c to 720a or 720b are performed during the manufacture of semiconductor memory devices. The logic state of the first control signal PL0B and the second control signal will depend on the connection of the bonding pads. For example, as shown in FIG. 7, the bonding pad 71k is connected to the bonding pad 710b, the bonding pad 720c is connected to the bonding pad 72〇a, and the control #bl PL1B is set to a logic “high” state, and the control signal hole is set to a logic “low” "status. Therefore, if the control signal generator circuit 700 of FIG. 7 is implemented in the exemplary embodiment of FIG. 3, the page length of the semiconductor memory device will be 2n] (see FIG. 4B). As a matter of course, the connection between the bonding pads is variable to generate control signals of different logic states to obtain a desired page length. It is known that the connection between the bonding pad and the power pin (VCC, VSS) can be connected by metal or wire. Referring to FIG. 8, a control signal generator 800 according to another embodiment of the present invention has two diode-coupled MOS transistors MP1 and MP2, laser melting wires 812 and 822, and inverters 813 and 823. The MOS transistor MP1 has a light-emitting diode connection, in which the gate and the drain of the MOS transistor MP1 are connected to each other, and the source is connected to the power supply voltage VCC. The laser fuse 812 is connected between the MOS transistor MP1 and the pole and the ground voltage. The inversion 8 1 3 inverts the signals of the MOS transistor M ρ 1 and the terminal, and outputs a control signal PL 1B. Similarly, the MOS transistor MP2 also has a diode coupling connection, in which the gate and the drain of the Mos transistor MP2 are connected to each other, and its source is connected to the power supply voltage VCC. The laser fuse 822 is connected between the drain of the MOS transistor MP2 and the ground voltage. The inverter 823 inverts the signal of the MOS transistor MP2 drain terminal O: \ 89 \ 89U3.DOC -24-1233619 phase 'and outputs the control signal PLOB. The logic state of the control signals PL0B and PL1B depends on the laser fuse status. More specifically, if the laser fuse 812 or 822 is cut off, the corresponding control signal will have a logic, low, and status. If the laser fuse 812 or 822 is not cut off, the corresponding control signal will have a Logic "high" state. For example, if the laser fuse is connected, and the laser fuse 822 is cut off, the control signal pl0b is in a logic ", low" state, and the control signal hole ⑶ is in a "logic, high" state. In this case Next, if the control signal generator circuit 800 is implemented in the exemplary embodiment of FIG. 3, the page length of the semiconductor memory device will be 2n (see FIG. 4B). Naturally, the control signal generator 800 is adapted to The logic states of the fuses 812 and 822 generate control signals with different logic states. Fig. 9 is a high-level flowchart of a method for changing the length of a semiconductor memory wave blade according to a specific embodiment of the present invention. The method for changing the page length of the IC memory device includes generating a first control signal of one of the plurality of page length operation modes (step 91); generating a first control signal according to the first control k and a block address. Two control signals (step 92); and then according to the page length operation mode, the second control signal is used to change the page length of the semiconductor device (step 930). In generating step (step 910) comprises generating a first control signal in accordance with an external command "received from the memory controller or the cpu address of the first control signal. For example, steps M3 can be used, which is not controlled by the 彳 § generator 35 which is not controlled in FIG. 3. In other embodiments of the present invention, a device or method such as a control signal generator circuit and a method such as that described with reference to Figs. 7 or 8 can be used to generate the _th control signal.
O:\89\891I3.DOC -25- 1233619 此外’產生第二控制信號之步驟(步驟920)可參閱諸如圖 3所述為之,藉此使付控制電路處理來自控制信號產生器之 控制信號及一行區塊位址,產生可選擇控制記憶區塊之各 子元線控制電路之第一控制信號。再者,響應於第二控制 4吕號调整分頁長度之步驟(步驟930)較佳包括響應於第二控 制信號,選擇啟動記憶區塊中具相同列位址之一或多條對 應字元線,藉以改變半導體記憶裝置分頁長度。 圖1 0闡釋得以施行本發明之記憶系統之簡略方塊圖。記 憶系統1000包括一 CPU 1001、記憶體控制器1002及複數個 吕己憶模組1003。記憶模組1003包括施行本發明之複數個半 導體記憶裝置1004。CPU 1001可為微處理器單元(MPU)或 網路處理單元(NPU)等。CPU 1001經第一匯流排系統B1(例 如控制匯流排、資料匯流排、位址匯流排)連結至記憶體控 制器1002,記憶體控制器1〇〇2經第二匯流排系統B2(控制匯 流排、資料匯流排、位址匯流排)連結至記憶模組丨〇〇3。在 圖10之示例性架構中,CPU 1001控制記憶體控制器1 〇〇2, #己憶體控制器1002則控制記憶體ι〇〇4(但已知CPU可用於直 接控制記憶體,無需使用個別記憶體控制器)。 在圖10之示例性具體實施例中,各記憶模組丨〇〇3均可代 表例如一記憶庫,且一給定記憶模組1003之各記憶裝置 1004均可代表得以施行本發明之記憶裝置。在此情況下, 各A憶裝置1 〇〇4均可被邏輯分割為複數個次記憶區塊,並 如上述般受控而改變分頁長度。用以施行記憶存取及/或改 變分頁長度之控制電路系統均可位於記憶裝置丨〇〇4内。O: \ 89 \ 891I3.DOC -25- 1233619 In addition, the step of generating the second control signal (step 920) can be referred to, for example, as described in FIG. 3, so that the control circuit processes the control signal from the control signal generator. And a row of block addresses to generate a first control signal that can selectively control each sub-element line control circuit of the memory block. Furthermore, the step of adjusting the page length in response to the second control number 4 (step 930) preferably includes, in response to the second control signal, selecting one or more corresponding word lines with the same column address in the memory block to be activated. To change the page length of the semiconductor memory device. FIG. 10 illustrates a simplified block diagram of a memory system in which the present invention can be implemented. The memory system 1000 includes a CPU 1001, a memory controller 1002, and a plurality of Lu Jiyi modules 1003. The memory module 1003 includes a plurality of semiconductor memory devices 1004 for implementing the present invention. The CPU 1001 may be a microprocessor unit (MPU) or a network processing unit (NPU). The CPU 1001 is connected to the memory controller 1002 via the first bus system B1 (such as the control bus, the data bus, and the address bus), and the memory controller 1002 via the second bus system B2 (control bus (Data bus, data bus, address bus) are connected to the memory module. In the exemplary architecture of FIG. 10, the CPU 1001 controls the memory controller 1002, and the memory controller 1002 controls the memory ι〇〇4 (but it is known that the CPU can be used to directly control the memory without using Individual memory controller). In the exemplary embodiment of FIG. 10, each memory module 〇003 may represent, for example, a memory bank, and each memory device 1004 of a given memory module 1003 may represent a memory device capable of implementing the present invention. . In this case, each A memory device 1004 can be logically divided into a plurality of secondary memory blocks, and the page length can be changed as controlled as described above. The control circuit system for performing memory access and / or changing the page length can be located in the memory device.
O:\89\89I13.DOC -26- 1233619 在一較佳具體實施例中,—記憶模組之記憶裝置可具x8 位凡組織,同時另一記憶模組之記憶裝置可具川位元組 、哉亦即’不同的§己憶模組可以不同的位元組織運作。 在本發明之另-具體實施例中,記憶系統可包括一或多 個個別半導體記憶裝置(取代如圖1〇所示具複數個記憶裝 置之記憶模&),卩及-巾纟處理單元(無記憶體控制器)。 在此具體實施例中,記憶裝置直接與中央處理單元通聯。 此卜 半一體3己憶裝置可具X 8位元組織,同時另一半導 體記憶裝置可具><16位元組織。亦即,不同的記憶模組可以 不同的位元組織運作。 在另-具體實施射,依本發明之記憶线可包括直接 與。己隐體控制器(無CPU)通聯之一或多個個別半導體記憶 裝置(取代如圖1 〇所示具複數個記憶裝置之記憶模組)。在此 具體實施例中,一記憶裝置可具雜元組織,同時另一記 憶裝置寸具X1 6位元組織。 此處雖已參閱隨附圖式描述闡釋性具體實施例,應知本 發明不以此處所述精確系統與方法具體實施例為限,熟悉 此技藝者,在不悖離本發明之範疇或精神下,可作各種其 它改變與改良。並欲將所有此類改變與改良納入隨附之申 請專利範圍所界定之本發明之範嘴。 【圖式簡單說明】 圖ΙΑ、1B與1C係闡釋依先前技藝之半導體記憶裝置之階 層記憶架構之簡圖。 圖2係依本發明之一具體實施例之記憶單元陣列區塊架 O:\89\89ll3 DOC -27- 1233619 構簡圖’其可改變半導體記憶裝置分頁長度。 圖3係依本發明之一具體實施例之記憶單元陣列區塊之 電路圖’其可利用MRS(模式暫存器組)產生之控制信號改變 半導體記憶裝置分頁長度。 “圖4 A、4B與4C係闡釋圖3之記憶單元陣列區塊之各操作 模式之表圖’其中可獲得半導體記憶袭置之不同分頁長度。 圖5闡釋可於圖3之電路中施行之依本發明之一具體實施 例之次解碼器之電路圖。 圖6係可於圖3之電路中施行之依本發明之一具體實施例 之字元線驅動器之電路圖。 圖7闡釋依本發明之一具體實施例之控制信號產生器。 圖8闡釋依本發明之另一具體實施例之控制信號產生器。 圖9係依本發明之一具體實施例之用以改變半導體記憶 裝置分頁長度之方法之高階流程圖。 圖10蘭釋得以施行本發明之記憶系統之簡略方塊圖。 【圖式代表符號說明】 元件名稱 半導體記憶裝置 記憶庫 記憶單元陣列區塊 次記憶單元陣列區塊 字元線驅動器 元件編號 100 100A,100B,100C,100D l〇〇a , l〇〇b , 100c , 100d 110 , 120 , 130 , 140 li卜 m,m,141 112,122,132,142,212,222,232, 次解碼器 242,312,322,332,342 O:\89\89113.DOC -28- 1233619 150 列解碼器 200 , 300 記憶區塊 250 , 360 控制電路 350 , 800 控制信號產生器 351 指令缓衝器 352 位址缓衝器 353 模式暫存器組 361 , 362 , 365 ,366, 反相器 711 , 721 , 813 ,823 363 , 364 , 367 ,368 , 510 NAND電路 371〜374 行解碼器 375 預解碼器 381〜384 , 391〜 398 邏輯電路 520 第一反相器 530 第二反相器 600 字兀線驅動裔 700 控制信號產生器電路 710a,710b,710c, 720a,720b,720c 接合墊 812 , 822 雷射熔絲 1000 記憶系統 1001 中央處理單元(CPU) 1002 記憶體控制器 1003 記憶模組 1004 記憶體 O:\89\89113 DOC -29-O: \ 89 \ 89I13.DOC -26- 1233619 In a preferred embodiment, the memory device of the memory module can have x8 bits of organization, and the memory device of another memory module can have Sichuan bytes. , 哉 means' different § self-memory modules can operate in different bit organizations. In another embodiment of the present invention, the memory system may include one or more individual semiconductor memory devices (instead of the memory module & having multiple memory devices as shown in FIG. 10), and (No memory controller). In this specific embodiment, the memory device is directly in communication with the central processing unit. This semi-integrated 3 memory device may have an X 8-bit organization, while the other semiconductor memory device may have a > < 16-bit organization. That is, different memory modules can operate in different bit organizations. In another implementation, the memory line according to the present invention may include direct and. The hidden controller (without CPU) communicates with one or more individual semiconductor memory devices (replaces the memory module with multiple memory devices as shown in Figure 10). In this embodiment, one memory device may have a heterogeneous organization, while the other memory device has an X1 6-bit organization. Although reference has been made here to the illustrative embodiments, it should be understood that the present invention is not limited to the specific embodiments of the precise systems and methods described herein. Those skilled in the art will not deviate from the scope of the present invention or In spirit, various other changes and improvements can be made. It is intended to incorporate all such changes and improvements into the scope of the invention as defined by the scope of the accompanying patent application. [Schematic description] Figures IA, 1B, and 1C are diagrams illustrating the hierarchical memory architecture of a semiconductor memory device according to the prior art. FIG. 2 is a block diagram of a memory cell array block O: \ 89 \ 89ll3 DOC -27-1233619 according to a specific embodiment of the present invention, which can change the page length of a semiconductor memory device. FIG. 3 is a circuit diagram of a memory cell array block according to a specific embodiment of the present invention, which can use a control signal generated by an MRS (mode register group) to change the page length of a semiconductor memory device. "Figures 4A, 4B, and 4C are table diagrams illustrating the various operation modes of the memory cell array block of Figure 3 ', in which different page lengths of the semiconductor memory arrangement can be obtained. Figure 5 illustrates the operations that can be performed in the circuit of Figure 3 A circuit diagram of a secondary decoder according to a specific embodiment of the present invention. FIG. 6 is a circuit diagram of a word line driver according to a specific embodiment of the present invention that can be implemented in the circuit of FIG. 3. FIG. 7 illustrates a circuit according to the present invention. A control signal generator according to a specific embodiment. Fig. 8 illustrates a control signal generator according to another embodiment of the present invention. Fig. 9 is a method for changing the page length of a semiconductor memory device according to a specific embodiment of the present invention. High-level flowchart. Figure 10 A simplified block diagram of a memory system capable of implementing the present invention. [Illustration of Representative Symbols] Component Name Semiconductor Memory Device Memory Bank Memory Cell Array Block Secondary Memory Cell Array Block Word Line Driver Part numbers 100 100A, 100B, 100C, 100D 100a, 100b, 100c, 100d 110, 120, 130, 140 μm, m, 141 112, 122, 132, 142 212, 222, 232, secondary decoders 242, 312, 322, 332, 342 O: \ 89 \ 89113.DOC -28- 1233619 150 column decoder 200, 300 memory block 250, 360 control circuit 350, 800 control signal Generator 351 Instruction buffer 352 Address buffer 353 Mode register group 361, 362, 365, 366, inverter 711, 721, 813, 823 363, 364, 367, 368, 510 NAND circuit 371 ~ 374 line decoders 375 pre-decoders 381 ~ 384, 391 ~ 398 logic circuits 520 first inverter 530 second inverter 600 word line driver 700 control signal generator circuit 710a, 710b, 710c, 720a, 720b 720c bonding pads 812, 822 laser fuse 1000 memory system 1001 central processing unit (CPU) 1002 memory controller 1003 memory module 1004 memory O: \ 89 \ 89113 DOC -29-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0072093A KR100510496B1 (en) | 2002-11-19 | 2002-11-19 | Semiconductor memory device having the structure of being capable of converting page length according to specific mode, and method of converting page length of the semiconductor memory device |
US10/639,858 US6868034B2 (en) | 2002-11-19 | 2003-08-13 | Circuits and methods for changing page length in a semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200425162A TW200425162A (en) | 2004-11-16 |
TWI233619B true TWI233619B (en) | 2005-06-01 |
Family
ID=36501785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92131236A TWI233619B (en) | 2002-11-19 | 2003-11-07 | Circuits and methods for changing page length in a semiconductor memory device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2004171753A (en) |
CN (1) | CN100538885C (en) |
DE (1) | DE10354523A1 (en) |
TW (1) | TWI233619B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7793037B2 (en) * | 2005-05-31 | 2010-09-07 | Intel Corporation | Partial page scheme for memory technologies |
WO2007116439A1 (en) * | 2006-03-30 | 2007-10-18 | Fujitsu Limited | Semiconductor memory and memory system |
JP2008108417A (en) * | 2006-10-23 | 2008-05-08 | Hynix Semiconductor Inc | Low power dram and its driving method |
TWI417894B (en) * | 2007-03-21 | 2013-12-01 | Ibm | Structure and method of implementing power savings during addressing of dram architectures |
JP2009238323A (en) | 2008-03-27 | 2009-10-15 | Fujitsu Microelectronics Ltd | Semiconductor memory device, image processing system and image processing method |
CN101582295B (en) * | 2008-05-14 | 2012-04-18 | 新唐科技股份有限公司 | Method and system for data updating |
US8811110B2 (en) | 2012-06-28 | 2014-08-19 | Intel Corporation | Configuration for power reduction in DRAM |
US11210019B2 (en) | 2017-08-23 | 2021-12-28 | Micron Technology, Inc. | Memory with virtual page size |
US10394456B2 (en) | 2017-08-23 | 2019-08-27 | Micron Technology, Inc. | On demand memory page size |
CN110910923A (en) * | 2018-09-14 | 2020-03-24 | 北京兆易创新科技股份有限公司 | Word line decoding method and nonvolatile memory system |
CN109902041A (en) * | 2019-03-11 | 2019-06-18 | 中国核动力研究设计院 | A kind of SDRAM driver design method based on FPGA |
CN114645819B (en) * | 2022-05-19 | 2022-09-13 | 东方电气风电股份有限公司 | Wind power pitch control method, device and system and storage medium |
-
2003
- 2003-11-07 TW TW92131236A patent/TWI233619B/en not_active IP Right Cessation
- 2003-11-14 DE DE2003154523 patent/DE10354523A1/en not_active Ceased
- 2003-11-17 JP JP2003387074A patent/JP2004171753A/en active Pending
- 2003-11-19 CN CNB2003101163188A patent/CN100538885C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE10354523A1 (en) | 2004-06-17 |
CN1503272A (en) | 2004-06-09 |
CN100538885C (en) | 2009-09-09 |
TW200425162A (en) | 2004-11-16 |
JP2004171753A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6868034B2 (en) | Circuits and methods for changing page length in a semiconductor memory device | |
US6240039B1 (en) | Semiconductor memory device and driving signal generator therefor | |
US5856952A (en) | Integrated circuit memory devices including a plurality of row latch circuits and related methods | |
TWI233619B (en) | Circuits and methods for changing page length in a semiconductor memory device | |
CN112420094B (en) | Shared transistor wordline driver and related memory devices and systems | |
KR20040015901A (en) | Flash memory device having decoder to reduce chip area and to implement independent operation of each bank | |
KR100937600B1 (en) | Semiconductor memory device with high-speed operation and Memory system comprising the same | |
US7821812B2 (en) | Low-power DRAM and method for driving the same | |
KR100266899B1 (en) | Synchronous memory device | |
KR102498988B1 (en) | Memory device in which locations of the registers storing fail addresses are merged | |
JP4769548B2 (en) | Semiconductor memory device | |
JP2006503387A5 (en) | ||
US20050128858A1 (en) | Negative word line driver | |
KR100380777B1 (en) | Semiconductor memory device | |
KR101009337B1 (en) | Semiconductor memory device | |
US7187615B2 (en) | Methods of selectively activating word line segments enabled by row addresses and semiconductor memory devices having partial activation commands of word line | |
US9575880B2 (en) | Semiconductor memory device and memory system | |
KR100379545B1 (en) | Circuit for Controlling Wordline of SRAM device | |
JP6797010B2 (en) | Semiconductor device | |
US6147919A (en) | Semiconductor memory employing direct-type sense amplifiers capable of realizing high-speed access | |
JPH10289581A (en) | Semiconductor memory device | |
JP2000113672A (en) | Semiconductor memory device and column address decoding method in the device | |
JP3558526B2 (en) | Semiconductor storage device | |
US6963515B2 (en) | Method and device for a scalable memory building block | |
JP2003051188A (en) | Semiconductor memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |