Nothing Special   »   [go: up one dir, main page]

TWI222653B - Filed emission-type electron source - Google Patents

Filed emission-type electron source Download PDF

Info

Publication number
TWI222653B
TWI222653B TW91121896A TW91121896A TWI222653B TW I222653 B TWI222653 B TW I222653B TW 91121896 A TW91121896 A TW 91121896A TW 91121896 A TW91121896 A TW 91121896A TW I222653 B TWI222653 B TW I222653B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
surface electrode
electron source
carbide
Prior art date
Application number
TW91121896A
Other languages
Chinese (zh)
Inventor
Takuya Komoda
Yoshiyuki Takegawa
Koichi Aizawa
Takashi Hatai
Tsutomu Ichihara
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001290335A external-priority patent/JP2003100201A/en
Priority claimed from JP2001380355A external-priority patent/JP2003187688A/en
Priority claimed from JP2002083927A external-priority patent/JP3755474B2/en
Priority claimed from JP2002083928A external-priority patent/JP2003281993A/en
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Application granted granted Critical
Publication of TWI222653B publication Critical patent/TWI222653B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

A lower electrode (2) and surface electrode (7) composed of a layer-structured conductive carbide layer is formed on one principal surface side of the substrate (1) composed of an insulative substrate such as a glass or ceramic substrate. A non-doped polycrystalline silicon layer (3) is formed on the lower electrode (2). An electron transit layer (6) composed of an oxidized porous polycrystalline silicon is formed on the polycrystalline silicon layer (3). The electron transit layer (6) is composed of a composite nanocrystal layer including polycrystalline silicon and many nanocrystalline silicons residing adjacent to a grain boundary of the polycrystalline silicon. When voltage is applied between the lower electrode (2) and the surface electrode (7) such that the surface electrode (7) has a higher potential, electrons are injected from the lower electrode (2) toward the surface electrode (7), and emitted through the surface electrode (7) through the electron transit layer (6).

Description

1222653 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(1 ) 發明背景 l發明領域 本發明係關於場發射型電子源,藉由場發射現象發射 電子束。 2.習知技藝說明 以往,在場發射型電子源(以下簡稱爲「電子源」) 之技藝中,已知有諸如日本專利公告號2987140及日本專 利公開公告號2001 _ 126610中所揭示者。 曰本專利公告號2987140中所揭示的電子源包含下電 極、金屬薄膜構成之表面電極(上電極)、及設在下及表面電 極之間的電子傳送層(強場漂移場)。表面電極配置成與下電 極相對,並於其間插入電子傳送層。當某些電壓施加在下 與表面電極之間,以致於表面電極比下電極具有更高的電 位,在電極之間所造成的電場包含從下電極經由電子傳送 層流至表面電極之電子流。 舉例而言,使用氧化或氮化的多孔多晶矽層作爲電子 傳送層。在致動電子源時,當使表面電極曝露至真空空間 時,集極設置成與表面電極相對立。然後,DC電流施加於 表面與下電極之間,以致於表面電極比下電極具有更高的 電位,同時,另一 DC電流會施加於集極與表面電極之間’ 以致於集極比表面電極具有更高的電位。上述操作之結果 ,電子會從下電極注入至電子傳送層,然後,在電子傳送 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 秦 < 省* (請先閲讀背面之注意事項再填寫本頁)1222653 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the Invention (1) Background of the Invention l Field of the Invention The present invention relates to a field emission type electron source, which emits an electron beam through a field emission phenomenon. 2. Description of Known Skills In the past, techniques such as those disclosed in Japanese Patent Publication No. 2987140 and Japanese Patent Publication No. 2001_126610 are known in the field emission type electron source (hereinafter referred to as “electron source”). The electron source disclosed in Japanese Patent Publication No. 2987140 includes a lower electrode, a surface electrode (upper electrode) composed of a metal thin film, and an electron transporting layer (strong field drift field) provided between the lower and surface electrodes. The surface electrode is arranged to be opposed to the lower electrode, and an electron transporting layer is interposed therebetween. When some voltage is applied between the lower electrode and the surface electrode, so that the surface electrode has a higher potential than the lower electrode, the electric field created between the electrodes includes the flow of electrons from the lower electrode to the surface electrode via the electron transport layer. For example, an oxidized or nitrided porous polycrystalline silicon layer is used as the electron transport layer. When the electron source is actuated, when the surface electrode is exposed to the vacuum space, the collector is disposed to face the surface electrode. Then, a DC current is applied between the surface and the lower electrode, so that the surface electrode has a higher potential than the lower electrode, and at the same time, another DC current is applied between the collector and the surface electrode ', so that the collector is higher than the surface electrode Has a higher potential. As a result of the above operations, electrons will be injected into the electron transport layer from the lower electrode. Then, the paper size of the electron transport will be in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm). Qin < Province * (Please read the note on the back first) (Fill in this page again)

-4- 1222653 A7 _ B7 五、發明説明(2 ) (請先閲讀背面之注意事項再填寫本頁) 層內漂移之後,經由表面電極發射。諸如表面電極的表面 氧化等改變會造成發射電子的效率或電子發射效率劣化。 因此,表面電極典型上由化性上穩定的金屬所製成(舉例 而言,諸如黃金等貴重金屬)。在此情形中,表面電極的 厚度設定在約10 nm。 在電子源中,「二極體電流Ips」及「發射電流(發射 電子流)」等名詞通常分別意指在表面與下電極之間流動 的電流以及在集極與表面電極之間流動的電流。發射電流 Ie對二極體電流(Ie/Ips)之較大比例提供較高的電子發射效 率「(Ie/Ips) X 100(%)」。即使要施加於表面與下電極之間 的DC電壓在約10至20V的低範圍中,上述電子源仍然能 夠發射電子。因此,電子源能夠呈現對真空度具有低相依 性之增強的電子發射特徵,並穩定地發射電子而不會在電 子發射期間發生所謂的猝發現象。 經濟部智慧財產局員工消費合作社印製 電子源的下電極包括具有相當接近導體的電阻率之半 導體基底、以及形成於半導體基底的背面上之歐姆電極。 或者,下電極包括絕緣基底以及形成於絕緣基底上的金屬 導體層。 另一方面,日本專利公開公告號2001- 126610中所揭示 的電子源包括表面電極,表面電極係部份地包含碳或碳化 合物製成的碳區。此電子源能夠有利地防止過多的二極體 電流Ips以提供增強的電子發射效率。 如上所述之傳統的電子源係在真空密封狀態下使用。 關於此點,這些電子源的組裝製程牽涉到包含真空密封製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -5- 1222653 A7 _____B7_ 五、發明説明(3 ) 程(較佳地在約50(TC )之相當高溫的熱製程,這無可避免 地增加表面電極及/或下電極的電阻。所增加的電阻造成 難以在表面與下電極之間及/或在集極與表面電極之間適 當地施加電壓,造成劣化的電子發射特徵(諸如降低的發 射電流或電子發射效率)。 表面電極係金屬薄膜。如同前述電子源中一般,表面 電極的厚度設定在1〇ηιη。通常作爲表面電極之黃金薄膜牽 涉400t或更高溫之燒結。所造成的燒結會使薄膜的厚度均 勻度及連續性變差,因而增加表面電極的電阻,造成劣化 的電子發射特徵。已知鎢及鋁爲對此燒結具有高抵抗性之 金屬。但是,假使表面電極由鎢或銘製成時,電極的表面 將會遭受氧化,導致劣化的電子發射效率。 類似地,下電極具有增加的電阻。下述因素被假定爲 增加的電阻之原因。 金屬燒結。 因構成下電極的原子(金屬原子)朝向沈積於下電極上的 層(舉例而言,電子傳送層)之熱擴散而造成下電極的膜厚減 少0 因構成沈積於下電極上的層(舉例而言’電子傳送層 )之原子熱擴散至下電極而造成下電極的膜厚減少。 下電極的電阻率增加。 除了上述電子源之外,尙有藉由場發射現象以發射電 子之不同修改的電子源已經被揭示。舉例而言’已揭示的 電子源之一具有包含絕緣層作爲電子傳送層之MIM(金屬-絕 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 請 先 閲 背 面 之 注 意 事 項 再 填 窝 本 頁 經濟部智慧財產局員工消費合作社印製 6 - 1222653 A7 B7 五、發明説明(4 ) 緣體-金屬)結構。另一電子源具有MIS(金屬-絕緣體-半 導體),MIS包含設於電子傳送層與下電極之間的半導體層 經濟部智慧財產局員工消費合作社印製 慮及不同電子源之產業利用性時,需要提供增加的發 射電流及增強的電子發射效率,以助於降低耗電。在所有 上述電子源中,電子會經由表面電極發射。因此,藉由降 低表面電極內的電子散射而造成的能量損失,可以增加電 子發射效率。從此觀點而言,可以思及降低表面電極的厚 度而不會不利於裝置的特徵。舉例而言,日本專利公開公 告號2001-243901揭示根據上述方式提供增強的電子發射效 率之電子源。在此電子源中,表面電極包含具有平坦表面 之金屬薄膜部份、以及從金屬薄膜部份的表面突出之眾多 島狀凸部,凸部與薄膜部份連續地及一體地形成。但是, 此電子源之個別的金屬凸部會藉由金屬薄膜部份彼此連接 ,因此,金屬薄膜部份的膜厚會限制表面電極的電阻下限 値。因此,即使嘗試取得裝置特徵所需的表面電極之特定 電阻,仍然會有金屬薄膜部份的厚度無法被充份地減低或 電子發射效率無法被充份地加強之缺點。 發明槪述 慮及習知電子源的問題,因此,本發明的目的係提供 能夠抑制電子發射特徵劣化及取得增強的熱電阻之電子源 〇 本發明的另一目的係提供能夠抑制表面電極中的電阻 請 先 閲 背 面 之 注 意 2 頁 本紙張尺度適用中國國家標準(CNS ) A4規格(2ι〇χ:297公釐) 7- 1222653 A7 ___ B7 五、發明説明(5 ) 增加及取得增強的電子發射特徵之電子源。 爲了取得上述目的,根據本發明的一態樣,提供電子 源(場發射型電子源),其包含下電極、電子傳送層、及 表面電極。電子傳送層形成於下電極上並由複合奈米層構 成,複合奈米層包含多晶矽及一些與多晶矽的晶粒邊界相 鄰之奈米晶矽。表面電極形成於電子傳送層上。在此電子 源中,通過電子傳送層的電子會經由表面電極發射。至少 部份表面電極及/或至少部份下電極係由疊層結構導電碳 化物或疊層結構導電氮化物所製成。 經濟部智慧財產局員工消費合作社印製 導電碳化物或導電氮化物具有相當高的導電率、相當 低的功函數、高於貴重金屬之熔點、及優良的擴散障壁性 能。此外,導電碳化物或導電氮化物具有優於諸如鎢或鋁 等金屬之氧化電阻。在本發明的電子源中,至少部份表面 電極及/或至少部份下電.極係由疊層結構導電碳化物或疊 層結構導電氮化物所製成。因此,相較於具有金屬薄膜構 成的表面電極之電子源,本發明的電子源可以提供增強的 表面電極及/或下電極熱電阻並抑制電子發射特徵之劣化 。這將能夠防止電子發射特徵不因諸如真空密封製程等墊 製程而劣化。 根據本發明的另一態樣,提供電子源,其包括下電極 、表面電極、及電子傳送層。電子傳送層係介於下電極與 表面電極之間以允許電子通過。通過電子傳送層之電子會 經由表面電極發射。表面電極係由包含導電碳化物或導電 氮化層之多層膜及貴重金屬膜構成,表面電極具有形成有 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1222653 A7 B7 五、發明説明(6 ) 一些凹部之表面,以允許多層膜具有局部降低的厚度。 在此電子源中,在形成有凹部之表面電極的區域中, 相較於其它區域,因電子散射而造成的能量損失會降低。 此外,由於表面電極的電阻實質上係由導電碳化物層或導 電氮化物層及貴重金屬層所構成的多層膜之膜厚所決定, 所以,可以增強電子發射特徵並抑制表面電極中的電阻增 加。 圖式簡述 從配合附圖之下述詳細說明中,將可更完整地瞭解本 發明,在附圖中,相同的元件具有相同的代號,其中: 圖1係根據本發明的第一實施例之電子源的剖面視圖 圖2係根據本發明的第一至第四實施例之電子源的一 般電子發射操作之解釋圖; 圖3係根據本發明的第一至第四實施例之電子源的顯 微電子發射操作之解釋圖; 圖4A至4D係根據本發明的第一實施例之電子源的製 程中主要步驟之中的製程中及最終產品之剖面視圖; 圖5A和5B分別爲根據本發明的第二實施例之電子源 的剖面及上平面視圖; 圖6A至6E係根據本發明的第二實施例之電子源的製 程之主要步驟中的製程中及最終產生之剖面視圖; 圖7係根據本發明的第三實施例之電子源的剖面視圖 本紙張尺度適财關家標準(CNS ) A4規格(210X297公ϋ ' -- -9- (請先閲讀背面之注意事項再填寫本頁)-4- 1222653 A7 _ B7 V. Description of the invention (2) (Please read the precautions on the back before filling in this page) After the layer drifts, it is emitted through the surface electrode. Changes such as surface oxidation of the surface electrode can cause the efficiency of electron emission or the electron emission efficiency to deteriorate. Therefore, surface electrodes are typically made of chemically stable metals (for example, precious metals such as gold). In this case, the thickness of the surface electrode is set at about 10 nm. In the electron source, terms such as "diode current Ips" and "emission current (emission electron flow)" generally mean the current flowing between the surface and the lower electrode and the current flowing between the collector and the surface electrode, respectively. . The larger ratio of the emission current Ie to the diode current (Ie / Ips) provides a higher electron emission efficiency "(Ie / Ips) X 100 (%)". The above-mentioned electron source can emit electrons even if the DC voltage to be applied between the surface and the lower electrode is in a low range of about 10 to 20V. Therefore, the electron source can exhibit enhanced electron emission characteristics with low dependence on the degree of vacuum, and emit electrons stably without the occurrence of so-called burst phenomenon during electron emission. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the lower electrode of the electron source includes a semiconductor substrate having a resistivity close to the conductor, and an ohmic electrode formed on the back surface of the semiconductor substrate. Alternatively, the lower electrode includes an insulating substrate and a metal conductor layer formed on the insulating substrate. On the other hand, the electron source disclosed in Japanese Patent Laid-Open Publication No. 2001-126610 includes a surface electrode, and the surface electrode system partially contains a carbon region made of carbon or a carbon compound. This electron source can advantageously prevent excessive diode current Ips to provide enhanced electron emission efficiency. The conventional electron source described above is used in a vacuum-sealed state. In this regard, the assembly process of these electron sources involves the inclusion of vacuum-sealed paper standards for the application of Chinese National Standard (CNS) A4 (210X297 mm) -5- 1222653 A7 _____B7_ V. Description of the Invention (3) Process (preferably At a relatively high temperature of about 50 (TC), this process inevitably increases the resistance of the surface electrode and / or the lower electrode. The increased resistance makes it difficult to connect between the surface and the lower electrode and / or between the collector and the surface Appropriate application of voltage between the electrodes results in degraded electron emission characteristics (such as reduced emission current or electron emission efficiency). The surface electrode is a metal thin film. As in the aforementioned electron source, the thickness of the surface electrode is set to 10 nm. Usually The gold film used as a surface electrode involves sintering at 400t or higher temperature. The sintering caused will worsen the thickness uniformity and continuity of the film, thus increasing the resistance of the surface electrode and causing deteriorated electron emission characteristics. Tungsten and aluminum are known In order to sinter a metal with high resistance to this, however, if the surface electrode is made of tungsten or inscription, the surface of the electrode will suffer Oxidation, resulting in deteriorated electron emission efficiency. Similarly, the lower electrode has an increased resistance. The following factors are assumed to be the cause of the increased resistance. Metal sintering. The atoms (metal atoms) constituting the lower electrode are deposited on the lower electrode toward the lower electrode. The thickness of the lower electrode is reduced due to the thermal diffusion of the layer (for example, the electron transport layer). The film thickness of the lower electrode is reduced. The resistivity of the lower electrode is increased. In addition to the above-mentioned electron sources, there have been revealed electron sources that have been modified by field emission phenomena to emit electrons differently. For example, the 'disclosed electron source One has MIM (Metal-Absolute Paper Size Applicable to Chinese National Standard (CNS) A4 Specification (210X297mm) with Insulation Layer as Electron Transport Layer) Please read the notes on the back before filling in this page Printed by Employee Consumer Cooperatives 6-1222653 A7 B7 V. Description of the Invention (4) Marginal-metal structure. Another electron source has MIS (metal -Insulators-Semiconductors), MIS includes a semiconductor layer located between the electron transport layer and the lower electrode. When printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, it is necessary to provide increased emission current and enhance Electron emission efficiency to help reduce power consumption. In all of the above-mentioned electron sources, electrons are emitted through the surface electrode. Therefore, by reducing the energy loss caused by the electron scattering in the surface electrode, the electron emission efficiency can be increased. From then on From a viewpoint, it can be considered to reduce the thickness of the surface electrode without detrimental to the characteristics of the device. For example, Japanese Patent Laid-Open Publication No. 2001-243901 discloses an electron source that provides enhanced electron emission efficiency according to the above manner. In this electron source, the surface electrode includes a metal thin film portion having a flat surface, and a plurality of island-shaped protrusions protruding from the surface of the metal thin film portion, and the protrusions are formed continuously and integrally with the thin film portion. However, the individual metal convex portions of this electron source are connected to each other by the metal thin film portion, so the film thickness of the metal thin film portion will limit the lower resistance of the surface electrode 値. Therefore, even if an attempt is made to obtain the specific resistance of the surface electrode required for device characteristics, there are still disadvantages that the thickness of the metal thin film portion cannot be sufficiently reduced or the electron emission efficiency cannot be sufficiently enhanced. The description of the invention takes into account the problems of conventional electron sources. Therefore, an object of the present invention is to provide an electron source capable of suppressing deterioration of electron emission characteristics and obtaining enhanced thermal resistance. Another object of the present invention is to provide an electron source capable of suppressing For the resistance, please read the note on the back 2 pages. The paper size is applicable to Chinese National Standard (CNS) A4 (2ιχχ: 297 mm) 7- 1222653 A7 ___ B7 V. Description of the invention (5) Increase and obtain enhanced electron emission Characteristic electron source. To achieve the above object, according to one aspect of the present invention, an electron source (field emission type electron source) is provided, which includes a lower electrode, an electron transport layer, and a surface electrode. The electron transporting layer is formed on the lower electrode and is composed of a composite nano layer. The composite nano layer includes polycrystalline silicon and some nanocrystalline silicon adjacent to the grain boundary of the polycrystalline silicon. A surface electrode is formed on the electron transport layer. In this electron source, electrons passing through the electron transport layer are emitted through the surface electrode. At least part of the surface electrode and / or at least part of the lower electrode are made of a laminated structure conductive carbide or a laminated structure conductive nitride. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Conductive carbides or conductive nitrides have a relatively high electrical conductivity, a relatively low work function, a melting point higher than that of precious metals, and excellent diffusion barrier properties. In addition, conductive carbides or conductive nitrides have better oxidation resistance than metals such as tungsten or aluminum. In the electron source of the present invention, at least part of the surface electrode and / or at least part of the electrode are powered down. The electrode is made of a laminated structure conductive carbide or a laminated structure conductive nitride. Therefore, compared to an electron source having a surface electrode composed of a metal thin film, the electron source of the present invention can provide enhanced surface electrode and / or lower electrode thermal resistance and suppress deterioration of electron emission characteristics. This will prevent the electron emission characteristics from being degraded by a pad process such as a vacuum sealing process. According to another aspect of the present invention, an electron source is provided, which includes a lower electrode, a surface electrode, and an electron transport layer. The electron transport layer is interposed between the lower electrode and the surface electrode to allow electrons to pass. Electrons passing through the electron transport layer are emitted through the surface electrode. The surface electrode is composed of a multilayer film containing a conductive carbide or a conductive nitride layer and a precious metal film. The surface electrode is formed with a paper size applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 1222653 A7 B7 V. Invention Note (6) The surface of some recesses to allow the multilayer film to have a locally reduced thickness. In this electron source, in a region where a surface electrode having a recess is formed, energy loss due to electron scattering is reduced compared to other regions. In addition, since the resistance of the surface electrode is substantially determined by the film thickness of a multilayer film composed of a conductive carbide layer or a conductive nitride layer and a precious metal layer, it is possible to enhance the electron emission characteristics and suppress an increase in resistance in the surface electrode. . BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be more fully understood from the following detailed description in conjunction with the accompanying drawings, in which the same elements have the same reference numerals, wherein: FIG. 1 is a first embodiment according to the present invention Sectional view of the electron source. FIG. 2 is an explanatory diagram of general electron emission operations of the electron sources according to the first to fourth embodiments of the present invention. FIG. 3 is a diagram of the electron sources according to the first to fourth embodiments of the present invention. An explanatory diagram of a microelectron emission operation; FIGS. 4A to 4D are cross-sectional views of a process and a final product among the main steps in the process of manufacturing an electron source according to the first embodiment of the present invention; FIGS. 5A and 5B are respectively according to the present invention. A cross-section and an upper plan view of an electron source according to a second embodiment of the invention; FIGS. 6A to 6E are cross-sectional views during the process and finally generated in the main steps of the process of the electron source according to the second embodiment of the invention; FIG. 7 A cross-sectional view of an electron source according to a third embodiment of the present invention. The paper size is suitable for financial standards (CNS) A4 (210X297)---9- (Please read the precautions on the back before filling this page )

V1T 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 1222653 A7 B7 五、發明説明(7 ) » 圖8A至8D係根據本發明的第三實施例之電子源的製 程之主要步驟中的製程中及最終產品之剖面視圖; 圖9係根據本發明的第四實施例之電子源的剖面視圖 t 圖10A至10D係根據本發明的第四實施例之電子源的 製程之主要步驟中的製程中及最終產品之剖面視圖;及 圖11係顯示根據第四實施例之電子源中熱處理前後之 電流密度與電壓Vps之間的關係。 主要元件對照表 1 基底 2 下電極 3 多晶矽層 6 電子傳送層 7 表面電極 7 a 導電碳化物或導電氮化物層 7 b 貴重金屬層 7 c 導電氮化物層 7 d 金屬層 7 e 導電碳化物層 7 f 貴重金屬層 8 凹部 10 電子源 I紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱請背面之注意事項再填寫本頁)V1T Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed 1222263 A7 B7 V. Description of the Invention (7) »Figures 8A to 8D show the manufacturing process of an electronic source according to the third embodiment of the present invention A cross-sectional view of the main process in the process and the final product; Figure 9 is a cross-sectional view of an electron source according to a fourth embodiment of the present invention t Figures 10A to 10D are process steps of an electron source according to the fourth embodiment of the present invention A cross-sectional view of the manufacturing process and the final product in the main steps; and FIG. 11 shows the relationship between the current density and the voltage Vps before and after heat treatment in the electron source according to the fourth embodiment. Main component comparison table 1 Substrate 2 Lower electrode 3 Polycrystalline silicon layer 6 Electron transport layer 7 Surface electrode 7 a Conductive carbide or conductive nitride layer 7 b Precious metal layer 7 c Conductive nitride layer 7 d Metal layer 7 e Conductive carbide layer 7 f Precious metal layer 8 Recess 10 Electron source I Paper size Applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the notes on the back before filling this page)

-10- 1222653 A7 B7 五、 發明説明(8 ) 1 0 a 電子源裝置 1 Ob 電子源裝置 2 1 集極 5 1 多晶砂晶粒 5 2 氧化矽膜 6 3 矽奈米 6 4 氧化矽膜 較佳實施例詳述 (第一實施例) 現在將說明本發明的第一實施例。 如圖1所示,根據本發明的第一實施例之電子源10包 含絕緣基底構成的基底1(舉例而言,玻璃基底或陶瓷基底) 、及疊層導電碳化物及形成於基底1的主表面之一(擴散表 面)上的下電極2。半導體層或非未摻雜的多晶矽層3形成 於下電極2上。由氧化的多孔多晶矽層構成的電子傳送層 6(強場漂移層)形成於多晶矽層3上。此外,疊層導電碳化 物製成的表面電極7形成於電子傳送層6上。在電子源10 中,表面電極7及下電極2配置成彼此相對立,電子傳送 層6插入於表面電極7與下電極2之間。表面電極7的厚 度設定在l〇nm或更低。 雖然第一實施例採用絕緣基底作爲基底1 ’但是’可使 用諸如矽基底等任何其它適當的半導體基底作爲基底丨。此 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -11 - 1222653 A7 B7 五、發明説明(9 ) 外’雖然在第一實施例中,多晶矽層3插入於電子傳送層6 與下電極2之間,但是,電子傳送層6可以直接地形成於 下電極2上而不用插入多晶矽層3。 爲了允許電子從電子源10發射,如圖2所示,集極21 可設成與表面電極7相對立。然後,在將表面電極7與集 極2 1之間的空間抽真空以提供真空空間之後,將DC電壓 Vps施加於表面電極7與下電極2之間,以致於表面電極7 比下電極2具有更高的電位,同時,將DC電壓施加於集極 2 1與表面電極7之間以致於集極2 1具有比表面電極7高的 電位。藉由適當地設定DC電壓Vps及Vc,電子會從下電 極2注入電子傳送層6,然後,在電子傳送層6之內漂移之 後,經由表面電極7發射。圖2中的點鏈虛線標示經由表 面電極7發射之電子流e_。抵達電子傳送層6的表面之電 子可被視爲熱電子。因此,在輕易地穿隧表面電極7之後 ,電子將發射至真空空間中。在第一實施例中,電子在下 電極2與表面電極之間的電場之下,通過電子傳送層6,電 場係當施加電壓於下與表面電極之間時所感應的。當表面 電極7比下電極2具有更高的電位時所造成的電場,會使 電子從下電極2經過電子傳送層而移至表面電極7。 在根據第一實施例之電子源10中,集極21與表面電 極7之間流動的發射電流Ie相對於表面電極7與下電極2 之間流動的二極體電流Ips之較大比例(Ie/Ips),會提供 較高的電子發射效率。 如圖3所示,可以假定電子傳送層6至少包含延著選 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) V? 經濟部智慧財產局員工消費合作社印製 1222653 A7 B7 五、發明説明(10 ) 取的基底1的主表面側上配置之多個柱狀多晶矽晶粒51(半 導體晶體)、形成於晶粒51的每一表面上之薄氧化矽膜52 、插入於相半晶粒51之間的一些奈米級矽奈米晶體63(半 導體奈米晶體)、及一些氧化矽膜64,每一氧化矽膜形成於 矽奈米晶體63的每一表面上並由膜厚小於矽奈米晶體63 的一晶粒尺寸之絕緣膜構成。亦即,在電子傳送層6中, 每一晶粒具有多孔表面,及結晶狀態維持在晶粒的每一中 心區。每一晶粒51會在垂直於下電極2的方向上或是下電 極2的厚度方向上延伸。 在根據第一實施例之電子源10中,根據下述模型產生 電子發射。 在表面電極7與下電極2之間施加DC電壓Vps,以致 於表面電極7比下電極2具有更高的電位,同時在集極21 與表面電極7之間施加DC電壓Vc,以致於集極21比表面 電極7具有更高的電位。當DC電壓Vps達到給定値(臨界 値)時,電子e·會在熱激化下從下電極2注入電子傳送層6 。同時,施加至電子傳送層6的電場大部份會對氧化矽膜 64作用。因此,注入的電子e·會由作用在氧化矽膜64的強 電場加速。然後,電子朝向表面電極或以圖3中的箭頭方 向漂移至,經過電子傳送層6中相鄰的晶粒5 1之間的區域 。在穿隧表面電極7之後,電子會從表面電極7發射至真 空空間。從下電極2注入電子傳送層6的電子會由作用在 氧化矽膜64的電場加速,然後,在漂移之後,經由表面電 極7發射,幾乎無導因於矽奈米晶體63之散射(彈道電子發 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝. •訂 經濟部智慧財產局員工消費合作社印製 -13- 1222653 A7 B7 五、發明説明(彳1 ) (請先閲讀背面之注意事項再填寫本頁) 射現象)。此外’在電子傳送層6產生的熱可以經由晶粒5 1 釋放。因此,在電子發射期間,可以穩定地發射電子,而 不會發生猝發現象。在輕易地穿隧表面電極7之後,抵達 電子傳送層6的表面之電子(熱電子)會發射至真空空間中。 根據此作用原理之電子源稱爲彈道電子表面發射裝置。 如上所述,下電極2及表面電極7係由導電的碳化物 製成。一般而言,導電碳化物具有相當高的導電率及相當 低的功函數。導電碳化物也具有高於諸如黃金等貴重金屬 之熔點,並具有良好的擴散障壁性能。此外,導電碳化物 比諸如鎢或鋁等金屬具有更優良的抗氧化性。具有這些特 性的導電碳化物包含碳化鉻、碳化鉬、碳化鎢、碳化釩、 碳化鎳、碳化鈮、碳化鉅、碳化鈦、碳化鍩、及碳化給。 慮及熱穩定性、功函數及再現性,較佳的是使用碳化鈦、 碳化锆或碳化鈴。 經濟部智慧財產局員工消費合作社印製 在根據第一實施例之電子源10中,下電極2及表面電 極7係由疊層導電碳化物製成。因此,相較於具有金屬製 成的下及表面電子之電子源,根據第一實施例之電子源能 夠提供增強的下電極2及表面電極7之熱電阻,並抑制電 子發射特徵之劣化。這將能夠不僅防止下電極2及表面電 極7的電阻因諸如真空密封製程等熱製程而增加,也能夠 在表面電極7中防止燒結,藉以避免不必要的電子發射特 徵劣化。此外,由導電碳化物製成的下電極2可以防止構 成基底1及半導體層3(在省略半導體層3的情形中爲電子 傳送層6)之個別原子在它們之間擴散。因此,基底1與半 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -14 - 1222653 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(12 ) 導體層3(省略半導體層3的情形中爲電子傳送層6)的材料 可以選自不同的代替物。類似地,由導電碳化物製成的表 面電極7可以防止構成表面電極7及電子傳送層6的個別 原子在它們之間擴散。因此,表面電極7及電子傳送層6 的材料可以選自不同的代替物。 在第一實施例中,下電極2及表面電極7均完全由疊 層結構的導電碳化物製成。或者,下電極2及表面電極7 中每一者的至少一部份可由疊層的導電碳化物製成,且其 餘部份可由諸如Cr、W、Ti、Al、Cu、Au、Pt、或Mo等金 屬製成;含有此金屬之合金;或諸如摻雜有雜質之多晶矽 的半導體材料。此外,下電極2與表面電極7中任一者可 以缺乏導電碳化物。舉例而言,藉由使用諸如Cr、W、Ti 、Al、Cu、Au、Pt、或Mo等金屬;含有此金屬之合金;或 諸如摻雜有雜質之多晶矽的半導體材料,製成下電極2或 表面電極7。在此情形中,相較於習知的電子源,也可以抑 制電子發射特徵之劣化。 當使用玻璃基底作爲基底1時,可以視製程溫度而選 自石英玻璃基底、非鹼性玻璃基底、低鹼性玻璃基底或鈉 鈣玻璃。在採用陶瓷基底的情形中,舉例而言,基底1可 由氧化鋁基底構成。根據第一實施例的電子源可作爲用 於顯示裝置之電子源。在此情形中,可以適當地選取下電 極2、表面電極7及電子傳送層2的適當圖型化。 將於下述中參考圖4A至4D,說明根據第一實施例之 電子源10的製程。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) (請先閲讀背面之注意事項再填寫本頁)-10- 1222653 A7 B7 V. Description of the invention (8) 1 0 a Electron source device 1 Ob Electron source device 2 1 Collector 5 1 Polycrystalline sand grain 5 2 Silicon oxide film 6 3 Silicon nanometer 6 4 Silicon oxide film DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT (First Embodiment) A first embodiment of the present invention will now be described. As shown in FIG. 1, an electron source 10 according to a first embodiment of the present invention includes a substrate 1 (for example, a glass substrate or a ceramic substrate) composed of an insulating substrate, a laminated conductive carbide, and a host formed on the substrate 1. Lower electrode 2 on one of the surfaces (diffusion surface). A semiconductor layer or an undoped polycrystalline silicon layer 3 is formed on the lower electrode 2. An electron transport layer 6 (strong field drift layer) composed of an oxidized porous polycrystalline silicon layer is formed on the polycrystalline silicon layer 3. Further, a surface electrode 7 made of a laminated conductive carbide is formed on the electron transporting layer 6. In the electron source 10, the surface electrode 7 and the lower electrode 2 are arranged to face each other, and an electron transporting layer 6 is interposed between the surface electrode 7 and the lower electrode 2. The thickness of the surface electrode 7 is set to 10 nm or less. Although the first embodiment uses an insulating substrate as the substrate 1 ', any other suitable semiconductor substrate such as a silicon substrate may be used as the substrate. This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the notes on the back before filling out this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives -11-1222653 A7 B7 V. Invention Explanation (9) Outside 'Although in the first embodiment, the polycrystalline silicon layer 3 is inserted between the electron transport layer 6 and the lower electrode 2, the electron transport layer 6 can be directly formed on the lower electrode 2 without inserting the polycrystalline silicon layer. 3. In order to allow electrons to be emitted from the electron source 10, as shown in FIG. 2, the collector 21 may be disposed to face the surface electrode 7. Then, after the space between the surface electrode 7 and the collector 21 is evacuated to provide a vacuum space, a DC voltage Vps is applied between the surface electrode 7 and the lower electrode 2 so that the surface electrode 7 has At a higher potential, at the same time, a DC voltage is applied between the collector 21 and the surface electrode 7 so that the collector 21 has a higher potential than the surface electrode 7. By appropriately setting the DC voltages Vps and Vc, electrons are injected from the lower electrode 2 into the electron transport layer 6, and then, after drifting within the electron transport layer 6, are emitted through the surface electrode 7. The dotted chain line in FIG. 2 indicates the electron flow e_ emitted from the surface electrode 7. Electrons that reach the surface of the electron transport layer 6 can be regarded as hot electrons. Therefore, after easily tunneling the surface electrode 7, electrons will be emitted into the vacuum space. In the first embodiment, electrons pass through the electron transport layer 6 under the electric field between the lower electrode 2 and the surface electrode, and the electric field is induced when a voltage is applied between the lower and surface electrodes. The electric field caused when the surface electrode 7 has a higher potential than the lower electrode 2 causes electrons to move from the lower electrode 2 to the surface electrode 7 through the electron transport layer. In the electron source 10 according to the first embodiment, a larger proportion of the emission current Ie flowing between the collector 21 and the surface electrode 7 than the diode current Ips flowing between the surface electrode 7 and the lower electrode 2 (Ie / Ips), will provide higher electron emission efficiency. As shown in Figure 3, it can be assumed that the electronic transport layer 6 contains at least the paper size of the selected paper, which is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page) V? Economy Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperative Cooperative 1222653 A7 B7 V. Description of the Invention (10) A plurality of columnar polycrystalline silicon crystal grains 51 (semiconductor crystals) arranged on the main surface side of the substrate 1 taken out, each formed on the crystal grain 51 A thin silicon oxide film 52 on one surface, some nano-grade silicon nano-crystals 63 (semiconductor nano-crystals), and some silicon oxide films 64 interposed between the phase-half grains 51. Each silicon oxide film is formed on Each surface of the silicon nanocrystal 63 is composed of an insulating film having a film thickness smaller than a grain size of the silicon nanocrystal 63. That is, in the electron transport layer 6, each crystal grain has a porous surface, and the crystalline state is maintained in each central region of the crystal grains. Each of the crystal grains 51 extends in a direction perpendicular to the lower electrode 2 or a thickness direction of the lower electrode 2. In the electron source 10 according to the first embodiment, electron emission is generated according to the following model. A DC voltage Vps is applied between the surface electrode 7 and the lower electrode 2, so that the surface electrode 7 has a higher potential than the lower electrode 2, and a DC voltage Vc is applied between the collector 21 and the surface electrode 7, so that the collector 21 has a higher potential than the surface electrode 7. When the DC voltage Vps reaches a given threshold (critical threshold), electrons e · will be injected into the electron transport layer 6 from the lower electrode 2 under thermal excitation. At the same time, most of the electric field applied to the electron transport layer 6 acts on the silicon oxide film 64. Therefore, the injected electron e · is accelerated by a strong electric field acting on the silicon oxide film 64. Then, the electrons drift toward the surface electrode or in the direction of the arrow in FIG. 3, and pass through the region between the adjacent crystal grains 51 in the electron transport layer 6. After tunneling the surface electrode 7, electrons are emitted from the surface electrode 7 into the vacuum space. The electrons injected from the lower electrode 2 into the electron transport layer 6 are accelerated by the electric field acting on the silicon oxide film 64, and then, after drifting, are emitted through the surface electrode 7 with almost no scattering due to the silicon nanocrystal 63 (ballistic electrons) This paper size applies to Chinese National Standards (CNS) M specifications (210X297 mm) (Please read the precautions on the back before filling this page)-Packing. • Order printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economics-13-1222653 A7 B7 5. Description of the invention (彳 1) (Please read the precautions on the back before filling this page) Shooting phenomenon). In addition, the heat generated in the electron transport layer 6 can be released via the crystal grains 5 1. Therefore, during the electron emission, electrons can be stably emitted without the occurrence of a burst phenomenon. After the tunnel surface electrode 7 is easily tunneled, the electrons (thermoelectrons) reaching the surface of the electron transport layer 6 are emitted into the vacuum space. An electron source based on this principle is called a ballistic electron surface emitting device. As described above, the lower electrode 2 and the surface electrode 7 are made of a conductive carbide. In general, conductive carbides have a relatively high electrical conductivity and a relatively low work function. Conductive carbides also have higher melting points than precious metals such as gold and have good diffusion barrier properties. In addition, conductive carbides have better oxidation resistance than metals such as tungsten or aluminum. Conductive carbides having these characteristics include chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, nickel carbide, niobium carbide, carbide, titanium carbide, hafnium carbide, and carbide. In consideration of thermal stability, work function, and reproducibility, it is preferable to use titanium carbide, zirconium carbide, or carbide. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In the electron source 10 according to the first embodiment, the lower electrode 2 and the surface electrode 7 are made of laminated conductive carbide. Therefore, compared with an electron source having lower and surface electrons made of metal, the electron source according to the first embodiment can provide enhanced thermal resistance of the lower electrode 2 and the surface electrode 7 and suppress deterioration of electron emission characteristics. This will not only prevent the resistance of the lower electrode 2 and the surface electrode 7 from increasing due to a thermal process such as a vacuum sealing process, but also prevent sintering in the surface electrode 7, thereby avoiding unnecessary deterioration of the electron emission characteristics. In addition, the lower electrode 2 made of a conductive carbide can prevent individual atoms constituting the substrate 1 and the semiconductor layer 3 (the electron transport layer 6 in the case where the semiconductor layer 3 is omitted) from diffusing therebetween. Therefore, the substrate 1 and half of the paper size are in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) -14-1222653 printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 5. Description of the invention (12) Conductor layer 3 ( The material of the electron transport layer 6) in the case where the semiconductor layer 3 is omitted may be selected from different substitutes. Similarly, the surface electrode 7 made of a conductive carbide can prevent individual atoms constituting the surface electrode 7 and the electron transport layer 6 from diffusing therebetween. Therefore, the materials of the surface electrode 7 and the electron transport layer 6 may be selected from different substitutes. In the first embodiment, both the lower electrode 2 and the surface electrode 7 are made entirely of a conductive carbide of a laminated structure. Alternatively, at least a part of each of the lower electrode 2 and the surface electrode 7 may be made of a laminated conductive carbide, and the remaining part may be made of, for example, Cr, W, Ti, Al, Cu, Au, Pt, or Mo Made of such metals; alloys containing this metal; or semiconductor materials such as polycrystalline silicon doped with impurities. In addition, either of the lower electrode 2 and the surface electrode 7 may lack a conductive carbide. For example, the lower electrode 2 is made by using a metal such as Cr, W, Ti, Al, Cu, Au, Pt, or Mo; an alloy containing the metal; or a semiconductor material such as polycrystalline silicon doped with impurities Or surface electrode 7. In this case, it is also possible to suppress the deterioration of the electron emission characteristics compared to the conventional electron source. When a glass substrate is used as the substrate 1, it can be selected from a quartz glass substrate, a non-alkali glass substrate, a low alkali glass substrate, or a soda lime glass depending on the process temperature. In the case of using a ceramic substrate, for example, the substrate 1 may be composed of an alumina substrate. The electron source according to the first embodiment can be used as an electron source for a display device. In this case, appropriate patterning of the lower electrode 2, the surface electrode 7, and the electron transport layer 2 can be appropriately selected. The process of the electron source 10 according to the first embodiment will be described below with reference to Figs. 4A to 4D. This paper size applies to China National Standard (CNS) A4 (210X29 * 7mm) (Please read the precautions on the back before filling this page)

-15- 1222653 A7 B7 五、發明説明(13 ) 首先經由濺射法或其它適當方法,在基底1的主表面 之一上形成由導電碳化物層構成的下電極2。然後,在選取 的基底1的主表面側上(此處,在下電極2上),形成半導體 層或未經摻雜的多晶矽層3。經由上述步驟,取得如圖4A 所示的結構。下述將說明作爲下電極2之導電碳化物層的 膜形成方法。藉由諸如CVD法(舉例而言,LPCVD法,電 漿CVD法或觸媒CVD法)、濺射法或CGS法(連續晶粒矽) 等不同的膜形成法,形成多晶矽層3。 在形成未經摻雜的多晶矽層3之後,藉由陽極化製程 ’ δ受置多孔區直至給深度的多晶砂層3。經由此步驟,形成 多孔半導體層或多孔多晶矽層4,因而取得如圖4Β所示的 結構。在陽極化製程中,使用之處理液係含有5 5 w t %的贏 化氫之水溶液與乙醇以約1:1製備的混合物所組成的電解液 。將鉑電極(未顯示)及下電極2浸於處理液中,並在以 光照射多晶矽層3時,以固定電流在鉑電極與下電極2之 間施加電壓,以執行陽極化處理,形成多孔多晶矽層4。所 取得的多孔多晶矽層4包含多晶矽晶粒及矽奈米晶體。雖 然在第一實施例中在多晶矽層3的部份(到達給定深度)中形 成多孔區,但是,多孔區可以形成在整個多晶矽層3中(直 至到達基底1的深度)。 在完成陽極化製程之後,經由陽極化製程,將多孔多 晶矽層4氧化。經由此步驟,形成由氧化的多孔多晶矽層 所構成的電子傳送層,因而取得如圖4中所示的結構。在 氧化製程中,舉例而言,藉由快速熱處理方法,氧化多孔 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -¾ 經濟部智慧財產局員工消費合作社印製 -16- 1222653 A 7 B7 五、發明説明(14 ) 多晶矽層4以形成電子傳送層6,電子傳送層6包含晶粒 51、矽奈米晶體63、及氧化矽膜52、64(參考圖3)。 (請先閲讀背面之注意事項再填寫本頁) 在用於氧化製程的快速加熱法中,使用燈退火裝置。 將爐子保持在〇2氣氛圍中。以特定規劃的速率(舉例而言 ,8(TC /sec ),將基底從室溫加熱至給定的氧化溫度(舉例 而言,90(TC)。僅將基底維持在氧化溫度一給定的氧化時 間(舉例而言,一小時)以執行快速熱氧化(RTO)處理。然 後,將基底降溫至室溫。氧化製程不限於快速加速法。舉 例而言,藉由使用含有電解液(舉例而言,1 mole/L的 H2S〇4,1 mole/L的HN〇3,或王水)之氧化處理液,並在鉑 電極(未顯示)與下電極2之間施加固定電流,以電化學方式 氧化多孔多晶矽層4,形成包含晶粒5 1、矽奈米晶體63及 氧化矽膜62、62之電子傳送層。 經濟部智慧財產局員工消費合作社印製 在形成電子傳送層6之後,舉例而言,藉由濺射法, 由導電碳化物層構成的表面電極7會形成於電子傳送層6 上。經由此步驟,取得如圖4D所示之電子源1 0。將配合下 電極2之膜形成方法,於下說明用於形成作爲表面電極7 之導電碳化物層之膜形成方法。 根據第一實施例之電子源10的製程能夠提供具有增強 的電阻並抑制電子發射特徵劣化之電子源10。 在第一實施例中,藉由濺射法,形成均由導電碳化物 層構成的下電極2及表面電極7。可使用的濺射法可從諸如 RF濺射法、RF磁控管濺射法、DC濺射法及DC磁控管濺 射法等不同型式的方法中選取。在此情形中,使用導電碳 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -17- 1222653 A 7 B7 五、發明説明(15 ) (請先閱讀背面之注意事項再填寫本頁) 化物構成的靶材,經由濺射法,形成導電碳化物層。這些 方法可以提供具有優良穩定性及再現性之導電碳化物,並 提供高的總工作量,因而降低生產成本及增加電子源10的 電子發射面積。此外,現有的濺射設備可以輕易地轉成用 於形成導電碳化物層之設備,可以縮小設備投資及降低設 備成本。因此,可以以較低的成本提供具有增強的熱電阻 且抑制電子發射特徵劣化之電子源10。此外,能夠以相對 低的製程溫度形成導電的碳化物層。 經濟部智慧財產局員工消費合作社印製 用於導電碳化物層的膜形成方法不限於上述濺射法。 舉例而言,藉由使用導電碳化物構成的沈積源之真空蒸鍍 方、或是使用金屬(純金屬)及包含碳的氣體(反應氣體 )組成的靶材之反應濺射法,形成導電的碳化物。真空蒸 鍍法或反應濺射法也可以以優良的穩定度及再現性以及高 產能,提供導電的碳化物層,而取得降低的製造成本及增 加電子源1 0的電子發射面積。因此,可以以較低成本提供 具有增強的熱電阻且抑制電子發射特徵劣化之電子源10。 此外,可以以相對低的製程溫度形成導電的碳化物層。此 外,當經由真空蒸鍍法以形成導電的碳化物層時,現有的 真空蒸鍍設備可以容易地轉成用於形成導電碳化物層之設 備,縮小設備投資及降低設備成本。 由於導電碳化物具有高熔點,所以,EB(電子束)真空 蒸鍍法是要使用的適當真空蒸鍍法之一。另一方面,使用 金屬(純金屬)及包含碳的氣體(反應氣體)組成的靶材之反應 濺射法,可以便於控制導電物層中的碳濃度之控制。亦即 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -18- 1222653 A7 ____B7 五、發明説明(16 ) ,在反應濺射法中,可以適當地選擇反應氣體的型式或諸 如Αι*等惰性氣體與包含碳之反應氣體的混合比例,以控制 導電碳化物層中的碳濃度,以提供具有所需碳濃度之導電 碳化物層。此外,相較於碳化物靶材,具有較純度的純金 屬靶材可在市場上容易取得。因此,相較於使用導電碳化 物作爲靶材的濺射法,反應濺射法可以提供包含較少量的 金屬雜質之導電碳化物層,因,此可以抑制導因於雜質之 性能降低。 用於導電碳化物層之膜形成方法又包含在包括碳之氣 體氛圍中的金屬膜退火方法(舉例而言,鈦膜、鉻膜或給 膜)。此方法有利於改進導電碳化物層的純度及膜品質。 用於金屬膜之膜形成方法包含CVD方法、真空蒸鍍法及濺 射法。關於生產力及膜品質,較佳的是,使用使用Ar氣體 之DC磁控管濺射法。舉例而言,當使用H4氣體作爲包含 碳之氣體時,以1000°C的溫度退火金屬膜,形成導電碳化 物層。因此,藉由上述用於導電碳化物層之膜形成法,在 包含碳的氣體氛圍中退火金屬膜之方法可以以優良的再現 性及穩定度提供導電碳化物層。這將能夠取得降低的製造 成本及增加電子源10的電子發射面積。此外,現有的設備 (DC磁控管濺射設備或退火設備)可以容易地轉用於形成導 電碳化物層之設備,因而縮小設備投資及降低設備成本。 因此,可以以較低成本提供具有增強的熱電阻且抑制電子 發射特徵劣化之電子源10。此外,相較於反應濺射法,導 因於電至損傷之缺陷會減少而形成具有較高純度及膜品質 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) •1^^· 訂 經濟部智慧財產局員工消費合作社印製 -19· 1222653 A7 B7 五、發明説明(17 ) 之導電碳化物層。從上述觀點而言,上述退火法特別適用 於在作爲基底1之陶瓷基底中形成下電極2。 或者,可以藉由CVD方法以形成導電的碳化物層。 CVD方法可以以優良的再現性及穩定度以及高產能,提供 導電碳化物層,降低製造成本及增加電子源1·的電子發射 面積。因此,可以以較低成本提供具有增強的熱電阻且抑 制電子發射特徵劣化之電子源1 0。此外,CVD方法在步階 遮蓋性能上是優良的。在CVD方法中,可以使用諸如 (C2H5)2TiCl2 (二氯二茂鈦)等有機金屬化合物作爲沈積源 。但是,慮及沈積源本身的穩定度之問題,希望使用諸如 氯化鈦、氯化鍩或氯化鈴等氯化物。氫氣與諸如CH4 (甲烷 )、C3H8(丙烷)、C6H5CH3(甲苯)、CC14(四氯化碳)、或 CH3〇H(甲醇)等包含碳原子之氣體的混合氣體可作爲反應氣 體。由於熱CVD方法牽涉60(TC或更高溫的處理溫度,所 以,較佳的是使用能夠降低處理溫度之電漿CVD方法。 將金屬膜(舉例而言,鈦膜)及碳膜組成的多層退火 ,形成導電碳化物層。或者,將金屬(舉例而言,鈦)與 碳的混合物製成的膜退火,形成導電碳化物層。這些方法 可以以優良的再現性及穩定度,提供導電碳化物層,降低 製造成本及增加電子源1 0的發射面積。因此,以較低成本 提供具有增強的熱電阻且抑制電子發射特徵劣化之電子源 10 ° 在第一實施例中,電子傳送層6由氧化的多孔多晶砂 層所構成。或者,電子傳送層6可由氮化物多孔多晶矽層 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ··裝· -訂 經濟部智慧財產局員工消費合作社印製 -20- 1222653 A7 _____B7_ 五、發明説明(18 ) 或氮氧化物多孔多晶矽層所構成。此外,電子傳送層6可 由任何其它適當的氧化、氮化或氮氧化的多孔半導體層所 構成。當電子傳送層6由氮化的多孔多晶矽層構成時,可 採用使用NH3氣體的快速加熱方法以氮化多孔多晶矽層4 之氮化處理,取代使用〇2氣之快速加熱方法以將層4氧化 之氧化製程。此外,當電子傳送層6由氮氧化多孔多晶矽 層構成時,可以採拐使用〇2氣體與NH3氣體的混合氣體之 快速加熱方法以氮氧化多孔多晶矽層4之氮氧化處理,取 代使用〇2氣之快速加熱方法以將層4氧化之氧化製程。在 此情形中,形成氮氧化矽膜以取代圖3中的氧化矽膜52、 64 ° (第二實施例) 將於下說明本發明的第二實施例。 如圖5A及5B所示,根據第二實施例之電子源10包括 絕緣基底(舉例而言,絕緣玻璃基底或絕緣陶瓷基底)構成的 基底1、及形成於基底1的主表面之一上的電子源裝置10a 。電子源裝置10a包括形成於選取的基底1主表面上之下 電極2、形成於下電極2上的半導體層或未經摻雜的多晶矽 層3、形成於多晶矽層3上的後述電子傳送層6、以及形成 於電子傳送層6上的表面電極7。特別地,在電子源裝置 10a中,表面電極7及下電極2係配置成彼此相對立,且電 子傳送層6插入於表面與下電極之間。下電極2的厚度設 定在約300nm,且表面電極7的厚度設定成不超過l〇nm。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 一 ' •21 - (請先閲讀背面之注意事項再填寫本頁) ··裝. ;v*t» 經濟部智慧財產局員工消費合作社印製 1222653 經濟部智慧財產局員工消費合作社印製 A7 __B7 五、發明説明(19 ) 雖然第二實施例採用絕緣基底作爲基底1,但是,可使用諸 如矽基底等任何其它適當的半導體基底作爲基底1,且下電 極2包括半導體基底及沈積於半導體基底上的導電層(舉例 而言,歐姆電極)。此外,雖然在第一實施例中,多晶矽層 3插入於電子傳送層6與下電極2之間,但是,電子傳送層 6可以直接形成在下電極2上而不用插入多晶矽層3。下電 極2係由金屬(舉例而言,Mo、Cr、W、Ti、Ta、Ni、A1、 Cu、Au或Pt;含有此金屬之合金;或諸如金屬矽化物等金 屬間化合物)製成的單層薄膜。或者,下電極2可由此金屬 製成的多層薄膜所構成。此外,下電極2可由諸如摻雜雜 質的多晶矽等半導體材料製成。 如後所述,使多晶矽層接受陽極處理及氧化處理,形 成電子傳送層6。相對於第一實施例中的電子傳送層6,第 二實施例中的電子傳送層6包含晶粒51、氧化矽膜52、砂 奈米晶體63、及氧化矽膜64(請參見圖3)。在第二實施例 中,晶粒51、矽奈米晶體63及氧化矽膜52、64之外的其 它區域中,形成爲非晶矽或部份氧化的非晶矽製成的非晶 矽區。因此,相鄰於多晶矽的晶粒邊界之多晶矽及矽奈米 晶體63會在電子傳送層6之內混合在一起。 表面電極7係由具有沈積在電子傳送層6上之導電碳 化物或導電氮化物層7a及沈積在導電碳化物或導電氮化物 層7a上的貴重金屬層7b之多層膜所構成。多層膜的表面 形成有一些凹部8,允許多層膜具有局部減少的厚度。慮及 膜形成製程中的熱穩定度及再現性,較佳的是使用碳化鈦 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)-15- 1222653 A7 B7 V. Description of the invention (13) First, a lower electrode 2 composed of a conductive carbide layer is formed on one of the main surfaces of the substrate 1 by a sputtering method or other appropriate method. Then, on the main surface side of the selected substrate 1 (here, on the lower electrode 2), a semiconductor layer or an undoped polycrystalline silicon layer 3 is formed. Through the above steps, the structure shown in FIG. 4A is obtained. A method of forming a film as the conductive carbide layer of the lower electrode 2 will be described below. The polycrystalline silicon layer 3 is formed by different film forming methods such as a CVD method (for example, LPCVD method, plasma CVD method or catalyst CVD method), a sputtering method, or a CGS method (continuous grain silicon). After the undoped polycrystalline silicon layer 3 is formed, the porous region is placed through the anodizing process δ to a given depth of the polycrystalline sand layer 3. Through this step, a porous semiconductor layer or a porous polycrystalline silicon layer 4 is formed, thereby obtaining a structure as shown in FIG. 4B. In the anodizing process, the treatment solution used is an electrolytic solution composed of a mixture prepared by an aqueous solution containing 55 wt% hydrogen peroxide and ethanol at about 1: 1. The platinum electrode (not shown) and the lower electrode 2 are immersed in the treatment solution, and when the polycrystalline silicon layer 3 is irradiated with light, a voltage is applied between the platinum electrode and the lower electrode 2 with a fixed current to perform anodization to form a porous Polycrystalline silicon layer 4. The obtained porous polycrystalline silicon layer 4 includes polycrystalline silicon grains and silicon nanocrystals. Although a porous region is formed in a portion (to a given depth) of the polycrystalline silicon layer 3 in the first embodiment, the porous region may be formed in the entire polycrystalline silicon layer 3 (to a depth reaching the substrate 1). After the anodizing process is completed, the porous polycrystalline silicon layer 4 is oxidized through the anodizing process. Through this step, an electron-transporting layer composed of an oxidized porous polycrystalline silicon layer was formed, thereby obtaining a structure as shown in FIG. 4. In the oxidation process, for example, by the rapid heat treatment method, the size of the oxidized porous paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) -¾ Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau -16-1222653 A 7 B7 V. Description of the Invention (14) Polycrystalline silicon layer 4 to form an electron transport layer 6, the electron transport layer 6 includes crystal grains 51, silicon nanocrystals 63, and oxidation Silicon films 52 and 64 (refer to FIG. 3). (Please read the notes on the back before filling this page.) In the rapid heating method used for the oxidation process, a lamp annealing device is used. The furnace was kept in a 02 atmosphere. The substrate is heated from room temperature to a given oxidation temperature (for example, 90 (TC) at a specifically planned rate (for example, 8 (TC / sec)). The substrate is maintained only at the oxidation temperature for a given An oxidation time (for example, one hour) to perform a rapid thermal oxidation (RTO) process. Then, the substrate is cooled to room temperature. The oxidation process is not limited to a rapid acceleration method. For example, by using an electrolyte solution (for example, That is, 1 mole / L of H2S〇4, 1 mole / L of HN〇3, or aqua regia), and a fixed current was applied between the platinum electrode (not shown) and the lower electrode 2 to electrochemically The porous polycrystalline silicon layer 4 is oxidized to form an electron transporting layer including grain 51, silicon nanocrystals 63, and silicon oxide films 62 and 62. Printed after the formation of the electron transporting layer 6 by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy In other words, a surface electrode 7 made of a conductive carbide layer is formed on the electron transport layer 6 by a sputtering method. Through this step, an electron source 10 as shown in FIG. 4D is obtained. The method for forming a film is described below. Film formation method for conductive carbide layer of surface electrode 7. The process of the electron source 10 according to the first embodiment can provide the electron source 10 with enhanced resistance and suppress deterioration of the electron emission characteristics. In the first embodiment, by Sputtering method to form a lower electrode 2 and a surface electrode 7 each composed of a conductive carbide layer. Usable sputtering methods include, for example, RF sputtering method, RF magnetron sputtering method, DC sputtering method, and DC magnetism. Select from different types of methods such as controlled tube sputtering method. In this case, the size of the conductive carbon paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -17- 1222653 A 7 B7 V. Description of the invention ( 15) (Please read the precautions on the back before filling this page) The target made of metal oxide is formed by sputtering method to form a conductive carbide layer. These methods can provide conductive carbide with excellent stability and reproducibility, and provide High total workload, thereby reducing production costs and increasing the electron emission area of the electron source 10. In addition, existing sputtering equipment can be easily converted to equipment for forming a conductive carbide layer, which can be reduced Equipment investment and reduction of equipment cost. Therefore, an electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics can be provided at a lower cost. In addition, a conductive carbide layer can be formed at a relatively low process temperature. Ministry of Economic Affairs The film formation method for the conductive carbide layer printed by the employee property cooperative of the Intellectual Property Bureau is not limited to the above-mentioned sputtering method. For example, a vacuum evaporation method using a deposition source composed of a conductive carbide or a metal ( Pure metals) and carbon-containing gases (reactive gases) are used to form conductive carbides by reactive sputtering. Vacuum deposition or reactive sputtering can also provide excellent stability and reproducibility, and high productivity. Provide a conductive carbide layer to achieve reduced manufacturing costs and increase the electron emission area of the electron source 10. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. In addition, a conductive carbide layer can be formed at a relatively low process temperature. In addition, when a conductive carbide layer is formed by a vacuum evaporation method, the existing vacuum evaporation equipment can be easily converted into a device for forming a conductive carbide layer, reducing equipment investment and reducing equipment costs. Since the conductive carbide has a high melting point, the EB (electron beam) vacuum evaporation method is one of the appropriate vacuum evaporation methods to be used. On the other hand, a reactive sputtering method using a target composed of a metal (pure metal) and a carbon-containing gas (reactive gas) can facilitate the control of the carbon concentration in the conductive material layer. That is, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -18-1222653 A7 ____B7 V. Description of the invention (16) In the reactive sputtering method, the type of reaction gas or such as The mixing ratio of an inert gas such as Al * and a reaction gas containing carbon is used to control the carbon concentration in the conductive carbide layer to provide a conductive carbide layer having a desired carbon concentration. In addition, compared to carbide targets, pure metal targets with relatively high purity are readily available on the market. Therefore, compared with a sputtering method using a conductive carbide as a target, the reactive sputtering method can provide a conductive carbide layer containing a smaller amount of metal impurities, and therefore, it is possible to suppress a decrease in performance due to impurities. The film forming method for the conductive carbide layer further includes a metal film annealing method (for example, a titanium film, a chromium film, or a film) in a gas atmosphere including carbon. This method is beneficial to improve the purity and film quality of the conductive carbide layer. The film forming method for the metal film includes a CVD method, a vacuum evaporation method, and a sputtering method. Regarding productivity and film quality, it is preferable to use a DC magnetron sputtering method using Ar gas. For example, when H4 gas is used as a gas containing carbon, the metal film is annealed at a temperature of 1000 ° C to form a conductive carbide layer. Therefore, by the above-described film formation method for a conductive carbide layer, the method of annealing a metal film in a gas atmosphere containing carbon can provide a conductive carbide layer with excellent reproducibility and stability. This will enable a reduction in manufacturing costs and an increase in the electron emission area of the electron source 10. In addition, existing equipment (DC magnetron sputtering equipment or annealing equipment) can be easily transferred to equipment for forming a conductive carbide layer, thereby reducing equipment investment and equipment costs. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. In addition, compared with the reactive sputtering method, defects due to electrical damage will be reduced, resulting in higher purity and film quality. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read first Note on the back, please fill out this page again) • 1 ^^ · Order printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy-19 · 1222653 A7 B7 V. The conductive carbide layer of the invention description (17). From the above viewpoint, the above-mentioned annealing method is particularly suitable for forming the lower electrode 2 in the ceramic substrate as the substrate 1. Alternatively, a conductive carbide layer can be formed by a CVD method. The CVD method can provide a conductive carbide layer with excellent reproducibility and stability and high productivity, reducing the manufacturing cost and increasing the electron emission area of the electron source 1 ·. Therefore, it is possible to provide an electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics at a lower cost. In addition, the CVD method is excellent in step masking performance. In the CVD method, an organic metal compound such as (C2H5) 2TiCl2 (titanium dichlorocene) can be used as a deposition source. However, in consideration of the stability of the sedimentary source itself, it is desirable to use a chloride such as titanium chloride, thallium chloride, or boron chloride. A mixed gas of hydrogen and a carbon atom-containing gas such as CH4 (methane), C3H8 (propane), C6H5CH3 (toluene), CC14 (carbon tetrachloride), or CH3OH (methanol) can be used as a reaction gas. Since the thermal CVD method involves a processing temperature of 60 ° C or higher, it is preferable to use a plasma CVD method capable of reducing the processing temperature. Multi-layer annealing composed of a metal film (for example, a titanium film) and a carbon film , Forming a conductive carbide layer. Or, annealing a film made of a mixture of metal (for example, titanium) and carbon to form a conductive carbide layer. These methods can provide conductive carbide with excellent reproducibility and stability. Layer, reducing the manufacturing cost and increasing the emission area of the electron source 10. Therefore, an electron source having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics is provided at a lower cost. 10 In the first embodiment, the electron transport layer 6 is formed by It is made of oxidized porous polycrystalline sand layer. Alternatively, the electron transport layer 6 can be made of nitride porous polycrystalline silicon layer. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this Page) ····· Order printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -20-1222653 A7 _____B7_ V. Description of the invention (18) It is composed of a crystalline silicon layer. In addition, the electron transport layer 6 may be composed of any other appropriate oxidized, nitrided, or oxynitride porous semiconductor layer. When the electron transport layer 6 is composed of a nitrided porous polycrystalline silicon layer, NH3 may be used. The rapid heating method of the gas is a nitriding treatment of the nitrided porous polycrystalline silicon layer 4 instead of the oxidation process using the rapid heating method of 02 gas to oxidize the layer 4. In addition, when the electron transport layer 6 is composed of an oxidized porous polycrystalline silicon layer The rapid heating method using a mixed gas of 0 2 gas and NH 3 gas can be used to oxidize the porous polycrystalline silicon layer 4 by nitrogen oxidation, instead of the rapid heating method using 0 2 gas to oxidize the layer 4 oxidation process. Here In the case, a silicon oxynitride film is formed to replace the silicon oxide films 52 and 64 ° in FIG. 3 (Second Embodiment) The second embodiment of the present invention will be described below. As shown in FIGS. 5A and 5B, according to the second embodiment, The electron source 10 of the embodiment includes a substrate 1 composed of an insulating substrate (for example, an insulating glass substrate or an insulating ceramic substrate), and an electron source device formed on one of the main surfaces of the substrate 1. 10a. The electron source device 10a includes a lower electrode 2 formed on the main surface of the selected substrate 1, a semiconductor layer or an undoped polycrystalline silicon layer 3 formed on the lower electrode 2, and a later-described electron transfer formed on the polycrystalline silicon layer 3. Layer 6, and a surface electrode 7 formed on the electron transport layer 6. Particularly, in the electron source device 10a, the surface electrode 7 and the lower electrode 2 are arranged to face each other, and the electron transport layer 6 is inserted on the surface and below Between the electrodes. The thickness of the lower electrode 2 is set to about 300nm, and the thickness of the surface electrode 7 is set to not more than 10nm. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm)-'21 -(Please read the precautions on the back before filling this page) ·· Installation;; v * t »Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1222653 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economy A7 __B7 V. Description of the Invention (19) Although the second embodiment uses an insulating substrate as the substrate 1, any other suitable semiconductor substrate such as a silicon substrate may be used as the substrate 1, and the lower electrode 2 includes a semiconductor substrate and a semiconductor substrate. Conductive layer formed on a semiconductor substrate (for example, an ohmic electrode). In addition, although the polycrystalline silicon layer 3 is interposed between the electron transport layer 6 and the lower electrode 2 in the first embodiment, the electron transport layer 6 may be directly formed on the lower electrode 2 without inserting the polycrystalline silicon layer 3. The lower electrode 2 is made of a metal (for example, Mo, Cr, W, Ti, Ta, Ni, A1, Cu, Au, or Pt; an alloy containing the metal; or an intermetallic compound such as a metal silicide) Monolayer film. Alternatively, the lower electrode 2 may be composed of a multilayer film made of a metal. In addition, the lower electrode 2 may be made of a semiconductor material such as doped polycrystalline silicon. As described later, the polycrystalline silicon layer is subjected to an anodic treatment and an oxidation treatment to form an electron transport layer 6. Compared to the electron transport layer 6 in the first embodiment, the electron transport layer 6 in the second embodiment includes a crystal grain 51, a silicon oxide film 52, a sand nanocrystal 63, and a silicon oxide film 64 (see FIG. 3). . In the second embodiment, in regions other than the crystal grain 51, the silicon nanocrystal 63, and the silicon oxide films 52 and 64, an amorphous silicon region made of amorphous silicon or partially oxidized amorphous silicon is formed. . Therefore, the polycrystalline silicon and the nanocrystalline silicon 63 adjacent to the grain boundary of the polycrystalline silicon are mixed together in the electron transport layer 6. The surface electrode 7 is composed of a multilayer film having a conductive carbide or conductive nitride layer 7a deposited on the electron transport layer 6 and a precious metal layer 7b deposited on the conductive carbide or conductive nitride layer 7a. The surface of the multilayer film is formed with recesses 8 to allow the multilayer film to have a locally reduced thickness. Considering the thermal stability and reproducibility in the film formation process, it is better to use titanium carbide. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page. )

-22- 1222653 A7 B7 五、發明説明(20 ) 、碳化鉻、碳化給、氮化鈦、鈦化鉻、氮化給、氮化鈮、 氮化钽等等。 貴重金屬層7b係由鉑貴重金屬製成。雖然貴重金屬不 限於鉑,舉例而言,貴重金屬層7可由黃金或銥製成,但 是,慮及膜形成製程之再現性,較佳的是使用鉑。 爲了提供增加的發射電流及增強的發射效率,需要減 少表面電極7的厚度。爲達此目的,導電碳化物或導電氮 化物層7a的厚度設定成不超過4nm,且導電碳化物或導電 氮化物層7a的總厚度設定成不超過10nm。如上所述,表面 電極7的表面形成有一些凹部8。在具有凹部8的區域中, 導電碳化物或導電氮化物層7a的表面會曝露於外。亦即, 凹部8的深度幾乎等於貴重金屬層7b的厚度。但是,舉例 而言,凹部8的深度可以約小於貴重金屬層7b的厚度的一 半。 在根據第二實施例之作爲彈道電子表面發射型電子源 之電子源10或電子源裝置10a中,發射電子的步驟或電子 發射模型與根據第一實施例的電子源相同(參見圖2及3) 。因此,相較於根據第一實施例之電子源10,根據第二實 施例之電子源10呈現具有低的真空相依度及免於猝發現象 之之增強的電子發射特徵,因此能夠穩定地發射電子。 如上所述,在根據第二實施例之電子源10中,表面電 極7係由導電碳化物或導電氮化物層7a及貴重金屬層7b 所構成,且多層膜的表面形成有一些凹部8,允許多層膜具 有局部降低的厚度。因此,相較於其它區域,在形成有凹 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ·裝· ▼訂 經濟部智慧財產局員工消費合作社印製 -23- 1222653 A7 B7 五、發明説明(21 ) (請先閲讀背面之注意事項再填寫本頁) 部8的表面電極7之區域中,導因於表面電極7中造成的 電子散射之能量損耗會降低。此外,因爲表面電極7的電 阻實質上由導電碳化物或導電氮化物層7a及貴重金屬層7b 構成的多層膜之膜厚所決定,所以,電子發射特徵可以增 強並抑制表面電極7的電阻增加。 〜v:;... 當使用玻璃基氐作爲基底1時,玻璃基底可視製程溫 度而適當地選自石英玻璃基底、無鹼玻璃基底、低鹼玻璃 基底或鈉鈣玻璃。在採用陶瓷基底的情形中,舉例而言, 基底1可由氧化鋁基底構成。根據第一實施例的電子源10 可作爲用於顯示裝置之電子源。在此情形中,可以適當地 選取下電極2、表面電極7及電子傳送層2的適當圖型化。 將於下參考圖6A至6E,說明根據第二實施例之電子 源10的製程。 經濟部智慧財產局員工消費合作社印製 由具有給定膜厚(舉例而言,約300nm)之金屬膜(舉 例而言,鉬膜)所構成的下電極2首先形成於石英玻璃基底 構成的基底1之主表面之一上。然後,具有給定膜厚(舉 例而言,1 · 5 // m )之未經摻雜的多晶矽層3形成於下電極2 上以提供如圖6A所示的結構。舉例而言,經由濺射法或 CVD法,形成下電極2。或者,藉由形成未經摻雜的多晶矽 層及接著以熱擴散法摻雜η型雜質至多晶矽層之方法,形 成下電極2,或是藉由形成未經摻雜的多晶矽層及同時摻雜 η型雜質至多晶矽層之方法(亦即,未使用離子佈植法或熱 擴散法,直接在基底1上形成導電的多晶矽層),形成下 電極2。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) - ~ -24- 5 6 2 2 2 經濟部智慧財產局員工消費合作社印製 A7 _ B7 五、發明説明(22 ) 使用摻雜與膜形成同時進行之共摻雜方法作爲形成下 電極2的方法,不需要任何載入及載出操作,即能以相同 的膜形成設備,連續地形成下電極2與未經摻雜的多晶矽 層3。下電極2不限於η型多晶矽層,且可由p型多晶矽層 構成。在此情形中,Ρ型雜質可摻雜在未經摻雜的多晶矽中 。未經摻雜的多晶矽層3可以由諸如CVD方法(舉例而言, LPCVD方法、電漿CVD方法或觸媒CVD方法)、濺射法、 CGS法、或是沈積多晶矽及接著以雷射退火非晶矽等不同 的膜形成方法所形成。 在未經摻雜的多晶矽層3形成之後,執行陽極化處理 以形成多孔多晶矽層4,其中多晶矽晶粒5 1 (參考圖3)、矽 奈米晶體63(參考圖3)及非晶矽會混合在一起。經由此步驟 ,取得如圖6Β所示的結構。隨後,執行陽極化處理的程序 會與第一實施例相同。 在完成陽極化處理之後,執行氧化製程以形成由具有 如圖3所示的結構之複合奈米晶體所構成的電子傳送層6。 經由此步驟,取得如圖6C所示的結構。 在氧化製程中,舉例而言,經由快速加熱法,氧化多 孔多晶矽層4,形成包含晶粒51、矽奈米晶體63、及氧化 矽膜52、64之電子傳送層6(參考圖3)。用於執行氧化製程 之程序與第一實施例相同。 在形成電子傳送層6之後,舉例而言,經由濺射法, 於電子傳送層6上順序地形成具有給定膜厚(在lnm至 4nm的範圍中適當地選取)之導電的碳化物或導電的氮化 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) (請先閲讀背面之注意事項再填寫本頁)-22- 1222653 A7 B7 V. Description of the invention (20), chromium carbide, carbide carbide, titanium nitride, chromium titanate, nitride nitride, niobium nitride, tantalum nitride, etc. The precious metal layer 7b is made of a platinum precious metal. Although the precious metal is not limited to platinum, and the precious metal layer 7 may be made of gold or iridium, for example, it is preferable to use platinum in view of the reproducibility of the film formation process. In order to provide increased emission current and enhanced emission efficiency, it is necessary to reduce the thickness of the surface electrode 7. To achieve this, the thickness of the conductive carbide or conductive nitride layer 7a is set to not more than 4 nm, and the total thickness of the conductive carbide or conductive nitride layer 7a is set to not more than 10 nm. As described above, the surface of the surface electrode 7 is formed with some recessed portions 8. In a region having the recessed portion 8, the surface of the conductive carbide or conductive nitride layer 7a is exposed to the outside. That is, the depth of the recessed portion 8 is almost equal to the thickness of the precious metal layer 7b. However, for example, the depth of the recessed portion 8 may be less than about half the thickness of the precious metal layer 7b. In the electron source 10 or the electron source device 10a as a ballistic electron surface-emission type electron source according to the second embodiment, the steps or electron emission models of emitting electrons are the same as those of the electron source according to the first embodiment (see FIGS. 2 and 3) ). Therefore, compared with the electron source 10 according to the first embodiment, the electron source 10 according to the second embodiment exhibits an enhanced electron emission characteristic having a low degree of vacuum dependence and being free from sudden discovery phenomena, and thus can emit electrons stably. . As described above, in the electron source 10 according to the second embodiment, the surface electrode 7 is composed of a conductive carbide or conductive nitride layer 7a and a precious metal layer 7b, and a plurality of recesses 8 are formed on the surface of the multilayer film, allowing The multilayer film has a locally reduced thickness. Therefore, compared to other regions, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable to the paper format of concave paper (please read the precautions on the back before filling this page) Printed by the Consumer Affairs Cooperative of the Property Bureau-23- 1222653 A7 B7 V. Description of the invention (21) (Please read the precautions on the back before filling this page) The area of the surface electrode 7 in Part 8 is due to the surface electrode 7 The energy loss caused by electron scattering is reduced. In addition, since the resistance of the surface electrode 7 is substantially determined by the film thickness of a multilayer film composed of a conductive carbide or conductive nitride layer 7a and a precious metal layer 7b, the electron emission characteristics can enhance and suppress the increase in the resistance of the surface electrode 7. . ~ V:; ... When using a glass-based substrate as the substrate 1, the glass substrate is appropriately selected from a quartz glass substrate, an alkali-free glass substrate, a low-alkali glass substrate, or a soda lime glass depending on the process temperature. In the case of using a ceramic substrate, for example, the substrate 1 may be composed of an alumina substrate. The electron source 10 according to the first embodiment can be used as an electron source for a display device. In this case, appropriate patterning of the lower electrode 2, the surface electrode 7, and the electron transport layer 2 can be appropriately selected. The manufacturing process of the electron source 10 according to the second embodiment will be described below with reference to Figs. 6A to 6E. The lower consumer electrode 2 composed of a metal film (for example, a molybdenum film) with a given film thickness (for example, about 300 nm) is first formed on a substrate made of a quartz glass substrate. 1 on one of the major surfaces. Then, an undoped polycrystalline silicon layer 3 having a given film thickness (for example, 1 · 5 // m) is formed on the lower electrode 2 to provide a structure as shown in FIG. 6A. For example, the lower electrode 2 is formed by a sputtering method or a CVD method. Alternatively, the lower electrode 2 may be formed by forming an undoped polycrystalline silicon layer and then doping an n-type impurity to the polycrystalline silicon layer by a thermal diffusion method, or by forming an undoped polycrystalline silicon layer and simultaneously doping A method of n-type impurities to a polycrystalline silicon layer (that is, a conductive polycrystalline silicon layer is directly formed on the substrate 1 without using an ion implantation method or a thermal diffusion method) to form the lower electrode 2. This paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm)-~ -24- 5 6 2 2 2 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _ B7 V. Description of the invention (22) Use of doping The co-doping method performed simultaneously with film formation is a method for forming the lower electrode 2 without any loading and unloading operations. That is, the same film forming equipment can be used to continuously form the lower electrode 2 and the undoped polycrystalline silicon. Layer 3. The lower electrode 2 is not limited to the n-type polycrystalline silicon layer, and may be composed of a p-type polycrystalline silicon layer. In this case, a P-type impurity may be doped in undoped polycrystalline silicon. The undoped polycrystalline silicon layer 3 may be formed by, for example, a CVD method (for example, an LPCVD method, a plasma CVD method, or a catalyst CVD method), a sputtering method, a CGS method, or a method of depositing polycrystalline silicon and then annealing the non-crystalline silicon layer by laser. It is formed by different film formation methods such as crystalline silicon. After the undoped polycrystalline silicon layer 3 is formed, an anodizing process is performed to form a porous polycrystalline silicon layer 4, wherein polycrystalline silicon grains 51 (refer to FIG. 3), silicon nanocrystals 63 (refer to FIG. 3), and amorphous silicon Mix together. After this step, the structure shown in FIG. 6B is obtained. Subsequently, the procedure of performing the anodizing process will be the same as that of the first embodiment. After the anodizing process is completed, an oxidation process is performed to form an electron transporting layer 6 composed of a composite nanocrystal having a structure as shown in FIG. Through this step, the structure shown in FIG. 6C is obtained. In the oxidation process, for example, the porous polycrystalline silicon layer 4 is oxidized by a rapid heating method to form an electron transporting layer 6 (see FIG. 3) including crystal grains 51, silicon nanocrystals 63, and silicon oxide films 52 and 64. The procedure for performing the oxidation process is the same as that of the first embodiment. After the electron transport layer 6 is formed, for example, a conductive carbide or a conductive material having a given film thickness (appropriately selected in the range of 1 nm to 4 nm) is sequentially formed on the electron transport layer 6 via a sputtering method. The size of the nitrided paper is applicable to the Chinese National Standard (CNS) A4 (210X29? Mm) (Please read the precautions on the back before filling this page)

-25- 1222653 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(Z3 ) 物層7a以及具有給定膜厚(舉例而言3 nm)的貴重金屬層7b 。經由此步驟,形成由導電的碳化物或導電的氮化物層7a 及貴重金屬層7b構成的多層,並取得如圖6D所示的結構 。用於形成導電碳化物或導電氮化物層7a之方法可以選自 諸如濺射法(舉例而言,RF濺射法、RF磁控管濺射法、 DC濺射法、DC磁控管濺射法、或反應濺射法)、真空蒸 鍍法、及CVD法等不同的薄膜形成法。或者,藉由濺射法 或真空蒸鍍法以在電子傳送層6上沈積金屬膜並在包含碳 或氮的氣體氛圍中將金屬膜退火之方法,形成導電碳化物 或導電氮化物層7a,或是藉由濺射法或真空蒸法以在電子 傳送層6上沈積金屬膜,然後將碳離子或氮離子植入金屬 膜中,以形成導電碳化物或導電氮化物層7a。用於形成貴 重金屬層7b之方法可選自諸如濺射法(舉例而言,RF濺射 法、RF磁控管濺射法、DC濺射法或DC磁控管濺射法)、 真空蒸鍍法、及CVD法等不同的薄膜形成法。 然後,經由熱處理製程,在導電的碳化物或導電的氮 化物層7a及貴重金屬層7b構成的多層上,形成一些凹部 ,並取得具有如圖6E所示的結構之電子源10。在熱處理製 程中,多層接受氮氣氛圍中溫度範圍30(TC至450°C之熱處 理一段時間(舉例而言,15分鐘至120分鐘)。因此,可 以以相當低製程溫度,形成凹部。雖然在此熱處理製程中 ,熱處理係在氮氣氛圍中執行,但是,其也可以在其它任 何適當的惰性氣體氛圍中或真空中執行。可使用的熱處理 包含使用電爐之退火、光照射爲主的退火(舉例而言,燈 本紙張尺度適用中國國家標準(CNS ) A4規格(210'〆297公釐) (請先閱讀背面之注意事項再填寫本頁)-25- 1222653 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (Z3) Physical layer 7a and precious metal layer 7b with a given film thickness (for example, 3 nm). Through this step, a multilayer composed of a conductive carbide or conductive nitride layer 7a and a precious metal layer 7b is formed, and a structure as shown in FIG. 6D is obtained. The method for forming the conductive carbide or conductive nitride layer 7a may be selected from, for example, a sputtering method (for example, RF sputtering method, RF magnetron sputtering method, DC sputtering method, DC magnetron sputtering). Method, or reactive sputtering method), vacuum deposition method, and CVD method. Alternatively, a conductive carbide or conductive nitride layer 7a is formed by a method of depositing a metal film on the electron transport layer 6 and annealing the metal film in a gas atmosphere containing carbon or nitrogen by a sputtering method or a vacuum evaporation method, Alternatively, a metal film is deposited on the electron transport layer 6 by a sputtering method or a vacuum evaporation method, and then carbon ions or nitrogen ions are implanted into the metal film to form a conductive carbide or conductive nitride layer 7a. The method for forming the precious metal layer 7b may be selected from, for example, a sputtering method (for example, RF sputtering method, RF magnetron sputtering method, DC sputtering method, or DC magnetron sputtering method), vacuum evaporation Different thin film formation methods such as plating method and CVD method. Then, through the heat treatment process, a plurality of recesses are formed on the multilayer composed of the conductive carbide or conductive nitride layer 7a and the precious metal layer 7b, and an electron source 10 having a structure as shown in FIG. 6E is obtained. In the heat treatment process, the multilayers are subjected to a temperature range of 30 in the nitrogen atmosphere (TC to 450 ° C for a period of time (for example, 15 minutes to 120 minutes). Therefore, the recess can be formed at a relatively low process temperature. Although here In the heat treatment process, the heat treatment is performed in a nitrogen atmosphere, but it can also be performed in any other appropriate inert gas atmosphere or in a vacuum. Available heat treatments include annealing using an electric furnace and annealing based on light irradiation (for example and In other words, the paper size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (210'〆297 mm) (Please read the precautions on the back before filling this page)

-26- 經濟部智慧財產局員工消費合作社印製 1222653 A7 _B7 五、發明説明(24 ) 退火)、以及雷射退火。 根據第二實施例之電子源10的製程,可以便於製造具 有抑制表面電極7中的電阻增加及增強的電子發射效率之 電子源10。 在第二實施例中,如同第一實施例般,氧化製程可由 氮化製程或氮氧化製程替代。 在第二實施例中,電子傳送層6係由如圖3所示的複 合奈米晶體層所構成。或者,電子傳送層6可由諸如Al2〇3 、SiCh等製成的絕緣層所構成。在此情形中,設有半導體 層的電子源可以如同具有MIS結構的電子源般操作。另一 方面,未設有半導體層的電子源可以如同具有MIM結構之 電子源般操作。在任一電子源中,藉由適當地設定電子傳 送層的厚度,可以改進電子發射特徵。此外,可以簡化電 子傳送層的形成製程。 (第三實施例) 如圖7所示,根據第三實施例之電子源1〇包括絕緣基 底(舉例而言,絕緣玻璃基底或絕緣陶瓷基底)構成的基底1 、及形成於基底1的主表面之一上的電子源裝置10a。電子 源裝置10b包括形成於所選取的基底1的主表面上之下電 極2、形成於下電極2上的半導體層或未經摻雜的多晶矽層 3、後述之形成於多晶矽層3上的電子傳送層6、及形成於 電子傳送層6上的表面電極7。在電子源裝置l〇b中,表面 電極7與下電極2配置成彼此相對立,且電子傳送層6介 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)-26- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 1222653 A7 _B7 V. Description of the Invention (24) Annealing) and Laser Annealing. According to the manufacturing process of the electron source 10 of the second embodiment, it is possible to facilitate the manufacture of the electron source 10 having the resistance increase in the surface electrode 7 and enhanced electron emission efficiency. In the second embodiment, as in the first embodiment, the oxidation process may be replaced by a nitriding process or a nitriding process. In the second embodiment, the electron transport layer 6 is composed of a composite nano crystal layer as shown in FIG. Alternatively, the electron transport layer 6 may be composed of an insulating layer made of, for example, Al203, SiCh, or the like. In this case, the electron source provided with the semiconductor layer can operate as an electron source having a MIS structure. On the other hand, an electron source without a semiconductor layer can operate as an electron source having a MIM structure. In any electron source, the electron emission characteristics can be improved by appropriately setting the thickness of the electron transporting layer. In addition, the process of forming the electron transport layer can be simplified. Third Embodiment As shown in FIG. 7, the electron source 10 according to the third embodiment includes a substrate 1 composed of an insulating substrate (for example, an insulating glass substrate or an insulating ceramic substrate), and a main body formed on the substrate 1. Electron source device 10a on one of the surfaces. The electron source device 10b includes a lower electrode 2 formed on the main surface of the selected substrate 1, a semiconductor layer or an undoped polycrystalline silicon layer 3 formed on the lower electrode 2, and electrons formed on the polycrystalline silicon layer 3 described later. A transport layer 6 and a surface electrode 7 formed on the electron transport layer 6. In the electron source device 10b, the surface electrode 7 and the lower electrode 2 are arranged to face each other, and the electron transfer layer 6 is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm). (Please read the back first (Notes to fill out this page)

-27 - 1222653 A7 B7 五、發明説明(25 ) 於表面與下電極之間。下電極2的厚度設定在約300 nm, 且表面電極7的厚度設定成不會超過10 nm。 雖然第三實施例採用絕緣基底作爲基底' 1,但是,諸 如矽基底等其它適當的半導體基底可作爲基底1,且下基底 2包括半導體基底及沈積於半導體基底上的導電層(舉例而 言’歐姆電極)。此外,雖然多晶矽層3插入於電子傳送 層6與下電極2之間,但是,電子傳送層6可以直接形成 於下電極2上而不用插入多晶矽層3。 下電極2係由與根據第二實施例之電子源的下電極2 的金屬相同之金屬所製成的薄膜所構成。 如後述般,使多晶矽層接受陽極化處理及氧化處理, 形成電子傳送層6。如同第一實施例中的電子傳送層6般( 參考圖3),第三實施例中的電子傳送層6包含訊號51、氧 化矽膜52、矽奈米晶體63、及氧化矽膜64,以及如同第二 實施例中的電子傳送層6般,晶粒5 1、矽奈米晶體63及氧 化矽膜52、64以外的其它區域會形成爲非晶矽或部份氧化 的非晶矽所製成的非晶區。 表面電極7係由沈積在電子傳送層6上的導電氮化物 層7c以及沈積在導電氮化物層7c上的金屬層7d所構成。 導電氮化物層7c係由氮化鈦所構成的導電氮化物所製成。 一般而言,導電氮化物具有相當高的導電率、高於諸如黃 金等貴重金屬之熔點、以及優良的擴散障壁性能。此外, 導電氮化物相較於諸如鎢或鋁等金屬,具有更佳的抗氧化 性。可用於導電氮化物層7c之具有這些特性的導電氮化物 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ·裝. ,訂 經濟部智慧財產局員工消費合作社印製 -28- 1222653 A7 B7 五、發明説明(26 ) 不限於氮化鈦,且其可爲氮化鉻、氮化鉬、氮化鎢、氮化 釩、氮化鈮、氮化鉅、氮化鉻、或氮化給。慮及熱穩定性 、功函數及再現性,較佳的是使用氮化鈦、氮化鉻、氮化 給、氮化鈮及氮化鉅之一。 金屬層7d係由貴重金屬之一的鉑所製成。金屬層7d 的材料不限於鉑,且金屬層7d可由諸如黃金或銥等其它適 當的貴重金屬所製成。但是,鉑對於確保熱穩定性特別有 效。 在表面電極7中,導電氮化層7c的厚度係設定爲不超 過4 nm,且導電氮化物層7c與金屬層7d的總厚度設定成不 會超過10 nm,以便抑制電子發射效率的劣化或提供其它優 點。 在根據第三實施例之作爲彈道電子表面發射型電子源 的電子源10或電子源裝置1 Ob中,發射電子的步驟或電子 發射模型與根據第一實施例之電子源10相同(參考圖2及 3 )。因此,如同根據第一實施例之電子源1 〇般,根據第 三實施例的電子源10呈現對真空度具有低依賴性及無猝發 現象之增強的電子發射特徵,因此能夠穩定地發射電子。 在根據第三實施例之電子源10中,表面電極7係由導 電氮化物製成及沈積於電子傳送層6上的導電氮化物層7c 、及沈積於導電氮化物層7c上的金屬層7d所構成。如上 所述,導電氮化物具有相當高的導電率、高於諸如黃金等 貴重金屬之熔點、優良的擴散障壁性能、及優於諸如鎢或 鋁等金屬之抗氧化性。此外,導電氧化物層7c對於金屬層 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ·.裝· •訂 經濟部智慧財產局員工消費合作社印製 -29 - 1222653 A7 B7 五、發明説明(27 ) 7d具有優良的黏著性。因此,相較於具有金屬薄膜構成的 表面電極之電子源,根據第三實施例之電子源10可以提供 增強的表面電極7之熱電阻,並抑制電子發射特徵的劣化 。亦即,根據第三實施例之電子源10,可以抑制其它情形 中表面電極7的材料中所造成的不須要之燒結,以防止導 因於諸如真空密封製程等熱製程之電子發射特徵的劣化。 此外,由導電氮化物層7c及金屬層7d構成的表面電極7 可以防止構成表面電極7及電子傳送層之個別原子在它們 之間擴散。因此,表面電極7與電子傳送層6的材料可以 選自不同的替代物。表面電極7可僅由導電碳化物層形成 〇 雖然第三實施例採用玻璃基底作爲基底1,但是,玻璃 基底可以以同於第二實施例之方式由任何其它適當的基底 取代。根據第三實施例的電子源10也可以以同於第二實施 例之方式作爲顯示裝置的電子源。 將於下參考圖8A至8D,說明根據第三實施例之電子 源10的製程。 首先在石英玻璃基底構成的基底1之主表面之一上, 形成具有給定膜厚(舉例而言,約300 nm)的金屬膜所構成 的下電極2。然後,在下電極2上形成具有給定膜厚(舉例 而言,1.5// m)之未經摻雜的多晶矽層3以提供如圖8A所 示的結構。用於形成下電極2之程序及用於形成未經摻雜 的多晶矽層3之程序與第二實施例之程序相同。 在形成未經摻雜的多晶矽層3之後,執行陽極化處理 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 衣. 訂 經濟部智慧財產局員工消費合作社印製 -30- 5 6 2 2 2 A7 _ B7 五、發明説明(28 ) 以形成多孔多晶矽層4,其中多晶矽晶粒51(參考圖3)、矽 奈米晶體63(參考圖3)及非晶矽會混合在一起。經由此步驟 ,取得如圖8B所示的結構。用於執行陽極化處理之程序與 第一實施例相同。 在完成陽極化處理之後,執行氧化製程以形成具有圖3 所示的結構之複合奈米晶體層所構成的電子傳送層6。經由 此步驟,取得如圖8C所示的結構。在氧化製程中,舉例而 言,藉由快速加熱法以氧化複合的奈米晶體層4,形成包含 晶粒51、矽奈米晶體63、及氧化矽膜52、63之電子傳送層 6(參考圖3)。用於執行氧化製程之程序與第一實施例相同 〇 在形成電子傳送層6之後,舉例而言,藉由濺射法, 在電子傳送層6上順序地形成具有給定膜厚(舉例而言,1 nm)的導電氮化物層7c及具有給定膜厚(舉例而言,3nm )之金屬層7d。經由此步驟,形成導電氮化物層7c及金屬 層7d構成的表面電極7,並取得具有如圖8D所示的結構之 電子源1 0。 根據第三實施例之電子源10的製程可以提供電子源, 其具有增強的熱電阻且抑制電子發射特徵劣化。 在第三實施例中,經由濺射法,形成表面電極7的導 電氮化物層7c。可使用的濺射法,可選自諸如RF濺射法、 RF磁控管濺射法、DC濺射法、RF磁控管濺射法、DC濺射 法及DC磁控管濺射法。經由使用導電氮化物構成的靶材之 濺射法,形成導電氮化物層7c。本發明可以以優良的再現 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) .•I裝 _訂 經濟部智慧財產局員工消費合作社印製 -31 - 經濟部智慧財產局員工消費合作社印製 1222653 A7 B7 五、發明説明(29 ) 性及穩定性以及高產能,提供具有低表面粗糙度的導電氮 化物層7c,降低生產成本及增加電子源10的電子發射面積 。此外,現有的濺射設備可以容易轉用於形成導電氮化物 層7c之設備,縮小設備投資及降低設備成本。因此,可以 以較低成本提供具有增強的熱電阻且抑制電子發射特徵劣 化之電子源10。此外,可以以相當低的製程溫度,形成導 電氮化物層7c。 用於形成導電氮化物層7c之方法不限於上述濺射法。 舉例而言,可以經由使用導電氮化物構成的沈積源之真空 蒸鍍法、或是使用金屬(純金屬)組成的靶材及包含氮氣 之氣體(反應氣體)之反應濺射法,形成導電氮化物層。 真空蒸鍍法或反應濺射法也可以以優良的再現性及穩定性 以及高產能,提供具有低表面粗糙度之導電氮化物層7c, 降低生產成本及增加電子源10的電子發射面積。因此,可 以以較低成本提供具有增強的熱電阻且抑制電子發射特徵 劣化之電子源1 0。此外,可以以相當低的製程溫度形成導 電氮化物層。再者,當藉由真空蒸鍍法形成導電氮化物層 7c時,現有的真空蒸鍍設備可以容易地轉用於形成導電氮 化物層7c的設備,縮小設備投資及降低設備成本。 使用金屬(純金屬)組成的靶材及包含氮氣之氣體( 反應氣體)之反應濺射法可以便於控制導電氮化物層7c中 的氮濃度。亦即,在反應濺射法中,可以選取反應氣體的 型式及諸如Ar等惰性氣體與包含氮原子的反應氣體之混合 比例,以控制導電氮化物層7c中的氮成份。因此,反應濺 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐] " • 32 - (請先閲讀背面之注意事項再填寫本頁)-27-1222653 A7 B7 V. Description of the invention (25) Between the surface and the lower electrode. The thickness of the lower electrode 2 is set to about 300 nm, and the thickness of the surface electrode 7 is set to not exceed 10 nm. Although the third embodiment uses an insulating substrate as the substrate '1, other suitable semiconductor substrates such as a silicon substrate may be used as the substrate 1, and the lower substrate 2 includes a semiconductor substrate and a conductive layer deposited on the semiconductor substrate (for example,' Ohm electrode). In addition, although the polycrystalline silicon layer 3 is interposed between the electron transport layer 6 and the lower electrode 2, the electron transport layer 6 can be directly formed on the lower electrode 2 without inserting the polycrystalline silicon layer 3. The lower electrode 2 is composed of a thin film made of the same metal as that of the lower electrode 2 of the electron source according to the second embodiment. As described later, the polycrystalline silicon layer is subjected to an anodizing treatment and an oxidation treatment to form an electron transport layer 6. Like the electron transport layer 6 in the first embodiment (refer to FIG. 3), the electron transport layer 6 in the third embodiment includes a signal 51, a silicon oxide film 52, a silicon nanocrystal 63, and a silicon oxide film 64, and Like the electron transport layer 6 in the second embodiment, the regions other than the grain 51, the silicon nanocrystal 63, and the silicon oxide films 52 and 64 are formed of amorphous silicon or partially oxidized amorphous silicon. Into an amorphous region. The surface electrode 7 is composed of a conductive nitride layer 7c deposited on the electron transport layer 6 and a metal layer 7d deposited on the conductive nitride layer 7c. The conductive nitride layer 7c is made of a conductive nitride composed of titanium nitride. In general, conductive nitrides have a relatively high electrical conductivity, a melting point higher than that of precious metals such as gold, and excellent diffusion barrier properties. In addition, conductive nitrides have better oxidation resistance than metals such as tungsten or aluminum. Can be used for the conductive nitride layer 7c with these characteristics. The size of this paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs -28-1222653 A7 B7 V. Description of the Invention (26) Not limited to titanium nitride, and it can be chromium nitride, molybdenum nitride, tungsten nitride, vanadium nitride, Niobium nitride, giant nitride, chromium nitride, or nitrided. Considering thermal stability, work function, and reproducibility, it is preferable to use one of titanium nitride, chromium nitride, nitrided, niobium nitride, and nitride. The metal layer 7d is made of platinum, which is one of the precious metals. The material of the metal layer 7d is not limited to platinum, and the metal layer 7d may be made of other appropriate precious metals such as gold or iridium. However, platinum is particularly effective in ensuring thermal stability. In the surface electrode 7, the thickness of the conductive nitride layer 7c is set to not more than 4 nm, and the total thickness of the conductive nitride layer 7c and the metal layer 7d is set to not exceed 10 nm in order to suppress deterioration of the electron emission efficiency or Provides other advantages. In the electron source 10 or the electron source device 1 Ob, which is a ballistic electron surface-emission type electron source according to the third embodiment, the steps or electron emission model of emitting electrons are the same as those of the electron source 10 according to the first embodiment (refer to FIG. 2) And 3). Therefore, like the electron source 10 according to the first embodiment, the electron source 10 according to the third embodiment exhibits an enhanced electron emission characteristic having a low dependence on the degree of vacuum and no burst phenomenon, and thus can emit electrons stably. In the electron source 10 according to the third embodiment, the surface electrode 7 is a conductive nitride layer 7c made of a conductive nitride and deposited on the electron transport layer 6, and a metal layer 7d deposited on the conductive nitride layer 7c. Made up. As described above, the conductive nitride has a relatively high conductivity, a melting point higher than that of precious metals such as gold, excellent diffusion barrier properties, and oxidation resistance superior to metals such as tungsten or aluminum. In addition, the conductive oxide layer 7c applies the Chinese National Standard (CNS) A4 specification (210X297 mm) for the paper size of the metal layer (Please read the precautions on the back before filling this page). Printed by the Consumer Cooperative of the Property Bureau -29-1222653 A7 B7 V. Description of Invention (27) 7d has excellent adhesiveness. Therefore, the electron source 10 according to the third embodiment can provide an enhanced thermal resistance of the surface electrode 7 and suppress deterioration of the electron emission characteristics compared to an electron source having a surface electrode composed of a metal thin film. That is, according to the electron source 10 of the third embodiment, unnecessary sintering caused in the material of the surface electrode 7 in other cases can be suppressed to prevent deterioration of electron emission characteristics caused by thermal processes such as a vacuum sealing process . In addition, the surface electrode 7 composed of the conductive nitride layer 7c and the metal layer 7d can prevent individual atoms constituting the surface electrode 7 and the electron transport layer from diffusing therebetween. Therefore, the materials of the surface electrode 7 and the electron transport layer 6 may be selected from different substitutes. The surface electrode 7 may be formed of only a conductive carbide layer. Although the third embodiment uses a glass substrate as the substrate 1, the glass substrate may be replaced with any other appropriate substrate in the same manner as the second embodiment. The electron source 10 according to the third embodiment can also be used as the electron source of the display device in the same manner as the second embodiment. The process of the electron source 10 according to the third embodiment will be described below with reference to Figs. 8A to 8D. First, a lower electrode 2 made of a metal film having a given film thickness (for example, about 300 nm) is formed on one of the main surfaces of a substrate 1 made of a quartz glass substrate. Then, an undoped polycrystalline silicon layer 3 having a given film thickness (for example, 1.5 // m) is formed on the lower electrode 2 to provide a structure as shown in FIG. 8A. The procedure for forming the lower electrode 2 and the procedure for forming the undoped polycrystalline silicon layer 3 are the same as those of the second embodiment. After the formation of an undoped polycrystalline silicon layer 3, anodizing is performed. This paper is sized to the Chinese National Standard (CNS) A4 (210X297 mm) (please read the precautions on the back before filling this page). Printed by the Ministry of Intellectual Property Bureau Consumer Cooperatives -30- 5 6 2 2 2 A7 _ B7 V. Description of the invention (28) to form a porous polycrystalline silicon layer 4, of which polycrystalline silicon grains 51 (refer to Figure 3), silicon nanocrystals 63 (Refer to Figure 3) and amorphous silicon will be mixed together. Through this step, the structure shown in FIG. 8B is obtained. The procedure for performing anodizing is the same as that of the first embodiment. After the anodizing process is completed, an oxidation process is performed to form an electron transport layer 6 composed of a composite nano crystal layer having a structure shown in FIG. 3. Through this step, the structure shown in Fig. 8C is obtained. In the oxidation process, for example, the composite nanocrystal layer 4 is oxidized by a rapid heating method to form an electron transport layer 6 including a crystal grain 51, a silicon nanocrystal 63, and a silicon oxide film 52, 63 (refer to image 3). The procedure for performing the oxidation process is the same as that of the first embodiment. After the electron transport layer 6 is formed, for example, by sputtering, the electron transport layer 6 is sequentially formed to have a given film thickness (for example, 1 nm) of a conductive nitride layer 7c and a metal layer 7d having a given film thickness (for example, 3 nm). Through this step, a surface electrode 7 composed of a conductive nitride layer 7c and a metal layer 7d is formed, and an electron source 10 having a structure as shown in Fig. 8D is obtained. The process of the electron source 10 according to the third embodiment can provide an electron source which has enhanced thermal resistance and suppresses deterioration of electron emission characteristics. In the third embodiment, a conductive nitride layer 7c of the surface electrode 7 is formed by a sputtering method. The sputtering method that can be used may be selected from, for example, RF sputtering method, RF magnetron sputtering method, DC sputtering method, RF magnetron sputtering method, DC sputtering method, and DC magnetron sputtering method. A conductive nitride layer 7c is formed by a sputtering method using a target made of a conductive nitride. The present invention can be reproduced with excellent quality. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page). Printed by Cooperatives-31-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed 1222653 A7 B7 V. Description of the invention (29) Properties and stability and high productivity, providing a conductive nitride layer 7c with low surface roughness, reducing production costs And increase the electron emission area of the electron source 10. In addition, the existing sputtering equipment can be easily transferred to the equipment for forming the conductive nitride layer 7c, reducing equipment investment and equipment cost. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. In addition, the conductive nitride layer 7c can be formed at a relatively low process temperature. The method for forming the conductive nitride layer 7c is not limited to the above-mentioned sputtering method. For example, conductive nitrogen can be formed by a vacuum evaporation method using a deposition source composed of conductive nitride, or a reactive sputtering method using a target composed of metal (pure metal) and a gas (reactive gas) containing nitrogen.化 层。 Chemical layer. The vacuum evaporation method or the reactive sputtering method can also provide a conductive nitride layer 7c having a low surface roughness with excellent reproducibility and stability and high productivity, reducing production costs and increasing the electron emission area of the electron source 10. Therefore, it is possible to provide an electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics at a lower cost. In addition, a conductive nitride layer can be formed at a relatively low process temperature. Furthermore, when the conductive nitride layer 7c is formed by the vacuum evaporation method, the existing vacuum evaporation equipment can be easily transferred to the equipment for forming the conductive nitride layer 7c, reducing equipment investment and reducing equipment cost. The reactive sputtering method using a target composed of a metal (pure metal) and a gas (reactive gas) containing nitrogen can easily control the nitrogen concentration in the conductive nitride layer 7c. That is, in the reactive sputtering method, a type of a reactive gas and a mixing ratio of an inert gas such as Ar and a reactive gas containing a nitrogen atom may be selected to control a nitrogen component in the conductive nitride layer 7c. Therefore, the size of this paper is in accordance with Chinese National Standard (CNS) A4 (210X297mm) " • 32-(Please read the precautions on the back before filling this page)

1222653 經濟部智慧財產局員工消費合作社印製 A7 _ _B7___ 五、發明説明(30 ) 射法可以提供氮成份被控制在所需値之導電氮化物層7c。 一般而言,相較於氮化物靶材,具有較高純度的純金 屬靶材可從市場廣泛取得。因此,相較於使用導電氮化物 作爲靶材之濺射法,反應濺射法可以提供包含較少量的金 屬雜質之導電氮化物層7c,因此,可以抑制導因於雜質之 性能降低。 或者,導電氮化物層7c可以經由CVD法形成。CVD 法也能以優良的再現性及穩定性以及高產能,提供具有低 表面粗糙度之導電氮化物層7c,降低生產成本及增加電子 源1 0的電子發射面積。因此,可以以較低成本提供具有增 強的熱電阻且抑制電子發射特徵劣化之電子源1 〇。此外, CVD法在步階遮蓋性能上是優良的。由於熱CVD法典型上 牽涉到600 °C或更高的製程溫度,所以,較佳的是使用能夠 降低製程溫度之電漿CVD法。 在形成導電氮化物層7c之步驟中,藉由真空蒸法或濺 射法於電子傳送層6上沈積金屬膜(舉例而言,鈦膜), 然後將氮離子植入金屬膜中,形成導電氮化物層7c。此方 法也能以優良的再現性及穩定性,提供具有低表面粗糙度 之導電氮化物層7c。此外,此方法可以降低導電氮化物層 7c與金屬層7b之間的介面的粗糙度,降低生產成本及增加 電子源1 0的電子發射面積。因此,可以以較低成本提供具 有增強的熱電阻且抑制電子發射特徵劣化之電子源10。此 外,本方法能夠以相當低的製程溫度形成導電氮化物層7c ,並可易於控制導電氮化物層7c中的導電率之控制。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)1222653 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _ _B7___ V. Description of the invention (30) The radiographic method can provide a conductive nitride layer 7c whose nitrogen content is controlled to a desired level. Generally speaking, compared to nitride targets, pure metal targets with higher purity are widely available from the market. Therefore, compared with a sputtering method using a conductive nitride as a target, the reactive sputtering method can provide a conductive nitride layer 7c containing a smaller amount of metal impurities, and therefore, it is possible to suppress a decrease in performance due to impurities. Alternatively, the conductive nitride layer 7c may be formed via a CVD method. The CVD method can also provide a conductive nitride layer 7c with low surface roughness with excellent reproducibility and stability and high productivity, reducing production costs and increasing the electron emission area of the electron source 10. Therefore, it is possible to provide an electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics at a lower cost. In addition, the CVD method is excellent in step masking performance. Since the thermal CVD method typically involves a process temperature of 600 ° C or higher, it is preferable to use a plasma CVD method which can reduce the process temperature. In the step of forming the conductive nitride layer 7c, a metal film (for example, a titanium film) is deposited on the electron transport layer 6 by a vacuum evaporation method or a sputtering method, and then nitrogen ions are implanted into the metal film to form a conductive layer. Nitride layer 7c. This method can also provide a conductive nitride layer 7c having a low surface roughness with excellent reproducibility and stability. In addition, this method can reduce the roughness of the interface between the conductive nitride layer 7c and the metal layer 7b, reduce the production cost, and increase the electron emission area of the electron source 10. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. In addition, the method can form the conductive nitride layer 7c at a relatively low process temperature, and can easily control the control of the conductivity in the conductive nitride layer 7c. This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page)

33- 1222653 A7 B7 五、發明説明(31 ) 或者,在形成導電氮化物層7c的步驟中,經由真空蒸 鍍法或濺射法,於電子傳送層6上沈積金屬膜(舉例而言 ’鈦膜),然後使金屬膜在包含氮氣之氣體氛圍中接受熱 處理’形成導電氮化物層7 c。此方法也能以優良的再現性 及穩定性,提供具有低表面粗糙度之導電氮化物層7c。此 外’此方法可以降低導電氮化物層7c與金屬層7b之間的 介面的粗糙度,降低生產成本及增加電子源10的電子發射 面積。因此,可以以較低成本提供具有增強的熱電阻且抑 制電子發射特徵劣化之電子源10。 與第一實施例的情形相同,在第三實施例中,氧化製 程也可由氮化製程或氮氧化製程替代。 下電極2可以形成爲具有多層結構,且至少一層可形 成爲導電氮化物層。導電氮化物具有相當高的導電率、高 於諸如黃金等貴重金屬之熔點、優良的擴散障壁性能及優 於諸如鎢或鋁等金屬的抗氧化性。因此,相較於具有金屬 製成的下電極2之電子源,具有導電氮化物層的下電極2 具有增強的熱電阻且抑制電子發射特徵劣化以防止導因於 諸如真空密封製程等熱製程之電子發射特徵的劣化。此外 ,由於下電極2係由具有至少一導電氮化物層之多層結構 組成,所以,導電氮化物層可以提供增強的下電極2的熱 電阻。此外,可以配置沈積於導電氮化物層上的另一層, 以提供降低之下電極2的電阻、及下電極2以及與其一起 形成介面的層之間增強的黏著性。應瞭解整個下電極2可 由導電氮化物層構成。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)33- 1222653 A7 B7 V. Description of the invention (31) Alternatively, in the step of forming the conductive nitride layer 7c, a metal film (for example, 'titanium') is deposited on the electron transport layer 6 through a vacuum evaporation method or a sputtering method. Film), and then subjecting the metal film to heat treatment in a gas atmosphere containing nitrogen to form a conductive nitride layer 7c. This method can also provide a conductive nitride layer 7c having a low surface roughness with excellent reproducibility and stability. In addition, this method can reduce the roughness of the interface between the conductive nitride layer 7c and the metal layer 7b, reduce the production cost, and increase the electron emission area of the electron source 10. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. As in the case of the first embodiment, in the third embodiment, the oxidation process may be replaced by a nitriding process or a nitriding process. The lower electrode 2 may be formed to have a multilayer structure, and at least one layer may be formed as a conductive nitride layer. Conductive nitrides have relatively high electrical conductivity, higher melting points than precious metals such as gold, excellent diffusion barrier properties, and oxidation resistance superior to metals such as tungsten or aluminum. Therefore, compared with an electron source having a lower electrode 2 made of metal, the lower electrode 2 having a conductive nitride layer has enhanced thermal resistance and suppresses deterioration of the electron emission characteristics to prevent it from being caused by thermal processes such as a vacuum sealing process Deterioration of electron emission characteristics. In addition, since the lower electrode 2 is composed of a multilayer structure having at least one conductive nitride layer, the conductive nitride layer can provide enhanced thermal resistance of the lower electrode 2. In addition, another layer deposited on the conductive nitride layer may be configured to provide a lowered resistance of the lower electrode 2 and an enhanced adhesion between the lower electrode 2 and a layer forming an interface therewith. It should be understood that the entire lower electrode 2 may be composed of a conductive nitride layer. This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page)

-/T 經濟部智慧財產局員工消費合作社印製 -34- 1222653 A7 ___B7_ 五、發明説明(32 ) 下電極2中所使用的導電氮化物層可由與表面電極7 的導電氮化物層7c中所使用的材料相同的導電氮化物所製 成。此外,可以藉由與形成表面電極7的導電氮化物層7c 的方法相同之方法,形成下電極2的導電氮化物層。 (第四實施例) 將於下說明本發明的第四實施例。 如圖9所示,根據第四實施例之電子源10包括絕緣基 底(舉例而言,絕緣玻璃基底或絕緣陶瓷基底)構成的基 底1、及形成於基底1的主表面之一上的下電極2。半導體 層或未經摻雜的多晶矽層3會形成於下電極2上。由氧化 的多孔多晶矽層構成的電子傳送層6(強場漂移層)形成於多 晶矽層3上。此外,在電子傳送層6上形成表面電極7。特 別地,在電子源10中,表面電極7及下電極2會配置成彼 此相對立,且電子傳送層6會介於表面與下電極之間。表 面電極7的厚度設定在12nm或更少。雖然第四實施例採用 絕緣基底作爲基底1,但是,諸如矽基底等任何其它適當的 半導體基底也可作爲基底1。此外,雖然多晶矽層3插入於 電子傳送層6與下電極2之間,但是,電子傳送層6可以 直接形成於下電極2上,不用插入多晶矽層3。 在根據第四實施例之作爲彈道電子表面發射型電子源 的電子源10中,電子發射步驟或電子發射模型與根據第一 實施例之電子源相同(參考圖2及3 )。因此,相較於根據 第一實施例之電子源10,根據第四實施例之電子源1〇呈現 本紙張尺度適用中國國家標準(CNS ) A4祕(21〇χ297公釐) 一 -35- (請先閱讀背面之注意事項再填寫本頁) -,訂 經濟部智慧財產局員工消費合作社印製 1222653 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(33 ) 對真空度低相依性及免於猝發現象之增強的電子發射特徵 ’並因而能夠穩定地發射電子。 雖然第四實施例採用玻璃基底作爲基底1,但是,與第 二實施例中的方式相同,玻璃基底可由任何其它適當基底 替代。根據第四實施例之電子源10也可以以同於第二實施 例之方式,作爲用於顯示裝置的電子源。 下電極2係由經過高度摻雜的η型多晶矽層製成。但 是,下電極2的材料不限於η型多晶矽,下電極2可由諸 如Cr、W、Ti、Al、Cu、Au、Pt或Mo等金屬;含有此材料 的合金;或多金屬以外其它經過雜質摻雜的半導體製成。 表面電極7由沈積於電子傳送層6上的導電碳化物層 7e及沈積於導電碳化物層7e上的貴重金屬層7f所構成。 導電碳化物層7e係由碳化鉻構成的導電碳化物構成。一般 而言,導電碳化物具有相當高的導電率、相當低的功函數 、高於諸如黃金等貴重金屬之熔點、及優良的擴散障壁性 能。此外,導電碳化物具有優於諸如鎢或鋁等金屬之抗氧 化性。可用於導電碳化物層7e中具有這些特性之導電碳化 物不限於碳化鉻,且其可爲碳化鉻、碳化鉬、碳化鎢、碳 化釩、碳化鈮、碳化鈦、或碳化給。慮及熱穩定度、功函 數及再現性,較佳的是使用碳化鍩、碳化鈦及碳化給。 貴重金屬層7f係由貴重金屬之一的鉑所製成(亦即, 貴重金屬層7f係由疊層結構的鉑層所構成)。但是,所使 用的貴重金屬不限於鉑,且貴重金屬層7f可由諸如黃金或 銥等任何其它適當的貴重金屬製成。此外,一部份貴重金 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁)-/ T Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-34- 1222653 A7 ___B7_ V. Description of the Invention (32) The conductive nitride layer used in the lower electrode 2 can be replaced with the conductive nitride layer 7c on the surface electrode 7 Made of the same material as the conductive nitride. In addition, the conductive nitride layer of the lower electrode 2 can be formed by the same method as the method of forming the conductive nitride layer 7 c of the surface electrode 7. (Fourth Embodiment) A fourth embodiment of the present invention will be described below. As shown in FIG. 9, the electron source 10 according to the fourth embodiment includes a substrate 1 composed of an insulating substrate (for example, an insulating glass substrate or an insulating ceramic substrate), and a lower electrode formed on one of the main surfaces of the substrate 1. 2. A semiconductor layer or an undoped polycrystalline silicon layer 3 is formed on the lower electrode 2. An electron transport layer 6 (strong field drift layer) composed of an oxidized porous polycrystalline silicon layer is formed on the polycrystalline silicon layer 3. In addition, a surface electrode 7 is formed on the electron transport layer 6. In particular, in the electron source 10, the surface electrode 7 and the lower electrode 2 are arranged to face each other, and the electron transport layer 6 is interposed between the surface and the lower electrode. The thickness of the surface electrode 7 is set to 12 nm or less. Although the fourth embodiment uses an insulating substrate as the substrate 1, any other suitable semiconductor substrate such as a silicon substrate may be used as the substrate 1. In addition, although the polycrystalline silicon layer 3 is interposed between the electron transport layer 6 and the lower electrode 2, the electron transport layer 6 can be directly formed on the lower electrode 2 without inserting the polycrystalline silicon layer 3. In the electron source 10 as a ballistic electron surface-emission type electron source according to the fourth embodiment, the electron emission step or the electron emission model is the same as the electron source according to the first embodiment (refer to Figs. 2 and 3). Therefore, compared to the electron source 10 according to the first embodiment, the electron source 10 according to the fourth embodiment exhibits the paper standard applicable to the Chinese National Standard (CNS) A4 (21 × 297 mm) -35- ( (Please read the precautions on the back before filling this page)--Ordered by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Consumer Cooperatives 1222653 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Consumer Cooperatives A7 B7 V. Description of the invention (33) Low vacuum dependence And enhanced electron emission characteristics free of sudden phenomena, and thus capable of emitting electrons stably. Although the fourth embodiment uses a glass substrate as the substrate 1, in the same manner as in the second embodiment, the glass substrate may be replaced by any other appropriate substrate. The electron source 10 according to the fourth embodiment can also be used as an electron source for a display device in the same manner as the second embodiment. The lower electrode 2 is made of a highly doped n-type polycrystalline silicon layer. However, the material of the lower electrode 2 is not limited to n-type polycrystalline silicon, and the lower electrode 2 may be made of a metal such as Cr, W, Ti, Al, Cu, Au, Pt, or Mo; an alloy containing this material; or an impurity doped other than the polymetal Made of miscellaneous semiconductors. The surface electrode 7 is composed of a conductive carbide layer 7e deposited on the electron transport layer 6 and a noble metal layer 7f deposited on the conductive carbide layer 7e. The conductive carbide layer 7e is made of a conductive carbide composed of chromium carbide. In general, conductive carbides have a relatively high electrical conductivity, a relatively low work function, a melting point higher than that of precious metals such as gold, and excellent diffusion barrier properties. In addition, conductive carbides have better oxidation resistance than metals such as tungsten or aluminum. The conductive carbide that can be used in the conductive carbide layer 7e having these characteristics is not limited to chromium carbide, and it may be chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, titanium carbide, or carbide. In consideration of thermal stability, work function, and reproducibility, it is preferable to use hafnium carbide, titanium carbide, and carbide. The precious metal layer 7f is made of platinum, which is one of the precious metals (that is, the precious metal layer 7f is made of a platinum layer having a laminated structure). However, the precious metal used is not limited to platinum, and the precious metal layer 7f may be made of any other appropriate precious metal such as gold or iridium. In addition, part of the valuable gold paper size applies to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling this page)

-36- 1222653 A7 B7 五、發明説明(34 ) 屬層7f可由疊層結構的鉑層構成,而其餘部份可由不同於 鉑的貴重金屬製成。 在表面電極7中,導電碳化物層較佳地設定在4 nm或 更低,且貴重金屬層7f的厚度較佳地設定在8 nm或更低。 更佳地,導電碳化物層7e的厚度設定在2 nm或更低,且 貴重金屬層7f的厚度設定在4nm或更低以提供增強的電子 發射效率。 在根據第四實施例之電子源10中,表面電極7係由導 電碳化物製成的導電碳化物層7e及貴重金屬製成的貴重金 屬層7f所構成。如上所述,導電碳化物具有相當高的導電 率、相當低的功函數、高於貴重金屬之熔點、優良的擴散 障壁性能、及優於諸如鎢或鋁等金屬之抗氧化性。此外, 導電碳化物層7e對於貴重金屬層7f具有優良的黏著性。因 此,相較於具有金屬薄膜構成的表面電極之電子源,根據 第四實施例之電子源10可以提供增強的表面電極7的熱電 阻並抑制電子發射特徵劣化。亦即,根據第四實施例之電 子源1 0可以抑制其它情形中表面電極7中的材料所造成之 不必要的燒結,以防止導因於諸如真空密封等熱製程之電 子發射特徵的劣化。 此外,由導電碳化物層7e及貴重金屬層7f構成的表面 電極7可以防止構成表面電極7及電子傳送層之個別原子 在它們之間擴散。因此,表面電極7及電子傳送層6的材 料可以選自不同的替代物。 將於下參考圖1 0 A至1 0D,說明根據第四實施例之電 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -37- (請先閱讀背面之注意事項再填寫本頁) ••I裝. 經濟部智慧財產局員工消費合作社印製 1222653 A7 B7 五、發明説明(35 ) 子源10的製程。 (請先閲讀背面之注意事項再填寫本頁) 具有給定膜厚(舉例而言,1// m)之未經摻雜的多晶矽 層首先形成於基底1的主表面之一上,藉由離子佈植法或 熱處埋,將η型雜質摻雜於多晶矽層中以形成導電多晶矽 層(η型多晶矽層)構成的下電極2。然後,具有給定膜厚( 舉例而言,1.5 // m )之增加的未經摻雜的多晶矽層3形成 於所選取之基底1的主表面側上(在下電極2上),以提供如 圖10 A的結構。用於形成未經摻雜的多晶矽層3之程序與 第二實施例相同。當下電極2由諸如Cr、W、Ti、Al、Cu 、Au、pt或Mo等金屬或含有此金屬的合金所製成時,舉 例而言,可藉由濺射法或真空蒸鍍法,形成下電極2。 在形成未經摻雜的多晶矽層3之後,藉由陽極化製程 ’設置到達多晶矽層3的給定深度之多孔區。經由此步驟 ,形成多孔半導體層或多孔多晶矽層4,並因而取得如圖 1 0B所示的結構。用於執行陽極化處理的程序與第一實施例 相同。 經濟部智慧財產局員工消費合作社印製 在完成陽極化處理之後,經由氧化製程,氧化多孔多 晶矽層4。經由此步驟,形成由陽化多孔多晶矽層構成的電 子傳送層6,因而取得如圖1 0C所示的結構。在氧化製程中 ,舉例而言,經由快速加熱法,將多孔多晶矽層4氧化, 以形成包含晶粒51、矽奈米晶體63、及氧化矽膜52、64( 參考圖3)之電子傳送層6。用於執行氧化製程之程序與第一 實施例相同。 在形成電子傳送層6之後,舉例而言,藉由濺射法, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -38- 5 6 2 2 2 經濟部智慧財產局員工消費合作社印製 A7 ___B7_ 五、發明説明(36 ) 順序地形成導電碳化物層7e及貴重金屬層7f。經由此步驟 ’在電子傳送層6上形成導電碳化物層7e及貴重金屬層7f 構成的表面電極7,因而取得具有如圖10D所示的結構之電 子源1 0。 根據第四實施例之電子源10的製程可以提供具有增強 的熱電阻並抑制電子發射特徵劣化之電子源10。 在第四實施例中,經由濺射法,形成表面電極7的導 電碳化物層7e。可以從諸如RF濺射法、RF磁控管濺射法 、DC濺射法及DC磁控管濺射法等不同型式的方法中,選 取可使用的濺射法。在此情形中,經由使用導電碳化物構 成的靶材之濺射法,形成導電碳化物層7e。這些方法可以 以優良的再現性及穩定度以及高產能,提供具有低表面粗 糙度的導電碳化物層7e,降低製造成本及增加電子源10的 電子發射面積。此外,現有的設備可以容易地轉用於形成 導電碳化物層7e之設備,降低設備投資及成本。因此,可 以以較低成本,提供具有增強的熱電阻及抑制電子發射特 徵劣化之電子源1 0。此外,可以以相當低的製程溫度形成 導電碳化物層7e。 用於導電碳化物層7e的膜形成方法不限於上述濺射法 。舉例而言,可以藉由使用導電碳化物構成的沈積源之真 空蒸鍍法、或使用金屬(純金屬)構成的靶材及包含碳的 氣體(反應氣體)之反應濺射法,可形成導電碳化物層7e 。真空蒸鍍法或反應濺射法也能夠以優良的再現性及穩定 度以及高產能,提供具有低表面粗糙度的導電碳化物層7e 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ' " -39- (請先閲讀背面之注意事項再填寫本頁)-36- 1222653 A7 B7 V. Description of the Invention (34) The metal layer 7f may be composed of a platinum layer having a laminated structure, and the remaining portion may be made of a precious metal different from platinum. In the surface electrode 7, the conductive carbide layer is preferably set at 4 nm or less, and the thickness of the precious metal layer 7f is preferably set at 8 nm or less. More preferably, the thickness of the conductive carbide layer 7e is set at 2 nm or less, and the thickness of the precious metal layer 7f is set at 4 nm or less to provide enhanced electron emission efficiency. In the electron source 10 according to the fourth embodiment, the surface electrode 7 is composed of a conductive carbide layer 7e made of a conductive carbide and a precious metal layer 7f made of a precious metal. As described above, conductive carbides have a relatively high electrical conductivity, a relatively low work function, a melting point higher than that of precious metals, excellent diffusion barrier properties, and oxidation resistance superior to metals such as tungsten or aluminum. In addition, the conductive carbide layer 7e has excellent adhesion to the precious metal layer 7f. Therefore, the electron source 10 according to the fourth embodiment can provide an enhanced thermal resistance of the surface electrode 7 and suppress deterioration of the electron emission characteristics, compared to an electron source having a surface electrode composed of a metal thin film. That is, the electron source 10 according to the fourth embodiment can suppress unnecessary sintering caused by the material in the surface electrode 7 in other cases to prevent deterioration of the electron emission characteristics caused by a thermal process such as vacuum sealing. In addition, the surface electrode 7 composed of the conductive carbide layer 7e and the noble metal layer 7f can prevent individual atoms constituting the surface electrode 7 and the electron transport layer from diffusing therebetween. Therefore, the materials of the surface electrode 7 and the electron transport layer 6 may be selected from different substitutes. Reference will be made to Figures 10 A to 10D below to explain that the paper size of the electric paper according to the fourth embodiment is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -37- (Please read the precautions on the back before (Fill in this page) •• I install. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1222653 A7 B7 V. Description of Invention (35) The process of subsource 10. (Please read the precautions on the back before filling this page) An undoped polycrystalline silicon layer with a given film thickness (for example, 1 // m) is first formed on one of the main surfaces of the substrate 1, by Ion implantation method or thermal burying, doping n-type impurities into the polycrystalline silicon layer to form a lower electrode 2 composed of a conductive polycrystalline silicon layer (n-type polycrystalline silicon layer). Then, an undoped polycrystalline silicon layer 3 having a given film thickness (for example, 1.5 // m) is formed on the main surface side of the selected substrate 1 (on the lower electrode 2) to provide, for example, Figure 10 A structure. The procedure for forming the undoped polycrystalline silicon layer 3 is the same as that of the second embodiment. When the lower electrode 2 is made of a metal such as Cr, W, Ti, Al, Cu, Au, pt, or Mo or an alloy containing the metal, for example, it can be formed by a sputtering method or a vacuum evaporation method. Lower electrode 2. After the undoped polycrystalline silicon layer 3 is formed, a porous region reaching a given depth of the polycrystalline silicon layer 3 is set by an anodizing process'. Through this step, a porous semiconductor layer or a porous polycrystalline silicon layer 4 is formed, and thus a structure as shown in FIG. 10B is obtained. The procedure for performing the anodizing process is the same as that of the first embodiment. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs After the anodization is completed, the porous polycrystalline silicon layer 4 is oxidized through an oxidation process. Through this step, an electron transport layer 6 composed of an anodized porous polycrystalline silicon layer is formed, thereby obtaining a structure as shown in FIG. 10C. In the oxidation process, for example, the porous polycrystalline silicon layer 4 is oxidized by a rapid heating method to form an electron transport layer including crystal grains 51, silicon nanocrystals 63, and silicon oxide films 52 and 64 (refer to FIG. 3). 6. The procedure for performing the oxidation process is the same as that of the first embodiment. After the electron transport layer 6 is formed, for example, by the sputtering method, the paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -38- 5 6 2 2 2 Staff Consumption of Intellectual Property Bureau of the Ministry of Economic Affairs Cooperative prints A7 ___B7_ 5. Description of the invention (36) A conductive carbide layer 7e and a precious metal layer 7f are sequentially formed. Through this step ', a surface electrode 7 composed of a conductive carbide layer 7e and a precious metal layer 7f is formed on the electron transport layer 6, thereby obtaining an electron source 10 having a structure as shown in Fig. 10D. The manufacturing process of the electron source 10 according to the fourth embodiment can provide the electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics. In the fourth embodiment, a conductive carbide layer 7e of the surface electrode 7 is formed by a sputtering method. A usable sputtering method can be selected from different types of methods such as an RF sputtering method, an RF magnetron sputtering method, a DC sputtering method, and a DC magnetron sputtering method. In this case, a conductive carbide layer 7e is formed by a sputtering method using a target composed of a conductive carbide. These methods can provide a conductive carbide layer 7e having a low surface roughness with excellent reproducibility and stability and high productivity, reduce the manufacturing cost, and increase the electron emission area of the electron source 10. In addition, the existing equipment can be easily transferred to the equipment for forming the conductive carbide layer 7e, reducing equipment investment and cost. Therefore, it is possible to provide an electron source 10 having enhanced thermal resistance and suppressing deterioration of electron emission characteristics at a lower cost. In addition, the conductive carbide layer 7e can be formed at a relatively low process temperature. The film forming method for the conductive carbide layer 7e is not limited to the above-mentioned sputtering method. For example, a conductive vapor deposition method using a deposition source made of conductive carbide or a reactive sputtering method using a target made of metal (pure metal) and a carbon-containing gas (reactive gas) can be used to form a conductive material. Carbide layer 7e. The vacuum evaporation method or the reactive sputtering method can also provide a conductive carbide layer with low surface roughness 7e with excellent reproducibility and stability and high productivity. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297) PCT) '" -39- (Please read the notes on the back before filling this page)

1222653 A7 B7 五、發明説明(37 ) ’降低製造成本及增加電子源10的電子發射面積。因此, 可以以較低成本提供具有增強的熱電阻並抑制電子發射特 徵劣化之電子源10。此外,能以相當低的製程溫度形成導 電碳化物層7e。此外,當經由真空蒸鍍法形成導電碳化物 層7e時,現有的真空蒸鍍設備可以容易地轉用於形成導電 碳化物層7e之設備,降低設備投資及減少設備成本。 由於導電碳化物具有高熔點,所以,蒸鍍法EB(電子束 )係適當的可使用之真空蒸鎪法。另一方面,使用金屬(純 金屬)構成的靶材及包含碳的氣體(反應氣體)之反應濺 射法可以便於控制導電碳化物層7e中的碳濃度。亦即,在 反應濺射法中,可以適當地選取反應氣體的型式或諸如Ar 等惰性氣體對包含碳原子的反應氣體之混合比例,以控制 導電化物層7e中的碳濃度,以提供具有所需碳濃度之導電 碳化物層7e。此外,當使用反應濺射法時,以150至50(TC 相當低的基底溫度,形成所需的碳化鈦膜、碳化鉻膜或碳 化給膜。 一般而言,相較於碳化物靶材,具有較高純度之純金 屬靶材可於市場廣泛取得。因此,相較於使用導電碳化物 作爲靶材之濺射法,反應濺射法可以提供包含較少量的金 屬雜質之導電碳化物層7e,因而能夠抑制導因於雜質之性 能降低。慮及如同第四實施例中具有4 nm或更低的厚度之 導電碳化物層7e之導電碳化物層7e之表面的膜厚均勻性及 遮蓋性能,濺射法、真空蒸法或反應濺射法比其它形成此 導電碳化物層之膜形成法更加有利。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ·!裝· ,訂 經濟部智慧財產局員工消費合作社印製 -40- 1222653 A7 B7 五、發明説明(38 ) (請先閱讀背面之注意事項再填寫本頁) 在第四實施例中,電子傳送層6係由氧化的多孔多晶 矽層所構成。或者,電子傳送層6可以由氮化的多孔多晶 矽層或氮氧化的多孔多晶矽層構成。此外,電子傳送層6 可由任何其它適當的氧化、氮化或氮氧化多孔半導體層所 構成。氧化、氮化或氮氧化方法及這些情形中的特徵或優 點說明於第一實施例中。 (實施例) 將於下參考圖11,說明經由根據第四實施例之製程真 正地製造的電子源10在接受熱處理之前及之後電子發射特 徵的量測結果。 經濟部智慧財產局員工消費合作社印製 在本實施例中,使用矽基底作爲基底1,使用η型多晶 矽層作爲下電極2、使用電子傳送層6(強場漂移層)作爲氧 化的多孔多晶矽層、使用碳化鉻層作爲表面電極7之導電 的碳化物層7e、以及使用鉑層作爲表面電極7的貴重金屬 層7f。導電碳化物層7e的厚度爲2 nm,貴重金屬層7f的 厚度爲4 nm。藉由使用Ar氣氛圍中以碳化鉻構成靶材之 RF濺射法,形成導電碳化物層7e。 於下說明導電碳化物層7e的形成條件;1222653 A7 B7 V. Description of the invention (37) ′ Reduce the manufacturing cost and increase the electron emission area of the electron source 10. Therefore, the electron source 10 having enhanced thermal resistance and suppressing deterioration of the electron emission characteristics can be provided at a lower cost. In addition, the conductive carbide layer 7e can be formed at a relatively low process temperature. In addition, when the conductive carbide layer 7e is formed by a vacuum evaporation method, the existing vacuum evaporation equipment can be easily transferred to the equipment for forming the conductive carbide layer 7e, reducing equipment investment and equipment cost. Since the conductive carbide has a high melting point, the vapor deposition method EB (electron beam) is a suitable vacuum evaporation method that can be used. On the other hand, a reactive sputtering method using a target made of a metal (pure metal) and a carbon-containing gas (reactive gas) can easily control the carbon concentration in the conductive carbide layer 7e. That is, in the reactive sputtering method, the type of the reaction gas or the mixing ratio of the inert gas such as Ar to the reaction gas containing carbon atoms can be appropriately selected to control the carbon concentration in the conductive material layer 7e to provide A carbon-concentrated conductive carbide layer 7e is required. In addition, when a reactive sputtering method is used, a required titanium carbide film, chromium carbide film, or carbonized film is formed at a substrate temperature of 150 to 50 ° C, which is relatively low. Generally speaking, compared with carbide targets, Pure metal targets with higher purity are widely available in the market. Therefore, compared with the sputtering method using conductive carbides as a target, reactive sputtering can provide a conductive carbide layer containing a smaller amount of metal impurities. 7e, thereby suppressing the decrease in performance due to impurities. Considering the uniformity and masking of the film thickness of the surface of the conductive carbide layer 7e of the conductive carbide layer 7e having a thickness of 4 nm or less as in the fourth embodiment. Performance, sputtering method, vacuum evaporation method or reactive sputtering method is more advantageous than other film forming methods for forming this conductive carbide layer. This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) (please first Read the precautions on the back and fill in this page.) !!, order, printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -40-1222653 A7 B7 V. Description of the invention (38) (Please read the precautions on the back before completing this page In the fourth embodiment, the electron transporting layer 6 is composed of an oxidized porous polycrystalline silicon layer. Alternatively, the electron transporting layer 6 may be composed of a nitrided porous polycrystalline silicon layer or an oxidized porous polycrystalline silicon layer. In addition, the electron transporting layer 6 6 may be composed of any other appropriate oxidized, nitrided, or oxynitride porous semiconductor layer. The oxidized, nitrided, or oxynitrided methods and the features or advantages in these cases are described in the first embodiment. Referring to Fig. 11, the measurement results of the electron emission characteristics of the electron source 10 actually manufactured through the process according to the fourth embodiment before and after being subjected to heat treatment will be described. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs in this embodiment, A silicon substrate is used as the substrate 1, an n-type polycrystalline silicon layer is used as the lower electrode 2, an electron transport layer 6 (a strong field drift layer) is used as the oxidized porous polycrystalline silicon layer, and a chromium carbide layer is used as the conductive carbide layer 7e of the surface electrode 7. And a precious metal layer 7f using a platinum layer as the surface electrode 7. The thickness of the conductive carbide layer 7e is 2 nm, and the thickness of the precious metal layer 7f is The degree is 4 nm. A conductive carbide layer 7e is formed by an RF sputtering method using a chromium carbide target in an Ar gas atmosphere. The formation conditions of the conductive carbide layer 7e are described below;

Ar 氣壓力:0.5 - 7 Pa RF 功率密度:0.5 · 3.0 W/cm2 %Ar gas pressure: 0.5-7 Pa RF power density: 0.5 · 3.0 W / cm2%

基底溫度:30 - 150°C 其中’圖11中所示的資料係從具有下述條件下形成的 碳化鉻之導電碳化物層7e的電子源取得。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -41 - 1222653 A7Substrate temperature: 30-150 ° C where the data shown in Fig. 11 are obtained from an electron source having a conductive carbide layer 7e of chromium carbide formed under the following conditions. This paper size applies to China National Standard (CNS) A4 (210X297 mm) -41-1222653 A7

Ar氣壓力:約1.3 Pa RF功率密度:約1.7 W/cm2 基底溫度:約5(TC 於下說明貴重金屬層7f的形成條件;Ar gas pressure: about 1.3 Pa RF power density: about 1.7 W / cm2 Substrate temperature: about 5 (TC The formation conditions of the precious metal layer 7f are described below;

Ar氣壓力:約〇·7 Pa RF功率密度:約0.6 W/cm2 基底溫度:約50°C 將電子源1 0導入真空室(未顯不)以量測如圖2中所示 的狀態中之電子源10的電子發射特徵。亦即,集極21設 置成與表面電極7相對立。然後,在表面與下電極之間施 加DC電壓Vps,以致於表面電極7具有高於下電極7的電 位,而另一 DC電壓Vc施加於集極與表面電極之間,以致 於集極具有高於表面電極7的電位。 經濟部智慧財產局員工消費合作社印製 圖1 1係顯示真空室中的真空度設定爲5x 1(T5 Pa以及 DC電壓設定爲1000 V的固定値之狀態下的電子發射特徵之 量測結果。在圖11中,水平軸意指DC電壓Vps,垂直軸 意指目前的電流密度。符號“ A”意指熱處理之前的狀態中 之二極體電流Ips的電流密度。符號“B”意指在熱處理之前 的狀態中之發射電流Ie之電流密度。符號”C”意指熱處理之 後的狀態中二極體電流Ips的電流密度。符號”D”意指熱處 理之後的狀態中發射電流Ie的電流密度。熱處理係在400 t的溫度、氣氛圍下執行一小時。 如圖11所示,在本實施例的電子源10中,既無發射 電流Ie,亦無發射效率因熱處理而劣化。此外,在本實施 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -42- 1222653 A7 ____ B7_ 五、發明説明Uo ) 例的電子源10中,二極體電流Ips會因熱處理而降低,發 射電流Ie會增加。這證明電子發射效率改進。雖然已參考 特定實施例說明發明,但是,對於習於此技藝者而言,淸 楚可知不同的修改及更換。無意將明限定於此處所述的實 施例,發明僅受限於後附的申請專利範圍及其均等範圍。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -43-Ar gas pressure: about 0.7 Pa RF power density: about 0.6 W / cm2 substrate temperature: about 50 ° C The electron source 10 is introduced into a vacuum chamber (not shown) to measure the state shown in FIG. 2 The electron emission characteristics of the electron source 10. That is, the collector 21 is disposed to face the surface electrode 7. Then, a DC voltage Vps is applied between the surface and the lower electrode, so that the surface electrode 7 has a higher potential than the lower electrode 7, and another DC voltage Vc is applied between the collector and the surface electrode, so that the collector has a high voltage. To the surface electrode 7. Printed in Figure 11 by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs shows the measurement results of the electron emission characteristics in a vacuum chamber with a vacuum of 5x 1 (T5 Pa and a DC voltage of 1000 V). In FIG. 11, the horizontal axis means the DC voltage Vps, and the vertical axis means the current density. The symbol "A" means the current density of the diode current Ips in the state before the heat treatment. The symbol "B" means the The current density of the emission current Ie in the state before the heat treatment. The symbol "C" means the current density of the diode current Ips in the state after the heat treatment. The symbol "D" means the current density of the emission current Ie in the state after the heat treatment. The heat treatment is performed at a temperature of 400 t for one hour in an air atmosphere. As shown in FIG. 11, in the electron source 10 of this embodiment, neither the emission current Ie nor the emission efficiency is deteriorated by the heat treatment. In addition, in In this implementation, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -42- 1222653 A7 ____ B7_ 5. In the example of the electron source 10 of the invention, the diode current Ips will be caused by heat. Li is reduced, the emission current Ie increases. This proves that the electron emission efficiency is improved. Although the invention has been described with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and changes can be made. It is not intended to limit the disclosure to the embodiments described herein, and the invention is limited only by the scope of the attached patent application and its equivalent scope. (Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is sized for the Chinese National Standard (CNS) A4 (210X297 mm) -43-

Claims (1)

1222653 Λ8 B8 C8 D8 六、申請專利範圍 1 1·一種場發射型電子源,包括: 下電極; (請先閲讀背面之注意事項再填寫本頁) 電子傳送層,形成於該下電極上且由包含多晶矽及相 Μ於多晶矽的晶粒邊界之一些奈米晶體矽之複合奈米晶體 層構成;及 表面電極,形成於該電子傳送層上,其中 該場發射型電子源允許通過該電子傳送層的電子經由 表面電極發射,其中 至少部份該表面電極係由層結構的導電碳化物或層結 構的導電氮化物所屬成。 2·如申請專利範圍第1項之場發射型電子源,其中該表 面電極包含沈積於該電子傳送層上的導電碳化物層或導電 氮化物層、及沈積於該導電碳化物層或導電氮化物層上的 貴重金屬層。 3·如申請專利範圍第2項之場發射型電子源,其中至少 部份貴重金屬層係由層結構的鉑層構成。 經濟部智慧財產局員工消費合作社印製 4. 如申請專利範圍第2項之場發射型電子源,其中該表 面電極的導電碳化物層或導電氮化物層具有4nm或更薄的 厚度,而該表面電極的貴重金屬層具有8 nm或更薄的貴重 金屬層。 5. 如申請專利範圍第1項之場發射型電子源,其中該導 電碳化物係碳化鈦、碳化鍩或碳化給,該導電氮化物係氮 化鉬、氮化鈦、氮化鉻或氮化給。 6. —種場發射型電子源,包括: 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -44- 1222653 A8 B8 C8 D8 六、申請專利範圍 2 下電極; 表面電極;及 (請先閲讀背面之注意事項再填寫本頁) 電子傳送層,介於該下電極與該表面電極之間以允許 電子通過,其中 該場發射型電子源允許通過該電子傳送層的電子經由 表面電極發射,其中 該表面電極由包含導電碳化物層或導電氮化物層 及貴重金屬層的多層膜所構成,該表面電極具有形成有一 些凹部之表面以允許多層膜具有局部縮減的厚度。 7. —種場發射型電子源,包括: 下電極; 電子傳送層,形成於該下電極上且由包含多晶矽及相 鄰於多晶矽的晶粒邊界之一些奈米晶體矽之複合奈米晶體 層構成;及 表面電極,形成於該電子傳送層上,其中 該場發射型電子源允許通過該電子傳送層的電子經由 該表面電極發射,其中 經濟部智慧財產局員工消費合作社印製 至少部份該下電極係由層結構的導電碳化物或層結構 的導電氮化物所製成。 8. 如申請專利範圍第7項之場發射型電子源,其中該導 電碳化物係碳化鈦、碳化鉻或碳化給,該導電氮化物係氮 化鉬、氮化鈦、氮化銷或氮化給。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -45-1222653 Λ8 B8 C8 D8 VI. Patent application scope 1 1. A field emission type electron source, including: lower electrode; (please read the precautions on the back before filling this page) The electron transport layer is formed on the lower electrode and consists of A composite nano crystal layer composed of polycrystalline silicon and some nanocrystalline silicon at the grain boundary of the polycrystalline silicon; and a surface electrode formed on the electron transport layer, wherein the field emission type electron source is allowed to pass through the electron transport layer Of the electrons are emitted through a surface electrode, at least part of which is composed of a layered conductive carbide or a layered conductive nitride. 2. The field-emission electron source according to item 1 of the application, wherein the surface electrode includes a conductive carbide layer or a conductive nitride layer deposited on the electron transport layer, and a conductive carbide layer or a conductive nitrogen layer deposited on the surface electrode. Precious metal layer on the compound layer. 3. If the field emission type electron source of item 2 of the patent application scope, at least part of the precious metal layer is composed of a platinum layer having a layer structure. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 4. If the field emission type electron source of the second scope of the patent application, the conductive carbide layer or conductive nitride layer of the surface electrode has a thickness of 4 nm or less, and the The precious metal layer of the surface electrode has a precious metal layer of 8 nm or less. 5. The field emission electron source according to item 1 of the application, wherein the conductive carbide is titanium carbide, hafnium carbide or carbide, and the conductive nitride is molybdenum nitride, titanium nitride, chromium nitride or nitride. give. 6. — Seed field emission type electron source, including: This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -44- 1222653 A8 B8 C8 D8 6. Patent application scope 2 Lower electrode; Surface electrode; and (Please read the precautions on the back before filling this page.) The electron transport layer is interposed between the lower electrode and the surface electrode to allow electrons to pass. The field emission electron source allows electrons passing through the electron transport layer to pass through the surface. Electrode emission, wherein the surface electrode is composed of a multilayer film including a conductive carbide layer or a conductive nitride layer and a precious metal layer, and the surface electrode has a surface formed with some recesses to allow the multilayer film to have a locally reduced thickness. 7. —A field emission type electron source, including: a lower electrode; an electron transporting layer formed on the lower electrode and composed of a composite nanocrystalline layer of polycrystalline silicon and some nanocrystalline silicon adjacent to a grain boundary of the polycrystalline silicon; And a surface electrode formed on the electron transport layer, wherein the field emission type electron source allows electrons passing through the electron transport layer to be emitted through the surface electrode, wherein at least part of the The lower electrode is made of a layered conductive carbide or a layered conductive nitride. 8. If the field emission electron source of item 7 of the patent application scope, wherein the conductive carbide is titanium carbide, chromium carbide or carbide, and the conductive nitride is molybdenum nitride, titanium nitride, nitride pin or nitride give. This paper size applies to China National Standard (CNS) A4 (210X297 mm) -45-
TW91121896A 2001-09-25 2002-09-24 Filed emission-type electron source TWI222653B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001290335A JP2003100201A (en) 2001-09-25 2001-09-25 Field emission electron source and manufacturing method thereof
JP2001380355A JP2003187688A (en) 2001-12-13 2001-12-13 Field emission type electron source and manufacturing method of the same
JP2002083927A JP3755474B2 (en) 2002-03-25 2002-03-25 Electron source and manufacturing method thereof
JP2002083928A JP2003281993A (en) 2002-03-25 2002-03-25 Electron source and manufacturing method therefor

Publications (1)

Publication Number Publication Date
TWI222653B true TWI222653B (en) 2004-10-21

Family

ID=34557530

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91121896A TWI222653B (en) 2001-09-25 2002-09-24 Filed emission-type electron source

Country Status (1)

Country Link
TW (1) TWI222653B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383425B (en) * 2008-01-04 2013-01-21 Hon Hai Prec Ind Co Ltd Hot emission electron source and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383425B (en) * 2008-01-04 2013-01-21 Hon Hai Prec Ind Co Ltd Hot emission electron source and method of making the same

Similar Documents

Publication Publication Date Title
US6720717B2 (en) Field emission-type electron source
US6940087B2 (en) Quantum device
JP5746830B2 (en) Metal substrate, carbon nanotube electrode and manufacturing method thereof
WO2002089166A1 (en) Field emission electron source and production method thereof
JP7394453B2 (en) Electron-emitting device and its manufacturing method
TWI222653B (en) Filed emission-type electron source
JP2004511885A5 (en)
JP2007319761A (en) Catalyst composition for forming carbon-based nano material, carbon-based nano material device, cathode substrate for electron discharging element and its manufacturing method, and electron discharging element device and its manufacturing method
JP2003100201A (en) Field emission electron source and manufacturing method thereof
JP5342470B2 (en) Field emission electron source and light emitting device using the same
JP2003187688A (en) Field emission type electron source and manufacturing method of the same
EP1523025B1 (en) Field emission-type electron source
EP1328003B1 (en) Field emission-type electron source
JP4415922B2 (en) Method for forming silicon oxide film
JP2003281992A (en) Electron source and manufacturing method therefor
JP3478279B2 (en) Method for manufacturing field emission electron source
JP3687520B2 (en) Field emission electron source and manufacturing method thereof
JP3589172B2 (en) Field emission electron source
JP3478206B2 (en) Method for manufacturing field emission electron source
JP4135309B2 (en) Manufacturing method of field emission electron source
JP2001210219A (en) Electric field emission type electron source
JP2011175800A (en) Field emission electron source, and light-emitting device using the same
JP3809808B2 (en) Manufacturing method of field emission electron source
JP2003281993A (en) Electron source and manufacturing method therefor
JP2011216349A (en) Electron source

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees