Nothing Special   »   [go: up one dir, main page]

TWI277504B - Method of separating a mold from a solidified layer disposed on a substrate - Google Patents

Method of separating a mold from a solidified layer disposed on a substrate Download PDF

Info

Publication number
TWI277504B
TWI277504B TW95102094A TW95102094A TWI277504B TW I277504 B TWI277504 B TW I277504B TW 95102094 A TW95102094 A TW 95102094A TW 95102094 A TW95102094 A TW 95102094A TW I277504 B TWI277504 B TW I277504B
Authority
TW
Taiwan
Prior art keywords
substrate
template
vacuum
force
applying
Prior art date
Application number
TW95102094A
Other languages
Chinese (zh)
Other versions
TW200633846A (en
Inventor
Byung-Jin Choi
Anshuman Cherala
Yeong-Jun Choi
Mario J Meissl
Sidlgata V Sreenivasan
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/047,499 external-priority patent/US7636999B2/en
Priority claimed from US11/047,428 external-priority patent/US7798801B2/en
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Publication of TW200633846A publication Critical patent/TW200633846A/en
Application granted granted Critical
Publication of TWI277504B publication Critical patent/TWI277504B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • B25B11/005Vacuum work holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention is directed towards a method of separating a mold, included in a template, from a layer disposed on a substrate, the method including, inter alia, applying a separation force to the template to separate the template from the layer; and facilitating localized deformation in the substrate to reduce the separation force required to achieve separation.

Description

1277504 九、發明說明: &lt;相關申請案&gt; 本申請案係為2005年1月31日申請之No· 11/047428美 國專利申請案(名稱為“用於奈米製造之夾持系統”,發明 5 人為 Daniel A. Babbs,Byung-Jin Choi和 Anshuman Cherala) 的分割申請案;及2005年1月31日申請之No· 11/047499美國 專利申請案(名稱為“固持基材至晶圓夾頭的方法”,發明 人為 Byung_Jin Choi,Arshuman Cherala和 Daniel A. Babbs) 的分割申請案,各原申請案的内容併此附送。 10 &lt;有關聯邦贊助研發的聲明〉 美國政府對本發明具有付費授權的權利,及在有限情 況下要求本專利權人在如防衛先前研究計劃署(DARPA)所 頒之 N66001-0M-8964 和 N66001-02-C-8011 條款提供的合 理條件下授權其他人的權利。 15 【發明所屬之技術領域】 發明領域 本發明之領域概有關於結構物的奈米製造。更具言 之,本發明係有關在一壓印微影製程中由製設於一基材上 的固化層分開一模板的方法。 20 【先前技術】 發明背景 奈米製造係包括非常小之結構物的製造,例如具有奈 米級或更小的特徵細構者。一種已受到奈米製造重大影響 的領域係為積體電路的製造。由於半導體製造產業不斷地 5 1277504 致力於更大的產能,並且逐增製設在一基材上之每單位面 積中的電路,故令奈米製造變得越來越重要。奈米製造能 夠提供較大的製程控制,同時可更大地縮減所製成之結構 的最小特徵尺寸。奈米製造曾被使用的其它發展領域乃包 5 括生物科技,光學技術,機械系統等等。 一種奈米製造技術之例係被通稱為壓印微影術。壓印 微影製法例曾被詳揭於許多公開申請案中,例如No. 10/264960美國專利申請案的No. 2004/0065976公開案,名 稱為“在一基材上排列細構來複製具有微小尺寸可變性之 10 細構的方法和模”;No· 10/264926美國專利申請案的No· 2004/0065252公開案,名稱為“在一基材上形成一層以便 於製造量度標準的方法”;及No· 1〇/235314美國專利申請 案的No. 2004/0046271公開案,名稱為“用於壓印微影製法 之功能性圖案化材料”,以上各案皆已讓渡給本發明的受 15 讓人。 在上述各公開的美國專利申請案中所揭的基本壓印微 影技術係包括:在一可聚合化層中製成一紋路圖案,並將 一對應於該紋路圖案的圖案移轉至一底下的基材上。其 中,一模板會被使用而與該基材間隔分開,且有一可成形 2〇的液體置設於該模板和基材之間來與其接觸。該液體會被 固化而形成一固化層,並有一圖案記錄其中,該圖案係匹 配於接觸該液體之模板表面的形狀。該模板飼會移離該固 化層,以使該模板與基材分開。該基材和固化層嗣會接受 處理’而將-對應於該固化層之圖案的紋路影像移轉至基 1277504 材上。當該模板與固化層分離時,該所記錄的圖案可能會 受損。 故有需要提供改良的分離技術來使所記錄的圖案之損 害最小化。 5 【發明内容】 發明概要 本發明係有關一種可由被製設在一基材上的料層來分 開包含於一模板中之模的方法。該方法包括:施一分離力 於該模板使其與該料層分開,及促成該基材中的局部變形 10 以減少達成分離所需之力的大小。相信藉著減少該等分離 力,則對該記錄層的損害將會最小化。這些及其它的實施 例會被更完整地揭述於後。 圖式簡單說明 第1圖為一模板與一壓印層接觸的截面圖,且正以習知 15 技術來分開; 第2圖為依本發明一實施例來將一模板與一基材上的 壓印層分開的截面圖; 第3圖為依本發明第二實施例來將一模板與一基材上 的壓印層分開的截面圖; 20 第4圖為一模板固裝於本發明一實施例之固持器上的 截面圖; 第5圖為本發明可提供之具有不同真空區部的晶圓吸 盤第一實施例之頂視示意圖; 第6圖為本發明可提供之具有不同真空區部的晶圓吸 7 1277504 盤第二實施例之頂視示意圖; 第7圖為本發明可提供之具有不同真空區部的晶圓吸 盤第三實施例之頂視示意圖; 第8圖為第3圖所示之基材與晶圓吸盤依一變化實施例 5 來被釋離的側視圖; 第9圖為第2圖所示的晶圓吸盤之一實施例的頂視圖; 第10圖為第9圖所示的晶圓吸盤沿1(μ10剖線的截面 圖; 第11圖為第10圖所示的晶圓吸盤已有一基材置於其上 10的截面圖; 第12圖為第2圖所示的晶圓吸盤第二實施例的截面 圖’並有一基材置於其上; 第13圖為一模板與一基材上的壓印層接觸的截面圖, 其中該基材會受到一推壓力; 15 第14圖為一簡化頂視圖,示出一模板設有多數空氣噴 嘴局部地排列來施加推壓力; 第15圖為一簡化頂視圖,示出一模板設有多數空氣噴 嘴排成一陣列來施加推壓力; 第16圖為一簡化頂視圖,示出一模板設有多數溝槽以 20 便於位在一模板與壓印層之間的空氣釋出; 第17圖為第16圖所示之模板的側視圖; 第18圖為一簡化頂視圖,示出一模板設有多數孔洞以 便於位在一模板與壓印層之間的空氣釋出;及 第19圖為第18圖所示之模板的侧視圖。 8 1277504 t實施方式j 較佳實施例之詳細說明 晴參閱第1圖,有一模板10係被示出與一壓印芦12接 r 觸。通常,該模板10係由熔凝的二氧化矽所構成,而壓印 一 5層12可由該領域中任何習知的材料來製成。壓印材料12的 成分之例曾被揭於2003年1月24日申請的他· i〇/763885美 國專利申請案中,名稱為“壓印微影術的材料和方法”, φ 其内容併此附送。壓印層12會被置於一基材14上,該基材 14具有一厚度“t”。該基材14可由例如石夕、熔凝的二氧化石夕、 1〇金屬、或一般用來製造積體電路的化合物等所製成。該模 板10包含一表面16其上設有多數的特徵細構,該等細構包 含多數的凸部18和凹部20。該等凸部18和凹部2〇會形成一 圖案而被移轉至壓印層12中來形成一紋路影像。更具言 之,該模板10會接觸壓印層12而使壓印層12的材料擠入並 15填滿該等凹部20來形成壓印層12,其會具有一連續結構遍 • 佈該模板10的表面I6,其中包圍該模板1〇和壓印層12的環 境典型會被充滿一氣體,例如氦。該模板1〇會被連結於一 壓印頭11。該壓印頭11可以沿著χ、γ及/或2軸移動,故 能藉著將模板10沿Ζ軸移離基材14來產生分離力Fs。其中, 2G職材14當壓印頭11移動時典型會相對於Z軸保持在一固 定位置。 該壓印層12可由-光敏性材料製成,俾令其被曝露於 -光化性成分時即會聚合化並交鏈而形成—固化材料。該 光化性成为可包括紫外線波長、熱能、電磁能、可見光等 9 1277504 等。所使用的光化成分係為熟悉該技術的專業人士所習 知,其典型係取決於形成該壓印層12的材料。 該壓印層12的固化會發生在模板10與其接觸之後,且 壓印層12會填滿該等凹部2〇。然後,模板1〇會與壓印層12 5 分離。藉此方式,則該紋路影像會以一對應於模板10的圖 案來被記錄於壓印層12中。 該模板10與固化的壓印層12分離係可藉對模板1〇施加 一力Fs而來達成。該分離力Fs會有足夠的量值來克服模板1〇 與固化壓印層12之間的黏著力和基材η對應變(變形)的阻 10 抗力。相信該基材14的部份變形會促進模板1〇與固化壓印 層12的分離。在其分離時,晶圓吸盤22可使用任何習知的 拉緊力Fc ’例如靜電力、磁力、真空力等來固持該基材14。 因此,分離力Fs的方向典型會相反於拉緊力Fe的方向。通常 晶圓吸盤22係被一平枱23所支撐,其可便於沿X、γ及/或 15 Z軸移動。一壓印微影系統之例可由Texas,Austin的 Molecular Imprints公司以IMPRIO™ 100的商標名稱來購 得。 如第1圖所示,該基材14之應變(變形)的大小係為所施 分施力Fs之一函數,且典型會形成一應變區24,在其中該 20基材14會與晶圓吸盤22間隔一距離d。該應變區24典型會產 生於壓印層12與模板10接觸的區域(俗稱為處理區)附近。 但是,最好能令該模板10與固化壓印層12達成分離所 需的分離力Fs之量值最小化。例如,最小化該分離力&amp;會有 利於對準程序,俾可使模板10和基材14能被妥當對準,且 1277504 能使权板圖案化面積對模板總面積的比率增加。此外,最 小化該分離力Fs將會減少由模板10 '基材14及固化壓印材 料12所組成之結構產生問題的可能性。 又,基材14的變形會造成應變區24中的位能,其在該 5模板10與固化壓印層12分開時將會轉變成動能。具言之,/ 在模板ίο與固化壓印層12分開後,該基材14上的分離找 會趨近於0。肺緊力Fe和製成該基材14之材料的彈力會使 該應變區24朝向吸盤22加速度,因此該應變區24典型會碰 撞該晶圓吸盤22。相信該應變區24與吸盤22的碰撞會具有 10不良作用而損及該基材14與其上之固化壓印層12的結構完 整性。此將會令該基材14與模板1〇之間的對準造成問題。 請參閱第2圖,本發明縱未能防止亦可消減上述模板1〇 與固化壓印層12分離所造成的有害作用。此係可針對一特 定的基材14、模板1〇、和固化壓印層12,藉減少該模板1〇 15與固化壓印層12之間完成分離所須之力Fs的大小而來達 成。其中,該晶圓吸盤122係被設成能控制該基材14在分離 時所承受之應變(變形)的大小。該晶圓吸盤122能由許多獨 立產生之力Fi&amp;F2來產生一拉緊力FC。此將可便於提供一拉 緊力Fe ’其能在該基材14上來改變方向和大小。例如,該 20可變之力h的量值係能比固持力卩1更小甚多。因此,當模 板10受到一分離力Fs時,固持力?1會賦具於基材14的非應變 區26,而可變》F2會賦具於基材14的應變區24。 在本例中,該各力FjnF2皆會沿著相反於分離力?3的方 向。分離力Fs可藉移動一連結於模板的壓印頭11來產生, 11 1277504 如前於第1圖中所述。又,該晶圓吸盤122如第2圖所示係、皮 以一平枱23來支撐,如前於第1圖中所述。但請瞭解,=八 離力Fs亦可藉將模板1 〇的位置相對於z轴保持固定,並利用 平枱23將基材14沿著Z轴移離模板1〇而來產生。或者,該八 5離力Fs亦能沿該z軸以相反方向同時移動模板10和基材 而來產生。但在本文的論述中,本發明係針對移動壓印頭 11以使模板10沿著Z軸移離基材14,而令基材對2軸保持固 定的情況來說明。 應請注意該各力FjnF2的大小事實上可為任何所需之 10值,只要該基材14在應變區24之外的部份當受到分離力f 時能被固持於晶圓吸盤122上即可。例如,可變力&amp;得具有 一趨近於0的量值。由於可變力6係比固持力匕的量值更小 甚多,故將模板10與固化壓印層12分開所需的分離力匕乃 可減y。更具a之,該等可變力h的量值會被設成能夠促 15進該基材14與模板10重疊的部份(稱為應變區24)回應於分 離力Fs而產生應變(變形)。 或請參閱第3圖,該拉緊力&amp;亦可在該基材14上來改 變,而使可變力f2的方向變成相反於固持力Fi的方向,且 相同於分離力Fs的方向。該等可變力5的量值係可相同或較 20大或較小於固持力F2的量值。以此方式,則可藉該能將應 變區24推離晶圓吸盤122的可變抓來促成基材14的局部 變形。其係可以或可不必獨立於分離力&amp;的存在。 如上所述’在本例中該固持力匕係可在施加分離力&amp; 寺用來將基材14固持於晶圓吸盤122上。由於該等可變力匕 12 1277504 的方向係如同分離力Fs的方向’故將模板10與固化壓印層 12分開所需的分離力Fs之值乃可減少。 又,由於可變力?2係沿著相同於分離力Fs的方向,故該 等可變力F2縱不能阻止碰撞亦可消減該應變區24與模板10 5 的衝擊。更具言之,第二可變力F2能減低速度,故在模板 10與固化壓印層12分開之後,該應變區24朝向吸盤122衝撞 的動能亦會減少。以此方式’該應變區24將可貼抵於吸盤 122上,而不會有損其結構完整性。 在該模板1〇由固化壓印層12分開之後,該等可變力F2 10 的大小和方向將可攻變。例如,可變力F2嗣可被設成相同 於固持力?!的大小和方向。又,該等可變力F2之大小和方 向的變化,亦可在一時間週期内呈線性地改變,而使反向 於固持力Fii可變力F2的大小趨近於〇。當可變力F2接近0 時即會改變方向,而緩慢地逐增成相同於固持力Fi的大小 15 和方向。因此,該基材14將會受到可變力F2的逐變作用’ 其會緩慢地減速應變區24,並再逐增來將基材14固定於吸 盤22上。因此,該基材Η回應於與吸盤122接觸所產生的劇 烈減速(即碰撞)將可被避免,故能使其與吸盤122的撞擊力 最小化。 20 在該模板10由固化壓印層12分開之前,該等可變力F2 的方向係可相反於分離力Fs的方向,如前於第2圖所述。但 當模板10與該固化壓印層12分開時,該等可變力F2的方向 則可相同於分離力Fs的方向,如前於第3圖所述。 請參閱第1及4圖’為進一步促進模板1〇與壓印層12分 13 1277504 離,該模板ίο可被施以一凹曲力Fb。更具言之,該凹曲力 FB可沿該模板10的中央區28來施加,並沿著相反於第丨圖所 7F之分離力Fs的方向。該凹曲力匕係可配合或獨立於如前 所述之改變拉緊力Fc的大小和方向來施加。其中,該模板 5 10係可被固0又於一板板爽頭,如2004年11月30日所申請之</ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Invention 5 is a divisional application of Daniel A. Babbs, Byung-Jin Choi and Anshuman Cherala; and US Patent Application No. 11/047,499, filed on Jan. 31, 2005. The method of the head, the inventor's split application for Byung_Jin Choi, Arshuman Cherala and Daniel A. Babbs), the contents of each original application are attached herewith. 10 &lt;Statement Regarding Federally Sponsored R&D> The US Government has the right to pay for the invention and, in limited circumstances, requires the patentee to stipulate N66001-0M-8964 and N66001 as previously defended by the DARPA. -02-C-8011 The rights granted to others under the reasonable conditions provided by the Terms. 15 FIELD OF THE INVENTION Field of the Invention The field of the invention relates to nanofabrication of structures. More specifically, the present invention relates to a method of separating a template from a cured layer formed on a substrate in an imprint lithography process. [Prior Art] Background of the Invention Nanofabrication systems include the fabrication of very small structures, such as those having nanometer or smaller features. One area that has been significantly affected by nanofabrication is the manufacture of integrated circuits. As the semiconductor manufacturing industry continues to focus on greater capacity and incrementally build circuits in a unit area on a substrate, nanofabrication is becoming more and more important. Nanomanufacturing provides greater process control while reducing the minimum feature size of the resulting structure. Other areas of development in which nanofabrication has been used include biotechnology, optical technology, mechanical systems and more. An example of a nanofabrication technique is commonly referred to as imprint lithography. The embossing lithography process has been disclosed in a number of published applications, for example, the disclosure of No. 10/264, 960, the disclosure of which is incorporated herein by reference. A fine-grained method of sizing and sizing of a small size variability; No. 10/264,926, U.S. Patent Application Serial No. 2004/0065252, entitled "Method of Forming a Layer on a Substrate for Manufacturing Measurement Standards" And the disclosure of No. 2004/0046271 to U.S. Patent Application Serial No. 2004/004627, entitled "Functional Patterned Material for Imprinting Microlithography", all of which have been assigned to the present invention Subject to 15 people. The basic imprint lithography technique disclosed in each of the above-mentioned published U.S. Patent Applications includes: forming a texture pattern in a polymerizable layer and transferring a pattern corresponding to the texture pattern to a bottom On the substrate. A template is used to be spaced apart from the substrate, and a formable liquid is placed between the template and the substrate to contact it. The liquid is cured to form a cured layer and has a pattern recorded therein that matches the shape of the surface of the template that contacts the liquid. The template feed will move away from the cured layer to separate the template from the substrate. The substrate and cured layer will undergo processing&apos; and the textured image corresponding to the pattern of the cured layer will be transferred to the substrate 1277504. When the template is separated from the cured layer, the recorded pattern may be damaged. There is a need to provide improved separation techniques to minimize damage to recorded patterns. SUMMARY OF THE INVENTION The present invention is directed to a method of separating a mold contained in a template from a layer formed on a substrate. The method includes applying a separating force to the template to separate it from the layer and causing local deformation 10 in the substrate to reduce the amount of force required to achieve separation. It is believed that by reducing these separation forces, damage to the recording layer will be minimized. These and other embodiments will be more fully disclosed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a template in contact with an embossed layer and is being separated by conventional technique 15; FIG. 2 is a view of a template and a substrate according to an embodiment of the invention FIG. 3 is a cross-sectional view showing a template separated from an imprint layer on a substrate according to a second embodiment of the present invention; FIG. 4 is a template attached to the present invention. FIG. 5 is a top plan view of a first embodiment of a wafer chuck having different vacuum sections provided by the present invention; FIG. 6 is a view showing different vacuum zones provided by the present invention. FIG. 7 is a top plan view of a third embodiment of a wafer chuck having different vacuum sections provided by the present invention; FIG. 8 is a third diagram The substrate and wafer chuck shown in the figure are removed from each other according to a variant embodiment 5; FIG. 9 is a top view of an embodiment of the wafer chuck shown in FIG. 2; Figure 9 shows the wafer chuck along the 1 (μ10 cross-sectional view; Figure 11 shows the 10th The circular chuck has a cross-sectional view of a substrate placed thereon; FIG. 12 is a cross-sectional view of the second embodiment of the wafer chuck shown in FIG. 2 and has a substrate placed thereon; FIG. 13 is a A cross-sectional view of the stencil in contact with an embossed layer on a substrate, wherein the substrate is subjected to a pressing force; 15 Figure 14 is a simplified top view showing a stencil with a plurality of air nozzles partially arranged to apply a push Figure 15 is a simplified top view showing a template with a plurality of air nozzles arranged in an array to apply a pushing force; Figure 16 is a simplified top view showing a template with a plurality of grooves to facilitate 20 Air release between a template and an embossed layer; Figure 17 is a side view of the template shown in Figure 16; Figure 18 is a simplified top view showing a template with a plurality of holes to facilitate positioning The air release between a template and the embossed layer; and the 19th view is a side view of the stencil shown in Fig. 18. 8 1277504 t Embodiment j Detailed Description of the Preferred Embodiments Referring to Figure 1, there is a The template 10 is shown to be in contact with an embossed reed 12. Typically, the template 10 is Composed of fused ceria, and embossed a 5 layer 12 can be made of any of the materials known in the art. Examples of the composition of the imprint material 12 have been disclosed on January 24, 2003. In the U.S. Patent Application Serial No. 763,885, entitled "Materials and Methods of Imprinting Microfilming", φ, the contents of which are hereby incorporated. The embossing layer 12 is placed on a substrate 14, which 14 has a thickness "t." The substrate 14 can be made of, for example, a stone, a fused silica stone, a ruthenium metal, or a compound generally used to make an integrated circuit. The template 10 includes a surface. 16 is provided with a plurality of characteristic features including a plurality of convex portions 18 and concave portions 20. The convex portions 18 and the concave portions 2 are formed into a pattern and are transferred to the embossed layer 12 to form A grain image. More specifically, the template 10 will contact the embossed layer 12 to cause the material of the embossed layer 12 to be squeezed in and 15 to fill the recesses 20 to form the embossed layer 12, which will have a continuous structure throughout the template. The surface I6 of 10, wherein the environment surrounding the template 1 and the embossed layer 12, is typically filled with a gas, such as helium. The template 1 is attached to an imprint head 11. The embossing head 11 can be moved along the χ, γ, and/or 2 axes, so that the separation force Fs can be generated by moving the stencil 10 away from the substrate 14 along the Ζ axis. Among them, the 2G job material 14 is typically held in a fixed position relative to the Z axis as the stamp head 11 moves. The embossed layer 12 may be made of a photosensitive material which is polymerized and crosslinked to form a cured material when exposed to an actinic component. The actinicity may include ultraviolet light wavelength, thermal energy, electromagnetic energy, visible light, etc. 9 1277504. The actinic components used are well known to those skilled in the art and are typically dependent upon the material from which the imprinting layer 12 is formed. The curing of the embossed layer 12 occurs after the stencil 10 is in contact therewith and the embossed layer 12 fills the recesses 2 〇. Then, the template 1〇 is separated from the embossed layer 12 5 . In this way, the texture image is recorded in the embossed layer 12 in a pattern corresponding to the template 10. The separation of the template 10 from the cured embossed layer 12 can be achieved by applying a force Fs to the stencil 1 。. The separation force Fs has a sufficient amount to overcome the adhesion between the template 1 〇 and the cured embossed layer 12 and the resistance of the substrate η corresponding to deformation (deformation). It is believed that partial deformation of the substrate 14 promotes separation of the template 1 〇 from the cured embossed layer 12. At the time of its separation, the wafer chuck 22 can hold the substrate 14 using any conventional tensioning force Fc' such as electrostatic force, magnetic force, vacuum force or the like. Therefore, the direction of the separating force Fs is typically opposite to the direction of the tensioning force Fe. Typically, the wafer chuck 22 is supported by a platform 23 that facilitates movement along the X, gamma, and/or 15 Z axes. An example of an imprint lithography system is commercially available from Molecular Imprints, Inc. of Austin under the trade name IMPRIOTM 100. As shown in Fig. 1, the strain (deformation) of the substrate 14 is a function of the applied force Fs, and typically forms a strain region 24 in which the 20 substrate 14 and the wafer are The suction cups 22 are separated by a distance d. This strain zone 24 is typically produced in the vicinity of the region (commonly referred to as the treatment zone) where the embossed layer 12 is in contact with the stencil 10. However, it is preferable to minimize the amount of separation force Fs required for the template 10 to be separated from the cured embossed layer 12. For example, minimizing the separation force &amp; will facilitate alignment procedures, allowing the template 10 and substrate 14 to be properly aligned, and 1277504 to increase the ratio of the patterned area of the panel to the total area of the template. In addition, minimizing the separation force Fs will reduce the possibility of problems caused by the structure of the template 10' substrate 14 and the cured imprint material 12. Again, deformation of the substrate 14 causes potential energy in the strained region 24 which will translate into kinetic energy when the 5 template 10 is separated from the cured embossed layer 12. In other words, / after the template ίο is separated from the cured embossed layer 12, the separation on the substrate 14 is found to approach zero. The elastic force of the pleural force Fe and the material from which the substrate 14 is made causes the strain zone 24 to accelerate toward the suction cup 22, so that the strain zone 24 typically collides with the wafer chuck 22. It is believed that the collision of the strain zone 24 with the suction cup 22 will have an undesirable effect of damaging the structural integrity of the substrate 14 and the cured embossed layer 12 thereon. This will cause problems in the alignment between the substrate 14 and the template 1〇. Referring to Fig. 2, the present invention fails to prevent the harmful effects caused by the separation of the above-mentioned template 1〇 from the cured imprint layer 12. This can be achieved by reducing the amount of force Fs required to complete the separation between the template 1 〇 15 and the cured embossed layer 12 for a particular substrate 14, stencil 1 , and cured embossed layer 12. The wafer chuck 122 is configured to control the strain (deformation) experienced by the substrate 14 during separation. The wafer chuck 122 can generate a tension force FC from a plurality of independently generated forces Fi &amp; F2. This will facilitate the provision of a tensioning force Fe&apos; which can change direction and size on the substrate 14. For example, the magnitude of the 20 variable force h can be much smaller than the holding force 卩1. Therefore, when the template 10 is subjected to a separation force Fs, the holding force? 1 will be applied to the unstrained region 26 of the substrate 14, and the variable "F2" will be applied to the strained region 24 of the substrate 14. In this case, the forces FjnF2 will all be opposite to the separation force? The direction of 3. The separating force Fs can be generated by moving a stamping head 11 attached to the template, 11 1277504 as previously described in Figure 1. Further, the wafer chuck 122 is supported by a platform 23 as shown in Fig. 2, as previously described in Fig. 1. However, please understand that = eight force Fs can also be generated by holding the position of the template 1 相对 relative to the z-axis and using the platform 23 to move the substrate 14 away from the template 1 along the Z-axis. Alternatively, the octa force Fs can also be generated by simultaneously moving the template 10 and the substrate in the opposite direction along the z-axis. However, in the discussion herein, the present invention is directed to the case where the imprint head 11 is moved to move the stencil 10 away from the substrate 14 along the Z-axis while the substrate remains fixed to the 2-axis. It should be noted that the magnitude of the respective forces FjnF2 may in fact be any desired value of 10, as long as the portion of the substrate 14 outside the strain zone 24 can be held on the wafer chuck 122 when subjected to the separation force f. can. For example, the variable force &amp; has a magnitude that approaches zero. Since the variable force 6 is much smaller than the holding force ,, the separation force required to separate the template 10 from the cured embossed layer 12 can be reduced by y. More specifically, the magnitude of the variable force h is set to promote the portion of the substrate 14 that overlaps the template 10 (referred to as the strain zone 24) to generate strain in response to the separation force Fs (deformation). ). Alternatively, referring to Fig. 3, the tensioning force &amp; can also be changed on the base material 14 such that the direction of the variable force f2 becomes opposite to the direction of the holding force Fi and is the same as the direction of the separating force Fs. The magnitudes of the variable forces 5 are the same or greater than 20 or less than the magnitude of the holding force F2. In this manner, localized deformation of the substrate 14 can be facilitated by the variable grip that can push the strain zone 24 away from the wafer chuck 122. It may or may not be independent of the presence of separation force &amp; As described above, in this example, the holding force can be used to hold the substrate 14 on the wafer chuck 122 at the application of the separation force &amp; Since the direction of the variable force 匕 12 1277504 is the direction of the separating force Fs, the value of the separating force Fs required to separate the template 10 from the solidified embossing layer 12 can be reduced. Also, because of the variable force? The 2 series is along the same direction as the separation force Fs, so that the variable force F2 does not prevent the collision and also reduces the impact of the strain zone 24 and the template 105. More specifically, the second variable force F2 can reduce the speed, so that after the template 10 is separated from the cured embossed layer 12, the kinetic energy of the strained region 24 colliding toward the suction cup 122 is also reduced. In this manner, the strain zone 24 will conform to the suction cup 122 without compromising its structural integrity. After the template 1 is separated by the cured embossed layer 12, the magnitude and direction of the variable forces F2 10 will be attackable. For example, can the variable force F2嗣 be set to be the same as the holding force? The size and direction of ! Further, the magnitude and direction of the variable force F2 may be linearly changed over a period of time, and the magnitude of the variable force F2 opposite to the holding force Fii is brought closer to 〇. When the variable force F2 approaches 0, the direction is changed, and slowly increases to the same magnitude 15 and direction as the holding force Fi. Therefore, the substrate 14 will be subjected to the variable action of the variable force F2, which will slowly decelerate the strain zone 24 and be further increased to fix the substrate 14 to the chuck 22. Therefore, the severe deceleration (i.e., collision) of the substrate Η in response to contact with the suction cup 122 can be avoided, so that the impact force with the suction cup 122 can be minimized. 20 Before the template 10 is separated by the cured embossed layer 12, the direction of the variable forces F2 may be opposite to the direction of the separation force Fs, as previously described in FIG. However, when the template 10 is separated from the cured embossed layer 12, the direction of the variable force F2 may be the same as the direction of the separating force Fs as previously described in Fig. 3. Referring to Figures 1 and 4', in order to further facilitate the separation of the template 1 and the embossed layer 12 13 1277504, the template ίο can be subjected to a concave curvature Fb. More specifically, the concave curvature FB can be applied along the central portion 28 of the template 10, and in a direction opposite to the separation force Fs of the 7F of the second drawing. The concave curvature can be applied in conjunction with or independent of the magnitude and direction of the varying tension Fc as previously described. Among them, the template 5 10 can be solidified and applied to a board, as applied for on November 30, 2004.

No· 10/999898美國專利申請案所揭,該案已被讓渡給本申 請案的受讓人,而發明人係為Cherala等人,其内容併此附 送。 該模板夾頭包含一本體31具有一中心貫孔33,其一侧 10 係被一熔凝的石夕化物板3 5與一封環3 6所密封。有一凹槽3 7 和封環38會包圍該貫孔33。將模板1〇妥當地定位於本體31 上即會密封該貫孔33而形成一腔室,並會密封該凹槽37而 形成一第一腔室包圍該中央腔室。該中央腔室和第二腔室 分別各設有一所需的相對加壓通道40和41。若抽空該第二 15腔室並加壓中央腔室’則凹曲力FB即可被施加於模板10而 不會使模板移離該本體31。 請參閱第1,5,6圖,欲改變遍佈整個基材14上之拉緊 力Fc的大小和方向時,可使用上述的晶圓吸盤122。又,以 下實施例可被使用於一逐步重複製法中,有一逐步重複雜 20 製法之例係被揭於No. 10/194414美國專利申請案的No. 2004/0008334公開案中,該案已被讓渡給本發明的受讓 人,其内容併此附送。 其中,該晶圓吸盤122可被製成具有許多個別獨立的真 空區部30a〜30z。針對本發明,該各真空區部3〇a〜30z係被 14 1277504 設成能提供一或多數相同量值和方向的固持力,例如,其 可有一拉緊力Fe賦具於一真空區部3〇A〜3〇z,或有多數固持 力其各方向和大小皆大致相同。該等真空區部3〇a〜3〇z的 數目、尺寸和形狀係可依據若干因素來改變。此外,其任 5 一真空區部3〇a〜30z的尺寸和形狀亦可與其餘的真空區部 不同。例如,一或多個真空區部的尺寸及/或形狀係可相 同於該應變區24的尺寸及/或形狀。因此,該各真空區部 3〇a〜30z乃可具有許多形狀中之一者,包括任何多邊形, 如圖所示的方形,以及如第6圖中所示的圓形13〇或環形23〇 10等。又,該等真空區部亦可包含任一或多種不規則形狀 330,如第7圖所示。 請參閱第5〜7圖,雖然可能被形成於一共同晶圓吸盤 122上之各真空區部皆具有相同的形狀和尺寸,但其並不一 定須要如此。即該吸盤222亦可設有不規則的真空區部 15 %〇,例如包括一六邊形真空區部430,一矩形真空區部 53〇,一圓形真空區部130,及一環形真空區部23〇等。 凊參閱第2, 5, 7, 8圖,該各真空區部3〇a〜3〇z皆可 被個別地定位,而使不同的固持力能賦具於該等真空區部 3〇a〜30z。以此方式,則所須之固持力如匕及/或。的位置 2〇將可更精確地設定。但,亦須能改變各真空區部30a〜30Z 所賦具的拉緊》FC,以使基材14能沿一延伸穿越該基材14 整個面積之軸來應變。因此,相鄰各排的真空區部3〇a〜3〇z 會形成一拉緊力差^Fe。例如,真空區部3〇d、3〇i、3〇〇、 3〇u、30z、3〇j、30P、30v會產生可變力F2,其係小於由其 15 1277504 餘的真空區部30a、30b、30c、30E、3〇F、30G、30H、30κ、 3〇l、30M、30N、30q、30R、30s、3〇T、3〇w、3〇χ和3〇¥等所 產生的固持力。此將能使基材14繞著a軸來撓曲,此係由該 拉緊力差AFc所促成,該拉緊力差係形成於真空區部 5 30D、30〗、30〇、3〇u、30z組成的第一排與包含真空區部3〇c、 3〇m、30N、30τ、30Y的第二排之間。 請參閱第9及10圖,為使該晶圓吸盤122及/或222具有 上述的真空特性,該等吸盤122、222會整體地由不銹鋼或 銘來製成,並設有多數間隔分開的凸銷32和33等,而在其 10間形成多數的槽道36。雖於圖中所示係具有圓形截面,但 該各凸銷32、33事實上可具有任何所需截面形狀,包括多 邊开&gt; 專’且典型具有3mm的間距。一或多數的凸銷係呈中 空而形成一貫孔34,其會由一通道35延伸而終止於一面對 基材14的開口,如第11圖所示。其中所示的凸銷%之貫孔 15典型具有大約lmm的直徑,以避免疊置其上的基材14部份 凹曲。 雖該各凸銷32係被示出導通於一共同的通道35,但並 非一定必要如此。即是,該各凸銷32的貫孔34亦可個別地 被設定,而使每單位時間通過其中的流體體積和方向獨立 20無干於流經其餘凸銷32之貫孔34的流體。此乃可藉將一或 多數凸鎖32設成導通-通道,但該通道係不同於導通其餘 凸銷32的通道而來達成。在另一實施例中,貫孔34可包含 一階狀結構。該等凸銷32可被一平台37所包圍,而基材^ 係貼抵於該平台上。各槽道36典型會經由孔隙4〇來導接一 16 1277504 斗同通道39。 請參閱第U)及U圖,該基材14會被流經槽道36及/或 貫孔34之流體所產生的拉緊力〜來固持在晶圓吸盤⑵ 上。其中,通道35會導通-壓力控制系動卜而通道财 5導通另一壓力控制系統43。該二壓力控制系統4咏43會被 處理器45控制來操作,並能與之傳接資訊。該處理器會包 含電腦可讀碼而能被該處理器操作來進行前於第卜⑽ 中所述的流體運作。當被置於晶圓吸盤122上時,該基材14 ,面對吸盤122的-面47將會貼抵各凸銷32和33。在有拉緊力 10 FC而沒有分離力?8時,貫孔34面對基材14的一端將會被緊 抵於凸銷32上的該表面47氣密地密封。因為被表面47所密 封,所以沒有流體會在貫孔34和槽道36之間流動。 當施加分離力Fs時,有部份重疊固化壓印層12的表面 47將會變成與凸銷32及/或33分開。為能減少分開所須的 15分離力Fs量值且便於分離,故該等凸銷32會被佈設於晶圓 ,吸盤122的整個區域。流經貫孔34的液體係被選成會使可變 力F2小於固持力Fi。通常,固持力込係將壓力控制系統43 操作成全真空而來產生。當可變力F2被操作在一壓力狀態 下時,其將會具有足夠的量值來在該應變區24與晶圓吸盤 2〇 122之間的容隙中產生一大約200kPa的壓力。此通常會使在 應變區24中的基材14造成大約1〇微米的移動。由於密封已 被打破,故貫孔34即會經由槽道36和孔隙40來導接通道 39。此將會進一步減少該應變區24上之拉緊力Fc的大小, 故能減少分開該模板1〇與壓印層所需的分離力Fs,因其已 17 1277504 促成該應變區24中之基材14的應變/變形。 請參閱第12圖,在一變化實施例中,晶圓吸盤322係可 不必使用凸銷32和33等而來提供前述的真空特性。其中, 該晶圓吸盤322之一表面49含有多數的孔隙50及52等,可供 5流體流經其中,且某一流體的量值和方向係能獨立無干於 流經其餘孔隙50和52的流體。該等孔隙典型具有3mm的間 距及2mm的直徑’而足以減少疊置之基材14部份凹曲的可 能性。 在本例中,各孔隙50係導接一共同通道53,而各孔隙 10 52則會導通於另一共同通道55。接緊力&amp;係藉流經一或多 數間隔分開之孔隙50和52的流體來產生。在分開之前,該 等間隔分開之孔隙50和52可具有流體以第一流率的〇sccm 或稍大來流經其中。當分離力Fs出現時,流體會以一不同 於第一流率的第二流率來通過該等孔隙5〇和52。具言之, 15通過各孔隙50、52的流體之流率係可回應於分離力Fs的存 在而改變。通常上述之流率變化係侷限於該應變區24中的 孔隙50、52。該流率的改變典型會足以減少拉緊力以的量 值。因此,其流率變化通常只會影響通過該孔隙52或5〇中 之一者的流體。例如,通過在應變區24上之孔隙52的流率 20可被改變而使所產生的拉緊力Fc減少。但通過孔隙50的流 率則會保持固定。 凊參閱第2圖,為進一步協助該模板⑺與壓印層12分 開,該壓印層可為一種材料,其在曝露於預定波長時會造 成一氣態的副產品,如在No. 6218316美國專利案中所揭 18 1277504 者,該案内容併此附送。該氣態副產品會在壓印層12與模 的平坦表面間的介面處造成局部壓力。該局部壓力能夠促 進模板10與壓印層12分離。可促成產生氣態副產品的輻射 波長乃包括例如157nm、248mn、257nm及308nm的波長, 5 或其組合等。當氣態副產品產生之後,最好即迅速地開始 分離模板’俾使對壓印層的損害最小化。又,位在模 板10與壓印層12之間的氣態副產品可能會由模板10與壓印 層12之間洩出,這是不受歡迎的。而且,該模板10與壓印 層12分開時,應要垂直於該壓印層12,才能使壓印層12的 10 扭曲變形最小化。 請參閱第13圖,為進一步協助模板10與壓印層12分 開,有一推壓力FP可被使用於該模板10與基材14之間。具 言之’該推壓力FP可被施加於該基材14未與模板1〇重疊的 區域處。該推壓力FP可將基材14移離模板10而來促成模板 15 1〇的分離。其中,該推壓力FP會沿著相反於分離力Fs的方 向來施加’以使達成分離所須的分離力Fs量值可以減小。 該推壓力FP能藉眾多局部列設(如第14圖所示),或排成一列 162(如第15圖所示)的空氣喷嘴62來施加。使用於該等喷嘴 的氣體可包括但不限於氮(N2)。該推壓力fp係能與前於第2 20〜12圖中所示之變化拉緊力Fc各自獨立或互相配合地來施 加進行。 5月參閱第2、16、π圖,為進一步協助模板10與壓印層 12刀離,該模板10亦可包含多數的溝槽38來減少該模板1〇 與壓印層12之間的真空密封作用。溝槽66可在模板1〇與壓 1277504 印層η接觸時來促進其間之空氣的釋浅,故能減低模板1〇 與壓印層12之間的真空密封作用。因此,該分離力Fs的大 小乃可減少,這是較佳的。 明4閲第18及19圖,在另一實施例中,該模板1〇可包 5 〇數的孔,肖68,其功能軸彳《於溝槽66,目此該等孔洞 68亦能減少模板10與壓印層12之間的真空密封作用。 以上所述之本發明的實施例皆僅為舉例。許多修正變 φ 化亦可實施於上述揭露,而仍保留在本發明的範圍内。因 此本發明的範圍並不能僅由以上描述來決定,而應參照 10所附巾料利範U及其完整的等效範圍來蚊。 【囷式簡單說明】 第1圖為一模板與一壓印層接觸的截面圖,且正以習知 技術來分開; 第2圖為依本發明一實施例來將一模板與一基材上的 — 15壓印層分開的截面圖; # 第3圖為依本發明第二實施例來將一模板與一基材上 的壓印層分開的截面圖; 第4圖為一模板固裝於本發明一實施例之固持器上的 截面圖; 20 第5圖為本發明可提供之具有不同真空區部的晶圓吸 盤第一實施例之頂視示意圖; 第6圖為本發明可提供之具有不同真空區部的晶圓吸 盤第二實施例之頂視示意圖; 第7圖為本發明可提供之具有不同真空區部的晶圓吸 20 1277504 盤第三實施例之頂視示意圖; 第8圖為第3圖所示之基材與晶圓吸盤依一變化實施例 來被釋離的側視圖; 第9圖為第2圖所示的晶圓吸盤之一實施例的頂視圖; 5 第10圖為第9圖所示的晶圓吸盤沿10-10剖線的截面 圖, 第11圖為第10圖所示的晶圓吸盤已有一基材置於其上 的截面圖; 第12圖為第2圖所示的晶圓吸盤第二實施例的截面 10 圖,並有一基材置於其上; 第13圖為一模板與一基材上的壓印層接觸的截面圖, 其中該基材會受到一推壓力; 第14圖為一簡化頂視圖,示出一模板設有多數空氣喷 嘴局部地排列來施加推壓力; 15 第15圖為一簡化頂視圖,示出一模板設有多數空氣喷 嘴排成一陣列來施加推壓力; 第16圖為一簡化頂視圖,示出一模板設有多數溝槽以 便於位在一模板與壓印層之間的空氣釋出; 第17圖為第16圖所示之模板的側視圖; 20 第18圖為一簡化頂視圖,示出一模板設有多數孔洞以 便於位在一模板與壓印層之間的空氣釋出;及 第19圖為第18圖所示之模板的側視圖。 【主要元件符號說明】 10…模板 11···壓印頭 21 1277504The US Patent Application No. 10/999898 discloses that the case has been assigned to the assignee of the application, and the inventor is Cherala et al., the contents of which are hereby incorporated. The template holder includes a body 31 having a central through hole 33, one side of which is sealed by a fused lithium plate 35 and a ring 36. A groove 3 7 and a seal ring 38 surround the through hole 33. Positioning the template 1 properly on the body 31 seals the through hole 33 to form a chamber and seals the recess 37 to form a first chamber surrounding the central chamber. The central chamber and the second chamber are each provided with a desired relative pressure passage 40 and 41, respectively. If the second chamber 15 is evacuated and the central chamber is pressurized, the concave force FB can be applied to the template 10 without moving the template away from the body 31. Referring to Figures 1, 5 and 6, the wafer chuck 122 described above can be used to vary the magnitude and direction of the tension Fc throughout the substrate 14. Further, the following embodiment can be used in a step-by-step re-copy method, and a gradual heavy-duty 20-system method is disclosed in No. 10/194,414, U.S. Patent Application Serial No. 2004/0008, 334 The assignee is assigned to the assignee of the present invention. Wherein, the wafer chuck 122 can be made to have a plurality of individual independent vacuum portions 30a to 30z. For the present invention, the vacuum sections 3a to 30z are arranged to provide one or more holding forces of the same magnitude and direction, for example, they may have a tensioning force Fe applied to a vacuum section. 3〇A~3〇z, or with a majority of holding forces, the directions and sizes are roughly the same. The number, size and shape of the vacuum sections 3a to 3〇z can be varied depending on several factors. Further, the size and shape of any of the vacuum chamber portions 3a to 30z may be different from the remaining vacuum portion. For example, the size and/or shape of the one or more vacuum zones can be the same as the size and/or shape of the strain zone 24. Therefore, the vacuum section 3a to 30z may have one of a plurality of shapes including any polygon, a square as shown, and a circular 13 or ring 23 as shown in Fig. 6. 10 and so on. Moreover, the vacuum zones can also include any one or more of the irregular shapes 330, as shown in FIG. Referring to Figures 5 to 7, although it is possible that the vacuum sections formed on a common wafer chuck 122 have the same shape and size, it is not necessarily required. That is, the suction cup 222 can also be provided with an irregular vacuum portion 15%, for example, including a hexagonal vacuum portion 430, a rectangular vacuum portion 53A, a circular vacuum portion 130, and an annular vacuum region. Ministry 23, etc.凊 Referring to Figures 2, 5, 7, 8, each of the vacuum zones 3〇a~3〇z can be individually positioned, so that different holding forces can be applied to the vacuum zones 3〇a~ 30z. In this way, the required holding power is 匕 and/or. The position 2〇 will be set more precisely. However, it is also necessary to be able to change the tension "FC" provided by each of the vacuum sections 30a to 30Z so that the substrate 14 can be strained along an axis extending across the entire area of the substrate 14. Therefore, the vacuum sections 3〇a to 3〇z of the adjacent rows form a tension difference ^Fe. For example, the vacuum sections 3〇d, 3〇i, 3〇〇, 3〇u, 30z, 3〇j, 30P, 30v generate a variable force F2 which is smaller than the vacuum section 30a from which 15 1277504 , 30b, 30c, 30E, 3〇F, 30G, 30H, 30κ, 3〇l, 30M, 30N, 30q, 30R, 30s, 3〇T, 3〇w, 3〇χ, 3〇, etc. Holding power. This will enable the substrate 14 to flex around the a-axis, which is facilitated by the tension difference AFc, which is formed in the vacuum section 5 30D, 30, 30, 3〇u The first row consisting of 30z is between the second row containing the vacuum zones 3〇c, 3〇m, 30N, 30τ, 30Y. Referring to Figures 9 and 10, in order for the wafer chucks 122 and/or 222 to have the vacuum characteristics described above, the chucks 122, 222 are integrally made of stainless steel or stencil, and are provided with a plurality of spaced apart projections. Pins 32 and 33 and the like, and a plurality of channels 36 are formed between the ten. Although shown as having a circular cross-section, the lugs 32, 33 may in fact have any desired cross-sectional shape, including multi-sided &gt; and typically have a pitch of 3 mm. One or more of the male pins are hollowed out to form a uniform aperture 34 which extends from a channel 35 and terminates in an opening facing the substrate 14, as shown in FIG. The through-holes 15 of the lugs shown therein typically have a diameter of about 1 mm to avoid partial concave curvature of the substrate 14 superposed thereon. Although the lugs 32 are shown to be conductive to a common passage 35, this need not be the case. That is, the through holes 34 of the respective lugs 32 can also be individually set such that the volume and direction of the fluid passing therethrough per unit time are independent of the fluid flowing through the through holes 34 of the remaining lugs 32. This can be achieved by providing one or more of the latches 32 as conduction-channels, but this channel is different from the channel that conducts the remaining pins 32. In another embodiment, the through hole 34 can comprise a stepped structure. The lugs 32 can be surrounded by a platform 37 against which the substrate is attached. Each channel 36 typically conducts a 16 1277504 bucket channel 39 via the aperture 4〇. Referring to Figures U) and U, the substrate 14 is held on the wafer chuck (2) by the tension generated by the fluid flowing through the channels 36 and/or the through holes 34. Among them, the channel 35 will be turned on-pressure control system and the channel 5 will be connected to another pressure control system 43. The two pressure control systems 4咏43 are controlled by the processor 45 to operate and communicate information thereto. The processor will include a computer readable code that can be manipulated by the processor to perform the fluid operations described in the foregoing (10). When placed on the wafer chuck 122, the substrate 14, facing the face 47 of the chuck 122, will abut the pins 32 and 33. Is there a tension 10 FC without separation? At 8 o'clock, one end of the through hole 34 facing the substrate 14 will be hermetically sealed against the surface 47 on the lug 32. Because of the sealing by surface 47, no fluid will flow between the through holes 34 and the channels 36. When the separating force Fs is applied, the surface 47 of the partially cured curing embossed layer 12 will become separated from the pins 32 and/or 33. In order to reduce the amount of separation force Fs required for separation and to facilitate separation, the projections 32 are disposed on the wafer, the entire area of the suction cup 122. The liquid system flowing through the through holes 34 is selected such that the variable force F2 is smaller than the holding force Fi. Typically, the holding force is generated by operating the pressure control system 43 to full vacuum. When the variable force F2 is operated in a pressure state, it will have a sufficient magnitude to generate a pressure of about 200 kPa in the gap between the strain zone 24 and the wafer chuck 2 〇 122. This typically causes the substrate 14 in the strain zone 24 to cause a movement of about 1 〇 microns. Since the seal has been broken, the through hole 34 will guide the passage 39 via the channel 36 and the aperture 40. This will further reduce the magnitude of the tensioning force Fc on the strained region 24, thereby reducing the separation force Fs required to separate the stencil and the embossed layer, since it has contributed to the basis of the strained region 24 by 17 1 277 504. The strain/deformation of the material 14. Referring to Fig. 12, in a variant embodiment, wafer chuck 322 may be provided without the use of bumps 32 and 33 or the like to provide the aforementioned vacuum characteristics. Wherein, a surface 49 of the wafer chuck 322 contains a plurality of pores 50 and 52, etc., for which 5 fluids flow through, and the magnitude and direction of a certain fluid can be independently dried without flowing through the remaining pores 50 and 52. Fluid. The pores typically have a pitch of 3 mm and a diameter of 2 mm which is sufficient to reduce the likelihood of partial depression of the stacked substrate 14. In this example, each aperture 50 is connected to a common channel 53, and each aperture 1052 is conductive to another common channel 55. The tightening force &amp; is produced by fluid flowing through one or more of the spaced apart apertures 50 and 52. The equally spaced apertures 50 and 52 may have fluid flowing therethrough at a first flow rate of 〇sccm or slightly prior to separation. When the separation force Fs occurs, the fluid passes through the apertures 5 and 52 at a second flow rate different from the first flow rate. In other words, the fluid flow rate through the respective apertures 50, 52 can be varied in response to the presence of the separation force Fs. Typically, the above described flow rate changes are limited to the apertures 50, 52 in the strain zone 24. This change in flow rate is typically sufficient to reduce the amount of tension. Therefore, its flow rate change typically only affects fluid passing through one of the apertures 52 or 5 . For example, the resulting tension Fc can be reduced by the flow rate 20 of the apertures 52 on the strain zone 24 being altered. However, the flow rate through the aperture 50 will remain fixed. Referring to Figure 2, to further assist in the separation of the template (7) from the embossing layer 12, the embossing layer can be a material that, when exposed to a predetermined wavelength, can cause a gaseous by-product, as in No. 6218316 U.S. Patent In the case of 18 1277504, the content of the case is attached herewith. This gaseous by-product creates localized pressure at the interface between the embossed layer 12 and the flat surface of the mold. This partial pressure can promote separation of the template 10 from the embossed layer 12. Radiation wavelengths that can contribute to the production of gaseous by-products include, for example, wavelengths of 157 nm, 248 nm, 257 nm, and 308 nm, 5 or combinations thereof, and the like. After the gaseous by-product is produced, it is preferred to start the separation of the template rapidly so as to minimize damage to the embossed layer. Also, gaseous by-products located between the stencil 10 and the embossed layer 12 may escape between the stencil 10 and the embossed layer 12, which is undesirable. Moreover, when the template 10 is separated from the embossed layer 12, it should be perpendicular to the embossed layer 12 to minimize the distortion of the embossed layer 10. Referring to Fig. 13, to further assist in separating the template 10 from the embossed layer 12, a pushing force FP can be used between the stencil 10 and the substrate 14. In other words, the pushing force FP can be applied to a region where the substrate 14 does not overlap the template 1〇. The pushing force FP can move the substrate 14 away from the template 10 to facilitate separation of the template 15 1 . Here, the pushing force FP is applied in a direction opposite to the separating force Fs so that the magnitude of the separating force Fs required to achieve the separation can be reduced. The push pressure FP can be applied by a plurality of partial arrays (as shown in Fig. 14) or by an air nozzle 62 arranged in a row 162 (shown in Fig. 15). Gases used in the nozzles may include, but are not limited to, nitrogen (N2). The pushing force fp can be applied independently or in cooperation with the varying tensioning force Fc previously shown in Figs. 2-20 to 12. Referring to the 2nd, 16th, and πth drawings in May, in order to further assist the template 10 and the embossed layer 12 to be detached, the template 10 may also include a plurality of grooves 38 to reduce the vacuum between the stencil 1 and the embossed layer 12. Sealing effect. The groove 66 can promote the relaxation of the air between the template 1 and the stamp 1277504, so that the vacuum sealing between the template 1 and the stamp 12 can be reduced. Therefore, the size of the separating force Fs can be reduced, which is preferable. Referring to Figures 18 and 19, in another embodiment, the template 1 can include 5 turns of holes, and the function of the shaft 68 is "in the groove 66. Thus, the holes 68 can also be reduced. Vacuum sealing between the template 10 and the embossed layer 12. The embodiments of the invention described above are by way of example only. Many corrections can also be implemented in the above disclosure while still remaining within the scope of the invention. Therefore, the scope of the present invention is not limited by the above description, but should be referred to by reference to 10, the accompanying towel, and its complete equivalent range. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a template in contact with an imprint layer, and is separated by conventional techniques; FIG. 2 is a diagram of a template and a substrate according to an embodiment of the present invention. - 15 embossed layer separate cross-sectional view; # Figure 3 is a cross-sectional view of a template according to a second embodiment of the present invention to separate the embossed layer on a substrate; Figure 4 is a template attached to A cross-sectional view of a holder on an embodiment of the present invention; 20 FIG. 5 is a top plan view of a first embodiment of a wafer chuck having different vacuum sections provided by the present invention; FIG. 6 is a view of the present invention A top view of a second embodiment of a wafer chuck having different vacuum sections; FIG. 7 is a top plan view of a third embodiment of a wafer suction 20 1277504 disk having different vacuum sections provided by the present invention; Figure 3 is a side view of the substrate and wafer chuck shown in Figure 3, according to a variant embodiment; Figure 9 is a top view of one embodiment of the wafer chuck shown in Figure 2; Figure 10 is a cross-sectional view of the wafer chuck shown in Figure 9 taken along line 10-10, and Figure 11 is the tenth figure. The illustrated wafer chuck has a cross-sectional view on which a substrate is placed; FIG. 12 is a cross-sectional view of the second embodiment of the wafer chuck shown in FIG. 2, with a substrate placed thereon; 13 is a cross-sectional view of a template in contact with an imprinting layer on a substrate, wherein the substrate is subjected to a pressing force; and FIG. 14 is a simplified top view showing a template with a plurality of air nozzles partially arranged 15 is a simplified top view showing a template with a plurality of air nozzles arranged in an array to apply the pressing force; Figure 16 is a simplified top view showing a template with a majority of the grooves The groove is adapted to release air between a template and the embossing layer; Fig. 17 is a side view of the template shown in Fig. 16; 20 Fig. 18 is a simplified top view showing a template having a majority The holes facilitate the release of air between a template and the embossed layer; and Fig. 19 is a side view of the stencil shown in Fig. 18. [Main component symbol description] 10...template 11···imprint head 21 1277504

12...壓印層 39,53,55...通道 14…紐 40...加壓通道/孔隙 16.&quot;表面 41…加壓通道/壓力控制系統 18··.凸部 43···壓力控制系統 20···凹部 45...處理器 22,122,222,322…晶圓吸盤 47···置抵面 23…平枱 49...吸盤表面 24...應變區 50,52·.·孔隙 26…非應變區 62…空氣喷嘴 28...中央區 66&quot;.溝槽 30,130,230,330,430,530… 68...孔洞 真空區部 162·.·喷嘴陣列 31…夾頭本體 d...間距 32…凸銷 Fi···固持力 33…貫孔/凸銷 F2···可變力 34···貫孔 FB···凹曲力 35…矽化物板/通道 Fc···拉緊力 36…封環/槽道 Fp···推壓力 37…凹槽/平台 38.··封環/溝槽 Fs…分離力 2212...imprint layer 39,53,55...channel 14...new 40...pressurized passage/void 16.&quot;surface 41...pressurized passage/pressure control system 18··. convex portion 43· Pressure control system 20···recess 45...processor 22,122,222,322...wafer cup 47···abutment surface 23...platform 49...sucker surface 24...strain zone 50, 52 · · · Pore 26 ... non-strain zone 62 ... air nozzle 28 ... central zone 66 &"; trench 30, 130, 230, 330, 430, 530 ... 68 ... hole vacuum section 162 ·. - Nozzle array 31... Chuck body d... Spacing 32... Lug pin ··· Holding force 33...Penet/Pin pin F2···Variable force 34···Through hole FB···Concave force 35... Telluride plate/channel Fc···Tightening force 36... Sealing ring/channel Fp···Pushing pressure 37... Groove/platform 38.· Sealing ring/groove Fs... Separation force 22

Claims (1)

1277504 十、申請專利範圍: 1· 一種由設在一基材上的料層分開被包含在一模板中之 模的方法,該方法包含: 對該模板施加一分離力來分開該模板與料層;及 5 促成該基材中的局部變形。 2·如申請專利範圍第1項之方法,其中該促成步驟更包括 回應於該分離力來促成局部變形。 3·如申請專利範圍第1項之方法,其中該促成步驟更包括 獨立於該分離力來促成該基材的局部變形。 10 4·如申請專利範圍第1項之方法,其中該促成步驟更包括 在一與該模重疊的區域中來促成該基材的局部變形。 5·如申請專利範圍第1項之方法,其中該促成步驟更包括 在一與該模重疊的區域中來促成該基材的局部變形,而 避免在該區域外的基材部份變形。 15 6.如申請專利範圍第1項之方法,其中該模係被一附著力 來黏附於該料層上,而該施加步驟更包括以一足以克服 該附著力的量值來施加該分離力。 7.如申請專利範圍第1項之方法,其中該促成步驟更包括 在多個間隔分開的區域對該基材施以一真空,該等間隔 20 分開區域中有一小組所職具的真空係小於其餘區域所 賦具的真空。 8·如申請專利範圍第1項之方法,其中該促成步驟更包括 對該基材施加一推壓力以使該基材移離該模板。 9.如申請專利範圍第1項之方法,其中該促成步驟更包括 23 1277504 對該基材的第一區域施加一正壓力,並對該基材的第二 區域施以一真空。 10·如申請專利範圍第!項之方法,其中該促成步驟更包括 、 對該基材與該模重疊的第一區域施加一正壓力,並對該 5 第一區域外部的基材第二區域以一真空。 11· 一種將包含在一模板中的模與一被設在一基材上之料 層分離的方法,該模係以一附著力來黏附於該料層,而 • 該方法包含: 對該模板施加一分離力,其具有一量值;及 10 在該基材中產生足夠的局部變形,以促使該分離力 克服該附著力。 12·如申請專利範圍第11項之方法,其中該產生步驟更包括 在一重疊該模的區域中促使該基材局部變形,而避免該 區域以外的基材部份變形。 ' 15 η·如申請專利範圍第11項之方法,其中該產生步驟更包括 ® 在多個間隔分開的區域對該基材施以一真空,該等間隔 分開區域中有一小組所賦具的真空係小於其餘區域所 賦具的真空。 14.如申請專利範圍第11項之方法,其中該產生步驟更包技 ' 20 對該基材的第一區域施加一正壓力,並對該基材的第二 區域施以一真空。 U·如申請專利範圍第⑽之方法,其巾該產生步驟更包括 回應於該分離力來產生局部變形。 16·如申請專利範圍第_之方法,其中該產生步驟更包括 24 1277504 獨立於該分離力來產生該基材的局部變形。 17·—種將包含在一模板中的模與一被設在一基材上之料 層分離的方法,該模係以一附著力來附著於該料層,而 , 該方法包含: ^ 5 對該模板施加一分離力,其具有一量值; 在該基材中產生足夠的局部變形,以促使該分離力 克服該附著力;及 • 對該基材施加一推壓力以使該基材移離該模板。 18·如申請專利範圍第17項之方法,其中該推壓步驟更包括 10 導引一氣體流壓抵於該基材位在與該模重疊區域之外 的部份。 19.如申請專利範圍第17項之方法,其中該產生步驟更包括 在多個間隔分開的區域對該基材施以一真空,該等間隔 分開區域中有一小組所賦具的真空係小於其餘區域所 15 賦具的真空。 • 20·如申请專利範圍第η項之方法,其中該產生步驟更包括 對該基材的第一區域施加一正壓力,並對該基材的第一 區域施以一真空。 251277504 X. Patent Application Range: 1. A method for separating a mold contained in a template from a material layer disposed on a substrate, the method comprising: applying a separation force to the template to separate the template and the layer And 5 contribute to local deformation in the substrate. 2. The method of claim 1, wherein the facilitating step further comprises responding to the separating force to promote local deformation. 3. The method of claim 1, wherein the facilitating step further comprises promoting the local deformation of the substrate independently of the separation force. The method of claim 1, wherein the facilitating step further comprises facilitating local deformation of the substrate in a region overlapping the mold. 5. The method of claim 1, wherein the facilitating step further comprises causing local deformation of the substrate in a region overlapping the mold to avoid deformation of the substrate portion outside the region. The method of claim 1, wherein the mold is adhered to the layer by an adhesion, and the applying step further comprises applying the separation force in an amount sufficient to overcome the adhesion. . 7. The method of claim 1, wherein the facilitating step further comprises applying a vacuum to the substrate in a plurality of spaced apart regions, wherein the vacuum system of a group of sub-divisions is less than The vacuum imposed by the rest of the area. 8. The method of claim 1, wherein the facilitating step further comprises applying a pushing force to the substrate to move the substrate away from the template. 9. The method of claim 1, wherein the facilitating step further comprises 23 1277504 applying a positive pressure to the first region of the substrate and applying a vacuum to the second region of the substrate. 10. If you apply for a patent scope! The method of claim, wherein the facilitating step further comprises: applying a positive pressure to the first region of the substrate overlapping the mold, and applying a vacuum to the second region of the substrate outside the first region. 11. A method of separating a mold contained in a template from a layer disposed on a substrate, the mold being adhered to the layer with an adhesion, and the method comprises: A separation force is applied which has an amount; and 10 produces sufficient local deformation in the substrate to cause the separation force to overcome the adhesion. 12. The method of claim 11, wherein the generating step further comprises locally deforming the substrate in a region overlapping the mold to avoid partial deformation of the substrate outside the region. The method of claim 11, wherein the generating step further comprises: applying a vacuum to the substrate in a plurality of spaced apart regions, the vacuum in a group of the spaced apart regions It is smaller than the vacuum given by the rest of the area. 14. The method of claim 11, wherein the generating step further applies a positive pressure to the first region of the substrate and applies a vacuum to the second region of the substrate. U. The method of claim (10), wherein the step of generating the towel further comprises responding to the separating force to produce a local deformation. 16. The method of claim </ RTI> wherein the generating step further comprises 24 1277 504 independently of the separating force to produce a local deformation of the substrate. 17. A method of separating a mold contained in a template from a layer disposed on a substrate, the mold being attached to the layer with an adhesion, and the method comprises: ^ 5 Applying a separation force to the template having an amount; generating sufficient local deformation in the substrate to cause the separation force to overcome the adhesion; and • applying a pushing force to the substrate to cause the substrate Move away from the template. 18. The method of claim 17, wherein the step of pushing further comprises directing a gas stream against the portion of the substrate that is outside the area of overlap with the mold. 19. The method of claim 17, wherein the generating step further comprises applying a vacuum to the substrate in a plurality of spaced apart regions, wherein a portion of the spaced apart regions has a vacuum system that is less than the remainder The vacuum that the area 15 has. 20. The method of claim n, wherein the generating step further comprises applying a positive pressure to the first region of the substrate and applying a vacuum to the first region of the substrate. 25
TW95102094A 2005-01-31 2006-01-19 Method of separating a mold from a solidified layer disposed on a substrate TWI277504B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/047,499 US7636999B2 (en) 2005-01-31 2005-01-31 Method of retaining a substrate to a wafer chuck
US11/047,428 US7798801B2 (en) 2005-01-31 2005-01-31 Chucking system for nano-manufacturing
US11/108,208 US7635445B2 (en) 2005-01-31 2005-04-18 Method of separating a mold from a solidified layer disposed on a substrate

Publications (2)

Publication Number Publication Date
TW200633846A TW200633846A (en) 2006-10-01
TWI277504B true TWI277504B (en) 2007-04-01

Family

ID=36777728

Family Applications (2)

Application Number Title Priority Date Filing Date
TW95102094A TWI277504B (en) 2005-01-31 2006-01-19 Method of separating a mold from a solidified layer disposed on a substrate
TW95102091A TWI291212B (en) 2005-01-31 2006-01-19 Chucking system for nano-manufacturing

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW95102091A TWI291212B (en) 2005-01-31 2006-01-19 Chucking system for nano-manufacturing

Country Status (4)

Country Link
EP (1) EP1843884A4 (en)
KR (1) KR101254042B1 (en)
TW (2) TWI277504B (en)
WO (3) WO2006083520A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773729B2 (en) * 2005-02-28 2011-09-14 キヤノン株式会社 Transfer apparatus and device manufacturing method
JP5069979B2 (en) * 2007-09-03 2012-11-07 東芝機械株式会社 Release device, supply / discharge system, and release method
WO2010005032A1 (en) * 2008-07-09 2010-01-14 東洋合成工業株式会社 Pattern-forming method
JP5438578B2 (en) 2010-03-29 2014-03-12 富士フイルム株式会社 Method and apparatus for forming fine uneven pattern
JP4774125B2 (en) * 2010-10-04 2011-09-14 キヤノン株式会社 Transfer apparatus, mold, and device manufacturing method
JP6333031B2 (en) 2014-04-09 2018-05-30 キヤノン株式会社 Imprint apparatus and article manufacturing method
US10620532B2 (en) * 2014-11-11 2020-04-14 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method
JP6659104B2 (en) * 2014-11-11 2020-03-04 キヤノン株式会社 Imprint method, imprint apparatus, mold, and article manufacturing method
JP7284639B2 (en) 2019-06-07 2023-05-31 キヤノン株式会社 Molding apparatus and article manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110341C2 (en) * 1980-03-19 1983-11-17 Hitachi, Ltd., Tokyo Method and apparatus for aligning a thin substrate in the image plane of a copier
US4506184A (en) * 1984-01-10 1985-03-19 Varian Associates, Inc. Deformable chuck driven by piezoelectric means
JPH06244269A (en) * 1992-09-07 1994-09-02 Mitsubishi Electric Corp Semiconductor manufacturing apparatus, wafer vacuum chuck device thereof, and gas cleaning and nitride film formation therefor
US5900062A (en) * 1995-12-28 1999-05-04 Applied Materials, Inc. Lift pin for dechucking substrates
US6304424B1 (en) * 1998-04-03 2001-10-16 Applied Materials Inc. Method and apparatus for minimizing plasma destabilization within a semiconductor wafer processing system
US6965506B2 (en) * 1998-09-30 2005-11-15 Lam Research Corporation System and method for dechucking a workpiece from an electrostatic chuck
US6160430A (en) * 1999-03-22 2000-12-12 Ati International Srl Powerup sequence artificial voltage supply circuit
EP1077393A2 (en) * 1999-08-19 2001-02-21 Canon Kabushiki Kaisha Substrate attracting and holding system for use in exposure apparatus
US6512401B2 (en) * 1999-09-10 2003-01-28 Intel Corporation Output buffer for high and low voltage bus
ATE470316T1 (en) * 1999-12-01 2010-06-15 Nokia Corp PROVIDING GATEWAY FUNCTIONALITY IN A VIRTUAL PRIVATE NETWORK
SG142150A1 (en) * 2000-07-16 2008-05-28 Univ Texas High-resolution overlay alignment systems for imprint lithography
US6898064B1 (en) * 2001-08-29 2005-05-24 Lsi Logic Corporation System and method for optimizing the electrostatic removal of a workpiece from a chuck
JP4639081B2 (en) * 2002-05-27 2011-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for transferring a pattern from a stamp to a substrate
US6951173B1 (en) * 2003-05-14 2005-10-04 Molecular Imprints, Inc. Assembly and method for transferring imprint lithography templates
US6879191B2 (en) * 2003-08-26 2005-04-12 Intel Corporation Voltage mismatch tolerant input/output buffer
US7023238B1 (en) * 2004-01-07 2006-04-04 Altera Corporation Input buffer with selectable threshold and hysteresis option

Also Published As

Publication number Publication date
KR20070102723A (en) 2007-10-19
WO2006083520A3 (en) 2009-05-14
WO2006083518A2 (en) 2006-08-10
KR101254042B1 (en) 2013-04-12
WO2006083519A3 (en) 2009-04-23
TWI291212B (en) 2007-12-11
TW200633846A (en) 2006-10-01
TW200633114A (en) 2006-09-16
EP1843884A4 (en) 2008-12-17
WO2006083519A2 (en) 2006-08-10
EP1843884A2 (en) 2007-10-17
WO2006083518A3 (en) 2007-03-29
WO2006083520A2 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
TWI327351B (en) Method of retaining a substrate to a wafer chuck
TWI277504B (en) Method of separating a mold from a solidified layer disposed on a substrate
JP5543502B2 (en) Method for separating a mold from a solidified imprinting material
US7798801B2 (en) Chucking system for nano-manufacturing
TWI336422B (en) Method for expelling gas positioned between a substrate and a mold
JP4514754B2 (en) Imprint technology by capillary action
TWI432311B (en) Partial vacuum environment imprinting
JP5411557B2 (en) Microstructure transfer device
KR102305247B1 (en) Asymmetric template shape modulation for partial field imprinting
US7245358B2 (en) Substrate support system
JP2008221552A (en) Microstructure transfer device, stamper and manufacturing method of microstructure
US20130221571A1 (en) Pattern forming device and semiconductor device manufacturing method
CN105892230B (en) mold, imprint apparatus, and method of manufacturing article
JP2009241274A (en) Imprinting method and stamper
JP2007287942A (en) Method and device for transfering fine structure pattern
TW201535044A (en) Patterning method and manufacturing method of patterning substrate
JP2019216196A (en) Molding apparatus and manufacturing method for article
WO2010044756A2 (en) Mold imprinting
JP2021068849A (en) Mold, molding device, and manufacturing method of article
JP2018010941A (en) Imprint device and article manufacturing method