TWI269091B - Electro-optic lens with integrated components - Google Patents
Electro-optic lens with integrated components Download PDFInfo
- Publication number
- TWI269091B TWI269091B TW92105497A TW92105497A TWI269091B TW I269091 B TWI269091 B TW I269091B TW 92105497 A TW92105497 A TW 92105497A TW 92105497 A TW92105497 A TW 92105497A TW I269091 B TWI269091 B TW I269091B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical
- electro
- controller
- range finder
- Prior art date
Links
Landscapes
- Eyeglasses (AREA)
Abstract
Description
1269091 玖、發明說明: 【發明所屬之技術領域】 本發明係有關光學領域。更明確而言,本發明係有關使 用一電作用透鏡之系統及方法,其中該電作用透鏡包含至 少一些整合式元件,包括一測距器裝置。 【先前技術】 在1998年,有大約9千2百萬眼睛檢查獨自在美國進行。 這些多數試驗包括眼睛病理學完全檢查、肌肉平衡與雙筒 鏡的内外部分析、角膜測量;及在許多情況,包括瞳孔、 及目的與主觀的最後折射試驗。 折射試驗可執行可了解/診斷人眼睛折射誤差的大小與 類型。目前可診斷及測量的折射誤差類型是近視、遠視、 散光、與老花眼。目前折光器(折射器)嘗試將人的視覺興 正到20/20距離及近似距離,且在某些情況,可達成2〇/15 距離視覺;然而,此是非常例外。 應該指出人眼睛網膜可處理及定義視覺的理論限制是 大約20/10。此是遠好於目前由今日折光器(折射器)與傳 統眼鏡透鏡獲得的視覺位準。從這些傳統裝置失去的東西 是谓測能力、例如像差的非慣例折射誤差定量斑修正、不 規則散光、或視覺層不規則。這些偏差'不規則散光、及 /或視覺層不規則會是由傳統眼鏡或兩者組合所引起的人 視覺系統結果、或偏差結果。 【發明内容】 根據本發明的具體實施例 揭示一光學透鏡系統 該光 84166 1269091 學透鏡系統包含一電作用锈 用逯鏡及一控制器,該控制器是刼 a到該電㈣透鏡,且該電作用透鏡的建構可根據來自^ :距15裝置的信號來調整至少—部分電作用透鏡的焦距 長度 〇 根據本發明的另一具體實施例,其係揭示與一光學系統 中的控制器使用的-測距器裝置。該測距器裝置包含:_ 發射态’該發射器的建構可產生用以將一感知物體相交的 "見輻射的第一光束;及一接收器,該接收器的建構 可偵測從該感知物體反射的非可見輻射的—第三光束,該 :制器的建構可根據從發射器與接收器接收的信號來: 定該感知物體的觀察距離。 根據仍然本發明的另一具體實施例,其係揭示用以控制 -=學透鏡系統的方法。該方法包含使用—測距器裝置來 =、疋、呈由電作用透鏡而感知一物體的觀察距離,及根據 該觀察距離來調整一第一部分電作用透鏡的焦距長度。 【實施方式】 在1998年’有大約9千2百萬眼睛檢查獨自在美國進行。 k二夕數5式驗包括眼睛病理學完全檢查、肌肉平衡與雙筒 鏡的内外部分析、角膜測量;及在許多情況,包括曈孔、 及目的與主觀的最後折射試驗。 折射4驗可執行可了解/診斷人眼睛折射誤差的大小與 類型。目刖可診斷及測量的折射誤差類型是近視、遠視、 散光 '與老花目良。目前折光器(折射器)嘗試將人的視覺興 正到20/20距離及近似距離,且在某些情況,可達成2 0/15 84166 1269091 距離視覺;然而,此是非常例外。 應該指出人眼睛網膜可處 — 運及疋義視覺的理論限制是 大約20/10。此是遠好於目f 疋好於目别由今日折光器(折射器)與傳 統眼鏡透鏡獲得的視謦位進 視見位準。從這些傳統裝置失去的東西 是伯測能力、例如像差的非慣例折射誤差定量與修正、不 規則散光、或視覺層不規則。這些偏差、不規則散光、及 /或視覺層不規則會是由傳统 ^ 啼祝暇鏡或兩者組合所引起的人 視覺系統結果、或偏差結果。 ,因此,具有用以儘可能將人視覺偵測、定量、及修正到 近似到20/10或更佳的置將是非常好的。此外,以非常有 效率與使用者友善方式來做此事是很好的。 本發明疋使用新方法來偵測、定量及修正人的視覺。方 法包括使用電作用透鏡的數個創新具體實施例。此外,本 發明是使用達成電作用護目鏡的選擇、分送、啟動、及程 式化的新方法。 例如,一創新具體實施例是使用一新電作用折射器/折 光器。此電作用折射器/折光器是使用遠比現階段折射器 更少的透鏡元件,且比現階段折射器整個大小及/或重量 更乂、。事實上,此創新具體實施例是只由在一框架安裝中 包裝的一對電作用透鏡組成,且是經由它本身結構及/或 經由一網路導線、啟動電作用透鏡執行適當功能所需電源 來提供。 為了要幫助對本發明某些具體實施例的了解,各種不同 術語說明現將提供。在一些情況中,這些說明是不必然是 84166 1269091 限制,而是從範例、描豸、與在此提供中請專利的觀 閱讀。 電作用區域”可包括#包含在一電作用結構、層、及 /或區域。一”電作用區域”可以是一部分及/或整個電作用 層。一電作用區域能與另一電作用區域相鄰。一電作用區 域可直接或間接將另一電作用區域連接到例如在每個^ 作用區域間的隔離物。一"電作用折射矩陣”是一電作用區 域與-些區域’且可將另—電作用層直接或間接連接到; 如在每個電作用層間的隔離物。”連接"包括接合、沉積、 黏著、及其他眾所週知的連接方法。控制器„可包括或 包含在-處理器、-微處理器、—整合式電路、—積體電 :、-電腦晶片、及/或一晶片。一"折光器"包括一控制 益。一自動折光器"包括一波導分析器。"接近距離折射 誤差,,包括老花眼、與修正使人可在近距離清楚看見所需 的任何其他折射誤差。”中間距離折射誤差"包括中間距離 修正所需的老花眼程度,及人可在中間距離清楚看見興正 所需的任何其他折射誤差。"遠㈣折射誤差”包括人在遠 距離可清楚看見修正所需的任何折射誤差。”近距離"可以 是從大約6吋到大約24吋,且更明確而言,是從大約“吋 到大約18时。"中間距離"可以是從大約“时到大約5呎。 遠距離可以疋在大約5呎與無窮大之間的任何距離,且 更明確而言,是無窮大。"傳統折射誤差"包括近視、遠視、 散光’及老花目艮。”非傳統折射誤差"包括不規則散光,眼 睛系統偏差、與不在傳統折射誤差中包括的任何其他折射 84166 -10- 1269091 誤差。,,光學折射誤差,,包括與—光學透鏡有關的任何偏 差。 在某些具體實施例中’,,眼鏡"包括—透鏡。在其他具體 實施例中,一”眼鐘”可 了 L括超過一透鏡。一 ”多重焦距” 透鏡ι括雙焦距、二焦距、㈤焦距、及,或創新的額外透 鏡。二”成品"透鏡毛壞包括兩端據有成品光學表面的一透 兄毛褒 I成口σ透鏡毛壞包括一端只具有一成品光學 表面的一透鏡毛壞,且在另一端的一非光學成品表面,透 鏡需要進一步修改,例如研磨及/或磨光,使它能做成一 可使用的透鏡。塗焊包括將過度物質研磨及/或磨光, 以完成一半成品透鏡毛壞的一非成品表面。 圖1疋%作用折射器/折光器系統1 ο 〇的具體實施例透 視圖。框架11〇包含電作用120 ’此電作用12〇使經由一網 路導線130而連接到一電作用透鏡控制器14〇及一電源 150 〇 在某些具體實施例中,框架的邊撐(未在圖1顯示)110 包含例如一微燃料單元的電池或電源在其他創新具體實 施例中,框架110的邊撐或一些邊撐擁有需要的電元件, 所以一電源線可直接插入插座及/或電作用折光器的控制 器/程控器160。 在仍然其他創新具體實施例方面,電作用透鏡120是安 裝在懸掛的一包裝組件,所以可正確放置你得臉部,為了 要在折射時可看穿電作用透鏡。 雖然第一創新具體實施例只使用一對電作用透鏡,但是 84166 -11 - 1269091 在某些其他創新具體實施例方面,可使用多重電作用透 鏡。在仍然其他創新具體實施例方面,可使用傳統透鏡與 電作用透鏡的組合。 圖2是包括包裝組件21〇的一電作用透鏡22〇的具體實施 例圖,該包裝組件210包含至少一電作用折光器系統2〇〇 與數個傳統透鏡,明確而言,包括繞射透鏡23〇、稜鏡透 鏡240 '散光透鏡250、與球形透鏡26〇。一導線27〇網路是 將電作用透鏡220連接到一電源275及一控制器280,以提 供一配鏡顯示2 9 0。 在使用多重電作用透鏡及/或傳統與電作用透鏡組合的 每個創新具體實施例中,透鏡可用來隨意及/或非任意測 試人的視覺。在其他創新具體實施例中,兩或多個透鏡是 一起加入,以依需要在每個眼睛之前提供一整個修正光焦 度。 “、、 使用在電作用折射器與電作用護目鏡的電作用透鏡是 由一混合及/或非混合結構所組成。在一混合結構中,一 傳統光學透鏡是與一電作用區域組合。在一非混合結構 中’未使用傳統光學透鏡。 如前述,本發明是不同於在圖3使用流程圖顯示的現階 段傳統分送實施序列300。如步驟310與320的顯示,傳統 上’包括一傳統折光器的眼睛檢查是在獲得一配鏡及採用 給分配者的配鏡後面實施。然後,如步驟330和340的顯 示,在分配器,一框架與透鏡可被選取。如步驟35〇與36〇 的顯示,透鏡是被製造、鑲邊處理、與組件成框架。最後, 84166 -12- 1269091 在步驟37G,新處理眼鏡可被分送及接收。 如圖4的流程圖所示,在一創新分送方法4〇〇的具體實施 例中,在步驟410,電作用護目鏡是由戴用者選取或用= 戴用者。在步騾420,框架是適合戴用者。隨著配戴電作 用護目鏡的戴用者,在步驟430,電子可透過電作用折射 杰/折光器控制系統控制,在大部份的情況下,其是透過 一護眼專業人員及/或技師來操作。然而,在某些創新= 體實施例中,病人或戴用者可實際操作控制系統;因此 控制他們本身f作料鏡的處理。在其㈣新具體實施例 方面,病人/戴用者與護眼專業人才及/或技師是與控制器 —起工作。 σ 在步驟440,由護眼專業人才、技師及/或病人/戴用者 操作的控制系統是用來客觀或主觀選取病人/戴用者的最 的修正處理。只要選擇適當處理將病人/戴用者修正成它 最佳的修正,護眼專業人才或技師便可程控病人/戴用者 的電作用護目鏡。 在一創新具體實施例中,在將選擇的電作用護目鏡從電 作用折射器/折%器的控制H分離之前,選擇的處理可程 控在一電作用護目鏡控制器、及/或一或多個控制器元 件。在其他創新具體實施例中,處理可稱後程控在選取的 電作用護目鏡。 在任何情況,電㈣護目鏡是在整個不同於現階段傳統 眼鏡序列的步驟450上選擇、安裝、程控、及分送。此序 列允許改良製造、折射、與分送效率。 84166 -13- 1269091 經由此創新方法左 / 方法病人/戴用者可逐地選擇他們的護目 鏡,當開始測試他們的視覺時可戴上,然後將他們正確程 控供正確處理。太士立R法 处垤在大部份情況,但是不是所有,此是在病 =/戴用者離開試驗椅子之前完成;因此,择保病人最後 理的整個製造與程控、與眼睛折光本身的精確性。最 後,在此創新具體實施例中,當他們從試驗椅子站起及離 開護眼專業人才的辦公宮味, 至時病人可元全配戴他們的電作 用眼鏡。 口注意:其他創新具體實施例允許電作用折射器/折光器 員丁或歹j印病人或戴用者的最好修正處理,然後使用與 過去的相同方式來填人。目冑,該處理包括將寫下的處理 拿到電作用護目鏡(框架與透鏡)鎖售與分送的分送位置。 在仍然其他創新具體實施例,處理是例如經由網際網路 而電子傳遞到電作用護目鏡(框架與透鏡)銷售的分送位 置。 在處理不是在眼睛折光執行的點上填人的情況,在某些 創新具體實施例巾,當在折光後安裝到電作用護目鏡時, 一電作用護目鏡控制器、及/或一或多個控制器元件可程 控及安裝到電作用護目鏡、或直接程控。在不加到電作用 護目鏡的情況’電作用護目鏡控制器、及一或多個控制器 疋件是電作用護目鏡的—複雜内建部份,且稍後確實不加 入。 圖27是另-創新分送方法27〇〇的具體實施例流程圖。在 步驟271G,病人的視覺是使用任何方法來折射。在步驟 84166 -14- 1269091 2720’病人的處理可獲得。在步驟2730,可選取電作用護 目鏡。在步驟2740,電作用護目鏡是使用戴用者的處理程 控。在步驟2750,電作用護目鏡是被分送。 圖5是電作用護目鏡5 0 0的另一創新具體實施例透視 圖。在此說明的範例中,框架510包含一般電作用透鏡52〇 和522,且由連接線530電輕合到電作用護目鏡控制器54Q 與電源550。線段Z-Z是分離一般電作用透鏡52〇。 控制器540是充當電作用護目鏡5〇〇的,,中樞”,且包 含:至少一處理器元件;至少一記憶體元件,用以儲存一 特殊處理的指令及/或資料;及至少一輸入/輸出元件,例 如連接埠。控制器5 4 0可執行例如從記憶體讀取及寫入 退憶體的計算工作,根據想要的折射率來計算運用到個別 袼柵元件的電壓、及/或充當在病人/使用者的護目鏡與相 關折光器/折射器設備之間的一區域介面。 在一創新具體實施例中,控制器54〇是由護眼專家或技 師預先程控,以符合病人的會聚度與適當需要。在此具體 實施例中,當控制器540是在病人的護目鏡外部時,此預 先程控是在控制器540達成,且控制器54〇然後會在試驗之 後插入護目鏡。在一創新具體實施例中,控制器54〇是一 唯續類型,用以將電壓供應給格栅元件,以獲得修正一 特殊距離視覺的折射率必㈣列。當病人的處理改變時, 一新控制器540必須經由專家來程控及插入護目鏡。此控 制益會是ASIC’s、或應用特殊積體電路、及其記憶體與永 久3己錄的處理命令的類型。 84166 -15- 1269091 在另一創新具體實施例中,當最初分送時,電作用古蔓 鏡控制器最初是由護眼專家或技師程控;且稍後,♦病 需要變化時,相同控制器、或一元件可被程控來提:一= 同修正。此電作用護目鏡控制器可從在折光器的控制器/ 程控器(在圖1和2顯示)放置的護目鏡擷取,及在試驗期間 重新程控,或透過折光器重新程控,而無需從電作用護目 鏡移除。在此情況的電作用護目鏡控制器例如是邝以、、 或場程控閘陣列結構類型。在此創新具體實施例中,電作 用漠目鏡控制器可永久内建在護目鏡,且只需要連結到折 光器的一介面,以便將程控命令送給FPGA。此一部分連結 將包括由在折光器/折射器、或在它控制器/程控器單元中 嵌入的AC轉接器提供電作用護目鏡控制器的外部AC光焦 度。 在另一創新具體實施例中,電作用護目鏡是充當折光 器’且由護眼專家或技師操作的外部設備是由電作用護目 鏡控制器的一數位及/或類比介面所組成。因此,電作用 護目鏡控制器亦可當作光器/折射器的控制器使用。在此 具體實施例中,必需的處理電子可用來將格柵電壓的陣列 改變電作用護目鏡,且在使用者的最佳修正憑經驗決定之 後’使用此資料將電作用護目鏡控制器重新程控。在此情 況’病人可在試驗期間經由他/她本身的電作用護目鏡來 檢視眼睛圖,且可以不知道他/她是否選擇最好修正配 鏡’在他們電作用護目鏡的控制器是同時電子重新程控。 另一創新具體實施例是使用電子自動折光器,該電子自 84166 -16- 1269091 動折光器是當作第一步驟使用,及/或與電作用折光器 (在圖1顯示和2)組合,如此經由範例,但是並未侷限於已 發展或修改來提供回授的Humphrey自動折光器與11^〇11的 自動折光器,其中此回授是與發明的電作用透鏡相容與程 控。當病人或戴用者戴上他或她的電作用眼鏡時,此創新 具體實施例可用纟測量折射誤差。此回授是自自或手動供 應給一控制器及/或程控器,然後校準、程控、或重新程 控使用者/戴用者的電作用眼鏡的控制器。在此創新具體 實施例中,電作用眼鏡可依需要重新校準,而不需要完全 眼睛檢查或眼睛折光。 在某些其他創新具體實施例中,視覺修正可經由電作用 透鏡而更正到20/20。在大部份情況,此可透過修正傳統 折射誤差(近視、遠視、散光、及/或老花眼)而獲得。在 某些其他創新具體實施例,例如偏差、不規則散光、及/ 或眼睛的不規則的非傳統折射誤差可測量及修正,以及傳 統折射誤差(近視、遠視、散光及/會老花眼)。除了傳統 折射誤差之外,在藉此修正偏差、不規則散光、及/或眼 睛的視覺層不規則的創新具體實施例中,視覺在許多情況 可修正到好於20/20,例如到20/15,到好於20/15,到 20/10,及/或到好於20/10。 此有利的誤差修正可透過將在護目鏡的電作用透鏡有 效當作一適當光學而達成。適當光學已證明且使用多年來 修正以地面為主之天文學望遠鏡的大氣失真修正,及經由 大氣的通信與軍事應用的雷射傳輸。在這些情況,分割或 84166 -17- 1269091 ”橡膠製品”鏡子通常是用來做影像或雷射光波波導的最 小修正。在大部份情況,這些鏡子是透過機械激勵器操作。 運用到視覺的適當光學是根據具有例如一不傷害眼睛 雷射的光束的眼睛系統作用探測,及測量在網膜上建立的 視網膜反映或影像的波導失真。此波導分析的形式是假設 一平面或球體探測波,及透過眼睛系統來測量在波導上造 成的失真。透過將最初波導與失真的波導相比較,一熟練 的檢查者可決定在眼睛系統存在的不正常,及規定一適當 修正處理。有數個波導分析器的並駕其驅設計;然而,在 此描述當作一傳輸或反射空間光調變器使用而執行此波 導分析的電作用透鏡適應是包括在本發明。波導分析器的 範例是在美國專利案號5,777,71 9(威廉)與5,949,521 (威 廉)中提供,其每個在此是以引用方式併入本文。 然而’在本發明的某些具體實施例中,小修正或調整可 在電作用透鏡進行,所以一影像光波會由折射率變化的電 驅動像素的格栅陣列所產生,以透過變化的折射率來加速 或減忮光的通過。如此,電作用透鏡會變成一適當光學, 以補償在眼睛本身光學中的固有空間不完全,為了要在網 膜上獲得一幾乎無偏差的影像。 在某些創新具體實施例中,因為電作用透鏡完全二度空 間’所以由眼睛光學系統造成的固定空間偏差可透過合併 在病人/像用者的整個視覺修正處理需要頂端上的小折射 修正率而補償。如此,視覺可修正到比使用通常收斂與適 應修正達成的更佳位準,而且,在許多情況方面,可造成 84166 1269091 比20/20更好的視覺。 為了要達成比20/20修正更好,病人的眼睛偏差可透過 例如一修正的自動折光器來測量,其中該修正的自動折光 器疋使用針對眼睛偏差測量而設計的一波導感應器或分 析器。只要眼睛偏差及其他類型的非傳統折射誤差以大小 與空間來決定’在護目鏡的控制器可程空來合併因2 —〇空 間而定的折射率變化,以補償除了整個近視、遠視、老花 眼、及/或散光修正之外的這些偏差及其他類型的非傳統 折射誤差。因此,本發明的電作用透鏡具體實施例可電作 用修正病人眼睛系統或由光學透鏡建立的偏差。 因此,例如,-3 · 5 0折光度的一某光焦度修正在某電作 用發散透鏡是需要的,以修正一戴用者的近視。在此情 況,不同電壓陣列Vi、…、VN是運用到在格柵陣列的1^個元 件以產生不同折射率Νι、…、Nm的陣列,以提供—3 5〇 折光度光焦度的電作用透鏡。然而,格柵陣列的某些元件 在他們的射率Ni、…、-是需要多達+或—0·5〇單位變化, 以修正眼睛偏差及/或非傳統折射誤差。除了基本近視修 正電壓之外,對應這些變化的小電壓偏差是運用到適當的 袼栅元件。 為了要儘可能偵測、定量、及/或修正例如不規則散光 的非傳統折射誤差、眼睛折射不規則、例如在角膜前面的 眼淚層、角膜的前面或背面、眼前房水不規則、晶狀體透 鏡的前面或背面、玻璃狀不規則、或由眼睛折射系統本身 引起的其他偏差,電作用折光器/折射器可根據圖6的創新 84166 -19- 1269091 處理方法6 0 0的具體實施例而使用。1269091 玖, DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of optics. More specifically, the present invention relates to systems and methods for using an electro-acting lens that includes at least some integrated components, including a range finder device. [Prior Art] In 1998, approximately 92 million eye examinations were conducted in the United States alone. Most of these tests included complete examination of the pathology of the eye, muscle balance and internal and external analysis of the binocular, corneal measurements; and in many cases, including pupillary, and subjective and subjective final refractive tests. The refraction test can be performed to understand/diagnose the size and type of refractive error in the human eye. The types of refractive errors currently diagnosable and measured are myopia, hyperopia, astigmatism, and presbyopia. At present, the refractometer (refractometer) attempts to refine the human vision to a distance of 20/20 and an approximate distance, and in some cases, a 2〇/15 distance vision can be achieved; however, this is a very special exception. It should be noted that the theoretical limit of the human eye omentum that can be processed and defined visually is approximately 20/10. This is far better than the current visual level obtained by today's refractors (refractors) and conventional spectacle lenses. What is lost from these conventional devices is the ability to measure, such as non-conventional refractive error quantitative aberration correction of aberrations, irregular astigmatism, or visual layer irregularities. These deviations 'irregular astigmatism, and/or visual layer irregularities can be human visual system results, or biased results, caused by conventional glasses or a combination of both. SUMMARY OF THE INVENTION An optical lens system is disclosed in accordance with an embodiment of the present invention. The optical lens system includes a mirror for electrical rust and a controller, and the controller is 刼a to the electric (four) lens, and the controller The construction of the electro-acting lens can adjust the focal length of at least a portion of the electro-acting lens according to a signal from the device: according to another embodiment of the present invention, which is disclosed for use with a controller in an optical system. - Rangefinder device. The range finder device comprises: _ an emissive state 'the construction of the emitter generates a first beam of light to intersect a perceived object; and a receiver, the construct of the receiver being detectable from the A third beam that senses the non-visible radiation reflected by the object, the controller being constructed to determine the viewing distance of the perceived object based on the signals received from the transmitter and the receiver. According to still another embodiment of the present invention, a method for controlling a -= lens system is disclosed. The method includes using a range finder device to =, 疋, presenting an observation distance of an object by an electric action lens, and adjusting a focal length of the first partial electroactive lens according to the observation distance. [Embodiment] In 1998, there were approximately 92 million eye examinations conducted in the United States alone. k et al. 5 tests include complete examination of the pathology of the eye, muscle balance and internal and external analysis of the binocular, corneal measurements; and in many cases, including pupillary, and subjective and subjective final refraction tests. Refraction 4 can be performed to understand/diagnose the size and type of human eye refraction error. The types of refractive errors that can be diagnosed and measured are myopia, hyperopia, and astigmatism. At present, the refractometer (refractometer) attempts to refine the human vision to a distance of 20/20 and an approximate distance, and in some cases, a distance vision of 2 0/15 84166 1269091 can be achieved; however, this is a very special exception. It should be noted that the theoretical limit of the human eye omentum is - about 20/10. This is far better than the eyesight. It is better than the visual field position obtained by today's refractometer (refractometer) and conventional spectacle lenses. What is lost from these conventional devices is the ability to measure, such as non-conventional refractive error quantification and correction of aberrations, irregular astigmatism, or visual layer irregularities. These deviations, irregular astigmatism, and/or visual layer irregularities can be human visual system results, or biased results, caused by traditional 啼 暇 或 or a combination of both. Therefore, it would be very good to have the ability to visually detect, quantify, and correct as much as possible to approximately 20/10 or better. In addition, it is good to do this in a very efficient and user friendly way. The present invention uses new methods to detect, quantify, and correct human vision. The method includes several innovative embodiments using an electro-acting lens. Furthermore, the present invention is a new method of selecting, dispensing, starting, and programming the electrical goggles. For example, an innovative embodiment uses a new electro-acting refractor/refractor. This electro-acting refractor/refractor uses fewer lens elements than the current stage of the refractor and is more sturdy than the current size and/or weight of the refractor. In fact, this innovative embodiment consists of a pair of electrically active lenses that are only packaged in a frame mount and that are required to perform appropriate functions via their own structure and/or via a network conductor that activates the electro-acting lens. Come on. To assist in the understanding of certain embodiments of the invention, various descriptions of the various terms are now provided. In some cases, these statements are not necessarily limited to the 84166 1269091, but are viewed from the examples, descriptions, and patents provided herein. The electrically active region may include #included in an electrically active structure, layer, and/or region. An "electrically active region" may be a portion and/or an entire electrical active layer. An electrically active region can be associated with another electrically active region An electrical region of action may directly or indirectly connect another electrically active region to, for example, a spacer between each of the active regions. An "electroactive refractive matrix" is an electrically active region and a plurality of regions' Connect the other electrical layer directly or indirectly; such as a spacer between each of the layers. "Connection" includes bonding, deposition, adhesion, and other well-known connection methods. The controller „ can include or be included in a processor, a microprocessor, an integrated circuit, an integrated battery, a computer chip, And / or a wafer. A "Refractor" includes a control benefit. An automatic refractometer" includes a waveguide analyzer. "close distance refraction error, including presbyopia, and corrections allow anyone to clearly see any other refraction error needed at close range. "Intermediate distance refraction error" includes the degree of presbyopia required for intermediate distance correction, and anyone can clearly see any other refraction error required for rectification at the intermediate distance. "Far (four) refraction error" includes people who can clearly see at a distance Correct any refraction errors required. The "close range" can be from about 6 吋 to about 24 吋, and more specifically, from about 吋 to about 18 pm. "Intermediate distance" can range from about "about" to about 5 呎. The distance can be at any distance between about 5 呎 and infinity, and more specifically, infinity. "Traditional refraction error" Myopia, hyperopia, astigmatism, and presbyopia. "Non-traditional refractive error" includes irregular astigmatism, eye system deviation, and any other refractions that are not included in conventional refractive errors. 84166 -10- 1269091 error. , optical refraction error, including any deviations associated with the -optical lens. In some embodiments, 'glasses" include lenses. In other embodiments, an "eye clock" may include more than one lens. A “multiple focal length” lens includes two focal lengths, two focal lengths, (five) focal lengths, and, or an innovative additional lens. The second "finished product" lens damage includes both ends of the finished optical surface of the finished hair 褒 成 成 σ 透镜 透镜 毛 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括The surface of the optical finished product, the lens needs to be further modified, such as grinding and/or polishing, so that it can be made into a usable lens. The welding involves grinding and/or polishing the excess material to complete the failure of half of the finished lens. Non-finished surface. Figure 1 疋 % active refractor / refractor system 1 ο 具体 a perspective view of a specific embodiment. The frame 11 〇 contains an electrical action 120 'This electrical action 12 〇 is connected to a battery via a network wire 130 Actuating lens controller 14A and a power source 150. In some embodiments, the frame's temples (not shown in FIG. 1) 110 include a battery or power source such as a micro fuel unit. In other innovative embodiments, the frame The temples or some of the temples of 110 have the required electrical components, so that a power cord can be plugged directly into the socket and/or the controller/programmer 160 of the electrical refractor. In still other innovative embodiments. The electro-acting lens 120 is a package assembly mounted on the suspension so that the face can be placed correctly in order to see through the electro-optical lens during refraction. Although the first innovative embodiment uses only a pair of electro-acting lenses, 84166 -11 - 1269091 In some other innovative embodiments, a multiple electro-acting lens can be used. In still other innovative embodiments, a combination of a conventional lens and an electro-acting lens can be used. Figure 2 is a package comprising a package assembly 21 A specific embodiment of an electrical action lens 22, the package assembly 210 comprising at least one electrically active refractor system 2 〇〇 and a plurality of conventional lenses, specifically including a diffractive lens 23 〇, a 稜鏡 lens 240 astigmatism The lens 250 and the spherical lens 26 are connected to each other. A wire 27 is connected to the power supply lens 220 to a power source 275 and a controller 280 to provide a lens display 2900. In the use of multiple electro-acting lenses and / Or in each of the innovative embodiments in combination with a conventional electro-optical lens, the lens can be used to randomly and/or arbitrarily test the human vision. In other innovative embodiments Two or more lenses are added together to provide an entire correction power before each eye as needed. ", the electro-optical lens used in the electro-acting refractor and the electro-acting goggle is composed of a mixture and / or composed of non-mixed structures. In a hybrid configuration, a conventional optical lens is combined with an electrically active region. In a non-hybrid structure, a conventional optical lens is not used. As described above, the present invention is different from the conventional stage conventional distribution execution sequence 300 shown in the flowchart of Fig. 3. As shown in steps 310 and 320, an eye examination conventionally comprising a conventional refractor is performed after obtaining an optician and employing the optician for the dispenser. Then, as shown in steps 330 and 340, in the dispenser, a frame and lens can be selected. As shown in steps 35〇 and 36〇, the lens is manufactured, trimmed, and framed with the assembly. Finally, 84166 -12- 1269091 At step 37G, the new processing glasses can be dispensed and received. As shown in the flow chart of Figure 4, in a particular embodiment of the innovative dispensing method 4, in step 410, the electro-acting goggles are selected by the wearer or used by the wearer. At step 420, the frame is suitable for the wearer. With the wearer wearing the protective goggles, in step 430, the electrons are permeable to the electro-optical refractor/refractor control system control, in most cases through an eye protection professional and/or Technician to operate. However, in some innovative embodiments, the patient or wearer can actually operate the control system; thus controlling their own processing of the lens. In its (4) new specific embodiment, the patient/wearer and eye care professional and/or technician work with the controller. σ At step 440, the control system operated by the eye care professional, technician, and/or patient/wearer is the most corrective process for objectively or subjectively selecting the patient/wearer. The eye protection professional or technician can program the patient/wearer's electrical goggles by selecting appropriate treatment to correct the patient/wearer to its best correction. In an innovative embodiment, the selected process can be programmed in an electro-acting goggles controller, and/or one or prior to separating the selected electro-acting goggles from the control H of the electro-acting refractor/folder. Multiple controller components. In other innovative embodiments, the treatment can be referred to as post-programming in selected electrical action goggles. In any event, the electrical (four) goggles are selected, installed, programmed, and dispensed throughout step 450 of the conventional conventional eyeglass sequence. This sequence allows for improved manufacturing, refraction, and dispensing efficiency. 84166 -13- 1269091 By this innovative approach left/method patients/wearers can choose their goggles one by one, wear them when they start testing their vision, and then properly program them for proper handling. The Rs. R method is in most cases, but not all. This is done before the disease = / wearer leaves the test chair; therefore, the entire manufacturing and program control of the patient's final care, and the eye refraction itself Accuracy. Finally, in this innovative embodiment, when they stand up from the test chair and leave the office of the eye care professionals, the patient can wear their electric glasses. Note: Other innovative embodiments allow the electroactive refractor/refractor to print the best corrections for the patient or wearer and then fill in the same way as in the past. It is seen that the processing includes taking the written processing to the dispensing position of the electric action goggles (frame and lens) for sale and distribution. In still other innovative embodiments, the processing is electronically delivered to the dispensing location of the electrical action goggles (frame and lens) via the internet, for example. In the case of handling a filling that is not performed at the point of refraction of the eye, in some innovative embodiment embodiments, when mounted to the electrical goggles after refraction, an electroactive goggle controller, and/or one or more Controller components can be programmed and mounted to electrical action goggles or directly programmed. In the case where electrical goggles are not applied, the electro-acting goggles controller and one or more of the controller components are the complex built-in parts of the electro-acting goggles and are not added later. Figure 27 is a flow diagram of a specific embodiment of another-innovation dispensing method 27A. At step 271G, the patient's vision is refracted using any method. The treatment of the patient is available at steps 84166 - 14 - 1269091 2720'. At step 2730, an electrical action goggle can be selected. At step 2740, the electro-acting goggles are processed using the wearer's processing. At step 2750, the electrical action goggles are dispensed. Figure 5 is a perspective view of another innovative embodiment of an electrically actuated goggle 500. In the example illustrated herein, the frame 510 includes general electrical action lenses 52A and 522 and is electrically coupled to the electrical power goggles controller 54Q and power source 550 by a connection line 530. The line segment Z-Z is a separate general electric action lens 52A. The controller 540 is used as an electric action goggle 5 hub, and includes: at least one processor component; at least one memory component for storing a specially processed command and/or data; and at least one input /output element, such as port 埠. The controller 504 can perform, for example, reading from the memory and writing the memory of the memory, calculating the voltage applied to the individual 袼 gate elements according to the desired refractive index, and / Or acting as a regional interface between the patient/user's goggles and the associated refractometer/refractometer device. In an innovative embodiment, the controller 54 is pre-programmed by an eye care professional or technician to conform to the patient Convergence and appropriate need. In this particular embodiment, when the controller 540 is external to the patient's goggles, this pre-programming is achieved at the controller 540, and the controller 54〇 then inserts the goggles after the test. In an innovative embodiment, the controller 54A is a continuous type for supplying a voltage to the grid member to obtain a refractive index (four) column for correcting a particular distance vision. When processing changes, a new controller 540 must be programmed and inserted into the goggles by an expert. This control benefit is the type of ASIC's, or the application of a special integrated circuit, and its memory and permanent 3 recorded processing commands. 15- 1269091 In another innovative embodiment, the electrical oscilloscope controller is initially programmed by an eye care professional or technician when initially dispensed; and later, when the disease needs to change, the same controller, or A component can be programmed to: 1 = same correction. This electrical goggle controller can be retrieved from the goggles placed in the controller/programmer of the refractor (shown in Figures 1 and 2) and during the test Reprogramming, or re-programming through the refractor without removing from the electro-acting goggles. The electro-acting goggles controller in this case is, for example, a 邝, , or a field-controlled gate array structure type. The electric action goggles controller can be permanently built into the goggles and only needs to be connected to an interface of the refractor to send programming commands to the FPGA. This part of the link will be included in the refractor / The emitter, or the AC adapter embedded in its controller/programmer unit, provides the external AC power of the electro-acting goggles controller. In another innovative embodiment, the electro-acting goggles act as a refractometer. 'The external device operated by the eye protection expert or technician is composed of a digital and/or analog interface of the electro-acting goggles controller. Therefore, the electro-acting goggles controller can also be used as a photo/refractor control. In this embodiment, the necessary processing electrons can be used to change the array of grid voltages to the electro-acting goggles, and after the user's optimal correction is determined empirically, use this data to control the electro-acting goggles. In this case, the patient can view the eye diagram through his/her own electro-acting goggles during the trial, and may not know if he/she chooses the best correction optician' in their electro-acting goggles. The controller is electronically reprogrammed at the same time. Another innovative embodiment is the use of an electronic auto-refractor that is used as a first step from the 84166 -16-1269091 dynamic refractor and/or in combination with an electro-acting refractor (shown in Figure 1 and 2). Thus by way of example, but not limited to the Humphrey automatic refractometer and the 11 〇 11 automatic refractor that have been developed or modified to provide feedback, this feedback is compatible and programmable with the inventive electro-acting lens. This innovative embodiment can be used to measure refractive error when a patient or wearer wears his or her electro-acting glasses. This feedback is a controller that is supplied to a controller and/or programmer manually or manually, and then calibrates, programs, or re-programs the user/wearer's electro-acting glasses. In this innovative embodiment, the electro-acting glasses can be recalibrated as needed without the need for a complete eye exam or eye refraction. In some other innovative embodiments, the visual correction can be corrected to 20/20 via an electro-acting lens. In most cases, this can be achieved by correcting traditional refractive errors (myopia, hyperopia, astigmatism, and/or presbyopia). In some other innovative embodiments, such as deviations, irregular astigmatism, and/or irregular non-conventional refractive errors of the eye can be measured and corrected, as well as conventional refractive errors (myopia, hyperopia, astigmatism, and/or presbyopia). In addition to conventional refractive errors, in an innovative embodiment in which deviations, irregular astigmatism, and/or visual layer irregularities of the eye are thereby corrected, vision can be corrected to better than 20/20 in many cases, for example to 20/ 15, better than 20/15, to 20/10, and / or better than 20/10. This advantageous error correction can be achieved by treating the electro-acting lens of the goggles as an appropriate optics. Appropriate optics has proven and used to correct atmospheric distortion corrections for ground-based astronomical telescopes over the years, as well as laser transmission through atmospheric communications and military applications. In these cases, the split or 84166 -17-1269091 "rubber" mirror is typically used to make the smallest correction for the image or laser waveguide. In most cases, these mirrors are operated by mechanical actuators. Appropriate optics applied to the vision is based on the detection of the eye system with a beam of light that does not harm the eye's laser, and the measurement of the waveguide distortion of the retinal reflection or image created on the omentum. This waveguide analysis takes the form of assuming a plane or sphere to detect waves and through the eye system to measure the distortion caused on the waveguide. By comparing the original waveguide to the distorted waveguide, a skilled examiner can determine the presence of an abnormality in the eye system and specify an appropriate correction process. There are several waveguide analyzers that are designed in parallel; however, the electro-optic lens adaptation described herein as a transmission or reflection spatial light modulator to perform this waveguide analysis is included in the present invention. An example of a waveguide analyzer is provided in U.S. Patent Nos. 5,777,719 (William) and 5,949,521 (Wallon), each of which is incorporated herein by reference. However, in some embodiments of the invention, minor corrections or adjustments can be made to the electro-acting lens, so that an image light wave is generated by a grid array of electrically driven pixels with varying refractive indices to transmit a varying refractive index. To accelerate or reduce the passage of light. Thus, the electro-acting lens becomes an appropriate optics to compensate for the intrinsic space in the optics of the eye itself, in order to obtain an almost unbiased image on the retina. In some innovative embodiments, because the electro-acting lens is completely second-degree space, the fixed spatial deviation caused by the optical system of the eye can be achieved by incorporating a small refraction correction rate on the tip of the patient/image user's entire visual correction process. And compensation. In this way, the vision can be corrected to a better level than with normal convergence and adaptation, and in many cases, 84166 1269091 is better than 20/20. In order to achieve a better correction than the 20/20 correction, the patient's eye deviation can be measured, for example, by a modified automatic refractometer, using a waveguide sensor or analyzer designed for eye deviation measurement. . As long as eye deviations and other types of unconventional refractive errors are determined by size and space 'the goggles controller can be used to combine the refractive index changes due to 2 - space to compensate for the entire myopia, hyperopia, presbyopia These deviations and other types of non-conventional refractive errors other than astigmatism corrections. Thus, the embodiment of the electroactive lens of the present invention can electrically modify the deviation of the patient's eye system or by the optical lens. Therefore, for example, a certain power correction of -3 · 50 0 refracting power is required for an electric radiation lens to correct a wearer's myopia. In this case, the different voltage arrays Vi, . . . , VN are applied to the elements of the grid array to produce an array of different refractive indices 、ι, . . . , Nm to provide -35 〇 refractive power. Acting lens. However, some elements of the grid array require up to + or -0.5 〇 unit variations in their luminosity Ni, ..., - to correct eye deviations and/or unconventional refractive errors. In addition to the basic near-field correction voltage, small voltage deviations corresponding to these changes are applied to the appropriate 袼 gate elements. In order to detect, quantify, and/or correct, as much as possible, non-conventional refractive errors such as irregular astigmatism, irregular eye refraction, such as the tear layer in front of the cornea, the front or back of the cornea, the anterior chamber water irregularities, the lens lens The front or back, the glassy irregularities, or other deviations caused by the refractive system of the eye itself, the electro-acting refractometer/refractometer can be used in accordance with the embodiment of the innovation 84166-19-1969091 processing method 600 of FIG. .
著使用此方法, :用於遠視)、圓筒形光焦度、與軸(用於散 度的傳統透鏡光焦度來測量折射誤差。隨 經由傳統修正折射誤差而可獲得目前知道 病人的最好視覺敏銳(BVA)。然而,本發明的某些具體實 施例允許改善超過現階段傳統折光器/折射器可達成的視 因此,步驟61 0能夠以一非傳統創新方式來提供進一步 處理改良。在步驟610,完成此端點的處理是在電作用折 光程控。病人是正確放置在可經由具有多重格柵電作用 結構的電作用透鏡而看到一修改與相容的自動折光器或 一波導分析器,以精確測量折射誤差。此折射誤差測量是 可能偵測及定量更多的非傳統折射誤差。當病人看穿電作 用透鏡的目標區域而自動計算必要的處理來達成在沿著 直線的中央小窩上的較好聚焦時,此測量可使用每個電作 用透鏡的大約4· 29公釐的小目標區域。只要此測量達成, 此非傳統修正便可儲存在控制器/程控器記憶體供將來使 用’或然後在控制器程控,以控制電作用透鏡。當然,此 可於兩眼睛重複。 在步驟620,病人或戴用者是在他們選項選擇使用一控 制單元,以允許他們進一步改良傳統折射誤差修正、非傳 84166 -20- 1269091 統折射誤差修正、或 杯。 ^ 者、·且a,如此,最後處理他們的愛 M^ ^才可將它改善,直到在某些情況未 執仃進一步改良為止。 此時,較好於經由傳統技術的任何 1用的病人改良BVA將可達成。 在步驟6 3 0,任何推一 jk , 進一 v改良處理然後是在控制器程 控’以控制電作用透鏡的盧 .^ 兄的處理。在步驟640,程控的電作 用眼鏡是被分送。 雖然處理步驟6_64()是展現—創新方法的具體實施 例’此是因護眼專業人才審判或方法而^,但是除了類似 方法的許多不同可只使用電作用折光器/折光器、或與波 導分析器組合而用來偵測、定量、及/或修正視覺。不管 什麼序列,不官疋否與波導分析器有關而使用一電作用折 光器/折射器來偵冑、定*、及/或修正人視覺的任何方法 咸係認為本發明的一部份。例如,在某些創新的具體實施 例中,步驟610至640能以修改的方法或甚至不同序列來執 行。此外,在某些其他創新方法的具體實施例中,在步驟 610參考的透鏡目標區域是在直徑中大約3〇公釐到直徑 大約8. 0公釐的範圍内。在仍然其他創新的具體實施例方 面,目標區域可以是從直徑大約2. 〇公釐多達整個透鏡區 域0 雖然此討論是著重在只使用各種不同形式電作用透鏡 或與波導分析器結合的折射,以執行未來的人眼檢查,但 是另一可能性是新出現的技術允許只用於客觀測量,如此 可免除需要病人溝通反應或互作用。在此描述及/或要求 84166 -21 - 1269091 的許多創新具體實施例能與任何類型的測量系統工作而 不笞客觀、主觀、或兩者組合。 月P >考如上述的電作用透鏡轉本身,本發明的具體實 施例疋有關具有一新電作用透鏡的電作用折光器/折射 /、可以疋一混合或一非混合的結構。藉由混合結構, 它表示一傳統單視或多聚焦光學透鏡的組合,且至少一電 作用區域是位在前表面、背表面 '及/或在前表面與後表 =之間,該區域是由具有必要的電作用裝置的一電作用物 貝立成以改變電焦點。在本發明的某些具體實施例中, 電作用區域是明確放置在透鏡内部、或在透鏡的後凹表面 上’以保護它t受抓痕及其他正常磨損。纟電作用區域是 包括當作-部分前凸表面的4體實施例中纟大部份情況 下,應用一抗抓痕塗層。傳統單視透鏡或傳統多聚焦透 鏡、與電作用區域的組合可提供混合透鏡設計的透鏡光焦 度。透過非混合’它表示一透鏡是電作用,藉使折射光焦 度的大是份100%是透過它電作用本質而單獨產生。 圖7是前視圖,且圖8是沿著混合電作用眼鏡透鏡7〇〇具 體實施例的區段Η採用的截面胃。在此描述的範例中, 透鏡700包括一光學透鏡71〇。連接到光學透鏡HQ是一電 作用折射矩陣其具有佔有所有或—部分電作用折射 矩陣720的一或多個電作用區域。而且連接到光學透鏡71〇 與至ν。卩份電作用折射矩陣72〇周圍是結構層光學透 鏡Ή0包括具有一旋轉散光轴八_4的—散光光焦度修正區 域740,在此特殊範例中,水平順時針方向大約“度。包 84166 -22- 1269091 含電作用折射矩陣720與結構層730是一選擇性覆蓋層 750 〇 如下面進一步討論,電作用折射矩陣72〇包括一液晶及/ 或聚合物凝膠。電作用折射矩陣72〇亦包括一對準層、一 金屬層、一導線層、及/或一隔離層。 在另一具體實施例中,散光修正區域7 4 〇可面除,所以 光學透鏡71 0只可修正球體光焦度。在另一具體實施例 中’光學透鏡710可修正遠距離、近距離、及/或兩者、與 任何種類的傳統折射誤差,包括球狀、圓柱形、稜鏡、及 /或圓誤差。電作用折射矩陣720亦可修正近距離、及/或 例如偏差的非傳統折射誤差。在其他具體實施例方面,電 作用折射矩陣720可修正任何種類的傳統或非傳統折射誤 差’且光學透鏡71 0可修正傳統折射誤差。 發現到具有一混合結構方法的電作用透鏡在一非混合 透鏡上具有某些明顯的優點。這些優點是較低光焦度需 要、較小的電池大小、較長電池壽命預期、較低複雜度電 路、較少導線、較少隔離物、較低製造成本、增加光學透 明、與增加結構完整性。然而,必須注意,非混合電作用 透鏡具有他們組的優點,包括減少厚度及大量製造。 亦發現非混合與在一些具體實施例方面,當例如使用電 作用結構設計是多格栅電作用結構時,全範圍混合與部分 範圍混合方法允許非常有限數量原料保存單元(SKUs)的 大量製造。在此情況,當主要著重在例如戴用者解剖相容 的曲率與大小的有限數量差異特徵的大量製造時,它才需 84166 -23- 1269091 要。 若要了解此改善的明顯性,您必須了解描述多數配鏡所 需的傳統透鏡毛壞數量。修正配鏡的大約95%包括在-6. 〇〇 折光度到+6. 00折光度範圍内而以〇. 25折光度增量的球體 光焦度修正。基於此範圍,有大約49個普遍規定的球體光 焦度。這些配鏡包括以〇· 25折光度增量而在-4· 〇〇折光度 到+4· 00折光度的範圍内大約95%的散光修正。基於此範 圍’有大約33個普遍規定的散光(或圓筒)光焦度。然而, 因為散光具有轴一元件,有大約散光軸36〇度方向,典型 是以1度增量配鏡。因此,有360個不同散光軸配鏡。 而且,許多配鏡包括修正老花眼的一雙聚焦元件。具有 一老花眼修正的這些配鏡是在以〇·25折光度增量而在 + 1· 00到+3· 00折光度範圍内的大約95%,藉使造成大約9 個普遍規定的老花眼光焦度。 因為本發明的一些具體實施例可提供球體、圓筒形、 軸、與老花眼的修正,一非混合電作用透鏡可用於 5’ 23 9, 080( = 49 x33 χ360χ -9)個不同配鏡。因此,一非 混合電作用透鏡可免除需要大量製造及/或積存許多透鏡 毛壞SKUs,且更重要是可免除對特殊病人配鏡的每個透鏡 毛壞研磨及磨光的需要。 為了要說明適應例如臉形、眼睫毛長度等解剖問題所需 的各種不同透鏡曲率,某物超過一非混合電作用透鏡sku 可大量製造及/或架。然而,30、的數量可從數百萬減少 到大約5或更少。 84166 -24- 1269091 在混合電作用透鏡的情況中,透過使用光學透鏡來修正 傳統折射誤差及使用中心電作用層可發現亦可減少想要 的SKU數i。請即參考圖7,透鏡7〇〇可依需要旋轉到在想 要的位置放置散光軸A-A。因此,需要的混合透鏡毛壞數 ϊ能以360的因素減少。而且,混合透鏡的電作用區域可 提供老花眼修正,藉此以9的因素來減少需要的透鏡毛壞 數量。因此,一混合電作用透鏡具體實施例可將需要的透 鏡毛壞數量從超過5百萬減少到1619( = 49 χ33)。因為它可 合理大量製造及/或架混合透鏡毛壞SKUs的數量,所以可 將研磨與磨光的需要免除。 然而,將半成品混合透鏡研磨及磨光成成品透鏡毛壞可 保持一可能性。圖28是一半成品透鏡毛壞28〇〇的具體實施 =j視圖。在此具體實施例中,半成品透鏡毛壞28〇〇具有 疋成表面2820、一未元成表面2830、與一部分視場電作 用折射矩陣2840的光學透鏡281〇。在另一具體實施例中, 半成品透鏡毛壞2800具有一全視場電作用層。而且,半成 品透鏡毛壞2800的電作用結構可以是多格柵或單一相 接。此外,半成品透鏡毛壞2800具有折射及/或繞射特性。 在電作用透鏡㈣合或非混合具體實施例中,明顯數量 的所需修正配鏡可透過由一控制器調整及控制的電作用 透鏡而自訂建立,其中該控制器已對病人特殊配鏡需要自 訂及/或程式化。因此,數百茧沾 〇〇 数自萬的配鏡與許多透鏡樣式、 單視透鏡毛壞、及許多多聚隹车 少夕水“、、牛成品透鏡毛壞便不再需 要。事實上,如同我們知道,冬I 爹數透鏡與框架製造與分配 84166 -25- 1269091 可明顯改革。 注意,本發明包括非混合電作用透鏡、以及全部與部分 視場特殊混合電作用透鏡,這些透鏡是在交付病人或客戶 時的預先製造電子護目鏡(框架及/或透鏡)、或自訂電子 護目鏡。在預先製造及組件的護目鏡情況,框架與透鏡是 使用已鑲邊的透鏡預先製造,且放置在鏡框。而且,可將 本發明的部份視為可程式化及重新程式化的控制器、以及 具有必要電子元件的框架與透鏡的大量製造,且該等電子 元件可預鑄及送給護眼專業人才、或例如程式化控制器安 裝的些其他位置、及/或病人配鏡的一或多個控制器元 件。 在某些情況,控制器、及/或一或多個控制器元件可以 是一部份的預先製造框架與電作用透鏡組合,然後在護眼 專業人才的位置或一些其他位置上程式化。控制器、及/ 或一或多個控制器元件可以是例如一晶片或一薄膜的形 式,且是安裝在框架中、框架上、在透鏡中、或在眼鏡的 透鏡上。控制器、及/或一或多個控制器元件可根據實施 的商業策略而重新程式、或不重新程式化。在控制器、及 /或一或多個控制器元件是重新程式化的情況,只要病人 或客戶高興他或她的鏡框、以及電作用透鏡的化妝外觀與 功能,此將允許重複更新人的配鏡。 在後者情況,非混合與混合電作用透鏡具體實施例剛討 論,透鏡必須是充足健全結構,為了要保護眼睛不受外來 物體的傷害。在美國,多數護目鏡透鏡必須通過fda必要 84166 -26- 1269091 撞擊測試。為了要符合這些需求,—支律結構建構在透鏡 内或透鏡上是重要的。在混合類型的情況,此可透過例如 將"配鏡、或非配鏡輩if ytir 規早視或夕聚焦光學透鏡當作一結構基 座使用而達成。例如,混合類型的結構基座可在沒有複合 碳酸鹽製成。在非混合透鏡的情況,在某些具體實施例 中,電作用4匆質選擇與厚度說明Λ需要的結構。在其他具 體實施例方面,電作用物質的非配鏡載體基座或基板的放 置說明此需要保護。 在某些混合設計方面,當在眼鏡透鏡中使用電作用區域 時,在透鏡的光焦度中斷發生時維持正確距離修正是重要 的。在電池或配線失敗的情況,在一些情況,如果戴用者 正在駕駛汽車或駕駛飛機,它會是不幸的,而且他們的距 離修正會遺失。若要避免此發生,當電作用區域是在關閉 位置(非主動或無光焦度狀態)時,電作用眼鏡透鏡的創新 設計便要提供維持距離修正。在本發明的具體實施例中,· 此可透過提供具傳統固定光學焦距長度的距離修正而達 成,而不管它是一折射或一繞射混合類型。因此,任何額 外增加光焦度可透過電作用區域來提供。因此,一安全裝 置的電作用系統會發生,因為傳統光學透鏡將可保護戴用 者的距離修正。 圖9是另一電作用透鏡9〇〇的具體實施例側視圖,該電作 用透鏡具有一光學透鏡910’其折射率是符合一電作用折 射矩陣920。在此說明的範例中,折射率心的發散光學透 鏡910可槔供距離修正。連接到光學透鏡91〇是電作用折射 84166 -27- 1269091 矩車20其具有一非激勵狀態、與許多激勵狀態。當電 作用折射矩陣920是在它的非激勵狀態時,它具有折射率 1,其接近符合光學透鏡91〇的折射率心。更明確而言,當 未激勵%,I是在心的005折射單元中。在電作用折射矩 陣920的周圍是結構層930,其具有n3折射率,且亦接近符 合在111的〇.〇5折射單元中的光學透鏡91〇的折射率\。 圖1 〇疋另一電作用透鏡系統1 〇 〇 〇的具體實施例透視 圖。在此說明的範例中,電作用透鏡丨〇丨〇包括一光學透鏡 1040與電作用折射矩陣1050。一測距器發射器1Q20 是放置在電作用折射矩陣1 050。而且,一測距器偵測器/ 接收器1030是放置在電作用放置折射矩陣1〇5〇。在另一具 體實施例中,發射器1020或接收器1 030是放置在電作用折 射矩陣1 050。在另一具體實施例中,發射器1〇2〇或接收器 1030可放置在光學透鏡1〇4〇中或在他上面。在其他具體實 施例中’發射器1〇2〇或接收1 030可放置在外部覆蓋層 1 0 60。此外,在其他具體實施例中,1〇2〇和1〇3〇可放置在 前面的任何組合上。 圖11是一繞射電作用透鏡i i 00的具體實施例侧視圖。在 此說明的範例中,光學透鏡丨i i 〇可提供距離修正。在光學 透鏡1110的一表面上的蝕刻是繞射圖案1120,其具有折射 率n· sub· 1。當電作用折射矩陣1130是在它的非激勵狀態 時’連接到光學透鏡1110與覆蓋繞射圖案丨丨2〇是具有折射 率n.sub.2的電作用折射矩陣1130,且該折射率n. sub. 2 是接近η· sub· 1。而且,連接到光學透鏡1丨1〇是結構層 84166 -28- 1269091 1140’其疋以類似光學透鏡1Π0的物質構成,而且至少部 份是圍繞電作用折射矩陣1120。一覆蓋1150是連接在電作 用折射矩陣11 3 0與結構層114 0上。結構層114 〇亦可以是未 加入實際層的光學透鏡1110延伸,然而,光學透鏡 的製造可構成或限制電作用折射矩陣1丨3〇的範圍。 圖12及圖13分別是是電作用透鏡12〇〇的具體實施例的 珂視圖與側視圖,其中該電作用透鏡丨2 〇 〇具有一多重焦點 光學1210連接到一電作用結構層122〇。在此說明的範例 中,多聚焦光學1210是前階附加的透鏡設計。而且,在此 說明的範例中,多聚焦光學121〇包括一第一光學折射焦點 區域1212、及一第二進階附加的光學折射焦點區域Μ"。 連接到多聚焦光學1210是具有—電作用區域1 222的電作 用結構層1 220,其中該電作用區域1 222是放置在第二光學 折射焦點區域1214。-覆蓋層⑽是連接到電作用結構: 1220。注意,結構層可以是電作用或非電作用。當結構層 是電作用時,隔離物質可用來將激勵區域從非激勵區域隔 在多數的創新情況中(但不是所古) 疋所有),為了要將電作用護 目鏡程式化將人的視覺修正到它 J匕的被適當程度,因此,修 正非傳統折射誤差,經由追蹤病 ^ 诘妒夂…吐 两人次戴用者的眼睛運動來 追縱母個眼睛的視線是必要的。 圖14是-追蹤純14_具體實施例透視i框架圓 匕含電作用透鏡1420。連接到電作用透 '、 接诉拼《七 用透鏡1420的背部(最 接近戴用者眼睛的一端,亦稱為 娜馮近側端)是例如光射 84166 -29- 1269091 體$ 一 f蹤信號源“⑽。而且,連接到電作用透鏡142〇 的月部疋例如光反射感應器的追蹤信號接收器丄^ 。接收 器1 440與可旎是信號源143〇是連接到一控制器(未在圖顯 不),該控制器包括儲存在它記憶體以允許追蹤的指令。 透過使用此方法,可非常精確找到眼睛向上、向下、向左、 ^任何變化方向的運動。此於某些類型是需要的,但是不 疋所有非傳統折射誤差需要在人視線修正及隔離(例如, 在資特殊角瞑不規則或當眼睛移動撞擊的情況)。 在各種不同另一具體實施例中,信號源143〇及/或接收 器1440是連接到在框架141〇背部嵌入、及/或在透鏡背部 1 420嵌入的框架1410背部。 包括電作用眼鏡透鏡的任何眼鏡透鏡的重要部分是用 來在使用者視野中產生銳利影像品質的部分。當一健康的 人可大約90度看到任一端時,最鋦利的視覺敏鋦是位在一 較小視野,且對應最佳視覺敏銳的網膜部分。此網膜區域 是已知是視網膜中央小窩,而且在網膜上是大約直徑〇· 4〇 公屋的圓幵》區域。此外,眼睛可經由整個瞳孔直徑而獲得 場景影像’所以瞳孔直徑亦會影響眼鏡透鏡最重要部分的 大小眼鏡透鏡的結果重要區域只是加入將小窩視也投射 到眼鏡透鏡的人眼瞳孔直徑直徑的加總。 眼睛曈孔直徑的典型範圍是從3· 〇到5· 5公釐,且通常是 4· 0公釐的值。平均小窩直徑是大約〇· 4公釐。 在眼鏡透鏡的小窩的投射尺寸大小的典型範圍是受到 例如暇睛長度參數、從眼睛到眼鏡透鏡的距離等的影響。 84166 -30- 1269091 、匕此特殊創冑具體實施例的追蹤系統然後會找出電作 用透鏡區域,其是與病人網膜小窩區域有關的眼睛運動互 有關聯胃本發明的軟體程式化以始終修正當眼睛運動的 非傳統折射誤㈣’此是重要的。因Λ,在大部分情況是 需要的,I不是所有情況,創新具體實施例可當人限凝視 或注視他們的目標時,修正非傳統折射誤差,以電作用改 變視線通過的透鏡區域。換句話說,在此特殊創新具體實 知例中’考慮視線與透鏡不同部分相交的角度、及將此分 解成特殊區域最後g己鏡,經由追㈣統與軟體修正非傳統 折射誤差’ a多數電作用透冑可修正傳統折射誤差,且當 眼睛T動時,被定作目標的電作用區域焦點亦會移動。 在夕數(但是不所有)的情況,當注視或凝視遠距離物體 時追蹤系統及啟動軟體的創新具體實施例可用將人的視 覺修正到它的最大值。當注視接近的點時,追蹤系統(如 果使用)可用來計算接近點焦點的範圍,為了要些正人的 適應與收斂接近或中間範圍的聚焦需要。此當然可在電作 用姜目鏡控制器、及/或一或多個控制器元件中程式化, 當作一部分病人或戴用者的配鏡。在仍然其他創新具體實 化例中’一測距器及/會追蹤系統可合併到透鏡及/或框 它強調’在修正例如不規則散光的某些類型非傳統折射 誤差的其他創新具體實施例中,在多數(但不是所有情況) 情況’電作用透鏡不需要追蹤病人或戴用者的眼睛。在此 情況’整個電作用透鏡可程式化將此'及病人的傳統折射 84166 -31 - 1269091 誤差的修正。 ,既然偏差是直接與觀察距離有關,所以發現他們 的修正是與觀察距離有關。即是,只要測量到偏差或一些 偏差,藉著將電作用„分離便可修正在電作用折射矩陣 中的這些偏差,如此便電作用修正例如遠距離視覺、中間 距離視覺、及/或近距離視覺的特殊轉偏差。例如,電 作用透鏡可分成-遠視、中間距離視覺、與近視修正區 域,且每個軟體是控制每個區域,以使該區域修正這些影 響對應觀察距離的偏差。因此在電作用折射矩陣是分成不 同距離,藉使每個㈣區域可修正—特殊距離的特殊偏差 的此特殊創新具體實施例^,可修正非折射誤差,而無 需一追蹤機構。 取後,它應該指出在另一創新具體實施例中,可達成例 如由偏差引起的非傳統折射.誤差的修正,而無需實際分離 電作用區域,且無.需追蹤。在此具體實施例中,透過將觀 察距離當作—輸人使用,軟體可調整-特定電作用區域的 焦點,以負責有關在特定觀察距離上影響視覺的偏差所需 修正。 此外,發現到一混合或非混合電作作用透鏡可設計成具 有一全視場或部分視場效果。透過全視場效果,此表示電 作用折射矩陣或層|包含在鏡框中的大部分透鏡區域。在 一全視場情況,整個電作用區域可調整到想要的光焦度。 而且,一全視場電作用透鏡的調整可提供一部分視場。然 而,一部分視場電作用特殊透鏡設計不能調整到全視場, 84166 1269091 由於需要使它成為特殊部分視場的電路。在—全視場透鏡 5 a到&成部分視場透鏡的情況,一部分電作用透鏡是 調整到想要的光焦度。 回1 5是另電作用透鏡系統1 5 0 0的具體實施例透視 圖。框架1510包含具有—部分視場1 530的電作用透鏡 1 520。 、為了比車乂目的’圖16是仍然另-電作用透鏡系統1600 的具體實施例透視圖。在此說明的範例中,框架1 61 〇包含 具有一全視場1630的電作用透鏡162〇。 生在某二創新具體實施例,多聚焦電作用光學是預先製 造,且在某些情況,由於明顯減少SKU的所需數量,所以 卩使在刀送位置架會是—完成多聚焦電作用透鏡毛壞。此 創新具體實施例允許分送位置使架的多聚焦電作用透鏡 毛壞適合及鑲邊成電子啟動框架。雖然在大部份情況本發 明可以是一部分視場特殊類型電作用透鏡,但是應了解此 於全視場電作用透鏡工作亦可工作。 在本么明的一混合具體實施例中,一傳統單視透鏡是具 有散光修正環面的一球狀設計或非球狀設計,且一球狀表 面可用來提供距離光焦度需要。如果散光修正是需要,適 當供應單視光學透鏡的光焦度可選擇,且旋轉到適當的散 光軸位置。只要此達成’單視光學透鏡便可將有關眼睛接 線框架樣式與大小鑲邊。f作用折射矩耗後應用在單視 光學透鏡’或電作用折射矩陣是在鑲邊之前應用,而且整 個透鏡單元可稍後鑲邊q發現,對於電仙折射矩陣是 84166 -33- 1269091 固定到一光學透鏡的镶邊而 學),在鑲邊之前,如1而° (早硯或多聚焦電作用光 利在液晶物質上。| —聚合物凝膠的電作用物質可有 電作用折射@ γ > 車可!由在技術中 用到相容的光學读於^ 已矣的不冋技術而運 面可適當從接合、㈠目*的光予透鏡是曲線光學,且表 接受電作用折射矩陣:例或正確的最後透鏡光焦度來 直接應用到光學透鏡,=性物可應用’以將接合劑 ,折射矩陣的製造是:接、、:後鋪设電作用層。而且,電作用 疋 到釋放薄膜,在此情況,可移除及 重新黏合到光學透鏡。 ^ ^ ^ 而且’匕可連接到載體本身黏合到 光子透鏡的雙向薄膜載體。此外,它可制—表面鋒造技 術而應用,在此愔讶,Φ A m tUse this method: for far vision), cylindrical power, and axis (conventional lens power for divergence to measure refraction error. With the traditional correction of refractive error, the most known patient is currently available. Good visual acuity (BVA). However, certain embodiments of the present invention allow for improvements beyond what can be achieved with conventional refractors/refracters at this stage. Step 61 0 can provide further processing improvements in a non-traditional innovation. At step 610, the processing of the endpoint is performed in an electrical refractory program. The patient is properly placed in an autorefractor or a waveguide that can be seen to be modified and compatible via an electro-optic lens having a multi-grid electrical structure. The analyzer is used to accurately measure the refractive error. This refractive error measurement is possible to detect and quantify more unconventional refractive errors. When the patient sees through the target area of the electro-optical lens, the necessary processing is automatically calculated to achieve the center along the line. For better focusing on the nest, this measurement can use a small target area of approximately 4. 29 mm per electro-acting lens. As long as this measurement is reached This non-traditional correction can be stored in the controller/programmer memory for future use' or then programmed in the controller to control the electro-acting lens. Of course, this can be repeated in both eyes. In step 620, the patient or wearer They choose to use a control unit in their option to allow them to further improve the traditional refractive error correction, non-transmission 84166 -20-1269091 system refractive error correction, or cup. ^, and a, so, finally deal with their love M^^ can be improved until it is not modified in some cases. At this time, it is better to improve the BVA of any patient who is better than the conventional technology. In step 6 3 0, any push A jk, a modified process is then processed in the controller to control the operation of the lens. In step 640, the programmed electrical glasses are distributed. Although the processing step 6_64 () is presented - A specific embodiment of the innovative method 'This is because of eye trials or methods, but in addition to many different methods, only electro-optic refractors/refractors, or waves The analyzer combines to detect, quantify, and/or correct vision. Regardless of the sequence, it is not related to the waveguide analyzer and uses an electro-acting refractometer/refractometer to detect, determine, and/or Or any method of correcting human vision is considered part of the invention. For example, in certain innovative embodiments, steps 610 through 640 can be performed in a modified manner or even in a different sequence. In a specific embodiment of other innovative methods, the lens target area referenced in step 610 is in the range of about 3 mm in diameter to about 8. 0 mm in diameter. In still other innovative embodiments, the target area It can be from about 2. 〇 mm to the entire lens area 0. Although this discussion focuses on the use of only a variety of different forms of electro-acting lenses or refractions combined with waveguide analyzers to perform future human eye examinations, but another The possibility is that emerging technologies allow for objective measurements only, thus eliminating the need for patient communication reactions or interactions. Many of the innovative embodiments described and/or claimed herein can be operated with any type of measurement system without objective, subjective, or a combination of both. Month P > As described above, the electro-acting lens revolving itself, a specific embodiment of the present invention, relates to an electro-acting refractor/refracting / having a new electro-active lens, a hybrid or a non-mixed structure. By a hybrid structure, it represents a combination of a conventional single-view or multi-focus optical lens, and at least one electrically active region is located between the front surface, the back surface 'and/or between the front surface and the back surface=, which is An electric object is provided by a necessary electric action device to change the electrical focus. In some embodiments of the invention, the electrically active region is placed explicitly inside the lens or on the concave surface of the lens to protect it from scratches and other normal wear. The xenon active zone is a four-body embodiment that includes a partial-protrusion surface. In most cases, a scratch-resistant coating is applied. The combination of a conventional single vision lens or a conventional multi-focus lens with an electrically active area provides the lens power of the hybrid lens design. By non-mixing' it means that a lens is electrically active, so that a large 100% of the refractive power is produced separately by its electroactive nature. Fig. 7 is a front view, and Fig. 8 is a cross-sectional stomach taken along the section 混合 of the embodiment of the hybrid electro-acting eyeglass lens. In the example described herein, lens 700 includes an optical lens 71A. Connected to the optical lens HQ is an electrically active refractive matrix having one or more electrically active regions occupying all or a portion of the electrically active refractive matrix 720. It is also connected to the optical lens 71 〇 and to ν. The electro-optical refraction matrix 72 is surrounded by a structural layer optical lens Ή0 including an astigmatism power correction region 740 having a rotational astigmatism axis _4, in this particular example, the horizontal clockwise direction is approximately "degrees. -22- 1269091 The electroactive refractive matrix 720 and the structural layer 730 are an optional capping layer 750. As discussed further below, the electroactive refractive matrix 72A includes a liquid crystal and/or polymer gel. Also included is an alignment layer, a metal layer, a wire layer, and/or an isolation layer. In another embodiment, the astigmatism correction region 74 can be removed, so the optical lens 71 0 can only correct the sphere light. Power. In another embodiment, 'optical lens 710 can correct for long distances, close distances, and/or both, and any kind of conventional refractive error, including spherical, cylindrical, meandering, and/or round. The electrical-acting refractive matrix 720 can also correct for close distances, and/or non-conventional refractive errors such as deviations. In other embodiments, the electrically active refractive matrix 720 can correct any kind of conventional or non-transmission. The refractive error 'and the optical lens 70 0 can correct the conventional refractive error. It has been found that an electroactive lens having a hybrid structure method has certain significant advantages on a non-hybrid lens. These advantages are lower power requirements and smaller Battery size, long battery life expectations, lower complexity circuitry, fewer wires, less spacers, lower manufacturing cost, increased optical transparency, and increased structural integrity. However, care must be taken that non-hybrid actuators There are advantages of their group, including reduced thickness and mass production. It has also been found that non-mixing and in some embodiments, the full range mixing and partial range mixing methods allow when, for example, the use of an electrically active structural design is a multi-grid electrical structure. Mass production of very limited quantities of raw material storage units (SKUs). In this case, it is only necessary to focus on the mass production of a limited number of differences in curvature and size, such as wearer anatomy, which requires 84166 -23-1262991 To understand the obviousness of this improvement, you must understand the traditional lenses needed to describe most of the glasses. The number of bad glasses. The correction of the lens is about 5%. 〇〇 光 到 到 到 + + + + + + + + + 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 49 universally defined sphere powers. These glasses include an astigmatism correction of approximately 95% in the range of -4· 〇〇 光 to +4.0 00 in 〇·25 deg. The range 'has about 33 universally defined astigmatism (or cylinder) power. However, because astigmatism has a shaft-element, there is about astigmatism axis 36 twist direction, typically in 1 degree increments. Therefore, there is 360 different astigmatism optic lenses. Moreover, many of the glasses include a pair of focusing elements that correct presbyopia. These opticians with a presbyopic correction are in 〇·25 refracting increments at +1·00 to +3· Approximately 95% of the 00 refracting range, resulting in approximately nine universally defined presbyopic powers. Because some embodiments of the present invention provide for correction of spheres, cylinders, shafts, and presbyopia, a non-hybrid actuator can be used for 5' 23 9, 080 (= 49 x 33 χ 360 χ -9) different lenses. Therefore, a non-hybrid electro-optical lens eliminates the need to mass-produce and/or accumulate a large number of lens-stained SKUs, and more importantly, eliminates the need for grinding and polishing of each lens of a particular patient's lens. In order to illustrate the various lens curvatures required to accommodate anatomical problems such as face shape, eyelash length, etc., something more than one non-hybrid actuator lens sku can be manufactured and/or framed in large quantities. However, the number of 30 can be reduced from millions to about 5 or less. 84166 -24- 1269091 In the case of a hybrid electro-optical lens, the use of an optical lens to correct the traditional refractive error and the use of a central electroactive layer can be found to reduce the number of SKUs desired. Referring to Figure 7, the lens 7 can be rotated as needed to place the astigmatism axis A-A at the desired position. Therefore, the required number of mixed lens hair defects can be reduced by 360 factors. Moreover, the electrically active area of the hybrid lens provides presbyopia correction, thereby reducing the amount of lens damage required by a factor of nine. Thus, a hybrid electro-acting lens embodiment can reduce the number of required lens shading from more than 5 million to 1619 (= 49 χ 33). Because it can reasonably mass-produce and/or stack the number of SKUs in the lens, the need for grinding and polishing can be eliminated. However, grinding and polishing the semi-finished hybrid lens into a finished lens can maintain a possibility. Figure 28 is a detailed implementation of the semi-finished lens 28 〇〇 = j view. In this embodiment, the semi-finished lens rupture 28 has an apertured surface 2820, an un-formed surface 2830, and a portion of the field of view electrical refraction matrix 2840. In another embodiment, the semi-finished lens flare 2800 has a full field of view electrical active layer. Moreover, the electrically active structure of the semi-finished lens flare 2800 can be multi-grid or single-joint. In addition, the semi-finished lens flare 2800 has refractive and/or diffractive properties. In the case of an electro-active lens (four) combined or non-mixed embodiment, a significant number of required correcting glasses can be customized by an electro-acting lens that is adjusted and controlled by a controller that has been specially equipped for the patient. Need to be customized and / or stylized. Therefore, hundreds of 茧 自 自 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与As we know, the winter I 透镜 lens and frame fabrication and distribution 84166 -25-1269091 can be significantly reformed. Note that the present invention includes non-hybrid electro-acting lenses, and all and part of the field of view special hybrid electric action lens, these lenses are Pre-manufactured electronic goggles (frames and/or lenses), or custom electronic goggles when delivered to a patient or customer. In pre-manufactured and assembled goggles, the frame and lens are pre-manufactured using a rimmed lens, and Placed in the frame. Moreover, the parts of the present invention can be considered as a programmable and reprogrammable controller, as well as a large number of frames and lenses with necessary electronic components, and the electronic components can be sent to Eye protection professionals, or other locations such as stylized controllers installed, and/or one or more controller components of the patient's optician. In some cases, the controller, And/or one or more of the controller components may be part of a pre-fabricated frame in combination with an electro-optical lens and then programmed at the location of the eye-protection professional or some other location. Controller, and/or one or more The controller component can be, for example, in the form of a wafer or a film, and mounted in the frame, on the frame, in the lens, or on the lens of the lens. The controller, and/or one or more controller components can Reprogramming, or not reprogramming, according to the implemented business strategy. In the case where the controller, and/or one or more controller components are reprogrammed, as long as the patient or client is happy with his or her frame and electrical function The cosmetic appearance and function of the lens, which will allow for repeated updates of the person's optician. In the latter case, the non-hybrid and hybrid electro-acting lenses have just been discussed, the lens must be sufficiently robust to protect the eye from foreign objects. Injury. In the United States, most goggle lenses must pass the fda necessary 84166 -26-1269091 impact test. In order to meet these needs, the branch structure is constructed It is important in the mirror or on the lens. In the case of a hybrid type, this can be achieved, for example, by using a "optical, or non-optical if ytir or early focus optical lens as a structural base. For example, a hybrid type of structural pedestal can be made without a composite carbonate. In the case of a non-hybrid lens, in some embodiments, the electrical action 4 has a choice of thickness and thickness to account for the desired structure. For example, the placement of the non-optical carrier base or substrate of the electroactive substance indicates that protection is required. In some hybrid designs, when an electro-active area is used in the spectacle lens, it is maintained when the power of the lens is interrupted. Correct distance correction is important. In the case of battery or wiring failure, in some cases, if the wearer is driving a car or flying a plane, it will be unfortunate and their distance correction will be lost. To avoid this, the innovative design of the electro-optical lens provides a maintenance distance correction when the electrical active area is in the off position (inactive or non-power state). In a particular embodiment of the invention, this can be achieved by providing a distance correction with a conventional fixed optical focal length, regardless of whether it is a refractive or a diffractive blending type. Therefore, any additional increase in power can be provided through the electro-active area. Therefore, the electrical actuation system of a safety device will occur because conventional optical lenses will protect the wearer's distance correction. Figure 9 is a side elevational view of another embodiment of an electro-optical lens 9' having an optical lens 910' having an index of refraction that conforms to an electro-active refractive matrix 920. In the example illustrated herein, the divergent optical lens 910 of the refractive index center provides for distance correction. Connected to the optical lens 91 is electrically refraction 84166 -27-1269091 The car 20 has a non-energized state and a plurality of energized states. When the electrical refraction matrix 920 is in its non-excited state, it has a refractive index 1, which is close to the refractive index center of the optical lens 91. More specifically, when % is not excited, I is in the 005 refractive unit of the heart. Surrounding the electrorefractive matrix 920 is a structural layer 930 having an index of refraction n3 and also having a refractive index close to that of the optical lens 91 符 in the 〇.5 refracting unit of 111. Figure 1 is a perspective view of a specific embodiment of another electro-acting lens system 1 〇 〇 。. In the example illustrated herein, the electro-acting lens 丨〇丨〇 includes an optical lens 1040 and an electro-active refractive matrix 1050. A range finder transmitter 1Q20 is placed in the electrical active refraction matrix 1 050. Moreover, a range finder detector/receiver 1030 is placed in the electrical action placement refraction matrix 1〇5〇. In another specific embodiment, transmitter 1020 or receiver 1 030 is placed in electrically-actuated refractive matrix 1 050. In another embodiment, the transmitter 1 〇 2 〇 or the receiver 1030 can be placed in or on the optical lens 1 〇 4 。. In other embodiments, 'transmitter 1 〇 2 〇 or receive 1 030 can be placed on outer cover layer 10060. Moreover, in other embodiments, 1〇2〇 and 1〇3〇 can be placed on any combination of the foregoing. Figure 11 is a side elevational view of a particular embodiment of a diffractive lens i i 00. In the illustrated example, the optical lens 丨i i 〇 provides distance correction. The etching on a surface of the optical lens 1110 is a diffraction pattern 1120 having a refractive index n·sub·1. When the electroactive refractive matrix 1130 is in its non-excited state, 'connected to the optical lens 1110 and the covered diffraction pattern 丨丨2 〇 is an electrically active refractive matrix 1130 having a refractive index n.sub.2, and the refractive index n Sub. 2 is close to η·sub· 1. Moreover, the connection to the optical lens 1 丨 1 〇 is a structural layer 84166 -28 - 1269091 1140' which is composed of a substance similar to the optical lens 1 Π 0, and at least a portion is surrounding the electrically refracting matrix 1120. A cover 1150 is attached to the electrical refraction matrix 11 3 0 and the structural layer 114 0 . The structural layer 114 may also be an optical lens 1110 that is not incorporated into the actual layer. However, the fabrication of the optical lens may constitute or limit the range of the electrically active refractive matrix 1丨3〇. 12 and 13 are respectively a side view and a side view of a specific embodiment of the electro-acting lens 12A, wherein the electro-active lens 丨2 〇〇 has a multi-focus optical 1210 connected to an electro-active structure layer 122. . In the example illustrated herein, multi-focus optics 1210 is a front-end additional lens design. Moreover, in the illustrated example, the multi-focus optics 121A includes a first optically refracting focus area 1212 and a second advanced additional optical refracting focus area Μ". Connected to multi-focus optics 1210 is an electrostructured layer 1 220 having an electro-active region 1 222, wherein the electro-active region 1 222 is placed in a second optically-refracting focal region 1214. - The cover layer (10) is connected to the electrically active structure: 1220. Note that the structural layer can be electrically or non-electrically active. When the structural layer is electrically active, the spacer material can be used to separate the excitation region from the non-excited region in most innovative situations (but not ancient) (in order to stylize the electro-acting goggles to correct the human vision) It is necessary to correct the non-traditional refractive error, and it is necessary to trace the line of sight of the female eye by tracking the eye movements of the wearer. Figure 14 is a - traced pure 14-specific embodiment perspective i-frame circular 匕 electrically active lens 1420. Connected to the electric function, and the "six end of the seven-lens lens 1420 (close to the end of the wearer's eye, also known as the near side of Navon) is, for example, light shot 84166 -29-1269091 body $ a trace The signal source "(10). Moreover, the tracking signal receiver connected to the moon portion of the electric action lens 142, for example, the light reflection sensor. The receiver 1 440 and the signal source 143 are connected to a controller ( Not shown in the figure, the controller includes instructions stored in its memory to allow tracking. By using this method, the movement of the eye up, down, left, and any direction of change can be found very accurately. These types are needed, but not all non-conventional refraction errors need to be corrected and isolated in the human line of sight (eg, in the case of irregular corners or when the eye is moving and impacting). In various other embodiments, Signal source 143 and/or receiver 1440 is coupled to the back of frame 1410 that is embedded in the back of frame 141 and/or embedded in lens back 1 420. An important portion of any spectacle lens that includes an electro-acting spectacle lens It is the part that produces sharp image quality in the user's field of view. When a healthy person can see either end at about 90 degrees, the most profitable visual acuity is in a small field of view, and corresponds to the best vision. a sharp omentum portion. This omentum area is known to be the central fossa of the retina, and is a circle of about 〇·4〇 public housing on the omentum. In addition, the eye can obtain a scene image through the entire pupil diameter. The diameter of the pupil also affects the size of the most important part of the spectacle lens. The important area of the spectacle lens is only the sum of the diameters of the pupil diameters of the human eye that are projected into the spectacle lens. The typical range of the pupil diameter of the eye is from 3·. 〇 to 5·5 mm, and usually a value of 4.0 mm. The average pit diameter is about 〇·4 mm. The typical range of the projection size of the lens follicle is subject to, for example, the length of the eye. Parameters, the distance from the eye to the lens of the lens, etc. 84166 -30- 1269091, the tracking system of this particular embodiment will then find the area of the electro-acting lens, which is The eye movements associated with the patient's omental area are related to each other. The software of the present invention is stylized to always correct the unconventional refraction errors of eye movements (4) 'This is important. Because, in most cases, it is needed, I Not all cases, innovative embodiments can correct non-conventional refraction errors when the person gaze or gaze at their target, and electrically change the lens area through which the line of sight passes. In other words, in this particular innovation specific example Considering the angle at which the line of sight intersects with different parts of the lens, and decomposing this into a special region, the final g-mirror is corrected by the chase (four) system and the soft body to correct the non-conventional refraction error ' a majority of the electro-optical lens can correct the traditional refraction error, and when the eye T At the time of movement, the focus of the electric action area that is targeted is also moved. In the case of eves (but not all), an innovative embodiment of the tracking system and the launching software when gazing or staring at a distant object can be used to correct the human visual to its maximum. When looking at the approaching point, the tracking system (if used) can be used to calculate the range of focus points close to the point, in order to accommodate some positive adaptation and convergence close or intermediate range focus. This can of course be stylized in the electro-goggle eyepiece controller, and/or one or more controller components, as part of the patient or wearer's optician. In still other innovative embodiments, a rangefinder and/or tracking system can be incorporated into a lens and/or frame. It emphasizes other innovative embodiments of certain types of non-conventional refractive errors that correct, for example, irregular astigmatism. In most, but not all cases, the 'electrical action lens' does not need to track the patient or the wearer's eyes. In this case 'the entire electro-acting lens can be programmed to correct this error with the patient's conventional refraction 84166 -31 - 1269091 error. Since the deviation is directly related to the observation distance, it is found that their correction is related to the observation distance. That is, as long as the deviation or some deviation is measured, these deviations in the electrical action refraction matrix can be corrected by separating the electrical action, such as long-distance vision, intermediate distance vision, and/or close range. Special deviation of vision. For example, an electro-acting lens can be divided into - far vision, intermediate distance vision, and myopia correction area, and each software controls each area so that the area corrects the deviation of these influences corresponding to the observation distance. The electroactive refractive matrix is a special innovative embodiment that is divided into different distances, so that each (four) region can be modified - a special deviation of the special distance, the non-refractive error can be corrected without a tracking mechanism. In another innovative embodiment, corrections such as non-conventional refraction. errors caused by deviations can be achieved without actually separating the electro-active regions, and without tracking. In this particular embodiment, by observing the distance For the use of the input, the software can be adjusted - the focus of the specific electrical area of action, to be responsible for the specific viewing distance In addition, it is found that a mixed or non-hybrid electro-optical lens can be designed to have a full field of view or partial field of view effect. Through the full field of view effect, this represents the electrical action refraction matrix or layer | Most of the lens area included in the frame. In a full field of view, the entire electrical area can be adjusted to the desired power. Moreover, the adjustment of an all-field electric lens can provide a part of the field of view. Part of the field-of-view electric special lens design cannot be adjusted to the full field of view, 84166 1269091 due to the need to make it a special part of the field of view of the circuit. In the case of - full field lens 5 a to & part of the field of view lens, part of the electricity The active lens is adjusted to the desired power. Back to Fig. 5 is a perspective view of a specific embodiment of the electro-optical lens system 1 500. The frame 1510 includes an electro-acting lens 1 520 having a partial field of view 1 530. FIG. 16 is a perspective view of a particular embodiment of the still-electrically actuated lens system 1600. In the illustrated example, the frame 1 61 includes an electrical field having a full field of view 1630. With lens 162 生. In a second innovative embodiment, multi-focus electro-optical optics is pre-manufactured, and in some cases, due to the significant reduction in the required number of SKUs, so that the position in the knife-carrying position will be - complete The multi-focus electro-acting lens is damaged. This innovative embodiment allows the dispensing position to cause the multi-focus electro-acting lens of the rack to be suitable for framing and edging into an electronic starting frame. Although in most cases the invention may be part of the field of view special Type of electro-acting lens, but it should be understood that this can also work with full-field electric actuating lens. In a hybrid embodiment of the present invention, a conventional single-lens lens is a spherical design with an astigmatism correction torus or Non-spherical design, and a spherical surface can be used to provide distance power. If astigmatism correction is needed, the power of a suitable single vision optical lens can be selected and rotated to the appropriate astigmatic axis position. As long as this achieves a single-vision optical lens, the eye-wire frame style and size can be rimmed. The f-refractive moment is applied after the single-view optical lens' or the electro-optical refraction matrix is applied before the edging, and the entire lens unit can be found later in the rim q, for the electric sinus refraction matrix is 84166 -33-1269091 fixed to The edging of an optical lens), before the edging, such as 1 ° ° (early 砚 or multi-focus electric light on the liquid crystal material. | - polymer gel electrical action material can have electrical refraction @ γ > car can be used by the technology to use compatible optical reading in the 矣 矣 而 而 而 而 而 而 可 可 可 可 可 可 可 可 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Matrix: Example or correct final lens power is applied directly to the optical lens, = the sex can be applied 'to bond the adhesive, the fabrication of the refractive matrix is: after, after: laying the electrical layer. Moreover, the electrical effect Release the film, in this case, remove and re-adhere to the optical lens. ^ ^ ^ and '匕 can be connected to the two-way film carrier of the carrier itself bonded to the photonic lens. In addition, it can be made - surface front technology Application, here Surprised, Φ A m t
It况電作用折射矩陣是在原位置建立。 在引述的W σ具體實施例中,圖i 2…靜態與非靜態方 法的組合可用來滿足中間與接近點視覺需要,具有正確想 要距離修正、及具有例如全近增加光焦度大約+ U折光 度(或D )的一多聚焦串級透鏡i 2丨〇是使用,以取代單視 光學透鏡。在使用此具體實施例方面,電作用折射矩陣 1220是放置在多聚焦前進光學透鏡的任一端、及掩埋在光 學透鏡中。此電作用折射矩陣是用來提供額外增加光焦 度0 當使用低於整個多聚焦透鏡所需的光學透鏡增加光焦 度時’最後增加光焦度是經由電作用層所產生低多聚焦附 加與額外所需近光焦度的整個加總光焦度。例如’如果一 多聚焦創新附加光學透鏡具有+1.00的增加光焦度、及建 84166 -34- 1269091 立+1.°〇近光焦3度的電作用折射矩陣’混合電作用透鏡的 整個近先焦度是+2· GGD。透過使用此方法,可明顯從多取 焦透鏡(明確而言,創新的附加透鏡)減少不必要的可感^ 失真。 在使用-多聚焦創新附加光學透鏡的某些混合電作用 具體實施例中,電作用折射矩陣可用來減去不必要的散 光。此可經由在不必要散光存在的透鏡區域中電作用建立 消除光焦度補償而透過消除岑眚暂、士 月陈^ K貝減少不必要的散光來 達成。 在某些倉J新具體實施例中,冑分視場的分散是需要的。 當應用一分散部分視場電作用折射矩陣時,它需要以此方 式來排列電作用折射矩陣,以適應單視光學透鏡的適當散 光軸位置,如此允許修正任的散光,且找出在人眼正確位 中心的電子變化光焦度場。而且,需要部分視場設計來排 列部分視場位置’以允許與病人瞳孔有關的適當分散放 置。進-步發現到,在靜態雙聚焦、多聚焦或㈣區域是 始終放置在人觀察距離凝視的下面,一電作用透鏡的使用 對於不能用於傳統多聚焦透鏡的某些製造自由度是允許 的。因此,在本發明的一些具體實施例中,電作用區域是 位於可典型找到一傳統非電作用多聚焦透鏡的遠視、中 間、與近視區域。例如,電作用區域可放置在光學透鏡的 180經線上面,藉此允許多聚焦近視區域可有時提供超過 光學透鏡的180經線。提供超過光學透鏡18〇經線的近視區 域對於接近戴用者正前方或頭上距離工作的這些眼鏡戴 84166 -35- 1269091 用者是特別有用,例如與電腦監視器工作、或釘住頭上的 影像框架。 在非混合電作用透鏡、或混合全視場透鏡與例如一 Μ 公釐直徑混合部分視場透鏡的情況,在將框架透鏡安裝形 狀的透鏡鑲邊之前,如前述的電作用層可直接應用到單視 光學透鏡、或使用光學透鏡預製造來建立電作用成品多聚 焦透鏡毛壞、或多聚焦創新光學透鏡。此對於電作用透鏡 毛壞的組合是允許的,且編入成品架,但不是鑲邊的電作 •用透鏡毛壞,如此允許在分配的任何管道上製造眼鏡,包 括醫生或光學儀器商大樓。此允許所有光學診療所可提供 昂貴製造設備最小需要的快速服務。此對於業者、零售 商、及其病人、消費者是有益的。 考慮已顯示的部分視場大小,例如,在一創新具體實施 例中,部分視場的特殊區域是35公釐直徑中心或分散圓形 設計。注意’直徑大小的變化是因需要而定。在某些創新 具體實施例中,使用22公釐、28公釐、30公釐、與36公羞 圓形直徑。 部分視場的大小是因電作用折射矩陣及/或電作用場的 結構而定。只少兩此結構是在本發明的範圍内考慮,即 是,一單一互接電作用結構與一多格柵電作用結構。 圖17是具有單一互接結構的電作用透鏡17〇〇具體實施 例透視圖。透鏡1 700包括一光學透鏡171〇及一電作用折射 矩陣1 720。在電作用中折射矩陣172〇中,一隔離物 是將一激勵部分視場174〇從一結構非激勵場(或區域) 84166 -36- 1269091 1 750分離。單一電線或導線互接176〇是將激勵場連接到一 電源供應器及/或控制器。注意,在多數(如果不所有)具 體實施例情況,單一互接結構具有將它耦合到電源的單一 對電導線。 圖18是具有多格柵結構的一電作用透鏡18〇〇的具體實 施例透視圖。透鏡1 800包括一光學透鏡181〇與一電作用折 射矩陣1 820。在電作用折射矩陣182〇中,一隔離物183〇 是將一激勵的部分視場184〇從一結構非激勵場(或區域) 1 850分離。複數個電線互接186〇是將激勵 供應器及/或控制器。 電原 當使用部分視場的較小直徑時,可發現當使用單一互接 電作用結構可減少時,從部分視場特殊區域的邊緣到中心 的電作用厚度是不同。此在減少電源需要及 層數量方面具有非常肯定的角色,尤其是單一互;電:構用 此於部分視場特殊區域的情況不是始終的情況,藉此使用 一多格栅電作用結構。在許多的創新具體實施例(但是不 所有)中,當使用單一互接電作用結構時,多重單一互接 $作用結構便會在透鏡中或透鏡上分層疊放,以允許多重 電作用層可建立例如+2· 50D的一整個組合電作用光焦 度。在此創新範例中,只有五個+〇· 50D單一互接層是只放 置在大σ卩伤情況透過隔離層而彼此分離的頂端上。如此, 適當二焦度便可經由減少一厚的單一互接層的電需要而 建立每個層的必需折射率變化,其在某些情況,對於適當 供給能量是不實施的。 田 84166 -37- 1269091 本名又明進一步強嘴,Μ•古《舌0口 1俨實m 互接電作用層的某些 具體實知例能以程控序列供給能量,以允許一且有可 3 =焦。例如’兩個+°屬單-互接電:用層可供 給月b里來建立+ 1 Q q Μ 一 π Μ 4 +1,〇〇D中間聚焦,以允許+2. 〇〇D老花眼可在 短“見,然後兩個額外+〇. 50D單一互接電作用層可供 給能里’以提供+2._老花眼可在16〇寸遠閱讀。應了解電 作,層的精確數量、與每層的光焦度可改變,且是因光學 ,又h、包含-特殊老花眼的近視與中間視覺距離特殊範 -圍所需所需的總光焦度而定。 此外,在某其他創新具體實施例中,一或多個單一互接 電:用層的組合是在透鏡與一多格栅電作用結構層的組 合中出現。再者,假設適當的程式化,此可於中間與近距 離:範圍提供聚焦的能力。最後,在其他創新的具體實施 例中,只有-多格栅電作用結構是使用在一混合或非混合 j鏡。或者,與適當程式化電作用護目鏡控制器、及/或 或多個控制|§兀件結合的多格栅電作用結構允許在中 間與近距離的廣泛範圍上聚焦。 而且,允許表面化的半成品電作用透鏡毛壞亦是在本發 明的範圍内。在此情況,合併毛壞或一全視場電作用折射 矩陣的-分散、置中、部分視場電作用折射矩陣是合併毛 壞’而且然後表面化成需要的正確配鏡。 在某些具體實施例中’可變光焦度電作用場是位在整個 透鏡上,且如在透鏡整個表面上的固定球體光焦度來調 整,以適應您卫作近視聚焦的需[在其他具體實施例 84166 ' 38 - 1269091 中,§為了要減少失真與偏差而同時建立一球體周邊光焦 度效果時,可變光焦度場可於一固定球體光焦度變化時而 在整個透鏡上調整。在上述的一些具體實施例中,距離光 …、又疋、’’工由單視、多聚焦成品透鏡毛壞、或多聚焦連續光 學透鏡而修正。電作用光學層主要是修正工作距離聚焦需 要。應該注意,此不是始終的情況。在某些情況,可使用 只供距離球體光焦度的單視、多聚焦成品光學透鏡、或多 聚焦連續光學透鏡,及經由電作用折射矩陣來修正近視工 作光焦度與散光,或使用單視或多聚焦光學透鏡來只修正 散光,及經由電作用層來修正球體光焦度與近視工作光焦 度。而且,使用鋼琴、單視、多聚焦成品光學透鏡、或連 續多聚焦光學透鏡是可能的,及經由電作用層來修正距離 球體與散光需要。 強調的稜鏡分析、球體或非圓光焦度、以及總距離光焦 度需要、中間範圍光焦度需要與近點光焦度需要的本發明 需要的光焦度修正可經由任何數量的增加光焦度元件而 達成。這些包括單視、或成品多聚焦光學透鏡的使用,以 提供所有距離球體光焦度需要、一些距離球體光焦度需 要、所有散光光焦度需要 一些散光光焦度需要、所有稜 鏡光焦度需要、一些稜鏡光焦度需要、或當與電作用層組 合時的上述任何組合將可提供人的總聚焦需要。 發現到,在最後製造之前或之後,電作用折射矩陣可經 由他或她的電作用透鏡而允許使用適合的光學類似修正 技術來使視覺最大化。此是經由允許病人或想要戴用者而 84166 -39- 1269091 達成’以看穿電作用透鏡或一些透鏡,而且手動將他們調 整,或經由一特殊設計的自動折射器,可幾乎立即測量傳 統及/或非傳統折射誤差,及修正球體、散光、偏差等的 任何其餘折射誤差。此技術可於許多情況允許戴用者達成 2 0 / 1 0或較佳視覺。 此外’強調在某具體實施例中,一佛瑞奈光焦度透鏡層 疋連同單視或多聚焦或多重聚焦透鏡毛壞或光學、以及電 作用層使用。例如:佛瑞奈層是用來提供球體光焦度,藉 此減少透鏡厚度、單視光學透鏡來修正散光、及電作甩折 射矩陣來修正中間與近距離聚焦需要。 如前述,在另一具體實施例中,一繞射光學是連同單視 光子透鏡與電作用層使用。在此方法中,可提供額外聚焦 修正的繞射光學可進一步減少光焦度、電路、與電作用層 厚度的需要。再者,任何兩個或多個下列的組合能以額外 方式使用,以提供人眼鏡修正光焦度需要的所需總增加光 焦度。這些是一佛瑞奈層、傳統或非傳統單視或多聚焦光 學透鏡、繞射光學層、與電作用折射矩陣或層。此外,它 可經由一蝕刻處理而將繞射或佛瑞奈層的形狀及/或效果 添加給電作用物質,如此可建立具有繞射佛瑞奈元件的一 非混合或混合電作用光學。而且,可使用電作用透鏡來不 只建立傳統透鏡光焦度,而且建立稜鏡光焦度。 而且,發現到使用大約22公釐或35公釐直徑概略置中混 P刀視場特殊電作用透鏡設計、或一可調整分散混合電 作用。P刀視場特殊設計是大約直徑3 〇公釐,以減少電路需 84166 -40- 1269091 要、電池壽命、與電池大小,以減少製造成本及改善最後 電作用眼鏡透鏡的光學透明度。 在一創新具體實施例中,分散部分視場特殊電作用透鏡 的放置使此視場的光學中心是位於單視透鏡光學中心下 面大約5公釐,而同時具有以鼻子或太陽穴分散的近視距 離電作用部分視場,以滿足病人正確近視到中視範圍瞳孔 距離。應注意,此一設計方法並未侷限於圓形設計,但是 事實上可以是任何形狀,以允許視覺需要所需的適當電作 用視覺場區域。例如,設計可以是橢圓形、矩形、正方形、 八邊形、部份彎曲等。重要的是混合部分視場特殊設計、 或混合全視場設計的觀察區域正確放置,其中這些視場設 计具達成部分視場的能力、以及亦具有達成部分視場能力 的非混合全視場設計。 此外,發現到在許多情況(但不是所有)的電作用折射矩 陣是使用具有一不均勻的厚度。即是,金屬與傳導周圍層 不是平行,而且凝膠聚合物厚度會變化,以建立於一收斂 或分散的透鏡形狀。可在具單視或多聚焦光學透鏡的一非 混合具體實施例或一混合模式中使用此一非一致性厚度 電作用折射矩陣。此經由這些固定與電可調整透鏡的各: =組合而提供廣泛多樣的可調整透鏡。在—些創新具體 用:::中二單一互接折射矩陣是使用非平行端來建立電作 例、(:二非一致性厚度。然而,在多數的創新具體實施 …一不疋所有)中’多格栅電作用結構是使用—平行結 構,以建立電作用結構的一致性厚度。 84166 -41- 1269091 .、要為述些可此性,一收斂單視光學透鏡吁連結到 、收斂電作用透鏡’以建立一混合透鏡組件。電塵可增加 ,咸V折射率,此疋因使用的電作用透鏡物質而將電 :向上調整以減少折射率將會改變最後透鏡組件光焦 …如給較少+光焦度,如表1的第-列所示有關固定與 :作用透鏡光焦度的不同組合。如果將應用的電壓向上調 作以學透鏡的折射率,最後的混合透鏡組件光 度:曰如表2的顯示有關固定與電作用透鏡光焦度的不 :!二改變。應注意’在本發明的此具體實施例中,只 有早-應用的電壓差在電作用層是需要的。The It state electrical refraction matrix is established in the original position. In the cited W σ embodiment, the combination of the static and non-static methods of Figure i 2... can be used to satisfy the intermediate and near point visual needs, with the correct desired distance correction, and with, for example, a full near increase power of approximately + U A multi-focus tandem lens i 2 折 of refractive power (or D) is used instead of a single vision optical lens. In the use of this embodiment, the electroactive refractive matrix 1220 is placed at either end of the multi-focus advancement optical lens and buried in the optical lens. This electro-active refractive matrix is used to provide an additional increase in power. 0 When using an optical lens that is lower than the entire multi-focus lens to increase the power, the final increase in power is a low-multiple focus addition via the active layer. The total sum of power with the additional required near power. For example, 'If a multi-focus innovative additional optical lens has an added power of +1.00, and an electric effect refraction matrix of 84166 -34 - 1269091 +1. ° 〇 near-focus 3 degrees, the entire near-near hybrid lens The first power is +2· GGD. By using this method, it is possible to significantly reduce unnecessary sensation distortion from a multi-focus lens (specifically, an innovative additional lens). In some hybrid electrical effects using a multi-focus innovative additional optical lens, an electrically active refractive matrix can be used to subtract unwanted astigmatism. This can be achieved by establishing an elimination power compensation by electrically acting in a lens region where unnecessary astigmatism exists, and by eliminating unnecessary astigmatism by eliminating 岑眚 、, 士 陈. In some new embodiments of the bin J, the dispersion of the field of view is needed. When applying a dispersing part of the field-of-field electrical refraction matrix, it is necessary to arrange the electro-mechanical refraction matrix in this way to accommodate the proper astigmatism axis position of the monocular optical lens, thus allowing correction of any astigmatism and finding out in the human eye. The electronically varying power field at the correct center of the bit. Moreover, a partial field of view design is required to align the partial field of view position to allow for proper dispersion of the patient's pupil. It has been found that, in the static double-focus, multi-focus or (four) region is always placed below the human observation distance gaze, the use of an electro-active lens is permissible for certain manufacturing degrees of freedom that cannot be used with conventional multi-focus lenses. . Thus, in some embodiments of the invention, the electrically active region is located in a far-sighted, intermediate, and near-vision region in which a conventional non-electrically active multifocal lens can typically be found. For example, an electrically active region can be placed over the 180 warp of the optical lens, thereby allowing the multifocal myopic region to sometimes provide 180 warps beyond the optical lens. Providing a near vision area that exceeds the optical lens 18's warp threads is particularly useful for those wearing glasses that are close to the wearer's front or head distance, such as working with a computer monitor or pinning the image on the head. frame. In the case of a non-hybrid electro-acting lens, or a hybrid full-field lens and a partial field-of-view lens, for example, a one-millimeter diameter, the electro-active layer as described above can be directly applied before the lens of the frame lens-mounted shape is rimmed. A single-view optical lens, or pre-fabricated using an optical lens to create an electrical effect of the finished multi-focus lens, or a multi-focus innovative optical lens. This is allowed for a combination of electro-acting lens hair breaks, and is programmed into the finished frame, but not the edging of the rim. • The lens is damaged, which allows the manufacture of spectacles on any of the dispensed pipes, including the doctor or optical instrument building. This allows all optical clinics to provide the fast service required for expensive manufacturing equipment. This is beneficial to the industry, retailers, and their patients and consumers. Considering the partial field of view that has been shown, for example, in an innovative embodiment, the particular area of the partial field of view is a 35 mm diameter center or a discrete circular design. Note that the change in diameter is determined by the need. In some innovative embodiments, 22 mm, 28 mm, 30 mm, and 36 mm of round diameter are used. The size of the partial field of view is determined by the structure of the electrical action refraction matrix and/or the electrical field of action. Only two of these structures are considered within the scope of the present invention, i.e., a single interconnected electrical structure and a multi-grid electrical structure. Figure 17 is a perspective view of a specific embodiment of an electro-mechanical lens 17 having a single interconnect structure. Lens 1 700 includes an optical lens 171A and an electroactive refractive matrix 1720. In the electrical action refraction matrix 172, a spacer separates an excitation partial field of view 174 from a structural non-excited field (or region) 84166 - 36 - 1269091 1 750. A single wire or wire interconnect 176 is to connect the excitation field to a power supply and/or controller. Note that in most, if not all, of the specific embodiments, a single interconnect structure has a single pair of electrical conductors that couple it to a power source. Figure 18 is a perspective view of a specific embodiment of an electro-active lens 18A having a multi-grid structure. Lens 1 800 includes an optical lens 181A and an electrically-affected refractive matrix 1 820. In the electrically active refraction matrix 182, a spacer 183 分离 separates an excited partial field of view 184 from a structural non-excited field (or region) 1 850. Multiple wires 186 are interconnected to energize the supply and/or controller. When a small diameter of a partial field of view is used, it can be found that when a single interconnecting structure is used, the thickness of the electrical action from the edge to the center of a particular area of the field of view is different. This has a very positive role in reducing the power supply requirements and the number of layers, especially a single mutual; electricity: it is not always the case that a particular area of the field of view is used, thereby using a multi-grid electrical structure. In many innovative embodiments (but not all), when a single interconnected structure is used, multiple single interconnected structures can be stacked in or on the lens to allow multiple layers of electricity to be applied. An entire combined electrical action power of, for example, +2·50D is established. In this innovative paradigm, only five +〇· 50D single interconnect layers are placed only on top of each other where the large σ bruises are separated from each other through the isolation layer. Thus, proper difocalness can establish the necessary refractive index change for each layer by reducing the electrical need for a thick single interconnect layer, which in some cases is not implemented for proper supply of energy. Tian 84166 -37- 1269091 The real name is further enhanced, and some of the specific examples of the interaction layer of the tongue and the mouth can provide energy in a program-controlled sequence to allow one and three. = focus. For example, 'two + ° is a single-interconnected electricity: the layer can be used to supply the month b to establish + 1 Q q Μ a π Μ 4 +1, 〇〇D middle focus, to allow +2. 〇〇D presbyopia can In the short "see, then two extra + 〇. 50D single interconnected power layer can be supplied to the energy" to provide +2. _ presbyopia can be read at 16 inches away. Should understand the electric work, the exact number of layers, and The power of each layer can be changed, and it is determined by the optical, h, including the special presbyopia and the intermediate vision distance depending on the total power required for the special range. In addition, in some other innovations In one embodiment, one or more single interconnects: the combination of layers is present in a combination of a lens and a multi-grid electrical structure layer. Again, assuming proper stylization, this can be intermediate and close : The range provides the ability to focus. Finally, in other innovative embodiments, only the multi-grid electrical structure is used in a hybrid or non-hybrid j mirror. Or, with a properly stylized electro-acting goggles controller, And / or or multiple control | § element combined multi-grid electrical structure allowed in It is also within the scope of the present invention to allow surface-formed semi-finished electro-mechanical lens damage. In this case, the coma, or the dispersion of a full-field electric field-refractive matrix, The centering, partial field of view electrical action refraction matrix is a combination of gross damage 'and then surfaced into the correct lens required. In some embodiments, the 'variable power field of action is located throughout the lens, and as The fixed sphere power on the entire surface of the lens is adjusted to suit the needs of your vision for myopia [in other embodiments 84166 ' 38 - 1269091, § to establish a sphere of peripheral light in order to reduce distortion and deviation In the case of the power effect, the variable power field can be adjusted over the entire lens when a fixed sphere power changes. In some of the above specific embodiments, the distance light..., 疋, '' The multi-focus finished lens is damaged or multi-focus continuous optical lens is corrected. The electro-optical optical layer is mainly used to correct the working distance focusing. It should be noted that this is not always the case. In some cases, a single-view, multi-focus finished optical lens, or a multi-focus continuous optical lens that is only for distance sphere power can be used, and the myopic working power and astigmatism can be corrected via an electroactive refractive matrix, or using a single vision or Multi-focus optical lens to correct only astigmatism, and correct the spherical power and myopic working power via the electro-active layer. Moreover, it is possible to use piano, single-view, multi-focus finished optical lens, or continuous multi-focus optical lens. And correcting the distance sphere and astigmatism through the electrical action layer. Emphasis on 稜鏡 analysis, sphere or non-circular power, and total distance power required, intermediate range power required and near-point power required The power correction required by the invention can be achieved by any number of add power components. These include the use of single vision, or finished multi-focus optical lenses to provide all distance sphere power requirements, some distance sphere power Need, all astigmatism power requires some astigmatism power, all light power needs, some light power needs When timely or any combination thereof and electrically active layer will be set to provide a total focusing needs of people. It has been discovered that before or after final fabrication, the electroactive refractive matrix can be manipulated by his or her electro-acting lens to allow for the use of suitable optically similar correction techniques to maximize vision. This is done by allowing the patient or want to wear the user 84166 -39-1269091 to 'see through the electric lens or some lenses, and manually adjust them, or through a specially designed automatic refractor, can measure the tradition almost immediately / or non-conventional refractive error, and any remaining refractive errors that correct spheres, astigmatism, deviations, etc. This technique allows the wearer to achieve 20/100 or better vision in many situations. Furthermore, it is emphasized that in a particular embodiment, a Fresnel power lens layer is used in conjunction with a single or multi-focus or multi-focus lens rupture or optical, and electrical layer. For example, the Freyna layer is used to provide spherical power, thereby reducing lens thickness, single vision optical lens to correct astigmatism, and electrical 甩 folding matrix to correct intermediate and close focus needs. As mentioned above, in another embodiment, a diffractive optic is used in conjunction with a single view photon lens and an electroactive layer. In this method, diffractive optics that provide additional focus correction can further reduce the need for power, circuitry, and thickness of the active layer. Furthermore, any combination of two or more of the following can be used in an additional manner to provide the desired total increase in power required for human glasses to correct the power. These are a Freyna layer, a conventional or non-traditional single or multi-focus optical lens, a diffractive optical layer, and an electroactive refractive matrix or layer. In addition, it can add the shape and/or effect of the diffraction or Fresnel layer to the electroactive substance via an etching process, thus establishing a non-mixed or hybrid electro-optical optic having a diffractive Fresnel element. Moreover, an electro-acting lens can be used to establish not only the conventional lens power but also the power of the pupil. Moreover, it has been found that the use of an approximately 22 mm or 35 mm diameter schematic centering P-field field of view special electro-acting lens design, or an adjustable dispersion hybrid function. The special design of the P-Curve field is approximately 3 mm in diameter to reduce the need for the circuit to be 84166 -40-1269091, battery life, and battery size to reduce manufacturing costs and improve the optical transparency of the final electro-optical lens. In an innovative embodiment, the discrete portion of the field of view special electroactive lens is placed such that the optical center of the field of view is approximately 5 mm below the optical center of the single vision lens while having a near vision distance dispersed by the nose or temple The partial field of view is applied to meet the pupil distance from the correct myopia to the middle range of the patient. It should be noted that this design method is not limited to a circular design, but may in fact be any shape to allow the visual field area of the appropriate electrical function required for visual needs. For example, the design can be elliptical, rectangular, square, octagonal, partially curved, and the like. It is important that the blended partial field of view special design, or the blended full field of view design, be placed correctly, where these fields of view design have the ability to achieve a partial field of view, as well as a non-mixed full field of view that also achieves partial field of view capability. design. Furthermore, it has been found that in many cases (but not all) the electro-mechanical refractive matrix is used with a non-uniform thickness. That is, the metal is not parallel to the conductive surrounding layer and the gel polymer thickness is varied to establish a converging or dispersed lens shape. This non-uniform thickness electro-mechanical refraction matrix can be used in a non-mixed embodiment or a hybrid mode with a single or multi-focus optical lens. This provides a wide variety of adjustable lenses via the combination of these fixed and electrically adjustable lenses: =. In some of the innovations specific::: Two single interconnected refraction matrix is the use of non-parallel ends to establish electrical examples, (: two non-uniform thickness. However, in most of the innovation implementation ... one is not all) The multi-grid electro-active structure uses a parallel structure to establish a uniform thickness of the electro-active structure. 84166 -41- 1269091 . To illustrate this, a convergent single vision optical lens is coupled to the converging electro-active lens ' to create a hybrid lens assembly. The electric dust can increase, the salt V refractive index, which is due to the use of the electro-acting lens material. The electric: the upward adjustment to reduce the refractive index will change the final lens assembly optical focus... such as giving less + power, as shown in Table 1. The first column shows the different combinations of fixed and active lens power. If the applied voltage is adjusted upwards to learn the refractive index of the lens, the final hybrid lens assembly luminosity: as shown in Table 2, the change in the fixed and electric action lens power is not changed. It should be noted that in this particular embodiment of the invention, only early-applied voltage differences are required in the active layer.
表1 折射率變化 --- 最後混合 透鏡組件 光焦度 較少+ 較多+ 較多- 較少- S. V.或 M. S. V.或 M. F. 光學透鏡 (距離視覺) 電作用 透鏡 光焦度 + 電壓變化 ----〜 + 一 一 折射率 84166 變化 最後混合 透鏡組件 光焦度 較多+ -42- 1269091Table 1 Refractive Index Variation --- The last hybrid lens assembly has less power + more + more - less - SV or MSV or MF optical lens (distance vision) Electro-acting lens power + voltage change --- -~ + One-fold refractive index 84166 change The final hybrid lens assembly has more power + -42- 1269091
此一混合組件的可能製程是如下述。在一範_中, 用聚合物谬化層可以是注入成·、鑄造、蓋印、機器製造、 金鋼車削、及/或磨亮成一純光學透鏡形狀。薄金屬層是 透過例如滅射或真空沈積而在注入成型、或料聚合= 膠層的兩端沉積。在另一具體實施例中,沉積的薄金屬層 是放置在光學透鏡的兩端及在注入成型、或鏵造電作用物 質層的另一端。一傳導層可不需要,但是如果它是,它亦 可以是在金屬層上沉積或濺射的真空。 不像近視光焦度片段於不同多聚焦設計而不同放置的 傳統雙聚焦、多聚焦或串級透鏡,本發明是始終放置在— 普通的位置。對於不像由值# 诼由傳統方法所使用的不同靜電區域 而言,其中眼睛移動與頭部傾斜是使用此區域或一些區 域’本發明允許您直視前方或微向上或向下且整個電作 用部份或全視場是可調整,以修正必要的近視距離。此可 減少眼睛疲乏與頭部與眼睛運動。此外,當您需要住視遠 距離時’可調整的電作用折射矩陣可調整到所需的正確光 :度’以清楚看見明顯物體Q在大部份情況下,此將造成 电作用可調整近視距離場變成鋼琴光焦度,如此可將混合 用透鏡轉換或調整到_距離視覺修正透鏡、或低光 ‘一夕聚焦串級透鏡,以修正距離光焦度。然而,此不是 始終的情況。 在某些情況’減少光學單視透鏡的厚度是有利的。例 84166 •43- 1269091 如’一 +透鏡的中本戶 、子度、或一-透鏡的邊緣厚度可經由在 包作用調整層中的一些適當距離光焦度補償而減少。此可 ^ /王硯场或多半全視場混合電作用眼鏡透鏡、或在 -非混合電作用眼鏡透鏡的所有情況。 再者’強調的是可調整的電作用折射矩陣不必位在一限 制的區域’但是可包含整個單視或多聚焦 ^十麼大小區域或形狀是任—需要的。電作用折射矩陣㈣ 確整個大小'形狀、與位置是只受到效率與美學的壓制。 ^發現到且是本發明的—部份,透過單視或多聚焦透鏡 毛壞或光學的適當前面凸狀與後面凹曲線可進—步減少 本發=所而的電子複雜度。經由適當選擇單視或多聚焦透 兄毛裏或光予的則面凸狀曲線,可減少激勵電作用層所意 連接電極的數量。在—些具體實施例,當整個電作用場區 域透過-設定量光焦度調整時,只有兩個電極是需要的。 ,此發生是由於電作用物質的折射率變化,其會建立不同 =前面、背面、或中央電作用層,此因電作用層的放 ^而疋。如此’母層的前面與後面曲線的適當彎曲關係會 影響電作角混合或非混合透鏡的需要光焦度調整。在多數 '但是不所幻情況,尤其是不使用一繞射或佛瑞奈元件的 &些混合設計,重要的是電作㈣射矩陣是沒有平行於單 視或多聚焦半成品毛壞、或連接的單視或多聚焦成品透鏡 一、匕岫面與後面曲線。有關此的一例外是使用多格 結構的,混合設計, 應強調一具體實|例是使用小於—全視場方法的一混 84166 1269091 合電作用透鏡、及最小的兩個電極。其他具體實施例是使 用一夕格柵電作用折射矩陣方法來建立電作用折射矩 陣,在此情況,多電極與電路是需要的。當使用多格栅電 作用結構時,發現到對於電激勵可接受(多半是不可見) 的格柵邊界而吕,需要產生折射率差的〇到0.02單位相鄰 格柵之間的一折射率差。此是因美學的要求而定,折射率 差的範圍是從折射率差的〇· 〇丨到〇· 〇5單位,但是在多數創 新具體實施例中,此差是經由控制器而限制到在相鄰區域 之間折射率差的0 · 〇 2或〇 · 〇 3單位的最大值。 使用八有例如單互接結構及/或多格栅結構的不同電 作用結構的-或多個電作用層是亦可能的,只要啟動便會 建立想要的附加端聚焦光焦度,該等一或多個電作用層便 會依需要反應。例如,、經由前面(電作用層、與戴用者的 眼睛有關的遠側),只有—修正—全視場的距離光焦度, 且使用後面(即是近側)電作用折射矩陣來聚焦近視範 圍,以使用由後面層產生的一部分視場特殊方法。很顯缺 使用此多重電作用折射矩陣方法將允許增加彈性,而將声 保持非常薄’且減少每-個別層的複雜度。此外,此方法 允:個別層按順序排列’而可每此將他們所有啟動,以產 生—同時可變附加聚焦光焦度效果。此 時間消逝序列產生,如此當您從遠看到近時; =圍聚焦需要與近視範圍聚焦需要,然後當從近看到遠時 便會產生相反效果。 夕重電作用折射矩陣方法亦允許較快的電作用聚焦光 84166 -45 - 1269091 焦度反應時間。此發4: 4 赞生疋由於—些因素的組合,一 作用層透鏡的I |所需的減少電作用物質厚度。而且: 因為一多重電作用折射# , 圻射矩陣允許將一主要電作用折射矩 陣的複雜度分成兩或多個較不複雜個別層,其可要求比主 要電作用層更少的個別層。 八&主 下列描述電作用透鏡的物質與結構、它的電線電路、電 源、電開關技術、声距具库 距離測定。、'、距長度調整所需的軟體、與物體距離 圖1 9疋電作用折射矩陣J 9〇〇的具體實施例透視圖。 接到一電作用物質 貝910的兩邊是金屬層1 920。連接到每個 金屬層1 920的相對端是傳導層193〇。 上述的電作用折射矩陣是-多層結構,Μ由當作電作 用物質的-聚合物凝膠或液晶組成、然而,在某些創新情 况’-聚合物凝踢電作用折射矩陣與一液晶電作用折射矩 =是使用在相同透鏡。例如:液晶層可用來建立-電子色 ^或太陽眼鏡效果,且聚合物凝膠層可用來增加或減少 光焦度。聚合物凝膠與液晶具有的性質是它的光學折射率 可透過-應用的電壓來改變。電作用物質是透過在任一端 亡的兩個接近透明的金屬層覆蓋,而且-傳導層是沉積在 金屬層以便將良好的電連接提供給這些層。當一電 壓在兩個傳導層應用時,一電場便會在他們及經由電作用 物質之間建立,以改變折射率。在大部份情況下,液晶與 —某一 if况,凝膠是包裝在從矽樹脂、聚甲基丙烯酸酯、 本乙稀、比哈氨酸'陶竟、玻璃、尼龍、聚醋薄膜及其他 84166 -46- 1269091 選擇物質的閉封裝。 圖20疋具有多格柵結構的—電作用透鏡2〇〇〇具體實施 例透視圖。透鏡2000包括一電作用物質2〇1〇,在一些具體 實施例中’其可定義複數個像素,且每個可透過具有電隔 離性質的物質分離。因此,電作用物質2〇1〇可定義許多相 鄰區域,每個區域包含一或多個像素。 連接到電作用物質2010的一端是一金屬層2〇2〇,該金屬 層2020具有金屬電極2030的一格柵陣列,其中金屬電極 2030是由具有電隔離性質的物質(未在圖顯示)分離。連接 到電作用物質201 0的相對端(未在圖顯示)是一對稱相同 的金屬層2020。因此,每個電作用像素是符合一對電極 2030’以定義一格柵元件對。 連接到金屬層2020是一傳導層2〇4〇,該傳導層2〇4〇具有 複數個互接介層2050,且每個是由具有電隔離性質的物質 (未在圖顯不)分離。每個互接介層2〇5〇是將一格柵元件對 電耦合到一電源供應器及/或控制器。在另一具體實施例 中 些及/或所有互接介層2050是將超過一格栅元件連 接到一電源供應及/或控制器。 應注意’在一些具體實施例中,金屬層2020可被移除。 在其他具體實施例中,金屬層2020是由一對準層取代。 在某些創新具體實施例中,前(遠側)表面、中間表面、 及/或老表面是由包含一傳統光致變色元件的物質製成。 此光致變色元件可以或不能與結合部份電作用透鏡的電 子產生色彩特徵一起使用。在使用它的情況,它能以一特 84166 -47- 1269091 殊方式來k供一附加多势。缺> 了加色心然而,在許多創新具體實施例 中匕強調光致變色物質可單獨與電作用透鏡使用,而無 需-電子色彩元件。光致變色物質是經由層混合而包括在 -電作用透鏡層,或稍後加到電作用折射矩陣,或在透鏡 的前面或背面當作—部分外部層增加。此外,本發明的電 作用透鏡可以是映塗層前面、#面,或兩者可依需要使用 一抗反射塗料來塗層。 此結構稱為-子組件,且它可電控制來建立一棱鏡能 力球體月匕力、散光能力修正、不圓修正、或佩帶者的偏 差修正。此外,子組件可被控制到佛瑞奈(Fresnel 1)或繞 射表面的模仿子組件。在一具體實施例中,如果需要超過 一類型修正,兩或多個子組件可透過電隔離層並置及分 離。隔離層可包含矽樹脂氧化物。纟另一具體實施例方 面,相同的子組件是用來建立多重能力修正。剛討論的兩 子組件具體實施例的任一者可由兩個不同結構製成。此第 結構的具體實施例允許每一層、電作用層、導線 '與金 屬是相鄰,即是,連續的物質層,如此便形成單一互接結 構。第二結構具體實施例(如圖20所示)是以一格栅或陣列 的^/式來使用金屬層,且每個子陣列區域是從從它的鄰居 電隔離。在顯示一多格栅電作用結構的此具體實施例中, 傳導層可被蝕刻,以便將分離電接觸或一些電極提供給每 個子陣列或格柵元件。在以方式方面,分離與明確電麼可 在層的每個格柵元件對上應用,以便在電作用物質層建立 不同的折射率區域。包括層厚度、折射率、電壓、想要的 84166 -48- 1269091 電作用物質:層結構、層或元件的數量、層或元件的配置、 每層及/或7G件的彎曲的設計細節是留給光學設計者決 定。 、 應注意,多格栅電作用έ士谨志话 电邗用^構或早一互接電作用結構可當 作-部分視場或-全視場使用。然而,# —部分視場特殊 電作用折射㈣使料,在大部份情況下,具有與部分視 場特殊電作用非激勵層(結構層)相同折射率的一電作用 物質是侧面相鄰到部分視場特殊電作用區域,及透過一隔 難物而從部分視場特殊電作用區域分離。此可達成,以瘦 由保持整個電作用折射矩陣的外觀#作在非激勵狀態的 -者而提高電作用透鏡的掩飾缺點本質。而且,它強調在 某些具體實施例中’、结構層是—非電作用物質。 聚合物物質可以是廣泛吝;)¾ Μ取人u 貝 疋飧之夕樣的聚合物,其中電作用成份 是公式化重量的至少30%。此電作用聚合物物質是眾所周 知,且商業化使用。此物質的範例包括液晶$合物,例如 多元醋、聚趟、聚洗氨、五氰基聯苯基(⑽)及其他。聚 合物凝膠亦包含一熱固性矩陣物質,以提高凝膠的處理 性’改善它黏著到封裝傳導層,及改善凝膠的光學清澈透 明。經由範例’只有此矩陣可以是一交鍵的丙烯、甲基炳 稀、聚亞安醋、與一雙作用或多重作用丙稀、甲基柄稀或 乙烯基衍生物交鍵的乙烯基聚合物。 凝膠層的厚度會是例如在大約3微米到大約1〇〇微米之 間,但是可以是如1公爱的厚纟,或如另一範例所示,在 大約4微米到大約20微米之間。凝膠層具有例如大約每吋 84166 -49- 1269091 ⑽判大約每物㈣的係數;或如另—範例所示每时 2 0 0 到 6 0 0 镑0 金屬 jg g , 乎的厚产且= 約1『微米到大約10、 未的居度,且如另—範例所示,從大約〇 8 χ 1〇 到大約1· 2 χ1(Γ3微米。僂莫厗 未 傳V層/、有例如〇· 〇5微米 0· 2微米的厚度;且备Η μ ^ 且如另一靶例所示’從大約0.8微米到大 約0.12微米,·且如仍然另—範例所示,大約01微米。 金屬層是用來在傳導層與電作用物質之間提供良好的 接觸。熟諳此技者可確認可使用的適當金屬物質。例如, 您可使用金或銀。 在-具體實施例中,電作用物f的折射率可例如在大約 1.2單位與大約u單位之間改變,且如另一範例所示,在 大約1 · 45早位金·大 平1 ”大約1·75早位之間,且具每伏特至少〇〇2 單位折射率的變化。與電麼的折射率變化、電作用物質的 實際折射率、及與矩陣物質的相容性將可決定將電作用聚 合物混合到矩率的百分比’但是應該會造成在大約2.5伏 特的基本電壓上不低於每伏特u2單位的最後混合折射 率變化,但是不大於25伏特。 如使用混合設計的先前創新具體實施例討論,電作用折 射矩陣組件的部分是連接到使用適當黏性物或接合技術 的傳統光學透豸’其1可見透明光。此接合組件可經由釋 放具有電作用折射矩陣預先組件的紙張、或薄膜,且連接 準備接合到傳統光學透鏡。它可產生及運用在原位置等待 光學透鏡表面。而且,它可應用到一透鏡晶圓的表面預先 應用,其然後黏合到等待光學透鏡。它可運用到一半成品 84166 -50- 1269091 透鏡毛壞,且稍後會以適當大小、形狀、以及適當總能力 需要而表面處理或鑲邊。最後,它可使用表面鑄造技術而 鑄造在一預先成形的光學透鏡上。此可建立本發明的電修 改能力。電作用折射矩陣會佔用整個透鏡區域、或只使它 的一部分。 電作用層的折射率可只於需要聚焦的區域正確改變。例 如’在述的混合部分視場設計方面,部分視場區域可在 此區域中激勵及改變。因此,在此具體實施例中,折射率 '只在透鏡的一特殊部分區域中改變。在另一具體實施例 中’一混合全視場設計的具體實施例,折射率是在整個表 面上改變。同樣地’折射率是在非混合設計的整個區域上 改變。如前述,發現到為了要維持一可接受光學掩飾缺點 外觀’在電作用光學相鄰區域之間的折射率差應該侷限於 折射率差的最大0.02單位到〇〇5單位,且最好是〇〇2單位 到0· 03單位。 在本發明的籌劃中,在某些情況,使用者將可使用一部 为視場’然後想要將電作用折射矩陣改變成一全視場。在 此情況,具體實施例可於一全視場具體實施例來結構化設 计,然而,控制器可程式化,以允許將需要的能力從一全 視場切換成一部分視場,且重新返回或反之亦然。 為了要建立激勵電作用透鏡所需的電場,電壓是傳遞給 光學組件。此可透過小的直徑電線捆來提供,且包含在鏡 框的邊緣。電線是從下述的源到一電作用護目鏡控制器、 及/或一或多個控制器元件、及到環繞每個眼鏡透鏡的框 84166 -51 - 1269091 架邊緣,其中在半導線製造中使用的最新發展電線接合技 術是將電線連接到在光學組件中的每個格栅元件^在表示 每個傳導層一接線的單一電線互接結構具體實施例中,每 個眼鏡透鏡只需要-電壓,且只有兩個電線對於每個透尹 是需要的。電壓將運用到一傳導層,而在凝踢層的相對= 上的它夥伴是保持地電位。在另一具體實施例中,一交流 (AC)電Μ是在相對的傳導層上應用。這兩個連接是容易: 或接近每個眼鏡透鏡的框架邊緣上達成。 .如果使用電Μ的格柵陣列,在陣列的每個格栅子區域是 具有明確的電磨’且導線是將在框架的每個電線引線連接 到在透鏡上的格栅元件。例如氧化銦、氧㈣1㈣^ 化物mo)的光學透明傳導物質可用來形成電作用組件的 傳導層,且用來將在框羊邊缝的 莱輕的電線連接到在電作用透鏡 :^格拇元件。此方法可使用,而不管電作用區域是否 佔用整個透鏡區域、或只佔用它的一部分。 用以在多格栅陣列設計中達成像素:刀其。 建立電作用物質的個別小體積, 何疋 動電極,以便在小體積上建積 -技術是使用在基板石版印 二成像素的另 用以建立像素的不同電場 芒I蔣古隹^ 疋田圖案化電極完全定義。 右要將7b焦度提供給光學組件 括在今舛。田峰 則如電池的一電源是包 撐嗖_ |4 i 4 疋恨小,·因此,框架的邊 撐汉。十要此允許插入及抽出題 此先焦度的小體積電 圖案化電極。如此,電作用物質可^?/導或金屬層的 用以读务各3在—相鄰體積’且 84166 -52- 1269091 池。電池是經由亦包含在框架邊撐的多工連接而連接到電 線捆在另-具體實施例方面,當電池的充電消耗時,共 形的薄膜電池可使用—黏劑連接到框架邊撐的表面,以允 許他們被移除及取代。_選擇性是將具配件的仰接器提 供給框架安裝的電池,以便當不使用時,允許將龐大或共 形薄膜電池充電。 另此源疋亦可能的,藉使一小燃料單元可包括在鏡 框,以提供比電池較大的能量儲存。燃料單元可使用將燃 料注入在鏡框的儲存槽的小燃料罐而重新充電。 發見到、,、二由使用一創新混合多格栅結構方法而將光焦 f需要減少是可能的,其在大部份情況下(但不是全部) 疋包a部分視場特殊區域。應指出,當您可使用一混合 部分視場多格栅結構時,-混合全視場多格栅結構便亦可 使用。 在例如偏差的非傳統折射誤差可修正的另一創新方法 中 追蹤系統是内建在例如上述的護目鏡,且包裝在電 =用護目鏡的適當啟動軟體及程控電作用護目鏡控制 器、及/或一或多個控制器元件可提供。此創新具體實施 例可、、二由追蹤人眼睛而追蹤人的視線,且將必需的電能量 應用到可看穿電作用透鏡的特殊區域。換句話說,當眼睛 移動時’一目標電能量區域可在對應直接經由電作用透鏡 、視線的透鏡上移動。此將顯露數個不同透鏡設計。例 如,使用者具有一固$光焦度透鏡、-電作用透鏡、或傳 統(球體圓筒、與稜鏡)折射誤差修正的兩類型混合。在 84166 -53- 1269091 此耗射,非傳統折射誤差將可經由_多格柵結構的電作 用折射矩陣來修正,藉此#眼睛移料,電作料鏡的對 應激勘區域將與眼睛移動。換句耗,#視料透鏡相交 時,對應眼睛移動的眼睛視線在透鏡上的移動是與眼 運動有關。 在上述創新的範例中,它強調合併到混合電作用透鏡的 多㈣電作用結構可以是—部分視場、或—全視場設計。 它強調透過使用此創新具體實施例,您可經由只將直接 看穿的限制區域供電而可減少電需要。因此,供電的較小 區域會小於在任何時間於—特定配鏡所消耗的光焦度。在 大部份(但不是所有)情況下,非直接觀察區域將不會供電 或激勵;因此,可修正傳統折射誤差,且可獲得修正例如 近視、遠視、散光、與老花眼的1比2〇/2〇視覺修正。在此 創新具體實施例中,對準與追蹤的區域可儘可能修正非傳 統折射誤差、不規則散光、偏差、與限睛表面、或層不規 則。在其他創新具體實施例中,對準與追蹤區域亦可修正 一些傳統誤差。在數個前述具體實施例中,此對準與追蹤 區域可經由位在護目鏡的測距器以追蹤眼睛運動而使用 控制器、及/或一或多個控制器元件的辅助來自動找到位 置且眼睛追蹤系統是位在護目鏡、或一追縱系統及辦距 器系統。 雖然只有一部分電作用區域是使用在某些設計,但是整 個表面尺覆蓋電作用物質,以便在非激勵狀態避免使用者 在透鏡中看見一圓形線條。在一些創新的具體實施例,一 84166 -54- 1269091 透明隔離物是用來保存侷限在激勵中央區域的電激勳,且 非激勵的週邊電作用物質是用來保存作用區域不可見的 邊緣。 在另一具體實施例中,薄膜單元陣列是連接到框架的表 面,且電壓是透過使用日光或周圍室内照明的電光效應而 供應給電線與光學格栅。在一創新具體實施例中,利用太 陽能的陣列是用於主光焦度,且前述包括的小電池是當作 備用光焦度。當光焦度不需要時,電池可在此具體實施例 '的這些時間期間從太陽電池充電。另一是允許此設計有關 電池的AC轉接器與附件。 為了要將一可變焦距長度提供給使用者,電作用透鏡是 可轉變。然而’提供至少兩個開關位置,更多可依需要提 供。在最簡單的具體實施例中,電作用透鏡是啟動或關 閉。在關閉位置’沒有電流會流經電線,沒有電壓會運用 到格柵組件’且只使用固定透鏡光焦度β此將會是使用者 需要一遠場距離修正的情況,例如,當然是假設混合電作 用透鏡是使用單視或多聚焦透鏡毛壞、或將距離視覺修正 為它結構的光學。若要提供有關閱讀的接視修正,開關是 會啟動,以將一預定電壓或電壓陣列提供給透鏡,以便在 電作用組件中建立-正增加光焦度。如果需要對#間透鏡 場修正’-第三開關位置可包括。開關可以是微處理器控 制、或使用者手動控制。事實上’包括數個額外位置。在 另—具體實施例♦,開關是類比而不是數位,而且可透過 調整非常像在收音機上的音量控制的旋紐或槓桿來提供 84166 -55- 1269091 透鏡焦距長度的連續變化。 它可以是沒有固定透鏡光焦度是一部分設計的情況,而 且所有視覺修正可經由電作用透鏡完成。在此具體實施例 中,如果使用者需要一遠視與近視修正,一電壓或電壓陣 列疋始終供應給透鏡。如果只有使用者需要距離修正或閱 項適應,當需要修正時,電作用透鏡將會啟動,且當不需 要修正時,便會關閉。然而,此不是始終的情況。在因透 鏡没計而定的某些具體實施例中,關閉或降低電壓將會自 動增加遠視及/或近視區域的光焦度。 在一具體實施例中,開關本身是位在眼鏡鏡框,且連接 到一控制器’例如包含在鏡框的一應用特殊積體電路。此 控制是透過調整從電源供應的電壓而回應開關的不同 位置。同樣地,此控制器可構成上述的多工器,且將各種 不同電壓分配給連接電線。控制器亦可以是一薄膜形式的 叹汁’且可沿著框架表面而類似電池或太陽電池安裝。 在一具體實施例中,此控制器、及/或一或多個控制器 疋件是使用使用者視覺修正需求的知識來製造及/或程式 化’而且允許使用者在為他或她個別的視覺需求而修正的 不同降列預定電壓之間容易轉變。此電作用護目鏡控制 器、及/或一或多個控制器元件可容易由視覺保護專家或 技師移除、及/或程式化,且當使用者的視覺修正需求改 變時,可使用一新的”配鏡”控制器來取代及重新程控。 以控制器為主之開關的一觀點是它可在小於1微秒來改 變運用到電作用透鏡的電壓。如果電作用折射矩陣是從一 84166 -56- 1269091 快速轉變你_杂 物貝I造,透鏡的焦距長度的快速變化會破壞戴 用者的視譽。+ 在不同焦距長度之間的溫和轉變是想要的。 如本發明的額外特徵,一 ”落後時間,,可程式化到慢轉變的 控制器。相反地,一”導前時間”可程式化到加速轉變的控 制器。同樣地,轉變可透過一預測演算法來預測。 無論如何,轉變的時間常數可設定,所以它是成比例, 且回應適應戴用者視覺所需的折射變化。例如,聚焦光焦 度的小變化可快速轉變;而例如戴用者可快速將他注視從 、遠物體移動以讀取列印物質的聚焦光焦度較大變化可設 定成在一較長時間周期來發生,可以是10-100微秒。此時 間常數可根據戴用者的舒適度來調整。 無論如何,對於眼鏡本身的轉變是不需要。在另一具體 貝施例中,開關是在一分開模組,可在使用者衣服的口 袋,且可用手激勵。此開關是使用細電線或光纖而連接到 眼鏡。開關的另一版本包含一小微波或射頻短程發射器, 以將有關開關信號位置傳送給在鏡框上安裝的微小接收 斋天線。在這些開關建構的兩者中,使用者在他或她眼鏡 的焦距長度變化上具有直接而非連續的控制。 在各種不同具體實施例中,開關是由例如位在框架中、 框架上、透鏡中、及/或在眼鏡透鏡上的一測距裝置的觀 察偵測器來自動控制,且向前指向感知的物體。 圖21是電作用護目鏡2100的另一創新具體實施例透視 圖。在此說明的範例中,框架2110包含電作用透鏡212〇, 其是透過連接電線2130而連接到控制器214〇(積體電路) 84166 -57- 1269091 與電源2150。一測距器發射器21 60是連接到一電作用透鏡 2120 ’且一測距器接收器2170是連接到另一電作用透鏡 2120。在各種不同另一具體實施例中,發射器2160及/或 接收器2170是連接到附著在透鏡2120嵌入、及/或在框架 211 0嵌入的框架211 〇之任何電作用透鏡212 0。此外,測距 器發射器2160及/或接收器2170可透過控制器2140及/或 一分離的控制器(未在圖顯示)控制。同樣地,透過接收器 2170接收的信號是由控制器2140及/或一分離控制器(未 在圖顯示)處理。 無論如何,此測距器是一主動搜尋器,且可使用如下列 的各種不同來源:雷射、光發射二極體、射頻波、微波、 或超聲波脈衝,以找出物體,及決定它的距離。在一具體 實施例中,一垂直洞口表面發射雷射(VCSEL)是當作光發 射器使用。這些裝置的小尺寸與平坦輪廓可使他們於此應 用具吸引力。在另一具體實施例方面,一有機光發射二極 體、或OLED疋當作測距器的光源使用。此裝置的優點是 OLEDs時常以大概透明的方式來製造。因此,既然它是合 併到透鏡或框架而未吸引人的注意,所以如果掩飾缺點是 主要考慮,一 0LED會是一較佳測距器設計。 接收物體反射信號的適當感應器是放置在鏡框前面的 -或多個位置上’且連接到一小控制器來計算範圍。在另 -具體實施例中,單一裝置可製造,以便在雙重模式當作 發射器與偵測器,且連接到範圍計算電腦。此範圍是經由 一電線或光纖而傳送給位在鏡框的開關控制器、或在本身 84166 -58- 1269091 攜帶的一無線遙控,及合讲氺 + —。 、、疋物體距離的正確開關設 疋 〜情況,範圍控制器㈣關控制器可一起整合。 發生。例如,當透鏡將視覺修正從遠距離修正轉變成中間 距離或近距離修正時,不需要改變戴用者實際所需的距離 修正。 應了解’在某些情況,當戴用者想要從聚焦的-項目口移 到另一聚焦項目時’測距器裝置料電作用透鏡焦距長度 轉變具有困難度。例如,在透鏡將—視覺修正轉變成另一 視覺修正之前,測距器發射器與測距器接收器需要透鏡戴 用者的額外頭部運動。或者,當透鏡從戴用者實際需要視 覺修正轉變成不是適當的視覺修正時,”錯誤轉變,便會 因此,在另一具體實施例中,測距器發射器與測距器接 收器可選擇性覆蓋額外透鏡,以控制由發射器所產生的傳 輸光束寬度,及由接收器可接受的接受圓錐體。 圖44a是根據本發明另一具體實施例的一整合式電源、 控制器與測距器透視圖。如圖44a的顯示,系統4400包括 測距器裝置4420,其是耦合到控制器4440,且接著耦合到 電源4460。圖44b是根據本發明的具體實施例而沿著z — z, 的圖44a的系統440 0側視圖。如圖44b所示,測距器裝置 4420包含測距器發射器4424與測距器接收器4428。在此具 體實施例中,測距器發射器4424與測距器接收器4428分別 是發射器與接收器二極體,其可以是IR雷射二極體、led 或其他非可見輻射源的形式。在此說明的具體實施例中, 發射器44 24的選擇是包含傳輸透鏡4426,以控制由發射器 84166 -59- 1269091 442 4產生的傳輸光束寬度。同樣地,接收器442 8可選擇性 包含接收透鏡4430,以控制由接收器4428接受的接受圓錐 體。應了解,只要光束通過一接收透鏡、一孔口、或包含 接收器4428的其他裝置,接收器4428的接受區域、或圓錐 體便包括到達測距器裝置的光束可到達接收器4428的立 體角。一保護窗可從使用者環境來保護測距器裝置4420 的内部元件,且更明確而言,發射器與接收器,而不會影 響到内部元件的功能。 '圖45是根據本發明具體實施例的圖44b的測距器發射器 4424側視圖。如圖45所示,傳輸透鏡4426具有一選擇的發 散光焦度,以便於一特定工作距離L將發射器4424產生的 光束B分成一特定圖案寬度D。因此,發射器4424產生的光 束寬度可於用以讀取的特定工作距離與中間視覺最佳 化,以減少額外頭部運動的需要,而透過不使光束過大而 避免錯誤轉變。 圖46是根據本發明具體實施例的圖44b的測距器接收器 4428側視圖。如圖46所示,接收器4428是選擇性包含接收 透鏡4430,其具有在它中形成的切口 4432。具有切口 4432 的接收透鏡4430使用可將接收的圖案減少到一實質矩形 場,而不是可偵測接收透鏡4430是否不適合接收器4428 的完全觀察。在此具體實施例中,除了通過切口 443 2的這 些之外,接收透鏡4430是由例如不透明的物質構成,以避 免接收器4428接收任何反射光束。 應了解有傳輸透鏡442 6包含的上述具體實施例發射器 84166 -60- 1269091 442 4和接收透鏡443 0包含接收器4428只是說明的,而且操 作發射器4424傳輸光束、或接收器4428接受圓錐體的其他 具體實施例可用來進一步減少錯誤轉變,或改善光學系統 4400的效率。例如,限制接收器的接受圓錐體或接收圖案 的其他方法包括使用其他幾何形狀孔口、可變的窗板、透 鏡、或限制光束通過到接收器4428的裝置。亦應了解在發 射器與接收器上放置透鏡是選擇性,且上述透鏡的任何組 合可根據本發明提供。例如,在至少進一步具體實施例 •中’用來選擇性包含接收器4428的接收透鏡4430是選擇性 的。同樣地,在至少進一步具體實施例方面,用來選擇性 包含發射器4424的傳輸透鏡442 6是選擇性的。在上述具體 實施例中,額外頭部運動的需要、與錯誤轉變的發生是可 透過增加測距器發射器產生的傳輸光束的寬度而減少;或 者’控制反射光束如何傳送給測距器接收器。 在另一具體實施例中,開關可透過使用者頭部的小而迅 速運動而控制。此可透過包括另一觀察偵測器而達成,例 如在鏡框邊撐的一小很微迴旋儀、或微加速器表。頭部的 小而迅速搖動或扭轉將可觸發微迴旋儀、或微加速器表, 且使開關經由它允許的位置設定旋轉,用以將電作用透鏡 的焦點改變成想要的修正。例如,只要偵測到微迴旋儀、 或微加速器表的運動,控制器便可程式化,以將光焦度提 供給測距器裝置,所以觀察視場可由測距器裝置詢問,以 決定是否需要視覺修正變化。同樣地,在一預定間隔,或 未偵測到頭部運動的時間周期,測距器裝置便會關閉。此 84166 -61 - 1269091 外’在至少一具體實施例中’在偵測到運動及使用測距器 裝置,測距器裝置便會啟動。 在另一具體實施例,例如傾斜開關的另一觀察偵測器可 用來決定使用者的頭部是否以超過或低於表示某人向前 直視一段距離姿勢的一特定角而向下或向上傾斜。例如, 一說明的傾斜開關包括安裝在控制器的水銀開關,且該水 銀開關是關閉一電路,以便只有當病人以偏離水平的預定 角度向上或向下看時,可將電源提供給測距器、及/或控 制器。在至少一具體實施例中,當透鏡設計成可在無光焦 j狀態用於遠視修正時,而使用者的頭部以偏離水平的預 定角度向下或向上傾斜時,測距器裝置便可建構來操作及 將電作㈣鏡從遠視修正轉變成另—㈣(例如近視或中 間距離修正)。此外’透鏡是使用一額外需求,其中物體 是在轉變發生前’可於-些預料間周期在接近或中間距 離感測到。傾斜開關亦可用來設定—邏輯高位準,其 是與測距器設定的一·溫“ #丄 的邏輯位準在AND閘做邏輯運算(在正 邏軏)’以表示一物體是否在接近或中間距離。 圖47a-47c疋根據本發明具體實施 者的側視圖。力圖47a所示 :千系統戴用 從水平到-向上頭部傾斜予透兄系統的戴用者可 傾斜角I)來調整他的=)圖及從水平到向下頭部的 斜角度Ceq ^ _ 47b描述以向下頭部傾 向上頭部傾斜㈣:):他 具體實施例中,*戴用:的碩部向上傾斜的戴用者。在〜 84166 -戴用者的頭部從水平位置以大約5到15 -62- 1269091 度而從水平向上或向下移動 ... 時’傾斜開關是會關閉(且將 光焦度提供給測距器裝置、或 、 或控制器、或兩者),而日备 好是從水平位置大約ίο度。在冷 進一步具體實施例中,當 戴用者的頭部從水平位置以 大約15到30度而從水平向上 或向下水平移動時,傾斜開關便會關閉,而且最好是從水 平位置大約2〇度。 吏用傾斜開關的上述具體實施例可根據戴用者 的需要或似要而最佳化。例如,戴用者可在向上或向下的 •不同方向,而從關閉開關所需的水平位置選取具有偏差角 度。因此,關閉開關的向上傾斜角度是等於向下傾斜的角 度,或他們可彼此不同數個角度。此外,當戴用者以向下 的方向將他的頭部傾斜時;或者,只當戴用者以向上的方 向將他的頭部傾斜時,傾斜開關亦可透過提供只激勵測距 器(或將光焦度提供給測距器寰置、或控制器、或兩者)而 最佳化。既然每個人典型是將他們的頭部向下傾斜讀取, 所以此後者情況是不太可能的。 在另一具體實施例中,系統是使用一傾斜開關來決定戴 用者頭部的傾斜角度。向下或向上的傾斜角度是傳送給控 制态,以決定傾斜是否大於一預定角。因此,只要傾斜交 錯與傾斜開關有關的傾斜臨界值,控制器便可選擇性啟動 測距器裝置。同樣地,在進一步具體實施例中,一微迴旋 裝置或微加速器表能以一相似方式使用。例如,一微迴旋 裝置或微加速器表可產生一輸出,而使控制器可用來決定 戴用者頭部的位置:因此,可調整測距器裝置的光焦度。 84166 •63- 1269091 然而’另一具體實施例是使用一手動開關的微迴旋裝置 組合。在此具體實施例中,微迴旋裝置是用於多半閱讀與 低於180的視覺功能,如此可反應頭部的傾斜。因此,當 頭部傾斜時,微迴旋裝置便會將一信號傳送給控制器,以 表示頭部傾斜的程度,然後轉換成增加的倶焦光焦度,此 是因傾斜的嚴重程度而定。可能是遙控的手動開關是用於 不接受超過或等於180的某些視覺功能的微迴旋裝置,例 如在電腦上工作。 在仍然另一具體實施例方面,一測距器與一微迴旋裝置 是組合使用。微迴旋裝置是用於近視,及低於180的其他 視覺功能,且測距器是用於超過18()的觀察距離,而且是 例如4呎或更少的觀察距離。在進一步具體實施例中,一 測距器裝置能與一傾斜開關、微迴旋裝置、或微加速器表 結合使用,以決定電作用透鏡是否應該轉變。在這些具體 實施例中,控制器可使用例如傾斜開關、迴旋裝置或加速 器表的每個整合式元件的邏輯料’且額外需求是測距器 裝置必須在例如轉變發生之前獲得一新的觀察距離。 如另外用以調整電作用組件聚焦光焦度的手動開關或 測距器設計,另-具體實施例是使用眼晴追縱器來測量中 間曈孔距離及偵測觀察㈣。切4$焦在遠或近物體 時,而瞳孔收斂或發散,此距離便會改變。偵測來自二極 體的反射光的至少兩個光發射二極體與至少兩個相鄰光 感應器是放置在接近鼻樑的框架内。此系統可感測每個眼 睛的曈孔邊緣位置,及將此位置轉換成瞳孔間距離,以計 84166 •64- 1269091 算與使用者眼睛平面的物體距離。在某些具體實施例中, 三個或即使四個光發射二極體與光感應器是用來追蹤目艮 睛運動。 應了解,在進一步具體實施例中,在此描述用以減少錯 誤轉變及過度戴用者運動來開始轉變的各種不同任一機 構可依需要而以任何方式組合,以符合熟諳此技者與光學 透鏡系統戴用者的需要。因此,任一邏輯位準或轉變機構 可自訂,以適合特定使用者的特殊需要。 除了視覺修正之外,電作用折射矩陣亦可用來將電鍍銘 色形提供給一眼鏡透鏡。透過將一適當電壓應用到一適當 的凝膠聚合物或液晶層,一色彩或太陽眼鏡效果會添加給 透鏡,而改變經由透鏡的光傳輸。此減少的光強度會將 太陽眼鏡”效果提供給透鏡,以讓使用者對於室外環境亮 度有舒適的感覺。反應一應用電場而具高極化的液晶混合 與凝膠聚合物對於此應用是最吸引人的。 在一些創新具體實施例中,本發明可使用在溫度變化是 相S大,足以影響電作用層折射率的位置。然後,格栅組 牛的所有供應電壓的修正因素必須運用,以補償此影響。 安裝在透鏡及/或框架且連接到電源的一小熱阻體、熱電 偶、或其他溫度感應器會感測溫度變化。控制器可將這些 讀取值轉換成所需的電壓變化,以補償電作用物質的折射 率變化。 而,在某些具體實施例中,電子電路是實際内建在透 鏡表面,以增加電作用折射矩陣或層的溫度。此達成矸進 84166 -65- 1269091 步減少電作用層的折射率,如此可使透鏡光焦度變化最 大化。增加的溫度可隨著或不隨著電壓增加而使用,如此 可在經由折射率變化來控制及改變透鏡光焦度方面提供 額外彈性。當使用溫度時能夠測量是想要的,獲得回授及 控制已應用的溫度。 在個別電作用區域的部份或全視場格柵陣列的情況 :’許多導線是需要,以將來自控制器的特殊電麼多工到 每個格栅兀件。為了使這些互接的工程較容易,本發明是 我出在鏡框前面部分的控制器,例如,在鼻樑區域。因此, 位於邊撐的電源只透過經由邊#前面框架鉸鏈的兩條導 線而連接到控制器。將控制器連接到透鏡的導線是整個包 含在框架前面部分。 在本發明的-些具體實施射,眼鏡可具有一或兩個鏡 框邊撐,其-部分是可容易㈣。每個邊樓是由兩部分組 成:一較短部分,其是保持連接到鉸鏈與前面框架部分; 及一較長㈣’其是插入此部分。邊撐的未插入部份是每 個包含一電源(電池、燃料單元等),且可只移除及重新連 接到邊撐的固定部分。這些可移除邊撐可例如透過放置直 流充電的-可攜式交流充電單元、透過磁感應、或透過任 何其他一般充電方法來充電。在此方式,完全充電取代邊 撐疋連接到眼鏡,以提供透鏡與測距系統的連續長期激 勵。事實上’數個取代邊撐可由使用者放在口袋或錢包來 攜帶。 在許多情況’戴用者需要遠視、近視、及/或中視的球 84166 1269091 體修正。此允許完全互接格栅陣列透鏡的變化,其是使用 而要修正光學的球體對稱。在此情況,由電作用區域的同 〜環組成的一特殊幾何形格栅包含部分區域或全視場透 鏡。壤可以是圓形或例如橢圓的非圓形。此結構可用來實 質減^必須由具不同電壓導線連接的分開的所需電作用 區域數量’且明顯簡化互接電路。此設計可透過使用一混 合透鏡设计而允許修正散光。在此情況,傳統光學可提供 圓同形及/或散光修正,而且同心環電作用折射矩陣可提 供球體距離及/或近視修正。 此同心環、或超環面區域具體實施例在適應戴用者需要 的電作用聚焦允許有較大的彈性。因為圓形區域對稱,所 以許多更薄區域可製造,而不會增加配線與互接的複雜 度例如,從4〇〇〇平方像素陣列製成的一電作用透鏡將需 要配線定址所有4000個區域;涵蓋35公釐直徑的圓半部分 區域面積的需要將產生大約0·5公釐的像素深度。另一方 面,從相同0.5公釐深度(或環厚度)的同心環圖案製成的 適合光學將只需要35個超環面區域,明顯減少配線複雜 度。相反地,像素深度(與解析度)可只減少到〇· 1公釐, 且只將區域(與互接)數量增加到175。既然在不同區域的 折射率輻射變化是較平滑,所以區域的較大解析度可轉換 成戴用者的較大舒適感覺。當然,此設計將只限制球體本 質的視覺修正。 進一步發現同心環設計可調整超環面環的厚度,如此可 將最好的解析度放置在需要的半徑。例如,如果設計需要 84166 -67· 1269091 相位包,即是,利用光波的周期性來達成具限制折射率變 化物質較大聚焦強度,您可設計在周邊具窄環、及在電作 用區域的圓部分區域中心具較寬環的陣列。每個超環面像 素的明智使用會產生於使用的區域數量可可獲得的最好 聚焦強度,而減少在使用相位包的低解析度系統中出現的 周期重疊效果。 在本發明的另一具體實施例方面,在使用部分電作用區 域的混合透鏡中,從遠視場焦點區域到近視焦點區域的平 滑尖銳轉換是想要的。當然,此是在電作用區域的圓邊界 上發生。為了要違成此,本發明將可程式化成在電作用區 域周邊具有近視較少光焦度的區域。例如,考慮具35公釐 直控電作用區域的一混合同心環設計,其中固定的焦距長 度透鏡可提供距離修正,且電作用區域可提供+2·5〇增加 光焦度老花眼修正。包含數個可定址電作用同心環區域的 每個將可程式化成在較大直徑具有減少的光焦度,而不是 維持電作用區域周邊、數個超環面區域或”帶”的此光 焦度。例如,在作用期間,一具體實施例具有:+2. 50增 加光焦度的中央26公釐個直徑圓,且具+2.〇〇增加光焦度 的從26到29公釐直徑擴充的超環面帶;具+1.5增加光焦度 的從29到32公釐直徑擴充的另一超環面帶,且是由具+ ι·〇 增加光焦度的從32到35公釐直徑擴充的超環面所圍繞。此 設計在提供一些使用者更愉快戴用經驗是很有用的。 當使用一眼科眼鏡透鏡時,您通常使用遠視透鏡的頂端 大約一半。超過中線的大約2到3公釐與低於中間距離視覺 84166 -68- 1269091 透鏡的6到7公釐、及低於近視中線的從7到1 〇公釐。 在眼睛出現的偏差會從眼睛的不同距離出現,且需要不 同修正。觀察的物體距離是直接與特殊偏差修正需要有 關。因此,從眼睛光學系統產生的偏差將大約需要與所有 遠距離的相同修正,大約是所有中間距離的相同修正、與 大約疋近點距離的相同修正。因此,本發明在透鏡的三或 四個區段(遠距離區段、中間區段與近近區段)允許電作用 調整透鏡,以修正眼睛的某些偏差,而不是當眼睛與眼睛 、視線在透鏡移動時來嘗試調整電作用透鏡格柵。 圖22是電作用透鏡2200的具體實施例正視圖。在透鏡 220 0中是定義用以證明不同折射修正的各種不同區域。在 中線Β-Β下面,有數個近距離修正區域2210和2220,具有 不同的修正光焦度的每個是透過單中間距離修正區域 2230的圍繞。雖然只顯示兩個近距離修正區域2210和 2220,但是任何數量的近距離修正區域可提供。同樣地, 任何數量的中間距離修正區域可提供。在中線Β-β上面, 提供一遠距離修正區域2240。區域2210、2220、和2230 能以程控序列方式、或以類似傳統三個聚焦的靜態〇n — 〇ff 方式來激勵’以節省光焦度。當從遠看到近、或從近看到 遠時,透鏡2200可透過使在各種不同區域的各種不同焦距 長度之間的轉換平滑而幫助戴用者的眼睛焦點。藉使” 影像跳躍”的現象可減輕或明顯減少。此進步亦在下面圖 23和24顯示的具體實施例中提供。 圖23是另一電作用透鏡2 30 0的具體實施例正視圖。在透 84166 -69- 1269091 鏡23 0 0中是定義用以證明不同折射修正的各種不同區 域。在中線C-C下面,單一近距離修正區域2310是由單一 中間距離修正區域2320圍繞。在中線C-C上方是放置單一 遠距離修正區域2330. 圖24是另一電作用透鏡2400的具體實施例正視圖。在透 鏡2400中是定義提供不同折射修正的各種不同區域。單一 近距離修正區域2410是由單一中間距離修正區域2420圍 繞,且單一中間距離修正區域242〇是由單一遠距離修正區 '域2 4 3 0圍繞。 圖25是另一電作用透鏡2500的具體實施例侧視圖。透鏡 2500包括一傳統光學透鏡2510,其中連接數個全視場電作 用區域2520、2530、2 540、和2550,其每個是透過隔離層 2525、2535、和2545而從相鄰區域分離。 圖26是另一電作用透鏡2600的具體實施例側視圖。透鏡 2600包括一傳統光學透鏡2610,其中連接數個部分視場電 作用區域2620、2630、2 640、和2650,其每個是透過隔離 層2625、2635、和26 45而從相鄰區域分離。結構區域2660 是圍繞電作用區域2620、2630、2640、和2650。 重新討論電作用透鏡,用以修正折射誤差的一電作用透 鏡可使用與玻璃、聚合物、或使用一擾射圖案印刷或蝕刻 的塑膠基板透鏡相鄰的電作用折射矩陣來製造。具有繞射 印刷的基板透鏡表面是直接與電作用物質接觸。因此,電 作用折射矩陣的一表i亦是在透鏡基板表面鏡射影像的 一繞射圖案。 84166 -70- 1269091 組件是充當一混合透鏡,使得基板透鏡始終可提供典型 用於距離修正的一固定修正光焦度。在它非激勵狀態的電 作用折射矩陣折射率是接近等於基板透鏡的電作用折射 矩陣折射率;此不同應該是〇· 05折射率單位或更少。因 此,當電作用透鏡未激勵時,基板透鏡與電作用折射矩陣 具有相同的折射率,且繞射圖案是沒有光焦度,並且不提 供修正(〇·〇〇折光度在此狀態,基板透鏡的光焦度只是 修正光焦度。 §激勵電作用折射矩陣時,它的折射率會變化,且纟&射 圖案的折射光焦度會變成附加到基板透鏡。例如,如果基 板透鏡具有―3·50折光度的光焦度,而且當+2· 〇〇折光度激 勵時,電作用繞射層會具有光焦度,電作用透鏡組件的總 光焦度是-1.5 0折光度。如此,電作用透鏡允許近視或讀 取。在其他具體實施例方面,在激勵狀態的電作用折射矩 陣可以是符合光學透鏡的折射率。 用液晶的電作用層是雙折射。即是,#暴露在非極化 光時,他們會在他們的非激勵狀態中顯示兩不同焦距長 度。此雙折射會在網膜上提供導致雙重或模掏影像。有^ 個方式可解決此問題。第—方式需要使用至少兩個電作用 層。一電作用層是使用在層以縱向排列的電作用分子製 =,.而另一電作用層是使用在它的層令以緯度方向分子= 造;因此,在兩層的分子排列是彼此成直角。如此,光的 兩極化是由兩層相同聚焦,而且所有光是在相同焦距長度 84166 -71 - 1269091 此可透過使兩個直角#列的電作用層、或透過透鏡的中 央層是雙重端板的另一設計(即A,在兩邊姓刻的相同辕 射圖案)來達成。電作用物質然後放置在中央板的兩端上 的一層,以確保他們的排列是直角。然後,一覆蓋上層是 放置在每個電㈣折射矩陣上Φ,以便將它包含。此^ 供比在彼此頂端上重疊兩個明顯電作用/繞射層更簡單的 設計。 不同選擇是需要將膽留醇液晶加入電作用物質,以提 供給它一較大chiral元件。發現到chiral濃度的某位準可 免除平面極化靈敏度,且可免除純向列型液晶的兩個電作 用層當作在電作用物質元件的需要。 現將描述用於電作用層的物質,用於電作用折射矩陣的 物質類別與特殊電作用物質及本發明透鏡的範例將在下 面列出。除了在下面類別1列出的液晶物質之外,我們通 常是將者些物質類別的每一個視為聚合物凝膠。 液晶 此類爺包括形成向列型、近晶型、或膽留醇相位的任何 液晶薄膜,其擁有可使用一電場控制的長範圍方向排列。 向列型液晶的範例是:戊基氰基聯笨基(5CB)、(正辛基詳 氧)-4-氰基聯苯基(8〇CB)。液晶的其他範例是複合4-氰基 4 η -燒基聯苯基、4 -正戍基-聯苯基、4 -氛基~4”-η -烧基 -聯三苯,其中 η = 3、4、5、6、7、8、9 ;及由 BDH (British Drug House) - Merck製成的例如E7、E36、E46、與 ZLI-系 列的商用混合。 84166 -72- 1269091 電光聚合物 此^別包括例如由J· E.馬克在American Institute of Physics, Woodburry, Ν·Υ·, 1996 名稱 “PhysicalThe possible process for this hybrid assembly is as follows. In one embodiment, the polymer deuterated layer can be infused, cast, stamped, machined, gold plated, and/or polished to a pure optical lens shape. The thin metal layer is deposited at both ends of the injection molding, or the polymerization = gel layer by, for example, firing or vacuum deposition. In another embodiment, the deposited thin metal layer is placed at both ends of the optical lens and at the other end of the injection molded or fabricated electrical material layer. A conductive layer may not be required, but if it is, it may also be a vacuum deposited or sputtered on the metal layer. Unlike conventional dual focus, multi-focus or cascade lenses in which the myopic power segments are placed differently in different multi-focus designs, the present invention is always placed in a normal position. For different electrostatic areas that are not used by the traditional method by the value # ,, where the eye movement and head tilt are using this area or some areas 'the invention allows you to look straight ahead or slightly up or down and the entire electrical effect Partial or full field of view is adjustable to correct the necessary near vision distance. This reduces eye fatigue and head and eye movements. In addition, when you need to live a long distance, the 'adjustable electrical action refraction matrix can be adjusted to the correct light required: degree' to clearly see the obvious object Q. In most cases, this will cause electrical effects to adjust myopia. The distance field becomes a piano power, so that the mixing lens can be converted or adjusted to a distance correction lens or a low light 'on-focus focus lens to correct the distance power. However, this is not always the case. In some cases, it is advantageous to reduce the thickness of the optical single vision lens. Examples 84166 • 43-1269091 The thickness of the edge of a local, sub-, or 1-lens of a 'one lens' can be reduced by some suitable distance power compensation in the package adjustment layer. This can be used in all cases of a multi-field full-field hybrid electric field lens or a non-hybrid electro-optical lens. Furthermore, it is emphasized that the adjustable electro-active refractive matrix does not have to be located in a restricted area 'but may include the entire single-view or multi-focus area or shape. Electroactive Refraction Matrix (4) It is true that the entire size 'shape, position and position is only suppressed by efficiency and aesthetics. It has been found that it is a part of the present invention that the electronic complexity of the present invention can be further reduced by the single front or multi-focus lens or the appropriate front convex and back concave curves. By appropriately selecting a single-view or multi-focus, the convex curve of the light or the light, the number of electrodes to be connected to the excitation layer can be reduced. In some embodiments, only two electrodes are needed when the entire field of electrical field is transmitted through a set amount of power. This occurs because of the change in the refractive index of the electroactive substance, which creates a different = front, back, or central electrical action layer, which is due to the release of the active layer. Thus, the proper bending relationship of the front and back curves of the ' parent layer can affect the required power adjustment of the hybrid corner hybrid or non-hybrid lens. In most 'but not illusory situations, especially without the use of a diffractive or Freyner component & some hybrid designs, it is important that the electro-optical (four) shot matrix is not parallel to single-view or multi-focus semi-finished products, or Connected single-view or multi-focus finished lens one, one side and one back curve. An exception to this is the use of multi-grid, hybrid designs, which should emphasize a concrete example of a hybrid lens with a smaller than full field of view 84166 1269091 and a minimum of two electrodes. Other embodiments use an overnight grid electrical action refraction matrix method to create an electro-mechanical refraction matrix, in which case multiple electrodes and circuits are needed. When a multi-grid electrical structure is used, it is found that the grid boundary is acceptable for the electrical excitation (mostly invisible), and it is necessary to generate a refractive index difference of 〇 to 0. 02 A refractive index difference between adjacent grids. This is due to aesthetic requirements, and the range of refractive index difference is from 折射率·〇丨 to 〇·〇5 units of the refractive index difference, but in most innovative embodiments, this difference is limited by the controller. The maximum value of the refractive index difference between adjacent regions is 0 · 〇 2 or 〇 · 〇 3 units. It is also possible to use eight or more electroactive layers having different electrical interaction structures such as a single interconnect structure and/or a multi-grid structure, which will establish the desired additional end focus power as soon as it is activated, such One or more of the electroactive layers will react as needed. For example, via the front (the electroactive layer, the far side associated with the wearer's eye), only the -corrected - full field of view distance power, and using the back (ie, near side) electrical action refraction matrix to focus Myopia range to use a part of the field of view special method produced by the back layer. It is obvious that using this multiple electro-mechanical refraction matrix method will allow for increased elasticity while keeping the sound very thin' and reducing the complexity of each individual layer. In addition, this method allows individual layers to be arranged in order, and each of them can be activated to produce a variable-focus effect. This time elapsed sequence is generated so that when you see near from the far end; = focus needs to be focused with the myopia range, and then the opposite effect occurs when you see it from near. The gradual electro-optical refraction matrix method also allows for faster electrical action of the focused light 84166 -45 - 1269091 power response time. This hair 4: 4 praises the 疋 due to a combination of factors, a layer of lens I | required to reduce the thickness of the electrical material. Moreover: because of a multiple electrical action refraction #, the 圻 matrix allows for the division of the complexity of a primary electro-mechanical refraction matrix into two or more less complex individual layers, which may require fewer individual layers than the main electro-active layer. Eight & Main The following describes the material and structure of the electro-optical lens, its wire circuit, power supply, electrical switching technology, and acoustic distance measurement. ', the software required for the length adjustment, and the distance from the object. Figure 1 is a perspective view of a specific embodiment of the electric refraction matrix J 9 。. An electroactive substance is received on both sides of the shell 910 as a metal layer 1 920. The opposite end connected to each of the metal layers 1 920 is a conductive layer 193 〇. The above-mentioned electroactive refractive matrix is a multi-layer structure composed of a polymer gel or a liquid crystal as an electroactive substance, however, in some innovative cases, the polymer-kinding electrolysis refractive matrix and a liquid crystal electric function The refractive moment = is used in the same lens. For example, a liquid crystal layer can be used to create an electronic color or a solar effect, and a polymer gel layer can be used to increase or decrease the power. The property of polymer gels and liquid crystals is that their optical refractive index is permeable to the applied voltage. The electroactive substance is covered by two nearly transparent metal layers that are dead at either end, and the -conducting layer is deposited on the metal layer to provide good electrical connections to the layers. When a voltage is applied across two conductive layers, an electric field is established between them and via the electroactive species to change the refractive index. In most cases, liquid crystals and - a certain case, the gel is packaged in enamel resin, polymethacrylate, ethyl ethoxide, bis-heptanol, ceramic, glass, nylon, polyester film and Other 84166 -46-1269091 Select the closed package of the substance. Figure 20 is a perspective view of a specific embodiment of an electro-optical lens 2 having a multi-grid structure. Lens 2000 includes an electroactive substance 2〇1〇, which in some embodiments can define a plurality of pixels, and each can be separated by a substance having electrical isolation properties. Thus, the electroactive substance 2〇1〇 can define a number of adjacent regions, each region containing one or more pixels. One end connected to the electroactive substance 2010 is a metal layer 2〇2〇 having a grid array of metal electrodes 2030, wherein the metal electrode 2030 is separated by a substance having electrical isolation properties (not shown) . The opposite end (not shown) connected to the electroactive substance 201 0 is a symmetrically identical metal layer 2020. Thus, each of the electrically active pixels conforms to a pair of electrodes 2030' to define a pair of grid elements. Connected to metal layer 2020 is a conductive layer 2〇4〇 having a plurality of interconnecting layers 2050, each of which is separated by a substance having electrical isolation properties (not shown). Each interconnect layer 2〇5〇 electrically couples a pair of grid elements to a power supply and/or controller. In another embodiment, some and/or all of the interconnect layers 2050 connect more than one grid element to a power supply and/or controller. It should be noted that in some embodiments, the metal layer 2020 can be removed. In other embodiments, metal layer 2020 is replaced by an alignment layer. In certain innovative embodiments, the front (distal) surface, the intermediate surface, and/or the old surface are made of a material comprising a conventional photochromic element. The photochromic element may or may not be used with an electronically generated color feature that incorporates a portion of the electro-optical lens. In the case of using it, it can provide an additional multi-potential in the form of a special 84166 -47-1268991. Insufficiency > In addition, in many innovative embodiments, it is emphasized that photochromic substances can be used alone with electro-optical lenses without the need for an electronic color element. The photochromic substance is included in the electro-optic lens layer via layer mixing, or added to the electro-active refractive matrix later, or as a partial outer layer on the front or back side of the lens. Further, the electroactive lens of the present invention may be a front coat, a # face, or both, which may be coated with an anti-reflective coating as needed. This structure is called a sub-assembly and it can be electrically controlled to establish a prismatic force sphere lunar force, astigmatism correction, non-circular correction, or wearer bias correction. In addition, the sub-assembly can be controlled to Fresnel 1 or an analog sub-assembly of the diffraction surface. In one embodiment, if more than one type of correction is required, two or more sub-assemblies can be juxtaposed and separated by an electrical isolation layer. The separator may comprise a cerium resin oxide. In another embodiment, the same sub-components are used to establish multiple capability corrections. Any of the two sub-assembly specific embodiments just discussed may be made from two different structures. The specific embodiment of this first structure allows each layer, the active layer, the wire 'to be adjacent to the metal, i.e., a continuous layer of material, thus forming a single interconnected structure. A second structural embodiment (shown in Figure 20) uses a metal layer in a grid or array and each sub-array region is electrically isolated from its neighbors. In this particular embodiment showing a multi-grid electrical active structure, the conductive layer can be etched to provide separate electrical contacts or electrodes to each sub-array or grid element. In terms of mode, separation and clarification can be applied to each pair of grid elements of the layer to create different refractive index regions in the layer of electrically active material. Including layer thickness, refractive index, voltage, desired 84166 -48-1269091 electroactive substance: layer structure, number of layers or components, layer or component configuration, curved design details for each layer and / or 7G pieces are left It is decided by the optical designer. It should be noted that the multi-grid electric function gentleman should be able to use the electric structure or the early one-connected electric action structure as a partial field of view or a full field of view. However, #—partial field of view special electrical action refraction (iv), in most cases, an electroactive substance having the same refractive index as the part of the field of view special electroactive non-excited layer (structural layer) is laterally adjacent to Part of the field of view special electrical action area, and separated from a part of the field of view special electrical action area through a barrier. This can be achieved by thinning the appearance of the disguised shortcomings of the electro-optical lens by keeping the appearance of the entire electrical refraction matrix #in the non-excited state. Moreover, it emphasizes that in certain embodiments, the structural layer is a non-electroactive substance. The polymeric material can be a broad range of 吝;) 3⁄4 Μ 人 人 人 聚合物 , , , , , , , , , , , , , , , , , , 聚合物 。 。 。 。 。 。 。 This electroactive polymer material is well known and commercially used. Examples of such materials include liquid crystals, such as polyacetic acid, polyfluorene, polyammonia, pentacyanobiphenyl ((10)), and others. The polymer gel also contains a thermoset matrix material to enhance the handleability of the gel' to improve its adhesion to the encapsulated conductive layer and to improve the optical clarity of the gel. By way of example 'only this matrix can be a cross-linked propylene, methyl bromide, polyanthene vinegar, vinyl polymer with a double acting or multiple acting propylene, methyl handle thin or vinyl derivative . The thickness of the gel layer may be, for example, between about 3 microns and about 1 micron, but may be as thick as 1 dominance, or as shown in another example, between about 4 microns and about 20 microns. . The gel layer has a coefficient of, for example, approximately 84166 - 49 - 1269091 (10) per gram per object (four); or as shown in the other example, 20,000 to 6,000 pounds per hour 0 metal jg g , thick yield and = Approximately 1 "micron to about 10, no habit, and as shown in the other example, from about 8 χ 1 〇 to about 1 · 2 χ 1 (Γ 3 microns. 偻 Mo厗 did not pass V layer /, for example 〇 · 〇 5 μm 0 · 2 μm thickness; and Η μ ^ and as shown in another target 'from about 0. 8 microns to about 0. 12 microns, and as still another example, about 01 microns. The metal layer is used to provide good contact between the conductive layer and the electroactive species. Those skilled in the art can confirm the appropriate metal materials that can be used. For example, you can use gold or silver. In a specific embodiment, the refractive index of the electric object f can be, for example, about 1. 2 units vary by about u units, and as shown in another example, between about 1 · 45 early gold · Daping 1 "about 1.75 early position, and having at least 单位 2 unit refractive index per volt The change in refractive index with electricity, the actual refractive index of the electroactive substance, and the compatibility with the matrix material will determine the percentage of the moment that the electroactive polymer is mixed to the moment 'but should result in about 2. The base voltage of 5 volts is not less than the final mixed refractive index change per unit of u2 of volts, but not more than 25 volts. As discussed in the prior innovative embodiment using a hybrid design, the portion of the electro-active refractive matrix component is connected to a conventional optical lens that uses a suitable adhesive or bonding technique. The joint assembly can be attached to the conventional optical lens via a sheet of paper, or film, that has an electroactive refractive matrix pre-assembly. It can be created and used in the original position to wait for the surface of the optical lens. Moreover, it can be applied to the surface of a lens wafer before it is applied, which is then bonded to the waiting optical lens. It can be used in half of the finished product 84166 -50-1269091 lens damage, and will be surface treated or edging at an appropriate size, shape, and appropriate total capacity. Finally, it can be cast onto a pre-formed optical lens using surface casting techniques. This establishes the electrical modification capabilities of the present invention. The electroactive refractive matrix will occupy the entire lens area, or just a portion of it. The refractive index of the electroactive layer can be changed correctly only in the area where focusing is required. For example, in the hybrid portion field of view design described above, a portion of the field of view region can be excited and changed in this region. Thus, in this particular embodiment, the index of refraction 'only changes in a particular portion of the lens. In another embodiment, a specific embodiment of a hybrid full field of view design, the index of refraction changes over the entire surface. Similarly, the refractive index changes over the entire area of the non-hybrid design. As previously mentioned, it has been found that in order to maintain an acceptable optical masking defect, the appearance of the refractive index difference between the electrically-optical adjacent regions should be limited to a maximum of 0. 02 units to 〇〇 5 units, and preferably 〇〇 2 units to 0· 03 units. In the planning of the present invention, in some cases, the user will be able to use one for the field of view' and then want to change the electrical action refraction matrix to a full field of view. In this case, the specific embodiment can be structured in a full field of view embodiment, however, the controller can be programmed to allow the required capabilities to be switched from a full field of view to a portion of the field of view and back again. Or vice versa. In order to establish the electric field required to excite the electroactive lens, the voltage is transmitted to the optical component. This is provided by a small diameter wire bundle and is included at the edge of the frame. The wires are from the source described below to an electro-acting goggle controller, and/or one or more controller components, and to the frame 84166 - 51 - 1269091 edge of each of the spectacle lenses, wherein in the manufacture of the semi-conductor The latest development in wire bonding technology is to connect wires to each of the grid elements in the optical assembly. In a specific embodiment of a single wire interconnection structure that represents each conductive layer, each eyeglass lens requires only - voltage. And only two wires are needed for each transom. The voltage will be applied to a conductive layer, and its partner on the relative = of the condensate layer will remain at ground potential. In another embodiment, an alternating current (AC) power is applied across the opposing conductive layers. These two connections are easy: or close to the edge of the frame of each eyeglass lens. . If a grid array of cells is used, there is a clear electrogrind in each grid sub-area of the array and the wires are the grid elements that will connect each wire lead in the frame to the lens. For example, an optically transparent conductive material of indium oxide, oxygen (tetra) 1 (tetra), and mo) can be used to form a conductive layer of an electroactive component, and is used to connect a light wire that is sewn at the edge of the frame to an electroactive lens: . This method can be used regardless of whether the area of the electrical application occupies the entire lens area or only a portion of it. Used to achieve pixels in a multi-grid array design: Knife. To establish the individual small volume of the electroactive substance, how to mobilize the electrode in order to build up on a small volume - the technique is to use the substrate to lithographically print two pixels to create a different electric field for the pixel 芒I Jiang Gu 隹 ^ Putian patterning The electrodes are fully defined. Right to provide 7b power to the optical components is included in the future. Tian Feng is like a battery power supply is 嗖 _ | 4 i 4 hate small, so the frame of the side of the Han. This is to allow insertion and extraction of the small-volume electrically patterned electrode of this first power. Thus, the electroactive substance can be used to control the pool of each of the adjacent volumes and the 84166 - 52-1269091 cells. The battery is connected to the bundle of wires via a multiplex connection also included in the frame gusset. In another embodiment, the conformal thin film battery can be attached to the surface of the frame gusset using an adhesive when the battery is being charged. To allow them to be removed and replaced. _ Selectivity is to attach the accessory's applicator to the frame-mounted battery to allow charging of bulky or conformal thin film batteries when not in use. It is also possible that a small fuel unit can be included in the frame to provide greater energy storage than the battery. The fuel unit can be recharged using a small fuel tank that injects fuel into a storage tank of the frame. It is possible to see that, by using an innovative hybrid multi-grid structure method, it is possible to reduce the optical focus f, which in most cases (but not all) is a part of the field of view. It should be noted that the mixed-full field multi-grid structure can also be used when you can use a mixed partial field of view multi-grid structure. In another innovative method in which, for example, the non-conventional refractive error of the deviation can be corrected, the tracking system is a suitable starter software and a programmable electro-acting goggles controller built in, for example, the goggles described above, and packaged in the electric goggles, and / or one or more controller components are available. This innovative embodiment can, by second, track the human eye by tracking the human eye and apply the necessary electrical energy to a particular area where the electroactive lens can be seen. In other words, when the eye moves, a target electrical energy region can move on a lens corresponding to the direct action via the electro-optical lens and line of sight. This will reveal several different lens designs. For example, the user has a solid-type power lens, an electro-optical lens, or a conventional (spherical cylinder, with 稜鏡) correction error correction. At 84166 -53-1269091, this non-conventional refraction error will be corrected by the electro-optical refraction matrix of the multi-grid structure, whereby the eye-shifting, electro-optical mirroring of the stress-contrast area will move with the eye. In other words, when the visual lens intersects, the movement of the eye line of sight corresponding to the movement of the eye on the lens is related to eye movement. In the above innovative example, it is emphasized that the multiple (four) electro-active structures incorporated into the hybrid electro-acting lens can be either a partial field of view or a full field of view design. It emphasizes that by using this innovative embodiment, you can reduce your electricity needs by powering only restricted areas that you see directly. Therefore, the smaller area of power supply will be less than the power consumed by the particular optic at any time. In most (but not all) cases, the indirect viewing area will not be powered or energized; therefore, conventional refractive errors can be corrected and corrections such as myopia, hyperopia, astigmatism, and presbyopia can be corrected. 2 〇 visual correction. In this innovative embodiment, the aligned and tracked areas can be corrected as much as possible for non-traditional refractive errors, irregular astigmatism, deviations, and eye-limiting surfaces, or layer irregularities. In other innovative embodiments, the alignment and tracking regions may also correct some conventional errors. In several of the foregoing embodiments, the alignment and tracking area can be automatically located using a controller, and/or one or more controller elements, via a rangefinder positioned in the goggles to track eye movements. And the eye tracking system is located in the goggles, or a tracking system and a distance system. Although only a portion of the electro-active area is used in some designs, the entire surface scale covers the electroactive substance so that the user does not see a circular line in the lens in the non-excited state. In some innovative embodiments, an 84166-54-1269091 transparent spacer is used to preserve the electrical stimulus that is confined to the central region of the excitation, and the non-exciting peripheral electroactive material is used to preserve the invisible edge of the active area. In another embodiment, the array of thin film cells is attached to the surface of the frame and the voltage is supplied to the wires and optical grids by electro-optical effects using daylight or ambient illumination. In an innovative embodiment, an array utilizing solar energy is used for the main power, and the aforementioned small cells are included as spare power. When the power is not required, the battery can be charged from the solar cell during these times of this embodiment. The other is an AC adapter and accessory that allows this design to be related to the battery. In order to provide a variable focal length to the user, the electroactive lens is convertible. However, at least two switch positions are provided, more of which can be provided as needed. In the simplest embodiment, the electroactive lens is activated or deactivated. In the off position 'no current will flow through the wire, no voltage will be applied to the grid assembly' and only the fixed lens power β will be used. This will be the case where the user needs a far field distance correction, for example, of course assuming mixing An electro-acting lens is an optics that uses a single-view or multi-focus lens to break the hair, or visually correct the distance to its structure. To provide a viewing correction for reading, the switch is activated to provide a predetermined voltage or voltage array to the lens for establishing - positively increasing power in the electrical active component. If it is necessary to correct the # lens field, the third switch position can be included. The switch can be microprocessor controlled or manually controlled by the user. In fact' includes several additional locations. In another embodiment, the switch is analogous rather than digital, and can provide a continuous change in the focal length of the 84166-55-1269091 lens by adjusting a knob or lever that is very similar to the volume control on the radio. It may be the case where no fixed lens power is part of the design, and all visual corrections can be made via an electro-acting lens. In this embodiment, a voltage or voltage array is always supplied to the lens if the user requires a far vision and near vision correction. If only the user needs distance correction or reading adaptation, the electro-acting lens will be activated when correction is required and will be turned off when no correction is required. However, this is not always the case. In some embodiments in which the lens is not counted, turning off or lowering the voltage will automatically increase the power of the far vision and/or near vision regions. In one embodiment, the switch itself is located in the eyeglass frame and is coupled to a controller', such as an application specific integrated circuit included in the frame. This control responds to different positions of the switch by adjusting the voltage supplied from the power supply. Similarly, the controller can constitute the multiplexer described above and distribute various voltages to the connecting wires. The controller can also be a sigh juice in the form of a film and can be mounted along the surface of the frame like a battery or solar cell. In one embodiment, the controller, and/or one or more of the controller components are manufactured and/or programmed using knowledge of the user's visual correction requirements and allow the user to be individualized for him or her. It is easy to change between different declining predetermined voltages corrected by visual requirements. The electrically actuated goggles controller, and/or one or more controller components, can be easily removed, and/or programmed by a visual protection expert or technician, and can be used when the user's visual correction requirements change. The "optical" controller to replace and reprogram. One point of view of a controller-based switch is that it can change the voltage applied to the electro-active lens in less than one microsecond. If the electro-optical refraction matrix is rapidly changing from an 84166 -56-1269091, the rapid change in the focal length of the lens will destroy the wearer's reputation. + A gentle transition between different focal lengths is desirable. As an additional feature of the present invention, a "lag time" can be programmed to a slow transition controller. Conversely, a "pre-lead time" can be programmed into a controller that accelerates the transition. Similarly, the transition can be passed through a prediction. Algorithms to predict. In any case, the time constant of the transition can be set, so it is proportional and responds to the changes in refraction required to adapt to the wearer's vision. For example, small changes in focus power can be quickly changed; The user can quickly move his gaze from the far object to read the printed matter. The large change of focus power can be set to occur for a long period of time, which can be 10-100 microseconds. This time constant can be Adjust according to the wearer's comfort. In any case, the change of the glasses itself is not needed. In another specific example, the switch is in a separate module, which can be in the pocket of the user's clothes, and the hand can be used. Excitation. This switch is connected to the glasses using a thin wire or fiber. Another version of the switch contains a small microwave or RF short-range transmitter to transmit the relevant switch signal position to the mirror. A small receiving antenna mounted thereon. In both of these switch constructions, the user has direct, rather than continuous, control over the length of the focal length of his or her glasses. In various embodiments, the switch is by, for example, a bit An observation detector of a distance measuring device in the frame, on the frame, in the lens, and/or on the spectacle lens is automatically controlled and directed forward to the perceived object. Figure 21 is another of the electroactive goggles 2100 In the illustrated example, the frame 2110 includes an electrical action lens 212 that is coupled to a controller 214 (integrated circuit) 84166 - 57 - 1269091 and a power source 2150 via a connecting wire 2130. A range finder transmitter 21 60 is coupled to an electrical active lens 2120 ' and a range finder receiver 2170 is coupled to another electrical active lens 2120. In various other specific embodiments, the transmitter 2160 and / Or the receiver 2170 is connected to any of the electrical action lenses 212 0 that are attached to the lens 2120 and/or embedded in the frame 211 0. In addition, the rangefinder transmitter 2160 and/or the receiver 2170 Control is performed by controller 2140 and/or a separate controller (not shown). Similarly, signals received through receiver 2170 are processed by controller 2140 and/or a separate controller (not shown). In any case, the range finder is an active searcher and can use a variety of different sources such as lasers, light emitting diodes, radio waves, microwaves, or ultrasonic pulses to find objects and determine its In a specific embodiment, a vertical hole surface emitting laser (VCSEL) is used as a light emitter. The small size and flat profile of these devices make them attractive for this application. In another implementation For example, an organic light emitting diode, or OLED, is used as a light source for the range finder. The advantage of this device is that OLEDs are often manufactured in a generally transparent manner. Therefore, since it is unattractive attention to the lens or frame, if the disguise is a major consideration, a 0 LED would be a better rangefinder design. A suitable sensor that receives the reflected signal from the object is placed at - or multiple locations in front of the frame and is connected to a small controller to calculate the range. In another embodiment, a single device can be fabricated to act as a transmitter and detector in dual mode and connected to a range computing computer. This range is transmitted via a wire or fiber to the switch controller located in the frame, or a wireless remote control carried in itself 84166 -58-1269091, and the 氺+. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , occur. For example, when the lens changes the visual correction from a long distance correction to an intermediate distance or close distance correction, there is no need to change the distance correction actually required by the wearer. It should be understood that in some cases, when the wearer wants to move from the focused - project port to another focus item, it is difficult for the rangefinder device to electrically shift the focal length of the lens. For example, the rangefinder transmitter and the rangefinder receiver require additional head movement by the lens wearer before the lens converts the visual correction to another visual correction. Alternatively, when the lens is converted from a wearer's actual need for visual correction to a non-appropriate visual correction, "the wrong transition, therefore, in another embodiment, the rangefinder transmitter and the rangefinder receiver may be selected. The additional lens is covered to control the width of the transmitted beam produced by the transmitter, and the receiving cone is acceptable to the receiver. Figure 44a is an integrated power supply, controller and ranging in accordance with another embodiment of the present invention. Perspective view. As shown in Figure 44a, system 4400 includes a rangefinder device 4420 coupled to controller 4440 and then coupled to power source 4460. Figure 44b is along z-z in accordance with an embodiment of the present invention. A side view of the system 440 0 of Figure 44a. As shown in Figure 44b, the range finder device 4420 includes a range finder transmitter 4424 and a range finder receiver 4428. In this particular embodiment, the range finder transmitter 4424 And the range finder receiver 4428 are respectively a transmitter and receiver diode, which may be in the form of an IR laser diode, led or other non-visible radiation source. In the particular embodiment illustrated herein, the transmitter 44 24 The transmission lens 4426 is optionally included to control the transmission beam width produced by the emitters 84166 - 59 - 1269091 442 4. Similarly, the receiver 4428 can optionally include a receiving lens 4430 to control the receiving cone received by the receiver 4428. It will be appreciated that as long as the beam passes through a receiving lens, an aperture, or other means including a receiver 4428, the receiving area of the receiver 4428, or the cone, including the beam arriving at the rangefinder device, can reach the receiver 4428. Solid angle. A protective window protects the internal components of the rangefinder device 4420 from the user's environment, and more specifically, the transmitter and receiver without affecting the functionality of the internal components. 'Figure 45 is based on this A side view of the range finder transmitter 4424 of Fig. 44b of the present invention. As shown in Fig. 45, the transmission lens 4426 has a selected divergence power to facilitate the beam B produced by the transmitter 4424 for a particular working distance L. Divided into a specific pattern width D. Thus, the beam width produced by the emitter 4424 can be optimized for the particular working distance and intermediate vision to be read to reduce the extra head. The need for motion, while avoiding false transitions by not making the beam too large. Figure 46 is a side view of the range finder receiver 4428 of Figure 44b, in accordance with an embodiment of the present invention. As shown in Figure 46, the receiver 4428 is selectively included. A receiving lens 4430 having a slit 4432 formed therein has a receiving lens 4430 having a slit 4432 that reduces the received pattern to a substantially rectangular field, rather than detecting whether the receiving lens 4430 is unsuitable for full viewing of the receiver 4428. In this particular embodiment, in addition to these through slits 4432, receiving lens 4430 is constructed of, for example, an opaque material to avoid receiver 4428 receiving any reflected beam. It will be appreciated that the above-described embodiment transmitters 84166-60-1269091 442 4 and receiving lens 443 0 including the receiving lens 4426 include only the receiver 4428, and the operating transmitter 4424 transmits the beam, or the receiver 4428 accepts the cone. Other embodiments may be used to further reduce erroneous transitions or improve the efficiency of optical system 4400. For example, other methods of limiting the receiver's acceptance of the cone or receiving pattern include the use of other geometric apertures, variable louvers, lenses, or means for limiting the passage of light beams to the receiver 4428. It should also be appreciated that placing the lens on the transmitter and receiver is optional, and any combination of the above lenses may be provided in accordance with the present invention. For example, in at least a further embodiment, the receiving lens 4430 for selectively including the receiver 4428 is optional. Likewise, in at least a further embodiment, the transfer lens 4426 for selectively including the emitter 4424 is selective. In the above embodiments, the need for additional head movement, and the occurrence of erroneous transitions are reduced by increasing the width of the transmitted beam produced by the range finder transmitter; or 'controlling how the reflected beam is transmitted to the range finder receiver . In another embodiment, the switch is controlled by small, rapid motion of the user's head. This can be achieved by including another observation detector, such as a small micro-gyro in the frame, or a micro-accelerator table. A small, rapid shaking or twisting of the head will trigger the micro-gyro, or micro-accelerator table, and cause the switch to rotate via its allowed position setting to change the focus of the electro-acting lens to the desired correction. For example, as soon as the motion of the microgyrometer or the microaccelerator table is detected, the controller can be programmed to provide the power to the rangefinder device, so the viewing field can be interrogated by the rangefinder device to determine whether Visual correction changes are required. Similarly, the rangefinder device is turned off at a predetermined interval, or during a time period in which no head motion is detected. In the case of at least one embodiment, the range finder device is activated when motion is detected and the range finder device is used. In another embodiment, another viewing detector, such as a tilt switch, can be used to determine whether the user's head is tilted downward or upward at a particular angle that exceeds or falls below a person indicating a forward distance to a distance gesture. . For example, an illustrated tilt switch includes a mercury switch mounted to the controller, and the mercury switch turns off a circuit to provide power to the range finder only when the patient looks up or down at a predetermined angle that deviates from the horizontal And/or controller. In at least one embodiment, the rangefinder device can be configured when the lens is designed to be used for far vision correction in the absence of a j-joke state and the user's head is tilted downward or upward at a predetermined angle that is offset from the horizontal Constructed to operate and convert the electro-optical (four) mirror from a far-sighted correction to another—(4) (eg, nearsighted or intermediate distance correction). In addition, the 'lens is an additional requirement, where the object is detected before the transition occurs, and can be sensed at near or mid-interval intervals. The tilt switch can also be used to set a logic high level, which is a logic level set with the rangefinder. The logic level of #丄 is logically operated (in positive logic) on the AND gate to indicate whether an object is approaching or Figure 47a-47c is a side view of a particular embodiment of the present invention. Figure 47a shows that the thousand system wear is adjusted from a horizontal to an upward tilt to the wearer's tilt angle I). His =) map and the oblique angle Ceq ^ _ 47b from the horizontal to the downward head are described as tilting toward the head with a downward head tilting (4) :): In his specific embodiment, * wearing: the top is tilted upwards The wearer. At ~84166 - the wearer's head moves horizontally up or down from a horizontal position at approximately 5 to 15 -62 - 1269091 degrees. . . The 'tilt switch' will be turned off (and the power is supplied to the rangefinder device, or controller, or both), and the daily readout is about ίο degrees from the horizontal position. In a further embodiment of the cold, the tilt switch is turned off when the wearer's head is horizontally moved up or down from the horizontal position by about 15 to 30 degrees, and preferably from the horizontal position of about 2 〇度. The above-described embodiments of the tilt switch can be optimized according to the needs or desires of the wearer. For example, the wearer can select the offset angle from the horizontal position required to close the switch in different directions up or down. Therefore, the upward tilt angle of the close switch is equal to the angle of downward tilt, or they may be different from each other by several angles. In addition, when the wearer tilts his head in a downward direction; or, when the wearer tilts his head in an upward direction, the tilt switch can also provide an excitation only range finder ( Optimized by providing the power to the rangefinder, or controller, or both. Since each person typically reads their heads down, this latter situation is unlikely. In another embodiment, the system uses a tilt switch to determine the angle of inclination of the wearer's head. The downward or upward tilt angle is transmitted to the control state to determine if the tilt is greater than a predetermined angle. Therefore, the controller can selectively activate the range finder device as long as the tilt error is related to the tilt threshold associated with the tilt switch. Similarly, in further embodiments, a micro-rotary device or micro-accelerator table can be used in a similar manner. For example, a micro-rotary device or micro-accelerator table can produce an output that allows the controller to determine the position of the wearer's head: thus, the power of the rangefinder device can be adjusted. 84166 • 63-1269091 However, another embodiment is a micro-rotary device combination using a manual switch. In this particular embodiment, the micro-gyro device is used for most of the reading and visual functions below 180, thus reflecting the tilt of the head. Therefore, when the head is tilted, the micro-rotation device transmits a signal to the controller to indicate the degree of head tilt and then converts to an increased focus power due to the severity of the tilt. It may be that the remotely operated manual switch is a micro-rotary device that does not accept certain visual functions that are greater than or equal to 180, such as working on a computer. In still another embodiment, a range finder is used in combination with a micro-rotary device. The micro-rotation device is for myopia, and other visual functions below 180, and the range finder is for an observation distance of more than 18 (), and is, for example, an observation distance of 4 inches or less. In a further embodiment, a range finder device can be used in conjunction with a tilt switch, micro-cyclotron, or micro-accelerator table to determine if the electro-acting lens should be transitioned. In these embodiments, the controller may use a logic material for each of the integrated components of the tilt switch, the gyroscopic device, or the accelerator table, and the additional requirement is that the finder device must obtain a new viewing distance before, for example, a transition occurs. . If another manual switch or rangefinder design is used to adjust the focus power of the electroactive component, another embodiment uses an eye tracker to measure the intermediate pupil distance and detect observation (4). When the 4$ focus is on a distant or near object, and the pupil converges or diverges, the distance changes. At least two light emitting diodes that detect reflected light from the diode and at least two adjacent light sensors are placed within a frame proximate the bridge of the nose. This system senses the position of the pupil edge of each eye and converts this position into the distance between the pupils to calculate the distance from the object's eye plane to 84166 • 64-1269091. In some embodiments, three or even four light emitting diodes and light sensors are used to track eye movement. It will be appreciated that in further embodiments, any of the various mechanisms described herein to reduce erroneous transitions and excessive wearer motion to initiate a transition may be combined in any manner as desired to meet the skill and optics. The lens system is worn by the wearer. Therefore, any logic level or transition mechanism can be customized to suit the particular needs of a particular user. In addition to visual correction, an electroactive refractive matrix can also be used to provide an electroplated color to a spectacle lens. By applying an appropriate voltage to a suitable gel polymer or liquid crystal layer, a color or sunglasses effect is added to the lens to change the light transmission through the lens. This reduced light intensity provides the "sunglass" effect to the lens to give the user a comfortable feel for the brightness of the outdoor environment. Reactive-application of an electric field with highly polarized liquid crystal mixing and gel polymer is the most for this application. In some innovative embodiments, the present invention can be used where the temperature change is large enough to affect the refractive index of the electroactive layer. Then, the correction factors for all supply voltages of the grid group must be used. To compensate for this effect, a small thermal resistor, thermocouple, or other temperature sensor mounted on the lens and/or frame and connected to the power supply senses temperature changes. The controller can convert these readings to the desired ones. The voltage changes to compensate for the change in refractive index of the electroactive substance. However, in some embodiments, the electronic circuit is actually built into the surface of the lens to increase the temperature of the electroactive refractive matrix or layer. 65- 1269091 steps reduce the refractive index of the active layer, which maximizes the change in lens power. The increased temperature may or may not increase with voltage. This provides additional flexibility in controlling and changing the lens power via changes in refractive index. It is desirable to be able to measure when using temperature, to obtain feedback and control the applied temperature. Or the case of a full field grid array: 'Many wires are needed to multiplex the special power from the controller to each grid element. In order to make these interconnections easier, the present invention is my The controller in the front part of the frame, for example, in the nose bridge area. Therefore, the power supply located in the temple is connected to the controller only through the two wires passing through the front frame hinge of the side #. The wire connecting the controller to the lens is the entire inclusion In the front part of the frame. In some embodiments of the invention, the spectacles may have one or two frame struts, the portions of which may be easily (four). Each side slab is composed of two parts: a shorter part, Is to remain connected to the hinge and the front frame portion; and a longer (four) ' it is inserted into this portion. The uninserted portions of the temples each contain a power source (battery, fuel unit, etc.), and Only remove and reattach to the fixed portion of the temple. These removable temples can be charged, for example, by placing a DC-charged AC charging unit, by magnetic induction, or by any other general charging method. Fully charged replacement gussets are attached to the spectacles to provide continuous long-term excitation of the lens and ranging system. In fact, 'several replacement gussets can be carried by the user in a pocket or purse. In many cases, the wearer needs Far-sighted, near-sighted, and/or medium-looking ball 84166 1269091 Body correction. This allows for full interconnection of the grid array lens changes, which is used to correct the optical sphere symmetry. In this case, the same to the ring of the electrical action area A special geometric grid consisting of a partial area or a full field lens. The soil may be circular or non-circular, such as elliptical. This structure can be used to substantially reduce the required electrical power that must be connected by wires with different voltages. The number of active areas 'and significantly simplifies the interconnection circuit. This design allows correction of astigmatism by using a hybrid lens design. In this case, conventional optics can provide circular isomorphism and/or astigmatism correction, and concentric ring-effect refraction matrices can provide spherical distance and/or myopia correction. This embodiment of the concentric ring, or toroidal region, allows for greater flexibility in adapting to the electrical action desired by the wearer. Because the circular area is symmetrical, many thinner areas can be fabricated without increasing the complexity of wiring and interconnection. For example, an electroactive lens made from a 4 〇〇〇 square pixel array will require wiring to address all 4000 areas. The need to cover a half-area area of 35 mm diameter will result in a pixel depth of approximately 0.5 mm. The other side, from the same 0. A suitable concentric ring pattern of 5 mm depth (or ring thickness) will require only 35 toroidal areas for optics, significantly reducing wiring complexity. Conversely, the pixel depth (and resolution) can be reduced to only 〇 1 mm, and only the number of regions (and interconnections) is increased to 175. Since the change in refractive index radiation in different regions is smoother, the larger resolution of the region translates into a greater comfort for the wearer. Of course, this design will only limit the visual correction of the sphere's nature. It has further been found that the concentric ring design adjusts the thickness of the toroidal ring so that the best resolution can be placed at the desired radius. For example, if the design requires 84166 -67 · 1269091 phase packets, that is, using the periodicity of the light wave to achieve a large focusing intensity with a variable refractive index change material, you can design a circle with a narrow ring and a region in the electrical action area. Some regional centers have an array of wider rings. The sensible use of each toroidal pixel results from the best focus intensity available for the number of regions used, while reducing the periodic overlap effect that occurs in low resolution systems that use phase packets. In another aspect of the invention, in a hybrid lens using a partial electro-active area, a smooth sharp transition from the far-field focus area to the near-sight focus area is desirable. Of course, this occurs on the circular boundary of the electrically active region. In order to circumvent this, the present invention will be programmable into areas with near-sighted less power in the vicinity of the electrical active area. For example, consider a hybrid concentric ring design with a 35 mm direct control area, where a fixed focal length lens provides distance correction and an electrically active area provides +2·5 〇 increased power presbyopia correction. Each of the concentric ring regions containing a plurality of addressable electro-mechanisms can be programmed to have reduced power at larger diameters rather than maintaining the perimeter of the electro-active region, several toroidal regions or "bands" of the optical coke degree. For example, during the operation, a specific embodiment has: +2. 50 increases the power of the center of 26 mm diameter circle, and has +2. 超 Increase the power of the toroidal band from 26 to 29 mm diameter expansion; with +1. 5 Adding a power of another super-ring strip extending from 29 to 32 mm in diameter, surrounded by a torus with a diameter of 32 to 35 mm expanded with + ι·〇. This design is useful in providing some users with a more enjoyable experience. When using an ophthalmic eye lens, you typically use about half of the top of the far vision lens. More than 2 to 3 mm above the midline and 6 to 7 mm below the mid-range vision 84166 -68-1269091 lens, and 7 to 1 mm below the midline of the myopia. Deviations in the eye can occur from different distances in the eye and require different corrections. The observed object distance is directly related to the special deviation correction needs. Therefore, the deviation from the optical system of the eye will require approximately the same correction for all distances, approximately the same correction for all intermediate distances, and the same correction for approximately the close point distance. Thus, the present invention allows electrical adjustment of the lens in three or four sections of the lens (distance section, intermediate section and near-proximal section) to correct for certain deviations of the eye, rather than when the eye is in contact with the eye, sight Try to adjust the electro-acting lens grid as the lens moves. 22 is a front elevational view of a particular embodiment of an electro-acting lens 2200. In lens 220 0 are various different regions defined to demonstrate different refraction corrections. Below the center line Β-Β, there are several close-range correction areas 2210 and 2220, each having a different correction power being surrounded by a single intermediate distance correction area 2230. Although only two close distance correction areas 2210 and 2220 are shown, any number of close distance correction areas may be provided. Likewise, any number of intermediate distance correction areas are available. Above the center line Β-β, a remote correction area 2240 is provided. Regions 2210, 2220, and 2230 can be energized in a programmed sequence, or in a manner similar to conventional three-focus static 〇n-〇ff to save power. The lens 2200 can assist the wearer's eye focus by smoothing the transition between various different focal lengths in various regions as seen from a distance, or from a near distance. The phenomenon of "image jumping" can be reduced or significantly reduced. This advancement is also provided in the specific embodiments shown in Figures 23 and 24 below. Figure 23 is a front elevational view of another embodiment of another electroactive lens 230. In the 84166 - 69-1269091 mirror 30,000 is defined in various regions to prove different refraction corrections. Below the centerline C-C, a single close range correction area 2310 is surrounded by a single intermediate distance correction area 2320. Above the center line C-C is placed a single remote correction area 2330. 24 is a front elevational view of another embodiment of another electroactive lens 2400. Various different regions that provide different refraction corrections are defined in lens 2400. The single close distance correction area 2410 is surrounded by a single intermediate distance correction area 2420, and the single intermediate distance correction area 242 is surrounded by a single remote distance correction area 'domain 2 4 3 0 . 25 is a side elevational view of another embodiment of another electroactive lens 2500. Lens 2500 includes a conventional optical lens 2510 in which a plurality of full field electrical regions 2520, 2530, 2 540, and 2550 are connected, each separated from adjacent regions by isolation layers 2525, 2535, and 2545. 26 is a side elevational view of another embodiment of another electroactive lens 2600. Lens 2600 includes a conventional optical lens 2610 in which a plurality of partial field electrical regions 2620, 2630, 2 640, and 2650 are connected, each separated from adjacent regions by isolation layers 2625, 2635, and 26 45. Structure area 2660 is around electrical active areas 2620, 2630, 2640, and 2650. Re-discussing the electro-acting lens, an electro-active lens for correcting the refractive error, can be fabricated using an electro-active refractive matrix adjacent to a glass, polymer, or plastic substrate lens printed or etched using a scrambling pattern. The surface of the substrate lens with diffractive printing is in direct contact with the electroactive substance. Therefore, a table i of the electrical refraction matrix is also a diffraction pattern of the image projected on the surface of the lens substrate. The 84166 -70-1269091 component acts as a hybrid lens so that the substrate lens always provides a fixed correction power typically used for distance correction. The refractive index of the refraction matrix in its non-excited state is approximately equal to the refractive index of the electroactive refractive matrix of the substrate lens; this difference should be 〇·05 refractive index unit or less. Therefore, when the electro-acting lens is not excited, the substrate lens has the same refractive index as the electro-active refractive matrix, and the diffraction pattern has no power, and no correction is provided (〇·〇〇 光 luminescence in this state, the substrate lens The power is only the correct power. § When the excitation is applied to the refractive matrix, its refractive index changes, and the refractive power of the 纟 & ray pattern becomes attached to the substrate lens. For example, if the substrate lens has ― 3.50 refractive power, and when +2· 〇〇 dioptric excitation, the electrical action diffraction layer will have power, the total power of the electro-optical lens assembly is -1. 50% luminosity. As such, the electroactive lens allows for near vision or reading. In other embodiments, the electroactive refractive matrix in the excited state may be in accordance with the refractive index of the optical lens. The electroactive layer using liquid crystal is birefringence. That is, when # exposed to non-polarized light, they will display two different focal lengths in their non-energized state. This birefringence provides a double or modular image on the omentum. There are ^ ways to solve this problem. The first method requires the use of at least two electrical layers. An electroactive layer is made of electro-active molecules arranged in the longitudinal direction of the layer. The other electroactive layer is used in its layer to make molecules in the latitudinal direction; therefore, the molecular arrangement in the two layers is at right angles to each other. Thus, the polarization of the light is the same focus of the two layers, and all the light is at the same focal length of 84166 -71 - 1269091. The permeable layer of the two right angles #, or the central layer of the transmission lens is a double end plate. Another design (ie, A, the same stencil pattern engraved on both sides) is achieved. The electroactive substance is then placed on a layer on both ends of the central plate to ensure that their arrangement is at right angles. Then, a cover upper layer is placed on each of the electric (four) refraction matrices Φ to include it. This is a simpler design than overlapping two distinct electrical/diffractive layers on top of each other. The different choice is to add the cholesteric liquid crystal to the electroactive substance to supply it to a larger chiral element. It was found that a certain level of chiral concentration can eliminate the polarization of the plane polarization, and the two electro-optical layers of the pure nematic liquid crystal can be dispensed with as the requirement of the electro-active substance element. The materials for the electroactive layer will now be described, the class of materials for the electroactive refractive matrix and the special electroactive substances and examples of lenses of the present invention will be listed below. In addition to the liquid crystal materials listed in category 1 below, we typically treat each of these material classes as a polymer gel. Liquid crystals Any liquid crystal film that forms a nematic, smectic, or cholesteric phase has a long range alignment that can be controlled using an electric field. An example of a nematic liquid crystal is: amyl cyano phenyl (5CB), (n-octyloxy)-4-cyanobiphenyl (8 〇 CB). Other examples of liquid crystals are complex 4-cyano 4 η-alkylbiphenyl, 4-n-decyl-biphenyl, 4-aryl~4"-η-alkyl-bitriphenyl, wherein η = 3 , 4, 5, 6, 7, 8, 9; and commercially available blends of BDH (British Drug House) - Merck such as E7, E36, E46, and ZLI-series. 84166 -72- 1269091 Electro-optical polymer ^Do not include, for example, by J. E. Mark at the American Institute of Physics, Woodburry, Ν·Υ·, 1996 Name “Physical
Properties of p〇iymerS Handbook”中揭示的任何透明光 子本合物質,其包含具有在一施主與一接收者群(稱為色 基)之間的非對稱極化結合P電子的分子,例如在由dAny of the transparent photonic materials disclosed in the Properties of p〇iymerS Handbook", comprising molecules having asymmetric polarization between a donor and a receiver group (referred to as a chromophore) in combination with P electrons, for example in d
Bosshard 等人在 Gordon and Breach Publishers,Bosshard et al. at Gordon and Breach Publishers,
Amsterdam, 1 995 名稱 “〇rganic Nonl inea、r 〇ptical Materials”中揭示的這些。聚合物的範例是如下所述r聚 苯乙烯、複合碳酸鹽、聚甲丙烯酸酯、聚乙烯卡坐、聚亞 氨、聚圭烷。色基的範例是:仲硝基笨氨(pNA)、散紅i (DR 1)、3-甲基-4-甲氧基-4’ -硝均二笨代乙烯、二乙基 氣基亂基均一苯代乙稀(DANS)、二乙基硫代巴比土酸。 電光聚合物可透過下列產生:a)跟隨一客/主方法;b) 透過將色基共價合併到聚合物(側基與主鏈);及/或…透 過例如交鍵的格柵硬化方法。 聚合物液晶 此類別包括聚合物液晶(PLCs),其有時亦稱為液晶聚合 物、低分子團液晶、自我強化聚合物、原地合成物、及/ 或分子合成物。PLCs是異量分子聚合物,其包含例如在由 W. Brostow 於 A. A. Col Iyer 、 Elsevier 在 New-York-London 1 992,第一章編輯的名稱” Liquid Crystal 1ine Polymers: From Structures toAmsterdam, 1 995 The names "〇rganic Nonl inea, r 〇ptical Materials" are disclosed. Examples of the polymer are r-polystyrene, composite carbonate, polymethacrylate, polyethylene, polyethylene, poly-methane as described below. Examples of chromophores are: secondary nitro stupid ammonia (pNA), red i (DR 1), 3-methyl-4-methoxy-4'-nitrate, stupid ethylene, diethyl ether Base of monostyrene (DANS), diethyl thiobarbituric acid. Electro-optic polymers can be produced by: a) following a guest/main method; b) by covalently incorporating a chromophore into a polymer (side groups and backbone); and/or by a grid hardening method such as cross-linking . Polymer Liquid Crystals This category includes polymer liquid crystals (PLCs), which are sometimes also referred to as liquid crystal polymers, low molecular group liquid crystals, self-reinforced polymers, in situ compositions, and/or molecular composites. PLCs are heterogeneous molecular polymers, including, for example, by W. Brostow in A. A. Col Iyer, Elsevier in New-York-London 1 992, titled "Chapter 1", Liquid Crystal 1ine Polymers: From Structures to
Appl icat ions”中揭示的同時相對僵硬與彈性序列。pLCs 84166 -73- 1269091 的範例是:聚甲基丙烯酸酯,其包含4-氫苯基苯甲酸鹽側 基及其他類似混合物。 聚合物分散液晶 此類別包括聚合物分散液晶(PDLCs),其是由在聚合物 矩陣中的液晶微滴分散所組成。這些物質是以數個方法製 成:(i)透過向列曲線排列相位(NCAP)、透過熱感應相位 分離(TIPS)、溶劑感應相位分離(SIPS)、與聚合感應相位 分離(PIPS)。PDLCs的範例是:液晶E7(BDH_Merck)與 N0A65 (Norland products, Inc. NJ)的混合;E44 (BDH-Merck)與聚甲丙烯酸酯(PMMA)的混合;E49 (BDH-Merck)與 PMMA的混合;單體dipentaerythrol 氫氧根 五丙烯酸醋、液晶E7、N -乙烯基p比洛烧_、N -苯基甘氨酸、 與顏料Rose Bengal的混合。 聚合物穩定液晶 此類別包括聚合物穩定液晶(PSLCs),其是由在聚合物 網路中的液晶所組成的物質,其中聚合物構成低於液晶的 重里。一光來合作用早體是與一液晶及'UV聚合作用激勸 物質一起混合。在液晶排列之後,單體的聚合作用典型是 由UV暴露激勵,且結果的聚合物可建立穩定液晶的網路。 對於PSLCs的範例而言,可參考例如:由c. M. Hudson 等人在 Journal of the Society for Information Display, vol· 5/3,1-5,( 1 997)名稱“Optical Studies of Anisotropic Networks in Polymer-Stabi1izedThe simultaneous relative stiffness and elastic sequence disclosed in Appl icat ions. An example of pLCs 84166-73-1269091 is: polymethacrylate containing 4-hydrophenyl benzoate pendant groups and other similar mixtures. Dispersed Liquid Crystals This category includes polymer dispersed liquid crystals (PDLCs) consisting of dispersion of liquid crystal droplets in a polymer matrix. These materials are made in several ways: (i) phase alignment through a nematic curve (NCAP) ), through thermally induced phase separation (TIPS), solvent induced phase separation (SIPS), and polymer induced phase separation (PIPS). Examples of PDLCs are: a mixture of liquid crystal E7 (BDH_Merck) and NOA65 (Norland products, Inc. NJ) ; mixing E44 (BDH-Merck) with polymethacrylate (PMMA); mixing E49 (BDH-Merck) with PMMA; monomer dipentaerythrol hydroxide acryl vinegar, liquid crystal E7, N-vinyl p _, N-phenylglycine, mixed with the pigment Rose Bengal. Polymer Stabilized Liquid Crystals This category includes polymer stabilized liquid crystals (PSLCs), which are composed of liquid crystals in a polymer network, where the polymer structure It is lower than the weight of the liquid crystal. The first light is used in combination with a liquid crystal and 'UV polymerization. The polymerization of the monomer is typically excited by UV exposure, and the resulting polymer is polymerized. A stable liquid crystal network can be established. For examples of PSLCs, for example, by C. M. Hudson et al. in the Journal of the Society for Information Display, vol 5/3, 1-5, (1 997) Name "Optical Studies of Anisotropic Networks in Polymer-Stabi1ized
Liquid Crystals”、及 G· P· Wiederrecht 等人在 J· 〇f Am· 84166 -74- 1269091Liquid Crystals”, and G·P· Wiederrecht et al. at J·〇f Am· 84166 -74-1269091
Chem· Soc-’12〇, 3231-3236 (1998)名稱Chem· Soc-’12〇, 3231-3236 (1998)
Photorefractivity in Po 1 ymer-Stabi1ized Nematic Liquid Crystals,,中的描述。 皇行組成的非線分子結摄 此類別包括電光非對稱有機薄膜,其可透過使用下列方 法來製造· Langmuir-Blodgett薄膜,其是從水溶劑來改 變聚合電解質沈積(聚合陰離子/聚合陽離子);分子束磊 晶法、共價耦合反應的連續合成(例如:以有機三氯矽甲 烷為主之自行組成多層沈積)。這些技術通常會導致有厚 度小於大約1公釐的薄膜。 圖29根據本發明另一具體實施例的一光學透鏡系統透 視圖。在圖29顯示的光學透鏡系統包含一光學透鏡29〇〇, 其具有:一外部周邊2910、一透鏡表面2920、一電源2930、 一電池匯流排2940、一透明導線匯流排2950、一控制器 2960、一光發射二極體2970、一輻射或光偵測器2980、舆 一電作用折射矩陣或區域2990。在此具體實施例中,電作 用折射矩陣2990是包含在光學透鏡29 00的空洞或凹處 2999。 從圖可看出,此光學透鏡系統是自我包含,且放置在包 括鏡框與折射器的各種不同支撐。在使用方面,透鏡2900 的電作用折射矩陣2900是透過控制器2960聚焦及控制,以 改良使用者的視覺。此控制器2 9 6 0是經由透明導線匯流排 2 9 5 0而從電源2 9 3 0接收光焦度,且經由透明導線匯流排 2950而從輻射偵測器2980接收資料信號。控制器2950可經 84166 -75- 1269091 由這些匯流排而控制這些元件及其他。 當適當發揮功能時,電作用折射矩陣299〇可通過它而將 光折射,所以透鏡2900的戴用者可經由電作用折射矩陣 29 90而看見聚焦影像。因為圖29的光學透鏡系統是自我包 含,所以光學透鏡2900可放置在各種不同框架及其他支 撐,即使這些框架及其他支撐不包含透鏡系統的特殊支撐 元件。 牙 注意,光發射二極體2970、輻射偵測器2980、控制器 2960、與電源2930是每個彼此麵合,且經由各種不同導線 匯流排而耦合到電作用折射矩陣2990。從圖可看出,電源 2 930是經由一透明導線匯流排295〇而直接耦合到控制器 2 960。此透明導線匯流排是控制器的主要使用傳輪光焦 度’然後依需要選擇性供應給光發射二極體297〇、輻射債 測器2980、舆反動折射矩陣2990。雖然在此具體實施例的 透明導線匯流排2950最好是透明,但是在另一具體實施例 中它亦可以是半透明或不透明。 為了要幫助聚焦電作用折射矩陣2990, 一光發射二極體 2970與放射線偵測器298〇是當作一測距器工作,以幫助將 電作用折射矩陣2990聚焦。例如,可見與不可見光是從光 發射二極體2970發射。發射光的反射然後是透過輻射偵測 器2980偵測,且產生一信號,以識別它是否感測到反射光 束。只要接收此信號,用以控制這些活動的控制器2 9 6 0 可決定一特殊物體的距離。知道此距離,先前使用使用者 的適當光學補償程式化的控制器2960然後會產生信號來 84166 -76- 1269091 激勵電作用折射矩陣2990,以允許使用者看穿光學透鏡 2900’以更清楚觀察物體或影像。 在此具體實施例中,顯示的電作用折射矩陣299〇是具有 一35公釐直徑的圓,且光學透鏡29〇〇亦是以圓來顯示此 圓具有一 70公釐直徑,且中央透鏡厚度是大約2公釐。然 而,在另一具體實施例中,光學透鏡29〇〇與電作用折射矩 陣2 990亦能以另一標準及非標準形狀與大小建構。在這些 選擇性大小與方向的每一者中,然而最好是電作用折射矩 俥2990的位置與大小是系統的使用者可經由透鏡的電作 用折射矩陣2990部分來觀察影像與物體。 在光學透鏡2900的另一元件可放置在光學透鏡29〇〇的 其他位置。然而,最好是這些個別元件的任何選取位置是 儘可能是不引使用者注意。換句話說,最好是這些其他元 件疋位在运離使用者的主要觀察路徑。而且,亦最好是這 些元件疋儘可能小與透明,以進一步減少使用者視線障礙 的危機。 在一較佳具體實施例中,電作用折射矩陣2990的表面可 以是平坦或實質具光學透鏡2920表面的平探。而且,匯流 排可放置在沿著從中央點突出的透鏡半徑的透鏡。透過以 此方式放置匯流排,透鏡能以他們的支撐旋轉,以便在他 們最少強迫的方向來排列匯流排。然而,從圖29可看出, 此較佳匯流排設計不是始終遵守的。在圖29,輻射偵測器 2980與光發射二極體2970是放置在非輻射狀匯流排2950 上’而是具有沿著透鏡2900半徑放置的單一匯流排的所有 84166 -77- 1269091 兀件。然而,最好是設定成在沿著透鏡半徑沒有許多(如 果不是所有)各種不同元件來減少他們的妨害。而且,亦 最好是匯流排或其他傳導性物f可從透鏡外緣存取,所以 透鏡的個別元件可依需要從透鏡的邊緣存取、控制、或程 式化’即使透鏡已姓刻或鑲邊以適合—特殊框架。此存取 包括直接暴露到透鏡外部,以及放置在接近周邊的表面, 然後可經由一貫穿而到達透鏡。 圖30是根據本發明另一具體實施例的—透鏡系統透視 圖。類似圖29的具體實施例,此具體實施例亦顯示可用來 修正或改善使用者折射錯誤的一透鏡系統。圖⑽的透鏡系 統包括一框架3010、一透明導線匯流排3〇5〇、一光發射二 極體/測距器3070、一鼻墊3080、一電源3〇3〇、一半透明 控制器3060、一電作用折射矩陣3 〇9〇、與一光學透鏡 3000。從圖30可看出,控制器306〇是沿著在電作用折射矩 陣3090與電源3030之間的透明導線匯流排3〇5〇放置。從圖 亦可看出,測距器3070是耦合到沿著一不同導線匯流排的 控制器3060。 在此具體實施例中,光學透鏡3〇〇〇是經由框架3〇1〇安裝 及支撐。此外,電源3030是安裝在鼻墊3080,而不是具有 在光學透鏡3000上安裝的電源3030,且該電元3030是接著 經由鼻墊連接器3020而連接到控制器3060。此結構的優點 是電源3030可依需要取代或充電。 圖31是根據本發明另一具體實施例的另一透鏡系統透 視圖。在圖31,控制器3160、繩索3170、框架3110、傳導 84166 -78- 1269091 匯流排3150、電作用折射矩陣319〇、光學透鏡31〇〇、框架 柄或空心管3130、與信號導線3180是以數字標示。如先前 顯示的具體實施例所示,控制器316〇是安裝在繩索317〇, 而不是將控制器3160安裝在光學透鏡31〇〇上或其中。此控 制器31 60是藉由信號導線31〇而耦合到電作用折射矩陣 3190,其中該等信號導線31〇是放置在框架311〇的空心管 框架柄3130,且經由繩索317〇而延伸到控制器316〇。透過 在繩索3170上放置控制器3160,使用者的配鏡可透過只解 、開繩索3170及將它放置在使用者穿戴的另一框架而攜帶 不同透鏡系統。 圖32疋根據本發明另一具體實施例的一透鏡系統透視 圖。框架3210、以及電作用折射矩陣329〇、光學透鏡32〇〇、 與内部框架信號導線3280是皆在圖32顯示。在此具體實施 例中,框架3210包含内部框架信號導線328〇,且可從沿著 他們長度的任何點存取,使得資訊與光焦度可提供給光學 透鏡3200的元件,而不管在框架321〇的方向。換句話說, 輻射狀匯流排可接觸内部框架信號導線328〇及提供提供 光焦度與育訊來控制電作用折射矩陣329〇,而不管光學透 鏡3200的輻射狀匯流排的位置。圖32的區段A — A清楚顯示 的這些内部框架信號導線3280。在另一具體實施例中,只 有一内部框架信號導線是在框架中提供,而不是具有兩個 内部框架信號導線3280,用以使框架本身當作導線使用, 以幫助將光焦度及其他資訊傳送給元件。此外,超過兩個 内部框架導線亦使用在本發明的一另一具體實施例。 84166 -79- 1269091 而且’在另一具體實施例中,一傳導層可取代使用,而 不是具有單一輕射狀匯流排將折射矩陣連接到框架信號 導線。在此另一具體實施例中,此傳導層包含所有透鏡或 只有一部分透鏡。在一較佳具體實施例中,它可以是透 明,且包含整個透鏡,以減少與層邊界有關的失真。當使 用此層用時,沿著透鏡外部周邊的存取點數量可透過將該 層擴充到超過一位置的外部周邊而增加。而且,此層亦可 區分成個別子區域’以在透鏡的邊緣與其中的元件之間提 供複數個通道。 圖33是根據本發明另一具體實施例的一光學透鏡系統 透視圖。在圖33, 一光學透鏡333〇是與一電作用折射矩陣 3390與一光學超環面3320—起顯示。在此具體實施例中, 折射矩陣*3390是放置在光學超環面3320,然後固定到光學 透鏡3330的背面。在如此做方面,光學超環面332〇是在光 學透鏡3330背部形成洞口凹處,以支撐、保持及包含電作 用折射矩陣3390。只要此光學透鏡系統組件,光學透鏡 3330的前面然後可塑造、表面鑄造、輾壓成薄板或處理成 進一步將光學透鏡系統建構成一使用者特殊折射與光學 需求。與上述具體實施例一致是電作用折射矩陣339〇然後 可激勵及控制,以改善使用者的視覺。 圖34疋本發明另一具體實施例的另一分解圖。在圖 其顯示一光學透鏡3400、一電作用折射矩陣34〇與一載體 3480。在此具體實施例的電作用折射矩陣349〇是經由載體 3480而輕合到光學透鏡3400’而不是將超環面當作先前具 84166 -80- 1269091 體實施例使用,以幫助將在光學透鏡上的電作用折射定方 向。同樣地,支援電作用折射矩陣3490所需的其他元件 3470亦耦合到載體348(^在如此做方面,這些元件347〇 與電作用折射矩陣3490是固定到各種不同光學透鏡。此 外,此載體3480、它的元件3470、與電作用折射矩陣349〇 是每個覆蓋另一物質或物質,以便在他們耦合到透鏡之前 或之後來保護他們不受損壞。 載體3480是使用許多可能的物質製成,包括一聚合物網 孔膜、一彈性塑膠、一陶質、一玻璃、及這些任何物質合 成物。結果,此載體3480可以是彈性或堅硬,此是因它的 物質成份而定。在每個情況,雖然在另一具體實施例它可 以彩色或半透明’及亦將其他想要的性質提供給透鏡 3400’但疋載體3480疋透明是較佳。此是因載體3480包含 的物貝類型而疋’包括透鏡的微機器處理、濕與乾餘刻的 各種不同製程可使用,以形成可安裝載體的凹處或洞口。 這些技術亦可用來製造載體本身,包括蝕刻載體的一或兩 端來建立繞射圖案,以修正由載體產生的任何光學偏差。 圖35a-35e顯示根據本發明另一具體實施例而使用的一 組合序列。在圖35a,框架3500與戴用者的眼睛3570可清 楚見到。在圖35b,光學透鏡3505的電作用折射矩陣3580、 辕射狀匯流排3540與各種不同旋轉與位置箭號3510、 3520、和3530亦可在圖見到。圖35c顯示在9點鐘位置具它 輻射狀匯流排3540的光學透鏡系統。圖35d顯示在它鑲邊 及一部分外部周邊在準備安裝到框架35〇〇已移除之後的 84166 -81 - 1269091 $ 35c的相同光學透鏡系統。圖gw顯示完整透鏡系統,該 凡整透鏡系統具有:電作用折射矩陣,其是在一第一區域 =使用者眼睛上置中;輻射狀匯流排354〇 ;及電源359〇, 其疋放置在使用者眼睛與在透鏡周邊區域的框架35〇〇模 板之間。組合的周邊區域與第一區域包含在此具體實施例 # i個透鏡毛壞。然而’在其他具體實施例方面,他們只 包含一部分的整個透鏡毛壞。 根據本發明具體實施例,組件此透鏡系統的技師可依下 述執π β纟圖35a描述的-第—步驟’具有電作用透鏡的 汇架3500疋放置在使用者前面,以找到與框架有關的使用 者眼睛3570的中心位置。在找到與框架有關的使用者眼睛 的中〜之後,電作用透鏡然後會旋轉、定位、鑲邊、與切 割,使得當使用者穿戴框架時,電作用折射矩陣358〇的中 心可置中在使用者的眼睛357〇。此旋轉與切割是在圖 35b、35c和35d顯示。在透鏡鑲邊及切割,以正確在使用 者眼睛上正確放置電作用矩陣358〇之後,電源或其他元件 然後咬住到透鏡的匯流排354〇斷,且透鏡可固定到如圖 35e顯示的框架。此咬住處理包括將引線從每一元件經由 透鏡的表面而推向匯流排,以將元件固定到透鏡,及提供 他們彼此及其他元件的連接。 雖然描述的電作用透鏡系統與電作用矩陣是置中在使 用者眼睛的前面或使用者眼睛上,但是透鏡與電作用矩陣 亦可放置在使用者視場的其他方向,包括與使用者眼睛中 心的偏移。而且,由於無數的可用護目鏡框架形狀與大 84166 -82 - 1269091 小,因為透鏡可被鑲邊,藉此允許改變的它的尺寸,透鏡 最後可透過技師組件,以適合廣泛多樣的框架與個別的使 用者。 除了只使用電作用折射矩陣來修正使用者的視覺之 外,透鏡的一或兩個表面亦可表面鑄造或研磨,以進一步 補償使用者的折射誤差。同樣地,透鏡表面亦可由薄層組 成,以補償使用者的光學偏差。 在此具體實施例及其他方面,技師可使用標準的透鏡毛 壞來組件系統。這些透鏡毛壞可能是從3〇公釐到8〇公釐的 範圍,且最通常大小是60公釐、65公釐、70公釐、72公爱、 和75公釐。在組件組合處理之前或有時期間,這些透鏡毛 壞能與載體上安裝的一電作用矩陣搞合。 圖36a-3 6e是根據本發明的另一具體實施例而描述另一 組合序列,其中這些元件是實際耦合到框架本身,而不是 具有在透鏡上放置的測距器與電源。在圖36a —36e的描述 是一框架3600、一使用者眼睛3670、方向與旋轉箭號 3610、3620和3630、光學透鏡3605的電作用折射矩陣 3 6 80、與一透明元件匯流排3640。如上述的具體實施例, 使用者的眼睛是先放置在框架。然後,透鏡對著使用者的 眼睛旋轉,使得電作用折射矩陣3680可正確放置在使用者 眼睛前面。然後,透鏡可依需要定形及研磨,及插入框架。 在此插入的同時,測距器、電池及其他元件3690亦耦合到 透鏡。 圖37a-37f是仍然提供本發明的另一具體實施例。透明 84166 -83 - 1269091 匯流排3740、電作用折射矩陣378〇、使用者的眼睛377〇、 旋轉箭號3710、測距器或控制器與電源373〇、及多導線 3720是整個在圖顯示。在此另一具體實施例中,除了完成 在另外兩個組件具體實施例描述的步驟之外,同時完成在 圖37e描述的另一步驟。在圖37e描述的此步驟需要使用多 導線塾圈或電線系統3720來包裹透鏡的外部圓周。此電線 系統3720可用來在電作用折射矩陣378〇與其他元件之間 來回傳送信號與光焦度。在多導線墊圈3 72〇的實際信號電 線包括銦錫氧化物(I TO)物質、以及金、銀、銅、或任何 其他適當導線。 圖38是本發明使用的一整合式控制器與探測器的分解 等大圖。在此具體實施例中,由一輻射偵測器381〇與一紅 外線光發射二極體3820所組成的測距器是直接耦合到控 制器3830,而不是如其他具體實施例所示具有經由匯流排 而彼此連接的控制器與測距器。然後,此整個單元是耦合 到如上述具體實施例所述的框架或透鏡。雖然15公釐與5 公釐的尺寸是在圖38顯示,但是其他尺寸與結構亦可使 用。 圖39是仍然根據本發明另一具體實施例的一整合式控 制器與電源透視圖。在此具體實施例中,控制器393〇是直 接耦合到電源3940。 圖40是根據本發明另一具體實施例的—整合式電源 4040、控制器4030與測距器透視圖。從圖4〇可看出,輻射 偵測器4010與光發射二極體4020(範圍偵測器)是耦合到 84166 1269091 控制器4030,且接著耦合到電源4〇4〇。如上述的具體實施 例,在此情況顯示的尺寸(3· 5公釐與6· 5公釐)是範例,且 可使用其他尺寸。 圖4卜43是根據本發明各種不同具體實施例的一透鏡系 統透視圖。圖41是使用一控制器與測距器組合413〇的透鏡 系統,其然後經由電線匯流排4120而耦合到電作用偵測器 折射矩陣41 40與電源4110。相對下,圖42是顯示一組合的 控制器與電源4 2 4 0,其是經由透明導線匯流排4 2 5 〇而耗合 到光發射一極體4 2 2 0與輕射偵測器4 21 〇 (測距器)與電 作用折射矩陣4230。圖43描述沿著輻射狀透明導線匯流排 4330放置.的組合電源、控制器與測距器432〇的配置,該輻 射狀透明導線匯流排4 3 3 0接著是輕合到電作用折射區域 4310。在這些三個圖的每一者是顯示各種不同尺寸與直 徑。應了解到這些尺寸與直徑只是說明,且各種不同其他 尺寸與直徑可使用。 亦應了解本發明的各種不同具體實施例在光子與電广 領域中具有廣泛多種使用。例如,在此描述的電作用系^ 可用來將光束、或雷射光引導及/或聚隹,且本 …、 果或雷射 光可使用在光學通信與光學計算’例如光學開關與資料儲 存。此外,在此描述的電作用系統是由合成影像系統 、 便在三度空間中找出一光學影像。 圖48是根據本發明具體實施例的一電作用光學系統、 視圖。如圖48所示,電作用光學系統4800包括一第L電透 用元件4820、一第二電作用元件4830、第三*从 一免作用元件 84166 -85- 1269091 4840、與測距器裝置485〇。而且,如圖48的顯示,一影像 4/10是以在三度空間中的一第一點的箭號表示。影像可以 疋例如一光束、一雷射光束、或_實際或虛擬光學影像。 因此,電作用光學系統4800可在三度空間中用來將影像 4810聚焦到一預定點。第一電作用元件482〇可用來將影像 4810沿著X軸來移動、或偏移。此可透過將適當的信號陣 列應用到第一電作用元件4820而達成,以便在第一電作用 元件4820中產生水平稜鏡。第二電作用元件483〇能以第二 ’電作用元件4820的類似方式來使用,以產生垂直稜鏡,且 沿著y轴將影像4810偏移。第三電作用元件484〇可透過將 系= 4800光學光焦度調整到一更正或更負光學光焦度而 沿著z軸將影像4810聚焦,此是因結果影像的想要位置而 疋。此外,測距器裝置4850可在使用者想要將結果影像聚 焦的圖場中用來偵測例如偵測器的一目標位置。然後,測 距器裝置485 0可決定在第三電作用元件484〇中所需的聚 焦程度,以便在三度空間的預定點上達成使用者想要的結 果影像4860。應了解測距器裝置485〇可以是上述測距器i 體實施例的形式,包括一整合式電源、控制器與測距器:系 統。 圖4 9是根據本發明具體實施例的一電作用光學系統透 視圖。如圖49所示,電作用光學系統49〇〇包括一第一電作 用元件4920、一第二電作用元件493〇、與測距器裝置 4950。而且,如圖49的顯示,一影像491〇是以在三度空間 中的一第一點上的箭號表示。影像可以是例如一光束、一 84166 -86 - 1269091 雷射光束、或一實際或虛擬光學影像。因此,電作用光學 系統4900可在三度空間中用來將影像4910聚焦到一預定 點。第一電作用元件4920可用來將影像4910沿著X轴與y 軸來移動、或偏移。此可透過將適當的信號陣列應用到第 一電作用元件4920而達成,以便在第一電作用元件4920 中產生水平與垂直稜鏡。在此具體實施例中,稜鏡可使用 水平與垂直元件產生,而不是只使用地水或垂直。第二電 作用元件4930可透過將系統4900的光學光焦度調整到一 更正或更負光學光焦度而沿著z軸將影像4910聚焦,此是 因結果影像的想要位置而定。此外,測距器裝置4 9 5 0可在 使用者想要將結果影像聚焦的圖場中偵測例如一债測器 的目標位置。然後,測距器裝置4950可決定在第二電作用 元件4930中需要的聚焦程度,以便在三度空間的預定點上 達成使用者想要的結果影像4960。應了解測距器裝置4950 可以是上述測距器具體實施例的形式,包括一整合式電 源、控制器與測距器系統。 圖50是根據本發明具體實施例的一電作用光學系統透 視圖。如圖50所示,電作用光學系統5000包括一第一電作 用元件5020與測距器裝置5050。而且,如圖50的顯示,一 影像5010是由在三度空間中的一第一點上的箭號表示。影 像可以是例如一光束、一雷射光束、或一實際或虛擬光學 影像。因此,電作用光學系統5000可可在三度空間中將影 像5010聚焦到一預定點。第一電作用元件5〇2〇可用來將影 像501 0沿著χ軸與y軸來移動、或偏移。此可透過將適當的 84166 -87- 1269091 信號陣列應用到第一電作用元件5020而達成,以便在第一 電作用元件5020中產生水平與垂直棱鏡。在此具體實施例 中’稜鏡可使用水平與垂直元件產生,而不是只使用水平 或垂直。此外,第一電作用元件5020可透過將系統5000 的光學光焦度調整到一更正或更負光學光焦度而沿著z軸 將影像5010聚焦,此是因結果影像的想要位置而定。測距 器裝置5050可在使用者想要將結果影像聚焦的圖場中用 來偵測例如偵測器的一目標位置。然後,測距器裝置5 〇 5 〇 可決定在第一電作用元件5020中需要的聚焦程度,以便在 二度空間的預定點上達成使用者想要的結果影像5 〇 6 〇。因 此,光學系統5000可使用與具固定角稜鏡的光學透鏡相同 的光學特性來產生一陣列。應了解測距器裝置5〇5〇可以是 上述測距器具體實施例的形式,包括一整合式電源、控制 器與測距器系統。 圖51是根據本發明具體實施例的一電作用光學系統透 視圖。如圖51的顯示,電作用光學系統51〇〇包括一第一元 件5120、一第二電作用元件513〇、與測距器裝置515〇。在 圖51亦顯示一影像511〇是由在三度空間的一第一點上的 笞號表示衫像可以是例如一光束、一雷射光束、或一實 際或虛擬光學影像。因此,電作用光學系統51〇〇可用來將 影像511 0聚焦到在三度空間的一預定點。第一元件5丨2〇 可用來從影像或光束5110來選取一特殊光波長。此可透過 使用-靜態單色過濾器、或一機械或電式開關#色過濾器 來70成第一電作用元件513 0可用來沿著X轴與y轴將影像 84166 •88- 1269091 5110移動、或移位。此可透過將適當信號陣列應用第二電 作用元件5130而完成,以便在第二電作用元件5130中產生 水平與垂直稜鏡。在此具體實施例中,稜鏡是使用一水平 與一垂直元件來產生,而不是只使用水平或垂直元件。第 二電作用元件51 30可透過將系統5100光學光焦度調整到 一更正或更負光學光焦度而亦用來沿著z轴將影像511〇聚 焦’此是因結果影像的想要位置而定。此外,測距器裝置 51 5 0可在圖場中用來偵測使用者想將影像聚焦的例如一 摘測器的目標位置。然後,測距器裝置515〇可決定在第二 電作用元件51 30中想要聚焦程度,以便在三度空間的預定 點上達成使用者想要的結果影像516 0。因此,光學系統 5100是使用與固定角稜鏡的光學透鏡相同的光學特性、及 擁有想要球體光焦度來產生一陣列。應了解測距器裝置 51 50是上述測距器具體實施例的形式,包括一整合式電 源、控制器與測距器系統。Photorefractivity in Po 1 ymer-Stabi1ized Nematic Liquid Crystals,, description. Non-linear molecular junctions composed of Huangxing This category includes electro-optical asymmetric organic thin films, which can be fabricated by using the following method: Langmuir-Blodgett film, which changes the polyelectrolyte deposition (polymerized anion/polymerization cation) from a water solvent; Molecular beam epitaxy, continuous synthesis of covalent coupling reactions (for example: self-constructed multilayer deposition based on organic trichloromethane). These techniques typically result in films having a thickness of less than about 1 mm. Figure 29 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. The optical lens system shown in FIG. 29 includes an optical lens 29A having an outer periphery 2910, a lens surface 2920, a power source 2930, a battery busbar 2940, a transparent wire busbar 2950, and a controller 2960. A light emitting diode 2970, a radiation or photodetector 2980, an electroactive refractive matrix or region 2990. In this embodiment, the electrical refraction matrix 2990 is included in the void or recess 2999 of the optical lens 29 00. As can be seen from the figure, this optical lens system is self-contained and placed in a variety of different supports including the frame and the refractor. In use, the electroactive refractive matrix 2900 of the lens 2900 is focused and controlled by the controller 2960 to improve the user's vision. The controller 2 690 receives the power from the power supply 2 9 3 0 via the transparent wire bus 2 590 and receives the data signal from the radiation detector 2980 via the transparent wire bus 2950. The controller 2950 can control these components and others from these bus bars via 84166 - 75 - 1269091. When properly functioning, the electroactive refractive matrix 299 can refract light therethrough, so that the wearer of the lens 2900 can see the focused image via the electrical refraction matrix 29 90 . Because the optical lens system of Figure 29 is self-contained, the optical lens 2900 can be placed in a variety of different frames and other supports, even if these frames and other supports do not include special support elements for the lens system. The teeth note that light emitting diode 2970, radiation detector 2980, controller 2960, and power source 2930 are each facing each other and coupled to electrical active refraction matrix 2990 via a variety of different wire busses. As can be seen, the power supply 2 930 is directly coupled to the controller 2 960 via a transparent wire bus 295. This transparent wire busbar is the controller's primary use of the transmission power' and then selectively supplied to the light-emitting diode 297A, the radiation debtor 2980, and the 舆reaction-refractive matrix 2990 as needed. Although the transparent wire busbar 2950 in this embodiment is preferably transparent, in another embodiment it may be translucent or opaque. In order to help focus the electroactive refractive matrix 2990, a light emitting diode 2970 and a radiation detector 298 are operated as a range finder to help focus the electroactive refractive matrix 2990. For example, visible and invisible light are emitted from the light emitting diode 2970. The reflected light is then detected by radiation detector 2980 and a signal is generated to identify if it senses the reflected beam. As long as this signal is received, the controller 2 9 60 that controls these activities can determine the distance of a particular object. Knowing this distance, the controller 2960, which was previously programmed with the appropriate optical compensation of the user, will then generate a signal to energize the electrical refraction matrix 2990 to allow the user to see through the optical lens 2900' to see the object more clearly or image. In this embodiment, the electroactive refractive matrix 299 is shown to have a circle having a diameter of 35 mm, and the optical lens 29 is also shown by a circle having a diameter of 70 mm and a central lens thickness. It is about 2 mm. However, in another embodiment, the optical lens 29 and the electrically active refractive matrix 2 990 can also be constructed in another standard and non-standard shape and size. In each of these selective sizes and directions, however, preferably the position and magnitude of the electrical action refraction 俥 2990 is that the user of the system can view the image and the object via the portion of the electro-optical refraction matrix 2990 of the lens. Another component of the optical lens 2900 can be placed at other locations of the optical lens 29A. However, it is preferred that any of the selected locations of these individual components be as unobtrusive as possible. In other words, it is preferable that these other components are located in the main observation path of the user. Moreover, it is also desirable that these components be as small and transparent as possible to further reduce the risk of user visual impairment. In a preferred embodiment, the surface of the electroactive refractive matrix 2990 can be flat or substantially flattened with the surface of the optical lens 2920. Moreover, the bus bar can be placed in a lens along a radius of the lens that protrudes from the center point. By placing the busbars in this manner, the lenses can be rotated with their support to align the busbars in their least forced directions. However, as can be seen from Figure 29, this preferred busbar design is not always adhered to. In Fig. 29, the radiation detector 2980 and the light emitting diode 2970 are placed on the non-radiating bus bar 2950', but all 84166-77-1269091 elements having a single bus bar placed along the radius of the lens 2900. However, it is best to set a number of different components (if not all) along the radius of the lens to reduce their nuisance. Moreover, it is also preferred that the bus bar or other conductive material f can be accessed from the outer edge of the lens, so that individual components of the lens can be accessed, controlled, or programmed from the edge of the lens as needed, even if the lens has been engraved or inlaid Fit to fit - a special frame. This access includes direct exposure to the exterior of the lens, as well as placement on the surface proximate the perimeter, which can then be accessed through a lens. Figure 30 is a perspective view of a lens system in accordance with another embodiment of the present invention. Similar to the embodiment of Fig. 29, this embodiment also shows a lens system that can be used to correct or improve the user's refractive error. The lens system of FIG. 10 includes a frame 3010, a transparent wire bus bar 3〇5〇, a light emitting diode/ranging device 3070, a nose pad 3080, a power source 3〇3〇, a semi-transparent controller 3060, An electroactive refractive matrix 3 〇9〇, with an optical lens 3000. As can be seen from Figure 30, the controller 306 is placed along the transparent wire busbar 3〇5〇 between the electrical active refraction matrix 3090 and the power supply 3030. As can also be seen from the figure, the range finder 3070 is coupled to a controller 3060 along a different wire bus bar. In this embodiment, the optical lens 3 is mounted and supported via a frame 3〇1〇. In addition, power source 3030 is mounted to nose pad 3080 instead of having power source 3030 mounted on optical lens 3000, and is coupled to controller 3060 via nose pad connector 3020. The advantage of this configuration is that the power supply 3030 can be replaced or charged as needed. Figure 31 is a perspective view of another lens system in accordance with another embodiment of the present invention. In FIG. 31, the controller 3160, the cable 3170, the frame 3110, the conductive 84166-78-1269091 bus bar 3150, the electroactive refractive matrix 319, the optical lens 31, the frame handle or hollow tube 3130, and the signal conductor 3180 are Number indication. As shown in the previously shown embodiment, the controller 316 is mounted on the cord 317, rather than mounting the controller 3160 on or in the optical lens 31. The controller 31 60 is coupled to the electro-optical refraction matrix 3190 by signal conductors 31, wherein the signal conductors 31 are placed in the hollow tube frame handle 3130 of the frame 311 and extend through the cord 317 to control 316 〇. By placing the controller 3160 on the cord 3170, the user's optician can carry different lens systems by simply unwinding, unwinding the cord 3170 and placing it in another frame worn by the user. Figure 32 is a perspective view of a lens system in accordance with another embodiment of the present invention. The frame 3210, as well as the electroactive refractive matrix 329A, the optical lens 32A, and the internal frame signal conductor 3280 are all shown in FIG. In this particular embodiment, the frame 3210 includes internal frame signal conductors 328A and is accessible from any point along their length such that information and power can be provided to the elements of the optical lens 3200, regardless of the frame 321 The direction of the embarrassment. In other words, the radial busbars can contact the internal frame signal conductors 328 and provide optical power and communication to control the electrical action refraction matrix 329〇 regardless of the position of the radial busbars of the optical lens 3200. Sections A - A of Figure 32 clearly show these internal frame signal conductors 3280. In another embodiment, only one internal frame signal conductor is provided in the frame instead of having two internal frame signal conductors 3280 for the frame itself to be used as a conductor to aid in power and other information. Transfer to the component. Moreover, more than two inner frame wires are also used in another embodiment of the present invention. 84166 - 79 - 1269091 and in another embodiment, a conductive layer can be used instead of having a single light-emitting busbar to connect the refractive matrix to the frame signal conductor. In this other specific embodiment, the conductive layer comprises all or only a portion of the lens. In a preferred embodiment, it may be transparent and include the entire lens to reduce distortion associated with layer boundaries. When used with this layer, the number of access points along the outer periphery of the lens can be increased by expanding the layer to an outer perimeter beyond one location. Moreover, this layer can also be divided into individual sub-areas' to provide a plurality of channels between the edges of the lens and the components therein. Figure 33 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. In Fig. 33, an optical lens 333 is shown together with an electroactive refractive matrix 3390 and an optical toroidal surface 3320. In this embodiment, the refractive matrix *3390 is placed on the optical toroidal surface 3320 and then secured to the back side of the optical lens 3330. In doing so, the optical toroidal surface 332 is formed with a recess in the back of the optical lens 3330 to support, hold, and contain the electrical refraction matrix 3390. As long as the optical lens system assembly, the front face of the optical lens 3330 can then be shaped, surface cast, rolled into a thin sheet or processed to further form the optical lens system into a user specific refractive and optical need. Consistent with the above-described embodiments, the electroactive refractive matrix 339〇 can then be energized and controlled to improve the user's vision. Figure 34 is another exploded view of another embodiment of the present invention. In the figure, an optical lens 3400, an electroactive refractive matrix 34, and a carrier 3480 are shown. The electroactive refractive matrix 349A of this embodiment is lightly coupled to the optical lens 3400' via the carrier 3480 instead of using the toroid as a prior embodiment of the 84166-80-1269091 body to aid in the optical lens. The electrical action on the refraction directional direction. Similarly, the other components 3470 required to support the electrically active refraction matrix 3490 are also coupled to the carrier 348 (in this respect, these components 347 and the electrically active refractive matrix 3490 are fixed to a variety of different optical lenses. In addition, this carrier 3480 Its element 3470, and the electroactive refractive matrix 349, each cover another substance or substance to protect them from damage before or after they are coupled to the lens. The carrier 3480 is made using many possible materials, The invention comprises a polymer mesh membrane, an elastic plastic, a ceramic, a glass, and any combination of these materials. As a result, the carrier 3480 can be elastic or rigid, depending on its material composition. In the case, although in another embodiment it may be colored or translucent 'and other desirable properties are also provided to the lens 3400' but the carrier 3480 is transparent. This is due to the type of object contained in the carrier 3480.疋 'Micromachine processing including lenses, wet and dry various processes can be used to form recesses or holes in the mountable carrier. These techniques can also be used. The carrier itself is fabricated, including etching one or both ends of the carrier to create a diffraction pattern to correct any optical deviation produced by the carrier. Figures 35a-35e show a combined sequence for use in accordance with another embodiment of the present invention. Figure 35a, the frame 3500 and the wearer's eye 3570 are clearly visible. In Figure 35b, the optically active refractive matrix 3580 of the optical lens 3505, the sinusoidal busbar 3540 and various different rotational and position arrows 3510, 3520, and 3530 can also be seen in the figure. Figure 35c shows an optical lens system with its radial busbar 3540 at 9 o'clock. Figure 35d shows that it has been removed in its edging and part of the outer perimeter when it is ready to be mounted to the frame 35. The same optical lens system of the following 84166 -81 - 1269091 $ 35c. Figure gw shows the complete lens system with an electro-optical refraction matrix that is centered on a first area = user's eye; radiation a bus bar 354 〇; and a power supply 359 〇, the 疋 is placed between the user's eyes and the frame 35 〇〇 template in the peripheral area of the lens. The combined peripheral area and the first area are included here. Embodiments # i lenses are broken. However, in other specific embodiments, they only contain a portion of the entire lens hair. According to a specific embodiment of the present invention, the technician of the lens system can perform π β纟 as follows. Figure 35a depicts a "step" of the landing frame 3500 with an electro-acting lens placed in front of the user to find the central position of the user's eye 3570 associated with the frame. Thereafter, the electro-acting lens is then rotated, positioned, edging, and cut such that when the user wears the frame, the center of the electro-optical refractive matrix 358〇 can be centered on the user's eye 357〇. This rotation and cutting is shown in Figures 35b, 35c and 35d. After the lens is rimmed and cut to properly place the electrical action matrix 358 on the user's eye, the power supply or other component then snaps into the busbar 354 of the lens and the lens can be secured to the frame as shown in Figure 35e. . This biting process involves pushing the leads from each element through the surface of the lens toward the busbar to secure the components to the lens and to provide their connection to each other and to other components. Although the described electro-acting lens system and the electrical interaction matrix are centered on the front of the user's eye or on the user's eye, the lens and electrical interaction matrix can also be placed in other directions of the user's field of view, including with the user's eye center. Offset. Moreover, since the myriad of available goggle frame shapes are smaller than the large 84166 -82 - 1269091, because the lens can be rimmed, thereby allowing its size to be changed, the lens can finally be passed through the technician assembly to fit a wide variety of frames and individual User. In addition to using only the electroactive refractive matrix to correct the user's vision, one or both surfaces of the lens may be surface cast or ground to further compensate for the user's refractive error. Similarly, the lens surface can also be composed of a thin layer to compensate for optical deviations from the user. In this particular embodiment and other aspects, the technician can use a standard lens to break the component system. These lens hair defects may range from 3 mm to 8 mm, and the most common sizes are 60 mm, 65 mm, 70 mm, 72 mm, and 75 mm. These lens smears can be combined with an electrical action matrix mounted on the carrier before or during component assembly processing. Figures 36a-3e illustrate another combined sequence in accordance with another embodiment of the present invention in which the elements are actually coupled to the frame itself, rather than having a range finder and power source placed on the lens. The description of Figures 36a-36e is a frame 3600, a user eye 3670, direction and rotation arrows 3610, 3620 and 3630, an electro-optical refraction matrix 3 6 80 of the optical lens 3605, and a transparent element bus 3640. As in the specific embodiment described above, the user's eyes are placed first in the frame. The lens is then rotated against the user's eye so that the electroactive refractive matrix 3680 can be properly placed in front of the user's eyes. The lens can then be shaped and ground as desired, and inserted into the frame. At the same time as the insertion, the range finder, battery and other components 3690 are also coupled to the lens. Figures 37a-37f are still another embodiment of the invention that still provides the invention. Transparent 84166 -83 - 1269091 Busbar 3740, Electroactive Refractive Matrix 378〇, user's eye 377〇, rotating arrow 3710, rangefinder or controller and power supply 373〇, and multi-conductor 3720 are shown throughout. In this other specific embodiment, in addition to completing the steps described in the other two component embodiments, the other steps described in Figure 37e are simultaneously performed. This step, depicted in Figure 37e, requires the use of a multi-wire loop or wire system 3720 to wrap the outer circumference of the lens. This wire system 3720 can be used to transfer signals and power back and forth between the electrical active refraction matrix 378 and other components. The actual signal wires at the multi-conductor gasket 3 72 包括 include indium tin oxide (I TO) species, as well as gold, silver, copper, or any other suitable conductor. Figure 38 is an exploded perspective view of an integrated controller and detector used in the present invention. In this embodiment, the range finder consisting of a radiation detector 381 and an infrared light emitting diode 3820 is directly coupled to the controller 3830 instead of having a confluence as shown in other embodiments. Controllers and rangefinders that are connected to each other. This entire unit is then coupled to a frame or lens as described in the specific embodiments above. Although sizes of 15 mm and 5 mm are shown in Figure 38, other sizes and configurations are also available. Figure 39 is a perspective view of an integrated controller and power supply still in accordance with another embodiment of the present invention. In this particular embodiment, controller 393A is directly coupled to power source 3940. Figure 40 is a perspective view of an integrated power supply 4040, controller 4030, and range finder, in accordance with another embodiment of the present invention. As can be seen in Figure 4, the radiation detector 4010 and the light emitting diode 4020 (range detector) are coupled to the 84166 1269091 controller 4030 and then coupled to the power supply 4〇4〇. As the specific embodiment described above, the dimensions (3·5 mm and 6.5 mm) shown in this case are examples, and other sizes may be used. Figure 4 is a perspective view of a lens system in accordance with various embodiments of the present invention. Figure 41 is a lens system using a controller in combination with a range finder 413, which is then coupled to an electrical effect detector refraction matrix 41 40 and a power source 4110 via a wire bus 4120. In contrast, FIG. 42 shows a combined controller and power supply 4 2 4 0, which is consumed by the transparent wire bus bar 4 2 5 耗 to the light emitting body 4 2 2 0 and the light detector 4 21 〇 (range finder) and electrical action refraction matrix 4230. Figure 43 depicts a configuration of a combined power supply, controller and range finder 432 disposed along a radial transparent wire bus 4330, which is then lightly coupled to an electrically refracting region 4310. . Each of these three figures is shown in a variety of different sizes and diameters. It should be understood that these dimensions and diameters are only illustrative and that various other sizes and diameters may be used. It should also be understood that the various embodiments of the present invention have a wide variety of uses in the field of photonics and electricity. For example, the electrical mechanisms described herein can be used to direct and/or focus a beam of light, or laser light, and the optical or laser light can be used in optical communications and optical computing, such as optical switching and data storage. In addition, the electro-active system described herein is a synthetic image system that finds an optical image in a three-dimensional space. Figure 48 is a view of an electro-optical optical system, view, in accordance with an embodiment of the present invention. As shown in FIG. 48, the electro-optical optical system 4800 includes an L-th electro-transmission element 4820, a second electro-active element 4830, a third *from a non-active element 84166-85-1269091 4840, and a range finder device 485. Hey. Moreover, as shown in Fig. 48, an image 4/10 is represented by an arrow of a first point in the three-dimensional space. The image can be, for example, a beam, a laser beam, or an actual or virtual optical image. Thus, the electro-optical optical system 4800 can be used to focus the image 4810 to a predetermined point in a three degree space. The first electrical active element 482 can be used to move, or offset, the image 4810 along the X axis. This can be accomplished by applying an appropriate array of signals to the first electrical active component 4820 to produce a horizontal chirp in the first electrical active component 4820. The second electrical active element 483 can be used in a similar manner to the second 'electroactive element 4820 to create a vertical turn and to shift the image 4810 along the y axis. The third electrical active component 484 can focus the image 4810 along the z-axis by adjusting the system 4800 optical power to a corrected or negative optical power, which is due to the desired location of the resulting image. In addition, the rangefinder device 4850 can be used to detect, for example, a target location of the detector in a field in which the user wants to focus the resulting image. The rangefinder device 485 0 can then determine the degree of focus desired in the third electrical active component 484A to achieve a desired image 4860 desired by the user at a predetermined point in the three dimensional space. It should be understood that the range finder device 485A may be in the form of an embodiment of the above-described range finder i body, including an integrated power supply, controller and range finder: system. Figure 49 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. As shown in Fig. 49, the electro-optical optical system 49A includes a first electro-optical element 4920, a second electro-active element 493A, and a range finder device 4950. Moreover, as shown in Fig. 49, an image 491 is represented by an arrow on a first point in the three-dimensional space. The image can be, for example, a beam of light, an 84166 -86 - 1269091 laser beam, or an actual or virtual optical image. Thus, the electro-optical optical system 4900 can be used to focus the image 4910 to a predetermined point in a three degree space. The first electrical active element 4920 can be used to move, or offset, the image 4910 along the X and y axes. This can be accomplished by applying an appropriate array of signals to the first electrical active element 4920 to produce horizontal and vertical turns in the first electrical active element 4920. In this particular embodiment, the crucible can be created using horizontal and vertical elements rather than just groundwater or vertical. The second electrical active element 4930 can focus the image 4910 along the z-axis by adjusting the optical power of the system 4900 to a corrected or negative optical power, depending on the desired position of the resulting image. In addition, the range finder device 490 can detect, for example, the target position of a debt detector in a field in which the user wants to focus the resulting image. The range finder device 4950 can then determine the degree of focus desired in the second electrical active component 4930 to achieve the desired result image 4960 desired by the user at a predetermined point in the three dimensional space. It should be understood that the range finder device 4950 can be in the form of a specific embodiment of the range finder described above, including an integrated power source, controller, and range finder system. Figure 50 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. As shown in Fig. 50, the electro-optical optical system 5000 includes a first electro-optical element 5020 and a range finder device 5050. Moreover, as shown in Fig. 50, an image 5010 is represented by an arrow on a first point in the three-dimensional space. The image can be, for example, a beam, a laser beam, or an actual or virtual optical image. Therefore, the electro-optical optical system 5000 can focus the image 5010 to a predetermined point in a three-degree space. The first electrical active element 5〇2〇 can be used to move, or offset, the image 5010 along the x-axis and the y-axis. This can be accomplished by applying an appropriate 84166 - 87-1269091 signal array to the first electrical active component 5020 to produce horizontal and vertical prisms in the first electrical active component 5020. In this particular embodiment, the horizontal and vertical elements can be used instead of just horizontal or vertical. In addition, the first electrical active component 5020 can focus the image 5010 along the z-axis by adjusting the optical power of the system 5000 to a corrected or negative optical power, depending on the desired location of the resulting image. . The range finder device 5050 can be used to detect, for example, a target position of the detector in a field in which the user wants to focus the resulting image. The range finder device 5 〇 5 〇 can then determine the degree of focus desired in the first electrical active component 5020 to achieve the desired image 5 〇 6 使用者 desired by the user at a predetermined point in the second spatial space. Thus, optical system 5000 can produce an array using the same optical characteristics as an optical lens with a fixed corner. It should be understood that the range finder device 5〇5〇 may be in the form of a specific embodiment of the above range finder, including an integrated power supply, controller and rangefinder system. Figure 51 is a perspective view of an electroactive optical system in accordance with an embodiment of the present invention. As shown in Fig. 51, the electro-optical optical system 51A includes a first element 5120, a second electro-active element 513A, and a range finder device 515A. Also shown in Fig. 51 is that an image 511 is indicated by a apostrophe at a first point in the three-dimensional space, such as a light beam, a laser beam, or an actual or virtual optical image. Therefore, the electro-optical optical system 51 can be used to focus the image 511 0 to a predetermined point in the three-dimensional space. The first component 5丨2〇 can be used to select a particular wavelength of light from the image or beam 5110. This can be used to move the image 84166 • 88-1269091 5110 along the X and y axes by using a static color filter, or a mechanical or electrical switch # color filter. , or shift. This can be accomplished by applying a suitable array of electrical signals to the second electrical active component 5130 to produce horizontal and vertical turns in the second electrical active component 5130. In this particular embodiment, 稜鏡 is created using a horizontal and a vertical component, rather than using only horizontal or vertical components. The second electrical active element 51 30 can also be used to adjust the optical power of the system 5100 to a corrected or negative optical power and also to focus the image 511 沿着 along the z-axis. This is because the desired position of the resulting image. And set. In addition, the range finder device 510 can be used in the field to detect, for example, the target position of a squeegee that the user wants to focus the image on. The range finder device 515 can then determine the degree of focus desired in the second electrical active element 51 30 to achieve the desired result image 516 0 desired by the user at a predetermined point in the three dimensional space. Thus, optical system 5100 produces an array using the same optical characteristics as a fixed angle optical lens and possessing the desired spherical power. It will be appreciated that the range finder device 51 50 is in the form of a specific embodiment of the range finder described above and includes an integrated power source, controller and range finder system.
圖52是根據本發明具體實施例的一電作用光學系統透 視圖。如圖52所示,電作用光學系統52〇〇包括一第一元件 5220 ' —第二電作用元件523〇、與測距器裝置525〇。圖52 亦顯不一影像521 〇是由在三度空間的第一點上的箭號表 示。衫像可以是例如一光束、一雷射光束、或一實際或虛 擬光學影像。因此,電作用光學系統52〇〇可在三度空間用 來將影像5210聚焦到一預定點。第一元件5220可以是一固 疋透鏡’其可沿著2轴將較大、或概略調整提供給結果影 像的位置。第二電作用元件523〇可用來將影像521〇沿著X 84166 -89- 1269091 軸與y軸移動或移位。此可透過將適當的信號陣列應用到 第二電作用兀件5230而達成,以便在第二電作用元件Η" 中產生水平與垂直稜鏡。在此具體實施例中,稜鏡可同時 使用一水平及一垂直元件來產生,而不是只使用水平或垂 直元件。第二電作用元件5230與第一元件522〇的組合亦可 透過將系統5200光學光焦度調整到較正或較負的光學光 焦度而沿著z轴將影像5210聚焦,此是因結果影像的想要 位置而定。此外,測距器裝置525〇可在使用者想要聚2結 果影像的圖場中用來偵測例如一偵測器的目標位置。然 後,測距器裝置5250與第一元件522〇組合來決定在第二電 作用元件5230中想要的聚焦程度,以便在三度空間的預2 點上達成使用者想要的結杲影像526〇。因此,光學系統 5200將可產生光學特性的一陣列,且該等光學特性是與在 固疋角上的稜鏡光學透鏡相同,及擁有一想要的球體光隹 度。應了解測距器裝置5250可以是上述測距器具體實施; 的幵/式&括-整合式電源、控制器與測距器系統。應進 步了解雖然一固定透鏡只在上自圖52用於結果影像的 焦距長度調整描述,但是一固定透鏡能與任何上述電作用 光學系統使用,讀在三度空間來操作或聚焦光學影像。 例如,上述各種不同具體實施例可用於為記錄光學影像而 設計的任何影像系統,例如數位或傳統攝影機、錄影機、 及用以記錄光學影像的其他裝置。 雖然本發明的各種不同具體實施例已在上面討論,但是 亦在本發明精神與範圍内的其他具體實施例亦是有道理 84166 -90- 1269091 著。例如,除了上述該等元件的每一者之外,一眼睛追縱 器亦可加入透鏡來追蹤聚焦電作用折射矩陣與執行使用 者的各種不同其他功能與服務的使用者眼睛移動。此外, 雖然一組合的LED與輻射偵測器是當作一測距器描述,但 是其他元件亦可用來完成此功能。 【圖式簡單說明】 本發明可透過閱讀下列較佳具體實施例連同附圖的詳 細描述而更了解,相同參考數字是表示類似元件,其中: ’圖1是電作用折射器/折光器系統100的具體實施例透視 圖。 圖2是另一電作用折射器/折光器系統2〇〇的具體實施例 圖式。 圖3是傳統分送實施序列300的流程圖。 圖4是分送方法400的具體實施例流程圖。 圖5是電作用護目鏡500的具體實施例透視圖。 圖6是處理方法6〇〇的具體實施例流程圖。 圖7是一混合電作用眼鏡透鏡700的具體實施例正視圖。 圖8疋沿著線段圖7的線段A - A而使用的混合電作用眼鏡 透鏡7 0 0具體實施例截面圖。 圖9是沿著圖5線段Z-Z的電作用透鏡900具體實施例截 面圖。 圖10疋一電作用透鏡系統1〇〇〇的具體實施例透視圖。 圖11疋沿著圖5線段Z-Z的繞射電作用透鏡具體實 施例截面圖。 84166 -91 - 1269091 圖12是一電^ ^ 兒作用透鏡1 200的具體實施例正視圖。 圖13是沿著線段Q—Q的圖12的電作用透鏡1 200具體實施 例截面圖。 圖14疋一追縱系統1400的具體實施例透視圖。 圖15^:—電作用透鏡系統15〇〇的具體實施例透視圖。 圖16是一電作用透鏡系統1600的具體實施例透視圖。 圖17是一電作用透鏡1 700的具體實施例圖。 圖18是一電作用透鏡1 800的具體實施例透視圖。 ,圖19是一電作用折射矩陣1 900的具體實施例透視圖。 圖20是一電作用透鏡2000的具體實施例透視圖。 圖21是一電作用護目鏡21〇〇的具體實施例透視圖。 圖22是一電作用透鏡2200的具體實施例正視圖。 圖23是一電作用透鏡2300的具體實施例正視圖。 圖24疋一電作用透鏡2400的具體實施例正視圖。 圖25疋沿著圖5線段z-Z的一電作用透鏡2500的具體實 施例截面圖。 圖26是沿著圖5線段Z-Z的一電作用透鏡2600的具體實 施例截面圖。 圖27是分送方法2700的具體實施例流程圖。 圖28是一電作用透鏡2800的具體實施例透視圖。 圖29是根據本發明另一具體實施例的一光學透鏡系統 透視圖。 圖30是根據本發明另一具體實施例的一光學透鏡系統 透視圖。 84166 -92- 1269091 圖31是根據本發明另一具體實施例的一光學透鏡系統 透視圖。 圖32是根據本發明另一具體實施例的一光學透鏡系統 透視圖。 圖33是根據本發明另一具體實施例的一光學透鏡系統 分解透視圖。 圖34是根據本發明另一具體實施例的一光學透鏡系統 分解透視圖。 圖35a-35e疋描述根據本發明另^一具體實施例完成的組 合步驟。 圖36a-36e是描述根據本發明另一具體實施例完成的組 合步驟。 圖37a-37g是描述仍然根據本發明另一具體實施例完成 的組合步驟。 圖38是根據本發明另一具體實施例的一整合式晶片測 距器與整合式控制器的透視分解圖。 圖39是根據本發明另一具體實施例的一整合式控制器 電池與整合式控制器分解透視圖。 圖40是根據本發明另一具體實施例的一整合式控制器 測距器分解透視圖。 圖41是仍然本發明另一具體實施例的一光學透鏡系統 透視圖。 圖42是仍然根據本發明另一具體實施例的一光學透鏡 系統透視圖。 84166 -93- 1269091 圖43是仍然根據本發明另一具體實施例的一光學透鏡 系統透視圖。 圖44a是根據本發明另一具體實施例的一整合式電源、 控制器與測距器分解透視圖。 圖44b是根據本發明具體實施例的圖44a沿著Z-Z,的整 合式電源、控制器與測距器侧面截面圖。 圖5疋根據本發明具體實施例的圖& & b測距器發射器側 視圖。 圖46是根據本發明具體實施例的圖4让的測距器接收器 側視圖 圖47a 4 7c疋根據本發明具體實施例的一光學透鏡系統 配戴側視圖。 圖48是根據本發明具體實施例的一 一電作用光學系統透 視圖。 圖49是根據本發明具體實施例的一 電作用光學系統透 視圖。 圖50是根據本發明具體實施例的一 電作用光學系統透 視圖。 圖51是根據本發明具體實施例的一 電作用光學系統透 視圖。 圖52是根據本發明具體實施例的 視圖。 圖式代表符號說明 1 00, 4400 κ r 電作用光學系統透 電作用折射器/折光器系統 84166 -94- 1269091 110, 510, 1410, 1510, 1610, 框架 2 1 1 0, 30 1 0, 3 1 1 0, 32 1 0, 3500, 3600 120 電作用 140 電作用透鏡控制器 130 導線 160 控制器/程控器 1 50, 275, 550, 21 50, 2930, 電源 3030, 3590, 3940, 41 1 0, 4240, 4460 2〇〇 電作用折光器系统 260 球形透鏡 250 240 230 散光透鏡 稜鏡透鏡 繞射透鏡 220,900 電作用透鏡 21〇 包裝組件 290 配鏡顯示 280, 2140,2960,3160, 3830,控制器 3930, 4030, 4440, 3060 270 500, 21 00 540 530 導線 電作用護目鏡 電作用護目鏡控制 連接線 84166 -95- 1269091 520,522 電作用透鏡 700 電作用眼鏡透鏡 720, 920, 1 050 電作用折射矩陣 730, 930 結構層 740 散光光焦度修正區域 71 0, 91 0, 1 040, 281 0, 31 00, 1 1 1 0, 3330 光學透鏡 750 選擇性覆蓋層 1 000, 1 01 0, 1 500, 1 600 電作用透鏡系統 1030 測距器偵測器/接收器 1020 測距器發射器 1060 外部覆蓋層 1 1 00,1 71 0,1 81 0, 251 0, 261 0, 2900, 3000, 3200, 3300, 3400, 3505,3605 光學透鏡 1150,1230 覆蓋層 1140 結構層 1 120, 1 130,1720,1820,1900, 2990,3090,3190,3290,3390, 3490,3580,3680,3780,4230 電作用折射矩陣 1 200, 1420, 1 520, 1 620,1 700, 1800,2000,2120,2200,2300, 2400,2500,2600,2800 電作用透鏡 1212 第一光學折射焦點區域 84166 -96- 1269091 1222 電作用區域 1214 第二光學折射焦點區域 1210 多聚焦光學 1220 電作用結構層 1440 接收器 1430 信號源 1400 追蹤系統 1530, 1740, 1840 部分視場 1630 全視場 1730, 1830 隔離物 1750, 1850 非激勵場(或區域) 1760 單一電線或導線互接 1860 電線互接 1 930, 2040 傳導層 1910,2010 電作用物質 1 920, 2020 金屬層 2030 金屬電極 2050 互接介層 2130 連接電線 2160 測距器發射器 2170,4428 測距器接收器 2240, 2330, 2430 遠距離修正區域 2210,2220,2230 區域 2320,2420 中間距離修正區域 84166 -97- 1269091 2310, 2410 近距離修正 區域 2525, 2535, 2545, 2625, 2635,隔離層 2645 2520, 2530, 2540, 2550 全視場電作 用區域 2620, 2630, 2640, 2650 部分視場電 作用區太 2660 結構區域 2840 部分視場電 作用折肩 2820 完成表面 2830 未完成表面 2980, 3810, 4010, 4210 輻射或光镇 測器 2970, 3070, 4020, 4220 光發射二極體/測距 2950, 3050 透明導線匯 流排 2940 電池匯流排 2999 空洞或凹處 2910 外部周邊 2920 透鏡表面 3020 鼻墊連接器 3170 繩索 3150 傳導匯流排 3130 框架柄或空 心管 3180 信號導線 3280 内部框架信 號導線 3320 光學超環面 3480 載體 84166 -98- 矩陣 器 其他元件 眼晴 方向與旋轉箭號 輻射狀匯流排 透明元件匯流排 多導線 測距器或控制器與電源 红外線光發射二極體 整合式電源 電作用偵測器折射矩陣 電線匯流排 控制器與測距器組合 透明導線匯流排 電作用折射區域 輻射狀透明導線匯流排 組合的電源、控制器與測距 器 測距器裝置 接收透鏡 發射器 傳輸透鏡 測距器接收器 -99- 1269091 3470, 3690 3570, 3670, 3770 35 1 0, 3520, 3530, 361 0, 3620, 3630, 371 0 3540 3640, 3740 3720 3730 3820 4040 4140 4120 4130 4250 4310 4330 4320 4420,4850,4950,5050,5150, 5250 4430 4424 4426 4428 84166 1269091 4432 切口 48 00,4900,5000,5100, 5200 電作用光 48 20, 4920, 5020,5120, 5220 第一電作 48 30, 4930, 5130, 5230 第二電作 4840 第三電作 4860, 4960,5060,5160, 5260 結杲影像 48 1 0, 49 1 0, 50 1 0, 5 1 1 0, 521 0 影像 3080 鼻墊 系統 元件 元件 元件 84166 -100·Figure 52 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. As shown in Fig. 52, the electro-optical optical system 52A includes a first component 5220' - a second electrical active component 523A, and a range finder device 525A. Figure 52 also shows that the image 521 is represented by the arrow on the first point of the third dimension. The shirt image can be, for example, a beam of light, a laser beam, or an actual or virtual optical image. Therefore, the electro-optical optical system 52 can be used to focus the image 5210 to a predetermined point in a three-dimensional space. The first element 5220 can be a solid lens 'which can provide a larger, or fine, adjustment to the position of the resulting image along the 2 axes. The second electrical active element 523A can be used to move or shift the image 521〇 along the X 84166 -89-1269091 axis and the y axis. This can be accomplished by applying an appropriate array of signals to the second electrical active element 5230 to produce horizontal and vertical turns in the second electrical active element. In this embodiment, the crucible can be produced using both a horizontal and a vertical element, rather than using only horizontal or vertical elements. The combination of the second electrical active element 5230 and the first element 522A can also focus the image 5210 along the z-axis by adjusting the optical power of the system 5200 to a more positive or negative optical power, which is the resulting image. It depends on the location. In addition, the range finder device 525 can be used to detect, for example, the target position of a detector in a field in which the user wants to gather a 2 result image. The range finder device 5250 is then combined with the first component 522A to determine the desired degree of focus in the second electrical active component 5230 to achieve the desired burnt image 526 at the pre-two points of the three-dimensional space. Hey. Thus, optical system 5200 will produce an array of optical properties that are the same as the tantalum optical lens at the solid angle and possess a desired spherical aperture. It should be understood that the range finder device 5250 can be embodied by the above-described range finder; the 幵/式 & Included-integrated power supply, controller and range finder system. It should be further appreciated that although a fixed lens is only described above for the focal length adjustment of the resulting image from Figure 52, a fixed lens can be used with any of the above described electro-active optical systems to read or focus the optical image in a three degree space. For example, the various embodiments described above can be used with any imaging system designed for recording optical images, such as digital or conventional cameras, video recorders, and other devices for recording optical images. While various embodiments of the present invention have been discussed above, other embodiments that are within the spirit and scope of the present invention are also known as 84166-90-1269091. For example, in addition to each of the above-described elements, an eye tracker can be incorporated into the lens to track the focus of the focus electrical refraction matrix and the user's eye movements performing various other functions and services of the user. In addition, although a combined LED and radiation detector is described as a range finder, other components can be used to perform this function. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood by reading the following detailed description of the preferred embodiments of the invention, wherein A detailed view of a specific embodiment. Fig. 2 is a view showing a specific embodiment of another electro-acting refractor/refractor system 2'. 3 is a flow diagram of a conventional distribution implementation sequence 300. 4 is a flow diagram of a particular embodiment of a dispensing method 400. FIG. 5 is a perspective view of a particular embodiment of an electrically actuated goggle 500. Figure 6 is a flow diagram of a particular embodiment of a processing method 6A. FIG. 7 is a front elevational view of a particular embodiment of a hybrid electro-acting spectacle lens 700. Figure 8 is a cross-sectional view of a hybrid electro-optical eyeglass lens 70 used in the line segment A - A of Figure 7 of the line segment. Figure 9 is a cross-sectional view of an embodiment of an electro-acting lens 900 taken along line Z-Z of Figure 5. Figure 10 is a perspective view of a specific embodiment of an electro-acting lens system 1A. Figure 11 is a cross-sectional view showing a specific embodiment of a diffractive electric lens taken along line Z-Z of Figure 5. 84166 - 91 - 1269091 Figure 12 is a front elevational view of a particular embodiment of an action lens 1 200. Figure 13 is a cross-sectional view of the embodiment of the electro-acting lens 1 200 of Figure 12 taken along line Q-Q. Figure 14 is a perspective view of a particular embodiment of a tracking system 1400. Figure 15: A perspective view of a particular embodiment of an electro-acting lens system 15A. 16 is a perspective view of a particular embodiment of an electro-acting lens system 1600. Figure 17 is a diagram of a specific embodiment of an electroactive lens 1 700. Figure 18 is a perspective view of a particular embodiment of an electroactive lens 1 800. 19 is a perspective view of a specific embodiment of an electroactive refractive matrix 1 900. 20 is a perspective view of a specific embodiment of an electro-active lens 2000. Figure 21 is a perspective view of a particular embodiment of an electrically actuated goggle 21'. 22 is a front elevational view of a particular embodiment of an electroactive lens 2200. 23 is a front elevational view of a particular embodiment of an electroactive lens 2300. Figure 24 is a front elevational view of a particular embodiment of an electroactive lens 2400. Figure 25 is a cross-sectional view showing a specific embodiment of an electroactive lens 2500 along line z-Z of Figure 5. Figure 26 is a cross-sectional view showing a specific embodiment of an electro-acting lens 2600 along the line segment Z-Z of Figure 5. 27 is a flow diagram of a particular embodiment of a dispensing method 2700. 28 is a perspective view of a particular embodiment of an electroactive lens 2800. Figure 29 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. Figure 30 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. 84166 - 92 - 1269091 Figure 31 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. Figure 32 is a perspective view of an optical lens system in accordance with another embodiment of the present invention. Figure 33 is an exploded perspective view of an optical lens system in accordance with another embodiment of the present invention. Figure 34 is an exploded perspective view of an optical lens system in accordance with another embodiment of the present invention. Figures 35a-35e illustrate a combination of steps performed in accordance with another embodiment of the present invention. 36a-36e are diagrams illustrating the combination of steps performed in accordance with another embodiment of the present invention. Figures 37a-37g are depicting the combination steps that are still performed in accordance with another embodiment of the present invention. Figure 38 is a perspective exploded view of an integrated wafer distance meter and integrated controller in accordance with another embodiment of the present invention. Figure 39 is an exploded perspective view of an integrated controller battery and integrated controller in accordance with another embodiment of the present invention. Figure 40 is an exploded perspective view of an integrated controller range finder in accordance with another embodiment of the present invention. Figure 41 is a perspective view of an optical lens system which is still another embodiment of the present invention. Figure 42 is a perspective view of an optical lens system still in accordance with another embodiment of the present invention. 84166 - 93 - 1269091 Figure 43 is a perspective view of an optical lens system still in accordance with another embodiment of the present invention. Figure 44a is an exploded perspective view of an integrated power supply, controller and rangefinder in accordance with another embodiment of the present invention. Figure 44b is a side cross-sectional view of the integrated power supply, controller and range finder of Figure 44a along Z-Z, in accordance with an embodiment of the present invention. Figure 5 is a side elevational view of the && b ranger transmitter in accordance with an embodiment of the present invention. Figure 46 is a side elevational view of the range finder receiver of Figure 4, in accordance with an embodiment of the present invention. Figure 47a shows a side view of an optical lens system in accordance with an embodiment of the present invention. Figure 48 is a perspective view of an electroactive optical system in accordance with an embodiment of the present invention. Figure 49 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. Figure 50 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. Figure 51 is a perspective view of an electro-optical optical system in accordance with an embodiment of the present invention. Figure 52 is a view in accordance with an embodiment of the present invention. Schematic representation of the symbol 1 00, 4400 κ r electro-optical optical system transflective refractor / refractor system 84166 -94 - 1269091 110, 510, 1410, 1510, 1610, frame 2 1 1 0, 30 1 0, 3 1 1 0, 32 1 0, 3500, 3600 120 Electrical action 140 Electro-acting lens controller 130 Conductor 160 Controller / Programmer 1 50, 275, 550, 21 50, 2930, Power supply 3030, 3590, 3940, 41 1 0 , 4240, 4460 2〇〇Electrical action refractometer system 260 spherical lens 250 240 230 astigmatism lens 稜鏡 lens diffraction lens 220,900 electroactive lens 21 〇 packaging component 290 Mirror display 280, 2140, 2960, 3160, 3830, controller 3930, 4030, 4440, 3060 270 500, 21 00 540 530 Conductor goggles Electro-acting goggles control cable 84166 -95-1269091 520,522 Electroacting lens 700 Electro-acting eyeglass lens 720, 920, 1 050 Electrically active refractive matrix 730, 930 structural layer 740 astigmatism correction area 71 0, 91 0, 1 040, 281 0, 31 00, 1 1 1 0, 3330 optical lens 750 selective cover layer 1 000, 1 01 0, 1 500, 1 600 Electro-acting Lens System 1030 Rang Range Detector/Receiver 1020 Rangefinder Transmitter 1060 External Overlay 1 1 00, 1 71 0, 1 81 0, 251 0, 261 0, 2900, 3000, 3200, 3300, 3400, 3505, 3605 Optical Lens 1150, 1230 Overlay 1140 Structure Layers 1 120, 1 130, 1720, 1820, 1900, 2990, 3090, 3190, 3290, 3390, 3490, 3580, 3680, 3780, 4230 Electrically active refractive matrix 1 200, 1420, 1 520, 1 620, 1 700, 1800, 2000, 2120, 2200, 2300, 2400, 2500, 2600, 2800 Electro-acting lens 1212 First optical refraction focus area 84166 - 96 - 1269091 1222 Electro-acting area 1214 Second optical refraction focus area 1210 Multi-focus optics 1220 Electro-action Structure Layer 1440 Receiver 1430 Signal Source 1400 Tracking System 1530, 1740, 1840 Partial Field of View 1630 Full Field of View 1730, 1830 Spacer 1750, 1850 Non-energized Field (or Area) 1760 Single Wire or Wire Interconnect 1860 Wire Interconnect 1 930, 2040 Conductive layer 1910, 2010 Electroactive substance 1 920, 2020 Metal layer 2030 Metal electrode 2050 Interconnecting layer 2130 Connecting wire 2160 Range finder transmitter 2170, 4428 Range finder receiver 2240, 2330, 2430 Remote correction Area 2210, 2220, 2230 area 2320 , 2420 intermediate distance correction area 84166 -97-1269091 2310, 2410 proximity correction area 2525, 2535, 2545, 2625, 2635, isolation layer 2645 2520, 2530, 2540, 2550 full field electric field area 2620, 2630, 2640, 2650 Partial field of view Electrical area too 2660 Structure area 2840 Partial field of view Electrical effect Folding shoulder 2820 Finish surface 2830 Unfinished surface 2980, 3810, 4010, 4210 Radiation or optical detector 2970, 3070, 4020, 4220 Light-emitting diode Body / Ranging 2950, 3050 Transparent wire bus 2940 Battery bus 2999 Cavity or recess 2910 External perimeter 2920 Lens surface 3020 Nose pad connector 3170 Rope 3150 Conductor busbar 3130 Frame handle or hollow tube 3180 Signal conductor 3280 Internal frame signal Wire 3320 Optical Toroidal 3480 Carrier 84166 -98- Other components of the matrix Eye direction and rotating arrow Radial busbar Transparent component busbar Multi-wire range finder or controller and power supply Infrared light emitting diode integrated power supply Electrical action detector Shooting matrix wire busbar controller and range finder combination transparent wire busbar electricity action refraction area radial transparent wire busbar combination power supply, controller and range finder rangefinder device receiving lens transmitter transmission lens range finder receiving -99- 1269091 3470, 3690 3570, 3670, 3770 35 1 0, 3520, 3530, 361 0, 3620, 3630, 371 0 3540 3640, 3740 3720 3730 3820 4040 4140 4120 4130 4250 4310 4330 4320 4420,4850,4950 , 5050, 5150, 5250 4430 4424 4426 4428 84166 1269091 4432 Cutout 48 00, 4900, 5000, 5100, 5200 Electrically active light 48 20, 4920, 5020, 5120, 5220 First electric work 48 30, 4930, 5130, 5230 2 electric 4840 third electric 4860, 4960, 5060, 5160, 5260 crusting image 48 1 0, 49 1 0, 50 1 0, 5 1 1 0, 521 0 image 3080 nose pad system component component 84166 -100 ·
Claims (1)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36354902P | 2002-03-13 | 2002-03-13 | |
US40170002P | 2002-08-07 | 2002-08-07 | |
US10/263,707 US20030210377A1 (en) | 2001-10-05 | 2002-10-04 | Hybrid electro-active lens |
US10/281,204 US6733130B2 (en) | 1999-07-02 | 2002-10-28 | Method for refracting and dispensing electro-active spectacles |
US10/387,143 US7023594B2 (en) | 2000-06-23 | 2003-03-12 | Electro-optic lens with integrated components |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200405056A TW200405056A (en) | 2004-04-01 |
TWI269091B true TWI269091B (en) | 2006-12-21 |
Family
ID=38291448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92105497A TWI269091B (en) | 2002-03-13 | 2003-03-13 | Electro-optic lens with integrated components |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI269091B (en) |
-
2003
- 2003-03-13 TW TW92105497A patent/TWI269091B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200405056A (en) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9958705B2 (en) | Electro-active opthalmic lens having an optical power blending region | |
US6857741B2 (en) | Electro-active multi-focal spectacle lens | |
US7023594B2 (en) | Electro-optic lens with integrated components | |
TW522003B (en) | Electro-optic lens with integrated components | |
AU2003231046B2 (en) | Electro-active multi-focal spectacle lens | |
US20080106633A1 (en) | Electro-optic lens with integrated components for varying refractive properties | |
AU2003225848A1 (en) | Electro-optic lens with integrated components | |
TWI269091B (en) | Electro-optic lens with integrated components | |
TW200403486A (en) | Electro-active multi-focal spectacles and lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |