A7 4 6 6 5 6 0 ____B7___ 五、發明説明(丨) 相關申請案之交互參考 此申請案係宣告於1999年10月1日申請之臨時 申請案序號No. 60/1 57, 398以及於2000年 9月1 5日申請之臨時申請案序號N 〇. 6 0 / 2 3 3, 0 3 9的權益。 發朋之頜域 本發明係關於用於接觸工件之表面結構以及用於製造 表面結構之方法,並且特別係關於在真空處理腔內用於接 觸半導體晶圓之表面結構。該表面結構之特徵在於高效率 之熱量轉移以及低顆粒污染。該表面結構在離子佈植系統 所使用之靜電晶圓夾具內特別有用,但不受限於此種應用 :術之說明 在積體電路之製造中,數種已確立之製程係涉及在真 空內以離子束施加至半導體晶圓上。這些製程包含例如離 子佈植、離子束硏磨及反應離子蝕刻。在每種情況中,係 在離子源產生離子束,並朝著標靶晶圓加速。 離子佈植已成爲用於將摻雜材料引入半導體晶圓的標 準技術。所欲之摻雜材料係在離子源內離子化,該離子係 加速以成爲具有指定能量之離子束,而該離子束則導入該 明圓之表面。在離子束內之活躍的離子穿透入半導體材料 之基體’且嵌入該半導體材料之晶格以形成所欲導電率之 (請先閱讀背面之注意事項再填寫本頁) 裝--- 訂---------線 經濟部智慧財產局員工消費合作.社印製 T '氏張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 6 65 6 0 a? B7 五、發明說明(少) 區域。 標靶裝設座係離子佈植系統或其它離子束系統的重要 組件。該標靶裝設座係必需的,以穩固地夾取半導體晶圓 至用於離子佈植之平台上,且在大多數的情況中,係提供 該晶圓之冷卻用。此外,晶圓裝卸系統係用於裝載晶圓至 該標靶裝設座上,並在完成離子佈植後用於移除該晶圓。 晶圓之冷卻在商用半導體製程中係特別重要的,其中 主要目的係達成就每單位時間內晶圓處理數量而論的高產 能。一種獲得高產能之方法係使用高電流離子束,以在相 當短之時間內完成該離子處理。然而,使用高電流離子束 可能或產生大量之熱量。該熱量可導致在晶圓內超過上述 限制之無法控制的晶圓擴散以及光阻層之圖案的退化。故 通常希望能提供晶圓冷卻以限制最高之晶圓溫度在約1〇 0°C。 經濟部智慧財產局員工消費合作杜印製 (請先閱讚背面之注意事項再填寫本頁) 在本項技術中,已知數種用於在該標靶裝設座上夾取 半導體晶圓的技術。如一種著名之技術,該晶圓係藉由吸 住該晶圓前方表面之外側圓周的外圍夾取環夾取在平台上 。除了由該夾取環阻擋之區域外的該晶圓之前方表面係暴 露的,以用於離子佈植。 可消除外圍夾取環之需求且允許使用平坦之平台表面 的晶圓夾取技術係離心夾取。在該離心夾取中,該晶圓裝 設座係繞著旋轉軸旋轉。該平台表面係與該旋轉軸成一角 度’以使得離心力將晶圓壓在平台表面上。然而,用於旋 轉該晶圓裝設座以提供離心夾取的需求係增加複雜度且並 4 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) 經濟部智慧財產局員Η消費合作社印製 4 6 6 5 6 0 A7 B7 五、發明說明(々) 非永遠實用的。 另一種用於夾取半導體晶圓的已知技術係涉及靜電力 之使用。在半導體晶圓以及導電支撐板之間係放置介電層 。在該半導體晶圓以及該支撐板之間係施加電壓,而該晶 圓係藉由靜電力夾在該介電層上。舉例來說,靜電晶圚夾 具係揭示在於1 9 9 5年9月1 9日核發給F r u t i g e r的美國專利號5,4 5 2,1 7 7以及於1 9 9 9年1 Ο 月1 9曰核發給L a r s e η的美國專利號5,9 6 9,9 3 4。 無論使用之夾取技術爲何,在真空中從半導體晶圓將 熱量轉移至散熱器係一項重大的問題。除了用於低電流之 離子束,從晶圓藉由輻射轉移熱量係不夠的。即使當晶圓 以物理性接觸平台表面時,因該晶圓以及該平台表面之表 面不規則性限制實際接觸面積約在該兩個表面積的5 %, 故因此限制固態對固態之熱傳導。 已揭不各種用於確保從晶圓至平台或散熱器之局速率 熱量轉移的技術。用於最佳化晶圓以及散熱器之間之傳導 熱量轉移的輪廓化散熱器係揭示在於1985年8月20 日核發給Hoi den的美國專利號4,535,835中。 該散熱器表面係輪廓化以加上導致均勻之接觸壓力分佈以 及逼近用於外圍夾取晶圓之晶圓彈性限制之應力的負載。 另一種在真空中用於熱量轉移之習知技術係涉及使用 到在半導體晶圓以及散熱器之間的熱量傳導聚合物。用於 提供晶圓以及散熱器之間之熱接觸的黏滯性聚合物係揭示 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----I I ^---Ί H --I----I ^ ' — — — —HI — ί (請先閱讀背面之注意事項再填寫本頁) ^6 65 60 A7 B7 五、發明說明(中) 在於1 9 7 9年2月1 3日核發給J ο n e S等人的美國 專利號4,1 3 9,0 5 1。在半導體晶圓以及散熱器之間使 用柔軟之導熱層的自動晶圓夾取機制係揭示在於1 9 8 1 年8月1 1曰核發給F a r e t r a的美國專利號4,2 8 2,9 2 4中。該晶圓係將其外圍夾取至在其表面具有一層 導熱矽樹脂橡膠的中凸曲面平台上。使用離心夾取以及具 有用於有效之熱量轉移之柔軟導熱聚合物層之平台表面的 熱量轉移技術係揭示在於1989年5月23日核發給Μ e a r s的美國專利號4,8 3 2,7 8 1中。 習知技術之矽樹脂橡膠層係相當地厚。此種材料之本 質並不導熱係一項缺點。此可藉由摻雜具有導熱顆粒之材 料及/或藉由施加壓力至該晶圓以使得接觸點之數量增加 以補償在每個點之有限熱量轉移而補償。該摻雜法係具有 增加額外之製程步驟以及因該導熱顆粒造成顆粒或元件污 染之可能性的缺點。該增壓法係具有所增加之壓力可能導 致晶圓破損以及對該晶圓施加此種壓力之困難性的缺點。 當例如以機械夾具環對該晶圓邊緣施加壓力時,在晶圓中 心之壓力係由晶圓撓性所限制。當例如以靜電夾具對整個 晶圚施加壓力時,其缺點係製造效力足夠之夾具以及爲獲 得特定之冷卻能力之高壓之使用的成本及困難。在任何一 種方法中,所使用之通常爲有機的撓性材料將導致有機污 染,且已知其對晶圓製程有害。 氣體傳導之技術已用於在真空中之晶圓冷卻。氣體係 引入在半導體晶圓下方之凹洞或微小之空洞內,並與晶圓 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝 訂---------線 經濟部智慧財產局員工消費合作社印製 A7 466560 -__B7__ 五、發明說明(<) 以及散熱器之間有效地熱耦合。與半導體晶圓之氣體輔助 之固態對固態之熱量轉移係揭示在於1984年7月3曰 核發給Η ο 1 d e η的美國專利號4,4 5 7,3 5 9中。 該氣體傳導技術係具有需嚴格地控制散熱器表面尺寸 以配合在冷卻氣體所使用之氣壓下之分子傳輸特徵距離的 缺點。此外,冷卻氣體之洩漏係一項問題,其導致非均勻 之冷卻,以及在洩漏區域因局部氣體集中而導致製程之退 化。對於所給定之冷卻能力而言,該氣體壓力可能將晶圓 彎曲,同樣可能導致該製程之完整性的退化。 因半導體元件尺寸日漸地縮小且晶圓尺寸日漸地增大 ’所容許之顆粒污染規格變得更爲嚴格。因晶圓與該夾取 表面之物理性接觸,故該晶圓夾取機構之顆粒性能係特別 地重要。在靜電晶圓夾具的情況中,用以夾取晶圓之靜電 力亦吸附顆粒。 因此,希望能提供一種用於接觸工件之表面結構,其 特徵在於該工件之低顆粒產生性及低顆粒污染性,且其特 徵在於從該工件的有效之熱量轉移。 發明之槪要 如本發明之一項構想,係提供一種用於接觸工件之表 面結構。該表面結構係包含附著在支撐元件之撓性層,以 及在該撓性層上之塗層。該塗層在其表面上係具有波紋。 該工件可能係半導體晶圓。 該波紋可在該塗層之表面形成圖案,且一般係在該塗 7 ----------„---- I------訂---------1 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) B7 466560 五、發明說明(L ) 層表面之局部區域內形成規則圖案。該波紋之波長最好係 等於或小於引入在該表面結構以及該工件之間的氣體之平 均自由路徑。然而,當該波紋之振幅係等於或小於該氣體 之平均自由路徑時,該波紋之波長可大於該氣體之平均自 由路徑。該波紋可具有任意之形狀及長度。具體地說,該 波紋可在某一維度上延展’藉此定義一系列平行但無需筆 直的通道,或可以係相當地短,以藉此定義複數個在表面 上的結節或凸塊。 該塗層可能係包含具有良好之結構完整性以及良好之 剪力強度的陶瓷或其它情性無機材料,而該撓性層可包含 聚合物層。在其中一種實施例中,該撓性層係具有厚度在 約5至1 0微米之範圍內的矽樹脂橡膠,而該塗層係係具 有厚度在約0 . 2 5至0 . 5 0微米之範圍內的氮化矽、碳 氮化矽、二氧化矽或碳。此實施例呈現出從工件至支撐元 件的有效率之熱量轉移。在另一種實施例中,該撓性層係 具有在約2. 5至2 5 0微米之範圍內的較佳厚度,且該厚 度最好係在約7. 5至1 5微米之範圍內。該兩種實施例之 特徵係在於工件之低顆粒產生性以及低顆粒污染性。 該表面結構可更包含在該塗層上用於與該工件相容所 選用的薄膜。可使用選擇性的黏著層以用於黏著撓性層至 該支撐元件上^ 如本發明之另一種構想,係提供一種用於製造表面結 構之方法。該方法係包含形成撓性層、延展該撓性層、施 加塗層至該延展撓性層上以及收縮該撓性層以在該塗層上 8 本紙張尺度適用令國國家標準(CNS)A4規格(210 X 297公釐) ίί — ΙΙΙΙΙΙΊ»—·— · I------^-----I--, (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 經濟部智慧財產局員工消費合作社印製 Λ 6 6 5 6 Ο Α7 __ Β7 五、發明說明(1) 形成波紋的步驟。 該撓性層可藉由加熱延展’並可藉由冷卻收縮。該燒 性層可在加熱前形成在支撐元件上,或可與該支撐元件個 別地形成。在另一種方法中,該撓性層係以機械性延展及 收縮。 在其中一種實施例中,該塗層係藉由沉積所形成。在 另一種實施例中,該塗層係藉由該延展撓性層與氣體或其 它活性材料反應所形成。舉例來說,矽樹脂層可與氧氣反 應以形成二氧化矽塗層。 如本發明之另一種構想,係提供一種在真空處理系統 中用於冷卻工件之裝置。該裝置係包含工件支撐元件,用 於接觸該工件之表面結構,該表面結構係包含黏著於該支 撐元件之撓性層以及在該撓性層上之塗層,該塗層在其表 面上係具有波紋,用於將該工件壓在該表面結構之設備, 以及冷卻氣體系統,其係用於在預設之氣壓下,在該塗層 以及該工件之間引入氣體。 如本發明之另一種構想,係提供一種用於靜電夾取工 件之裝置。該裝置係包含定義用於接納工件之電絕緣夾取 表面的平台組件,該平台組件係包含在下方且與該夾取表 面係電絕緣之電極以及在該電極及該夾取表面之間之介電 層,以及用於施加夾取電壓至該電極的夾取控制電路,以 用於在該夾取表面之固定位置上以靜電夾取該工件。如上 所述,該夾取表面係配置包含撓性層以及在其表面上具有 波紋之塗層的表面結構。 9 -11 1- n n I n K I · I— n n n TJ i n n n I 05*^D {請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用ΐ國國家標準(CNS)A._i規格(210 X 297公釐} A7 466560 B7 五、發明說明(s ) 圖式簡單說明 爲更瞭解本發明,係參考納入本申請案以作爲參考的 附圖,而其中: 圖1係納入如本發明構想之表面結構第〜個實施例之 工件支撐裝置的截面圖: 圖2係圖1之表面結構的部分放大截面圖; 圖3 A係工件及表面結構之間之接觸區域的部分放大 截面圖; 圖3 B係圖3A之更進一步放大圖,其顯示藉由表面 結構上之波紋所提供的增強之冷卻效果; 圖3 C係具有延展、平行波紋之表面結構的俯視圖; 圖3 D係具有結節狀波紋之表面結構的俯視圖: 圖4 A — 4 C係以槪圖顯示用於製造如本發明另一種 構想之表面結構之製程的實施例; 圖5係表面結構第二個實施例之部分截面圖; 圖6係納入圖5之表面結構之靜電晶圓夾具的部分截 面圖; 圖7係如本發明另一種構想之靜電晶圓夾具之範例的 槪要平面圖; 圖8係沿著圖7之直線2 - 2所擷取之晶圓夾取裝置 的槪要截面圖; 圖9係靜電晶圓夾取裝置的槪要方塊圖,其顯不夾取 控制電路的範例;以及 圖10係靜電晶圓夾取裝置之實施例之範例的部分截 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) i ---丨丨丨1訂i丨丨丨丨li· 經濟部智慧財產局員工消費合作社印製 ^66560 五、發明說明( 面圖。 A7 B7 元件符號說明 經濟部智慧財產局員工消費合作社印製 10 工件支撐裝置 12 熱傳導支撐元件 14 熱量轉移結構 16 工件 18 熱量轉移結構之表面 2 0 冷卻氣體源 3 0 熱傳導層 3 2 塗層 4 0 波紋 4 2 凸出物 4 4 凸出物 5 0 分子路徑 6 0 箭號 6 2 箭號 9 0 表面結構 10 0 支撐元件 10 2 黏著界面層 10 4 撓性層 10 6 塗層 1 2 0 電極層 1 2 2 黏著層 11 ---------^---^-----I--^ ---------, (請先閱讀背面之注意事項再填寫本頁) 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 6 5 6 0 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(v 〇)12 4 13 0 2 10 2 12 2 14 2 18 2 2 0 2 2 2 2 2 4 2 2 6 2 2 8 2 3 0 2 4 0 2 4 2 2 4 4 2 4 6 2 4 8 2 5 0 2 6 0 2 6 2 2 6 4 2 6 6 2 6 8 2 7 0 絕緣層 基座 平台 夾取控制電路 平台基座 中心開孔 扇形組件 扇形組件 扇形組件 扇形組件 扇形組件 扇形組件 扇形電極 扇形電極 扇形電極 扇形電極 扇形電極 扇形電極 上層扇形絕緣體 上層扇形絕緣體 上層扇形絕緣體 上層扇形絕緣體 上層扇形絕緣體 上層扇形絕緣體 -------t--τ---------1— 訂--------線' (請先閱讀背面之沒意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 6 65 60 A7 B7 五、發明說明(\\ ) 2 7 2 2 7 6 2 8 0 2 8 6 2 9 0A7 4 6 6 5 6 0 ____B7___ V. Description of the Invention (丨) Cross Reference to Related Applications This application is an announcement of the provisional application No. 60/1 57, 398 filed on October 1, 1999, and in 2000 The rights and interests of the provisional application serial number N 0.66 / 2 3 3, 0 39 applied for on September 15th, The present invention relates to a surface structure for contacting a workpiece and a method for manufacturing the surface structure, and more particularly to a surface structure for contacting a semiconductor wafer in a vacuum processing chamber. The surface structure is characterized by efficient heat transfer and low particle contamination. This surface structure is particularly useful in electrostatic wafer fixtures used in ion implantation systems, but is not limited to this application: description of the technique In the fabrication of integrated circuits, several established processes involve the vacuum An ion beam is applied to the semiconductor wafer. These processes include, for example, ion implantation, ion beam honing, and reactive ion etching. In each case, the ion beam is generated at the ion source and accelerated towards the target wafer. Ion implantation has become the standard technology for introducing doped materials into semiconductor wafers. The desired doping material is ionized in the ion source, the ion system is accelerated to become an ion beam with a specified energy, and the ion beam is introduced into the surface of the bright circle. Active ions in the ion beam penetrate into the matrix of the semiconductor material 'and are embedded in the crystal lattice of the semiconductor material to form the desired conductivity (please read the precautions on the back before filling this page). -------- Consumer cooperation with employees of the Bureau of Intellectual Property of the Ministry of Economic Affairs. The company prints T's scales to apply Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 4 6 65 6 0 a? B7 Fifth, the invention description (less) area. Targets are important components of the ion implantation system or other ion beam systems. The target mount is necessary to securely clamp the semiconductor wafer onto a platform for ion implantation, and in most cases, it is provided for cooling the wafer. In addition, the wafer loading and unloading system is used to load a wafer onto the target mounting base and to remove the wafer after the ion implantation is completed. Wafer cooling is particularly important in commercial semiconductor manufacturing processes, where the main goal is to achieve high throughput in terms of the number of wafers processed per unit time. One method to achieve high productivity is to use a high current ion beam to complete the ion treatment in a relatively short time. However, the use of high current ion beams may or may generate significant amounts of heat. This heat can cause uncontrolled wafer diffusion beyond the above limits within the wafer and degradation of the photoresist layer pattern. It is often desirable to provide wafer cooling to limit the maximum wafer temperature to about 100 ° C. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs for consumer cooperation (Please read the notes on the back of the praise before filling out this page) In this technology, several types are known for clamping semiconductor wafers on the target mount. Technology. As a well-known technique, the wafer is clamped on the platform by a peripheral clamping ring that attracts the outer circumference of the front surface of the wafer. Except for the area blocked by the grip ring, the front surface of the wafer is exposed for ion implantation. A wafer gripping technique that eliminates the need for a peripheral gripping ring and allows the use of flat platform surfaces is centrifugal gripping. In this centrifugal pick-up, the wafer mounting base is rotated around a rotation axis. The platform surface is at an angle 'to the rotation axis so that the centrifugal force presses the wafer on the platform surface. However, the need to rotate the wafer mount to provide centrifugal grips increases the complexity and the size of this paper applies the Chinese National Standard (CNS) A4 specification (21 × χ297 mm). Member of the Bureau of Intellectual Property印 Printed by Consumer Cooperatives 4 6 6 5 6 0 A7 B7 V. Invention Description (々) Not always practical. Another known technique for gripping semiconductor wafers involves the use of electrostatic forces. A dielectric layer is placed between the semiconductor wafer and the conductive support plate. A voltage is applied between the semiconductor wafer and the support plate, and the wafer is sandwiched on the dielectric layer by electrostatic force. For example, the electrostatic crystal puppet fixture system was disclosed in U.S. Patent Nos. 5,4 5 2, 17, 7 issued to Frutiger on September 19, 1995, and October 19, 1999. U.S. Patent No. 5,9 6 9,9 3 4 issued to Larse η. Regardless of the clamping technology used, transferring heat from a semiconductor wafer to a heat sink in a vacuum is a major issue. Except for ion beams used for low currents, transferring heat from the wafer by radiation is not sufficient. Even when the wafer physically contacts the surface of the platform, the surface and surface irregularities of the wafer and the platform surface limit the actual contact area to about 5% of the two surface areas, so the thermal conduction from the solid to the solid is limited. Various techniques have been disclosed to ensure local rate heat transfer from the wafer to the platform or heat sink. A profiled heat sink for optimizing conduction between the wafer and the heat sink is disclosed in U.S. Patent No. 4,535,835 issued to Hoi den on August 20, 1985. The heat sink surface is contoured to add a load that results in a uniform contact pressure distribution and approximates the elastic limit of the wafer used to clamp the wafer peripherally. Another known technique for heat transfer in a vacuum involves the use of a thermally conductive polymer between a semiconductor wafer and a heat sink. Viscous polymer system used to provide thermal contact between wafer and heat sink revealed 5 paper sizes are applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) ---- II ^ --- Ί H --I ---- I ^ '— — — —HI — ί (Please read the notes on the back before filling in this page) ^ 6 65 60 A7 B7 V. Description of the invention (middle) lies in 1 9 7 9 U.S. Patent No. 4,1 3,9,501, issued to J. Ne S et al. On February 13, An automatic wafer gripping mechanism using a flexible thermally conductive layer between a semiconductor wafer and a heat sink was disclosed in US Patent No. 4,2 8 2,9 2 issued to Faretra on August 11, 1981 4 in. The wafer is clamped on its periphery to a convex platform with a layer of thermally conductive silicone rubber on its surface. Heat transfer technology using centrifugal grips and a platform surface with a soft, thermally conductive polymer layer for effective heat transfer is disclosed in U.S. Patent No. 4,8 3 2,7 8 issued to Mears on May 23, 1989 1 in. The conventional silicone rubber layer is quite thick. The fact that this material is not thermally conductive is a disadvantage. This can be compensated by doping the material with thermally conductive particles and / or by applying pressure to the wafer to increase the number of contact points to compensate for the limited heat transfer at each point. The doping method has the disadvantages of adding additional process steps and the possibility of contaminating particles or components due to the thermally conductive particles. This pressurization method has the disadvantages that the increased pressure may cause wafer damage and the difficulty of applying such pressure to the wafer. When pressure is applied to the edge of the wafer, such as with a mechanical clamp ring, the pressure in the center of the wafer is limited by the flexibility of the wafer. When, for example, an electrostatic clamp is used to apply pressure to the entire crystal, the disadvantages are the cost and difficulty of manufacturing a clamp that is sufficiently effective and the use of high pressure to obtain a specific cooling capacity. In either method, flexible materials that are usually organic will cause organic contamination and are known to be harmful to the wafer process. Gas conduction technology has been used for wafer cooling in vacuum. The gas system is introduced into a cavity or a tiny cavity under the semiconductor wafer, and the wafer size is in accordance with the Chinese National Standard (CNS) A4 specification (210 X 297 mm). (Please read the precautions on the back before (Fill in this page) Binding --------- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 466560 -__ B7__ V. Description of the invention (<) and effective thermal coupling between the radiator. Gas-assisted solid-to-solid heat transfer with semiconductor wafers is disclosed in U.S. Patent No. 4,4 5 7,3 59 issued to Η 1 d e η on July 3, 1984. This gas conduction technology has the disadvantage that the surface size of the radiator must be strictly controlled to match the characteristic distance of molecular transmission under the pressure used for the cooling gas. In addition, the leakage of cooling gas is a problem, which results in non-uniform cooling, and localized gas concentration in the leak area, which leads to process degradation. For a given cooling capacity, the gas pressure may bend the wafer and may also cause degradation of the integrity of the process. As semiconductor device sizes are shrinking and wafer sizes are increasing, the particle contamination specifications allowed are becoming stricter. Because the wafer is in physical contact with the gripping surface, the particle performance of the wafer gripping mechanism is particularly important. In the case of an electrostatic wafer holder, the electrostatic force used to grip the wafer also attracts particles. Therefore, it is desirable to provide a surface structure for contacting a workpiece, which is characterized by low particle generation and low particle contamination of the workpiece, and is characterized by effective heat transfer from the workpiece. Summary of the Invention According to one aspect of the present invention, a surface structure for contacting a workpiece is provided. The surface structure includes a flexible layer attached to a support element, and a coating on the flexible layer. The coating is corrugated on its surface. The workpiece may be a semiconductor wafer. The corrugation can form a pattern on the surface of the coating, and is generally tied to the coating 7 ---------- „---- I ------ order -------- -1 (Please read the notes on the back before filling out this page) Printed on the paper by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) B7 466560 V. Invention Note that a regular pattern is formed in a local area of the (L) layer surface. The wavelength of the ripple is preferably equal to or smaller than the average free path of the gas introduced between the surface structure and the workpiece. However, when the amplitude of the ripple is equal to Or less than the average free path of the gas, the wavelength of the ripple may be greater than the average free path of the gas. The ripple may have any shape and length. Specifically, the ripple may extend in a certain dimension. A series of parallel but not straight channels, or can be relatively short to define a number of nodules or bumps on the surface. The coating may consist of a layer with good structural integrity and good shear strength. Ceramic or other emotional inorganic materials The flexible layer may include a polymer layer. In one embodiment, the flexible layer has a silicone rubber having a thickness in a range of about 5 to 10 microns, and the coating system has a thickness in Silicon nitride, silicon carbonitride, silicon dioxide, or carbon in a range of about 0.2 to 0.5 micron. This embodiment exhibits efficient heat transfer from the workpiece to the support element. In another In an embodiment, the flexible layer has a preferred thickness in a range of about 2.5 to 250 microns, and the thickness is preferably in a range of about 7.5 to 15 microns. The two The embodiment is characterized by low particle generation and low particle contamination of the workpiece. The surface structure may further include a selected film on the coating for compatibility with the workpiece. A selective adhesive layer may be used for Attaching a flexible layer to the support element ^ As another concept of the present invention, a method for manufacturing a surface structure is provided. The method includes forming a flexible layer, extending the flexible layer, and applying a coating to the Stretch the flexible layer and shrink the flexible layer to 8 layers on the coating The paper size applies the national standard (CNS) A4 specification (210 X 297 mm). Ίί — ΙΙΙΙΙΙΊ »— · — · I ------ ^ ----- I--, (Please read the Please fill in this page for the matters needing attention) The consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and is printed by Λ 6 6 5 6 〇 Α7 __ Β7 V. Description of the invention (1) Steps of forming ripple The flexible layer can be stretched by heating and can be shrunk by cooling. The fireable layer can be formed on the support element before heating, or it can be formed separately from the support element. In another method, the flexible layer By mechanical extension and contraction. In one embodiment, the coating is formed by deposition. In another embodiment, the coating is formed by reacting the stretched flexible layer with a gas or other active material. For example, the silicone layer can react with oxygen to form a silicon dioxide coating. According to another aspect of the present invention, an apparatus for cooling a workpiece in a vacuum processing system is provided. The device includes a workpiece support element for contacting a surface structure of the workpiece. The surface structure includes a flexible layer adhered to the support element and a coating layer on the flexible layer, and the coating layer is on the surface thereof. A device having a corrugation for pressing the workpiece against the surface structure, and a cooling gas system for introducing a gas between the coating and the workpiece under a preset air pressure. According to another aspect of the present invention, a device for electrostatically gripping a workpiece is provided. The device includes a platform component defining an electrically insulating gripping surface for receiving a workpiece, the platform component comprising an electrode below and electrically insulated from the gripping surface, and an intermediate between the electrode and the gripping surface An electrical layer, and a gripping control circuit for applying a gripping voltage to the electrode, for gripping the workpiece with a static electricity at a fixed position on the gripping surface. As described above, the gripping surface is configured with a surface structure including a flexible layer and a corrugated coating on the surface. 9 -11 1- nn I n KI · I— nnn TJ innn I 05 * ^ D {Please read the precautions on the back before filling this page) This paper size applies the national standard (CNS) A._i specifications (210 X 297 mm} A7 466560 B7 V. Brief description of the invention (s) Brief description of the invention In order to better understand the present invention, reference is made to the accompanying drawings which are incorporated herein by reference, and among them: FIG. 1 is incorporated into the concept of the present invention. Sectional view of the workpiece supporting device of the first to the second embodiments of the surface structure: FIG. 2 is a partially enlarged sectional view of the surface structure of FIG. 1; FIG. 3 is a partially enlarged sectional view of a contact area between the workpiece and the surface structure; B is a further enlarged view of FIG. 3A, which shows the enhanced cooling effect provided by the ripples on the surface structure; FIG. 3 C is a top view of a surface structure with extended, parallel ripples; FIG. 3 is a nodular ripple Top view of the surface structure: Figures 4A-4C are schematic drawings showing an embodiment of a process for manufacturing a surface structure as another concept of the present invention; Figure 5 is a partial cross-sectional view of a second embodiment of the surface structure; Figure 6 includes Figure 5 Fig. 7 is a schematic plan view of an example of an electrostatic wafer jig according to another concept of the present invention; Fig. 8 is a drawing taken along line 2-2 of Fig. 7 Figure 9 is a schematic cross-sectional view of a wafer gripping device; Figure 9 is a schematic block diagram of an electrostatic wafer gripping device showing an example of a gripping control circuit; Part of the example 10 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) i --- 丨 丨 丨 1Order i 丨 丨 丨丨 li · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ^ 66560 V. Description of the Invention (Surface view. A7 B7 Component Symbol Description Printed by the Employee Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 10 Workpiece support 12 Thermally conductive support element 14 Heat transfer structure 16 Workpiece 18 Surface of heat transfer structure 2 0 Cooling gas source 3 0 Heat transfer layer 3 2 Coating 4 0 Ripple 4 2 Projection 4 4 Projection 5 0 Molecular path 6 0 Arrow 6 2 Arrow 9 0 Surface structure 10 0 Support element 10 2 Adhesive interface layer 10 4 Flexible layer 10 6 Coating 1 2 0 Electrode layer 1 2 2 Adhesive layer 11 --------- ^ --- ^ ----- I-- ^ ---------, (Please read the precautions on the back before filling out this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 6 5 6 0 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description (v 〇) 12 4 13 0 2 10 2 12 2 14 2 18 2 2 0 2 2 2 2 2 4 2 2 6 2 2 8 2 3 0 2 4 0 2 4 2 2 4 4 2 4 6 2 4 8 2 5 0 2 6 0 2 6 2 2 6 4 2 6 6 2 6 8 2 7 0 Insulation layer base platform clamp control circuit platform center center fan sector Fan sector Fan sector Fan sector Fan sector Fan sector Fan sector Fan electrode Fan electrode Fan electrode Fan electrode Fan electrode Fan electrode Upper fan insulator Upper fan insulator Upper fan insulator Upper fan insulator Upper fan insulator Upper fan insulator --- t- -τ --------- 1— Order -------- line '(Please read the unintentional matter on the back before filling in this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 6 65 60 A7 B7 V. invention is described (\\) 272,276,280,286,290
經濟部智慧財產局員工消費合作社印製 3 14 3 2 0 3 2 2 3 2 4 3 3 0 3 3 2 3 3 4 3 4 0 3 4 2 3 4 4 3 4 6 3 4 8 3 5 0 4 0 0 4 2 0 平台中心 晶圓夾取表面 下層扇形絕緣體 下層扇形絕緣體 對位開孔 對位開孔 晶圓 方波產生器 方波產生器 方波產生器 放大器 放大器 放大器 高壓反流變壓器 高壓反流變壓器 高壓反流變壓器 電線 電線 電線 電線 電線 電線 側邊 表面結構 n ! H - n H Ίι ί 1Ί I I » ^—L t n 1 n —I— Jn-i-r^Jr Er n n I - I . (請先閱讀背面之;i意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 * 297公釐) 4 6 6 5 6 0 A7 B7 五、發明說明(\〆) 較佳實施例之詳細說明 如本發明之一種構想,係提供一種用於接觸工件之表 面結構。該表面結構顯示出對工件之低顆粒產生性及低顆 粒污染性。該表面結構之部分實施例的特徵在於從工件至 支撐元件的有效熱量轉移。 在圖1中係顯示如本發明實施例之工件支撐裝置1〇 。在圖1之實施例中,熱量轉移結構組成該表面結構。工 件支撐裝置10係包含熱傳導支撐元件12以及具有表面 1 8之熱量轉移結構1 4。工件1 6係裝設在熱量轉移結 構1 4之表面1 8上。支撐元件1 2具有足以支撐工件1 6之機械強度,而熱量轉移結構1 4係配置成如下所詳述 般地能增強在工件1 6以及支撐元件1 2之間的熱量轉移 。此外,熱量轉移結構1 4之特徵在於該工件1 6之低顆 粒產生性及低顆粒污染性。圖1所示之工件支撐裝置1 0 主要係使用在真空環境中,但並非受限於此種應用。 該熱量轉移結構14之表面18可連接至冷卻氣體源 2 0以在工件1 6及熱量轉移結構之間提供氣體。該冷卻 氣體經由在該工件支撐元件10內的單一個孔洞或複數個 孔洞引入。在其中一種實施例中,該冷卻氣體係經由排列 在該支撐元件1 0之中心及外圍之間之環形圖案的複數個 孔洞所引入。舉例來說,該冷卻氣體可能係例如空氣、氮 氣、氦氣、氬氣或二氧化碳的氣體,其壓力一般係在約◦-1至5 0托的範圍內。 在一種重要應用中,工件1 6係半導體晶圓,而工件 14 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) <請先閱讀背面之注意事項再填寫本頁> 裝---- 訂---------線 經濟邨智慧財產局員工消費合作社印製 經濟部智慧財產局S工消費合作社印製 46 65 60 A7 B7 五、發明說明) 支撐元件10係用在真空處理系統內用於支撐半導體晶圓 。舉例來說,工件支撐元件1 0可能係離子佈植系統內平 台組件的一部份。該平台組件係在離子佈植時夾取半導體 晶圓在定位上,且提供該半導體晶圓之冷卻。該平台組件 可使用機械夾取、離心夾取、靜電夾取或任何其它適合之 夾取技術以用於將半導體晶圓壓在該熱量轉移結構14上 。應瞭解到,該工件支撐裝置1 0並非限制於在離子佈植 系統中所使用,配合半導體晶圓所使用以及在真空中所使 用者。更一般地說,該工件支撐裝置1 0可使用在工件及 支撐元件之間需要熱量轉移的任何應用。在另一種範例中 ,該工件支撐裝置1 0係作爲在半導體晶圓裝卸系統內晶 圓機械臂之晶圓支撐元件。 在圖2、3A及3 B中係顯示一種熱量轉移結構實施 例的部分放大截面圖。該熱量轉移結構1 4係放大且未依 比例顯示,以幫助瞭解其結構及操作。該熱量轉移結構1 4係包含附著於支撐元件1 2的撓性、有彈性之熱傳導層 3 ◦以及在化學上惰性、低摩擦材料的塗層3 2。該塗層 3 2最好係具有良好之切變強度、良好之結構完整性以及 局部化硬度。在較佳實施例中,撓性層3 〇係包含厚度在 約5 - 1 0微米之範圍內的矽樹脂橡膠。塗層3 2可能係 例如碳、氮化矽或碳氮化矽。其它可能之材料係包含矽、 例如鋁之金屬、矽酸鋁、二氧化矽以及高鏈結聚合物。塗 層3 2可能係具有在約〇_2 5〜0.5 0微米之範圍內的厚 度。在其中一種實施例中,該塗層係藉由沉積所形成。在 15 本紙ϋ度適用中關家標準(CNS)A4規格(210 X 297公爱y (請先間讀背面之注意事項再填寫本頁> · 1 —---— 丨訂 ---------*5^ 4 6 65 60 、 A7 __________B7____ 五、發明說明(、七) 另一種實施例中,該塗層係藉由延展之撓性熱傳導層以及 氣體或其匕活性材料反應所形成。舉例來說’砂樹脂層可 與氧氣反應以形成二氧化矽塗層。應瞭解到,上述材料及 厚度僅係作爲範例,而非成爲本發明之範圍的限制。 在圖2中係顯示熱量轉移結構的其它特徵。在下文中 將說明形成在該塗層3 2之表面1 8上的波紋4 0。波紋 4 ◦至少在局部區域內具有規則之圖案,且可能具有波長 W及振幅A的特徵。波長w係在平行該支撐表面之方向上 的波紋4 0之中心對中心間隔,而振幅a係在垂直該支撐 表面之方向上的波紋4 0之振幅。該波紋4 〇在與半導體 晶圓或其它工件之接觸區域上最好係具有圓形頂部以限制 顆粒之產生。爲求從該半導體晶圓至支撐元件1 2之最佳 熱量轉移’該波紋4 0之波長W最好係等於或小於引入在 晶圓及塗層3 2之間的氣體分子之平均自由路徑。對於壓 力在1 0托之氣體而言,該平均自由路徑係約4.7微米。 因此,波紋4 0之波長W應等於或小於4.7微米。在其中 一種實施例中,波紋4 0之波長W係約2至3微米。對於 最佳之熱量轉移而言,波紋4 0之振幅A應相當大,且一 般係與半導體晶圓或其它工件之背部表面之表面粗糙度之 振幅在同一數量級。此使得該塗層3 2及撓性層3 0與該 半導體晶圓之背部表面相符一致,並如下述般增強熱量轉 移。然而,當波紋之振幅係等於或小於氣體之平均自由路 徑時,該波紋之波長可大於該氣體之平均自由路徑。 該波紋可具有任意之形狀及長度。特別是’該波紋可 16 ------:--------------訂--------- (請先閱讀背面之注意事項再填寫本頁> 經濟部智慧財產局8工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 * 297公釐) A7 466560 —___B7____ 五、發明說明(Y<) 在某一維度延展,以藉此定義一系列平行但無需筆直的通 道’或可能係相當地短,以藉此定義複數個在表面上的圓 頂、結節或凸塊。在該表面之局部區域內具有延展平行之 波紋表面結構的俯視圖係顯示在圖3 C中。在圖3 C中, 該波紋係具有約2至3微米之波長。具有結節狀波紋之表 面的俯視圖係顯示在圖3 D中。 塗層3 2以及半導體晶圓1 6之間之接觸區域的部分 放大截面圖係顯示在圖3 Α及3 Β中。在塗層3 2之波紋 4 0提供從晶圓1 6而來的高效率之熱量轉移。波紋化塗 層3 2的一項特點係該波紋4 0可藉由在晶圓1 6之背部 表面之不規則而變形,且因該表面之撓性以藉此增加該接 觸面積。參考圖3 A之範例,在晶圓1 6之背部表面上的 凸出物4 2及4 4使得鄰近之波紋4 0變形,藉此增加該 表面之間的接觸面積。 此外,在塗層3 2上之波紋4 0提供大於該晶圓1 6 之背部表面的表面面積。該面積差異使得氣體分子統計上 係在該波紋內彈跳複數次,並摺疊該吸熱表面,如圖3 B 所不。圖中係顯不一種分子路徑5 0之範例。由分子路徑 5 0表示之氣體分子在晶圓1 6獲取熱能,且接著在回到 該晶圓1 6之前在該波紋4 0之摺層內彈跳複數次,而每 次均損失能量。以藉由提供波紋4 0之方式增加熱量轉移 係稱之爲提升該吸熱表面之適應係數。該適應係數係定義 成氣體分子與表面交互作用後之溫度差異與交互作用前之 溫度差異的比値。 17 I I I I I----^---· 1 I I I I I I ^ · I I I-----1 (諳先閲讀背面之';i意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 6 6 5 6 0 a? B7 五、發明說明(J ) 若與氣體分子在回到晶圓1 6之前僅在塗層3 2之表 面上彈跳一次的情況相比較時,氣體分子在回到晶圓1 6 之熱表面之前在塗層3 2之冷表面上彈跳數次且每次均損 失能量的熱量轉移效率係較高的。因此,從微觀尺度來看 ’當支擦晶圓1 6之塗層3 2的表面面積係大於晶圓1 6 之背面的表面面積且表面不規則係規格化以在塗層3 2之 冷表面上提供複數次分子彈跳時,可增加熱量轉移效率。 圖2所示以及上述之熱量轉移結構14係具有額外之 優點。頂部惰性表面基本上可減少經由在下方之撓性材料 的晶圓之有機污染。再者,其形狀係使得該吸熱表面之接 觸點係典型之圓形且微觀上係平滑的,其造成不會尖銳到 產生顆粒的密集重複之熱量傳導接觸點網路。然而,所有 的層在微觀上仍維持撓性以使得該表面與晶圓形狀一致, 以再次將接觸面積最大化。 用於製造熱量轉移結構14以及此處所揭示之其它表 面結構之製程的實施例係參考圖4A — 4 C說明之。參考 圖4 A,係藉由在支撐元件1 2上施加用於結合撓性層3 0所選用之選擇性結合劑,以準備該支撐元件1 2之表面 。該結合劑需能與撓性層3 0以及支撐元件1 2在化性上 配合。在矽樹脂橡膠撓性層3 0的情況中,該結合劑最好 係氮化矽。一般爲矽樹脂的撓性層可噴塗在支撐元件1 2 上或藉由旋塗製程所形成。接著,在如箭號6 0所示之平 行該支撐元件1 2之表面的方向上延展撓性層3 0。撓性 層3 0—般係藉由加熱延展。如上所述,撓性層3 0可能Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 3 14 3 2 0 3 2 2 3 2 4 3 3 0 3 3 2 3 3 4 3 4 0 3 4 2 3 4 4 3 4 6 3 4 8 3 5 0 4 0 0 4 2 0 Platform center wafer clamping surface Lower fan-shaped insulator Lower fan-shaped insulator Alignment hole Alignment hole wafer square wave generator square wave generator square wave generator amplifier amplifier high voltage reflux transformer high voltage reflux transformer High-voltage reflux transformer wire wire wire wire wire wire side surface structure n! H-n H Ίι ί 1Ί II »^ —L tn 1 n —I— Jn-ir ^ Jr Er nn I-I. (Please read the back first (I will fill in this page again for the items of interest) This paper size applies the Chinese National Standard (CNS) A4 specification (210 * 297 mm) 4 6 6 5 6 0 A7 B7 V. Description of the invention (\ 〆) DETAILED DESCRIPTION As an idea of the present invention, a surface structure for contacting a workpiece is provided. This surface structure shows low particle generation and low particle contamination to the workpiece. Some embodiments of this surface structure are characterized by effective heat transfer from the workpiece to the support element. FIG. 1 shows a workpiece supporting device 10 according to an embodiment of the present invention. In the embodiment of FIG. 1, a heat transfer structure constitutes the surface structure. The work piece supporting device 10 includes a heat conductive supporting member 12 and a heat transfer structure 14 having a surface 18. The workpiece 16 is mounted on the surface 18 of the heat transfer structure 14. The supporting element 12 has a mechanical strength sufficient to support the workpiece 16, and the heat transfer structure 14 is configured to enhance the heat transfer between the workpiece 16 and the supporting element 12 as described in detail below. In addition, the heat transfer structure 14 is characterized by low particle generation and low particle contamination of the workpiece 16. The workpiece support device 10 shown in FIG. 1 is mainly used in a vacuum environment, but is not limited to this application. The surface 18 of the heat transfer structure 14 may be connected to a cooling gas source 20 to provide a gas between the workpiece 16 and the heat transfer structure. The cooling gas is introduced through a single hole or a plurality of holes in the workpiece supporting member 10. In one embodiment, the cooling gas system is introduced through a plurality of holes in a circular pattern arranged between the center and the periphery of the support member 10. For example, the cooling gas may be a gas such as air, nitrogen, helium, argon, or carbon dioxide, and its pressure is generally in the range of about -1 to 50 Torr. In an important application, the workpiece 16 is a semiconductor wafer, and the workpiece 14 is in the paper size of China National Standard (CNS) A4 (210 X 297 mm). ≪ Please read the precautions on the back before filling this page > Packing ---- Order --------- Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of Line Economic Village Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economy 46 65 60 A7 B7 V. Description of the invention) Support The element 10 is used in a vacuum processing system to support a semiconductor wafer. For example, the workpiece support element 10 may be part of a platform assembly in an ion implantation system. The platform assembly clamps the semiconductor wafer during positioning during ion implantation, and provides cooling of the semiconductor wafer. The platform assembly may use mechanical gripping, centrifugal gripping, electrostatic gripping, or any other suitable gripping technique for pressing the semiconductor wafer onto the heat transfer structure 14. It should be understood that the workpiece support device 10 is not limited to the use in an ion implantation system, the use with a semiconductor wafer, and the use in a vacuum. More generally, the workpiece support device 10 can be used in any application requiring heat transfer between a workpiece and a support element. In another example, the workpiece support device 10 is used as a wafer support element for a wafer robot arm in a semiconductor wafer loading and unloading system. Figs. 2, 3A, and 3B are partially enlarged sectional views showing an example of a heat transfer structure. This heat transfer structure 14 is enlarged and not shown to scale to help understand its structure and operation. The heat transfer structure 14 includes a flexible, elastic heat-conducting layer 3 attached to the support element 12 and a coating 32 of a chemically inert, low-friction material. The coating 32 preferably has good shear strength, good structural integrity, and localized hardness. In a preferred embodiment, the flexible layer 30 comprises a silicone rubber having a thickness in the range of about 5 to 10 microns. The coating 32 may be, for example, carbon, silicon nitride or silicon carbonitride. Other possible materials include silicon, metals such as aluminum, aluminum silicate, silicon dioxide, and high-link polymers. The coating layer 32 may have a thickness in a range of about 0 to 5 to 0.50 m. In one embodiment, the coating is formed by deposition. Applicable to Zhongguanjia Standard (CNS) A4 specification (210 X 297 public love y) on 15 papers (please read the precautions on the back before filling out this page)> · 1 —---— 丨 order ---- ----- * 5 ^ 4 6 65 60 、 A7 __________B7____ 5. Description of the invention (7) In another embodiment, the coating is formed by an extended flexible heat-conducting layer and a gas or reactive material reaction Formation. For example, the 'sand resin layer can react with oxygen to form a silicon dioxide coating. It should be understood that the above materials and thicknesses are only examples and are not a limitation of the scope of the present invention. It is shown in FIG. 2 Other characteristics of the heat transfer structure. The ripples 40 formed on the surface 18 of the coating 3 2 will be described below. The ripples 4 ◦ have a regular pattern at least in a local area and may have a wavelength W and an amplitude A Features. The wavelength w is the center-to-center spacing of the ripple 40 in the direction parallel to the support surface, and the amplitude a is the amplitude of the ripple 40 in the direction perpendicular to the support surface. The ripple 4 is in contact with the semiconductor crystal. Circles or other workpiece contact areas are best There is a rounded top to limit the generation of particles. For optimal heat transfer from the semiconductor wafer to the support element 12 'the wavelength W of the ripple 40 is preferably equal to or less than that introduced into the wafer and coating 3 2 The average free path between gas molecules. For a gas at a pressure of 10 Torr, the average free path is about 4.7 microns. Therefore, the wavelength W of the ripple 40 should be equal to or less than 4.7 microns. In one embodiment Medium, the wavelength W of the ripple 40 is about 2 to 3 microns. For optimal heat transfer, the amplitude A of the ripple 40 should be quite large, and is generally rough with the surface of the back surface of a semiconductor wafer or other workpiece. The amplitude of the degree is in the same order of magnitude. This makes the coating 32 and the flexible layer 30 consistent with the back surface of the semiconductor wafer and enhances heat transfer as follows. However, when the amplitude of the ripple is equal to or less than the gas In the mean free path, the wavelength of the ripple can be greater than the mean free path of the gas. The ripple can have any shape and length. In particular, the ripple can be 16 ------: ------- ------- Order --------- (Please Read the notes on the back and fill in this page> The paper size printed by the 8th Industrial Cooperative Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs applies to Chinese National Standard (CNS) A4 (210 * 297 mm) A7 466560 —___ B7____ Y <) extends in a dimension to define a series of parallel but not straight channels' or may be quite short to thereby define a plurality of domes, nodules or bumps on the surface. On the surface A plan view of a corrugated surface structure extending in parallel in a partial region is shown in FIG. 3C. In FIG. 3C, the corrugations have a wavelength of about 2 to 3 microns. A top view of the surface with nodular corrugations is shown in Figure 3D. Parts of the contact area between the coating 32 and the semiconductor wafer 16 are enlarged sectional views shown in FIGS. 3A and 3B. The corrugations 40 on the coating 32 provide efficient heat transfer from the wafer 16. A feature of the corrugated coating 32 is that the corrugation 40 can be deformed by irregularities on the back surface of the wafer 16, and the contact area is thereby increased due to the flexibility of the surface. Referring to the example of FIG. 3A, the protrusions 4 2 and 4 4 on the back surface of the wafer 16 deform the adjacent ripples 40, thereby increasing the contact area between the surfaces. In addition, the ripple 40 on the coating 32 provides a surface area larger than the back surface of the wafer 16. This area difference makes the gas molecules statistically bound within the ripple multiple times and folds the endothermic surface, as shown in Figure 3B. An example of a molecular pathway 50 is shown in the figure. The gas molecules represented by the molecular path 50 acquire thermal energy at the wafer 16 and then bounce multiple times within the fold of the corrugation 40 before returning to the wafer 16, each time losing energy. Increasing the heat transfer by providing ripples 40 is called increasing the fitness coefficient of the heat-absorbing surface. The adaptation coefficient is defined as the ratio of the temperature difference between the interaction of the gas molecules and the surface and the temperature difference before the interaction. 17 IIII I ---- ^ --- · 1 IIIIII ^ · II I ----- 1 (谙 Please read the '; on the back of the page; I will fill out this page before filling in this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 4 6 6 5 6 0 a? B7 V. Description of the invention (J) If the gas molecules are only coated on the wafer before returning to the wafer 16 In the case of bounce once on the surface of layer 32, when comparing, the heat transfer efficiency of gas molecules bounced on the cold surface of coating 32 several times and lost energy each time before returning to the hot surface of wafer 16 higher. Therefore, from a micro-scale perspective, when the surface area of the coating 3 2 of the wafer 16 is larger than the surface area of the back surface of the wafer 16 and the surface irregularity is normalized to the cold surface of the coating 32 When multiple molecular bounces are provided, heat transfer efficiency can be increased. The heat transfer structure 14 shown in Fig. 2 and described above has additional advantages. The top inert surface substantially reduces organic contamination of the wafer through the flexible material underneath. Furthermore, its shape is such that the contacts on the heat-absorbing surface are typically circular and microscopically smooth, which results in a densely repeated network of heat-conducting contact points that is not sharp enough to produce particles. However, all layers remain microscopically flexible so that the surface conforms to the shape of the wafer to maximize the contact area again. Embodiments of a process for manufacturing the heat transfer structure 14 and other surface structures disclosed herein are described with reference to Figs. 4A-4C. Referring to FIG. 4A, the surface of the support element 12 is prepared by applying a selective bonding agent selected for bonding the flexible layer 30 to the support element 12. The bonding agent needs to be able to chemically cooperate with the flexible layer 30 and the support member 12. In the case of the silicone rubber flexible layer 30, the bonding agent is preferably silicon nitride. The flexible layer, which is generally a silicone resin, may be sprayed on the support element 12 or formed by a spin coating process. Next, the flexible layer 30 is extended in a direction parallel to the surface of the support member 12 as shown by an arrow 60. The flexible layer 30 is generally stretched by heating. As mentioned above, the flexible layer 30 may
IS 本紙張尺度適用令國國家標準(CNS)A4規格(210x 297公釐) , -- (請先閱讀背面之注意事項再填寫本頁) 言 Γ 經濟邨智慧財產局員工消費合作社印製 466560 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(q) 係厚度在約5 - 1 〇微米之範圍內的砂樹脂橡膨,但並非 限制爲此種材料及此厚度範圍。該矽樹脂橡膠層可藉由加 熱至約7 0°C至1 2 (TC之範圍內的溫度而延展。 如圖4 B所示,接著對在延展態之撓性層3 〇的撓性 層3 0上施加塗層3 2。塗層3 2可藉由例如電漿輔助化 學氣相沉積(P E C V D )或化學氣相沉積(C V D)所 沉積。此方法之優點係可在用於沉積塗層3 2之腔內加熱 該撓性層3 0以達成延展。如上所述,塗層3 2最好係碳 、氮化矽或碳氮化矽且具有在約0.2 5至0.5 0微米之範 圍內的厚度,但並非限制爲這些材料以及此厚度範圍。 在上述實施例中,塗層3 2係藉由沉積所形成。在另 一種實施例中’塗層3 2係藉由延展撓性層3 0與氣體或 其它活性材料反應所形成。舉例來說,矽樹脂橡膠撓性層 3 〇可與氧氣反應以形成二氧化矽塗層。在矽樹脂橡膠層 上形成二氧化矽塗層係在專利號4,8 3 2,78 1中說明之 ,其係納入本文以作爲參考。 如圖4 C所示’接著冷卻該結構以得撓性層3 〇收縮 至其原始尺寸,如箭號6 2所示。該塗層3 2之切變阻力 使得塗層3 2在冷卻時起皺紋並形成波紋4 〇 1且不會從 該撓性層3 0分開。已發現此方法可製造遍佈晶圓支撐元 件1 2之表面的波紋4 0之圖案。該波紋係具有相當一致 之波長及振幅° 在圖4 A - 4 C之製程中’撓性層3 〇係施加至支撐 元件1 2上’且接著加熱延展以用於塗層3 2之沉積。在 19 未紙張尺度適用_國國家標準(CNS)A4規格(210 X 297公釐 ----------r---裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4 6 65 60 A7 ___B7 五、發明說明(θ) 另一種實施例中,撓性層3 0可與支撐元件1 2獨立地形 成,且接著加熱以產生延展。塗層3 2係施加至該延展之 撓性層上,且接著冷卻撓性層以在塗層3 2上形成波紋4 0。接著以化學性或藉由黏著劑將撓性層3 0結合在支撐 元件1 2上。在又另一種實施例中,該撓性層3 0係不使 用加熱而以機械性拉伸,以產生用於施加塗層3 2時必需 之延展。 塗層3 2不必是無機或惰性的。然而,對大多數半導 體晶圓應用而言,此爲必需的。當該熱量轉移結構1 4用 在靜電晶圓夾具上時,該塗層3 2需爲不導電材料。然而 ,當使用機械或離心夾取時,無需使用不導電材料。在這 些情況中,最好係使用例如鋁及碳化鎢之導電塗層以消除 電荷。 在又另一種實施例中,係在塗層3 2之頂部表面施加 不與工件反應之材料的薄膜。該薄膜可能係具有數埃之厚 度。舉例來說,當塗層3 2係氮化矽且工件係矽基底時, 可在塗層3 2上施加碳或碳氮化砂薄膜。 如上所述,熱量轉移結構1 4可使用在需要在真空中 從工件將熱量轉移至支撐結構的任何應用中。當離子佈植 或其它真空處理時,該熱量轉移結構1 4在半導體晶圓之 靜電夾取係特別地有用。在靜電晶圓夾具中,在半導體晶 圓以及導電支撐板之間係放置介電層。在該半導體晶圓以 及該支撐板之間係施加電壓,而晶圓則藉由靜電靠著該介 電層夾取。在習知技術中,已知各種靜電晶圓夾具構造。 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) I-----1--I ---4^4 I I,11 —^• — — i — — — · <請先閱讀背面之泫意事項再填寫本頁) 經濟部智慧时產局員工消費合作社印製 466560 A7 __B7___ 五、發明說明(vf ) 該靜電夾具可能係具有例如揭示在於1 9 9 5年9月1 9 曰核發給F r u t 1 g e r的美國專利號5,4 5 2,1 7 7 以及於1999年10月19日核發給L a r s e η的美 國專利號5,9 6 9,9 3 4的結構,其係納入本文以作爲參 考。在此種靜電晶圓夾具中’此處圖不及§兌明之熱量轉移 結構係附加在上層扇形絕緣體以提供從半導體晶圓至該上 層扇形絕緣體的增強之熱量轉移。然而,應瞭解到,此處 揭示之熱量轉移結構可使用在使用任意電極形狀的任何靜 電晶圚夾具中。 在圖5中係顯示表面結構之第二種實施例。該表面結 構提供工件之低顆粒產生及低顆粒污染,其可抵抗分子污 染,且可如所需製造成具有導電或絕緣之特性。該表面係 具有低磨損性質,且因此即使從微觀尺度來看亦不太可能 對工件造成傷害。該表面可抵抗外部污染且係相當地耐用 ,若需要時則可淸潔之。 表面結構9 0係包含可由任何材料製成之工件支撐元 件1 0 0。其範例係包含例如鋁之電及熱導體,以及例如 氧化鋁之電絕緣體。該表面結構9 0更包含選擇性黏著界 面層1 0 2 '撓性柔軟層1 0 4以及塗層1 〇 6。若撓性 層1 0 4係直接施加在支撐元件1 0 0上時,該支撐元件 1 0 0在化性上需配合該撓性層1 0 4。當使用黏著界面 層1 0 2時,該支撐元件1 0 0在化性上需配合該界面層 1 0 2。需將該支撐元件1 0 0準備成可接受界面層1 〇 2,或若省略黏著層1 0 2時可接受撓性層1 〇 4。此種 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------—--------訂--------- <請先閱讀背面之注意事項再填寫本頁) _ 466560 經濟部智慧財產局員工消費合作社印製 五、發明說明(r°) 準備可能涉及增加藉由硏磨或拋光所結束之微英吋表面, 以增加全體表面面積且因此增加結合黏著面積。支撐元件 1 0 0之表面應將所有突出物及邊緣平滑化或去角化,以 提供用於覆蓋層的連續表面。若覆蓋層係沉積至足夠之厚 度,則可省略該平滑化步驟。 黏著界面層1 0 2係選擇性地沉積在支撐元件1 0 0 上。在較佳實施例中,界面層1 0 2可能係氮化矽,但係 依照撓性層1 0 4所選擇之材料而定。界面層1 0 2係以 化學或電漿沉積在支撐元件1 0 0上達數百埃之厚度。該 界面層1 0 2係作爲黏著層,且除了提供用於與撓性層1 0 4結合之足夠材料外,厚度係不重要的。用於界面層1 0 2之其它適合之材料係包含但不限制於矽、碳、碳化矽 以及具有與支撐元件1 〇 〇及撓性層1 〇 4在化性上配合 的其它材料。 撓性層1 0 4開始係沉積之聚合物層。撓性層1 〇 4 可能係噴塗或旋塗,以維持遍佈整個表面的任何重要之厚 度及/或平坦性規定。其後加上之塗層1 〇 6將引入熱量 以造成該撓性層1 0 4的化學變化,其可能會破壞該聚合 物結構。在那時,該撓性層1 0 4無法再正確地歸類於聚 合物。撓性層1 0 4開始最好係具有厚度在約2.5至2 5 0微米之範圍內且最好係具有厚度在約7.5至1 5微米之 範圍內的矽樹脂橡膠(聚二甲基矽氧烷)。該厚度係依照 該應用之實際限制以及在沉積該層時之實際考量而定3可 用以形成撓性層1 0 4之其它聚合物係包含但不限制於τ 22 Η" <請先閱讀背面之注意事項再填寫本頁) ί 言 r 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) 經濟部智慧財產局員工消費合作社印 A7 ______B7 五、發明說明) efl〇n、T〇r lon'Vespel及其它聚醯亞 胺。該撓性層1 0 4可用例如二氧化矽之材料摻雜以增加 熱及/或電傳導性。其它塡充材料係包含但不限制於碳化 矽、氮化鋁及碳。 塗層1 0 6可能係例如類鑽石碳的電漿沉積之低摩擦 材料。在沉積時,需控制沉積以提供撓性層1 0 4適當但 非過度之熱膨脹。撓性層1 0 4可選擇性的準備成可接受 藉由使用例如氬氣之情性氣體以離子撞擊形成的塗層10 6。塗層1 0 6可沉積至數百埃之厚度,以提供用於接觸 工件之微觀硬化之低摩擦表面,且仍使得下方之撓性層1 0 4在巨觀仍保持撓性。該塗層1 〇 6係設計成可在沉積 後附著於撓性層1 0 4上,以在沉積塗層1 0 6並冷卻收 縮撓性層1 0 4之後形成具有圓形規則之微觀波紋。該波 紋之特性係與上文詳述之塗層3 2相同。 圖5所示及上述之表面結構係提供一種具有吸收熱量 及振動之能力的低摩擦之微觀硬化之接觸表面。已知因工 件受熱及振動的差別熱膨脹可引起顆粒。振動係藉由該表 面結構吸收及折射且在頻域上轉換。該熱量轉移特性至少 部分係依照撓性層1 〇 4之厚度及導熱性而定。因此,在 工件需要高效率之熱量轉移的應用中,需使用相當高導熱 性的相當薄之撓性層1 〇 4。相反地,當高效率熱量轉移 非主要需求時,可使用較厚之撓性層1 0 4 ^ 圖5所示及上述之靜電晶圓夾具之表面結構的應用係 顯不在圖6中。在圖6之實施例中,支撐元件1 〇 〇可能 23 參紙張尺度顧中國國家標準(CNS)A4規格(210 X 297公.餐) — 1 I I I-----------— — — It· — —------ <請先閱讀背面之注意事項再填寫本頁) 65 60 A7 _____B7___ 五、發明說明(vV) — — — — — — —— — 111— · I I <諝先閱讀背面之注意事項再填寫本頁) 係氧化銘或具有適當之介電特性以用於操作該靜電晶圖夾 具的另一種陶瓷材料=支撐元件1 〇 0組成該靜電晶圖夾 具主要之介電質。該支撐晶圓夾具i 〇 〇之厚度—般係從 0·0 0 2至0.0 1 5英吋,而對於較佳之氧化鋁材料而言 ’厚度最好係〇‘〇 0 5英吋。其它材料需根據介電係數而 有不同之厚度。電極層1 2 0可能係鉬/鈦或鈮,或其它 金屬或導電材料。電極層1 2 0—般係厚數百埃’但可能 更厚在所有情況中,需維持最小之導電性。黏著層丄2 2係用以將支撐元件1 〇 〇及電極層1 2 〇黏著至下層之 絕緣層1 2 4。黏著層1 2 2可能係F E P T e f ι 〇 η 。 -線' 可能係氧化鋁之絕緣層丨2 4可具有0 ·1 0 〇英吋之 厚度。然而’若電極層1 2 Ο與任何其它例如基座ι 3 〇 之導電材料絕緣’則絕緣層1 2 4之厚度並不重要。該絕 緣層1 2 4需夠厚以避免與除該半導體晶圓外之任何鄰近 之導電材料的明顯之電容耦合。 經濟部智慧財產局員工消費合作社印製 黏者層1 2 6將絕緣層1 2 4及其上方層黏著至基座 1 3 0 3黏著層ι 2 6可選擇性地以氧化矽或其它材料塡 充以改善對基座1 3 〇的導熱性。 最好係鋁製的基座1 3 〇可用水冷以吸收從半導體晶 圓而來之熱負載。因此,基座1 3 〇需以導熱材料製成, 但可選擇由例如氮化鋁的電絕緣材料或不論其導電性的導 熱材料所製成。 上述之表面結構可使用在上述專利號5,9 6 9,9 3 24 本紙張尺度t國國家標準(CNS)A4 €_格 297公釐) A7 466560 ____B7___ 五、發明說明) 4所揭示的斜角圓周邊緣。或者是,若在該晶圓夾具或其 它工件支撐裝置的構造中,可將該撓性層製成包圍住邊緣 或由厚漸薄至邊緣,則可省略該斜角邊緣。此係依照用以 形成該撓性層的技術而定。此外,若該撓性層及塗層之總 厚度係大於在該支撐元件上方的預期之邊緣特徵高度,則 可省略該斜角圓周邊緣,因工件將不會接觸到通常出現在 該支撐元件上的任何堅硬地硏磨物。 在圖7 — 1 0中係以簡化之形式顯示用於靜電夾取例 如半導體晶圓之工件的裝置範例。靜電晶圓夾取裝置係包 含平台2 1 0,以及當希望夾取工件時用於施加夾取電壓 至該平台2 1 0的夾取控制電路2 1 2。該平台2 1 0係 包含支撐盤或平台基座2 1 4,以及裝設在平台基座2 1 4之上方表面的六個扇形組件220、222、224、 226、228及230。該平台基座2 1 4 —般係圓形 ,且可能具有用於晶圓升起機械機構(未顯示出)的中心 開孔2 1 8。 每個扇形組件係包含爲在上層扇形絕緣體以及下層扇 形絕緣體之間的扇形電極。扇形組件2 2 0、2 2 2、2 24、226、228及230係分別包含扇形電極2 4 0、242 '244 '246、248及25 ◦。上層扇 形絕緣體 260、262、264、266、268及2 7 0係分別覆蓋住電極2 40、242、244、246 、2 4 8及2 5 0。該電極最好係分別形成在上層扇形絕 緣體之下方表面的薄金屬層。該電極2 4 0 ' 2 4 2、2 25 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------------------------- C請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局負工消費合作社印製 466560 A7 ______B7__ 五、發明說明(/〇 44、246、248及250最好係具有相等之面積, 且係相對於平台2 1 0之中心2 7 2而對稱地放置。在較 佳實施例中,彼此電絕緣之電極係如圖7所示之扇形。扇 形絕緣體 260、262、264、266、268及2 7 0之上方表面係共面的。如上所述之表面結構係覆蓋住 該上層扇形絕緣體且定義晶圓夾取表面2 7 6。如圖8所 示’扇形組件2 2 0係包含下層扇形絕緣體2 8 0,而扇 形組件2 2 6係包含下層扇形絕緣體2 8 6。其餘之扇形 組件係具有相同之構造。每個扇形組件之上層及下層扇形 絕緣體最好重疊到各自之電極的邊緣以避免電極以及晶圓 之間的接觸。 在圖7 - 1 0之實施例中,一個個別之扇形組件係包 含用於每個電極所製造的扇形之上層及下層扇形絕緣體。 在其它實施例中,該上層絕緣體或該下層絕緣體或該兩者 可製成如圓盤狀。在圓形上層絕緣體之下方表面可形成複 數個電極。此構造對相當小之平台而言係較實際的。 平台基座2 1 4以及下層扇形絕緣體2 8 0、2 8 6 等在每個電極下方係分別設有對位開孔2 9 0及2 9 2。 該開孔2 9 0及2 9 2允許電連接至每個電極。在圖8中 係顯示半導體晶圓放置在夾取表面2 7 6之上方。當對電 極 240、242、244、246、248 及 250 施 加夾取電壓時,該晶圓3 0 0係被靜電夾取在靠著夾取表 面2 7 6的固定位置上。 上層扇形絕緣體260 '262、264、266、 26 ---—If — —— — — — -— — — — Is— ^ ' — — — —— — I— (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ^66560 A7 B7 %濟邹智慧时產局員x消費合作.社印製 五、發明說明(β) 2 6 8及2 7 0最好係具有高介電強度及高電容率的堅硬 之陶瓷材料,且在用於夾取所使用之頻率及電壓下不存有 體極化性。較佳之材料係包含氧化鋁、藍寶石、碳化砂及 碳化鋁。該上層扇形絕緣體可能係具有在例如約1 0 0至 2 ο 〇微米之範圍內的厚度,以能夠以具有約10 〇 〇伏 特之峰値振幅的電壓達成確實之夾取。該上層扇形絕緣體 之上方表面的平坦度係在2 5微米內。 電極240、242、244、246'248及2 5 ◦最好係藉由在各自之上層扇形絕緣體2 6 0、2 6 2 、264、266、268及2 7 0之下方表面上沉積金 屬層所形成。在較佳實施例中,該電極係包含鈮之導電塗 層。每個電極之厚度一般係在約一微米之數量級。在本發 明之範疇內可使用其它適合之導電金屬層。舉例來說,在 上述之專利號5,4 5 2,1 7 7中係揭示鈦鉬電極。 該下層扇形絕緣體係具有足夠之厚度以提供結構之剛 性以及與電極之電絕緣。該下層扇形絕緣體最好係與該上 層扇形絕緣體相同或類似之材料所製造,以得到相同之熱 膨脹係數。在較佳實施例中,該下層扇形絕緣體係由氧化 錦所製成。該平台基座2 1 4-般係由例如錦之金屬所製 成° 母個在其下方表面具有電極的上層扇形絕緣體最好係 用例如T e ί 1。n F1 e P結合材料之熱塑性四氟乙 烯黏著劑3 〇 8 (圖1 0 )户 — U J糸口口至下層扇形絕緣體之上方 本紙狀㈣用中酬家標準(CNS)A4規格(210 ------- I i I I I I J I I J 1 I . I I t 1 I — I 訂 ----- <請先閱讀背面之注意事項再填寫本頁) A7 B7 4 6 65 60 五、發明說明(>) 施加至平台210之電極的夾取電壓最好係具有六種 不同相位(〇。、6〇。、120。 '180。 、240 °及3 0 0。)的雙極性方波。施加至平台2 1 〇之相反 側電極上的電壓相位係半個週期或1 8 0 °之相位差。因 此,施加至電極2 4 0及2 4 6的電壓係半個週期之相位 差;施加至電極2 4 2及2 4 8的電壓係半個週期之相位 差;而施加至電極2 4 4及2 5 0的電壓係半個週期之相 位差。所揭示之夾取裝置係提供可靠之晶圓夾取及釋放’ 而無需與晶圓之電接觸且不產生可能傷害晶圓的充電電流 〇 在圖9中係顯示一種適合之夾取控制電路2 1 2的範 例。方波產生器3 1 0、3 1 2及3 1 4係分別供應低電 壓之方波至放大器3 20、322及324。放大器32 0、3 2 2及3 2 4之輸出係分別施加至高壓反流變壓器 330' 332及334。該變壓器 330、332及3 3 4係產生相位差1 8 0°或半個週期的輸出電壓。變壓 器3 3 0在電線3 4 0及3 4 2上的輸出係相位差半個週 期的雙極性方波。電線3 4 0及3 4 2之輸出係分別連接 至電極2 4 6及2 4 0。變壓器3 3 2在電線3 4 4及3 4 6上的輸出係相位差半個週期的雙極性方波,且相對於 變壓器3 3 0的輸出係偏移1 2 0 ° 。變壓器3 3 2在電 線3 4 4及3 4 6之輸出係分別連接至電極2 4 8及2 4 2 °變壓器3 3 4在電線3 4 8及3 5 0上的輸出係差半 個週期之相位’且相對於變壓器3 3 0的輸出係偏移2 4 28 本紙張尺度適用中國國家標準(CNS)A4規格<210 X 297公釐) -----------I I ----- _ ! I 訂.-------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作钍印製 A7 d 6 65 60 B7 五、發明說明(1 ) 0 ° 。變壓器3 3 4在電線3 4 8及3 5 0之輸出係分別 連接至電極2 5 0及2 4 4。此構造提供六種晶圓之相位 夾取。關於該夾取控制電路以及該夾取電壓之額外細節係 揭示在上述之專利號5,4 5 2,1 7 7中,此處係將其納入 以作爲參考。 在圖10中係顯示本發明之靜電晶圓夾具之實施例之 範例的部分截面圖。在圖7、8及1 0中,類似之元件係 具有相同之參考圖號。圖中係顯示部分之扇形組件2 2〇 。應瞭解到,圖1 0並非依比例繪製,以幫助瞭解本發明 。如上所述,電極2 4 0係位在上層扇形絕緣體2 6 ◦及 下層扇形絕緣體2 8 0之間。扇形絕緣體2 6 0及2 8 0 係以黏著劑3 0 8固定在一起。電極2 4 0最好係與扇形 組件2 2 0之側邊4 0 0相隔。在較佳實施例中,電極2 4 ◦係與側邊4 0 0相隔約0.1英吋。在上層扇形絕緣體 2 6 0上的表面結構4 2 0係相當於圖1 一 3 D所示的表 面結構1 4,或圖5及圖6所示的表面結構9 0,或任何 其它在本發明之範圍內的表面結構。如上所述,上層扇形 絕緣體2 6 0之圓周可斜角化以定義斜面4 1 4。 在另一種實施例中,係消除該上層扇形絕緣體,並將 該表面結構直接施加至電極。可使用選擇性黏著劑以將該 表面結構之撓性層黏著至電極。在此種情況中,該撓性層 係作爲該靜電晶圓夾具之介電質。因此,該撓性層需具有 足夠之厚度以抵抗該夾具之操作電壓。在又另一種實施例 中,該下層扇形絕緣體可能係例如聚合物或陶瓷材料的絕 29 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------:-------^----訂··-------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 B7 466560 五、發明說明(力) 緣塗層或薄板。 如上所述,此處所揭示之表面結構可使用在任何靜電 晶圓夾具中。另一種適合之靜電晶圓夾具係揭示在i 9 9 6年5月2曰公佈之W〇9 6 / 1 3 0 5 8,此處係將 其納入以作爲參考。其揭示之晶圓夾具係採用氣體冷卻且 係具有螺旋形狀之電極。 此處所揭示之表面結構係配合靜電晶圓夾具所使用。 §亥表面結構可使用在例如使用機械夾取或離心夾取的其它 形式之晶圓夾具中。此外,該表面結構可用於終端受動器 、握爪臺以及需要用於裝卸材料及物件的運輸表面,該物 件係例如半導體晶圓、光學玻璃部件、醫療設備、電子組 件、太空工業組件或任何需要低污染或無塵室環境的物件 。該表面結構亦可作爲保護以防備與下方之支撐元件的微 小之意外碰撞,以避免產生污染之顆粒。 雖然已顯示並說明目前認爲係本發明之較佳實施例的 範例,但熟知此技術者可在不違背由附加之申請專利範圍 所定義的本發明範圍內製造出各種變更及修正。 -------------裝 ----t ---訂--------·線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 30 本紙張尺度適用中國國家標準(CNS)A4規格do X 297公髮)IS This paper size applies the national standard (CNS) A4 specification (210x 297 mm),-(Please read the precautions on the back before filling out this page) Word Γ Printed by the Economic Village Intellectual Property Bureau Employee Consumption Cooperative 466560 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (q) It is a sand resin rubber expansion with a thickness in the range of about 5-10 microns, but it is not limited to this material and this thickness range. The silicone rubber layer can be stretched by heating to a temperature in the range of about 70 ° C. to 12 ° C. As shown in FIG. 4B, the flexible layer 30 is then stretched to the flexible layer 30. Coating 3 2 is applied over 30. Coating 32 can be deposited by, for example, plasma-assisted chemical vapor deposition (PECVD) or chemical vapor deposition (CVD). The advantage of this method is that it can be used to deposit coatings The flexible layer 30 is heated in the cavity of 32 to achieve extension. As mentioned above, the coating 32 is preferably carbon, silicon nitride or silicon carbonitride and has a range of about 0.2 5 to 0.5 0 microns. Thickness, but not limited to these materials and this thickness range. In the above embodiment, the coating 3 2 is formed by deposition. In another embodiment, the 'coating 3 2 is by extending the flexible layer 3 0 formed by reaction with gas or other active materials. For example, a flexible layer of silicone rubber 3 can react with oxygen to form a silicon dioxide coating. The formation of a silicon dioxide coating on a silicone rubber layer is patented No. 4,8 3 2,78 1, which is incorporated herein by reference. As shown in Figure 4C ' The structure shrinks the flexible layer 3 to its original size, as shown by arrow 62. The shear resistance of the coating 32 causes the coating 32 to wrinkle and form a ripple 4 0 1 when cooled and does not Separate from the flexible layer 30. It has been found that this method can produce a pattern of corrugations 40 throughout the surface of the wafer support element 12. The corrugations have fairly consistent wavelengths and amplitudes as shown in Figures 4A-4C In the process, the 'flexible layer 30 is applied to the support element 12' and then heated and stretched for the deposition of the coating layer 3. 2. Applicable at the 19-paper scale _ National Standard (CNS) A4 (210 X 297) Mm ---------- r --- installation -------- order --------- (Please read the notes on the back before filling this page) Ministry of Economy Printed by the Intellectual Property Bureau employee consumer cooperative 4 6 65 60 A7 ___B7 V. Description of the invention (θ) In another embodiment, the flexible layer 30 may be formed separately from the support element 12 and then heated to produce an extension. Layer 32 is applied to the stretched flexible layer, and then the flexible layer is cooled to form a ripple 40 on the coating 32. The flexible layer 3 is then chemically or by an adhesive Bonded to the support element 12. In yet another embodiment, the flexible layer 30 is mechanically stretched without heating to produce the necessary extension for applying the coating 32. Coating 3 2 does not need to be inorganic or inert. However, this is necessary for most semiconductor wafer applications. When the heat transfer structure 14 is used on an electrostatic wafer fixture, the coating 32 needs to be non-conductive Materials. However, when using mechanical or centrifugal grips, there is no need to use non-conductive materials. In these cases, it is preferred to use conductive coatings such as aluminum and tungsten carbide to eliminate the charge. In yet another embodiment, a thin film of a material that does not react with the workpiece is applied to the top surface of the coating 32. The film may have a thickness of several angstroms. For example, when the coating 32 is a silicon nitride and the workpiece is a silicon substrate, a carbon or carbonitride sand film may be applied on the coating 32. As described above, the heat transfer structure 14 can be used in any application where heat needs to be transferred from a workpiece to a support structure in a vacuum. The heat transfer structure 14 is particularly useful in electrostatic gripping of semiconductor wafers when ion implantation or other vacuum processing is performed. In an electrostatic wafer fixture, a dielectric layer is placed between a semiconductor wafer and a conductive support plate. A voltage is applied between the semiconductor wafer and the support plate, and the wafer is clamped against the dielectric layer by static electricity. In the conventional art, various electrostatic wafer jig structures are known. 20 This paper size applies to China National Standard (CNS) A4 (210 X 297 public love) I ----- 1--I --- 4 ^ 4 II, 11 — ^ • — — i — — — · < Please read the notice on the back before filling out this page) Printed by the Employees ’Cooperatives of the Wisdom and Time Bureau of the Ministry of Economic Affairs 466560 A7 __B7___ V. Description of the Invention (vf) The electrostatic fixture may have, for example, a disclosure in 1 9 9 5 years 9 On January 19th, U.S. Patent No. 5,4 5 2,1 7 7 issued to Frut 1 ger and U.S. Patent No. 5,9 6 9,9 3 4 issued to Lar η on October 19, 1999 Structure, which is incorporated herein by reference. In this type of electrostatic wafer fixture, the heat transfer structure, which is not shown here, is added to the upper sector insulator to provide enhanced heat transfer from the semiconductor wafer to the upper sector insulator. However, it should be understood that the heat transfer structure disclosed herein can be used in any electrostatic crystal fixture using any electrode shape. A second embodiment of the surface structure is shown in FIG. 5. The surface structure provides low particle generation and low particle contamination of the workpiece, is resistant to molecular contamination, and can be manufactured to have conductive or insulating properties as required. The surface has low-wear properties and is therefore unlikely to cause damage to the workpiece even on a microscopic scale. The surface is resistant to external contamination and is quite durable, and can be cleaned if needed. The surface structure 90 comprises a workpiece support element 100 which can be made of any material. Examples include electrical and thermal conductors such as aluminum, and electrical insulators such as alumina. The surface structure 90 further includes a selective adhesion interface layer 10 2 ′, a flexible soft layer 104, and a coating 106. If the flexible layer 104 is directly applied on the supporting element 100, the supporting element 100 needs to be matched with the flexible layer 104 in terms of chemical properties. When the adhesive interface layer 102 is used, the supporting element 100 needs to be chemically matched with the interface layer 102. The supporting element 100 needs to be prepared to accept an interface layer 102, or if the adhesive layer 102 is omitted, a flexible layer 104 can be accepted. This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ---------------------- Order ------ --- < Please read the notes on the back before filling out this page) _ 466560 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy Micro-inch surface to increase the overall surface area and therefore the bonding area. The surface of the support element 100 should be smoothed or de-angled to provide a continuous surface for the overlay. If the cover layer is deposited to a sufficient thickness, this smoothing step can be omitted. The adhesive interface layer 102 is selectively deposited on the supporting element 100. In a preferred embodiment, the interface layer 102 may be silicon nitride, but it depends on the material selected for the flexible layer 104. The interface layer 102 is chemically or plasma deposited on the support element 100 to a thickness of several hundred angstroms. The interface layer 104 is used as an adhesive layer, and the thickness is not important except that sufficient materials are provided for bonding with the flexible layer 104. Other suitable materials for the interfacial layer 102 include, but are not limited to, silicon, carbon, silicon carbide, and other materials with chemically compatible with the support element 100 and the flexible layer 104. The flexible layer 104 is initially a polymer layer deposited. The flexible layer 104 may be sprayed or spin-coated to maintain any important thickness and / or flatness requirements throughout the surface. A coating 106 added thereafter will introduce heat to cause a chemical change in the flexible layer 104, which may damage the polymer structure. At that time, the flexible layer 104 could no longer be correctly classified as a polymer. The flexible layer 104 preferably starts with a silicone rubber (polydimethylsiloxane) having a thickness in the range of about 2.5 to 250 micrometers and preferably has a thickness in the range of about 7.5 to 15 micrometers. alkyl). The thickness is based on the practical limitations of the application and practical considerations when depositing the layer. 3 Other polymers that can be used to form the flexible layer 104 include but are not limited to τ 22 Η " < Please read the back Please note this page before filling in this page) ί r r This paper size applies the Chinese National Standard (CNS) A4 specification (210 χ 297 mm) Employees ’Cooperatives of the Intellectual Property Bureau of the Ministry of Economics printed A7 ______B7 V. Description of invention) efl〇n 、 Torlon 'Vespel and other polyimines. The flexible layer 104 may be doped with a material such as silicon dioxide to increase thermal and / or electrical conductivity. Other filling materials include, but are not limited to, silicon carbide, aluminum nitride, and carbon. The coating 106 may be a low-friction material such as a plasma-deposited diamond-like carbon. During deposition, the deposition needs to be controlled to provide a suitable but not excessive thermal expansion of the flexible layer 104. The flexible layer 10 4 can be selectively prepared to be an acceptable coating 10 6 formed by using ion gas such as argon as an impact gas. The coating 10 can be deposited to a thickness of hundreds of angstroms to provide a micro-hardened, low-friction surface for contacting the workpiece, while still allowing the underlying flexible layer 104 to remain flexible on a large scale. The coating 106 is designed to be adhered to the flexible layer 104 after deposition to form a microscopic corrugation having a circular regularity after depositing the coating 106 and cooling the shrinkable flexible layer 104. The characteristics of this ripple are the same as those of the coating 32 detailed above. The surface structure shown in Figure 5 and described above provides a low-friction micro-hardened contact surface with the ability to absorb heat and vibration. It is known that particles can be caused by thermal expansion due to differences in heating and vibration of the workpiece. Vibration is absorbed and refracted by the surface structure and converted in the frequency domain. This heat transfer characteristic depends at least in part on the thickness and thermal conductivity of the flexible layer 104. Therefore, in applications where workpieces require high-efficiency heat transfer, a relatively thin flexible layer 104 having a relatively high thermal conductivity is used. Conversely, when high-efficiency heat transfer is not a major requirement, the application of the surface structure of the electrostatic wafer jig shown in FIG. 5 and described above that can use a thicker flexible layer is not shown in FIG. 6. In the embodiment of FIG. 6, the supporting element 100 may be 23 paper sizes, and the Chinese National Standard (CNS) A4 specification (210 X 297 common meals) — 1 II I ----------- — — — It · — —------ < Please read the notes on the back before filling out this page) 65 60 A7 _____B7___ V. Description of Invention (vV) — — — — — — — — — 111 — · II < 谞 Read the precautions on the back before filling this page) An oxide or other ceramic material with appropriate dielectric properties for operating the electrostatic crystalline pattern fixture = support element 1 〇0 to make up the electrostatic crystalline pattern The main dielectric of the fixture. The thickness of the supporting wafer jig i 〇-generally ranges from 0.02 to 0.01 5 inches, and for the preferred alumina material, the thickness is preferably 0 '0 5 inches. Other materials need to have different thicknesses depending on the dielectric constant. The electrode layer 120 may be molybdenum / titanium or niobium, or other metals or conductive materials. The electrode layer 120 is generally several hundred angstroms' thicker but may be thicker. In all cases, it is necessary to maintain a minimum conductivity. The adhesive layer 丄 2 is used to adhere the supporting element 100 and the electrode layer 12 to the underlying insulating layer 1 2 4. The adhesive layer 1 2 2 may be F E P T e f 〇 η. -The wire may be an insulating layer of aluminum oxide. 2 4 may have a thickness of 0.110 inches. However, 'if the electrode layer 1 2 0 is insulated from any other conductive material such as the base 1 3', the thickness of the insulating layer 1 2 4 is not important. The insulating layer 1 2 4 needs to be thick enough to avoid significant capacitive coupling with any nearby conductive material other than the semiconductor wafer. The consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs prints the adhesive layer 1 2 6 The insulating layer 1 2 4 and the upper layer are adhered to the base 1 3 0 3 adhesive layer ι 2 6 can optionally be made of silicon oxide or other materials. It is sufficient to improve the thermal conductivity to the base 130. The aluminum base 130, which is preferably made of aluminum, can be water-cooled to absorb the heat load from the semiconductor wafer. Therefore, the base 130 needs to be made of a thermally conductive material, but may be made of an electrically insulating material such as aluminum nitride or a thermally conductive material regardless of its conductivity. The above surface structure can be used in the above-mentioned patent No. 5,9 6 9,9 3 24 National Paper Standard (CNS) A4 € _ grid 297 mm of paper size A7 466560 ____B7___ V. Description of the invention 4) Angular circumferential edges. Alternatively, if the flexible layer can be formed to surround the edge or be tapered to the edge in the structure of the wafer jig or other workpiece support device, the beveled edge can be omitted. This depends on the technology used to form the flexible layer. In addition, if the total thickness of the flexible layer and coating is greater than the expected edge feature height above the support element, the beveled peripheral edge may be omitted, as the workpiece will not contact the support element that normally appears on the support element Any hard honing. An example of a device for electrostatically gripping a workpiece such as a semiconductor wafer is shown in simplified form in FIGS. 7-10. The electrostatic wafer gripping device includes a platform 2 10 and a gripping control circuit 2 1 2 for applying a gripping voltage to the platform 2 10 when it is desired to grip a workpiece. The platform 2 0 includes a support plate or platform base 2 1 4 and six fan-shaped components 220, 222, 224, 226, 228, and 230 mounted on the upper surface of the platform base 2 14. The platform base 2 1 4 is generally circular and may have a central opening 2 1 8 for a wafer lifting mechanism (not shown). Each sector assembly is comprised of a sector electrode between an upper sector insulator and a lower sector insulator. The sector components 2 2 0, 2 2 2, 2 24, 226, 228, and 230 respectively include sector electrodes 2 4 0, 242 '244' 246, 248, and 25. The upper sector insulators 260, 262, 264, 266, 268, and 270 cover the electrodes 2 40, 242, 244, 246, 2 48, and 250 respectively. The electrodes are preferably thin metal layers formed on the lower surfaces of the upper sector insulator, respectively. The electrode 2 4 0 '2 4 2, 2 25 This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) ------------------- ------------- C Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by 466560 A7 ______B7__ V. Description of the invention (/ 〇44, 246, 248, and 250 are preferably of equal area, and are placed symmetrically with respect to the center 2 7 2 of the platform 2 10. In a preferred embodiment, they are electrically insulated from each other The electrode system is shown in a fan shape as shown in Figure 7. The upper surfaces of the sector insulators 260, 262, 264, 266, 268, and 270 are coplanar. The surface structure described above covers the upper sector insulator and defines the The round clamping surface 2 7 6. As shown in FIG. 8, the 'sector component 2 2 0 series includes the lower sector insulator 2 8 0, and the sector component 2 2 6 series includes the lower sector insulator 2 8 6. The rest of the sector components have the same Structure. The upper and lower sector insulators of each sector are preferably overlapped to the edges of the respective electrodes to avoid the electrodes. And wafer-to-wafer contact. In the embodiment of Figs. 7-10, an individual sector assembly includes the sector upper and lower sector insulators made for each electrode. In other embodiments, the upper layer The insulator or the lower insulator or both can be made like a disc. A plurality of electrodes can be formed on the lower surface of the circular upper insulator. This structure is more practical for a relatively small platform. Platform base 2 1 4 and lower fan-shaped insulators 2 0 0, 2 8 6 etc. are provided with alignment openings 2 9 0 and 2 9 2 under each electrode. The openings 2 9 0 and 2 9 2 allow electrical connection to each The electrode is shown in Fig. 8. The semiconductor wafer is placed above the clamping surface 2 7 6. When the clamping voltage is applied to the electrodes 240, 242, 244, 246, 248, and 250, the wafer 300 is The electrostatic clamp is held in a fixed position against the clamp surface 2 7 6. The upper sector insulator 260 '262, 264, 266, 26 ----- If — — — — — — — — — — — Is — ^' — — — —— — I— (Please read the notes on the back before filling this page) Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) ^ 66560 A7 B7% Ji Zou Zhi Shi Shi Bureau Bureau x Consumer Cooperation. Printed by the company V. Invention Description (β) 2 6 8 and 2 7 0 It is a hard ceramic material with high dielectric strength and high permittivity, and there is no bulk polarization at the frequency and voltage used for clamping. Preferred materials include alumina, sapphire, sand carbide, and aluminum carbide. The upper sector insulator may have a thickness in the range of, for example, about 100 to 2 μm, so as to achieve a secure pinch with a voltage having a peak amplitude of about 10,000 volts. The flatness of the upper surface of the upper sector insulator is within 25 microns. The electrodes 240, 242, 244, 246'248, and 25 are preferably formed by depositing metal layers on the lower surfaces of the respective upper sector insulators 2 60, 2 6 2, 264, 266, 268, and 2 70. form. In a preferred embodiment, the electrode comprises a conductive coating of niobium. The thickness of each electrode is typically on the order of one micron. Other suitable conductive metal layers may be used within the scope of the invention. For example, the above-mentioned Patent Nos. 5,4 5 2, 1 7 disclose a titanium molybdenum electrode. The lower sector insulation system has a sufficient thickness to provide structural rigidity and electrical insulation from the electrodes. The lower sector insulator is preferably made of the same or similar material as the upper sector insulator to obtain the same thermal expansion coefficient. In a preferred embodiment, the lower sector insulation system is made of oxide brocade. The platform base 2 1 4- is generally made of a metal such as Nishiki. The upper sector insulator having an electrode on the lower surface thereof is preferably T e 1. n F1 e P Thermoplastic Tetrafluoroethylene Adhesive 3 408 (Figure 10) Household — UJ mouth opening to the top of the lower fan-shaped insulator This paper is used in CNS A4 specification (210 --- ---- I i IIIIJIIJ 1 I. II t 1 I — I order ----- < Please read the notes on the back before filling this page) A7 B7 4 6 65 60 V. Description of the invention (>) The pinch voltage applied to the electrodes of the platform 210 is preferably a bipolar square wave with six different phases (0 °, 60 °, 120 °, 180 °, 240 °, and 30.0 °). The phase of the voltage applied to the opposite electrode of the platform 2 10 is a half cycle or a phase difference of 180 °. Therefore, the voltages applied to the electrodes 2 4 0 and 2 4 6 are phase differences of half a cycle; the voltages applied to the electrodes 2 4 2 and 2 4 8 are phase differences of half a cycle; and the voltages applied to the electrodes 2 4 4 and 2 4 The voltage of 2 50 is the phase difference of half a cycle. The disclosed gripping device provides reliable wafer gripping and release 'without the need for electrical contact with the wafer and does not generate a charging current that may harm the wafer. Figure 9 shows a suitable gripping control circuit 2 1 2 Examples. The square wave generators 3 1 0, 3 1 2 and 3 1 4 respectively supply low voltage square waves to the amplifiers 3 20, 322 and 324. The outputs of the amplifiers 32 0, 3 2 2 and 3 2 4 are applied to the high-voltage reverse transformers 330 '332 and 334, respectively. The transformers 330, 332, and 3 3 4 generate output voltages with a phase difference of 180 ° or a half cycle. The output of transformer 3 3 0 on wires 3 4 0 and 3 4 2 is a bipolar square wave with a phase difference of half a cycle. The outputs of wires 3 4 0 and 3 4 2 are connected to electrodes 2 4 6 and 2 4 0, respectively. The output of the transformer 3 3 2 on the wires 3 4 4 and 3 4 6 is a bipolar square wave with a phase difference of half a period, and is offset by 120 ° from the output of the transformer 3 3 0. The output of the transformer 3 3 2 on the wires 3 4 4 and 3 4 6 is connected to the electrodes 2 4 8 and 2 4 2 ° The output of the transformer 3 3 4 on the wires 3 4 8 and 3 50 0 is half a cycle. Phase 'and offset from the output of the transformer 3 3 0 2 4 28 This paper size applies to China National Standard (CNS) A4 specifications < 210 X 297 mm) ----------- II- ---- _! I order. -------- (Please read the notes on the back before filling out this page) Consumption Cooperation by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed A7 d 6 65 60 B7 V. Invention Explanation (1) 0 °. The output of transformer 3 3 4 on wires 3 4 8 and 3 50 is connected to electrodes 2 50 and 2 4 4 respectively. This configuration provides phase clamping of six wafers. Additional details regarding the gripping control circuit and the gripping voltage are disclosed in the above-mentioned Patent Nos. 5, 4 5 2, 1 7 and are incorporated herein by reference. Fig. 10 is a partial cross-sectional view showing an example of an embodiment of the electrostatic wafer jig of the present invention. In Figs. 7, 8 and 10, similar components have the same reference numerals. The figure shows the fan-shaped component 2 2 0 of the display part. It should be understood that FIG. 10 is not drawn to scale to help understand the present invention. As described above, the electrode 240 is located between the upper sector insulator 26 and the lower sector insulator 280. The sector insulators 2 60 and 2 8 0 are fixed together with an adhesive 3 8. The electrode 2 4 0 is preferably separated from the side 4 0 0 of the sector component 2 2 0. In a preferred embodiment, the electrodes 24 are separated from the sides 400 by about 0.1 inches. The surface structure 4 2 0 on the upper sector insulator 2 60 is equivalent to the surface structure 14 shown in FIGS. 1 to 3 D, or the surface structure 9 0 shown in FIGS. 5 and 6, or any other structure in the present invention. Range of surface structure. As described above, the circumference of the upper sector insulator 2 60 may be beveled to define the slope 4 1 4. In another embodiment, the upper sector insulator is eliminated and the surface structure is applied directly to the electrode. A selective adhesive can be used to adhere the flexible layer of the surface structure to the electrode. In this case, the flexible layer serves as the dielectric of the electrostatic wafer holder. Therefore, the flexible layer needs to have a sufficient thickness to resist the operating voltage of the jig. In yet another embodiment, the lower fan-shaped insulator may be, for example, a polymer or ceramic material. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -------- -----: ------- ^ ---- Order ·· -------- (Please read the notes on the back before filling out this page) Employees ’Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs Printing A7 B7 466560 V. Description of the invention (force) Edge coating or sheet. As mentioned above, the surface structure disclosed herein can be used in any electrostatic wafer fixture. Another suitable electrostatic wafer fixture is disclosed in W09 6/13 0 058, published on May 2, 1996, which is incorporated herein by reference. The wafer holders disclosed are gas-cooled and spiral-shaped electrodes. The surface structure disclosed here is used in conjunction with an electrostatic wafer fixture. § The surface structure can be used in other types of wafer jigs such as mechanical clamping or centrifugal clamping. In addition, the surface structure can be used for end effectors, grippers, and transportation surfaces that need to be used for loading and unloading materials and objects, such as semiconductor wafers, optical glass components, medical equipment, electronic components, space industry components, or any need Items with low pollution or clean room environment. The surface structure can also be used as protection against small accidental collisions with the supporting elements below to avoid the generation of contaminated particles. Although an example of a preferred embodiment of the present invention has been shown and described, those skilled in the art can make various changes and modifications within the scope of the present invention as defined by the scope of the appended patent application. ------------- Install ---- t --- Order -------- · Line (Please read the precautions on the back before filling this page) Intellectual Property of the Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives 30 This paper size applies to China National Standard (CNS) A4 specification do X 297