Nothing Special   »   [go: up one dir, main page]

TW202444906A - Compositions and methods for the targeting of pcsk9 - Google Patents

Compositions and methods for the targeting of pcsk9

Info

Publication number
TW202444906A
TW202444906A TW113111756A TW113111756A TW202444906A TW 202444906 A TW202444906 A TW 202444906A TW 113111756 A TW113111756 A TW 113111756A TW 113111756 A TW113111756 A TW 113111756A TW 202444906 A TW202444906 A TW 202444906A
Authority
TW
Taiwan
Prior art keywords
sequence
seq
group
ltrp
mrna
Prior art date
Application number
TW113111756A
Other languages
Chinese (zh)
Inventor
傑森 費爾南德斯
埃梅里克 珍 馬里烏斯 查爾斯
艾迪生 賴特
尚恩 希金斯
莎拉 丹妮
本傑明 德瑪利
羅斯 懷特
班傑明 奧克斯
弗雷德 戴特
Original Assignee
美商斯奎柏治療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商斯奎柏治療公司 filed Critical 美商斯奎柏治療公司
Publication of TW202444906A publication Critical patent/TW202444906A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6454Dibasic site splicing serine proteases, e.g. kexin (3.4.21.61); furin (3.4.21.75) and other proprotein convertases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21061Kexin (3.4.21.61), i.e. proprotein convertase subtilisin/kexin type 9

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided herein are gene repressor systems comprising fusion proteins, such as fusion proteins comprising catalytically-dead Class 2, Type V CRISPR proteins, and guide nucleic acids (gRNA) useful in the repression of a proprotein convertase subtilisin/kexin Type 9 (PCSK9) gene. Also provided are methods of making, and methods of using such systems to repress transcription of PCSK9.

Description

用於靶向PCSK9之組合物及方法Compositions and methods for targeting PCSK9

在哺乳動物中,膽固醇經由乳化在脂蛋白內輸送。脂蛋白粒子係基於其密度分類:低密度脂蛋白(LDL)、極低密度脂蛋白(VLDL)、高密度脂蛋白(HDL)及乳糜微粒。表面LDL受體在膽固醇吸收期間內化。具有充足膽固醇之細胞將阻斷其LDL受體合成,以防止LDL粒子中新的膽固醇吸收。相反,當細胞缺乏膽固醇時,促成LDL受體合成。當該過程不受調控時,過量LDL粒子將在血液中行進而不經LDL受體攝取。血液中之LDL粒子經氧化且由巨噬細胞吸收,巨噬細胞隨後充血且形成泡沫細胞。此等泡沫細胞可截留在血管壁中,且造成動脈粥樣硬化斑塊形成,而其為心臟病發作、中風及其他嚴重醫學問題之主要原因之一。In mammals, cholesterol is transported by emulsification within lipoproteins. Lipoprotein particles are classified based on their density: low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), and chylomicrons. Surface LDL receptors are internalized during cholesterol absorption. Cells with sufficient cholesterol will block their LDL receptor synthesis to prevent new cholesterol absorption in LDL particles. Conversely, when cells are cholesterol-deficient, LDL receptor synthesis is promoted. When this process is unregulated, excess LDL particles will travel in the blood without being taken up by LDL receptors. LDL particles in the blood are oxidized and taken up by macrophages, which then become congested and form foam cells. These foam cells can become trapped in blood vessel walls and contribute to the formation of atherosclerotic plaques, one of the leading causes of heart attacks, strokes and other serious medical problems.

肝蛋白前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型(proprotein convertase subtilisin/kexin Type 9,PCSK9)係一種在LDL粒子之內吞作用期間結合於低密度脂蛋白受體(LDL-R)的分泌型、球狀、自活化絲胺酸蛋白酶,防止LDL-R再循環至細胞表面,導致LDL-膽固醇清除降低。PCSK9結合至LDL-R (經由EGF-A域),防止受體-配位體複合物之構形變化,取而代之將LDL-R重新引導至溶酶體。因為低密度脂蛋白粒子(LDL)之受體通常在細胞外流體內每粒子傳輸數千個脂肪分子(包括膽固醇),所以阻斷或抑制PCSK9之功能以增強LDL膽固醇之LDL-R介導清除可降低LDL粒子濃度。PCSK9主要在肝臟、腸、腎臟及中樞神經系統中表現,但亦在動脈壁中(諸如內皮平滑肌細胞及巨噬細胞中)高度表現,具有可調節血管穩態及動脈粥樣硬化之局部效應。The hepatic protein proprotein convertase subtilisin/kexin Type 9 (PCSK9) is a secreted, globular, autoactivating serine protease that binds to the low-density lipoprotein receptor (LDL-R) during endocytosis of LDL particles, preventing LDL-R recycling to the cell surface, resulting in decreased clearance of LDL-cholesterol. PCSK9 binds to the LDL-R (via the EGF-A domain), preventing conformational changes in the receptor-ligand complex and instead redirecting the LDL-R to the lysosome. Because receptors for low-density lipoprotein particles (LDL) normally transport thousands of fat molecules (including cholesterol) per particle in the extracellular fluid, blocking or inhibiting the function of PCSK9 to enhance LDL-R-mediated clearance of LDL cholesterol can reduce LDL particle concentrations. PCSK9 is primarily expressed in the liver, intestines, kidneys, and central nervous system, but is also highly expressed in arterial walls (such as endothelial smooth muscle cells and macrophages), with local effects that can regulate vascular homeostasis and atherosclerosis.

PCSK9係前蛋白轉化酶(PC)家族之成員,且在約2%至3%具有家族性高膽固醇血症(FH)之個體中會發生基因突變(Sepideh Mikaeeli, S.等人, Functional analysis of natural PCSK9 mutants in modern and archaic humans. FEBS J. 2019年8月6日. doi: 10.1111/febs.15036)。研究人員已鑑別出引起遺傳性高膽固醇(高膽固醇血症(hypercholesterolemia))的若干PCSK9突變。此等突變改變PCSK9蛋白質中之單一胺基酸。研究人員將造成高膽固醇血症之突變描述為「功能獲得型(gain-of-function)」,因為其似乎會增強PCSK9蛋白之活性或給予蛋白質一種新的非典型功能(Blesa, S.等人, A New PCSK9 Gene Promoter Variant Affects Gene Expression and Causes Autosomal Dominant Hypercholesterolemia. J. Clin. Endocrinol. & Metab. 93:3577(2008))。過度活化的PCSK9蛋白實質上減少肝細胞表面上低密度脂蛋白受體的數目。由於自血液中移除低密度脂蛋白的受體減少,PCSK9基因中具有功能獲得型突變的人血液中具有極高的膽固醇水平。體染色體顯性高膽固醇血症(ADH)係一種遺傳性病症,其特徵為低密度脂蛋白(LDL)-膽固醇水平升高,導致過早患心血管疾病之高風險。在不同群體中,已鑑別出PCSK9中約10種突變為疾病之病因。PCSK9中導致高膽固醇血症之所有已知突變均導致此蛋白酶之酶活性增加(Bleasa, S., 2008)。此外,PCSK9中之突變可能導致體染色體顯性家族性低-β-脂蛋白血症,其可能導致肝脂肪變性、肝硬化及其他病症。PCSK9 is a member of the proprotein convertase (PC) family and is genetically mutated in approximately 2% to 3% of individuals with familial hypercholesterolemia (FH) (Sepideh Mikaeeli, S. et al., Functional analysis of natural PCSK9 mutants in modern and archaic humans. FEBS J. 2019 Aug 6. doi: 10.1111/febs.15036). Researchers have identified several PCSK9 mutations that cause hereditary high cholesterol (hypercholesterolemia). These mutations change a single amino acid in the PCSK9 protein. Researchers describe mutations that cause hypercholesterolemia as "gain-of-function" because they appear to enhance the activity of the PCSK9 protein or give the protein a new, non-canonical function (Blesa, S. et al., A New PCSK9 Gene Promoter Variant Affects Gene Expression and Causes Autosomal Dominant Hypercholesterolemia. J. Clin. Endocrinol. & Metab. 93:3577 (2008)). Overactive PCSK9 protein substantially reduces the number of low-density lipoprotein receptors on the surface of liver cells. People with gain-of-function mutations in the PCSK9 gene have extremely high cholesterol levels in their blood because there are fewer receptors to remove low-density lipoprotein from the blood. Autosomal dominant hypercholesterolemia (ADH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL)-cholesterol levels, leading to a high risk of premature cardiovascular disease. Approximately 10 mutations in PCSK9 have been identified as the cause of the disease in different populations. All known mutations in PCSK9 that cause hypercholesterolemia result in increased enzymatic activity of this protease (Bleasa, S., 2008). In addition, mutations in PCSK9 may cause autosomal dominant familial hypo-β-lipoproteinemia, which may lead to hepatic steatosis, cirrhosis, and other symptoms.

CRISPR/Cas系統之出現及此等極小系統之可程式化性質有助於其用作用於基因體操縱及工程改造之通用技術。然而,歸因於需要修飾大量細胞以調節膽固醇水平,當前在活體內產生PCSK9保護性變異體及功能喪失型突變體之方法已經無效。其他問題涉及可能由基因體編輯引起之脫靶效應、基因體不穩定性或致癌修飾,以及缺乏用於抑制子蛋白系統之安全遞送模式。另外,在某些疾病適應症中,基因緘默化或抑制優於基因編輯。使CRISPR核酸酶(諸如Cas9及CasX無催化活性)之能力已得到證實(WO2020247882A1及US20200087641A1,以引用的方式併入本文中),其使得此等系統成為產生具有能夠緘默化基因的抑制子域的融合蛋白的有吸引力的平台。儘管已描述某些抑制子系統,但仍需要另外的已最佳化及/或提供優於早幾代基因抑制子系統的改良(例如基於Cas9的用於各種治療、診斷及研究應用中之彼等改良)的基因抑制子系統。因此,仍需要調節PCSK9之經改良組合物及方法。The advent of CRISPR/Cas systems and the programmable nature of these minimal systems facilitate their use as a general technology for genome manipulation and engineering. However, current methods for generating PCSK9 protective variants and loss-of-function mutants in vivo have been ineffective due to the large number of cells that need to be modified to regulate cholesterol levels. Other issues involve off-target effects that may result from genome editing, genome instability or oncogenic modifications, and the lack of safe delivery modes for suppressor protein systems. Additionally, in certain disease indications, gene silencing or suppression is preferred over gene editing. The ability to render CRISPR nucleases such as Cas9 and CasX catalytically inactive has been demonstrated (WO2020247882A1 and US20200087641A1, incorporated herein by reference), making these systems an attractive platform for generating fusion proteins with repressor domains capable of silencing genes. Although certain repressor systems have been described, there remains a need for additional gene repressor systems that have been optimized and/or provide improvements over earlier generations of gene repressor systems, such as those based on Cas9 for use in various therapeutic, diagnostic, and research applications. Thus, there remains a need for improved compositions and methods for modulating PCSK9.

本發明提供包含或編碼融合蛋白之系統,該等融合蛋白包含用於前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型( PCSK9)基因目標核酸序列之抑制及/或表觀遺傳修飾的DNA結合域及所連接抑制子域。在一些態樣中,融合蛋白包含:DNA結合蛋白,其包含催化失效CRISPR蛋白,諸如2類V型CRISPR蛋白;及引導核酸,其包含與 PCSK9基因目標核酸序列互補之靶向序列。蛋白質及引導核酸可經修飾以被動進入目標細胞且適用於多種用於抑制 PCSK9之方法,該等方法亦有提供。本揭示亦提供編碼或囊封融合蛋白及引導核酸組分之載體及脂質奈米粒子(LNP),以將系統遞送至細胞用於轉錄抑制PCSK9目標核酸序列。本揭示亦提供用於修飾 PCSK9基因目標核酸序列之方法。本揭示亦提供用於治療患有PCSK9相關疾病之個體的方法。在一些實施例中,組合物及方法在患有代謝病症之個體中具有效用,該代謝病症諸如(但不限於)家族性高膽固醇血症、家族性低-β-脂蛋白血症或膽固醇水平升高。 The present invention provides systems comprising or encoding fusion proteins comprising a DNA binding domain and a linked inhibitory subdomain for inhibition and/or epigenetic modification of a target nucleic acid sequence of a proprotein convertase subtilisin/kexin type 9 ( PCSK9 ) gene. In some aspects, the fusion protein comprises: a DNA binding protein comprising a catalytically inactive CRISPR protein, such as a class 2 type V CRISPR protein; and a guide nucleic acid comprising a targeting sequence complementary to the target nucleic acid sequence of the PCSK9 gene. The protein and guide nucleic acid can be modified to passively enter the target cell and are suitable for a variety of methods for inhibiting PCSK9 , which are also provided. The present disclosure also provides vectors and lipid nanoparticles (LNPs) encoding or encapsulating the fusion protein and guide nucleic acid components to deliver the system to cells for transcriptional inhibition of the PCSK9 target nucleic acid sequence. The present disclosure also provides methods for modifying target nucleic acid sequences of the PCSK9 gene. The present disclosure also provides methods for treating individuals suffering from PCSK9-related diseases. In some embodiments, the compositions and methods have utility in individuals suffering from metabolic disorders such as (but not limited to) familial hypercholesterolemia, familial hypo-β-lipoproteinemia, or elevated cholesterol levels.

在其他態樣中,本文提供包含PCRK9抑制子系統之系統,或包含或編碼PCSK9抑制子系統之載體,其用於製造治療有需要個體之PCSK9相關疾病的藥劑。In other aspects, provided herein are systems comprising a PCSK9 inhibitory system, or vectors comprising or encoding a PCSK9 inhibitory system, for use in the manufacture of a medicament for treating a PCSK9-related disease in an individual in need thereof.

本發明之某些實施例之其他特徵及優勢將在實施例及其圖式之以下描述中以及根據申請專利範圍而變得更加顯而易見。 參考文獻併入 Other features and advantages of certain embodiments of the present invention will become more apparent from the following description of the embodiments and the drawings thereof and from the scope of the claims.

本說明書中所提及之所有公開案、專利及專利申請案均以引用的方式併入本文中,其引用的程度如同各個別公開案、專利或專利申請案經特定且個別地指示以引用的方式併入一般。揭示CasX變異體及gRNA變異體及其遞送方法的WO 2020/247882、WO 2020/247883、WO 2021/113772、WO2022/120095、WO 2022/125843、WO 2022/261150、WO 2022/261149、WO 2023/049872、WO 2023/049742及WO 2023/240162之內容以及揭示修飾PCSK9之組合物及方法的WO2021/142342的內容特此以全文引用之方式併入。All publications, patents, and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. The contents of WO 2020/247882, WO 2020/247883, WO 2021/113772, WO 2022/120095, WO 2022/125843, WO 2022/261150, WO 2022/261149, WO 2023/049872, WO 2023/049742 and WO 2023/240162, which disclose CasX variants and gRNA variants and methods of delivery thereof, and the contents of WO 2021/142342, which discloses compositions and methods for modifying PCSK9, are hereby incorporated by reference in their entirety.

相關申請之交互引用Cross-references of related applications

本申請案主張2023年3月29日申請之美國臨時申請案第63/492,978號及2023年6月2日申請之美國臨時申請案第63/505,888號之優先權及權益,該等臨時申請案各自之內容以全文引用之方式併入本文中。 電子序列表之引用 This application claims priority to and the benefits of U.S. Provisional Application No. 63/492,978 filed on March 29, 2023 and U.S. Provisional Application No. 63/505,888 filed on June 2, 2023, the contents of each of which are incorporated herein by reference in their entirety. Citation of Electronic Sequence Listing

電子序列表(SCRB_058_02TW_SeqList_ST26.xml;大小:141,865,746個位元組;且創建日期:2024年3月22日)之內容以全文引用之方式併入本文中。The contents of the electronic sequence listing (SCRB_058_02TW_SeqList_ST26.xml; size: 141,865,746 bytes; and creation date: March 22, 2024) are incorporated herein by reference in their entirety.

雖然本文中已經顯示及描述例示性實施例,但熟習此項技術者將顯而易知此等實施例僅藉助於實例提供。熟習此項技術者將在不脫離本發明之精神的情況下想到眾多變化、改變及取代。因此,應理解,本文中具體描述之實施例的各種替代方案可用於實踐本揭示之實施例。Although exemplary embodiments have been shown and described herein, it will be apparent to those skilled in the art that these embodiments are provided by way of example only. Those skilled in the art will recognize numerous variations, changes, and substitutions without departing from the spirit of the invention. Therefore, it should be understood that various alternatives to the embodiments specifically described herein may be used to practice the embodiments disclosed herein.

除非另外定義,否則本文所用之所有技術及科學術語均具有與一般熟習本揭示所屬領域者通常所理解相同的含義。儘管類似或等效於本文所描述之彼等方法及材料的方法及材料可用於實踐或測試本發明實施例,但在下文描述適合之方法及材料。在有衝突之情況下,將以專利說明書(包括定義)為準。另外,該等材料、方法及實例僅為說明性的且不意欲為限制性的。熟習此項技術者現將在不脫離本揭示及申請專利範圍之精神的情況下想到眾多變化、改變及取代。 定義 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used to practice or test embodiments of the invention, suitable methods and materials are described below. In the event of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Those skilled in the art will now contemplate numerous variations, changes, and substitutions without departing from the spirit of the present disclosure and the scope of the patent application. Definitions

除非上下文另外明確指示,否則如本說明書及所附申請專利範圍中所用,單數形式「一(a)」、「一(an)」及「該(the)」包括複數個指示物。因此,舉例而言,提及「宿主細胞」包括兩個或更多個此類宿主細胞,提及「dCasX蛋白」包括一或多個dCasX蛋白,提及「核酸序列」包括一或多個核酸序列,及類似情況。As used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to "a host cell" includes two or more such host cells, reference to "a dCasX protein" includes one or more dCasX proteins, reference to "a nucleic acid sequence" includes one or more nucleic acid sequences, and the like.

如本文所使用,術語「約」係一般熟習此項技術者所理解的且在一定程度上可取決於使用其之上下文而變化。若使用一般熟習此項技術者並不清楚的術語,考慮到使用術語「約」之情形,則「約」將意謂特定術語至多加或減10%。As used herein, the term "about" is understood by one of ordinary skill in the art and may vary to some extent depending on the context in which it is used. If a term is used that is not clear to one of ordinary skill in the art, given the context in which the term "about" is used, "about" will mean up to plus or minus 10% of the particular term.

熟習此項技術者應理解,出於任何及所有目的,本文所揭示之所有範圍亦包括其任何及所有可能的子範圍及子範圍組合。另外,熟習此項技術者應理解,範圍包括每一個別成員。因此,例如,具有1至3個成員之群組係指具有1、2或3個成員之群組。類似地,具有1至5個成員之群組係指具有1、2、3、4或5個成員之群組,以此類推。Those skilled in the art will understand that, for any and all purposes, all ranges disclosed herein also include any and all possible subranges and combinations of subranges thereof. In addition, those skilled in the art will understand that a range includes each individual member. Thus, for example, a group having 1 to 3 members refers to groups having 1, 2, or 3 members. Similarly, a group having 1 to 5 members refers to groups having 1, 2, 3, 4, or 5 members, and so on.

術語「其組合」包括該術語所指之要素之每一可能組合。The term "combinations thereof" includes every possible combination of the elements referred to by the term.

如本文所使用,術語「例示性」係指實例或說明,且並不意欲暗示任何偏好或值。As used herein, the term "exemplary" refers to an example or illustration, and is not intended to imply any preference or value.

如本文所使用,術語「CasX蛋白」係指一個蛋白質家族,包括例如所有天然存在之CasX蛋白(「參考CasX」),以及具有序列修飾之CasX蛋白,例如dCasX,其相對於作為其來源之CasX蛋白具有一或多個經改良特徵,下文對其進行更全面的描述。As used herein, the term "CasX protein" refers to a family of proteins, including, for example, all naturally occurring CasX proteins ("reference CasX"), as well as CasX proteins with sequence modifications, such as dCasX, which have one or more improved features relative to the CasX protein from which they are derived, as described more fully below.

術語「聚核苷酸」及「核酸」在本文中可互換使用,係指任何長度之核苷酸(核糖核苷酸或去氧核糖核苷酸)之聚合形式。因此,術語「聚核苷酸」及「核酸」涵蓋單股DNA;雙股DNA;多股DNA;單股RNA;雙股RNA;多股RNA;基因體DNA;cDNA;DNA-RNA混成物;及包含嘌呤及嘧啶鹼基或其他天然、經化學或生物化學修飾、非天然或衍生之核苷酸鹼基的聚合物。The terms "polynucleotide" and "nucleic acid" are used interchangeably herein to refer to polymeric forms of nucleotides (ribonucleotides or deoxyribonucleotides) of any length. Thus, the terms "polynucleotide" and "nucleic acid" encompass single-stranded DNA; double-stranded DNA; multiple-stranded DNA; single-stranded RNA; double-stranded RNA; multiple-stranded RNA; genomic DNA; cDNA; DNA-RNA hybrids; and polymers containing purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural or derived nucleotide bases.

「可雜合」或「互補」可互換使用,意謂核酸(例如RNA、DNA)包含使其能夠在溫度及溶液離子強度之適當活體外及/或活體內條件下以序列特異性、反向平行方式(亦即,核酸特異性結合於互補核酸)與另一核酸非共價結合(亦即形成沃森-克裏克(Watson-Crick)鹼基對及/或G/U鹼基對)、「黏接」或「雜合」的核苷酸序列。應理解,聚核苷酸序列不必與其可特異性雜合之目標核酸100%互補;其可與目標核酸具有至少約70%、至少約80%或至少約90%、或至少約95%序列一致性且仍與該目標核酸雜合。此外,聚核苷酸可在一或多個區段上雜合以使得中間或相鄰區段不參與雜合事件(例如環結構或髮夾結構、『凸起(bulge)』、『泡狀結構(bubble)』及其類似物)。因此,熟習此項技術者應瞭解,雖然序列內之個別鹼基可不與另一序列互補,但序列整體仍視為互補的。"Hybridable" or "complementary" are used interchangeably to mean that a nucleic acid (e.g., RNA, DNA) comprises a nucleotide sequence that enables it to non-covalently bind (i.e., form Watson-Crick base pairs and/or G/U base pairs), "attach" or "hybridize" with another nucleic acid in a sequence-specific, antiparallel manner (i.e., nucleic acid-specific binding to complementary nucleic acids) under appropriate in vitro and/or in vivo conditions of temperature and solution ionic strength. It is understood that a polynucleotide sequence need not be 100% complementary to a target nucleic acid with which it can specifically hybridize; it can have at least about 70%, at least about 80%, or at least about 90%, or at least about 95% sequence identity with a target nucleic acid and still hybridize with the target nucleic acid. In addition, polynucleotides may be hybridized in one or more segments such that intermediate or adjacent segments do not participate in the hybridization event (e.g., loop structures or hairpin structures, "bulges," "bubbles," and the like). Thus, one skilled in the art will appreciate that while individual bases within a sequence may not be complementary to another sequence, the sequences as a whole are still considered complementary.

出於本發明之目的,「基因」包括編碼基因產物(例如蛋白質、RNA)之DNA區域,以及調節基因產物生產之所有DNA區域,無論此類調節序列是否鄰近編碼序列及/或轉錄序列。因此,基因可包括輔助元件序列,其包括但未必限於啟動子序列、終止子、轉譯調節序列(諸如核糖體結合位點及內部核糖體進入位點)、強化子、沉默子、絕緣子、邊界元件、複製起點、基質附著位點及基因座控制區。編碼序列編碼轉錄後或轉錄及轉譯後之基因產物;本揭示案之編碼序列可包含片段且未必含有全長開讀框。基因可包括經轉錄之股以及含有反密碼子之互補股兩者。For purposes of the present invention, "gene" includes DNA regions that encode a gene product (e.g., protein, RNA), as well as all DNA regions that regulate the production of a gene product, whether or not such regulatory sequences are adjacent to the coding sequence and/or the transcribed sequence. Thus, a gene may include accessory element sequences, which include, but are not necessarily limited to, promoter sequences, terminators, translational regulatory sequences (such as ribosome binding sites and internal ribosome entry sites), enhancers, silencers, insulators, boundary elements, origins of replication, matrix attachment sites, and locus control regions. Coding sequences encode gene products after transcription or after transcription and translation; the coding sequences of the present disclosure may comprise fragments and may not necessarily contain a full-length open reading frame. A gene may include both transcribed strands and complementary strands containing anticodons.

術語「下游」係指位於參考核苷酸序列之3'之核苷酸序列。在某些實施例中,下游核苷酸序列係關於轉錄起始點之後的序列。舉例而言,基因之轉譯起始密碼子位於轉錄起始位點下游。The term "downstream" refers to a nucleotide sequence located 3' of a reference nucleotide sequence. In certain embodiments, a downstream nucleotide sequence is a sequence after the transcription start site. For example, the transcription start codon of a gene is located downstream of the transcription start site.

術語「上游」係指位於參考核苷酸序列之5'之核苷酸序列。在某些實施例中,上游核苷酸序列與位於編碼區或轉錄起始點之5'側上之序列相關。舉例而言,大部分啟動子位於轉錄起始位點上游。The term "upstream" refers to a nucleotide sequence located 5' of a reference nucleotide sequence. In certain embodiments, an upstream nucleotide sequence is associated with a sequence located 5' to a coding region or a transcription start site. For example, most promoters are located upstream of a transcription start site.

關於聚核苷酸或胺基酸序列之術語「鄰近」係指聚核苷酸或多肽中相互緊靠或鄰接的序列。熟練技術人員應瞭解,兩個序列可視為彼此鄰近且仍涵蓋有限量之插入序列,例如1、2、3、4、5、6、7、8、9或10個核苷酸或胺基酸。The term "adjacent" with respect to polynucleotide or amino acid sequences refers to sequences that are close to or adjacent to each other in a polynucleotide or polypeptide. A skilled artisan will appreciate that two sequences can be considered adjacent to each other and still encompass a limited number of intervening sequences, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides or amino acids.

術語「調節元件」在本文中可與術語「調節序列」互換使用,且意欲包括啟動子、強化子及其他表現調節元件。應理解,適當調控元件之選擇將視待表現之經編碼組分(例如蛋白質或RNA)而定或取決於核酸是否包含多個需要不同聚合酶或不欲表現為融合蛋白之組分。The term "regulatory element" is used interchangeably herein with the term "regulatory sequence" and is intended to include promoters, enhancers, and other expression regulatory elements. It will be understood that the selection of appropriate regulatory elements will depend on the encoded component to be expressed (e.g., protein or RNA) or whether the nucleic acid contains multiple components that require different polymerases or are not intended to be expressed as a fusion protein.

術語「輔助元件」在本文中可與術語「輔助序列」互換使用,且意欲包括增強核酸表現、核酸運輸或者mRNA或蛋白質功能之編碼及非編碼序列,且尤其包括聚腺苷酸化信號(poly(A)信號)、強化子元件、內含子、轉錄後調控元件(PTRE)、核定位信號(NLS)、脫胺酶、DNA醣苷酶抑制劑、另外的啟動子、刺激CRISPR介導之同源定向修復之因子(例如呈順式或反式)、自裂解序列及融合域(例如與CRISPR蛋白融合之融合域)。應理解,適當的一或多個輔助元件之選擇將視待表現之編碼組分(例如蛋白質或RNA)而定或取決於核酸是否包含需要不同聚合酶或不欲表現為融合蛋白之多個組分。The term "auxiliary element" is used interchangeably herein with the term "auxiliary sequence" and is intended to include coding and non-coding sequences that enhance nucleic acid expression, nucleic acid transport, or mRNA or protein function, and particularly includes polyadenylation signals (poly(A) signals), enhancer elements, introns, post-transcriptional regulatory elements (PTREs), nuclear localization signals (NLSs), deaminases, DNA glycosidase inhibitors, additional promoters, factors that stimulate CRISPR-mediated homology-directed repair (e.g., in cis or trans), self-cleavage sequences, and fusion domains (e.g., fusion domains fused to a CRISPR protein). It will be understood that the selection of the appropriate one or more auxiliary elements will depend on the coding component to be expressed (e.g., protein or RNA) or on whether the nucleic acid comprises multiple components that require different polymerases or are not intended to be expressed as a fusion protein.

術語「啟動子」係指含有轉錄起始位點及另外的促進聚合酶結合及轉錄之序列的DNA序列。例示性真核啟動子包括諸如TATA盒之元件及/或B識別元件(BRE),且幫助或促進相關可轉錄聚核苷酸序列及/或基因(或轉殖基因)之轉錄及表現。啟動子可以合成方式產生或可衍生自已知或天然存在之啟動子序列或另一啟動子序列。啟動子可在待轉錄之基因近端或遠端。啟動子亦可包括嵌合啟動子,其包括兩個或更多個異源序列之組合以賦予某些特性。本揭示之啟動子可包括與本文已知或提供之其他啟動子序列在組成上類似,但與其不相同的啟動子序列之變異體。啟動子可根據與相關編碼或可轉錄序列或可操作地連接於啟動子之基因(諸如組成性、發育性、組織特異性、誘導性基因等)之表現模式相關的準則分類。啟動子亦可根據其強度分類。如啟動子之上下文中所用,「強度」係指藉由啟動子控制之基因的轉錄速率。「強」啟動子意謂轉錄速率較高,而「弱」啟動子意謂轉錄速率相對較低。The term "promoter" refers to a DNA sequence containing a transcription start site and additional sequences that promote polymerase binding and transcription. Exemplary eukaryotic promoters include elements such as TATA boxes and/or B recognition elements (BREs), and assist or promote the transcription and expression of related transcribable polynucleotide sequences and/or genes (or transgenic genes). Promoters can be produced synthetically or can be derived from a known or naturally occurring promoter sequence or another promoter sequence. The promoter can be proximal or distal to the gene to be transcribed. Promoters can also include chimeric promoters, which include a combination of two or more heterologous sequences to impart certain properties. The promoter disclosed herein may include variants of promoter sequences that are similar in composition to other promoter sequences known or provided herein, but not identical thereto. Promoters can be classified according to criteria related to the expression pattern of the associated coding or transcribable sequence or gene operably linked to the promoter (such as constitutive, developmental, tissue-specific, inducible genes, etc.). Promoters can also be classified according to their strength. As used in the context of promoters, "strength" refers to the transcription rate of the gene controlled by the promoter. A "strong" promoter means a higher transcription rate, while a "weak" promoter means a relatively low transcription rate.

本發明之啟動子可為聚合酶II (Pol II)啟動子。聚合酶II轉錄所有蛋白質編碼及許多非編碼基因。代表性Pol II啟動子包括核心啟動子,該核心啟動子為圍繞轉錄起始位點約100個鹼基對之序列,且充當Pol II聚合酶及相關通用轉錄因子之結合平台。啟動子可含有一或多個核心啟動子元件,諸如TATA盒、BRE、引發劑(INR)、模體十元件(MTE)、下游核心啟動子元件(DPE)、下游核心元件(DCE),儘管缺乏此等元件之核心啟動子為此項技術中已知的。所有Pol III啟動子均設想在本揭示之範疇內。The promoter of the present invention may be a polymerase II (Pol II) promoter. Polymerase II transcribes all protein coding and many non-coding genes. Representative Pol II promoters include a core promoter, which is a sequence of about 100 base pairs surrounding the transcription start site and serves as a binding platform for the Pol II polymerase and related universal transcription factors. A promoter may contain one or more core promoter elements, such as a TATA box, a BRE, an initiator (INR), a motif ten element (MTE), a downstream core promoter element (DPE), a downstream core element (DCE), although core promoters lacking such elements are known in the art. All Pol III promoters are contemplated to be within the scope of the present disclosure.

本揭示之啟動子可為聚合酶III (Pol III)啟動子。Pol III轉錄DNA以合成小核糖體RNA,諸如5S rRNA、tRNA及其他小RNA。代表性Pol III啟動子使用內部控制序列(基因之轉錄片段內的序列)來支援轉錄,但有時亦使用諸如TATA盒之上游元件。所有Pol III啟動子均設想在本揭示之範疇內。The promoter of the present disclosure may be a polymerase III (Pol III) promoter. Pol III transcribes DNA to synthesize small ribosomal RNAs, such as 5S rRNA, tRNA, and other small RNAs. Representative Pol III promoters use internal control sequences (sequences within the transcribed segment of a gene) to support transcription, but sometimes upstream elements such as a TATA box are also used. All Pol III promoters are contemplated to be within the scope of the present disclosure.

術語「強化子」係指當與稱為轉錄因子之特異性蛋白質結合時,調節相關基因之表現的調節DNA序列。強化子可位於基因之內含子中,或基因編碼序列之5'或3'中。強化子可在基因近端(亦即,在啟動子之數十或數百個鹼基對(bp)內),或可位於基因遠端(亦即,與啟動子相距數千個bp、數十萬個bp或甚至數百萬個bp)。單一基因可藉由超過一個強化子調控,設想該等超個一種強化子均在本揭示之範疇內。The term "enhancer" refers to a regulatory DNA sequence that, when bound to specific proteins called transcription factors, regulates the expression of an associated gene. An enhancer may be located in an intron of a gene, or 5' or 3' to the gene coding sequence. An enhancer may be proximal to a gene (i.e., within tens or hundreds of base pairs (bp) of the promoter), or may be distal to a gene (i.e., thousands, hundreds of thousands, or even millions of bp from the promoter). A single gene may be regulated by more than one enhancer, and it is contemplated that such more than one enhancer is within the scope of the present disclosure.

如本文所用,「轉錄後調節元件(PTRE)」,諸如肝炎PTRE,係指當轉錄時產生能夠展現轉錄後活性以增強或促進與其可操作地連接之相關基因表現的三級結構的DNA序列。As used herein, "post-transcriptional regulatory element (PTRE)", such as hepatitis PTRE, refers to a DNA sequence that, when transcribed, generates a tertiary structure capable of exhibiting post-transcriptional activity to enhance or promote the expression of an associated gene to which it is operably linked.

「可操作地連接」意謂兩個或更多個組分(諸如序列元件)之併接,其中該等組分經排列使得兩個組分正常地起作用且使該等組分中之至少一者可介導施加於其他組分(例如啟動子及編碼序列)中之至少一者的功能。熟習此項技術者應瞭解,兩個組件無需以物理方式連接以可操作地連接。"Operably linked" means the joining of two or more components (such as sequence elements) wherein the components are arranged so that the two components function normally and at least one of the components can mediate a function imposed on at least one of the other components (such as a promoter and a coding sequence). Those skilled in the art will appreciate that two components need not be physically connected to be operably linked.

在本發明之上下文中且就基因而言,「抑制(repress)」、「抑制(repression)」、「抑制(repressing)」、「轉錄抑制(transcriptional repression)」「阻抑基因表現(inhibition of gene expression)」、「下調(downregulation)」及「緘默化(silencing)」在本文中可互換使用,指代對基因或其部分之轉錄的抑制或阻斷。因此,基因之抑制可使得基因產物之產生減少。減少轉錄之基因抑制過程之實例包括但不限於抑制轉錄起始複合物之形成的過程、降低轉錄起始速率的過程、降低轉錄延伸速率的過程、降低轉錄持續力的過程及拮抗轉錄活化(例如藉由阻斷轉錄活化因子之結合)的過程。基因抑制可構成例如活化防止以及低於現有量之表現抑制。轉錄抑制包括基因轉錄之可逆及不可逆失效兩者;後者可由基因之表觀基因修飾引起。In the context of the present invention and with respect to genes, "repress", "repression", "repressing", "transcriptional repression", "inhibition of gene expression", "downregulation" and "silencing" are used interchangeably herein to refer to the inhibition or blocking of transcription of a gene or a portion thereof. Thus, repression of a gene can result in a reduction in the production of the gene product. Examples of gene repression processes that reduce transcription include, but are not limited to, processes that inhibit the formation of a transcription initiation complex, processes that reduce the rate of transcription initiation, processes that reduce the rate of transcription elongation, processes that reduce transcription persistence, and processes that antagonize transcriptional activation (e.g., by blocking the binding of a transcriptional activating factor). Gene repression can constitute, for example, prevention of activation as well as inhibition of expression below the existing amount. Transcriptional repression includes both reversible and irreversible inactivation of gene transcription; the latter can be caused by epigenetic modifications of the gene.

「抑制子(repressor)」或「抑制子域(repressor domain)」可互換使用以指代多肽因子,其充當阻抑、抑制或阻斷DNA轉錄,引起基因表現之抑制的DNA上之調控元件。在本發明之上下文中,抑制子域與DNA結合蛋白之連接可在結合於目標核酸時防止自啟動子轉錄或以其他方式阻抑基因表現。不希望受理論所束縛,認為轉錄抑制子可藉由多種機制起作用,包括藉由位阻以物理方式阻斷RNA聚合酶通路、改變聚合酶之轉譯後修飾狀態、修改新生RNA之表觀遺傳狀態、經由甲基化改變DNA之表觀遺傳狀態、經由組蛋白去乙醯化或調節核小體重塑改變DNA之表觀遺傳狀態或防止強化子-啟動子相互作用,從而引起基因緘默化或基因表現量降低。"Repressor" or "repressor domain" are used interchangeably to refer to a polypeptide factor that acts as a regulatory element on DNA that represses, inhibits or blocks DNA transcription, resulting in inhibition of gene expression. In the context of the present invention, the association of a repressor domain with a DNA binding protein can prevent auto-promoter transcription or otherwise repress gene expression when bound to a target nucleic acid. Without wishing to be bound by theory, it is believed that transcriptional repressors may act by a variety of mechanisms, including physically blocking RNA polymerase access by steric hindrance, altering the post-translational modification state of the polymerase, modifying the epigenetic state of nascent RNA, altering the epigenetic state of DNA via methylation, altering the epigenetic state of DNA via histone deacetylation or regulation of nucleosome remodeling, or preventing enhancer-promoter interactions, thereby causing gene silencing or reduced gene expression.

「長期抑制子融合蛋白」或「LTRP」在本文中可與「抑制子融合蛋白」互換使用且係指包含DNA結合蛋白(或蛋白質之DNA結合域)與一或多個域融合之融合蛋白,其能夠抑制目標核酸序列之轉錄。視情況,本揭示之長期抑制子融合蛋白可含有額外元件,諸如融合蛋白之域中之任一者之間的連接子、核定位信號、核輸出信號以及賦予長期抑制子融合蛋白額外活性之額外蛋白域。"Long-term suppressor fusion protein" or "LTRP" is used interchangeably herein with "suppressor fusion protein" and refers to a fusion protein comprising a DNA binding protein (or a DNA binding domain of a protein) fused to one or more domains that is capable of inhibiting the transcription of a target nucleic acid sequence. Optionally, the long-term suppressor fusion proteins of the present disclosure may contain additional elements, such as linkers between any of the domains of the fusion protein, nuclear localization signals, nuclear export signals, and additional protein domains that confer additional activities to the long-term suppressor fusion protein.

如本文所使用,「LTRP:gRNA系統」係用於轉錄抑制之系統且包含:長期抑制子融合蛋白,該抑制子融合蛋白包含催化失效之CRISPR蛋白及一或多個所連接抑制子域;以及結合至催化失效之CRISPR蛋白的引導核酸(gRNA)。為了清楚起見,該系統亦包括可用於產生該系統之長期抑制子融合蛋白及gRNA組分的任何編碼DNA、RNA或載體及其類似物。As used herein, the "LTRP:gRNA system" is a system for transcriptional repression and comprises: a long-term repressor fusion protein comprising a catalytically inactive CRISPR protein and one or more linked repressor domains; and a guide nucleic acid (gRNA) that binds to the catalytically inactive CRISPR protein. For clarity, the system also includes any encoding DNA, RNA or vector and the like that can be used to generate the long-term repressor fusion protein and gRNA components of the system.

如本文所使用,「催化失效DNA結合蛋白」係指能夠結合DNA但無法切割或裂解DNA之蛋白質或蛋白質域。如本文所用,「催化失效CRISPR蛋白」係指缺乏核酸內切酶活性的CRISPR蛋白。熟習此項技術者應瞭解,CRISPR蛋白可為催化失效的,且仍能夠執行額外蛋白質功能,諸如DNA結合。類似地,「催化失效CasX」係指缺乏核酸內切酶活性但仍能夠執行額外蛋白質功能(諸如DNA結合)的CasX蛋白。As used herein, a "catalytically inactive DNA binding protein" refers to a protein or protein domain that is able to bind DNA but is unable to cut or cleave DNA. As used herein, a "catalytically inactive CRISPR protein" refers to a CRISPR protein that lacks endonuclease activity. Those skilled in the art will appreciate that a CRISPR protein can be catalytically inactive and still able to perform additional protein functions, such as DNA binding. Similarly, a "catalytically inactive CasX" refers to a CasX protein that lacks endonuclease activity but is still able to perform additional protein functions (such as DNA binding).

如本文所用,「重組(Recombinant)」意謂特定核酸(DNA或RNA)為選殖、限制及/或連接步驟之各種組合的產物,產生具有與天然系統中發現之內源核酸可區分之結構性編碼或非編碼序列的構築體。一般而言,編碼結構性編碼序列之DNA序列可自cDNA片段及短寡核苷酸連接子或自一系列合成寡核苷酸組裝,以提供能夠自細胞中或無細胞轉錄及轉譯系統中所含之重組轉錄單元表現的合成核酸。此等序列可呈未被內部非轉譯序列或內含子(其通常存在於真核基因中)間斷之開讀框形式提供。包含相關序列之基因體DNA亦可用於形成重組基因或轉錄單元。非轉譯DNA之序列可存在於開讀框之5'或3',其中此等序列不干擾編碼區之操縱或表現,且可實際上用於藉由各種機制調節所需產物之產生(參見上文之「強化子」及「啟動子」)。As used herein, "recombinant" means that a particular nucleic acid (DNA or RNA) is the product of various combinations of selection, restriction and/or ligation steps, resulting in a construct having a structural coding or non-coding sequence that is distinguishable from endogenous nucleic acids found in natural systems. In general, DNA sequences encoding structural coding sequences can be assembled from cDNA fragments and short oligonucleotide linkers or from a series of synthetic oligonucleotides to provide synthetic nucleic acids that can be expressed from recombinant transcriptional units contained in cells or in acellular transcription and translation systems. These sequences can be provided in the form of open reading frames that are not interrupted by internal non-translated sequences or introns (which are typically present in eukaryotic genes). Genomic DNA containing the relevant sequence can also be used to form recombinant genes or transcriptional units. Non-translated DNA sequences may be present 5' or 3' to the open reading frame, wherein these sequences do not interfere with manipulation or expression of the coding region and may in fact be used to regulate the production of the desired product by a variety of mechanisms (see "enhancer" and "promoter" above).

術語「重組聚核苷酸」或「重組核酸」係指一種非天然存在,例如藉由經由人工干預將序列之兩個其他分離區段人工組合而製得。此人工組合通常藉由化學合成手段或藉由人工操縱核酸之分離區段,例如藉由基因工程改造技術來實現。通常進行此類操作以用編碼密碼子或保守胺基酸,同時典型地引入或移除序列識別位點之冗餘密碼子來替代密碼子。或者,進行該操作以將具有所需功能之核酸區段連接在一起以產生所需功能組合。此人工組合通常藉由化學合成手段或藉由人工操縱核酸之分離區段,例如藉由基因工程改造技術來實現。The term "recombinant polynucleotide" or "recombinant nucleic acid" refers to a non-natural existence, for example, produced by artificially combining two otherwise separate segments of a sequence through human intervention. This artificial combination is usually achieved by chemical synthesis means or by artificial manipulation of separate segments of nucleic acids, such as by genetic engineering techniques. Such manipulations are usually performed to replace codons with coding codons or conserved amino acids, while typically introducing or removing redundant codons at sequence recognition sites. Alternatively, the manipulation is performed to connect nucleic acid segments with desired functions together to produce a desired functional combination. This artificial combination is usually achieved by chemical synthesis means or by artificial manipulation of separate segments of nucleic acids, such as by genetic engineering techniques.

類似地,術語「重組多肽」或「重組蛋白」係指並非天然存在之多肽或蛋白質,例如藉由經由人工干預將胺基序列之兩個其他分離區段人工組合而製得。因此,例如,包含異源胺基酸序列之蛋白質係重組的。Similarly, the term "recombinant polypeptide" or "recombinant protein" refers to a polypeptide or protein that does not occur in nature, for example, by artificially combining two otherwise separate segments of amino acid sequence through human intervention. Thus, for example, a protein comprising a heterologous amino acid sequence is recombinant.

如本文所用,「脂質奈米粒子」或「LNP」係指具有至少一個奈米尺寸(例如1至1,000 nm)的粒子,其包含一或多種脂質(例如陽離子型脂質、非陽離子型脂質、輔助磷脂及經PEG修飾之脂質)以及膽固醇。LNP之特定組分在下文加以更全面地描述。脂質奈米粒子可包括在調配物中,該調配物可用於將活性劑或治療劑,諸如核酸(例如mRNA)遞送至所關注之目標部位(例如細胞、組織、器官、腫瘤及其類似者)。本揭示之脂質奈米粒子可包含核酸。此等脂質奈米粒子通常包含中性脂質、帶電脂質、類固醇及聚合物結合脂質。活性劑或治療劑(諸如核酸)可囊封於脂質奈米粒子之脂質部分或由脂質奈米粒子之一些或全部脂質部分包封的水性空間中,從而保護其免於受酶降解或由宿主生物體或細胞之機制誘導之其他不合需要的影響,例如不良免疫反應。As used herein, "lipid nanoparticles" or "LNPs" refer to particles having at least one nanometer dimension (e.g., 1 to 1,000 nm) that include one or more lipids (e.g., cationic lipids, non-cationic lipids, co-phospholipids, and PEG-modified lipids) and cholesterol. Specific components of LNPs are described more fully below. Lipid nanoparticles can be included in formulations that can be used to deliver active agents or therapeutic agents, such as nucleic acids (e.g., mRNA) to target sites of interest (e.g., cells, tissues, organs, tumors, and the like). The lipid nanoparticles of the present disclosure may include nucleic acids. Such lipid nanoparticles typically include neutral lipids, charged lipids, steroids, and polymer-bound lipids. Active agents or therapeutic agents, such as nucleic acids, can be encapsulated in the lipid portion of the lipid nanoparticles or in the aqueous space enclosed by some or all of the lipid portion of the lipid nanoparticles, thereby protecting them from enzymatic degradation or other undesirable effects induced by the mechanisms of the host organism or cells, such as adverse immune responses.

如本文所用,「經脂質囊封」係指提供活性劑或治療劑,諸如核酸(例如mRNA、gRNA或mRNA與gRNA兩者),同時完全囊封、部分囊封或兩者之脂質奈米粒子。核酸(例如mRNA)可完全囊封於脂質奈米粒子中。As used herein, "lipid encapsulated" refers to providing an active agent or therapeutic agent, such as a nucleic acid (e.g., mRNA, gRNA, or both), to a lipid nanoparticle that is fully encapsulated, partially encapsulated, or both. The nucleic acid (e.g., mRNA) can be fully encapsulated in the lipid nanoparticle.

如本文所用,「脂蛋白」(諸如VLDL、LDL及HDL)係指於血清、血漿及淋巴中發現且對於脂質轉運至關重要的一組蛋白質。各脂蛋白之化學組成不同,例如因為HDL具有較高比例之蛋白質比脂質,而VLDL具有較低比例之蛋白質比脂質。As used herein, "lipoproteins" (such as VLDL, LDL, and HDL) refer to a group of proteins found in serum, plasma, and lymph and are important for lipid transport. The chemical composition of each lipoprotein differs, for example, because HDL has a higher ratio of protein to lipid, while VLDL has a lower ratio of protein to lipid.

如本文所用,「動脈粥樣硬化」意謂影響大型及中型動脈之動脈硬化且以脂肪沉積物之存在為特徵。脂肪沉積物稱為「動脈粥樣化斑」或「斑塊」,其主要由膽固醇及其他脂肪、鈣及瘢痕組織組成,且破壞動脈內膜。As used herein, "atherosclerosis" means hardening of the arteries that affects large and medium-sized arteries and is characterized by the presence of fatty deposits. The fatty deposits are called "atheromas" or "plaques," which are composed primarily of cholesterol and other fats, calcium, and scar tissue, and destroy the lining of the arteries.

如本文所用,「冠狀動脈心臟病(CHD)」意謂向心臟供應血液及氧氣之小血管變窄,其通常由動脈粥樣硬化導致。As used herein, "coronary heart disease (CHD)" means the narrowing of the small blood vessels that supply blood and oxygen to the heart, usually caused by atherosclerosis.

如本文所用,「血脂異常」係指脂質及/或脂蛋白代謝病症,包括脂質及/或脂蛋白過度產生或缺乏。血脂異常可體現為脂質(諸如乳糜微粒、膽固醇及三酸甘油酯)以及脂蛋白(諸如低密度脂蛋白(LDL)膽固醇)的升高。As used herein, "dyslipidemia" refers to a lipid and/or lipoprotein metabolism disorder, including lipid and/or lipoprotein overproduction or deficiency. Dyslipidemia can be manifested as an increase in lipids (such as chylomicrons, cholesterol and triglycerides) and lipoproteins (such as low-density lipoprotein (LDL) cholesterol).

如本文所用,「高密度脂蛋白-C」或「HDL-C」意謂與高密度脂蛋白粒子相關之膽固醇。血清(或血漿)中HDL-C之濃度通常以mg/dL或nmol/L定量。「血清HDL-C」及「血漿HDL-C」分別意謂血清及血漿中之HDL-C。As used herein, "high-density lipoprotein-C" or "HDL-C" means cholesterol associated with high-density lipoprotein particles. The concentration of HDL-C in serum (or plasma) is usually quantified in mg/dL or nmol/L. "Serum HDL-C" and "plasma HDL-C" mean HDL-C in serum and plasma, respectively.

如本文所用,「低密度脂蛋白-膽固醇(LDL-C)」意謂低密度脂蛋白粒子中攜帶的膽固醇。血清(或血漿)中LDL-C之濃度通常以mg/dL或nmol/L定量。「血清LDL-C」及「血漿LDL-C」分別意謂血清及血漿中之LDL-C。As used herein, "low-density lipoprotein-cholesterol (LDL-C)" means cholesterol carried in low-density lipoprotein particles. The concentration of LDL-C in serum (or plasma) is usually quantified in mg/dL or nmol/L. "Serum LDL-C" and "plasma LDL-C" mean LDL-C in serum and plasma, respectively.

如本文所用,「高膽固醇血症」意謂以膽固醇或循環(血漿)膽固醇、LDL-膽固醇及VLDL-膽固醇升高為特徵之病狀,符合國家膽固醇教育計劃(NCEP)專家組報導中關於治療成人高膽固醇的偵測、評定的指導方針(參見,Arch. Int. Med. 148: 36 (1988))。As used herein, "hypercholesterolemia" means a condition characterized by elevated cholesterol or circulating (plasma) cholesterol, LDL-cholesterol, and VLDL-cholesterol consistent with the National Cholesterol Education Program (NCEP) Panel Report Guidelines for Detection, Assessment, and Treatment of Hypercholesterolemia in Adults (see, Arch. Int. Med. 148: 36 (1988)).

如本文所用,「高脂血症(hyperlipidemia)」或「高血脂病(hyperlipemia)」為以血清脂質或循環(血漿)脂質升高為特徵之病狀。此病狀表現出異常高濃度之脂肪。循環血液中之脂質部分為膽固醇、低密度脂蛋白、極低密度脂蛋白、乳糜微粒及三酸甘油酯。高脂血症之弗雷德裏克森(Fredrickson)分類法係基於藉由電泳或超速離心所量測的TG及富含膽固醇之脂蛋白粒子之圖案,且常用於表徵高脂血症(諸如高三酸甘油酯血症)之主要病因。As used herein, "hyperlipidemia" or "hyperlipemia" is a condition characterized by elevated serum lipids or circulating (plasma) lipids. This condition manifests itself in abnormally high concentrations of fats. The lipid fractions in the circulating blood are cholesterol, low-density lipoproteins, very low-density lipoproteins, chylomicrons, and triglycerides. The Fredrickson classification of hyperlipidemia is based on the pattern of TG and cholesterol-rich lipoprotein particles measured by electrophoresis or ultracentrifugation, and is often used to characterize the primary causes of hyperlipidemias such as hypertriglyceridemia.

如本文所用,「三酸甘油酯」或「TG」意謂由甘油與三種脂肪酸分子組合組成之脂質或中性脂肪。As used herein, "triglyceride" or "TG" means a lipid or neutral fat composed of glycerol and three fatty acid molecules.

如本文所用,「高三酸甘油酯血症(hypertriglyceridemia)」意謂以三酸甘油酯水平升高為特徵之病狀。其病因包括主要(亦即遺傳病因)及次要(其他潛在病因,諸如糖尿病、代謝症候群/胰島素抗性、肥胖、缺乏運動、吸菸、過量飲酒及碳水化合物極高的飲食)因素,或最常見為兩者之組合。As used herein, "hypertriglyceridemia" means a condition characterized by elevated triglyceride levels. Its causes include primary (i.e., genetic) and secondary (other potential causes, such as diabetes, metabolic syndrome/insulin resistance, obesity, lack of exercise, smoking, excessive alcohol consumption, and a very high carbohydrate diet) factors, or most commonly a combination of both.

如本文所用,「糖尿病(diabetes mellitus)」或「糖尿病(diabetes)」係以無序代謝及異常高血糖(高血糖症)為特徵之症候群,其由胰島素水平不足或胰島素敏感性降低引起。特徵症狀為由高血糖水平導致過量尿液產生(多尿(polyuria));視圖彌補排尿增加而引起過度口渴以及液體攝入量增加(多飲(polydipsia));由於高血糖對眼睛光學的影響而導致視力模糊;不明原因的體重減輕;以及嗜睡。As used herein, "diabetes mellitus" or "diabetes" is a syndrome characterized by disordered metabolism and abnormally high blood sugar (hyperglycemia), which is caused by insufficient insulin levels or decreased insulin sensitivity. Characteristic symptoms are excessive urine production (polyuria) due to high blood sugar levels; excessive thirst and increased fluid intake (polydipsia) due to increased urination to compensate for the loss of urine; blurred vision due to the effects of high blood sugar on eye optics; unexplained weight loss; and lethargy.

如本文所用,「糖尿病血脂異常」或「2型糖尿病伴血脂異常」意謂以2型糖尿病、HDL-C降低、三酸甘油酯(TG)升高及較小密集LDL粒子升高為特徵之病狀。As used herein, "diabetic dyslipidemia" or "type 2 diabetes with dyslipidemia" means a condition characterized by type 2 diabetes, low HDL-C, elevated triglycerides (TG), and elevated small dense LDL particles.

如本文所用,術語「接觸」意謂在兩個或更多個實體之間建立實體連接。舉例而言,使目標核酸與引導核酸接觸意謂使目標核酸與引導核酸共用實體連接;例如,若該等序列共用序列相似性,則可雜合。As used herein, the term "contact" means to establish a physical connection between two or more entities. For example, contacting a target nucleic acid with a guide nucleic acid means that the target nucleic acid and the guide nucleic acid share a physical connection; for example, if the sequences share sequence similarity, they can hybridize.

「解離常數」或「K d」可互換使用且意謂配位體「L」與蛋白質「P」之間的親和力;亦即,配位體與特定蛋白質結合之緊密程度。其可使用式K d=[L][P]/[LP]計算,其中[P]、[L]及[LP]分別表示蛋白質、配位體及複合物之莫耳濃度。 "Dissociation constant" or " Kd " is used interchangeably and refers to the affinity between a ligand "L" and a protein "P"; that is, how tightly a ligand binds to a particular protein. It can be calculated using the formula Kd = [L][P]/[LP], where [P], [L], and [LP] represent the molar concentrations of the protein, ligand, and complex, respectively.

如本文所用,術語「減弱(knock-down)」係指基因或其基因產物之表現減少。由於基因減弱,蛋白質活性或功能可衰減或蛋白質水平可降低或被消除。As used herein, the term "knock-down" refers to a reduction in the expression of a gene or its gene product. As a result of gene knockdown, protein activity or function may be attenuated or protein levels may be reduced or eliminated.

聚核苷酸或多肽與另一聚核苷酸或多肽具有某一「序列相似性」或「序列一致性」百分比意謂,進行比對時相同的及比較兩個序列時在相同相對位置的鹼基或胺基酸之百分比。序列相似性(有時稱為相似性百分比、一致性百分比或同源性)可以多種不同方式確定。為確定序列相似性,可使用此項技術中已知之方法及電腦程式比對序列,該等方法及電腦程式包括BLAST,其可在全球資訊網內在ncbi.nlm.nih.gov/BLAST處獲得。核酸內之核酸序列之特定伸長段之間的互補性百分比可使用任何便利方法確定。例示性方法包括BLAST程式(基本局部比對搜尋工具及PowerBLAST程式(Altschul等人, J. Mol. Biol., 1990, 215, 403-410;Zhang及Madden, Genome Res., 1997, 7, 649-656)或藉由使用Gap程式(Wisconsin Sequence Analysis Package,Unix第8版, Genetics Computer Group, University Research Park, Madison Wis.),例如使用預設設定,其使用Smith及Waterman之演算法(Adv. Appl. Math., 1981, 2, 482-489)。By a polynucleotide or polypeptide having a certain percentage of "sequence similarity" or "sequence identity" to another polynucleotide or polypeptide is meant the percentage of bases or amino acids that are identical when aligned and that are in the same relative position when the two sequences are compared. Sequence similarity (sometimes referred to as percentage similarity, percentage identity, or homology) can be determined in a number of different ways. To determine sequence similarity, sequences can be aligned using methods and computer programs known in the art, including BLAST, which is available on the World Wide Web at ncbi.nlm.nih.gov/BLAST. The percentage of complementarity between specific stretches of nucleic acid sequences within a nucleic acid can be determined using any convenient method. Exemplary methods include the BLAST program (Basic Local Alignment Search Tool and the PowerBLAST program (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656) or by using the Gap program (Wisconsin Sequence Analysis Package, Unix version 8, Genetics Computer Group, University Research Park, Madison Wis.), e.g., using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).

術語「多肽」及「蛋白質」在本文中可互換使用,且係指任何長度之胺基酸之聚合形式,其可包括編碼及非編碼胺基酸、化學或生物化學修飾或衍生之胺基酸及具有經修飾肽主鏈之多肽。該術語包括融合蛋白,包括但不限於具有異源胺基酸序列之融合蛋白。The terms "polypeptide" and "protein" are used interchangeably herein and refer to a polymeric form of amino acids of any length, which may include coding and non-coding amino acids, chemically or biochemically modified or derivatized amino acids, and polypeptides with modified peptide backbones. The term includes fusion proteins, including but not limited to fusion proteins with heterologous amino acid sequences.

「載體」或「表現載體」係一種複製子,諸如質體、噬菌體、病毒或黏質體,其可包括另一DNA區段,亦即表現卡匣,以便引起細胞中其他DNA區段之複製或表現。A "vector" or "expression vector" is a replicon, such as a plasmid, bacteriophage, virus or cosmid, that can include another DNA segment, the expression cassette, to cause the replication or expression of the other DNA segment in the cell.

應用於核酸、多肽、細胞或生物體的如本文所用之術語「天然存在的(naturally-occurring)」或「未修飾(unmodified)」或「野生型(wild type)」係指自然界中發現之核酸、多肽、細胞或生物體。The term "naturally-occurring" or "unmodified" or "wild type" as used herein as applied to a nucleic acid, polypeptide, cell or organism refers to a nucleic acid, polypeptide, cell or organism found in nature.

如本文所用,相比於野生型或參考胺基酸序列或野生型或參考核苷酸序列,「突變」係指一或多個胺基酸或核苷酸的插入、缺失、取代、複製或倒置。As used herein, "mutation" refers to an insertion, deletion, substitution, duplication or inversion of one or more amino acids or nucleotides compared to a wild-type or reference amino acid sequence or a wild-type or reference nucleotide sequence.

如本文所用,術語「經分離(isolated)」意在描述處於與聚核苷酸、多肽或細胞天然存在之環境不同的環境中的聚核苷酸、多肽或細胞。經分離之遺傳修飾宿主細胞可存在於遺傳修飾宿主細胞之混合群體中。As used herein, the term "isolated" is intended to describe a polynucleotide, polypeptide, or cell that is in an environment different from that in which the polynucleotide, polypeptide, or cell naturally exists. An isolated genetically modified host cell may be present in a mixed population of genetically modified host cells.

如本文所用之「宿主細胞」表示真核細胞、原核細胞或來自以單細胞實體形式培養之多細胞生物體(例如細胞株)的細胞,該等真核或原核細胞用作核酸(例如AAV載體)之接受體,且包括已藉由核酸遺傳修飾之原始細胞之子代。應理解,單一細胞之後代可歸因於天然、意外或有意突變而不一定與原始親本細胞具有完全相同之形態或基因體或總DNA互補序列。「重組宿主細胞」(亦稱為「經遺傳修飾之宿主細胞」)為已引入異源核酸(例如AAV載體)的宿主細胞。As used herein, "host cell" means a eukaryotic cell, a prokaryotic cell, or a cell from a multicellular organism (e.g., a cell strain) cultured as a single-cell entity that serves as a recipient of a nucleic acid (e.g., an AAV vector), and includes progeny of the original cell that has been genetically modified by the nucleic acid. It is understood that the progeny of a single cell may not necessarily have exactly the same morphology or genome or total DNA complement sequence as the original parent cell due to natural, accidental, or deliberate mutations. A "recombinant host cell" (also referred to as a "genetically modified host cell") is a host cell into which a heterologous nucleic acid (e.g., an AAV vector) has been introduced.

術語「保守胺基酸取代」係指蛋白質中具有類似側鏈之胺基酸殘基之互換性。舉例而言,具有脂族側鏈之胺基酸之群組由甘胺酸、丙胺酸、纈胺酸、白胺酸及異白胺酸組成;具有脂族羥基側鏈之胺基酸之群組由絲胺酸及蘇胺酸組成;具有含醯胺側鏈之胺基酸之群組由天冬醯胺及麩醯胺酸組成;具有芳族側鏈之胺基酸之群組由苯丙胺酸、酪胺酸及色胺酸組成;具有鹼性側鏈之胺基酸之群組由離胺酸、精胺酸及組胺酸組成;且具有含硫側鏈之胺基酸之群組由半胱胺酸及甲硫胺酸組成。例示性保守胺基酸取代群組為:纈胺酸-白胺酸-異白胺酸、苯丙胺酸-酪胺酸、離胺酸-精胺酸、丙胺酸-纈胺酸及天冬醯胺-麩醯胺酸。The term "conservative amino acid substitution" refers to the interchangeability of amino acid residues in proteins with similar side chains. For example, the group of amino acids with aliphatic side chains consists of glycine, alanine, valine, leucine, and isoleucine; the group of amino acids with aliphatic hydroxyl side chains consists of serine and threonine; the group of amino acids with amide side chains consists of asparagine and glutamine; the group of amino acids with aromatic side chains consists of phenylalanine, tyrosine, and tryptophan; the group of amino acids with basic side chains consists of lysine, arginine, and histidine; and the group of amino acids with sulfur-containing side chains consists of cysteine and methionine. Exemplary conservative amino acid substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.

如本文所用,「治療(treatment)」或「治療(treating)」在本文中可互換使用,且係指獲得有益或所需結果(包括但不限於治療益處及/或預防益處)之方法。治療益處意謂根除或減輕所治療之潛在病症或疾病。治療益處亦可藉由根除或減輕一或多種症狀或改善與潛在疾病相關之一或多個臨床參數,使得儘管個體仍可能罹患潛在病症,但在個體中觀測到改善來實現。As used herein, "treatment" or "treating" are used interchangeably herein and refer to an approach for obtaining beneficial or desired results, including but not limited to therapeutic benefit and/or preventive benefit. A therapeutic benefit means eradication or amelioration of the underlying condition or disease being treated. A therapeutic benefit may also be achieved by eradication or amelioration of one or more symptoms or improvement of one or more clinical parameters associated with the underlying disease, such that improvement is observed in the individual, although the individual may still suffer from the underlying disease.

如本文所用,術語「治療有效量(therapeutically effective amount)」及「治療有效劑量(therapeutically effective dose)」係指當以一個或重複劑量向個體(諸如人類或實驗動物)投與時能夠對疾病狀態或病狀之任何症狀、態樣、所量測參數或特徵具有任何可偵測、有益作用的單獨或作為組合物之一部分的藥物或生物製劑之量。該作用不需要絕對有益。As used herein, the terms "therapeutically effective amount" and "therapeutically effective dose" refer to an amount of a drug or biological agent alone or as part of a composition that, when administered in one or repeated doses to a subject (such as a human or experimental animal), has any detectable, beneficial effect on any symptom, aspect, measured parameter or characteristic of a disease state or condition. The effect need not be absolutely beneficial.

如本文所用,「投與」意謂向個體給予一劑量之化合物(例如本揭示之組合物)或組合物(例如醫藥組合物)的方法。As used herein, "administering" means a method of giving a dose of a compound (eg, a composition of the disclosure) or a composition (eg, a pharmaceutical composition) to a subject.

「個體」係哺乳動物。哺乳動物包括但不限於馴養動物、非人類靈長類動物、人類、狗、兔、小鼠、大鼠及其他嚙齒動物。“Individual” means a mammal. Mammals include, but are not limited to, domesticated animals, non-human primates, humans, dogs, rabbits, mice, rats, and other rodents.

術語「低密度脂蛋白(LDL)」係指密集最小(重量體積比粒子較小)至密集最大(重量體積比粒子較大)之五大類脂蛋白之一:乳糜微粒、極低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、中等密度脂蛋白(IDL)及高密度脂蛋白(HDL)。脂蛋白在細胞外流體中將脂質(脂肪)轉移至身體周圍,從而促進脂肪經由受體介導之內吞作用轉移至細胞體。LDL粒子之直徑為約220至275埃。The term "low-density lipoprotein (LDL)" refers to one of the five major types of lipoproteins, ranging from the least dense (smaller in weight to volume) to the most dense (larger in weight to volume): chylomicrons, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), intermediate-density lipoprotein (IDL), and high-density lipoprotein (HDL). Lipoproteins transport lipids (fats) around the body in the extracellular fluid, thereby facilitating the transfer of fats into cell bodies via receptor-mediated endocytosis. The diameter of LDL particles is approximately 220 to 275 angstroms.

「低密度脂蛋白(LDL)受體」係指介導富含膽固醇之LDL粒子的內吞作用的839個胺基酸之受體蛋白(移除21-胺基酸信號肽之後)。其係一種細胞表面受體,其識別在乳糜微粒殘餘物及VLDL殘餘物(IDL)中發現之去輔基蛋白B100及apoE蛋白,從而引起LDL-膽固醇之結合及內吞作用。此過程發生於所有有核細胞中,但主要發生在肝臟中,其自循環移除大致70%之LDL。人類LDLR基因在NCBI資料庫(ncbi.nlm.nih.gov)中經部分描述為參考序列NG_009060.1,其以引用之方式併入本文中。"Low-density lipoprotein (LDL) receptor" refers to the 839-amino acid receptor protein (after removal of the 21-amino acid signal peptide) that mediates the endocytosis of cholesterol-rich LDL particles. It is a cell surface receptor that recognizes apoB100 and apoE proteins found in chylomicron remnants and VLDL remnants (IDL), resulting in the binding and endocytosis of LDL-cholesterol. This process occurs in all nucleated cells, but primarily in the liver, which removes approximately 70% of LDL from circulation. The human LDLR gene is partially described in the NCBI database (ncbi.nlm.nih.gov) as reference sequence NG_009060.1, which is incorporated herein by reference.

本說明書中所提及之所有公開案、專利及專利申請案均以引用之方式併入本文中,其引用的程度如同各個別公開案、專利或專利申請案經特定及個別地指示以引用的方式併入一般。 I. 一般方法 All publications, patents, and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. I. General Methods

除非另外規定,否則本發明之實踐採用免疫學、生物化學、化學、分子生物學、微生物學、細胞生物學、基因體學及重組DNA之習知技術,其可見於諸如以下之標準教科書:Molecular Cloning: A Laboratory Manual, 第3版(Sambrook等人, Harbor Laboratory Press 2001);Short Protocols in Molecular Biology, 第4版(Ausubel等人編, John Wiley & Sons 1999);Protein Methods (Bollag等人, John Wiley & Sons 1996);Nonviral Vectors for Gene Therapy (Wagner等人編, Academic Press 1999);Viral Vectors (Kaplift及Loewy編, Academic Press 1995);Immunology Methods Manual (I. Lefkovits編, Academic Press 1997);及Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle及Griffiths, John Wiley & Sons 1998),該等文獻之揭示內容以引用的方式併入本文中。Unless otherwise specified, the practice of the present invention employs techniques familiar from immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics, and recombinant DNA as found in standard textbooks such as Molecular Cloning: A Laboratory Manual, 3rd edition (Sambrook et al., Harbor Laboratory Press 2001); Short Protocols in Molecular Biology, 4th edition (Ausubel et al., ed., John Wiley & Sons 1999); Protein Methods (Bollag et al., John Wiley & Sons 1996); Nonviral Vectors for Gene Therapy (Wagner et al., ed., Academic Press 1999); Viral Vectors (Kaplift and Loewy, ed., Academic Press 1995); Immunology Methods Manual (I. Lefkovits, ed., Academic Press 1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle and Griffiths, John Wiley & Sons 1998), the disclosure of which is incorporated herein by reference.

在提供值範圍時,應理解包括端點且涵蓋彼範圍之上限與下限之間的各中介值(除非上下文另有明確指示,否則至下限單位之十分之一)及彼所陳述範圍內之任何其他所陳述值或中介值。此等較小範圍之上限及下限可獨立地包括在較小範圍內且亦涵蓋在所陳述範圍內,受制於任何特定排除之限值。在所述範圍包括限制中之一或兩者之情況下,亦包括排除彼等所包括之限值之任一者或兩者的範圍。Where a range of values is provided, it is understood that the endpoints are included and that each intervening value between the upper and lower limits of that range is encompassed (unless the context clearly indicates otherwise, to one-tenth of the unit of the lower limit) and any other stated or intervening value within that stated range. The upper and lower limits of such smaller ranges may independently be included in the smaller ranges and also encompassed within the stated ranges, subject to any specifically excluded limit. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.

除非另作定義,否則本文所使用之所有技術及科學術語具有與一般熟習本揭示所屬技術者通常所瞭解之含義相同的含義。本文所提及之全部公開案均以引用之方式併入本文中,以揭示及描述與所引用之公開案相關的方法及/或材料。Unless otherwise defined, all technical and scientific terms used herein have the same meanings as those commonly understood by those skilled in the art to which this disclosure belongs. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials related to the cited publications.

應瞭解,為了清楚起見而在獨立實施例之上下文中描述的本揭示之某些特徵亦可組合地提供於單一實施例中。在其他情況下,為簡潔起見而在單個實施例之上下文中描述的本揭示之各種特徵亦可分開地或以任何適合之子組合提供。希望關於本揭示的實施例之所有組合特定地由本揭示涵蓋且在本文中揭示,如同個別地且明確地揭示每一組合一般。另外,各種實施例及其要素之所有子組合亦由本揭示特定涵蓋且在本文中揭示,如同個別地且明確地在本文中揭示每一此類子組合一般。 II. 用於 PCSK9基因之表觀遺傳修飾及抑制之系統 It should be understood that certain features of the disclosure that are described for clarity in the context of separate embodiments may also be provided in combination in a single embodiment. In other cases, various features of the disclosure that are described for brevity in the context of a single embodiment may also be provided separately or in any suitable subcombination. It is intended that all combinations of embodiments of the disclosure are specifically covered by the disclosure and disclosed herein, as if each combination were individually and explicitly disclosed. In addition, all subcombinations of the various embodiments and elements thereof are also specifically covered by the disclosure and disclosed herein, as if each such subcombination were individually and explicitly disclosed herein. II. System for epigenetic modification and inhibition of the PCSK9 gene

在第一態樣中,本揭示提供包含或編碼長期抑制子融合蛋白(「LTRP」)之系統,該融合蛋白包含能夠結合經靶向用於轉錄抑制、緘默化及/或表觀遺傳修飾之 PCSK9基因之目標核酸序列的DNA結合蛋白及抑制子域。本揭示亦提供包含或編碼LTRP之系統。在一些情況下,該系統經設計以抑制真核細胞中具有突變之 P CSK9基因的轉錄。 In a first aspect, the disclosure provides a system comprising or encoding a long-term repressor fusion protein ("LTRP") comprising a DNA binding protein and a repressor domain capable of binding to a target nucleic acid sequence of a PCSK9 gene targeted for transcriptional repression, silencing and/or epigenetic modification. The disclosure also provides a system comprising or encoding a LTRP. In some cases, the system is designed to inhibit transcription of a PCSK9 gene with a mutation in a eukaryotic cell.

如本文所用,「系統」可與「組合物」互換使用。本揭示亦提供編碼本文所提供之系統的核酸。本文亦提供製造該等系統之方法,以及使用該等系統之方法,包括基因抑制及/或表觀遺傳修飾之方法及治療PCSK9相關疾病之方法。為了清楚起見,術語「系統」亦包括可用於產生該系統之抑制子融合蛋白及gRNA組分的任何編碼DNA、RNA或載體及其類似物。As used herein, "system" can be used interchangeably with "composition". The present disclosure also provides nucleic acids encoding the systems provided herein. Methods of making such systems, and methods of using such systems, including methods of gene suppression and/or epigenetic modification and methods of treating PCSK9-related diseases are also provided herein. For clarity, the term "system" also includes any encoding DNA, RNA or vector and the like that can be used to produce the suppressor fusion protein and gRNA components of the system.

在一些實施例中,用於本發明之長期抑制子融合蛋白之DNA結合蛋白包含鋅指(ZF)或TALE (轉錄活化因子樣效應物)蛋白或其DNA結合域,在本文中亦稱為DNA結合蛋白,其結合目標核酸但不裂解目標核酸。TALE之DNA結合域包含33-34個胺基酸(aa)長的可定製單體之串聯陣列,其理論上可按照一個重複序列結合一個鹼基對的識別碼組裝以識別任何基因序列(Jain, S.等人,TALE outperforms Cas9 in editing heterochromatin target sites. Nat. Commun. 12:606 (2021))。TALE結合DNA之特異性係由兩個多晶型胺基酸引起,所謂的重複序列可變雙殘基(repeat variable diresidue,RVD)位於重複單元之位置12及13處。藉由重新排列重複序列,可任意改變TALE的DNA結合特異性。鋅指蛋白為轉錄因子,其中各鋅指識別DNA之3至4個鹼基。藉由混合及匹配此等鋅指模組,ZF可針對待靶向之序列進行定製。能夠結合 PCSK9基因之例示性ZF描述於WO2018049009A2中。 In some embodiments, the DNA binding protein used in the long-term suppressor fusion protein of the present invention comprises a zinc finger (ZF) or TALE (transcription activator-like effector) protein or its DNA binding domain, also referred to herein as a DNA binding protein, which binds to the target nucleic acid but does not cleave the target nucleic acid. The DNA binding domain of TALE comprises a tandem array of customizable monomers 33-34 amino acids (aa) long, which can theoretically be assembled according to a repeat sequence combined with a base pair recognition code to recognize any gene sequence (Jain, S. et al., TALE outperforms Cas9 in editing heterochromatin target sites. Nat. Commun. 12:606 (2021)). The specificity of TALE binding to DNA is caused by two polymorphic amino acids, the so-called repeat variable diresidue (RVD), located at positions 12 and 13 of the repeat unit. By rearranging the repeat sequence, the DNA binding specificity of TALE can be changed arbitrarily. Zinc finger proteins are transcription factors, in which each zinc finger recognizes 3 to 4 bases of DNA. By mixing and matching these zinc finger modules, ZFs can be customized to the sequence to be targeted. Exemplary ZFs capable of binding to the PCSK9 gene are described in WO2018049009A2.

在一些實施例中,用於長期抑制子融合蛋白之DNA結合蛋白為催化失效之1類或2類CRISPR蛋白。催化失效之CRISPR蛋白在此項技術中亦稱為「無催化活性」CRISPR蛋白。在一個實施例中,2類II型蛋白為催化失效之Cas9。在另一實施例中,2類CRISPR蛋白係選自由II型、V型或VI型蛋白質組成之群。在一個實施例中,2類V型蛋白係選自由以下組成之群:Cas12a (Cpf1)、Cas12b (C2c1)、Cas12c (C2c3)、Cas12d (CasY)、Cas12e (CasX)、Cas12f、Cas12g、Cas12h、Cas12i、Cas12j、Cas12k、Cas14及/或CasΦ,在各情況下如本文所描述均藉由特異性突變使其呈現催化失效。基於CRISPR之系統進一步包含引導核酸,例如引導核糖核酸(gRNA),其具有與由融合蛋白(CRISPR蛋白質及所連接抑制子域)與gRNA之複合物結合及受該複合物抑制的 PCSK9基因之目標序列互補的靶向序列。 In some embodiments, the DNA binding protein used in the long-term suppressor fusion protein is a catalytically ineffective Class 1 or Class 2 CRISPR protein. Catalytically ineffective CRISPR proteins are also referred to in the art as "catalytically inactive" CRISPR proteins. In one embodiment, the Class 2 Type II proteins are catalytically ineffective Cas9. In another embodiment, the Class 2 Type V CRISPR proteins are selected from the group consisting of Type II, Type V, or Type VI proteins. In one embodiment, the Class 2 Type V proteins are selected from the group consisting of: Cas12a (Cpf1), Cas12b (C2c1), Cas12c (C2c3), Cas12d (CasY), Cas12e (CasX), Cas12f, Cas12g, Cas12h, Cas12i, Cas12j, Cas12k, Cas14, and/or CasΦ, in each case rendered catalytically ineffective by specific mutations as described herein. The CRISPR-based system further comprises a guide nucleic acid, such as a guide RNA (gRNA), having a targeting sequence complementary to a target sequence of the PCSK9 gene that is bound by and inhibited by the complex of the fusion protein (CRISPR protein and linked inhibitory domain) and the gRNA.

在一些實施例中,本揭示提供包含或編碼長期抑制子融合蛋白及引導核糖核酸(gRNA)之系統,以及編碼長期抑制子融合蛋白及/或gRNA之核酸,該融合蛋白包含催化失效CasX CRISPR核酸酶蛋白及所連接抑制子域,該引導核糖核酸包含與經靶向用於轉錄抑制、緘默化或下調之 PCSK9基因之目標核酸序列互補的靶向序列。在一些實施例中,該系統包含本揭示之呈基因抑制子對(「LTRP:gRNA系統」)形式的長期抑制子融合蛋白及gRNA,該長期抑制子融合蛋白及gRNA能夠形成核糖核蛋白(RNP)複合物且結合 PCSK9目標核酸。在其他情況下,本揭示提供編碼長期抑制子融合蛋白及gRNA之核酸的系統。在又其他情況下,本揭示提供gRNA及編碼長期抑制子融合蛋白之mRNA的系統,其用於本文所描述之某些粒子調配物(例如LNP)。 In some embodiments, the disclosure provides systems comprising or encoding long-term suppressor fusion proteins and guide RNA (gRNA), and nucleic acids encoding long-term suppressor fusion proteins and/or gRNA, the fusion protein comprising a catalytically inactive CasX CRISPR nuclease protein and a linked suppressor domain, the guide RNA comprising a targeting sequence complementary to a target nucleic acid sequence of a PCSK9 gene targeted for transcriptional inhibition, silencing or downregulation. In some embodiments, the system comprises a long-term suppressor fusion protein and gRNA in the form of a gene suppressor pair ("LTRP:gRNA system") disclosed herein, which is capable of forming a ribonucleoprotein (RNP) complex and binding a PCSK9 target nucleic acid. In other cases, the disclosure provides systems of nucleic acids encoding long-term suppressor fusion proteins and gRNA. In still other cases, the present disclosure provides systems of gRNA and mRNA encoding long-term suppressor fusion proteins for use in certain particle formulations (e.g., LNPs) described herein.

本文亦提供製造長期抑制子融合蛋白及gRNA之方法,以及使用LTRP:gRNA系統之方法,包括 PCSK9基因之基因抑制及/或表觀遺傳修飾之方法及治療 PCSK9相關疾病或病症之方法。LTRP:gRNA系統及其特徵之DNA結合蛋白(例如dCasX)及所連接抑制子域及gRNA組分,以及使用該等系統用於 PCSK9基因之抑制、下調或緘默化之系統的遞送模式及方法在下文中更全面地描述。 Also provided herein are methods of making long-term suppressor fusion proteins and gRNAs, and methods of using the LTRP:gRNA system, including methods of gene inhibition and/or epigenetic modification of the PCSK9 gene and methods of treating PCSK9- related diseases or disorders. The LTRP:gRNA system and its characteristic DNA binding proteins (e.g., dCasX) and linked suppressor domains and gRNA components, as well as delivery modes and methods of using the systems for inhibition, downregulation or silencing of the PCSK9 gene are described more fully below.

在一些實施例中,本揭示提供經特定設計以抑制或緘默化 PCSK9基因之轉錄的系統。在一些情況下,系統經設計以抑制真核細胞中具有功能獲得型突變之 PCSK9基因之轉錄。在一些情況下,系統經設計以抑制真核細胞中之野生型 PCSK9基因的轉錄。在替代方案中,系統經設計以抑制真核細胞中 PCSK9基因之突變型對偶基因之轉錄。一般而言, PCSK9基因之任何部分均可使用本文所提供之可程式化系統及方法靶向,本文對此進行更全面的描述。 In some embodiments, the disclosure provides a system specifically designed to inhibit or silence the transcription of the PCSK9 gene. In some cases, the system is designed to inhibit the transcription of the PCSK9 gene with a gain-of-function mutation in a eukaryotic cell. In some cases, the system is designed to inhibit the transcription of the wild-type PCSK9 gene in a eukaryotic cell. In an alternative, the system is designed to inhibit the transcription of the mutant allele of the PCSK9 gene in a eukaryotic cell. In general, any portion of the PCSK9 gene can be targeted using the programmable system and method provided herein, which is described more fully herein.

PCSK9基因編碼前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型(「PCSK9」),其為一種結合於低密度脂蛋白粒子(LDL)之受體以將LDL轉運至細胞中的蛋白質。 PCSK9基因涵蓋橫跨人類基因體(GRCh38/hg38)之chr1:55,039,476-55,064,853的序列(符號係指1號染色體(chr1)),自1號染色體上的55,039,476 bp起始至55,064,853 bp (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)。人類 PCSK9基因在NCBI資料庫(ncbi.nlm.nih.gov)中經部分描述為參考序列NG_009061.1,其以引用之方式併入本文中。 PCSK9基因座具有12個外顯子,其產生編碼692-胺基酸蛋白質之3636 bp的mRNA,該蛋白質在其合成之後經歷自催化裂解反應,該反應剪切前域,從而產生具有540個胺基酸之活化蛋白質。前域仍連接至催化及抵抗素樣域,此可能係因為前域充當伴護蛋白且促進摺疊及分泌(Seidah, NG等人, Proc Natl Acad Sci USA 100(3):928 (2003))。分泌性前蛋白轉化酶神經細胞凋亡調節之轉化酶1 (NARC-1):肝臟再生及神經元分化(The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation,Seidah NG等人)。此蛋白質,亦稱為神經細胞凋亡調節之轉化酶,係一種屬於枯草桿菌酶之蛋白酶K亞家族的絲胺酸蛋白酶。 The PCSK9 gene encodes proprotein convertase subtilisin/kexin type 9 ("PCSK9"), a protein that binds to a receptor on low-density lipoprotein particles (LDL) to transport LDL into cells. The PCSK9 gene covers a sequence spanning chr1:55,039,476-55,064,853 across the human genome (GRCh38/hg38) (the symbol refers to chromosome 1 (chr1)), starting from 55,039,476 bp to 55,064,853 bp on chromosome 1 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI). The human PCSK9 gene is described in part in the NCBI database (ncbi.nlm.nih.gov) as reference sequence NG_009061.1, which is incorporated herein by reference. The PCSK9 locus has 12 exons that produce a 3636 bp mRNA encoding a 692-amino acid protein that undergoes an autocatalytic cleavage reaction after its synthesis that cleaves the prodomain, thereby producing an activated protein with 540 amino acids. The prodomain remains connected to the catalytic and resistin-like domains, which may be because the prodomain acts as a chaperone and promotes folding and secretion (Seidah, NG et al., Proc Natl Acad Sci USA 100(3):928 (2003)). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation (Seidah NG et al.). This protein, also known as neural apoptosis-regulated convertase, is a serine protease belonging to the proteinase K subfamily of Bacillus subtilisin.

人類PCSK9基因(HGNC:20001)編碼具有以下序列之蛋白質(Q8NBP7): 。 III. 用於抑制子系統之催化失效之蛋白 The human PCSK9 gene (HGNC:20001) encodes a protein (Q8NBP7) with the following sequence: III. Proteins that inhibit catalytic inactivation of subsystems

在一些實施例中,用於本揭示之長期抑制子融合蛋白之DNA結合蛋白為可結合但不裂解 PCSK9目標核酸之鋅指(ZF)或TALE (轉錄活化因子樣效應物)蛋白。 In some embodiments, the DNA binding protein used in the long-term suppressor fusion proteins of the present disclosure is a zinc finger (ZF) or TALE (transcription activator-like effector) protein that can bind but not cleave PCSK9 target nucleic acid.

在一些實施例中,DNA結合蛋白為催化失效之1類或2類CRISPR蛋白。在一些實施例中,DNA結合蛋白為2類II型CRISPR蛋白。在一個實施例中,2類II型蛋白為催化失效之Cas9。在另一實施例中,2類CRISPR蛋白係選自由II型、V型或VI型蛋白質組成之群。在一個實施例中,2類CRISPR V型蛋白係選自由以下組成之群:Cas12a (Cpf1)、Cas12b (C2c1)、Cas12c (C2c3)、Cas12d (CasY)、Cas12e (CasX)、Cas12f、Cas12g、Cas12h、Cas12i、Cas12j、Cas12k、Cas14及/或CasΦ,在各情況下如本文所描述均藉由特異性突變使其呈現催化失效。在另一實施例中,2類V型CRISPR蛋白係催化失效之CasX蛋白。In some embodiments, the DNA binding protein is a catalytically ineffective Class 1 or Class 2 CRISPR protein. In some embodiments, the DNA binding protein is a Class 2 Type II CRISPR protein. In one embodiment, the Class 2 Type II protein is a catalytically ineffective Cas9. In another embodiment, the Class 2 CRISPR protein is selected from the group consisting of Type II, Type V, or Type VI proteins. In one embodiment, the Class 2 CRISPR Type V protein is selected from the group consisting of: Cas12a (Cpf1), Cas12b (C2c1), Cas12c (C2c3), Cas12d (CasY), Cas12e (CasX), Cas12f, Cas12g, Cas12h, Cas12i, Cas12j, Cas12k, Cas14, and/or CasΦ, in each case rendered catalytically ineffective by specific mutations as described herein. In another embodiment, the Class 2 type V CRISPR protein is a catalytically inactive CasX protein.

本揭示之CasX蛋白(包括dCasX)包含以下域:非目標股結合(NTSB)域、目標股負載(target strand loading,TSL)域、螺旋狀I域、螺旋狀II域、寡核苷酸結合域(OBD)及RuvC域,且在一些情況下,域可進一步分成子域,如表1中所列出。The CasX proteins (including dCasX) disclosed herein comprise the following domains: non-target strand binding (NTSB) domain, target strand loading (TSL) domain, helix I domain, helix II domain, oligonucleotide binding domain (OBD) and RuvC domain, and in some cases, the domains can be further divided into subdomains, as listed in Table 1.

在本揭示之上下文中,用於該等系統中的CasX係催化失效的(dCasX);藉由在RuvC序列中之選定位置處引入突變實現,其描述如下。 a.參考CasX蛋白 In the context of the present disclosure, the CasX used in these systems is catalytically inactive (dCasX); this is achieved by introducing mutations at selected positions in the RuvC sequence, as described below. a. Reference CasX protein

本揭示提供天然存在之CasX蛋白(在本文中稱為「參考CasX蛋白」),其隨後經修飾以產生本揭示之經工程改造之dCasX。舉例而言,參考CasX蛋白可與天然存在之原核生物分離,諸如δ變形菌綱( Deltaproteobacteria)、浮黴菌門( Planctomycetes)或宋氏菌暫定種屬( Candidatus Sungbacteria species)。參考CasX蛋白(在本文中可互換地稱為參考CasX多肽)為2類V型CRISPR/Cas核酸內切酶,其屬於與引導RNA相互作用以形成核糖核蛋白(RNP)複合物之蛋白質之CasX (可互換地稱為Cas12e)家族。 The present disclosure provides naturally occurring CasX proteins (referred to herein as "reference CasX proteins") that are subsequently modified to generate the engineered dCasX of the present disclosure. For example, the reference CasX protein can be isolated from naturally occurring prokaryotes, such as Deltaproteobacteria , Planctomycetes , or Candidatus Sungbacteria species . The reference CasX protein (interchangeably referred to herein as a reference CasX polypeptide) is a Class 2 V-type CRISPR/Cas endonuclease that belongs to the CasX (interchangeably referred to as Cas12e) family of proteins that interact with a guide RNA to form a ribonucleoprotein (RNP) complex.

在一些情況下,參考CasX蛋白係分離自或來源於δ變形菌綱,且包含SEQ ID NO: 1之序列。In some cases, the reference CasX protein is isolated or derived from Deltaproteobacteria and comprises the sequence of SEQ ID NO: 1.

在一些情況下,參考CasX蛋白係分離自或來源於浮黴菌門,且包含SEQ ID NO: 2之序列。In some cases, the reference CasX protein is isolated or derived from Planctomycetes and comprises the sequence of SEQ ID NO: 2.

在一些情況下,參考CasX蛋白係分離自或來源於宋氏菌暫定種,且包含SEQ ID NO: 3之序列。 b. 催化失效之 1 2 CRISPR 蛋白 In some cases, the reference CasX protein is isolated or derived from C. sonnei sp. and comprises the sequence of SEQ ID NO: 3. b. Catalytically inactive Class 1 or Class 2 CRISPR proteins

在長期抑制子融合蛋白及包含本揭示之長期抑制子融合蛋白的基因抑制子系統中,催化失效1類或2類CRISPR蛋白係催化失效的,因為其無法裂解DNA,但在與引導RNA (gRNA)複合時保留結合目標核酸之能力。本揭示提供1類或2類CRISPR蛋白的催化失效變異體,其中該等催化失效變異體在選定域中包含多個修飾。本揭示提供催化失效之CasX變異體(在本文中可互換稱為「dCasX變異體」或「dCasX變異體蛋白」),其中相對於包含SEQ ID NO: 1至3之序列之參考CasX蛋白之催化失效之版本,催化失效之CasX變異體在RuvC域中包含多個修飾(參見上文所述)。在一些實施例中,催化失效之參考CasX蛋白相對於SEQ ID NO: 1包含殘基672、769及/或935處之取代。在一些實施例中,催化失效之參考CasX蛋白相對於SEQ ID NO: 1包含D672A、E769A及/或D935A取代。在其他實施例中,催化失效之參考CasX蛋白相對於SEQ ID NO: 2包含胺基酸659、756及/或922處之取代。在一些實施例中,催化失效之參考CasX蛋白相對於SEQ ID NO: 2包含D659A、E756A及/或D922A取代。本揭示之dCasX之例示性RuvC域包含SEQ ID NO: 1之胺基酸661-824及935-986、或SEQ ID NO: 2之胺基酸648-812及922-978,相對於該RuvC裂解域序列具有一或多個胺基酸修飾,其中與參考dCasX相比,dCasX變異體展現一或多個經改良特徵。在其他實施例中,催化失效之CasX變異體蛋白包含參考CasX蛋白之全部或部分RuvC域之缺失。應理解,相同前述取代或缺失可類似地引入此項技術中已知之CasX變異體中,產生dCasX變異體(關於例示性序列,參見例如WO2022120095A1以及US11,560,555,其以引用的方式併入本文中)。In long-term suppressor fusion proteins and gene suppressor systems comprising the long-term suppressor fusion proteins of the present disclosure, the catalytically ineffective Class 1 or Class 2 CRISPR protein is catalytically ineffective in that it cannot cleave DNA, but retains the ability to bind target nucleic acids when complexed with a guide RNA (gRNA). The present disclosure provides catalytically ineffective variants of Class 1 or Class 2 CRISPR proteins, wherein the catalytically ineffective variants comprise multiple modifications in a selected domain. The present disclosure provides catalytically ineffective CasX variants (interchangeably referred to herein as "dCasX variants" or "dCasX variant proteins"), wherein the catalytically ineffective CasX variants comprise multiple modifications in the RuvC domain relative to a catalytically ineffective version of a reference CasX protein comprising the sequence of SEQ ID NOs: 1 to 3 (see above). In some embodiments, the catalytically ineffective reference CasX protein comprises a substitution at residue 672, 769 and/or 935 relative to SEQ ID NO: 1. In some embodiments, the catalytically ineffective reference CasX protein comprises a substitution at residue 672, 769 and/or 935 relative to SEQ ID NO: 1. In some embodiments, the catalytically ineffective reference CasX protein comprises a substitution at residue 672, 769 and/or 935 relative to SEQ ID NO: 1. In other embodiments, the catalytically ineffective reference CasX protein comprises a substitution at amino acid 659, 756 and/or 922 relative to SEQ ID NO: 2. In some embodiments, the catalytically ineffective reference CasX protein comprises a substitution at residue 659, 756 and/or 922 relative to SEQ ID NO: 2. Exemplary RuvC domains of dCasX disclosed herein include amino acids 661-824 and 935-986 of SEQ ID NO: 1, or amino acids 648-812 and 922-978 of SEQ ID NO: 2, having one or more amino acid modifications relative to the RuvC cleavage domain sequence, wherein the dCasX variant exhibits one or more improved characteristics compared to the reference dCasX. In other embodiments, the catalytically ineffective CasX variant protein comprises a deletion of all or part of the RuvC domain of the reference CasX protein. It should be understood that the same aforementioned substitutions or deletions can be similarly introduced into CasX variants known in the art to generate dCasX variants (for exemplary sequences, see, e.g., WO2022120095A1 and US11,560,555, which are incorporated herein by reference).

在一些實施例中,與包含參考dCasX蛋白及類似的所連接抑制子域的長期抑制子融合蛋白相比,包含dCasX變異體及所連接抑制子域的長期抑制子融合蛋白展現至少一個經改良特徵。與包含參考dCasX蛋白之長期抑制子融合蛋白相比改良包含dCasX變異體蛋白及所連接抑制子域的長期抑制子融合蛋白的一或多個功能或特徵的所有dCasX變異體被設想為在本揭示之範疇內。在一些實施例中,修飾為參考dCasX 之一或多個胺基酸之突變(除使得dCasX催化失效之彼等胺基酸以外)。舉例而言,相對於參考dCasX蛋白序列,dCasX變異體可包含一或多個胺基酸取代、插入、缺失或交換域,或其任何組合。任何胺基酸可在本文所描述之取代中經任何其他胺基酸取代。取代可為保守取代(例如鹼性胺基酸經另一鹼性胺基酸取代)。取代可為非保守取代(例如鹼性胺基酸經酸性胺基酸取代或反之亦然)。舉例而言,參考dCasX蛋白中之脯胺酸可經以下中之任一者取代以產生本揭示之dCasX變異體蛋白:精胺酸、組胺酸、離胺酸、天冬胺酸、麩胺酸、絲胺酸、蘇胺酸、天冬醯胺酸、麩醯胺酸、半胱胺酸、甘胺酸、丙胺酸、異白胺酸、白胺酸、甲硫胺酸、苯丙胺酸、色胺酸、酪胺酸或纈胺酸。在一些實施例中,與參考dCasX相比,dCasX變異體展現經改良之特徵。dCasX變異體實施例的例示性改良之特徵包括但不限於:變異體摺疊改良、對目標核酸之結合親和力增加、在目標核酸之轉錄抑制及/或結合中利用較大範圍PAM序列之能力改良、目標DNA展開改良、目標股負載增加、DNA非目標股之結合增加、蛋白質穩定性改良、與gRNA形成複合物之能力增加、對gRNA之結合親和力增加、蛋白質:gRNA (RNP)複合物穩定性改良,以及在連接抑制子域情況下且複合成RNP時抑制子活性增加、抑制子對目標核酸之特異性改良、脫靶抑制減少、可被有效抑制及/或表觀遺傳修飾之真核基因體的百分比增加。在一些實施例中,dCasX變異體之經改良特徵相對於參考dCasX蛋白改良至少約1.1至約100,000倍。在一些實施例中,dCasX變異體之經改良特徵相對於參考dCasX蛋白改良至少約1.1至約10,000倍、改良至少約1.1至約1,000倍、改良至少約1.1至約500倍、改良至少約1.1至約400倍、改良至少約1.1至約300倍、改良至少約1.1至約200倍、改良至少約1.1至約100倍、改良至少約1.1至約50倍、改良至少約1.1至約40倍、改良至少約1.1至約30倍、改良至少約1.1至約20倍、改良至少約1.1至約10倍、改良至少約1.1至約9倍、改良至少約1.1至約8倍、改良至少約1.1至約7倍、改良至少約1.1至約6倍、改良至少約1.1至約5倍、改良至少約1.1至約4倍、改良至少約1.1至約3倍、改良至少約1.1至約2倍、改良至少約1.1至約1.5倍、改良至少約1.5至約3倍、改良至少約1.5至約4倍、改良至少約1.5至約5倍、改良至少約1.5至約10倍、改良至少約5至約10倍、改良至少約10至約20倍、改良至少10至約30倍、改良至少10至約50倍或改良至少10至約100倍。在一些實施例中,dCasX變異體之經改良特徵相對於參考dCasX蛋白改良至少約10至約1000倍。關於經改良特徵之額外揭示內容描述於下文中。In some embodiments, a long-term suppressor fusion protein comprising a dCasX variant and a linked suppressor domain exhibits at least one improved feature compared to a long-term suppressor fusion protein comprising a reference dCasX protein and a similar linked suppressor domain. All dCasX variants that improve one or more functions or features of a long-term suppressor fusion protein comprising a dCasX variant protein and a linked suppressor domain compared to a long-term suppressor fusion protein comprising a reference dCasX protein are contemplated to be within the scope of the present disclosure. In some embodiments, the modification is a mutation of one or more amino acids of the reference dCasX (other than those amino acids that render the dCasX catalytically ineffective). For example, a dCasX variant may comprise one or more amino acid substitutions, insertions, deletions, or exchange domains, or any combination thereof, relative to a reference dCasX protein sequence. Any amino acid may be substituted with any other amino acid in the substitutions described herein. The substitution may be a conservative substitution (e.g., a basic amino acid is substituted with another basic amino acid). The substitution may be a non-conservative substitution (e.g., a basic amino acid is substituted with an acidic amino acid or vice versa). For example, proline in a reference dCasX protein may be substituted with any of the following to generate a dCasX variant protein of the present disclosure: arginine, histidine, lysine, aspartic acid, glutamine, serine, threonine, aspartic acid, glutamine, cysteine, glycine, alanine, isoleucine, leucine, methionine, phenylalanine, tryptophan, tyrosine, or valine. In some embodiments, dCasX variants exhibit improved properties compared to a reference dCasX. Exemplary improved features of dCasX variant embodiments include, but are not limited to: improved variant folding, increased binding affinity for target nucleic acids, improved ability to utilize a wider range of PAM sequences in transcriptional repression and/or binding of target nucleic acids, improved target DNA unfolding, increased target strand loading, increased binding of non-target strands of DNA, improved protein stability, increased ability to form complexes with gRNAs, increased binding affinity for gRNAs, improved protein:gRNA (RNP) complex stability, and increased repressor activity when linked to a repressor domain and complexed to RNPs, improved repressor specificity for target nucleic acids, reduced off-target repression, and an increase in the percentage of eukaryotic genomes that can be effectively repressed and/or epigenetically modified. In some embodiments, the improved characteristics of a dCasX variant are improved by at least about 1.1 to about 100,000 fold relative to a reference dCasX protein. In some embodiments, the improved characteristics of a dCasX variant are improved by at least about 1.1 to about 10,000 fold, improved by at least about 1.1 to about 1,000 fold, improved by at least about 1.1 to about 500 fold, improved by at least about 1.1 to about 400 fold, improved by at least about 1.1 to about 300 fold, improved by at least about 1.1 to about 200 fold, improved by at least about 1.1 to about 100 fold, improved by at least about 1.1 to about 50 fold, improved by at least about 1.1 to about 40 fold, improved by at least about 1.1 to about 30 fold, improved by at least about 1.1 to about 20 fold, improved by at least about 1.1 to about 10 fold, improved by at least about 1.1 to about In some embodiments, the improved characteristics of the dCasX variants are improved by at least about 10 to about 1000 times relative to a reference dCasX protein. Additional disclosure regarding the improved features is described below.

在其他實施例中,修飾為參考dCasX之一或多個域經來自不同CasX之一或多個域取代。在一些實施例中,插入包括插入來自不同CasX蛋白之域的部分或全部。突變可置於在dCasX變異體之任何一或多個域中,且可包括例如一或多個域之部分或全部的缺失,或任何域中之一或多個胺基酸取代、缺失或插入。dCasX蛋白之域包括非目標股結合(NTSB)域、目標股負載(TSL)域、螺旋狀I域、螺旋狀II域、寡核苷酸結合域(OBD)及RuvC DNA裂解域,其可進一步包含下文所描述之子域。In other embodiments, the modification is the replacement of one or more domains of the reference dCasX with one or more domains from a different CasX. In some embodiments, the insertion comprises the insertion of part or all of a domain from a different CasX protein. Mutations may be placed in any one or more domains of the dCasX variant, and may include, for example, a deletion of part or all of one or more domains, or one or more amino acid substitutions, deletions, or insertions in any domain. The domains of the dCasX protein include a non-target strand binding (NTSB) domain, a target strand loading (TSL) domain, a helical I domain, a helical II domain, an oligonucleotide binding domain (OBD), and a RuvC DNA cleavage domain, which may further include subdomains described below.

在一些實施例中,dCasX變異體蛋白包含800至1100個胺基酸或900至1000個胺基酸。In some embodiments, the dCasX variant protein comprises 800 to 1100 amino acids or 900 to 1000 amino acids.

與可比分析系統中的包含參考dCasX蛋白之融合蛋白及gRNA的RNP相比,本揭示的包含dCasX變異體及所連接抑制子域的長期抑制子融合蛋白在利用且結合至PAM TC模體(包括選自TTC、ATC、GTC或CTC之PAM序列)的情況下與gRNA複合為RNP時有效結合目標核酸之能力增強。在前述內容中,PAM序列位於距與gRNA之靶向序列具有一致性之原間隔子之非目標股5'至少1個核苷酸處。Compared to RNPs comprising a fusion protein of a reference dCasX protein and a gRNA in a comparable assay system, the long-term suppressor fusion proteins comprising a dCasX variant and a linked suppressor domain disclosed herein have enhanced ability to effectively bind to a target nucleic acid when complexed with a gRNA as an RNP using and bound to a PAM TC motif (including a PAM sequence selected from TTC, ATC, GTC, or CTC). In the foregoing, the PAM sequence is located at least 1 nucleotide 5' from the non-target strand of the protospacer having the same identity as the targeting sequence of the gRNA.

在一些實施例中,本揭示的包含含有dCasX變異體及所連接抑制子域之長期抑制子融合蛋白及gRNA的RNP在20 pM或更小濃度下能夠以至少70%、至少80%、至少85%、至少90%或至少95%之效率結合雙股DNA目標。在一個實施例中,與可比分析系統中的包含含有參考dCasX蛋白及所連接抑制子域之可比長期抑制子融合蛋白及gRNA的RNP相比,包含dCasX變異體及所連接抑制子域之長期抑制子融合蛋白及gRNA變異體的RNP展現出對目標核酸中目標序列之更大結合,其中目標核酸之PAM序列為TTC。在另一實施例中,與可比分析系統中的包含含有參考dCasX蛋白及所連接抑制子域之可比長期抑制子融合蛋白及gRNA的RNP相比,包含dCasX變異體及所連接抑制子域之長期抑制子融合蛋白及gRNA變異體的RNP展現出對目標核酸中目標序列之更大結合親和力,其中目標核酸之PAM序列為ATC。在另一實施例中,與可比分析系統中的包含含有參考dCasX蛋白及所連接抑制子域之可比長期抑制子融合蛋白及gRNA的RNP相比,包含dCasX變異體及所連接抑制子域之長期抑制子融合蛋白及gRNA變異體的RNP展現出對目標核酸中目標序列之更大結合親和力,其中目標核酸之PAM序列為CTC。在另一實施例中,與可比分析系統中的包含含有參考dCasX蛋白及所連接抑制子域之可比長期抑制子融合蛋白及gRNA的RNP相比,包含dCasX變異體及所連接抑制子域之長期抑制子融合蛋白及gRNA變異體的RNP展現出對目標核酸中目標序列之更大結合親和力,其中目標核酸之PAM序列為GTC。在其他實施例中,與可比分析系統中的包含含有參考dCasX蛋白及所連接抑制子域之可比抑制子融合蛋白及gRNA的RNP相比,包含dCasX變異體及所連接抑制子域之抑制子融合蛋白及gRNA的RNP展現出對目標核酸中目標序列之更大結合親和力,其中目標核酸之PAM序列為GTC、TTC、ATC或CTC。在前述實施例中,與參考dCasX蛋白(自SEQ ID NO: 1-3修飾)中之任一者與所連接抑制子域及表8之SEQ ID NO: 1731-1743的gRNA的RNP對一或多個PAM序列之結合親和力相比,對該等PAM序列之增加的結合親和力大至少1.5倍或更多。 c.具有來自多個來源蛋白質之域的dCasX變異體蛋白 In some embodiments, the disclosed RNPs comprising a long-term suppressor fusion protein comprising a dCasX variant and a linked inhibitory domain and a gRNA are capable of binding a double-stranded DNA target with an efficiency of at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% at a concentration of 20 pM or less. In one embodiment, the RNPs comprising a dCasX variant and a long-term suppressor fusion protein linked to an inhibitory domain and a gRNA variant exhibit greater binding to a target sequence in a target nucleic acid, wherein the PAM sequence of the target nucleic acid is TTC, compared to RNPs comprising a comparable long-term suppressor fusion protein and a gRNA containing a reference dCasX protein and a linked inhibitory domain in a comparable assay system. In another embodiment, the RNPs comprising a dCasX variant and a long-term suppressor fusion protein and a gRNA variant linked to a suppressor domain exhibit greater binding affinity to a target sequence in a target nucleic acid, wherein the PAM sequence of the target nucleic acid is ATC, compared to RNPs comprising a comparable long-term suppressor fusion protein and a gRNA containing a reference dCasX protein and a linked suppressor domain in a comparable assay system, wherein the PAM sequence of the target nucleic acid is ATC. In another embodiment, the RNPs comprising a dCasX variant and a long-term suppressor fusion protein and a gRNA variant linked to a suppressor domain exhibit greater binding affinity to a target sequence in a target nucleic acid, wherein the PAM sequence of the target nucleic acid is CTC, compared to RNPs comprising a comparable long-term suppressor fusion protein and a gRNA containing a reference dCasX protein and a linked suppressor domain in a comparable assay system. In another embodiment, the RNPs comprising a dCasX variant and a long-term suppressor fusion protein and a gRNA variant linked to a suppressor domain exhibit greater binding affinity to a target sequence in a target nucleic acid, wherein the PAM sequence of the target nucleic acid is GTC, compared to RNPs comprising a reference dCasX protein and a comparable long-term suppressor fusion protein and a gRNA linked to a suppressor domain in a comparable assay system. In other embodiments, the RNPs comprising a dCasX variant and a suppressor fusion protein and a gRNA linked to a suppressor domain exhibit greater binding affinity to a target sequence in a target nucleic acid, wherein the PAM sequence of the target nucleic acid is GTC, TTC, ATC, or CTC, compared to RNPs comprising a reference dCasX protein and a comparable suppressor fusion protein and a gRNA linked to a suppressor domain in a comparable assay system. In the aforementioned embodiments, the increased binding affinity for one or more PAM sequences is at least 1.5 times greater than the binding affinity of any of the reference dCasX proteins (modified from SEQ ID NOs: 1-3) and the gRNAs of SEQ ID NOs: 1731-1743 of Table 8 to the PAM sequences. c. dCasX variant proteins with domains from multiple source proteins

在某些實施例中,本揭示提供一種用於長期抑制子融合蛋白之嵌合dCasX變異體蛋白。In certain embodiments, the present disclosure provides a chimeric dCasX variant protein for use in a long-term suppressor fusion protein.

如本文所用,「嵌合dCasX」蛋白係指含有至少兩個來自不同來源之域的催化失效CasX蛋白以及含有至少一個本身為嵌合形式之域的催化失效CasX蛋白。因此,在一些實施例中,嵌合dCasX蛋白係包括至少兩個分離自或來源於不同來源之域,諸如來自兩種不同的天然存在之CasX蛋白(例如來自兩種不同的CasX參考蛋白)之域的嵌合dCasX蛋白。在其他實施例中,嵌合dCasX蛋白係含有至少一個呈嵌合域形式之域的蛋白質,例如在一些實施例中,一部分域包含來自不同CasX蛋白(來自參考CasX蛋白或另一dCasX蛋白)之取代。As used herein, a "chimeric dCasX" protein refers to a catalytically ineffective CasX protein containing at least two domains from different sources and a catalytically ineffective CasX protein containing at least one domain that is itself in a chimeric form. Thus, in some embodiments, a chimeric dCasX protein is a chimeric dCasX protein comprising at least two domains separated or derived from different sources, such as domains from two different naturally occurring CasX proteins (e.g., from two different CasX reference proteins). In other embodiments, a chimeric dCasX protein is a protein containing at least one domain in the form of a chimeric domain, for example, in some embodiments, a portion of a domain comprises a substitution from a different CasX protein (from a reference CasX protein or another dCasX protein).

在一些實施例中,至少一個嵌合域可為本文所描述之NTSB、TSL、螺旋狀I、螺旋狀II、OBD或RuvC域中之任一者。在諸如螺旋形I、RuvC及OBD之分裂或非連續域之情況下,非連續域之一部分可經來自任何其他來源之對應部分置換。在一些實施例中,來源於SEQ ID NO: 2之dCasX之螺旋狀I-II域(有時稱為螺旋I-a)經來自SEQ ID NO: 1之對應螺旋狀I-II序列置換,得到嵌合dCasX蛋白。In some embodiments, at least one chimeric domain may be any of the NTSB, TSL, helix I, helix II, OBD, or RuvC domains described herein. In the case of split or non-contiguous domains such as helix I, RuvC, and OBD, a portion of the non-contiguous domain may be replaced with a corresponding portion from any other source. In some embodiments, the helix I-II domain (sometimes referred to as helix I-a) of dCasX derived from SEQ ID NO: 2 is replaced with the corresponding helix I-II sequence from SEQ ID NO: 1 to obtain a chimeric dCasX protein.

在一些實施例中,來源於SEQ ID NO: 2之dCasX的螺旋狀I-II域及NTSB域經來自SEQ ID NO: 1之對應螺旋I-II及NTSB序列置換,得到嵌合dCasX蛋白。In some embodiments, the helix I-II domain and the NTSB domain of dCasX derived from SEQ ID NO: 2 are replaced by the corresponding helix I-II and NTSB sequences from SEQ ID NO: 1 to obtain a chimeric dCasX protein.

嵌合dCasX變異體蛋白可包含來自SEQ ID NO: 2之CasX蛋白的NTSB、TSL、螺旋狀I-I、螺旋狀I-II、螺旋狀II、OBD-I及OBD-II域,及來自SEQ ID NO: 1之CasX蛋白的RuvC-I及/或RuvC-II域,或反之亦然,其中引入突變或其他序列改變以產生相對於參考dCasX蛋白具有變異體之改良特性的催化失效變異體。作為前述內容之實例,嵌合RuvC域包含SEQ ID NO: 1之胺基酸660至823及SEQ ID NO: 2之胺基酸921至978。作為前述內容之替代實例,嵌合RuvC域包含SEQ ID NO: 2之胺基酸647至810及SEQ ID NO: 1之胺基酸934至986。在一特定實施例中,用於長期抑制子融合蛋白之dCasX包含來自SEQ ID NO:1之NTSB域及螺旋狀I-II域以及來自SEQ ID NO:2之螺旋狀I-I域;後者為嵌合域,應理解,dCasX變異體在選定位置具有額外胺基酸變化(相對於參考序列),且所得嵌合dCasX蛋白相對於參考dCasX蛋白質具有經改良特徵。表2中具有來自SEQ ID NO:1之NTSB域及螺旋狀I-II域以及來自SEQ ID NO:2之螺旋狀I-I域的序列包括dCasX 491 (SEQ ID NO: 4)、515 (SEQ ID NO: 6)、516 (SEQ ID NO: 7)、518-520 (SEQ ID NO: 9-11)、522-527 (SEQ ID NO: 12-17)、532 (SEQ ID NO: 22)、593 (SEQ ID NO: 25)、676 (SEQ ID NO: 28,在NTSB域中具有L169K取代)及812 (SEQ ID NO: 29)。SEQ ID NO: 1及SEQ ID NO: 2之參考CasX蛋白中之CasX域之座標提供於下表1中。熟習此項技術者應理解,下表1中指示之域邊界為近似的,且其邊界與下表中給出之邊界相差1、2或3個胺基酸的蛋白質片段可具有與下文所描述之域相同的活性。 1 參考 CasX 蛋白中之域座標 域名稱 SEQ ID NO: 1 中之座標* SEQ ID NO: 2 中之座標* OBD-I 1-55 1-57 螺旋狀I-I 56-99 58-101 NTSB 100-190 102-191 螺旋狀I-II 191-331 192-332 螺旋狀II 332-508 333-500 OBD-II 509-659 501-646 RuvC-I 660-823 647-810 TSL 824-933 811-920 RuvC-II 934-986 921-978 *胺基酸位置 The chimeric dCasX variant protein may comprise the NTSB, TSL, helix II, helix I-II, helix II, OBD-I, and OBD-II domains from the CasX protein of SEQ ID NO: 2, and the RuvC-I and/or RuvC-II domains from the CasX protein of SEQ ID NO: 1, or vice versa, wherein mutations or other sequence changes are introduced to generate a catalytically ineffective variant with improved properties of the variant relative to the reference dCasX protein. As an example of the foregoing, the chimeric RuvC domain comprises amino acids 660 to 823 of SEQ ID NO: 1 and amino acids 921 to 978 of SEQ ID NO: 2. As an alternative example of the foregoing, the chimeric RuvC domain comprises amino acids 647 to 810 of SEQ ID NO: 2 and amino acids 934 to 986 of SEQ ID NO: 1. In a specific embodiment, the dCasX used in the long-term suppressor fusion protein comprises the NTSB domain and the Helical I-II domain from SEQ ID NO: 1 and the Helical II domain from SEQ ID NO: 2; the latter being a chimeric domain, it being understood that the dCasX variants have additional amino acid changes at selected positions (relative to the reference sequence) and that the resulting chimeric dCasX protein has improved characteristics relative to the reference dCasX protein. Sequences in Table 2 having an NTSB domain and a helical I-II domain from SEQ ID NO: 1 and a helical II domain from SEQ ID NO: 2 include dCasX 491 (SEQ ID NO: 4), 515 (SEQ ID NO: 6), 516 (SEQ ID NO: 7), 518-520 (SEQ ID NO: 9-11), 522-527 (SEQ ID NO: 12-17), 532 (SEQ ID NO: 22), 593 (SEQ ID NO: 25), 676 (SEQ ID NO: 28, with a L169K substitution in the NTSB domain), and 812 (SEQ ID NO: 29). The coordinates of the CasX domains in the reference CasX proteins of SEQ ID NO: 1 and SEQ ID NO: 2 are provided in Table 1 below. Those skilled in the art will appreciate that the domain boundaries indicated in Table 1 below are approximate, and that protein fragments whose boundaries differ from those given in the table below by 1, 2, or 3 amino acids may have the same activity as the domains described below. Table 1 : Domain coordinates in reference CasX proteins Domain Name Coordinates in SEQ ID NO: 1 * Coordinates in SEQ ID NO: 2 * OBD-I 1-55 1-57 Helix II 56-99 58-101 NTSB 100-190 102-191 Helix I-II 191-331 192-332 Helix II 332-508 333-500 OBD-II 509-659 501-646 RuvC-I 660-823 647-810 TSL 824-933 811-920 RuvC-II 934-986 921-978 *Amino acid position

在一些實施例中,用於本揭示之長期抑制子融合蛋白中之dCasX變異體蛋白包含選自由表2中所闡述之SEQ ID NO: 4至29組成之群的序列,其中該序列包含RuvC域,其包含一或多個使RuvC域之裂解活性不活化之突變。在其他實施例中,用於本揭示之長期抑制子融合蛋白中之dCasX變異體蛋白包含與表2中所闡述之SEQ ID NO: 4至29之序列至少約70%一致、至少約75%一致、至少約80%一致、至少約81%一致、至少約82%一致、至少約83%一致、至少約84%一致、至少約85%一致、至少約86%一致、至少約86%一致、至少約87%一致、至少約88%一致、至少約89%一致、至少約89%一致、至少約90%一致、至少約91%一致、至少約92%一致、至少約93%一致、至少約94%一致、至少約95%一致、至少約96%一致、至少約97%一致、至少約98%一致、至少約99%一致或至少約99.5%一致的序列。在一些實施例中,dCasX變異體蛋白包含RuvC域,其包含一或多個使該RuvC域之裂解活性不活化之突變。在一些實施例中,包含dCasX之長期抑制子融合蛋白保留與gRNA形成RNP之能力。在一特定實施例中,用於本揭示之基因抑制子系統之長期抑制子融合蛋白中的dCasX變異體蛋白包含SEQ ID NO: 4之序列(dCasX 491)。在另一特定實施例中,用於本揭示之基因抑制子系統之長期抑制子融合蛋白中的dCasX變異體蛋白包含SEQ ID NO: 6之序列(dCasX 515)。在另一特定實施例中,用於本揭示之基因抑制子系統之長期抑制子融合蛋白中的dCasX變異體蛋白包含SEQ ID NO: 29之序列(dCasX 812)。 2 dCasX 變異序列 SEQ ID NO dCasX 胺基酸序列 4 dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 5 dCasX514 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTIHTSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 6 dCasX515 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 7 dCasX516 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNHNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 8 dCasX517 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGAPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 9 dCasX518 RQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 10 dCasX519 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHIQLRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 11 dCasX520 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTTQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 12 dCasX522 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKRSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 13 dCasX523 QEIKRINKIRRRLVKDSNTKKAGKTYPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 14 dCasX524 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTIHSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 15 dCasX525 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAATQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 16 dCasX526 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 17 dCasX527 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 18 dCasX528 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASYPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 19 dCasX529 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASNPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 20 dCasX530 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGWGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 21 dCasX531 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGYGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 22 dCasX532 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 23 dCasX533 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASYPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 24 dCasX535 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 25 dCasX593 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRWWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 26 dCasX668 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 27 dCasX672 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLIKLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 28 dCasX676 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLIKLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 29 dCasX812 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKKFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV d.對gRNA之親和力 In some embodiments, the dCasX variant protein used in the long-term suppressor fusion protein of the present disclosure comprises a sequence selected from the group consisting of SEQ ID NOs: 4 to 29 as described in Table 2, wherein the sequence comprises a RuvC domain comprising one or more mutations that inactivate the cleavage activity of the RuvC domain. In other embodiments, the dCasX variant protein used in the long-term suppressor fusion protein of the present disclosure comprises a sequence that is at least about 70% identical, at least about 75% identical, at least about 80% identical, at least about 81% identical, at least about 82% identical, at least about 83% identical, at least about 84% identical, at least about 85% identical, at least about 86% identical, at least about 86% identical, at least about 87% identical, at least about 88% identical, at least about 89% identical, at least about 89% identical, at least about 90% identical, at least about 91% identical, at least about 92% identical, at least about 93% identical, at least about 94% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, or at least about 99.5% identical to the sequences of SEQ ID NOs: 4 to 29 set forth in Table 2. In some embodiments, the dCasX variant protein comprises a RuvC domain comprising one or more mutations that inactivate the cleavage activity of the RuvC domain. In some embodiments, the long-term suppressor fusion protein comprising dCasX retains the ability to form RNPs with gRNA. In a specific embodiment, the dCasX variant protein in the long-term suppressor fusion protein used in the gene suppressor system of the present disclosure comprises the sequence of SEQ ID NO: 4 (dCasX 491). In another specific embodiment, the dCasX variant protein in the long-term suppressor fusion protein used in the gene suppressor system of the present disclosure comprises the sequence of SEQ ID NO: 6 (dCasX 515). In another specific embodiment, the dCasX variant protein in the long-term suppressor fusion protein used in the gene suppressor system of the present disclosure comprises the sequence of SEQ ID NO: 29 (dCasX 812). Table 2 : dCasX variant sequences SEQ ID NO dX Amino acid sequence 4 dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 5 dCasX514 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTIHTSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 6 dCasX515 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 7 dCasX516 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNHNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 8 dCasX517 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGAPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 9 dCasX518 RQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 10 dCasX519 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHIQLRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 11 dCasX520 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTTQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 12 dCasX522 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKRSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 13 dCasX523 QEIKRINKIRRRLVKDSNTKKAGKTYPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 14 dCasX524 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTIHSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 15 dCasX525 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAATQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 16 dCasX526 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 17 dCasX527 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 18 dCasX528 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASYPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 19 dCasX529 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASNPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 20 dCasX530 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGWGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV twenty one dCasX531 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGYGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV twenty two dCasX532 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV twenty three dCasX533 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASYPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV twenty four dCasX535 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 25 dCasX593 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRWWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 26 dCasX668 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 27 dCasX672 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLIKLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 28 dCasX676 QEIKRINKIRRRLVKDSNTKKAGKTRGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGN LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLIKLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASSPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVF WQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 29 dCasX812 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKKFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGD LRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKL ANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADD MVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV d. Affinity for gRNA

在一些實施例中,包含dCasX及所連接抑制子域之長期抑制子融合蛋白對gRNA之親和力相對於包含參考dCasX蛋白及對應的所連接抑制子域的可比長期抑制子融合蛋白有所改良,從而形成核糖核蛋白複合物(RNP)。長期抑制子融合蛋白對gRNA之親和力增加可例如使得產生RNP複合物之K d較低,其在一些情況下可引起更穩定的RNP複合物形成。在一些實施例中,長期抑制子融合蛋白對gRNA之K d相對於參考dCasX蛋白及所連接抑制子域增加至少約1.1倍、至少約1.2倍、至少約1.3倍、至少約1.4倍、至少約1.5倍、至少約1.6倍、至少約1.7倍、至少約1.8倍、至少約1.9倍、至少約2倍、至少約3倍、至少約4倍、至少約5倍、至少約6倍、至少約7倍、至少約8倍、至少約9倍、至少約10倍、至少約15倍、至少約20倍、至少約25倍、至少約30倍、至少約35倍、至少約40倍、至少約45倍、至少約50倍、至少約60倍、至少約70倍、至少約80倍、至少約90倍或至少約100倍。在一些實施例中,與包含SEQ ID NO: 2之參考CasX蛋白之催化失效變異體的對應抑制子融合蛋白相比,包含dCasX變異體之長期抑制子融合蛋白對gRNA之結合親和力增加約1.1至約10倍。 In some embodiments, the long-term suppressor fusion protein comprising dCasX and a linked suppressor domain has improved affinity for gRNA relative to a comparable long-term suppressor fusion protein comprising a reference dCasX protein and a corresponding linked suppressor domain, thereby forming a ribonucleoprotein complex (RNP). The increased affinity of the long-term suppressor fusion protein for gRNA can, for example, result in a lower Kd for the production of the RNP complex, which in some cases can lead to more stable RNP complex formation. In some embodiments, the long-term suppressor fusion protein has a Kd for the gRNA that is increased by at least about 1.1-fold, at least about 1.2-fold, at least about 1.3-fold, at least about 1.4-fold, at least about 1.5-fold, at least about 1.6-fold, at least about 1.7-fold, at least about 1.8-fold, at least about 1.9-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 15-fold, at least about 20-fold, at least about 25-fold, at least about 30-fold, at least about 35-fold, at least about 40-fold, at least about 45-fold, at least about 50-fold, at least about 60-fold, at least about 70-fold, at least about 80-fold, at least about 90-fold, or at least about 100-fold relative to a reference dCasX protein and a linked suppressor domain. In some embodiments, the long-term suppressor fusion protein comprising the dCasX variant has an increased binding affinity for the gRNA by about 1.1 to about 10 fold compared to the corresponding suppressor fusion protein comprising a catalytically ineffective variant of a reference CasX protein of SEQ ID NO: 2.

在一些實施例中,長期抑制子融合蛋白對gRNA之親和力增加使核糖核蛋白複合物在遞送至哺乳動物細胞(包括在活體內遞送至個體)時之穩定性增加。在遞送至個體時,此增加之穩定性可影響複合物在個體細胞中之功能及效用,以及使得血液中之藥物動力學特性有所改良。在一些實施例中,長期抑制子融合蛋白之親和力增加及由此引起的核糖核蛋白複合物之穩定性增加允許將較低劑量之長期抑制子融合蛋白遞送至個體或細胞,同時仍具有所需活性;例如活體內或活體外基因抑制及/或表觀遺傳修飾。可使用此項技術中已知的活體外分析來評定形成RNP且使其保持穩定形式之能力的提高。In some embodiments, the increased affinity of the long-term suppressor fusion protein for the gRNA increases the stability of the ribonucleoprotein complex when delivered to mammalian cells (including delivery to an individual in vivo). When delivered to an individual, this increased stability can affect the function and utility of the complex in the individual's cells, as well as improve the pharmacokinetic properties in the blood. In some embodiments, the increased affinity of the long-term suppressor fusion protein and the resulting increased stability of the ribonucleoprotein complex allow lower doses of the long-term suppressor fusion protein to be delivered to an individual or cell while still having the desired activity; for example, in vivo or in vitro gene suppression and/or epigenetic modification. The improved ability to form RNPs and keep them in a stable form can be assessed using in vitro assays known in the art.

在一些實施例中,當長期抑制子融合蛋白及gRNA兩者均保留在RNP複合物中時,長期抑制子融合蛋白之dCasX變異體蛋白對gRNA之更高親和力(更緊密結合)允許更大量的轉錄抑制及/或表觀遺傳修飾事件。轉錄抑制事件之增加可使用本文所描述之分析來評定。In some embodiments, when both the long-term suppressor fusion protein and the gRNA are retained in the RNP complex, the higher affinity (tighter binding) of the dCasX variant protein of the long-term suppressor fusion protein to the gRNA allows for a greater amount of transcriptional inhibition and/or epigenetic modification events. The increase in transcriptional inhibition events can be assessed using the assays described herein.

量測長期抑制子融合蛋白對gRNA之結合親和力的方法包括使用經純化之長期抑制子融合蛋白及gRNA進行的活體外方法。若gRNA或長期抑制子融合蛋白經螢光團標誌,則可藉由螢光偏振量測長期抑制子融合蛋白之結合親和力。或者或另外,可藉由生物層干涉術、電泳遷移率變動分析(electrophoretic mobility shift assay;EMSA)或過濾結合來量測結合親和力。定量RNA結合蛋白(諸如本揭示之dCasX蛋白)對特定gRNA (諸如參考gRNA及其變異體)之絕對親和力的額外標準技術包括但不限於等溫量熱法(isothermal calorimetry;ITC)及表面電漿子共振(surface plasmon resonance;SPR)。 e.對目標核酸序列之改良特異性 Methods for measuring the binding affinity of a long-term suppressor fusion protein for a gRNA include in vitro methods using purified long-term suppressor fusion proteins and gRNAs. If the gRNA or long-term suppressor fusion protein is fluorophore-labeled, the binding affinity of the long-term suppressor fusion protein can be measured by fluorescence polarization. Alternatively or additionally, binding affinity can be measured by biointerferometry, electrophoretic mobility shift assay (EMSA), or filter binding. Additional standard techniques for quantifying the absolute affinity of an RNA binding protein (such as the dCasX protein disclosed herein) for a specific gRNA (such as a reference gRNA and its variants) include, but are not limited to, isothermal calorimetry (ITC) and surface plasmon resonance (SPR). e. Improved specificity for target nucleic acid sequences

在一些實施例中,包含dCasX變異體蛋白及所連接抑制子域的長期抑制子融合蛋白對與gRNA之靶向序列互補之目標核酸序列之特異性相對於連接有抑制子域之參考dCasX蛋白有所改良。如本文所用,「特異性」,有時稱為「目標特異性」,係指CRISPR/Cas系統核糖核蛋白複合物結合與目標核酸序列類似但不一致的脫靶序列的程度;例如具有較高特異性程度之含有RNP之長期抑制子融合蛋白將展現相對於連接有抑制子域之參考dCasX之RNP減少的序列脫靶甲基化。長期抑制子融合蛋白之特異性及潛在有害脫靶效應之減少可有助於達成用於哺乳動物個體之可接受治療指數。不希望受理論所束縛,螺旋狀I及II域中之胺基酸變化可增加長期抑制子融合蛋白對目標核酸股之特異性,且可由此增加長期抑制子融合蛋白對目標核酸總體之特異性。在一些實施例中,增加長期抑制子融合蛋白對目標核酸之特異性之胺基酸改變亦可使得長期抑制子融合蛋白對DNA之親和力降低,但組合物之總體益處及安全性提高。 f.具有異源蛋白之抑制子融合蛋白 In some embodiments, a long-term suppressor fusion protein comprising a dCasX variant protein and an associated suppressor domain has improved specificity for a target nucleic acid sequence complementary to the targeting sequence of the gRNA relative to a reference dCasX protein associated with a suppressor domain. As used herein, "specificity," sometimes referred to as "target specificity," refers to the degree to which a CRISPR/Cas system ribonucleoprotein complex binds to off-target sequences that are similar but not identical to the target nucleic acid sequence; for example, a long-term suppressor fusion protein containing an RNP with a high degree of specificity will exhibit reduced sequence off-target methylation relative to an RNP of a reference dCasX associated with a suppressor domain. The specificity of a long-term suppressor fusion protein and the reduction of potential deleterious off-target effects can help achieve an acceptable therapeutic index for use in mammalian subjects. Without wishing to be bound by theory, amino acid changes in the helical I and II domains can increase the specificity of the long-term suppressor fusion protein for the target nucleic acid strand, and can thereby increase the specificity of the long-term suppressor fusion protein for the target nucleic acid overall. In some embodiments, amino acid changes that increase the specificity of the long-term suppressor fusion protein for the target nucleic acid can also reduce the affinity of the long-term suppressor fusion protein for DNA, but the overall benefit and safety of the composition are improved. f. Suppressor Fusion Proteins with Heterologous Proteins

在本揭示之範疇內亦考慮長期抑制子融合蛋白,其包含與用於本揭示之系統之長期抑制子融合蛋白融合的異源蛋白。此包括長期抑制子融合蛋白,其包含與異源蛋白質或其域之N端或C端融合。在一些實施例中,長期抑制子融合蛋白與一或多種具有不同所關注活性之蛋白質或其域融合。Also contemplated within the scope of the present disclosure are long-term suppressor fusion proteins comprising a heterologous protein fused to a long-term suppressor fusion protein for use in the systems of the present disclosure. This includes long-term suppressor fusion proteins comprising fusion to the N-terminus or C-terminus of a heterologous protein or domain thereof. In some embodiments, a long-term suppressor fusion protein is fused to one or more proteins or domains thereof having different activities of interest.

在一些情況下,供與長期抑制子融合蛋白一起使用之異源多肽(融合搭配物)提供次細胞定位,亦即異源多肽含有次細胞定位序列(例如用於靶向至細胞核之核定位信號(NLS);保持融合蛋白在細胞核之外的序列,例如核輸出序列(NES);保持融合蛋白保留於細胞質中之序列;用於靶向至粒線體之粒線體定位信號;用於靶向至葉綠體之葉綠體定位信號;ER保留信號;及其類似物)。In some cases, the heterologous polypeptide (fusion partner) for use with the long-term suppressor fusion protein provides secondary cellular localization, i.e., the heterologous polypeptide contains a secondary cellular localization sequence (e.g., a nuclear localization signal (NLS) for targeting to the nucleus; a sequence that keeps the fusion protein outside the nucleus, such as a nuclear export sequence (NES); a sequence that keeps the fusion protein in the cytoplasm; a mitochondrial localization signal for targeting to mitochondria; a chloroplast localization signal for targeting to chloroplasts; an ER retention signal; and the like).

在一些情況下,長期抑制子融合蛋白包括核定位信號(NLS) (與NLS融合)。在一些情況下,長期抑制子融合蛋白與2個或更多個、3個或更多個、4個或更多個、或5個或更多個、6個或更多個、7個或更多個、8個或更多個NLS融合。在一些情況下,一或多個NLS (2個或更多個、3個或更多個、4個或更多個或5個或更多個NLS)定位於長期抑制子融合蛋白之N端及/或C端處或附近(例如相距20個胺基酸之範圍內)。在一些情況下,一或多個NLS (2個或更多個、3個或更多個、4個或更多個或者5個或更多個NLS)定位於長期抑制子融合蛋白之N端處或附近(例如相距20個胺基酸之範圍內)。在一些情況下,一或多個NLS (2個或更多個、3個或更多個、4個或更多個或者5個或更多個NLS)定位於長期抑制子融合蛋白之C端處或附近(例如相距20個胺基酸之範圍內)。在一些情況下,一或多個NLS (3個或更多個、4個或更多個或5個或更多個NLS)定位於長期抑制子融合蛋白之N端及/或C端處或附近(例如相距20個胺基酸之範圍內)。在一些情況下,單個NLS定位於長期抑制子融合蛋白之N端且單個NLS定位於C端。一般熟習技術者應瞭解,位於蛋白質N端或C端或其附近之NLS可在相距N端或C端之1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20個胺基酸之範圍內。在一些實施例中,連接至dCasX或長期抑制子融合蛋白之N端之NLS與連接至C端之NLS相同。在其他實施例中,連接至dCasX或長期抑制子融合蛋白之N端的NLS與連接至C端的NLS不同。具有NLS之長期抑制子融合蛋白之代表性組態示於圖61中。在一些實施例中,適合在本揭示之系統中與長期抑制子融合蛋白一起使用的NLS包含與來源於以下之序列具有至少約85%、至少約90%或至少約95%一致性或與其一致的序列:SV40病毒大型T抗原之NLS,具有胺基酸序列PKKKRKV (SEQ ID NO: 30);來自核質蛋白之NLS (例如核質蛋白二分NLS,具有序列KRPAATKKAGQAKKKK (SEQ ID NO: 31));具有胺基酸序列PAAKRVKLD (SEQ ID NO: 32)或RQRRNELKRSP (SEQ ID NO: 33)之c-MYC NLS。在一些實施例中,連接至長期抑制子融合蛋白之N端的NLS及短肽連接子係序列PKKKRKVSR (SEQ ID NO: 34)。在一些實施例中,連接至長期抑制子融合蛋白之N端的NLS及短肽連接子係序列PKKKRKVSRVNGSGSGGG (SEQ ID NO: 3298)。在一些實施例中,連接至長期抑制子融合蛋白之C端的NLS及短肽連接子係序列TSPKKKRKV (SEQ ID NO: 3273)。在一些實施例中,連接至長期抑制子融合蛋白之N端之NLS選自由表3中所闡述之N端序列組成之群。在一些實施例中,NLS包含選自由SEQ ID NO: 30至97、3273及3298組成之群的序列。在一些實施例中,NLS包含選自由SEQ ID NO: 34至97組成之群的序列。在一些實施例中,連接至長期抑制子融合蛋白之C端之NLS選自由表4中所闡述之C端序列組成之群。在一些實施例中,適合在本揭示之系統中與長期抑制子融合蛋白一起使用的NLS包括與表3或表4之一或多個序列具有至少約80%、至少約90%或至少約95%一致性或與其一致的序列。一般熟習此項技術者應瞭解,表3及表4中所闡述之NLS序列中之任一者可融合至或接近於本文所描述之長期抑制子融合蛋白之N端或C端。 3 N NLS 胺基酸序列 NLS 胺基酸序列 * SEQ ID NO PKKKRKVSR 34 PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVSR 35 PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVSR 36 PAAKRVKLDSR 37 PAAKRVKLDGGS PAAKRVKLDSR 38 PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDSR 39 PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDSR 40 KRPAATKKAGQAKKKKSR 41 KRPAATKKAGQAKKKKGGS KRPAATKKAGQAKKKKSR 42 PAAKRVKLDGGS PKKKRKVSR 43 PAAKKKKLDGGS PKKKRKVSR 44 PAAKKKKLDSR 45 PAAKKKKLDGGS PAAKKKKLDGGS PAAKKKKLDSR 46 PAAKKKKLDGGS PAAKKKKLDGGS PAAKKKKLDGGS PAAKKKKLDSR 47 PAKRARRGYKCSR 48 PAKRARRGYKCGS PAKRARRGYKCSR 49 PRRKREESR 50 PYRGRKESR 51 PLRKRPRRSR 52 PLRKRPRRGS PLRKRPRRSR 53 PAAKRVKLDGG KRTADGSEFESPKKKRKVGGS 54 PAAKRVKLDGG KRTADGSEFESPKKKRKVPPPPG 55 PAAKRVKLDGG KRTADGSEFESPKKKRKVGIHGVPAAPG 56 PAAKRVKLDGG KRTADGSEFESPKKKRKVGGGSGGGSPG 57 PAAKRVKLDGG KRTADGSEFESPKKKRKVPGGGSGGGSPG 58 PAAKRVKLDGG KRTADGSEFESPKKKRKVAEAAAKEAAAKEAAAKAPG 59 PAAKRVKLDGGS PKKKRKVGGS 60 PAAKRVKLDPPP PKKKRKVPG 61 PAAKRVKLDPG 62 PAAKRVKLDGGGSGGGSGGGS 63 PAAKRVKLDPPP 64 PAAKRVKLDGGGSGGGSGGGSPPP 65 PKKKRKVPPP 66 PKKKRKVGGS 67 * 粗體殘基為NLS殘基,而非粗體殘基為連接子。 4 C NLS 胺基酸序列 NLS 胺基酸序列 SEQ ID NO GS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKV 68 GS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKVGGS PKKKRKV 69 GS PAAKRVKLDGGS PAAKRVKLD 70 GS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLDGGS PAAKRVKLD 71 GS KRPAATKKAGQAKKKK 72 KRPAATKKAGQAKKKKGGS KRPAATKKAGQAKKKK 73 GS KLGPRKATGRWGS 74 GS KRKGSPERGERKRHWGS 75 GS PKKKRKVGSGS KRPAATKKAGQAKKKKLE 76 GP KRTADSQHSTPPKTKRKVEFE PKKKRKV 77 GGGSGGGS KRTADSQHSTPPKTKRKVEFE PKKKRKV 78 AEAAAKEAAAKEAAAKA KRTADSQHSTPPKTKRKVEFE PKKKRKV 79 GPPKKKRKVGGS KRTADSQHSTPPKTKRKVEFE PKKKRKV 80 GPAEAAAKEAAAKEAAAKA PAAKRVKLD 81 GPGGGSGGGSGGGS PAAKRVKLD 82 GP PAAKRVKLD 83 VGS KRPAATKKAGQAKKKK 84 TGGGPGGGAAAGSGS PKKKRKVGSGS KRPAATKKAGQAKKKKLE 85 TGGGPGGGAAAGSGS PKKKRKVGSGS 86 PPP PKKKRKVPPP 87 GGS PKKKRKVPPP 88 PPP PKKKRKV 89 GGS PKKKRKV 90 GGS PKKKRKVGGSGGSGGS 91 GGS PKKKRKVGGSPKKKRKV 92 GGSGGSGGS PKKKRKVGGS PKKKRKV 93 VGGGSGGGSGGGS PAAKRVKLD 94 VPPP PAAKRVKLD 95 VPPPGGGSGGGSGGGS PAAKRVKLD 96 VGS PAAKRVKLD 97 In some cases, the long-term inhibitor fusion protein includes a nuclear localization signal (NLS) (fused to the NLS). In some cases, the long-term inhibitor fusion protein is fused to 2 or more, 3 or more, 4 or more, or 5 or more, 6 or more, 7 or more, 8 or more NLS. In some cases, one or more NLS (2 or more, 3 or more, 4 or more, or 5 or more NLS) is located at or near the N-terminus and/or C-terminus of the long-term inhibitor fusion protein (e.g., within a range of 20 amino acids). In some cases, one or more NLS (2 or more, 3 or more, 4 or more, or 5 or more NLS) is located at or near the N-terminus of the long-term inhibitor fusion protein (e.g., within a range of 20 amino acids). In some cases, one or more NLSs (2 or more, 3 or more, 4 or more, or 5 or more NLSs) are located at or near (e.g., within 20 amino acids) the C-terminus of a long-term suppressor fusion protein. In some cases, one or more NLSs (3 or more, 4 or more, or 5 or more NLSs) are located at or near (e.g., within 20 amino acids) the N-terminus and/or C-terminus of a long-term suppressor fusion protein. In some cases, a single NLS is located at the N-terminus of a long-term suppressor fusion protein and a single NLS is located at the C-terminus. It will be appreciated by those skilled in the art that an NLS located at or near the N-terminus or C-terminus of a protein may be within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids from the N-terminus or C-terminus. In some embodiments, the NLS attached to the N-terminus of a dCasX or long-term suppressor fusion protein is the same as the NLS attached to the C-terminus. In other embodiments, the NLS attached to the N-terminus of a dCasX or long-term suppressor fusion protein is different from the NLS attached to the C-terminus. Representative configurations of long-term suppressor fusion proteins with NLSs are shown in FIG. 61 . In some embodiments, NLSs suitable for use with long-term suppressor fusion proteins in the systems of the present disclosure include sequences that are at least about 85%, at least about 90%, or at least about 95% identical to or identical to sequences derived from: the NLS of the large T antigen of the SV40 virus, having the amino acid sequence PKKKRKV (SEQ ID NO: 30); an NLS from a nucleoplasmic protein (e.g., a nucleoplasmic protein bipartite NLS, having the sequence KRPAATKKAGQAKKKK (SEQ ID NO: 31)); a c-MYC NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO: 32) or RQRRNELKRSP (SEQ ID NO: 33). In some embodiments, the NLS and short peptide linker attached to the N-terminus of the long-term suppressor fusion protein are the sequence PKKKRKVSR (SEQ ID NO: 34). In some embodiments, the NLS and short peptide linker attached to the N-terminus of the long-term suppressor fusion protein is the sequence PKKKRKVSRVNGSGSGGG (SEQ ID NO: 3298). In some embodiments, the NLS and short peptide linker attached to the C-terminus of the long-term suppressor fusion protein is the sequence TSPKKKRKV (SEQ ID NO: 3273). In some embodiments, the NLS attached to the N-terminus of the long-term suppressor fusion protein is selected from the group consisting of the N-terminal sequences described in Table 3. In some embodiments, the NLS comprises a sequence selected from the group consisting of SEQ ID NOs: 30 to 97, 3273 and 3298. In some embodiments, the NLS comprises a sequence selected from the group consisting of SEQ ID NOs: 34 to 97. In some embodiments, the NLS linked to the C-terminus of the long-term suppressor fusion protein is selected from the group consisting of the C-terminal sequences described in Table 4. In some embodiments, NLSs suitable for use with long-term suppressor fusion proteins in the systems of the present disclosure include sequences that are at least about 80%, at least about 90%, or at least about 95% identical or identical to one or more of the sequences in Table 3 or Table 4. It should be understood by those of ordinary skill in the art that any of the NLS sequences described in Tables 3 and 4 can be fused to or near the N-terminus or C-terminus of the long-term suppressor fusion proteins described herein. Table 3 : N- terminal NLS amino acid sequences NLS amino acid sequence * SEQ ID NO PKKKRKV SR 34 PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV SR 35 PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV SR 36 PAAKRVKLD SR 37 PAAKRVKLD GGS PAAKRVKLD SR 38 PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD SR 39 PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD SR 40 KRPAATKKAGQAKKKK SR 41 KRPAATKKAGQAKKKK GGS KRPAATKKAGQAKKKK SR 42 PAAKRVKLD GGS PKKKRKV SR 43 PAAKKKKLD GGS PKKKRKV SR 44 PAAKKKKLD SR 45 PAAKKKKLD GGS PAAKKKKLD GGS PAAKKKKLD SR 46 PAAKKKKLD GGS PAAKKKKLD GGS PAAKKKKLD GGS PAAKKKKLD SR 47 PAKRARRGYKC SR 48 PAKRARRGYKC GS PAKRARRGYKC SR 49 PRRKREE SR 50 PYRGRKE SR 51 PLRKRPRR SR 52 PLRKRPRR GS PLRKRPRR SR 53 PAAKRVKLD GG KRTADGSEFESPKKKRKV GGS 54 PAAKRVKLD GG KRTADGSEFESPKKKRKV PPPPG 55 PAAKRVKLD GG KRTADGSEFESPKKKRKV GIHGVPAAPG 56 PAAKRVKLD GG KRTADGSEFESPKKKRKV GGGSGGGSPG 57 PAAKRVKLD GG KRTADGSEFESPKKKRKV PGGGGSGGGSPG 58 PAAKRVKLD GG KRTADGSEFESPKKKRKV AEAAAKEAAAKEAAAKAPG 59 PAAKRVKLD GGS PKKKRKV GGS 60 PAAKRVKLD PPP PKKKRKV PG 61 PAAKRVKLD PG 62 PAAKRVKLD GGGSGGGSGGGS 63 PAAKRVKLD PPP 64 PAAKRVKLD GGGSGGGSGGGSPPP 65 PKKKRKV PPP 66 PKKKRKV GGS 67 *The residues in bold are NLS residues, while the residues in non-bold are linkers. Table 4 : C- terminal NLS amino acid sequences NLS amino acid sequence SEQ ID NO GS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV 68 GS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV GGS PKKKRKV 69 GS PAAKRVKLD GGS PAAKRVKLD 70 GS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD GGS PAAKRVKLD 71 GS KRPAATKKAGQAKKKK 72 KRPAATKKAGQAKKKK GGS KRPAATKKAGQAKKKK 73 GS KLGPRKATGRW GS 74 GS KRKGSPERGERKRHW GS 75 GS PKKKRKV GSGS KRPAATKKAGQAKKKK LE 76 GP KRTADSQHSTPPKTKRKV EFE PKKKRKV 77 GGGSGGGSKRTADSQHSTPPKTKRKV EFE PKKKRKV 78 AEAAAKEAAAKEAAAKA KRTADSQHSTPPKTKRKV EFE PKKKRKV 79 GPPKKKRKVGGS KRTADSQHSTPPKTKRKV EFE PKKKRKV 80 GPAEAAAKEAAAKEAAAKA PAAKRVKLD 81 GPGGGSGGGSGGGS PAAKRVKLD 82 GP PAAKRVKLD 83 VGS KRPAATKKAGQAKKKK 84 TGGGPGGGAAAGSGS PKKKRKV GSGS KRPAATKKAGQAKKKK LE 85 TGGGPGGGAAAGSGS PKKKRKV GSGS 86 PPP PKKKRKV PPP 87 GGS PKKKRKV PPP 88 PPP PKKKRKV 89 GGS PKKKRKV 90 GGS PKKKRKV GGSGGSGGS 91 GGS PKKKRKV GGSPKKKRKV 92 GGSGGSGGS PKKKRKV GGS PKKKRKV 93 VGGGSGGGSGGGS PAAKRVKLD 94 VPPP PAAKRVKLD 95 VPPPGGGSGGGSGGGS PAAKRVKLD 96 VGS PAAKRVKLD 97

在一些實施例中,一或多個NLS係藉由視情況存在之連接子肽連接至長期抑制子融合蛋白或相鄰NLS。在一些實施例中,連接子肽係選自由以下組成之群:SR、GS、GP、TS、VGS、GGS、(G)n (SEQ ID NO: 98)、(GS)n (SEQ ID NO: 99)、(GSGGS)n (SEQ ID NO: 100)、(GGSGGS)n (SEQ ID NO: 101)、(GGGS)n (SEQ ID NO: 102)、GGSG (SEQ ID NO: 103)、GGSGG (SEQ ID NO: 104)、GSGSG (SEQ ID NO: 105)、GSGGG (SEQ ID NO: 106)、GGGSG (SEQ ID NO: 107)、GSSSG (SEQ ID NO: 108)、GPGP (SEQ ID NO: 109)、GGP、PPP、VPPP、PPAPPA (SEQ ID NO: 110)、PPPG (SEQ ID NO: 111)、PPPGPPP (SEQ ID NO: 112)、PPP(GGGS)n (SEQ ID NO: 113)、(GGGS)nPPP (SEQ ID NO: 114)、AEAAAKEAAAKEAAAKA (SEQ ID NO: 115)、VPPPGGGSGGGSGGGS (SEQ ID NO: 116)、TGGGPGGGAAAGSGS (SEQ ID NO: 117)、GGGSGGGSGGGSPPP (SEQ ID NO: 118)、TPPKTKRKVEFE (SEQ ID NO: 119)、GGSGGGS (SEQ ID NO: 120)、GSGSGGG (SEQ ID NO: 121)、SSGNSNANSRGPSFSSGLVPLSLRGSH (SEQ ID NO: 122)、GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGP GTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE (SEQ ID NO: 123)及GGSGGG (SEQ ID NO: 124),其中n為1至5。In some embodiments, one or more NLSs are linked to a long-term suppressor fusion protein or an adjacent NLS via an optional linker peptide. In some embodiments, the linker peptide is selected from the group consisting of SR, GS, GP, TS, VGS, GGS, (G)n (SEQ ID NO: 98), (GS)n (SEQ ID NO: 99), (GSGGS)n (SEQ ID NO: 100), (GGSGGS)n (SEQ ID NO: 101), (GGGS)n (SEQ ID NO: 102), GGSG (SEQ ID NO: 103), GGSGG (SEQ ID NO: 104), GSGSG (SEQ ID NO: 105), GSGGG (SEQ ID NO: 106), GGGSG (SEQ ID NO: 107), GSSSG (SEQ ID NO: 108), GPGP (SEQ ID NO: 109), GGP, PPP, VPPP, PPAPPA (SEQ ID NO: 110), PPPG (SEQ ID NO: 111), PPPGPPP (SEQ ID NO: 112). 112), PPP(GGGS)n (SEQ ID NO: 113), (GGGS)nPPP (SEQ ID NO: 114), AEAAAKEAAAKEAAAKA (SEQ ID NO: 115), VPPPPGGGSGGGSGGGS (SEQ ID NO: 116), TGGGPGGGAAAGSGS (SEQ ID NO: 117), GGGSGGGSGGGGSPPP (SEQ ID NO: 118), TPPKTKRKVEFE (SEQ ID NO: 119), GGSGGGS (SEQ ID NO: 120), GGSGSGG (SEQ ID NO: 121), SSGNSNANSRGPSFSSGLVPLSLRGSH (SEQ ID NO: 122), GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGP GTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE (SEQ ID NO: 123) and GGSGGG (SEQ ID NO: 124), wherein n is 1 to 5.

一般而言,NLS (或多個NLS)具有足夠強度以驅動長期抑制子融合蛋白在真核細胞之細胞核中積聚。可藉由任何適合之技術進行細胞核中之積聚的偵測。舉例而言,可偵測標記物可與長期抑制子融合蛋白融合,由此可觀測其在細胞內之位置。亦可自細胞分離細胞核,可隨後藉由任何適合用於偵測蛋白質之方法,諸如免疫組織化學、西方墨點法或酶活性分析來分析其內容物。亦可間接地確定細胞核中之積聚。 IV. 長期抑制子域融合蛋白 Generally, the NLS (or multiple NLSs) are strong enough to drive the accumulation of the long-term suppressor fusion protein in the nucleus of a eukaryotic cell. Detection of accumulation in the nucleus can be performed by any suitable technique. For example, a detectable marker can be fused to the long-term suppressor fusion protein so that its location within the cell can be observed. The nucleus can also be isolated from the cell, and its contents can then be analyzed by any method suitable for detecting proteins, such as immunohistochemistry, Western blotting, or enzyme activity analysis. Accumulation in the nucleus can also be determined indirectly. IV. Long-term suppressor domain fusion proteins

本揭示提供包含DNA結合蛋白連接至多個抑制子域之長期融合蛋白之系統,其中該系統能夠結合至PCSK9目標核酸且抑制PCSK9基因之轉錄,包括藉由目標核酸之表觀遺傳修飾進行抑制。用於融合蛋白之例示性DNA結合蛋白包括鋅指(ZF)、TALE(轉錄活化因子樣效應物)蛋白質及催化失效CRISPR蛋白。 The present disclosure provides a system comprising a long-term fusion protein of a DNA binding protein linked to multiple inhibitory subdomains, wherein the system is capable of binding to a PCSK9 target nucleic acid and inhibiting transcription of the PCSK9 gene, including inhibition by epigenetic modification of the target nucleic acid. Exemplary DNA binding proteins for fusion proteins include zinc fingers (ZF), TALE (transcription activator-like effector) proteins, and catalytically inactive CRISPR proteins.

在一些實施例中,本揭示提供長期抑制子融合蛋白之系統,該等長期抑制子融合蛋白當與包含與 PCSK9之目標核酸序列互補之靶向序列的引導核糖核酸(gRNA)複合時包含催化失效CRISPR蛋白(諸如dCasX)連接至多個抑制子域,其中該系統能夠結合至 PCSK9之目標核酸且抑制或緘默化 PCSK9基因之轉錄。減少轉錄之基因抑制過程之實例包括但不限於抑制轉錄起始複合物之形成的過程、降低轉錄起始速率的過程、降低轉錄延伸速率的過程、降低轉錄持續力的過程及拮抗轉錄活化(例如藉由阻斷轉錄活化因子之結合)的過程。基因抑制可構成例如活化防止以及低於現有量之表現抑制。轉錄抑制包括基因轉錄之可逆及不可逆失效兩者;後者可由目標核酸之表觀遺傳修飾引起。 In some embodiments, the disclosure provides a system of long-term suppressor fusion proteins that comprise a catalytically inactive CRISPR protein (such as dCasX) linked to multiple suppressor domains when complexed with a guide RNA (gRNA) comprising a targeting sequence complementary to a target nucleic acid sequence of PCSK9 , wherein the system is capable of binding to a target nucleic acid of PCSK9 and inhibiting or silencing transcription of the PCSK9 gene. Examples of gene suppression processes that reduce transcription include, but are not limited to, processes that inhibit the formation of a transcription initiation complex, processes that reduce the rate of transcription initiation, processes that reduce the rate of transcription elongation, processes that reduce the persistence of transcription, and processes that antagonize transcriptional activation (e.g., by blocking the binding of a transcriptional activating factor). Gene suppression can constitute, for example, prevention of activation and suppression of expression below the current amount. Transcriptional repression includes both reversible and irreversible inactivation of gene transcription; the latter can be caused by epigenetic modifications of the target nucleic acid.

在能夠抑制或緘默化基因的抑制子域當中,Krüppel相關盒(KRAB)抑制子域在人類基因體系統中最為有效(Alerasool, N., 等人. An efficient KRAB domain for CRISPRi applications. Nat. Methods 17:1093 (2020))。KRAB樣域存在於大致400個基於人類鋅指蛋白之轉錄因子中,其在所連接dCasX與目標核酸結合時能夠募集額外的抑制子域,諸如但不限於Trim28 (亦稱為Kap1或Tif1-β),該等抑制子域又與諸如CBX5/HP1α及SETDB1之染色質調控因子組裝蛋白質複合物從而誘導基因轉錄抑制,但該抑制亦有時間限制的。適用於本揭示之系統的KRAB域之代表性非限制性實例包括ZIM3 (SEQ ID NO: 129)及ZNF10 (SEQ ID NO: 128)。本揭示提供來自人類來源之額外抑制子域,以及來自非人類來源且具有明顯不同序列的抑制子域(在本文中稱為「RD1」),已發現該等抑制子域當併入本文所描述的長期抑制子融合蛋白構築體實施例中時會引起相較於ZIM3及ZNF10增強之轉錄抑制。 Among the repressor domains that can repress or silence genes, the Krüppel-associated box (KRAB) repressor domain is the most efficient in the human genome system (Alerasool, N., et al. An efficient KRAB domain for CRISPRi applications. Nat. Methods 17:1093 (2020)). KRAB-like domains exist in approximately 400 human zinc finger protein-based transcription factors, which can recruit additional repressor domains such as but not limited to Trim28 (also known as Kap1 or Tif1-β) when the attached dCasX binds to the target nucleic acid. These repressor domains in turn assemble protein complexes with chromatin regulatory factors such as CBX5/HP1α and SETDB1 to induce gene transcription repression, but the repression is also time-limited. Representative, non-limiting examples of KRAB domains suitable for use in the systems of the present disclosure include ZIM3 (SEQ ID NO: 129) and ZNF10 (SEQ ID NO: 128). The present disclosure provides additional repressor domains from human sources, as well as repressor domains from non-human sources with significantly different sequences (referred to herein as "RD1"), which have been found to cause enhanced transcriptional repression compared to ZIM3 and ZNF10 when incorporated into the long-term repressor fusion protein construct embodiments described herein.

在一些實施例中,本揭示提供如此系統,在該等系統中,藉由使用LTRP:gRNA系統賦予之修飾係表觀遺傳修飾,且因此, PCSK9基因緘默化可藉由除所編輯DNA複製外的機制遺傳。如本文所用,「表觀遺傳修飾」意謂對DNA或與DNA相關之組蛋白之修飾,而非DNA序列本身之變化(例如取代、缺失或重排),其中修飾為藉由系統之組分直接修飾或藉由募集一或多種額外細胞組分間接修飾,但其中DNA目標核酸序列本身未經編輯以改變序列。舉例而言,DNA甲基轉移酶3A (DNMT3A) (或其催化域)直接藉由DNA甲基化而修飾DNA,而KRAB募集充當強效轉錄抑制子之KAP-1/TIF1β輔抑制子複合物且可進一步募集與DNA甲基化及抑制染色質形成相關的因子,諸如異染色質蛋白1 (HP1)、組蛋白去乙醯酶及組蛋白甲基轉移酶(Ying, Y.等人, The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Res. 43(3): 1549 (2015))。此外,無催化活性DNMT3L輔因子連同細胞之內源性DNMT1有助於在DNA複製之後建立可遺傳甲基化模式。已知DNMT3A之ATRX-DNMT3-DNMT3L域(ADD)具有兩種關鍵功能:1)其藉由充當甲基轉移酶自動抑制域來變構調節DNMT3A之催化活性,及2)其與離胺酸(K)4處未甲基化之組蛋白H3尾部特異性相互作用,導致與K4處未甲基化之染色質H3尾部結合的DNA優先甲基化(Zhang, Y.等人,Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Research 38:4246 (2010))。在一些實施例中,與其他方面相同但缺乏ADD域之LTRP相比較時,包括的ADD域在併入LTRP中時增強所靶向基因之轉錄抑制。在其他實施例中,與其他方面相同但缺乏ADD域之LTRP相比較時,包括的ADD域增強所靶向基因之轉錄抑制的特異性。前述內容之支持資料提供於實例中以及以引用方式併入本文中的WO2023049742A2中。 In some embodiments, the present disclosure provides systems in which the modifications imparted by using the LTRP:gRNA system are epigenetic modifications, and thus, PCSK9 gene silencing can be inherited by mechanisms other than the replication of the edited DNA. As used herein, "epigenetic modification" means a modification of DNA or histones associated with DNA, rather than a change (e.g., substitution, deletion, or rearrangement) in the DNA sequence itself, wherein the modification is a direct modification by a component of the system or an indirect modification by recruiting one or more additional cellular components, but wherein the DNA target nucleic acid sequence itself is not edited to change the sequence. For example, DNA methyltransferase 3A (DNMT3A) (or its catalytic domain) directly modifies DNA through DNA methylation, while KRAB recruits the KAP-1/TIF1β co-repressor complex, which acts as a potent transcriptional repressor and can further recruit factors associated with DNA methylation and repressive chromatin formation, such as heterochromatin protein 1 (HP1), histone deacetylases, and histone methyltransferases (Ying, Y. et al., The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Res. 43(3): 1549 (2015)). In addition, the catalytically inactive DNMT3L co-factor, together with the cell's endogenous DNMT1, helps to establish heritable methylation patterns after DNA replication. The ATRX-DNMT3-DNMT3L domain (ADD) of DNMT3A is known to have two key functions: 1) it allosterically regulates the catalytic activity of DNMT3A by acting as a methyltransferase autoinhibitory domain, and 2) it specifically interacts with the unmethylated histone H3 tail at lysine (K)4, resulting in preferential methylation of DNA bound to the unmethylated chromatin H3 tail at K4 (Zhang, Y. et al., Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Research 38:4246 (2010)). In some embodiments, the included ADD domain enhances transcriptional repression of a targeted gene when incorporated into a LTRP compared to an otherwise identical LTRP lacking the ADD domain. In other embodiments, the included ADD domain enhances the specificity of transcriptional inhibition of the targeted gene when compared to an otherwise identical LTRP lacking the ADD domain. Supporting data for the foregoing are provided in the Examples and in WO2023049742A2, which is incorporated herein by reference.

在一些實施例中,長期抑制子融合蛋白包含DNA結合蛋白連接至第一、第二及第三抑制子域,其中抑制子域中之每一者不同且融合蛋白能夠結合至 PCKS9目標核酸。在一些實施例中,長期抑制子融合蛋白包含DNA結合蛋白連接至第一、第二、第三及第四抑制子域,其中該等抑制子域中之每一者係不同的。在前述實施例中之任一者中,融合蛋白能夠在DNA結合域包含催化失效CRISPR蛋白時與該系統的結合至目標核酸之gRNA形成RNP。 In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein linked to a first, second, and third suppressor domain, wherein each of the suppressor domains is different and the fusion protein is capable of binding to a PCKS9 target nucleic acid. In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein linked to a first, second, third, and fourth suppressor domain, wherein each of the suppressor domains is different. In any of the foregoing embodiments, the fusion protein is capable of forming an RNP with a gRNA of the system that binds to a target nucleic acid when the DNA binding domain comprises a catalytically inactive CRISPR protein.

在一些實施例中,DNA結合蛋白包含可結合但不裂解目標核酸之TALE。在一些實施例中,DNA結合蛋白包含經修飾以結合但不裂解目標核酸之鋅指蛋白。在一些實施例中,DNA結合蛋白包含催化失效CRISPR蛋白,其可與gRNA複合以形成可結合但不裂解目標核酸之RNP。在一些實施例中,長期抑制子融合蛋白包含催化失效CRISPR蛋白序列、第一抑制子域(下文中稱為「RD1」)、作為第二域的來自DNMT3A蛋白之DNMT3A催化域(下文中稱為「DNMT3A」)及作為第三域的來自DNMT3L蛋白之DNMT3L相互作用域(下文中稱為「DNMT3L」)。在一些實施例中,長期抑制子融合蛋白包含催化失效CRISPR蛋白序列、RD1、作為第二域之DNMT3A、作為第三域之DNMT3L,及作為第四域的來自DNMT3A蛋白之ATRX-DNMT3-DNMT3L域(下文中稱為「ADD」)。在一些實施例中,長期抑制子融合蛋白包含dCasX且進一步包含第一及第二NLS以及一或多個本文所描述之連接子肽。在一些實施例中,長期抑制子融合蛋白能夠與結合至目標核酸之gRNA形成RNP。已發現,當在長期抑制子融合蛋白中相對於dCasX以選定方向組態前述域時,當與具有與 PCSK9基因之限定區域互補的靶向序列的gRNA複合時,前述域的使用可導致 PCSK9目標核酸的明顯表觀遺傳修飾,且抑制子域的組合會同步發揮作用,從而視組態而定,對目標基因之轉錄緘默化產生累加或協同作用。 In some embodiments, the DNA binding protein comprises a TALE that can bind to but not cleave a target nucleic acid. In some embodiments, the DNA binding protein comprises a zinc finger protein modified to bind but not cleave a target nucleic acid. In some embodiments, the DNA binding protein comprises a catalytically ineffective CRISPR protein that can be complexed with a gRNA to form an RNP that can bind but not cleave a target nucleic acid. In some embodiments, the long-term suppressor fusion protein comprises a catalytically ineffective CRISPR protein sequence, a first suppressor domain (hereinafter referred to as "RD1"), a DNMT3A catalytic domain from a DNMT3A protein as a second domain (hereinafter referred to as "DNMT3A"), and a DNMT3L interaction domain from a DNMT3L protein as a third domain (hereinafter referred to as "DNMT3L"). In some embodiments, the long-term suppressor fusion protein comprises a catalytically inactive CRISPR protein sequence, RD1, DNMT3A as a second domain, DNMT3L as a third domain, and an ATRX-DNMT3-DNMT3L domain (hereinafter referred to as "ADD") from a DNMT3A protein as a fourth domain. In some embodiments, the long-term suppressor fusion protein comprises dCasX and further comprises a first and a second NLS and one or more linker peptides described herein. In some embodiments, the long-term suppressor fusion protein is capable of forming an RNP with a gRNA bound to a target nucleic acid. It has been found that when the aforementioned domains are configured in a selected orientation relative to dCasX in a long-term repressor fusion protein, the use of the aforementioned domains can lead to obvious epigenetic modification of the PCSK9 target nucleic acid when complexed with a gRNA with a targeting sequence complementary to a defined region of the PCSK9 gene, and the combination of repressor domains acts synchronously, resulting in either additive or synergistic effects on the transcriptional silencing of the target gene, depending on the configuration.

本文提供長期抑制子融合蛋白構築體中使用之組分的代表性胺基酸序列。 This article provides representative amino acid sequences of components used in long-term suppressor fusion protein constructs.

在一些實施例中,長期抑制子融合蛋白之dCasX包含選自由SEQ ID NO: 4至29組成之群的序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性的序列。在一些實施例中,長期抑制子融合蛋白之dCasX包含選自由SEQ ID NO: 4至29組成之群的序列。在一些實施例中,長期抑制子融合蛋白之dCasX包含SEQ ID NO: 4之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性的序列。在一些實施例中,長期抑制子融合蛋白之dCasX包含SEQ ID NO: 4之序列。 In some embodiments, the dCasX of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 4 to 29, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the dCasX of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 4 to 29. In some embodiments, the dCasX of the long-term suppressor fusion protein comprises a sequence of SEQ ID NO: 4, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the dCasX of the long-term suppressor fusion protein comprises the sequence of SEQ ID NO: 4.

在一些實施例中,長期抑制子融合蛋白之RD1包含選自由SEQ ID NO: 128至1726組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性的序列。在一些實施例中,長期抑制子融合蛋白之RD1包含選自由SEQ ID NO: 128至1726組成之群的序列。在一些實施例中,長期抑制子融合蛋白之RD1包含選自由SEQ ID NO: 128或SEQ ID NO: 129組成之群的序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性的序列。在一些實施例中,長期抑制子融合蛋白之RD1包含選自由SEQ ID NO: 128或SEQ ID NO: 129組成之群的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至1726組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至1726組成之群的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至224組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至224組成之群的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至138組成之群的序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含選自由SEQ ID NO: 130至138組成之群的序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 135之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 131之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 135之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 130之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 130之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 131之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 132之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 133之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 134之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 135之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 136之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 137之序列。在另一實施例中,長期抑制子融合蛋白之第一抑制子域(RD1)包含SEQ ID NO: 138之序列。 In some embodiments, the RD1 of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 128 to 1726, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the RD1 of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 128 to 1726. In some embodiments, the RD1 of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 128 or SEQ ID NO: 129, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the RD1 of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NO: 128 or SEQ ID NO: 129. In another embodiment, the first suppressor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NO: 130 to 1726, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first suppressor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NO: 130 to 1726. In another embodiment, the first inhibitor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 224, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first inhibitor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 224. In another embodiment, the first inhibitor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 138, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first inhibitor domain (RD1) of the long-term suppressor fusion protein comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 138. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 135, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 131, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 135. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 130 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 130. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 131. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 132. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 133. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises a sequence of SEQ ID NO: 134. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises a sequence of SEQ ID NO: 135. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises a sequence of SEQ ID NO: 136. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises a sequence of SEQ ID NO: 137. In another embodiment, the first inhibitor domain (RD1) of the long-term inhibitor fusion protein comprises a sequence of SEQ ID NO: 138.

在一些實施例中,長期抑制子融合蛋白之第二抑制子域為DNMT3A,其包含SEQ ID NO:126之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,長期抑制子融合蛋白之第二抑制子域包含SEQ ID NO: 126之序列。 In some embodiments, the second inhibitor domain of the long-term inhibitor fusion protein is DNMT3A, which comprises the sequence of SEQ ID NO: 126 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the second inhibitor domain of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 126.

在一些實施例中,長期抑制子融合蛋白之第三抑制子域為DNMT3L,其包含SEQ ID NO: 127之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。 In some embodiments, the third inhibitor domain of the long-term inhibitor fusion protein is DNMT3L, which comprises the sequence of SEQ ID NO: 127 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto.

在一些實施例中,長期抑制子融合蛋白之視情況存在之第四抑制子域為ADD,其包含SEQ ID NO: 125之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,長期抑制子融合蛋白之視情況存在之第四抑制子域包含SEQ ID NO: 125之序列。在一些實施例中,ADD之C端連接至DNMT3A之N端。已發現與缺乏ADD之長期抑制子融合蛋白相比,將ADD添加至包含RD1、DNMT3A及DNMT3L之長期抑制子融合蛋白中可極大地增強或增加目標核酸之長期抑制及/或表觀遺傳修飾,以及抑制之特異性。有關包含ADD之長期抑制子融合蛋白的經改良之抑制及特異性的例示性資料呈現於實例中且描述於以引用方式併入本文中的WO2023049742A2中。在一些實施例中,融合蛋白包含一或多個選自由SEQ ID NO: 98至124、3278至3289組成之群的連接子肽(例示性序列示於表5及58中)及一或多個包含選自由SEQ ID NO: 30至97、32998及3299組成之群的序列的NLS。包含ADD之長期抑制子融合蛋白之例示性組態呈現於圖61中。 In some embodiments, the optional fourth inhibitory subdomain of the long-term inhibitor fusion protein is ADD, which comprises the sequence of SEQ ID NO: 125 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the optional fourth inhibitory subdomain of the long-term inhibitor fusion protein comprises the sequence of SEQ ID NO: 125. In some embodiments, the C-terminus of ADD is linked to the N-terminus of DNMT3A. It has been found that the addition of ADD to a long-term inhibitor fusion protein comprising RD1, DNMT3A and DNMT3L can greatly enhance or increase long-term inhibition and/or epigenetic modification of target nucleic acids, as well as the specificity of inhibition, compared to a long-term inhibitor fusion protein lacking ADD. Exemplary data regarding improved inhibition and specificity of long-term inhibitor fusion proteins comprising ADD are presented in the Examples and described in WO2023049742A2, which is incorporated herein by reference. In some embodiments, the fusion protein comprises one or more linker peptides selected from the group consisting of SEQ ID NOs: 98 to 124, 3278 to 3289 (exemplary sequences are shown in Tables 5 and 58) and one or more NLSs comprising a sequence selected from the group consisting of SEQ ID NOs: 30 to 97, 32998 and 3299. An exemplary configuration of a long-term suppressor fusion protein comprising ADD is presented in Figure 61.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNMT3A、DNMT3L、DNA結合蛋白及RD1。在一些實施例中,長期抑制子融合蛋白自N端至C端包含ADD、DNMT3A、DNMT3L、DNA結合蛋白及RD1。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在DNMT3A與DNMT3L之間、DNMT3L與DNA結合蛋白之間及/或DNA結合蛋白與RD1之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises DNMT3A, DNMT3L, a DNA binding protein, and RD1 from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises ADD, DNMT3A, DNMT3L, a DNA binding protein, and RD1 from the N-terminus to the C-terminus. In some embodiments, the DNA binding protein may be a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus, or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between DNMT3A and DNMT3L, between DNMT3L and the DNA binding protein, and/or between the DNA binding protein and RD1.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNA結合蛋白、RD1、DNMT3A及DNMT3L。在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNA結合蛋白、RD1及ADD、DNMT3A及DNMT3L。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端包含NLS。在一些實施例中,長期抑制子融合蛋白在RD1與DNMT3A之間包含NLS。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在N端NLS與DNA結合蛋白之間、DNA結合蛋白與RD1之間、RD1與DNMT3A或視情況存在之ADD之間及/或DNMT3A與DNMT3A之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein, RD1, DNMT3A, and DNMT3L from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein, RD1 and ADD, DNMT3A, and DNMT3L from the N-terminus to the C-terminus. In some embodiments, the DNA binding protein may be a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus. In some embodiments, the long-term suppressor fusion protein comprises an NLS between RD1 and DNMT3A. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus, or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between the N-terminal NLS and the DNA binding protein, between the DNA binding protein and RD1, between RD1 and DNMT3A or optionally ADD, and/or between DNMT3A and DNMT3A.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNA結合蛋白、DNMT3A、DNMT3L及RD1。在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNA結合蛋白、ADD、DNMT3A、DNMT3L及RD1。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在N端NLS與DNA結合蛋白之間、DNA結合蛋白與DNMT3A或視情況存在之ADD之間、DNT3A與DNMT3L之間及/或DNMT3L與RD1之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein, DNMT3A, DNMT3L, and RD1 from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises a DNA binding protein, ADD, DNMT3A, DNMT3L, and RD1 from the N-terminus to the C-terminus. In some embodiments, the DNA binding protein may be a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus, or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between the N-terminal NLS and the DNA binding protein, between the DNA binding protein and DNMT3A or ADD, if present, between DNMT3A and DNMT3L, and/or between DNMT3L and RD1.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含RD1、DNMT3A、DNMT3L及DNA結合蛋白。在一些實施例中,長期抑制子融合蛋白自N端至C端包含RD1、ADD、DNMT3A、DNMT3L及DNA結合蛋白。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在RD1與DNMT3A或視情況存在之ADD之間、DNMT3A與DNMT3L之間、DNMT3L與DNA結合蛋白之間及/或DNA結合蛋白與C端NLS之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises RD1, DNMT3A, DNMT3L and a DNA binding protein from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises RD1, ADD, DNMT3A, DNMT3L and a DNA binding protein from the N-terminus to the C-terminus. In some embodiments, the DNA binding protein may be a zinc finger, a TALE or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between RD1 and DNMT3A or ADD, as appropriate, between DNMT3A and DNMT3L, between DNMT3L and a DNA binding protein and/or between a DNA binding protein and a C-terminal NLS.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNMT3A、DNMT3L、RD1及DNA結合蛋白。在一些實施例中,長期抑制子融合蛋白自N端至C端包含ADD、DNMT3A、DNMT3L、RD1及DNA結合蛋白。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在DNMT3A與DNMT3L之間、DNTM3L與RD1之間、RD1與DNA結合蛋白之間及/或DNA結合蛋白與C端NLS之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises DNMT3A, DNMT3L, RD1 and a DNA binding protein from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises ADD, DNMT3A, DNMT3L, RD1 and a DNA binding protein from the N-terminus to the C-terminus. In some embodiments, the DNA binding protein may be a zinc finger, a TALE or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between DNMT3A and DNMT3L, between DNTM3L and RD1, between RD1 and a DNA binding protein and/or between a DNA binding protein and a C-terminal NLS.

在一些實施例中,長期抑制子融合蛋白自N端至C端包含DNMT3A、DNMT3L、RD1、DNA結合蛋白及第二RD1。在一些實施例中,長期抑制子融合蛋白自N端至C端包含ADD、DNMT3A、DNMT3L、RD1、DNA結合蛋白及第二RD1。在前述內容之一個實施例中,第二RD1的序列可與第一RD1一致。在前述內容之另一實施例中,第二RD1的序列可與第一RD1不同。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白在N端、C端或兩者處包含NLS。在一些實施例中,長期抑制子融合蛋白在DNMT3A與DNMT3L之間、DNMT3L與RD1之間、RD1與DNA結合蛋白之間、DNA結合蛋白與第二RD1之間及/或第二RD1與C端NLS之間包含一或多個連接子。In some embodiments, the long-term suppressor fusion protein comprises DNMT3A, DNMT3L, RD1, a DNA binding protein, and a second RD1 from the N-terminus to the C-terminus. In some embodiments, the long-term suppressor fusion protein comprises ADD, DNMT3A, DNMT3L, RD1, a DNA binding protein, and a second RD1 from the N-terminus to the C-terminus. In one embodiment of the foregoing, the sequence of the second RD1 may be consistent with the first RD1. In another embodiment of the foregoing, the sequence of the second RD1 may be different from the first RD1. In some embodiments, the DNA binding protein may be a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor fusion protein comprises an NLS at the N-terminus, the C-terminus, or both. In some embodiments, the long-term suppressor fusion protein comprises one or more linkers between DNMT3A and DNMT3L, between DNMT3L and RD1, between RD1 and the DNA binding protein, between the DNA binding protein and a second RD1, and/or between the second RD1 and the C-terminal NLS.

在一些情況下,長期抑制子融合蛋白亦包含一或多個NLS。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-ADD-DNMT3A-DNMT3L-DNA結合蛋白-RD1-NLS、NLS-DNA結合蛋白-RD1-NLS-ADD-DNMT3A-DNMT3L、NLS- DNA結合蛋白-ADD-DNMT3A-DNMT3L-RD1-NLS)、NLS-RD1-ADD-DNMT3A-DNMT3L-DNA結合蛋白-NLS、NLS-ADD-DNMT3A-DNMT3L-RD1-DNA結合蛋白-NLS或NLS-ADD-DNMT3A-DNMT3L-RD1-DNA結合蛋白-RD1-NLS。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,長期抑制子融合蛋白能夠結合至 PCSK9基因且抑制或緘默化 PCSK9基因之轉錄。 In some cases, the long-term suppressor fusion protein also comprises one or more NLSs. In some embodiments, the long-term suppressor fusion protein comprises the following N-terminal to C-terminal configurations: NLS-ADD-DNMT3A-DNMT3L-DNA binding protein-RD1-NLS, NLS-DNA binding protein-RD1-NLS-ADD-DNMT3A-DNMT3L, NLS-DNA binding protein-ADD-DNMT3A-DNMT3L-RD1-NLS), NLS-RD1-ADD-DNMT3A-DNMT3L-DNA binding protein-NLS, NLS-ADD-DNMT3A-DNMT3L-RD1-DNA binding protein-NLS, or NLS-ADD-DNMT3A-DNMT3L-RD1-DNA binding protein-RD1-NLS. In some embodiments, the DNA binding protein can be a zinc finger, a TALE, or a catalytically inactive CRISPR protein. In some embodiments, the long-term suppressor fusion protein is capable of binding to the PCSK9 gene and inhibiting or silencing the transcription of the PCSK9 gene.

在長期抑制子融合蛋白之一些實施例中,一或多個連接子肽可插入長期抑制子融合蛋白之任何兩個相鄰域之間。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-ADD-DNMT3A-連接子2-DNMT3L-連接子1-連接子3A-DNA結合蛋白-連接子3B-RD1-NLS (組態1)。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-連接子3A-DNA結合蛋白-連接子3B-RD1-NLS-連接子1-ADD-DNMT3A-連接子2-DNMT3L (組態2) 在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-連接子3A-DNA結合蛋白-連接子1-ADD-DNMT3A-連接子2-DNMT3L-連接子3B-RD1-NLS (組態3)。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-RD1-連接子3A-ADD-DNMT3A-連接子2-DNMT3L-連接子1-DNA結合蛋白-連接子3B-NLS (組態4)。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-ADD-DNMT3A-連接子2-DNMT3L-連接子3A-RD1-連接子1-DNA結合蛋白-連接子3B-NLS (組態5)。在一些實施例中,呈前述組態之DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。該等組態之示意圖描繪於圖61中。在具有組態1至5之LTRP的一些實施例中,NLS可包含選自由SEQ ID NO: 30至97、3298及3299 (表3及4)組成之群的序列,連接子序列可包含獨立地選自由以下組成之群的序列:SEQ ID NO: 98至124、3278至3289 (表5及58中所示之代表性連接子)。在一些實施例中,NLS可包含SEQ ID NO: 30之序列,且連接子序列可包含獨立地選自由SEQ ID NO: 120及122至124組成之群的序列。在一些實施例中,DNA結合蛋白可為選自由SEQ ID NO: 4至29組成之群的dCasX序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,第二抑制子域為DNMT3A域,其包含SEQ ID NO: 126之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,第三抑制子為DNMT3L域,其包含SEQ ID NO: 127之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,第四抑制子為ADD域,其包含SEQ ID NO: 125之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,長期抑制子融合蛋白能夠結合至 PCSK9基因目標核酸且抑制或緘默化 PCSK9基因目標核酸。 In some embodiments of the long-term suppressor fusion protein, one or more linker peptides can be inserted between any two adjacent domains of the long-term suppressor fusion protein. In some embodiments, the long-term suppressor fusion protein comprises the following N-terminal to C-terminal configuration: NLS-ADD-DNMT3A-Linker 2-DNMT3L-Linker 1-Linker 3A-DNA binding protein-Linker 3B-RD1-NLS (Configuration 1). In some embodiments, the long-term suppressor fusion protein comprises the following N-terminus to C-terminus configuration: NLS-Linker 3A-DNA Binding Protein-Linker 3B-RD1-NLS-Linker 1-ADD-DNMT3A-Linker 2-DNMT3L (Configuration 2) In some embodiments, the long-term suppressor fusion protein comprises the following N-terminus to C-terminus configuration: NLS-Linker 3A-DNA Binding Protein-Linker 1-ADD-DNMT3A-Linker 2-DNMT3L-Linker 3B-RD1-NLS (Configuration 3). In some embodiments, the long-term suppressor fusion protein comprises the following N-terminus to C-terminus configuration: NLS-RD1-Linker 3A-ADD-DNMT3A-Linker 2-DNMT3L-Linker 1-DNA Binding Protein-Linker 3B-NLS (Configuration 4). In some embodiments, the long-term suppressor fusion protein comprises the following N-terminal to C-terminal configuration: NLS-ADD-DNMT3A-Linker 2-DNMT3L-Linker 3A-RD1-Linker 1-DNA binding protein-Linker 3B-NLS (Configuration 5). In some embodiments, the DNA binding protein in the aforementioned configuration can be a zinc finger, a TALE, or a catalytically inactive CRISPR protein. Schematic diagrams of these configurations are depicted in Figure 61. In some embodiments of LTRPs having configurations 1 to 5, the NLS can comprise a sequence selected from the group consisting of SEQ ID NOs: 30 to 97, 3298, and 3299 (Tables 3 and 4), and the linker sequence can comprise a sequence independently selected from the group consisting of: SEQ ID NOs: 98 to 124, 3278 to 3289 (representative linkers shown in Tables 5 and 58). In some embodiments, the NLS may comprise a sequence of SEQ ID NO: 30, and the linker sequence may comprise a sequence independently selected from the group consisting of SEQ ID NOs: 120 and 122 to 124. In some embodiments, the DNA binding protein may be a dCasX sequence selected from the group consisting of SEQ ID NOs: 4 to 29, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the second inhibitor domain is a DNMT3A domain comprising a sequence of SEQ ID NO: 126 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the third inhibitor is a DNMT3L domain comprising a sequence of SEQ ID NO: 127 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the fourth inhibitor is an ADD domain comprising a sequence of SEQ ID NO: 125 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the long-term inhibitor fusion protein is capable of binding to a PCSK9 gene target nucleic acid and inhibiting or silencing the PCSK9 gene target nucleic acid.

在一些實施例中,本揭示提供一種包含長期抑制子融合蛋白之系統,該長期抑制子融合蛋白包含兩個RD1域、第二抑制子域、第三抑制子域及第四抑制子域可操作地連接至DNA結合蛋白,例如鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,DNA結合蛋白包含催化失效CasX,其包含選自由SEQ ID NO: 4至29組成之群的序列或與其具有至少70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性的序列。在一些實施例中,兩個RD1之序列係一致的。在其他實施例中,兩個RD1包含不同序列。在一些實施例中,兩個RD1位於DNA結合蛋白之N端。在一些實施例中,兩個RD1位於DNA結合蛋白之C端。在一些實施例中,一個RD1位於DNA結合蛋白之N端且一個RD1位於DNA結合蛋白之C端。In some embodiments, the disclosure provides a system comprising a long-term inhibitor fusion protein, which comprises two RD1 domains, a second inhibitor domain, a third inhibitor domain, and a fourth inhibitor domain operably linked to a DNA binding protein, such as a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the DNA binding protein comprises a catalytically ineffective CasX, which comprises a sequence selected from the group consisting of SEQ ID NO: 4 to 29 or a sequence having at least 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity therewith. In some embodiments, the sequences of the two RD1s are identical. In other embodiments, the two RD1s comprise different sequences. In some embodiments, the two RD1s are located at the N-terminus of the DNA binding protein. In some embodiments, two RD1s are located at the C-terminus of the DNA binding protein. In some embodiments, one RD1 is located at the N-terminus of the DNA binding protein and one RD1 is located at the C-terminus of the DNA binding protein.

在一些實施例中,長期抑制子融合蛋白包含兩個RD1。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-ADD-DNMT3A-連接子2-DNMT3L-連接子3A-a RD1a-連接子1-DNA結合蛋白-連接子3B-RD1a-連接子4-NLS (組態6a),其中RD1a序列一致(參見圖61中長期抑制子融合蛋白之示意圖)。在一些實施例中,長期抑制子融合蛋白包含以下N端至C端組態:NLS-ADD-DNMT3A-連接子2-DNMT3L-連接子3A-a RD1a-連接子1-DNA結合蛋白-連接子3B-RD1b-連接子4-NLS (組態6b),其中RD1a序列與RD1b序列不同(參見圖61中長期抑制子融合蛋白之示意圖)。在一些實施例中,DNA結合蛋白可為鋅指、TALE或催化失效CRISPR蛋白。在一些實施例中,該段落之長期抑制子蛋白質實施例能夠結合至 PCSK9基因之表現且抑制或靜默 PCSK9基因之表現。 In some embodiments, the long-term suppressor fusion protein comprises two RD1s. In some embodiments, the long-term suppressor fusion protein comprises the following N-terminal to C-terminal configuration: NLS-ADD-DNMT3A-Linker 2-DNMT3L-Linker 3A-a RD1a-Linker 1-DNA binding protein-Linker 3B-RD1a-Linker 4-NLS (Configuration 6a), wherein the RD1a sequence is identical (see Figure 61 for a schematic diagram of a long-term suppressor fusion protein). In some embodiments, the long-term suppressor fusion protein comprises the following N-terminal to C-terminal configuration: NLS-ADD-DNMT3A-Linker 2-DNMT3L-Linker 3A-a RD1a-Linker 1-DNA binding protein-Linker 3B-RD1b-Linker 4-NLS (Configuration 6b), wherein the RD1a sequence is different from the RD1b sequence (see Figure 61 for a schematic diagram of a long-term suppressor fusion protein). In some embodiments, the DNA binding protein can be a zinc finger, a TALE, or a catalytically ineffective CRISPR protein. In some embodiments, the long-term suppressor protein embodiments of this paragraph are capable of binding to the expression of the PCSK9 gene and inhibiting or silencing the expression of the PCSK9 gene.

在一些實施例中,本揭示提供一種具有組態6a之長期抑制子融合蛋白,其中兩個RD1序列一致。在組態6a長期抑制子融合蛋白之一些實施例中,DNA結合蛋白包含具有SEQ ID NO: 4之序列或與其具有至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的dCasX,RD1a之第一及第二複本包含選自由SEQ ID NO: 130至1726組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列,第二抑制子域為包含SEQ ID NO: 126之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的DNMT3A, 第三抑制子為包含SEQ ID NO: 127之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列變異體的DNMT3L, 第四抑制子為包含SEQ ID NO: 125之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的ADD,該等NLS包含獨立地選自由SEQ ID NO: 30至97 (表3及表4)組成之群的序列, L1連接子包含SEQ ID NO: 123之序列,L2連接子包含SEQ ID NO: 122之序列,L3A連接子包含SEQ ID NO: 124之序列,L3B連接子包含SEQ ID NO: 120之序列,且L4連接子包含SEQ ID NO: 3288或SEQ ID NO: 3289之序列。在具有組態6a之長期抑制子融合蛋白之一些實施例中,連接子序列係獨立地選自由SEQ ID NO: 98至124、3278至3289 (表5及58中所示之例示性序列)組成之群。在具有組態6a之長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本一致,RD1中之各者包含選自由SEQ ID NO: 130、131及135組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%一致性之序列。組態6a之示意圖示於圖61中。在一些實施例中,具有組態6a之長期抑制子融合蛋白能夠與本揭示之gRNA形成RNP且能夠結合至基因目標核酸且抑制或緘默化該基因目標核酸。In some embodiments, the disclosure provides a long-term suppressor fusion protein having configuration 6a, wherein two RD1 sequences are identical. In some embodiments of the configuration 6a long-term suppressor fusion protein, the DNA binding protein comprises a dCasX having a sequence of SEQ ID NO: 4, or a sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto, the first and second copies of RD1a comprise a sequence selected from the group consisting of SEQ ID NOs: 130 to 1726, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identity thereto, and the second suppressor domain comprises SEQ ID NO: The first inhibitor is a DNMT3L comprising the sequence of SEQ ID NO: 127 or a sequence variant thereof having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto; The second inhibitor is a DNMT3L comprising the sequence of SEQ ID NO: 127 or a sequence variant thereof having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto; 125, or an ADD with a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto, the NLSs comprising a sequence independently selected from the group consisting of SEQ ID NOs: 30 to 97 (Tables 3 and 4), the L1 linker comprising the sequence of SEQ ID NO: 123, the L2 linker comprising the sequence of SEQ ID NO: 122, the L3A linker comprising the sequence of SEQ ID NO: 124, the L3B linker comprising the sequence of SEQ ID NO: 120, and the L4 linker comprising the sequence of SEQ ID NO: 3288 or SEQ ID NO: 3289. In some embodiments of long-term suppressor fusion proteins with configuration 6a, linker sequences are independently selected from the group consisting of SEQ ID NOs: 98 to 124, 3278 to 3289 (exemplary sequences shown in Tables 5 and 58). In some embodiments of long-term suppressor fusion proteins with configuration 6a, wherein the two copies of RD1 are identical, each of RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 130, 131, and 135, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95% identity thereto. A schematic diagram of configuration 6a is shown in Figure 61. In some embodiments, the long-term suppressor fusion protein with configuration 6a is capable of forming RNP with the gRNA disclosed herein and is capable of binding to a gene target nucleic acid and inhibiting or silencing the gene target nucleic acid.

在組態6b長期抑制子融合蛋白之一些實施例中,其中兩個RD1序列係一致的,DNA結合蛋白包含具有SEQ ID NO: 4之序列或與其具有至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的dCasX,第一抑制子域(RD1a)之第一複本包含選自由SEQ ID NO: 130至1726組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列,第一抑制子域(RD1b)之第二複本包含選自由SEQ ID NO: 130至1726組成之群的不同序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列, 第二抑制子域為包含SEQ ID NO: 126之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的DNMT3A,第三抑制子為包含SEQ ID NO: 127之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列變異體的DNMT3L, 第四抑制子為包含SEQ ID NO: 125之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的ADD,該等NLS包含獨立地選自由表3及4之SEQ ID NO: 30至97組成之群的序列, L1連接子包含SEQ ID NO: 123之序列,L2連接子包含SEQ ID NO: 122之序列,L3A連接子包含SEQ ID NO: 124之序列,L3B連接子包含SEQ ID NO: 120之序列,且L4連接子包含SEQ ID NO: 3288或SEQ ID NO: 3289之序列。在具有組態6b之長期抑制子融合蛋白之一些實施例中,連接子序列係選自由SEQ ID NO: 98至124、3278至3289 (表5及58中所示之例示性序列)組成之群。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 130之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列,且RD1b包含SEQ ID NO: 131之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 130之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列, 且RD1b包含SEQ ID NO: 135之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 131之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列,且RD1b包含SEQ ID NO: 130之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 131之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列,且RD1b包含SEQ ID NO: 135之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 135之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列,且RD1b包含SEQ ID NO: 130之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a包含SEQ ID NO: 135之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列,且RD1b包含SEQ ID NO: 131之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性的序列。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a及Rd1b獨立地選自由SEQ ID NO:132至134及136至138之序列組成之群。在組態6b長期抑制子融合蛋白之一些實施例中,其中RD1之兩個複本不同,RD1a及Rd1b獨立地選自由SEQ ID NO: 130、131及135之序列組成之群。組態6b之示意圖示於圖61中。在一些實施例中,長期抑制子融合蛋白能夠與本揭示之gRNA形成RNP且能夠結合至基因目標核酸且抑制或緘默化該基因目標核酸。 5 長期抑制子融合蛋白之例示性連接子胺基酸序列 連接子位置 連接子集合# 胺基酸序列 SEQ ID NO L1 基線/原始 GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 集合85 ASPAAPAPASPAAPAPSAPAA 3278 集合43 GSGGSGGSGGSPVPSTPPTPSPSTPPTP 3279 集合36 PPTPSPSPVPSTPPTNSSSTPPTPS 3280 集合1 ASAAAPAAASAAASAPSAAAA 3281 集合66 AASPAAPSAPPAAASP 3282 L2 基線/原始 SSGNSNANSRGPSFSSGLVPLSLRGSH 122 L3A 基線/原始 GGSGGG 124 集合85 IRAHGD 3283 集合43 AFPAAPAPA 3284 集合36 GSGNSSGSGGS 3285 集合1 ASAAAPAAA 3286 集合66 PPTP 3287 L3B 基線/原始 GGSGGGS 120 L4v1 基線/原始 GSGS 3288 L4v2 基線/原始 GSGSGSG 3289 In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two RD1 sequences are identical, the DNA binding protein comprises a dCasX having a sequence of SEQ ID NO: 4, or a sequence having at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto, the first copy of the first suppressor domain (RD1a) comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 1726, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identity thereto, and the second copy of the first suppressor domain (RD1b) comprises a sequence selected from the group consisting of SEQ ID NOs: The second inhibitory subdomain is a DNMT3A comprising a sequence of SEQ ID NO: 126 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, or at least about 96% identity thereto, and the third inhibitor is a DNMT3A comprising SEQ ID NO: 126 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical thereto, the fourth inhibitor is an ADD comprising a sequence of SEQ ID NO: 125, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto, the NLS comprises a sequence independently selected from the group consisting of SEQ ID NOs: 30 to 97 of Tables 3 and 4, the L1 linker comprises the sequence of SEQ ID NO: 123, the L2 linker comprises SEQ ID NO: In some embodiments, the L3A linker comprises the sequence of SEQ ID NO: 122, the L3A linker comprises the sequence of SEQ ID NO: 124, the L3B linker comprises the sequence of SEQ ID NO: 120, and the L4 linker comprises the sequence of SEQ ID NO: 3288 or SEQ ID NO: 3289. In some embodiments of long-term suppressor fusion proteins having configuration 6b, the linker sequence is selected from the group consisting of SEQ ID NOs: 98 to 124, 3278 to 3289 (exemplary sequences shown in Tables 5 and 58). In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 130, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto, and RD1b comprises the sequence of SEQ ID NO: 131, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto. In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 130, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto, and RD1b comprises the sequence of SEQ ID NO: 135, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto. In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 131, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto, and RD1b comprises the sequence of SEQ ID NO: 130, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto. In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 131, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto, and RD1b comprises the sequence of SEQ ID NO: 135, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto. In some embodiments of Configuration 6b long-term suppressor fusion proteins, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 135, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto, and RD1b comprises the sequence of SEQ ID NO: 130, or a sequence at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identical thereto. In some embodiments of the configuration 6b long-term suppressor fusion protein, wherein the two copies of RD1 are different, RD1a comprises the sequence of SEQ ID NO: 135, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identity thereto, and RD1b comprises the sequence of SEQ ID NO: 131, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identity thereto. In some embodiments of the configuration 6b long-term suppressor fusion protein, wherein the two copies of RD1 are different, RD1a and Rd1b are independently selected from the group consisting of sequences of SEQ ID NOs: 132 to 134 and 136 to 138. In some embodiments of the long-term suppressor fusion protein of configuration 6b, wherein the two copies of RD1 are different, RD1a and Rd1b are independently selected from the group consisting of sequences of SEQ ID NO: 130, 131 and 135. A schematic diagram of configuration 6b is shown in Figure 61. In some embodiments, the long-term suppressor fusion protein is capable of forming RNPs with the gRNA disclosed herein and is capable of binding to a gene target nucleic acid and inhibiting or silencing the gene target nucleic acid. Table 5 : Exemplary linker amino acid sequences of long-term suppressor fusion proteins Connector location Connecting Subcollections# Amino acid sequence SEQ ID NO L1 Baseline/Original GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 Collection 85 ASPAAPAPASPAAPAPSAPAA 3278 Collection 43 GSGGSGGSGGSPVPSTPPTPSPSTPPTP 3279 Collection 36 PPTPSPSPVPSTPPTNSSSTPPTPS 3280 Collection 1 ASAAAPAAASAAASAPSAAAA 3281 Collection 66 AASPAAPSAPPAAASP 3282 L2 Baseline/Original SSGNSNANSRGPSFSSGLVPLSLRGSH 122 L3A Baseline/Original GGSGGG 124 Collection 85 IRAHGD 3283 Collection 43 AFPAAPAPA 3284 Collection 36 GSGNSSGSGGS 3285 Collection 1 ASAAAPAAA 3286 Collection 66 PPTP 3287 L3B Baseline/Original GGSGGGS 120 L4v1 Baseline/Original GSGS 3288 L4v2 Baseline/Original GSGSGSG 3289

在包含dCasX及視情況存在之ADD且以組態1進行組態之長期抑制子融合蛋白之一些實施例中,該長期抑制子蛋白包含選自由SEQ ID NO: 22836至22855組成之群的序列或與其具有至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約95%或至少約99%一致性之序列。在包含dCasX及視情況存在之ADD且以組態1進行組態之長期抑制子融合蛋白的一些實施例中,該長期抑制子蛋白包含選自由SEQ ID NO: 22836至22855組成之群的序列。在包含dCasX及視情況存在之ADD且以組態1進行組態之長期抑制子融合蛋白的一些實施例中,該長期抑制子蛋白包含選自由SEQ ID NO: 22838及22847組成之群的序列。在包含dCasX及視情況存在之ADD且以組態1進行組態之長期抑制子融合蛋白的一些實施例中,該長期抑制子蛋白包含選自由SEQ ID NO: 22839及22848組成之群的序列。在包含dCasX及視情況存在之ADD且以組態1進行組態之長期抑制子融合蛋白的一些實施例中,該長期抑制子蛋白包含選自由SEQ ID NO: 22840及22849組成之群的序列。In some embodiments of long-term suppressor fusion proteins comprising dCasX and, optionally, ADD and configured in Configuration 1, the long-term suppressor protein comprises a sequence selected from the group consisting of SEQ ID NOs: 22836-22855, or a sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 99% identity thereto. In some embodiments of long-term suppressor fusion proteins comprising dCasX and, optionally, ADD and configured in Configuration 1, the long-term suppressor protein comprises a sequence selected from the group consisting of SEQ ID NOs: 22836-22855. In some embodiments of long-term suppressor fusion proteins comprising dCasX and optionally ADD and configured in Configuration 1, the long-term suppressor protein comprises a sequence selected from the group consisting of SEQ ID NOs: 22838 and 22847. In some embodiments of long-term suppressor fusion proteins comprising dCasX and optionally ADD and configured in Configuration 1, the long-term suppressor protein comprises a sequence selected from the group consisting of SEQ ID NOs: 22839 and 22848. In some embodiments of long-term suppressor fusion proteins comprising dCasX and optionally ADD and configured in Configuration 1, the long-term suppressor protein comprises a sequence selected from the group consisting of SEQ ID NOs: 22840 and 22849.

在包含DNA結合蛋白且以選自由前述組態1、組態2、組態3、組態4、組態5、組態6a及組態6b組成之群的組態進行組態之系統的一些實施例中,長期抑制子融合蛋白包含dCasX且能夠與具有與細胞中之 PCSK9目標核酸互補之靶向序列的gRNA複合形成RNP,且在將RNP與細胞中之 PCSK9目標核酸結合後,目標核酸經表觀遺傳修飾且 PCSK9基因之轉錄受到抑制。在一些實施例中, PCSK9基因之轉錄被抑制至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約95%或至少99%。在一些實施例中, PCSK9基因之轉錄抑制在細胞群體中至少約1%、至少約2%、至少約3%、至少約4%、至少約5%、至少約6%、至少約7%、至少約8%、至少約9%、或至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、或至少約80%或更多的細胞中。在一些實施例中,當與未處理之細胞或用包含非靶向間隔子之可比系統處理之細胞相比較時,在活體外分析(包括基於細胞之分析)中分析轉錄抑制。在一些實施例中,在獲自個體之細胞中活體內分析轉錄抑制,在該個體中投與長期抑制子融合蛋白及具有與細胞中之基因之P CSK9目標核酸互補之靶向序列的gRNA;呈蛋白質及gRNA或呈核酸(例如gRNA及編碼長期抑制子融合蛋白之mRNA)形式,其中該個體係選自由小鼠、大鼠、豬、非人類靈長類動物及人類組成之群。 In some embodiments of the system comprising a DNA binding protein and configured in a configuration selected from the group consisting of Configuration 1, Configuration 2, Configuration 3, Configuration 4, Configuration 5, Configuration 6a and Configuration 6b, the long-term suppressor fusion protein comprises dCasX and is capable of complexing with a gRNA having a targeting sequence complementary to a PCSK9 target nucleic acid in a cell to form an RNP, and after binding the RNP to the PCSK9 target nucleic acid in the cell, the target nucleic acid is epigenetically modified and the transcription of the PCSK9 gene is inhibited. In some embodiments, the transcription of the PCSK9 gene is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% or at least 99%. In some embodiments, the transcriptional inhibition of the PCSK9 gene is at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, or at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, or at least about 80% or more of the cells in a cell population. In some embodiments, the transcriptional inhibition is analyzed in an in vitro assay (including a cell-based assay) when compared to untreated cells or cells treated with a comparable system comprising a non-targeting spacer. In some embodiments, transcriptional inhibition is analyzed in vivo in cells obtained from an individual to whom a long-term suppressor fusion protein and a gRNA having a targeting sequence complementary to a PCSK9 target nucleic acid of a gene in the cell are administered; in the form of a protein and a gRNA or in the form of a nucleic acid (e.g., a gRNA and an mRNA encoding a long-term suppressor fusion protein), wherein the individual is selected from the group consisting of a mouse, a rat, a pig, a non-human primate, and a human.

最佳地,PCSK9基因抑制導致基因表現之完全抑制,使得無法偵測到基因產物。然而,熟練技術人員應瞭解,不完全抑制對於多種應用仍然為有用的且所期望的。在一些實施例中,當在活體外分析(包括基於細胞之分析)中進行分析時,藉由系統之實施例抑制PCSK9基因之轉錄持續至少約8小時、至少約1天、至少約7天、至少2週、至少約3週、至少約1個月或至少約2個月。在一些實施例中,當以治療有效劑量投與包含本揭示之系統之組合物時,由系統組合物抑制 PCSK9基因之轉錄在個體之靶向細胞中持續至少約7天、至少2週、至少約3週、至少約1個月、至少約2個月、至少約3個月、至少約4個月、至少約5個月或至少約6個月。在一些實施例中,個體係選自由小鼠、大鼠、豬、非人類靈長類動物及人類組成之群。在一些實施例中,當用於該等實施例之LTRP:gRNA系統中時,使用組態1、4、5及6之LTRP導致細胞中的脫靶甲基化或脫靶活性小於約10%、小於約9%、小於約8%、小於約7%、小於約6%、小於約5%、小於約4%、小於約3%、小於約2%、小於約1%、小於0.5%或小於0.1%。 Optimally, PCSK9 gene inhibition results in complete inhibition of gene expression, making it impossible to detect the gene product. However, skilled artisans will appreciate that incomplete inhibition is still useful and desirable for a variety of applications. In some embodiments, when analyzed in an in vitro assay (including a cell-based assay), inhibition of transcription of the PCSK9 gene by an embodiment of the system lasts for at least about 8 hours, at least about 1 day, at least about 7 days, at least 2 weeks, at least about 3 weeks, at least about 1 month, or at least about 2 months. In some embodiments, when a composition comprising the system of the present disclosure is administered in a therapeutically effective amount, the inhibition of transcription of the PCSK9 gene by the system composition in the targeted cells of the subject lasts for at least about 7 days, at least 2 weeks, at least about 3 weeks, at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, or at least about 6 months. In some embodiments, the subject is selected from the group consisting of mice, rats, pigs, non-human primates, and humans. In some embodiments, use of LTRPs of configurations 1, 4, 5, and 6 results in less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than 0.5%, or less than 0.1% off-target methylation or off-target activity in cells when used in the LTRP:gRNA systems of the embodiments.

在一些實施例中,用該等實施例之LTRP:gRNA系統處理之細胞中的 PCSK9基因之轉錄抑制係可遺傳的且經過一或多次細胞分裂仍穩定。在一些實施例中,轉錄抑制經過1、10、20、30、40、50、60、70、80、90或100次或者更多次細胞分裂仍穩定。 V. 編碼長期抑制子融合蛋白之mRNA組合物 In some embodiments, transcriptional inhibition of the PCSK9 gene in cells treated with the LTRP:gRNA system of the embodiments is heritable and stable through one or more cell divisions. In some embodiments, transcriptional inhibition is stable through 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 or more cell divisions. V. mRNA Compositions Encoding Long-Term Suppressor Fusion Proteins

在另一態樣中,本揭示係關於信使RNA (mRNA)組合物,其包含各個組分之序列,以及本揭示之長期抑制子域融合蛋白構築體的mRNA序列。在一些實施例中,當用於表現長期抑制子融合蛋白時,mRNA組合物在基因(例如 PCSK9基因)之轉錄抑制及表觀遺傳修飾方面具有效用。在一些情況下,mRNA係設計用於某些遞送調配物;例如奈米粒子,諸如合成奈米粒子或脂質奈米粒子(LNP)。本揭示亦提供用以設計組合物所使用之mRNA之mRNA序列的方法。在一些情況下,編碼長期抑制子融合蛋白之mRNA可在奈米粒子(諸如LNP)中與包含與 PCSK9基因之序列互補之靶向序列的gRNA共同調配。在藉由LNP遞送至目標細胞後,長期抑制子域融合蛋白係自mRNA表現且可與gRNA複合為能夠結合 PCSK9目標核酸之RNP。在其他情況下,編碼長期抑制子域融合蛋白mRNA及gRNA可調配於獨立奈米粒子中且分開或以混合物形式遞送。 In another aspect, the disclosure relates to messenger RNA (mRNA) compositions comprising sequences of various components and mRNA sequences of long-term inhibitor domain fusion protein constructs disclosed herein. In some embodiments, when used to express long-term inhibitor fusion proteins, mRNA compositions have utility in transcriptional inhibition and epigenetic modification of genes (e.g., PCSK9 genes). In some cases, mRNA is designed for certain delivery formulations; for example, nanoparticles, such as synthetic nanoparticles or lipid nanoparticles (LNPs). The disclosure also provides methods for designing mRNA sequences of mRNAs used in compositions. In some cases, mRNAs encoding long-term inhibitor fusion proteins can be co-formulated in nanoparticles (e.g., LNPs) with gRNAs comprising targeting sequences complementary to the sequences of PCSK9 genes. After delivery to the target cell via LNP, the long-term inhibitory subdomain fusion protein is expressed from the mRNA and can be complexed with the gRNA to form an RNP capable of binding to the PCSK9 target nucleic acid. In other cases, the mRNA encoding the long-term inhibitory subdomain fusion protein and the gRNA can be formulated in separate nanoparticles and delivered separately or as a mixture.

在一些實施例中,本揭示之mRNA組合物已經修飾以相對於編碼相同長期抑制子蛋白質之未經修飾之mRNA產生一或多個經改良特徵,且因此可對基於mRNA之遞送的功效具有積極影響。與未經修飾之mRNA相比較,本文所描述之mRNA的例示性經改良特徵包括但不限於在遞送至細胞後改良之表現、降低之免疫原性、增加之穩定性及增強之可製造性。在一些情況下,對mRNA之修飾產生相對於未經修飾之mRNA改良至少約1.1至約100,000倍之經改良特徵。在一些實施例中,經修飾mRNA之經改良特徵係相對於未經修飾之mRNA改良至少約1.1至約10,000倍、改良至少約1.1至約1,000倍、改良至少約1.1至約500倍、改良至少約1.1至約400倍、改良至少約1.1至約300倍、改良至少約1.1至約200倍、改良至少約1.1至約100倍、改良至少約1.1至約50倍、改良至少約1.1至約40倍、改良至少約1.1至約30倍、改良至少約1.1至約20倍、改良至少約1.1至約10倍、改良至少約1.1至約9倍、改良至少約1.1至約8倍、改良至少約1.1至約7倍、改良至少約1.1至約6倍、改良至少約1.1至約5倍、改良至少約1.1至約4倍、改良至少約1.1至約3倍、改良至少約1.1至約2倍、改良至少約1.1至約1.5倍、改良至少約1.5至約3倍、改良至少約1.5至約4倍、改良至少約1.5至約5倍、改良至少約1.5至約10倍、改良至少約5至約10倍、改良至少約10至約20倍、改良至少10至約30倍、改良至少10至約50倍或改良至少10至約100倍。在一些實施例中,經修飾mRNA之經改良特徵係相對於未經修飾之mRNA改良至少約10至約1000倍。In some embodiments, the mRNA compositions disclosed herein have been modified to produce one or more improved characteristics relative to unmodified mRNA encoding the same long-term suppressor protein, and thus can have a positive impact on the efficacy of mRNA-based delivery. Exemplary improved characteristics of the mRNA described herein include, but are not limited to, improved expression after delivery to cells, reduced immunogenicity, increased stability, and enhanced manufacturability compared to unmodified mRNA. In some cases, the modification of the mRNA results in improved characteristics that are at least about 1.1 to about 100,000 times improved relative to the unmodified mRNA. In some embodiments, the improved characteristics of the modified mRNA are at least about 1.1 to about 10,000-fold improved, at least about 1.1 to about 1,000-fold improved, at least about 1.1 to about 500-fold improved, at least about 1.1 to about 400-fold improved, at least about 1.1 to about 300-fold improved, at least about 1.1 to about 200-fold improved, at least about 1.1 to about 100-fold improved, at least about 1.1 to about 50-fold improved, at least about 1.1 to about 40-fold improved, at least about 1.1 to about 30-fold improved, at least about 1.1 to about 20-fold improved, at least about 1.1 to about 10-fold improved, at least about 1.1 to about 15-fold improved, at least about 1.1 to about 16-fold improved, at least about 1.1 to about 17-fold improved, at least about 1.1 to about 18-fold improved, at least about 1.1 to about 19-fold improved, at least about 1.1 to about 20-fold improved, at least about 1.1 to about 21-fold improved, at least about 1.1 to about 23-fold improved, at least about 1.1 to about 24-fold improved, at least about 1.1 to about 25-fold improved, at least about 1.1 to about 26-fold improved, at least about 1.1 to about 27-fold improved, at least about 1.1 to about 28-fold improved, at least about 1.1 to about 29-fold improved, at least about 1.1 to about 30-fold improved, at least about 1.1 to about 31-fold improved, at least about 1.1 to about 31-fold improved, at least about 1.1 to about 32-fold improved, In some embodiments, the modified mRNA has an improved characteristic of at least about 10 to about 1000 times, ...500 times, an improved characteristic of at least about 10 to about 1500 times, an improved characteristic of at least about 10 to about 1500 times, an improved characteristic of at least about 10 to about 1500 times, an improved characteristic of at least about

編碼序列及非轉譯區(UTR)之最佳化在遞送編碼所關注蛋白質之mRNA時可能適用,與將轉錄成mRNA之DNA模板相反。DNA模板壽命長,可以複製,且能在其生命週期中產生許多RNA轉錄物。對於DNA模板而言,轉錄效率及前mRNA加工為蛋白質表現量之主要決定因素。相比之下,mRNA一般具有短得多的半衰期,約數小時,因為其易受細胞質降解影響,且本身無法產生更多複本。因此,mRNA穩定性及轉譯效率可為用於基於mRNA之遞送的蛋白質表現量之關鍵決定因素,且因此,可增強決定mRNA穩定性及轉譯效率的UTR及編碼序列之特定序列以改良基於mRNA之遞送的功效。 a.5'帽 Optimization of coding sequences and non-translated regions (UTRs) may be applicable when delivering mRNAs that encode proteins of interest, as opposed to DNA templates that will be transcribed into mRNAs. DNA templates are long-lived, can replicate, and can produce many RNA transcripts during their life cycle. For DNA templates, transcription efficiency and pre-mRNA processing are the main determinants of the amount of protein expressed. In contrast, mRNAs generally have a much shorter half-life, on the order of hours, because they are susceptible to cytoplasmic degradation and cannot produce more copies themselves. Therefore, mRNA stability and translation efficiency can be key determinants of the amount of protein expressed for mRNA-based delivery, and therefore, the specific sequences of UTRs and coding sequences that determine mRNA stability and translation efficiency can be enhanced to improve the efficacy of mRNA-based delivery. a. 5' cap

在本揭示之mRNA之一些實施例中,mRNA包含連接於本文所描述之任一實施例之mRNA序列的5' UTR之5'的5'帽。在一些實施例中,5'帽為7-甲基鳥苷酸帽。在一些實施例中,5'帽包含m7G(5')ppp(5')mAG。在其他實施例中,5'帽包含m7G(5′)ppp (5′(A,G(5′)ppp(5′)A或G(5′)ppp(5′)G。例示性帽係此項技術中已知的,且描述於例如WO 2017/053297中,該案之內容以引用的方式併入本文中。 b.5'非轉譯區(UTR) In some embodiments of the mRNA disclosed herein, the mRNA comprises a 5' cap linked to the 5' UTR of any of the embodiments described herein. In some embodiments, the 5' cap is a 7-methylguanylate cap. In some embodiments, the 5' cap comprises m7G(5')ppp(5')mAG. In other embodiments, the 5' cap comprises m7G(5')ppp(5')A or G(5')ppp(5')G. Exemplary caps are known in the art and are described, for example, in WO 2017/053297, the contents of which are incorporated herein by reference. b. 5' untranslated region (UTR)

mRNA分子之5' UTR可為mRNA之穩定性及其如何有效轉譯成蛋白質的關鍵決定因素。具體而言,5' UTR結合5'帽結構充當轉譯起始前複合物以及可對轉譯產生積極或消極影響之額外調控蛋白的結合位點及募集平台。5' UTR內之結構可藉由募集起始因子或其他蛋白質或RNA因子來增強轉譯,藉由物理阻斷核糖體結合及掃描來減少轉譯,且藉由影響水解及核酸酶消化兩者來促進mRNA之穩定性。The 5' UTR of an mRNA molecule can be a key determinant of the stability of the mRNA and how efficiently it is translated into protein. Specifically, the 5' UTR in conjunction with the 5' cap structure serves as a binding site and recruitment platform for the translation preinitiation complex as well as additional regulatory proteins that can have a positive or negative effect on translation. Structures within the 5' UTR can enhance translation by recruiting initiation factors or other proteins or RNA factors, reduce translation by physically blocking ribosome binding and scanning, and promote mRNA stability by affecting both hydrolysis and nuclease digestion.

用於本揭示之mRNA中的例示性5' UTR序列提供於表6中。表6列出RNA序列及具有N1-甲基假尿苷取代尿苷之RNA序列。 6 5' UTR 序列 SEQ ID NO 核酸序列 * 描述 22787 AAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGA 5' UTR之RNA序列 3300 AAAmΨAAGAGAGAAAAGAAGAGmΨAAGAAGAAAmΨAmΨAAGA 5' UTR之經N1-甲基假尿苷取代之RNA序列 *『mψ』=N1-甲基-假尿苷 Exemplary 5'UTR sequences used in the mRNA of the present disclosure are provided in Table 6. Table 6 lists RNA sequences and RNA sequences with N1-methylpseudouridine substituted for uridine. Table 6 : 5'UTR sequences SEQ ID NO Nucleic acid sequence * describe 22787 AAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGA 5' UTR RNA sequence 3300 AAAmΨAAGAGAGAAAAGAAGAGmΨAAGAAGAAAmΨAmΨAAGA RNA sequence with N1-methylpseudouridine substitution in 5'UTR *『mψ』=N1-methyl-pseudouridine

在一些實施例中,5' UTR包含SEQ ID NO: 22787之序列或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%或至少約95%一致性之序列。在一些實施例中,5' UTR包含SEQ ID NO: 22787之序列。在一些實施例中,5' UTR由SEQ ID NO: 22787之序列組成。在一些實施例中,5' UTR包含SEQ ID NO: 3300之序列或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%或至少約95%一致性之序列。在一些實施例中,5' UTR包含SEQ ID NO: 3300之序列。在一些實施例中,5' UTR由SEQ ID NO: 3300之序列組成。 c.3' UTR In some embodiments, the 5'UTR comprises a sequence of SEQ ID NO: 22787 or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% identity thereto. In some embodiments, the 5'UTR comprises a sequence of SEQ ID NO: 22787. In some embodiments, the 5'UTR consists of a sequence of SEQ ID NO: 22787. In some embodiments, the 5'UTR comprises a sequence of SEQ ID NO: 3300 or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% identity thereto. In some embodiments, the 5'UTR comprises a sequence of SEQ ID NO: 3300. In some embodiments, the 5'UTR consists of a sequence of SEQ ID NO: 3300. c. 3'UTR

3' UTR序列可影響mRNA穩定性及轉譯效率,且因此可決定次細胞定位及組織特異性表現。影響此等特性之因素包括微小RNA結合位點、募集一系列RNA結合蛋白的富含AU之元件、Pumilio結合元件及RNA結合蛋白之其他結合位點。雖然已知許多此等與3' UTR之相互作用負面地影響穩定性或表現,但有一些可增強轉譯。3' UTR序列之效應可因為微小RNA及RNA結合蛋白之差異表現而具有高度細胞類型特異性,此提供工程改造治療性mRNA之組織特異性表現的機會。在一些實施例中,用於本揭示之mRNA的3' UTR係小鼠3' UTR。在一些實施例中,3' UTR係表7之小鼠 HBA基因3' UTR。 The 3'UTR sequence can affect mRNA stability and translation efficiency, and therefore can determine subcellular localization and tissue-specific expression. Factors affecting these properties include microRNA binding sites, AU-rich elements that recruit a series of RNA-binding proteins, Pumilio binding elements, and other binding sites for RNA-binding proteins. Although many of these interactions with the 3'UTR are known to negatively affect stability or expression, some can enhance translation. The effect of the 3'UTR sequence can be highly cell-type specific due to the differential expression of microRNAs and RNA-binding proteins, which provides the opportunity to engineer tissue-specific expression of therapeutic mRNAs. In some embodiments, the 3'UTR used for the mRNA disclosed herein is a mouse 3'UTR. In some embodiments, the 3'UTR is the mouse HBA gene 3'UTR of Table 7.

本揭示之例示性3' UTR序列提供於表7中。表7列出RNA序列及具有N1-甲基假尿苷取代尿苷之RNA序列。 7 3' UTR 序列 SEQ ID NO 核酸序列* 描述 3125 GCUGCCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG 3' UTR之RNA序列 3310 GCmΨGCCmΨmΨCmΨGCGGGGCmΨmΨGCCmΨmΨCmΨGGCCAmΨGCCCmΨmΨCmΨmΨCmΨCmΨCCCmΨmΨGCACCmΨGmΨACCmΨCmΨmΨGGmΨCmΨmΨmΨGAAmΨAAAGCCmΨGAGmΨAGGAAG 3' UTR之經N1-甲基假尿苷取代之RNA序列 *『mψ』=N1-甲基-假尿苷 Exemplary 3'UTR sequences of the present disclosure are provided in Table 7. Table 7 lists RNA sequences and RNA sequences with N1-methylpseudouridine substituted for uridine. Table 7 : 3'UTR sequences SEQ ID NO Nucleic acid sequence* describe 3125 GCUGCCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG 3' UTR RNA sequence 3310 GCmΨGCCmΨmΨCmΨGCGGGGCmΨmΨGCCmΨmΨCmΨGGCCAmΨGCCCmΨmΨCmΨmΨCmΨCmΨ CCCmΨmΨGCACCmΨGmΨACCmΨCmΨmΨGGmΨCmΨmΨmΨGAAmΨAAAGCCmΨGAGmΨAGGAAG RNA sequence with N1-methylpseudouridine substitution in 3'UTR *『mψ』=N1-methyl-pseudouridine

在一些實施例中,3' UTR包含SEQ ID NO: 3125之序列或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%或至少約95%一致性之序列。在一些實施例中,3' UTR包含SEQ ID NO: 3125之序列。在一些實施例中,3' UTR由SEQ ID NO: 3125之序列組成。在一些實施例中,3' UTR包含SEQ ID NO: 3310之序列或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%或至少約95%一致性之序列。在一些實施例中,3' UTR包含SEQ ID NO: 3310之序列。在一些實施例中,3' UTR由SEQ ID NO: 3310之序列組成。 d.聚腺苷酸序列 In some embodiments, the 3'UTR comprises a sequence of SEQ ID NO: 3125, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% identity thereto. In some embodiments, the 3'UTR comprises a sequence of SEQ ID NO: 3125. In some embodiments, the 3'UTR consists of a sequence of SEQ ID NO: 3125. In some embodiments, the 3'UTR comprises a sequence of SEQ ID NO: 3310, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% identity thereto. In some embodiments, the 3'UTR comprises a sequence of SEQ ID NO: 3310. In some embodiments, the 3'UTR consists of a sequence of SEQ ID NO: 3310. d. Polyadenylation sequence

在mRNA序列中包括3' 聚腺苷酸尾可有助於mRNA之穩定性及轉譯效率。一般而言,較長的聚腺苷酸尾與增加之mRNA穩定性相關,由此允許其轉譯且促進高蛋白質表現。Including a 3' poly(A) tail in the mRNA sequence can contribute to the stability and translation efficiency of the mRNA. In general, longer poly(A) tails are associated with increased mRNA stability, thereby allowing its translation and promoting high protein expression.

在一些實施例中,本揭示之mRNA包含具有至少約40個、至少約50個、至少約60個、至少約70個、至少約80個、至少約90個、至少約100個、至少約110個、至少約120個、至少約130個、至少約140個、至少約150個、至少約160個、至少約170個、至少約180個、至少約185個或至少約190個腺嘌呤核苷酸的聚腺苷酸序列。在一些實施例中,本揭示之mRNA之聚腺苷酸序列包含80個腺嘌呤核苷酸。在一些實施例中,聚腺苷酸序列包含AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 3057)之核酸序列。在一些實施例中,聚腺苷酸序列包含AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCAUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 3307)之核酸序列。 e.對mRNA之序列修飾 In some embodiments, the mRNA of the present disclosure comprises a poly(A) sequence having at least about 40, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about 100, at least about 110, at least about 120, at least about 130, at least about 140, at least about 150, at least about 160, at least about 170, at least about 180, at least about 185, or at least about 190 adenine nucleotides. In some embodiments, the poly(A) sequence of the mRNA of the present disclosure comprises 80 adenine nucleotides. In some embodiments, the poly(A) sequence comprises the nucleic acid sequence of AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 3057). In some embodiments, the poly(A) sequence comprises the nucleic acid sequence of AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCAUGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 3307). e. Sequence modification of mRNA

在一些實施例中,本揭示之mRNA序列係藉由使用一或多個參數對編碼長期抑制子蛋白之序列進行密碼子最佳化而修飾,以增強在目標細胞中之表現。此等參數之非限制性實例包括人類宿主細胞中之密碼子使用(例如,利用密碼子適應指數(CAI))、最小化稀有密碼子、利用源自旨在用作治療劑之生物製劑的密碼子使用表、利用mRNA穩定性指數,或減少GC含量。密碼子最佳化之方法及各種生物體中之密碼子使用係此項技術中已知的。參見例如www.genscript.com/tools/codon-frequency-table。In some embodiments, the mRNA sequences of the present disclosure are modified by codon optimization of the sequence encoding the long-term suppressor protein using one or more parameters to enhance expression in the target cell. Non-limiting examples of such parameters include codon usage in human host cells (e.g., using the codon adaptation index (CAI)), minimizing rare codons, using a codon usage table derived from a biological agent intended for use as a therapeutic, using an mRNA stability index, or reducing GC content. Methods for codon optimization and codon usage in various organisms are known in the art. See, e.g., www.genscript.com/tools/codon-frequency-table.

在一些實施例中,本文提供用於長期抑制子蛋白構築體之mRNA序列,其經密碼子最佳化以在人類細胞中表現。在其他情況下,可使用各種天然存在或經修飾之核苷來產生根據本揭示之經修飾mRNA。在一些實施例中,mRNA為以下或包含以下:天然核苷(例如腺苷、鳥苷、胞苷、尿苷);核苷類似物(例如2-胺基腺苷、2-硫代胸苷、肌苷、吡咯并-嘧啶、3-甲基腺苷、5-甲基胞苷、C-5丙炔基-胞苷、C-5丙炔基-尿苷、2-胺基腺苷、C5-溴尿苷、C5-氟尿苷、C5-碘尿苷、C5-丙炔基-尿苷、C5-丙炔基-胞苷、C5-甲基胞苷、2-胺基腺苷、7-去氮腺苷、7-去氮鳥苷、8-側氧基腺苷、8-側氧基鳥苷、O(6)-甲基鳥嘌呤、假尿苷(例如N-1-甲基-假尿苷)、2-硫代尿苷以及2-硫代胞苷);經化學修飾之鹼基;經生物修飾之鹼基(例如甲基化鹼基);插入鹼基;經修飾之糖(例如2′-氟核糖、核糖、2′-去氧核糖、阿拉伯糖及己醣);及/或經修飾之磷酸酯基(例如硫代磷酸酯及5′-N-胺基亞磷酸酯鍵聯)。在一些實施例中,mRNA包含一或多個非標準核苷酸殘基。非標準核苷酸殘基可包括例如5-甲基-胞苷(「5 mC」)、假尿苷(「ψU」)及/或2-硫代-尿苷(「2sU」)。在一特定實施例中,本揭示之mRNA之一或多個或者所有尿苷殘基經1-甲基-假尿苷置換。在一些實施例中,本揭示之mRNA的所有尿苷殘基均經1-甲基-假尿苷置換。關於此種殘基及其併入mRNA中之論述,參見例如美國專利第8,278,036號或WO2011012316,其以引用之方式併入本文中。在一些實施例中,mRNA序列之至少約70%、至少約80%、至少約90%、至少約95%、至少約99%或100%的尿苷核苷經N1-甲基假尿苷置換。In some embodiments, provided herein are mRNA sequences for long-term suppressor protein constructs that are codon-optimized for expression in human cells. In other cases, various naturally occurring or modified nucleosides may be used to generate modified mRNAs according to the present disclosure. In some embodiments, the mRNA is or comprises the following: natural nucleosides (e.g., adenosine, guanosine, cytidine, uridine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyladenosine, 5-methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-uridine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deoxythymidine ... In some embodiments, the mRNA comprises one or more non-standard nucleotide residues. Non-standard nucleotide residues may include, for example, 5-methyl-cytidine ("5 mC"), pseudouridine ("ψU"), and/or 2-thio-uridine ("2sU"). In a specific embodiment, one or more or all uridine residues of the mRNA disclosed herein are replaced with 1-methyl-pseudouridine. In some embodiments, all uridine residues of the mRNA disclosed herein are replaced with 1-methyl-pseudouridine. For discussion of such residues and their incorporation into mRNA, see, for example, U.S. Patent No. 8,278,036 or WO2011012316, which are incorporated herein by reference. In some embodiments, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or 100% of the uridine nucleosides of the mRNA sequence are replaced with N1-methylpseudouridine.

在一些實施例中,藉由密碼子最佳化及/或取代序列中之經修飾核苷酸對mRNA的修飾產生相對於未經修飾之mRNA改良至少約1.1至約100,000倍的經改良特徵。在一些實施例中,經修飾mRNA之經改良特徵係相對於未經修飾之mRNA改良至少約1.1至約10,000倍、改良至少約1.1至約1,000倍、改良至少約1.1至約500倍、改良至少約1.1至約400倍、改良至少約1.1至約300倍、改良至少約1.1至約200倍、改良至少約1.1至約100倍、改良至少約1.1至約50倍、改良至少約1.1至約40倍、改良至少約1.1至約30倍、改良至少約1.1至約20倍、改良至少約1.1至約10倍、改良至少約1.1至約9倍、改良至少約1.1至約8倍、改良至少約1.1至約7倍、改良至少約1.1至約6倍、改良至少約1.1至約5倍、改良至少約1.1至約4倍、改良至少約1.1至約3倍、改良至少約1.1至約2倍、改良至少約1.1至約1.5倍、改良至少約1.5至約3倍、改良至少約1.5至約4倍、改良至少約1.5至約5倍、改良至少約1.5至約10倍、改良至少約5至約10倍、改良至少約10至約20倍、改良至少10至約30倍、改良至少10至約50倍或改良至少10至約100倍。在一些實施例中,經修飾mRNA之經改良特徵係相對於未經修飾之mRNA改良至少約10至約1000倍。 f.LTRP mRNA組分序列 In some embodiments, modification of the mRNA by codon optimization and/or substitution of modified nucleotides in the sequence results in improved characteristics that are at least about 1.1 to about 100,000 fold improved relative to the unmodified mRNA. In some embodiments, the improved characteristics of the modified mRNA are at least about 1.1 to about 10,000-fold improved, at least about 1.1 to about 1,000-fold improved, at least about 1.1 to about 500-fold improved, at least about 1.1 to about 400-fold improved, at least about 1.1 to about 300-fold improved, at least about 1.1 to about 200-fold improved, at least about 1.1 to about 100-fold improved, at least about 1.1 to about 50-fold improved, at least about 1.1 to about 40-fold improved, at least about 1.1 to about 30-fold improved, at least about 1.1 to about 20-fold improved, at least about 1.1 to about 10-fold improved, at least about 1.1 to about 15-fold improved, at least about 1.1 to about 16-fold improved, at least about 1.1 to about 17-fold improved, at least about 1.1 to about 18-fold improved, at least about 1.1 to about 19-fold improved, at least about 1.1 to about 20-fold improved, at least about 1.1 to about 21-fold improved, at least about 1.1 to about 23-fold improved, at least about 1.1 to about 24-fold improved, at least about 1.1 to about 25-fold improved, at least about 1.1 to about 26-fold improved, at least about 1.1 to about 27-fold improved, at least about 1.1 to about 28-fold improved, at least about 1.1 to about 29-fold improved, at least about 1.1 to about 30-fold improved, at least about 1.1 to about 31-fold improved, at least about 1.1 to about 31-fold improved, at least about 1.1 to about 32-fold improved, 9-fold, at least about 1.1 to about 8-fold, at least about 1.1 to about 7-fold, at least about 1.1 to about 6-fold, at least about 1.1 to about 5-fold, at least about 1.1 to about 4-fold, at least about 1.1 to about 3-fold, at least about 1.1 to about 2-fold, at least about 1.1 to about 1.5-fold, at least about 1.5 to about 3-fold, at least about 1.5 to about 4-fold, at least about 1.5 to about 5-fold, at least about 1.5 to about 10-fold, at least about 5 to about 10-fold, at least about 10 to about 20-fold, at least about 10 to about 30-fold, at least about 10 to about 50-fold, or at least about 10 to about 100-fold. In some embodiments, the improved characteristics of the modified mRNA are at least about 10 to about 1000-fold improved relative to the unmodified mRNA. f. LTRP mRNA component sequences

本揭示提供mRNA,其包含編碼本揭示之長期抑制子融合蛋白中所用組分的序列。在一些實施例中,mRNA包含編碼DNA結合蛋白之序列,該等DNA結合蛋白包括TALE、ZF及催化失效CRISPR蛋白。在一些實施例中,mRNA包含編碼dCasX 515 (SEQ ID NO: 6)之SEQ ID NO: 3274之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,mRNA包含編碼dCasX 812 (SEQ ID NO: 29)之SEQ ID NO: 3276之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,mRNA包含編碼dCasX 491 (SEQ ID NO: 4)之SEQ ID NO: 3275之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,mRNA包含編碼dCasX 676 (SEQ ID NO: 28)之SEQ ID NO: 22736之序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。The present disclosure provides mRNAs comprising sequences encoding components used in the long-term suppressor fusion proteins disclosed herein. In some embodiments, the mRNA comprises sequences encoding DNA binding proteins, including TALEs, ZFs, and catalytically inactive CRISPR proteins. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 3274 encoding dCasX 515 (SEQ ID NO: 6), or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 3276 encoding dCasX 812 (SEQ ID NO: 29), or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 3275 encoding dCasX 491 (SEQ ID NO: 4), or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the mRNA comprises the sequence of SEQ ID NO: 22736 encoding dCasX676 (SEQ ID NO: 28), or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto.

在一些實施例中,編碼dCasX 491 (SEQ ID NO: 4)之mRNA的序列具有假尿苷核苷置換序列(SEQ ID NO: 22729)中之一或多個或者所有尿苷。在一些實施例中,編碼dCasX 515 (SEQ ID NO: 6)之mRNA的序列具有假尿苷核苷置換序列(SEQ ID NO: 22728)中之一或多個或者所有尿苷。在一些實施例中,編碼dCasX 676 (SEQ ID NO:28)之mRNA的序列具有假尿苷核苷置換序列中之一或多個或者所有尿苷。在一些實施例中,編碼dCasX 812 (SEQ ID NO:29)之mRNA的序列具有假尿苷核苷置換序列(SEQ ID NO: 22730或22731)中之一或多個或者所有尿苷。In some embodiments, the sequence of the mRNA encoding dCasX 491 (SEQ ID NO: 4) has one or more or all uridines in a pseudouridine nucleoside substitution sequence (SEQ ID NO: 22729). In some embodiments, the sequence of the mRNA encoding dCasX 515 (SEQ ID NO: 6) has one or more or all uridines in a pseudouridine nucleoside substitution sequence (SEQ ID NO: 22728). In some embodiments, the sequence of the mRNA encoding dCasX 676 (SEQ ID NO: 28) has one or more or all uridines in a pseudouridine nucleoside substitution sequence. In some embodiments, the sequence of the mRNA encoding dCasX 812 (SEQ ID NO: 29) has one or more or all uridines in a pseudouridine nucleoside substitution sequence (SEQ ID NO: 22730 or 22731).

在一些實施例中,本揭示提供編碼RD1域之mRNA序列。在一些實施例中,編碼RD1之mRNA之序列包含選自由SEQ ID NO: 3120、22804及3334至6527組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%或至少約95%一致性之序列。在一些實施例中,編碼RD1之mRNA之序列包含選自由SEQ ID NO: 3120、22804及3334至6527組成之群的序列。在另一個實施例中,編碼RD1之mRNA序列包含選自由SEQ ID NO: 3334至3342及4931至4939組成之群的序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含選自由SEQ ID NO: 3334至3342及4931至4939組成之群的序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3334或SEQ ID NO: 4931之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3334或SEQ ID NO: 4931之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3335或SEQ ID NO: 4932之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3335或SEQ ID NO: 4932之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3336或SEQ ID NO: 4933之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3336或SEQ ID NO: 4933之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3337或SEQ ID NO: 4934之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3337或SEQ ID NO: 4934之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3338或SEQ ID NO: 4935之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3338或SEQ ID NO: 4935之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3339或SEQ ID NO: 4936之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3339或SEQ ID NO: 4936之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3340或SEQ ID NO: 4937之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3340或SEQ ID NO: 4937之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3341或SEQ ID NO: 4938之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在另一實施例中,編碼RD1之mRNA序列包含SEQ ID NO: 3341或SEQ ID NO: 4938之序列。In some embodiments, the disclosure provides mRNA sequences encoding RD1 domains. In some embodiments, the sequence of the mRNA encoding RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3120, 22804, and 3334 to 6527 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, or at least about 95% identity therewith. In some embodiments, the sequence of the mRNA encoding RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3120, 22804, and 3334 to 6527. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 3334 to 3342 and 4931 to 4939 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 3334 to 3342 and 4931 to 4939. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3334 or SEQ ID NO: 4931 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3334 or SEQ ID NO: 4931. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3335 or SEQ ID NO: 4932 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3335 or SEQ ID NO: 4932. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3336 or SEQ ID NO: 4933 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3336 or SEQ ID NO: 4933. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3337 or SEQ ID NO: 4934, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3337 or SEQ ID NO: 4934. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3338 or SEQ ID NO: 4935, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3338 or SEQ ID NO: 4935. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3339 or SEQ ID NO: 4936, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3339 or SEQ ID NO: 4936. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3340 or SEQ ID NO: 4937 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises the sequence of SEQ ID NO: 3340 or SEQ ID NO: 4937. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3341 or SEQ ID NO: 4938, or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In another embodiment, the mRNA sequence encoding RD1 comprises a sequence of SEQ ID NO: 3341 or SEQ ID NO: 4938.

在一些實施例中,mRNA包含編碼第二抑制子域之序列。在一些實施例中,第二抑制子域包含DNMT3A。在一些實施例中,編碼DNMT3A之mRNA序列包含SEQ ID NO: 3128或SEQ ID NO: 3331之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,編碼DNMT3A之mRNA序列包含SEQ ID NO: 3128或SEQ ID NO: 3331之序列。In some embodiments, the mRNA comprises a sequence encoding a second inhibitory subdomain. In some embodiments, the second inhibitory subdomain comprises DNMT3A. In some embodiments, the mRNA sequence encoding DNMT3A comprises a sequence of SEQ ID NO: 3128 or SEQ ID NO: 3331 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the mRNA sequence encoding DNMT3A comprises a sequence of SEQ ID NO: 3128 or SEQ ID NO: 3331.

在一些實施例中,mRNA包含編碼第三抑制子域之序列。在一些實施例中,第三抑制子域包含DNMT3L。在一些實施例中,編碼DNMT3L之mRNA序列包含序列SEQ ID NO: 3119或SEQ ID NO: 3332之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,編碼DNMT3L之mRNA之序列包含序列SEQ ID NO: 3119或SEQ ID NO: 3332。In some embodiments, the mRNA comprises a sequence encoding a third inhibitory subdomain. In some embodiments, the third inhibitory subdomain comprises DNMT3L. In some embodiments, the mRNA sequence encoding DNMT3L comprises a sequence of SEQ ID NO: 3119 or SEQ ID NO: 3332 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the sequence of the mRNA encoding DNMT3L comprises a sequence of SEQ ID NO: 3119 or SEQ ID NO: 3332.

在一些實施例中,mRNA包含編碼第四抑制子域之序列。在一些實施例中,第四抑制子域包含ADD。在一些實施例中,編碼ADD之mRNA之序列包含SEQ ID NO: 3296或SEQ ID NO: 22726之序列或與其具有至少約70%、至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,編碼ADD之mRNA之序列包含SEQ ID NO: 3296或SEQ ID NO: 22726之序列。In some embodiments, the mRNA comprises a sequence encoding a fourth inhibitory subdomain. In some embodiments, the fourth inhibitory subdomain comprises ADD. In some embodiments, the sequence of the mRNA encoding ADD comprises a sequence of SEQ ID NO: 3296 or SEQ ID NO: 22726 or a sequence having at least about 70%, at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the sequence of the mRNA encoding ADD comprises a sequence of SEQ ID NO: 3296 or SEQ ID NO: 22726.

在一些實施例中,本揭示之mRNA包含Kozak序列。在一些實施例中,Kozak序列包含GCCACCAUGG (SEQ ID NO: 22805)。在一些實施例中,本揭示之mRNA包含Kozak序列及在NLS上游之兩個鹼基(用以在NLS上游產生甲硫胺酸及丙胺酸)。在一些實施例中,mRNA在5' UTR與編碼NLS之序列之間包含序列GCCACCAUGGCC (SEQ ID NO: 22806)。In some embodiments, the mRNA of the present disclosure comprises a Kozak sequence. In some embodiments, the Kozak sequence comprises GCCACCAUGG (SEQ ID NO: 22805). In some embodiments, the mRNA of the present disclosure comprises a Kozak sequence and two bases upstream of the NLS (for producing methionine and alanine upstream of the NLS). In some embodiments, the mRNA comprises the sequence GCCACCAUGGCC (SEQ ID NO: 22806) between the 5'UTR and the sequence encoding the NLS.

在另一實施例中,mRNA包含NLS。在一些實施例中,編碼NLS之序列包含選自由SEQ ID NO: 3291及SEQ ID NO: 22807組成之群的序列或與其具有至少約70%、至少約80%或至少約90%一致性之序列。在另一實施例中,mRNA包含選自由SEQ ID NO: 3291及SEQ ID NO: 22807組成之群的序列。在另一實施例(例如其中長期抑制子蛋白包含超過一個NLS之彼等實施例)中,mRNA包含兩個或更多個獨立地選自由SEQ ID NO: 3291及SEQ ID NO: 22807組成之群的序列。In another embodiment, the mRNA comprises an NLS. In some embodiments, the sequence encoding the NLS comprises a sequence selected from the group consisting of SEQ ID NO: 3291 and SEQ ID NO: 22807 or a sequence having at least about 70%, at least about 80%, or at least about 90% identity thereto. In another embodiment, the mRNA comprises a sequence selected from the group consisting of SEQ ID NO: 3291 and SEQ ID NO: 22807. In another embodiment (e.g., those embodiments in which the long-term inhibitor protein comprises more than one NLS), the mRNA comprises two or more sequences independently selected from the group consisting of SEQ ID NO: 3291 and SEQ ID NO: 22807.

在一些實施例中,mRNA包含編碼長期抑制子融合蛋白之連接子的序列。在一些實施例中,編碼連接子之序列包含選自由SEQ ID NO: 3312至3327及22808至22828組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%一致性之序列。在一些實施例中,編碼連接子之序列包含選自由SEQ ID NO: 3312至3327及22808至22828組成之群的序列。在一些實施例(例如其中長期抑制子融合蛋白包含超過一個連接子之彼等實施例)中,編碼連接子之序列獨立地選自由SEQ ID NO: 3312至3327及22808至22828組成之群或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%一致性之序列。In some embodiments, the mRNA comprises a sequence encoding a linker of a long-term suppressor fusion protein. In some embodiments, the sequence encoding the linker comprises a sequence selected from the group consisting of SEQ ID NOs: 3312 to 3327 and 22808 to 22828, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95% identity thereto. In some embodiments, the sequence encoding the linker comprises a sequence selected from the group consisting of SEQ ID NOs: 3312 to 3327 and 22808 to 22828. In some embodiments (e.g., those embodiments in which the long-term suppressor fusion protein comprises more than one linker), the sequence encoding the linker is independently selected from the group consisting of SEQ ID NOs: 3312 to 3327 and 22808 to 22828, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95% identity thereto.

在一些實施例中,mRNA包含編碼本文所提供之組態之長期抑制子融合蛋白的序列。在一些實施例中,mRNA編碼組態1之長期抑制子融合蛋白,且mRNA包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17841至19446組成之群的序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,mRNA包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17841至19446組成之群的序列。In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of a configuration provided herein. In some embodiments, the mRNA encodes a long-term suppressor fusion protein of configuration 1, and the mRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 6529 to 8134, 9741 to 11347, 14628 to 16233, and 17841 to 19446, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 6529 to 8134, 9741 to 11347, 14628 to 16233, and 17841 to 19446.

在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼RD1之序列,該RD1包含SEQ ID NO: 130之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6531、9744、14630或17843之序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6531、9744、14630或17843之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 131之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6529、9742、14628或17841之序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6529、9742、14628或17841之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且mRNA包含編碼SEQ ID NO: 132之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6535、9748、14634或17847之序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6535、9748、14634或17847之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 133之RD1之序列。在一些實施例中,mRNA包含SEQ ID NO: 6536、9749、14635或17848之序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6536、9749、14635或17848之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且mRNA包含編碼SEQ ID NO: 134之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6534、9747、14633或17846之序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6534、9747、14633或17846之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 135之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6530、9743、14629或17842之序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6530、9743、14629或17842之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 136之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6537、9750、14636或17849之序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6537、9750、14636或17849之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 137之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6533、9746、14632或17845之序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6533、9746、14632或17845之序列。在一些實施例中,mRNA包含編碼組態1之長期抑制子融合蛋白的序列,且包含編碼SEQ ID NO: 138之RD1之序列。在一些實施例中,mRNA包含序列SEQ ID NO: 6532、9745、14631或17844之序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含SEQ ID NO: 6532、9745、14631或17844之序列。In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1, wherein the RD1 comprises the sequence of SEQ ID NO: 130. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6531, 9744, 14630 or 17843, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6531, 9744, 14630 or 17843. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 131. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6529, 9742, 14628 or 17841, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6529, 9742, 14628 or 17841. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1, and the mRNA comprises a sequence encoding RD1 of SEQ ID NO: 132. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6535, 9748, 14634 or 17847, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6535, 9748, 14634 or 17847. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 133. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6536, 9749, 14635 or 17848, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6536, 9749, 14635 or 17848. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1, and the mRNA comprises a sequence encoding RD1 of SEQ ID NO: 134. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6534, 9747, 14633 or 17846, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6534, 9747, 14633 or 17846. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 135. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6530, 9743, 14629 or 17842, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6530, 9743, 14629 or 17842. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 136. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6537, 9750, 14636 or 17849, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6537, 9750, 14636 or 17849. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 137. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6533, 9746, 14632 or 17845, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6533, 9746, 14632 or 17845. In some embodiments, the mRNA comprises a sequence encoding a long-term suppressor fusion protein of configuration 1 and comprises a sequence encoding RD1 of SEQ ID NO: 138. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6532, 9745, 14631 or 17844, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence of SEQ ID NO: 6532, 9745, 14631 or 17844.

本揭示提供一種編碼組態5之長期抑制子融合蛋白的mRNA。在一些實施例中,mRNA包含選自由SEQ ID NO: 8135至9740、11348至12953、16234至17839及19447至21052組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含選自由SEQ ID NO: 8135至9740、11348至12953、16234至17839及19447至21052組成之群的序列。The present disclosure provides an mRNA encoding a long-term suppressor fusion protein of configuration 5. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 8135 to 9740, 11348 to 12953, 16234 to 17839, and 19447 to 21052, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 8135 to 9740, 11348 to 12953, 16234 to 17839, and 19447 to 21052.

本揭示提供一種編碼組態6a之長期抑制子融合蛋白之mRNA,其中所編碼之RD1係一致的。在一些實施例中,mRNA包含選自由SEQ ID NO:  12954至14553及21053至22652組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含選自由SEQ ID NO: 12954至14553及21053至22652組成之群的序列。The present disclosure provides an mRNA encoding a long-term suppressor fusion protein of configuration 6a, wherein the encoded RD1 is identical. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NO: 12954 to 14553 and 21053 to 22652 or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity thereto. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NO: 12954 to 14553 and 21053 to 22652.

本揭示提供一種編碼組態6b之長期抑制子融合蛋白之mRNA,其中所編碼之RD1係不同的。在一些實施例中,mRNA包含選自由SEQ ID NO: 14554至14626及22653至22725組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列。在一些實施例中,mRNA包含選自由SEQ ID NO: 14554至14626及22653至22725組成之群的序列。The present disclosure provides a mRNA encoding a long-term suppressor fusion protein of configuration 6b, wherein the encoded RD1 is different. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NO: 14554 to 14626 and 22653 to 22725 or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identity therewith. In some embodiments, the mRNA comprises a sequence selected from the group consisting of SEQ ID NO: 14554 to 14626 and 22653 to 22725.

在編碼本揭示之LTRP:gRNA系統之長期抑制子融合蛋白之mRNA之一些實施例中,在將系統遞送至靶向細胞後,表現mRNA且長期抑制子融合蛋白能夠與gRNA複合且結合目標DNA,引起細胞中 PCSK9基因之轉錄之抑制或緘默化。 VI. 系統之引導核酸 In some embodiments of the mRNA encoding the long-term suppressor fusion protein of the LTRP:gRNA system disclosed herein, after the system is delivered to the targeted cell, the mRNA is expressed and the long-term suppressor fusion protein is able to complex with the gRNA and bind to the target DNA, resulting in inhibition or silencing of transcription of the PCSK9 gene in the cell. VI. Guide Nucleic Acid of the System

在另一態樣中,本發明係關於特異性設計之引導核糖核酸(gRNA),其包含支架及與 PCSK9基因之目標核酸序列互補(且因此能夠與其雜合)的連接靶向序列。本文所描述之gRNA可與長期抑制子蛋白及包含其之系統一起使用,以抑制真核細胞中 PCSK9目標核酸之轉錄。如本文所用,術語「gRNA」涵蓋天然存在之分子及gRNA變異體,包括包含來自不同gRNA之域的嵌合gRNA變異體。本揭示之gRNA包含支架及連接至該支架之3'末端的靶向序列,該靶向序列與細胞之目標核酸互補。 In another aspect, the present invention relates to a specifically designed guide RNA (gRNA) comprising a scaffold and a linked targeting sequence that is complementary to (and therefore capable of hybridizing with) a target nucleic acid sequence of a PCSK9 gene. The gRNA described herein can be used with long-term suppressor proteins and systems comprising the same to inhibit transcription of PCSK9 target nucleic acids in eukaryotic cells. As used herein, the term "gRNA" encompasses naturally occurring molecules and gRNA variants, including chimeric gRNA variants comprising domains from different gRNAs. The gRNA disclosed herein comprises a scaffold and a targeting sequence linked to the 3' end of the scaffold that is complementary to a target nucleic acid of a cell.

在一些實施例中,包含編碼長期抑制子融合蛋白之mRNA之系統在dCasX蛋白在經轉染細胞中表現後包含dCasX蛋白及一或多個gRNA,與gRNA一起形成核糖核蛋白(RNP)複合物,其可靶向且結合細胞之目標核酸序列中的特定位置。gRNA藉由包括具有與目標核酸序列之序列互補之核苷酸序列的靶向序列(或「間隔子」)對複合物提供目標特異性,而該系統之長期抑制子融合蛋白提供位點特異性活性,諸如目標基因之結合及抑制,該目標基因係藉助於目標核酸序列與gRNA之締合而被引導至該目標核酸序列內之目標位點(例如在目標位點處穩定)。In some embodiments, a system comprising mRNA encoding a long-term suppressor fusion protein comprises a dCasX protein and one or more gRNAs, which together with the gRNA form a ribonucleoprotein (RNP) complex that can target and bind to a specific location in a target nucleic acid sequence of a cell after the dCasX protein is expressed in a transfected cell. The gRNA provides target specificity to the complex by including a targeting sequence (or "spacer") having a nucleotide sequence that is complementary to the sequence of the target nucleic acid sequence, while the long-term suppressor fusion protein of the system provides site-specific activities, such as binding and inhibition of a target gene, which is guided to the target site within the target nucleic acid sequence (e.g., stabilized at the target site) by virtue of the binding of the target nucleic acid sequence to the gRNA.

用於PCSK9目標核酸之抑制及/或表觀遺傳修飾的gRNA以及mRNA及gRNA之調配物的實施例描述於下文中。 a.參考gRNA及gRNA變異體 Examples of gRNAs and formulations of mRNAs and gRNAs for inhibition and/or epigenetic modification of PCSK9 target nucleic acids are described below. a. Reference gRNAs and gRNA variants

如本文所使用,「參考gRNA」係指包含天然存在之gRNA之野生型序列的CRISPR引導核糖核酸。在一些實施例中,可對本揭示之gRNA支架進行一或多種突變誘發方法,諸如WO2023235818A2、WO2022120095A1及WO2020247882A1 (以引用之方式併入本文中)中所描述的突變誘發方法,該等方法可包括深度突變演變(DME)、深度突變掃描(DMS)、易錯PCR、卡匣突變誘發、隨機突變誘發、交錯延伸PCR、基因改組、域交換或化學修飾,以便產生一或多個gRNA變異體,其特性相對於經修飾之gRNA支架增強或變化。衍生出gRNA變異體之gRNA支架的活性可用作比較gRNA變異體之活性的基準,藉此量測gRNA支架之功能或其他特徵之改良。As used herein, "reference gRNA" refers to a CRISPR guide RNA comprising the wild-type sequence of a naturally occurring gRNA. In some embodiments, the gRNA scaffold of the present disclosure may be subjected to one or more mutation induction methods, such as those described in WO2023235818A2, WO2022120095A1, and WO2020247882A1 (incorporated herein by reference), which may include deep mutation evolution (DME), deep mutation scanning (DMS), error-prone PCR, cassette mutation induction, random mutation induction, staggered extension PCR, gene shuffling, domain swapping, or chemical modification to generate one or more gRNA variants whose properties are enhanced or altered relative to the modified gRNA scaffold. The activity of the gRNA scaffold from which the gRNA variants are derived can be used as a benchmark to compare the activities of the gRNA variants, thereby measuring the improvement of the function or other characteristics of the gRNA scaffold.

表8提供參考gRNA tracr及支架序列之序列。在一些實施例中,本揭示提供gRNA變異體,其中gRNA具有包含相對於表8之SEQ ID NO: 1731至1743中任一者之參考gRNA序列具有一或多個核苷酸修飾之序列的支架。 8 參考 gRNA tracr 及支架序列 SEQ ID NO. 核苷酸序列 1731 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGGAGAGAAACCGAUAAGUAAAACGCAUCAAAG 1732 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGAGAGAAAUCCGAUAAAUAAGAAGCAUCAAAG 1733 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGGAGA 1734 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGG 1735 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGAGA 1736 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGG 1737 GUUUACACACUCCCUCUCAUAGGGU 1738 GUUUACACACUCCCUCUCAUGAGGU 1739 UUUUACAUACCCCCUCUCAUGGGAU 1740 GUUUACACACUCCCUCUCAUGGGGG 1741 CCAGCGACUAUGUCGUAUGG 1742 GCGCUUAUUUAUCGGAGAGAAAUCCGAUAAAUAAGAAGC 1743 GGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGA b.gRNA域及其功能 Table 8 provides sequences of reference gRNA tracr and scaffold sequences. In some embodiments, the disclosure provides gRNA variants, wherein the gRNA has a scaffold comprising a sequence having one or more nucleotide modifications relative to the reference gRNA sequence of any one of SEQ ID NOs: 1731 to 1743 of Table 8. Table 8 : Reference gRNA tracr and scaffold sequences SEQ ID NO. Nucleotide sequence 1731 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGGAGAGAAACCGAUAAGUAAAACGCAUCAAAG 1732 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGAGAGAAAUCCGAUAAAUAAGAAGCAUCAAAG 1733 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGGAGA 1734 ACAUCUGGCGCGUUUAUUCCAUUACUUUGGAGCCAGUCCCAGCGACUAUGUCGUAUGGACGAAGCGCUUAUUUAUCGG 1735 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGAGA 1736 UACUGGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGG 1737 GUUUACACACUCCCUCUCAUAGGGU 1738 GUUUACACACUCCCUCUCAUGAGGU 1739 UUUUACAUACCCCCUCUCAUGGGAU 1740 GUUUACACACUCCCUCUCAUGGGGG 1741 CCAGCGACUAUGUCGUAUGG 1742 GCGCUUAUUUAUCGGAGAGAAAUCCGAUAAAUAAGAAGC 1743 GGCGCUUUUAUCUCAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAUGGGUAAAGCGCUUAUUUAUCGGA b. gRNA domain and its function

本揭示之系統的gRNA包含兩個片段:靶向序列及蛋白質結合片段。gRNA之靶向區段包括與目標核酸序列(例如雙股目標DNA、目標ssRNA、目標ssDNA之股等)內之特定序列(目標位點)互補(且因此與其雜合)的核苷酸序列(可互換地稱為間隔子、靶向子或靶向序列),下文對其進行更全面的描述。gRNA之靶向序列能夠結合至目標核酸序列(在本揭示之上下文中包括編碼序列、編碼序列之互補序列、非編碼序列)且結合至輔助元件。gRNA之蛋白質結合區段(或「活化因子」或「蛋白質結合序列」)與dCasX蛋白相互作用(例如與其結合)成為複合物,從而形成RNP (下文對其進行更全面的描述)。如本文所用,「支架」係指除靶向序列之外的用於引導之所有部分,其包含若干區,下文對其進行更全面的描述。CasX gRNA (野生型及變異體)之特性及特徵描述於以引用的方式併入本文中的WO2020247882A1、US20220220508A1及WO2022120095A1中。The gRNA of the disclosed system comprises two segments: a targeting sequence and a protein binding segment. The targeting segment of the gRNA includes a nucleotide sequence (interchangeably referred to as a spacer, a targeter, or a targeting sequence) that complements (and thus hybridizes with) a specific sequence (target site) within a target nucleic acid sequence (e.g., a double-stranded target DNA, a target ssRNA, a strand of a target ssDNA, etc.), which is described more fully below. The targeting sequence of the gRNA is capable of binding to a target nucleic acid sequence (including a coding sequence, a complementary sequence of a coding sequence, a non-coding sequence in the context of the present disclosure) and to an auxiliary element. The protein binding segment (or "activator" or "protein binding sequence") of the gRNA interacts with (e.g., binds to) the dCasX protein into a complex, thereby forming an RNP (described more fully below). As used herein, "scaffold" refers to all parts used for guiding except the targeting sequence, which includes several regions, which are described more fully below. The properties and characteristics of CasX gRNA (wild type and variants) are described in WO2020247882A1, US20220220508A1 and WO2022120095A1, which are incorporated herein by reference.

就參考gRNA而言,gRNA作為雙引導RNA (dgRNA)天然存在,其中靶向子部分及活化因子部分各具有雙螺旋形成區段,該靶向子部分及該活化因子部分彼此具有互補性且彼此雜合以形成雙股雙螺旋體(用於gRNA之dsRNA雙螺旋體)。本文所使用之術語「靶向子(targeter)」或「靶向子RNA (targeter RNA)」係指CasX雙引導RNA之crRNA樣分子(crRNA:「CRISPR RNA」) (且因此指當「活化因子」及「靶向子」連接在一起(例如藉由插入核苷酸)時,CasX單引導RNA之crRNA樣分子)。crRNA具有與tracrRNA黏接之5'區,其後是靶向序列之核苷酸。就用於本揭示之系統中之gRNA而言,支架經設計以使得活化因子部分及目標部分彼此共價連接(而非彼此雜合)且包含單分子,且可稱為「單分子gRNA (single-molecule gRNA)」、「單引導RNA (single guide RNA)」、「單分子引導RNA (single-molecule guide RNA)」、「獨分子引導RNA (one-molecule guide RNA)」或「sgRNA」。用於系統之本揭示之gRNA變異體為所有單分子型式。With reference to gRNA, gRNA exists naturally as a double-guide RNA (dgRNA), wherein the targeting sub-portion and the activating factor portion each have a duplex-forming segment, and the targeting sub-portion and the activating factor portion are complementary to each other and hybridize with each other to form a double-stranded duplex (dsRNA duplex for gRNA). The term "targeter" or "targeter RNA" used herein refers to the crRNA-like molecule of the CasX double-guide RNA (crRNA: "CRISPR RNA") (and therefore refers to the crRNA-like molecule of the CasX single-guide RNA when the "activating factor" and the "targeter" are linked together (e.g., by inserting nucleotides). The crRNA has a 5' region that is attached to the tracrRNA, followed by the nucleotides of the targeting sequence. For the gRNA used in the system of the present disclosure, the scaffold is designed so that the activator portion and the target portion are covalently linked to each other (rather than hybridized to each other) and comprise a single molecule, and may be referred to as a "single-molecule gRNA", "single guide RNA", "single-molecule guide RNA", "one-molecule guide RNA" or "sgRNA". The gRNA variants of the present disclosure used in the system are all single molecule forms.

總體而言,本揭示之經組裝之gRNA包含不同的結構化區或域:RNA三螺旋體、支架莖環、延伸莖環、假結及靶向序列,在本揭示之實施例中,該靶向序列與目標核酸之序列互補且位於gRNA之3'末端上。RNA三螺旋體、支架莖環、假結及延伸莖環連同橋接三聯體部分之非結構化三聯體環一起稱為gRNA之「支架」。在一些情況下,支架莖進一步包含泡。在其他情況下,支架進一步包含三螺旋體環區。在其他情況下,支架進一步包含5'非結構化區。在一些實施例中,用於LTRP:gRNA系統中的本揭示之gRNA支架包含支架莖環,其具有CCAGCGACUAUGUCGUAGUGG (SEQ ID NO: 1822)之序列或與其具有至少1個、2個、3個、4個或5個錯配之序列。In general, the assembled gRNA of the present disclosure comprises different structured regions or domains: RNA triple helix, scaffold stem loop, extended stem loop, pseudoknot and targeting sequence, in the embodiments of the present disclosure, the targeting sequence is complementary to the sequence of the target nucleic acid and is located at the 3' end of the gRNA. The RNA triple helix, scaffold stem loop, pseudoknot and extended stem loop together with the unstructured triplet loop bridging the triplet portion are referred to as the "scaffold" of the gRNA. In some cases, the scaffold stem further comprises a bubble. In other cases, the scaffold further comprises a triple helix loop region. In other cases, the scaffold further comprises a 5' unstructured region. In some embodiments, a gRNA scaffold of the present disclosure for use in a LTRP:gRNA system comprises a scaffold stem loop having a sequence of CCAGCGACUAUGUCGUAGUGG (SEQ ID NO: 1822) or a sequence having at least 1, 2, 3, 4, or 5 mismatches therewith.

結構化域中之各者有助於建立引導物之整體RNA摺疊且保留引導物之功能;尤其是與dCasX蛋白恰當地複合之能力。舉例而言,引導支架莖與dCasX蛋白之螺旋狀I域相互作用,而三螺旋體、三螺旋體環及假結莖內之殘基與dCasX蛋白之OBD相互作用。總之,此等相互作用賦予該引導物與LTRP結合且與LTRP形成保留穩定性之RNP的能力,而間隔子(或靶向序列)導引且限定RNP結合DNA之特定序列的特異性。Each of the structured domains contributes to establishing the overall RNA fold of the guide and retaining the function of the guide; in particular, the ability to properly complex with the dCasX protein. For example, the guide scaffold stem interacts with the helical I domain of the dCasX protein, while residues within the triple helix, triple helix loop, and pseudostem interact with the OBD of the dCasX protein. Together, these interactions confer the ability of the guide to bind to the LTRP and form a stable RNP with the LTRP, while the spacer (or targeting sequence) guides and defines the specificity of the RNP to bind to a particular sequence of DNA.

LTRP之dCasX蛋白對目標核酸序列(例如,基因體DNA)的位點特異性結合可以發生在藉由gRNA之靶向序列與目標核酸序列之間的鹼基配對互補性確定之一或多個位置(例如, PCSK9目標核酸之序列)。因此,舉例而言,本揭示之gRNA具有與鄰近與TC 原間隔子相鄰模體(PAM)模體或PAM序列(諸如ATC、CTC、GTC或TTC)互補之序列的目標核酸互補且因此可與該目標核酸雜合的序列。因為引導序列之靶向序列與目標核酸序列之序列雜合,所以只要考慮PAM序列之位置,靶向序列可由使用者修飾以與特異性目標核酸序列雜合。在一些實施例中,為設計靶向序列,目標核酸包含位於靶向序列之5'的PAM序列,該PAM序列具有至少一個單核苷酸將PAM與目標核酸中的第一核苷酸(其與靶向序列之第一核苷酸互補)分開。此特徵將本文所描述之系統與Cas9系統相區別,且使得當與Cas9系統相比較時,本揭示之系統能夠修飾DNA序列中的不同位置。在一些實施例中,PAM位於目標區域之非靶向股上,亦即,與目標核酸互補之股上。在一些實施例中,gRNA之靶向序列與距ATC PAM序列一個核苷酸的 PCSK9目標核酸序列互補。在一些實施例中,gRNA之靶向序列與距CTC PAM序列一個核苷酸的 PCSK9目標核酸序列互補。在一些實施例中,gRNA之靶向序列與距GTC PAM序列一個核苷酸的 PCSK9目標核酸序列互補。在一些實施例中,gRNA之靶向序列與距TTC PAM序列一個核苷酸的 PCSK9目標核酸序列互補。藉由選擇gRNA之靶向序列,可使用本文所描述之LTRP:gRNA系統抑制目標核酸序列之限定區或將目標核酸內之特定位置歸在一起之序列。在一些實施例中,gRNA之靶向序列具有在15至22個連續核苷酸。在一些實施例中,靶向序列具有15、16、17、18、19、20、21或22個連續核苷酸。在一些實施例中,靶向序列由22個連續核苷酸組成。在一些實施例中,靶向序列由21個連續核苷酸組成。在一些實施例中,靶向序列由20個連續核苷酸組成。在一些實施例中,靶向序列由19個連續核苷酸組成。在一些實施例中,靶向序列由18個連續核苷酸組成。在一些實施例中,靶向序列由17個連續核苷酸組成。在一些實施例中,靶向序列由16個連續核苷酸組成。在一些實施例中,靶向序列由15個連續核苷酸組成。藉由選擇gRNA之靶向序列,可使用本文所描述之LTRP:gRNA系統對 PCSK9目標核酸序列之限定區進行抑制及/或表觀遺傳修飾。 Site-specific binding of the dCasX protein of the LTRP to a target nucleic acid sequence (e.g., genomic DNA) can occur at one or more positions (e.g., a sequence of a PCSK9 target nucleic acid) determined by base pairing complementarity between the targeting sequence of the gRNA and the target nucleic acid sequence. Thus, for example, the gRNA of the present disclosure has a sequence that is complementary to a target nucleic acid adjacent to a sequence complementary to a TC protospacer adjacent motif (PAM) motif or a PAM sequence (e.g., ATC, CTC, GTC, or TTC) and can therefore hybridize with the target nucleic acid. Because the targeting sequence of the guide sequence hybridizes with the sequence of the target nucleic acid sequence, the targeting sequence can be modified by the user to hybridize with a specific target nucleic acid sequence, as long as the position of the PAM sequence is taken into account. In some embodiments, to design a targeting sequence, the target nucleic acid comprises a PAM sequence located 5' of the targeting sequence, the PAM sequence having at least one single nucleotide separating the PAM from the first nucleotide in the target nucleic acid (which is complementary to the first nucleotide of the targeting sequence). This feature distinguishes the system described herein from the Cas9 system and enables the system disclosed herein to modify different positions in a DNA sequence when compared to the Cas9 system. In some embodiments, the PAM is located on a non-targeting strand of the target region, i.e., on a strand complementary to the target nucleic acid. In some embodiments, the targeting sequence of the gRNA is complementary to a PCSK9 target nucleic acid sequence one nucleotide away from the ATC PAM sequence. In some embodiments, the targeting sequence of the gRNA is complementary to a PCSK9 target nucleic acid sequence one nucleotide away from the CTC PAM sequence. In some embodiments, the targeting sequence of gRNA is complementary to the PCSK9 target nucleic acid sequence one nucleotide away from the GTC PAM sequence. In some embodiments, the targeting sequence of gRNA is complementary to the PCSK9 target nucleic acid sequence one nucleotide away from the TTC PAM sequence. By selecting the targeting sequence of gRNA, the LTRP:gRNA system described herein can be used to inhibit the defined region of the target nucleic acid sequence or to group the sequence of specific positions in the target nucleic acid together. In some embodiments, the targeting sequence of gRNA has 15 to 22 consecutive nucleotides. In some embodiments, the targeting sequence has 15, 16, 17, 18, 19, 20, 21 or 22 consecutive nucleotides. In some embodiments, the targeting sequence consists of 22 consecutive nucleotides. In some embodiments, the targeting sequence consists of 21 consecutive nucleotides. In some embodiments, the targeting sequence consists of 20 consecutive nucleotides. In some embodiments, the targeting sequence consists of 19 consecutive nucleotides. In some embodiments, the targeting sequence consists of 18 consecutive nucleotides. In some embodiments, the targeting sequence consists of 17 consecutive nucleotides. In some embodiments, the targeting sequence consists of 16 consecutive nucleotides. In some embodiments, the targeting sequence consists of 15 consecutive nucleotides. By selecting the targeting sequence of the gRNA, the LTRP:gRNA system described herein can be used to inhibit and/or epigenetically modify a limited region of the PCSK9 target nucleic acid sequence.

本揭示之基因抑制子系統可設計成靶向尋求轉錄抑制的 PCSK9基因或 PCSK9基因區之任何區或接近該基因或基因區之任何區。當要抑制整個基因時,本發明考慮設計具有與涵蓋或接近轉錄起始位點(TSS)之序列互補的靶向序列的引導物。視啟動子序列及起始受質濃度而定,TSS選擇發生在啟動子區內的不同位置。核心啟動子充當用於轉錄機制之結合平台,其包含Pol II及其相關通用轉錄因子(general transcription factor;GTF) (Haberle, V.等人Eukaryotic core promoters and the functional basis of transcription initiation (Nat Rev Mol Cell Biol. 19(10):621 (2018))。已提出TSS選擇之變化性涉及DNA『蜷縮(scrunching)』及『反蜷縮』,其標誌為:(i) RNA聚合酶前邊緣而非後邊緣相對於DNA之正向及反向移動,及(ii)轉錄泡之膨脹及收縮。在一些實施例中,LTRP:gRNA系統之RNP所結合的目標核酸序列處於 PCSK9基因中轉錄起始位點(TSS)之1.5千鹼基(kb)內。在一些實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之TSS上游20鹼基對(bp)、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp、1 kb或1.5 kb內。在一些實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之TSS下游20 bp、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp、1 kb或1.5 kb內。在一些實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之上游1.5 kb至下游1.5、上游1 kb至下游1 kb、上游500 bp至下游500 bp、或上游300 bp至下游300 bp、或上游100 bp至下游100 bp內。在一些實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之強化子的20 bp、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp、1 kb或1.5 kb內。在一些實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之3'至5'非轉譯區之1 kb內。在其他實施例中,該系統之RNP所結合的目標核酸序列處於 PCSK9基因之開讀框內,包括內含子(若存在)。在一些實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之外顯子的序列互補。在一特定實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之外顯子1的序列互補。在其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之內含子之序列互補。在其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之內含子-外顯子接合點的序列互補。在其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之調控元件的序列互補。在其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之基因間區的序列互補。在其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之外顯子、內含子及/或調控元件之接合點的序列互補。在靶向序列與調控元件之序列互補之彼等情況下,此等調控元件包括但不限於啟動子區、強化子區、基因間區、5'非轉譯區(5' UTR)、3'非轉譯區(3' UTR)、保守元件及包含順式調控元件之區域。啟動子區意欲涵蓋編碼序列之起始點之5 kb內的核苷酸,或在基因強化子元件或保守元件的情況下,可與 PCSK9基因之編碼序列相距數千bp、數十萬bp或甚至數百萬bp。在前述內容中,目標為其中目標之編碼 PCSK9基因意欲被抑制以使得 PCSK9基因產物在細胞中不表現或表現量較低的彼等目標。在一些實施例中,在本揭示之系統之RNP結合於目標核酸之結合位置後,該系統能夠抑制在RNP之結合位置5'的 PCSK9基因之轉錄。在其他實施例中,在該系統之RNP結合於目標核酸之結合位置後,該系統能夠抑制在RNP之結合位置3'的 PCSK9基因之轉錄。 The gene suppressor system disclosed herein can be designed to target the PCSK9 gene or any region of the PCSK9 gene region or any region near the gene or gene region for which transcriptional inhibition is sought. When the entire gene is to be inhibited, the present invention contemplates designing a guide with a targeting sequence complementary to a sequence covering or near the transcription start site (TSS). Depending on the promoter sequence and the starting substrate concentration, TSS selection occurs at different positions within the promoter region. The core promoter serves as a binding platform for the transcriptional machinery, which includes Pol II and its associated general transcription factor (GTF) (Haberle, V. et al. Eukaryotic core promoters and the functional basis of transcription initiation (Nat Rev Mol Cell Biol. 19(10):621 (2018)). It has been proposed that the variability in TSS selection involves DNA "scrunching" and "de-scrunching", which are characterized by: (i) In some embodiments, the target nucleic acid sequence bound by the RNP of the LTRP:gRNA system is within 1.5 kilobases (kb) of the transcription start site (TSS) in the PCSK9 gene. In some embodiments, the target nucleic acid sequence bound by the RNP of the system is within 20 base pairs (bp), 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, 1 kb or 1.5 kb upstream of the TSS of the PCSK9 gene. In some embodiments, the target nucleic acid sequence bound by the RNP of the system is within 20 bp, 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, 1 kb or 1.5 kb downstream of the TSS of the PCSK9 gene. bp, 500 bp, 1 kb or 1.5 kb. In some embodiments, the target nucleic acid sequence bound by the RNP of the system is within 1.5 kb upstream to 1.5 downstream, 1 kb upstream to 1 kb downstream, 500 bp upstream to 500 bp downstream, or 300 bp upstream to 300 bp downstream, or 100 bp upstream to 100 bp downstream of the PCSK9 gene. In some embodiments, the target nucleic acid sequence bound by the RNP of the system is within 20 bp, 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, 1 kb or 1.5 kb of the enhancer of the PCSK9 gene. In some embodiments, the target nucleic acid sequence bound by the RNP of the system is within 1 kb of the 3' to 5' non-translated region of the PCSK9 gene. kb. In other embodiments, the target nucleic acid sequence bound by the RNP of the system is within the open reading frame of the PCSK9 gene, including introns (if present). In some embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the exons of the PCSK9 gene. In a specific embodiment, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of exon 1 of the PCSK9 gene. In other embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the introns of the PCSK9 gene. In other embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the intron-exon junction of the PCSK9 gene. In other embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the regulatory element of the PCSK9 gene. In other embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the intergenic region of the PCSK9 gene. In other embodiments, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the junction of the exons, introns and/or regulatory elements of the PCSK9 gene. In those cases where the targeting sequence is complementary to the sequence of the regulatory element, these regulatory elements include but are not limited to promoter regions, enhancer regions, intergenic regions, 5' non-translational regions (5'UTR), 3' non-translational regions (3'UTR), conservative elements, and regions containing cis-regulatory elements. The promoter region is intended to cover nucleotides within 5 kb of the start point of the coding sequence, or in the case of a gene enhancer element or a conservative element, it can be thousands of bp, hundreds of thousands of bp, or even millions of bp away from the coding sequence of the PCSK9 gene. In the foregoing, the target is one in which the target's coding PCSK9 gene is intended to be inhibited so that the PCSK9 gene product is not expressed or expressed at a lower level in the cell. In some embodiments, after the RNP of the system disclosed herein binds to the binding site of the target nucleic acid, the system can inhibit the transcription of the PCSK9 gene at the 5' binding site of the RNP. In other embodiments, after the RNP of the system binds to the binding site of the target nucleic acid, the system can inhibit the transcription of the PCSK9 gene at the 3' binding site of the RNP.

在一些實施例中,目標核酸包含位於靶向序列之5'的PAM序列,該PAM序列具有至少一個單核苷酸將PAM與靶向序列之第一個核苷酸分開。在一些實施例中,PAM位於目標區之非靶向股上,亦即與目標核酸互補之股上,且如下表9中所示,其代表用於連接至本揭示之gRNA支架之PCSK9目標核酸的靶向序列;例如gRNA 174 (SEQ ID NO: 1744)、235 (SEQ ID NO: 1745)、316 (SEQ ID NO: 1746)或經化學修飾之型式。在一些實施例中,PAM序列為TTC。In some embodiments, the target nucleic acid comprises a PAM sequence located 5' of the targeting sequence, the PAM sequence having at least one single nucleotide separating the PAM from the first nucleotide of the targeting sequence. In some embodiments, the PAM is located on the non-targeting strand of the target region, i.e., the strand complementary to the target nucleic acid, and as shown in Table 9 below, which represents the targeting sequence of the PCSK9 target nucleic acid for attachment to the gRNA scaffold of the present disclosure; for example, gRNA 174 (SEQ ID NO: 1744), 235 (SEQ ID NO: 1745), 316 (SEQ ID NO: 1746), or a chemically modified version. In some embodiments, the PAM sequence is TTC.

在一些實施例中,gRNA之靶向序列包含選自由SEQ ID NO: 1824至2544、2672、2675、2694及2714組成之群的序列,如表9中所闡述。在一些實施例中,gRNA之靶向序列包含選自由SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群的序列。在一些實施例中,gRNA之靶向序列包含選自由SEQ ID NO: 1834、1849、1853、1855至1858、1860、1862、1863、1867、1869、1870、1872、1874及1875組成之群的序列。在一些實施例中,gRNA之靶向序列包含選自由SEQ ID NO: 1855、1867及1869組成之群的序列。在一特定實施例中,gRNA之靶向序列由SEQ ID NO: 1855之序列組成。在另一特定實施例中,gRNA之靶向序列由SEQ ID NO: 1867之序列組成。在另一特定實施例中,gRNA之靶向序列由SEQ ID NO: 1869之序列組成。在一些實施例中,前述靶向序列連接至gRNA 174 (SEQ ID NO: 1744)、235 (SEQ ID NO: 1745)或316 (SEQ ID NO: 1746)或其化學修飾型式之gRNA支架。 9 使用長期抑制子融合蛋白對 PCSK9 具有特異性之靶向序列 靶向序列 RNA序列 SEQ ID PAM序列 TG-06-342 AAUUACAGGCAACAGGAAGG 1824 TTC TG-06-343 CCCCAUGUAAGAGAGGAAGU 1825 TTC TG-06-344 CAGUUUCUGCCUCGCCGCGG 1826 TTC TG-06-345 GCCUCGCCGCGGCACAGGUG 1827 TTC TG-06-346 CCCACCUGUGCCGCGGCGAG 1828 TTC TG-06-347 CUCCUUCACCCACCUGUGCC 1829 TTC TG-06-348 AGGCAUUCACUCCUUCACCC 1830 TTC TG-06-349 CUGUGCCUGGUGCAGUUCCC 1831 TTC TG-06-350 GUGUCAUAAAGAAAUUGCCU 1832 TTC TG-06-351 UUAUGACACAGAACUCAUGC 1833 TTC TG-06-001 GAGGAGGACGGCCUGGCCGA 1834 TTC TG-06-002 ACCGCUGCGCCAAGGUGCGG 1835 TTC TG-06-004 GCCAGGCCGUCCUCCUCGGA 1836 TTC TG-06-005 GUGCUCGGGUGCUUCGGCCA 1837 TTC TG-06-117 ACUUUGUUUGCAAAGACCUC 1838 TTC TG-06-118 GAGUGAAAUGGCCUGCUCUG 1839 TTC TG-06-119 GAGCAGGCCAUUUCACUCGG 1840 TTC TG-06-120 CUCGGAAUCUGCUGUGCAUC 1841 TTC TG-06-121 GGAAGGGCUGUCGAUACUGG 1842 TTC TG-06-123 UCCCAGUAUCGACAGCCCUU 1843 TTC TG-06-124 CAGUAUCGACAGCCCUUCCA 1844 TTC TG-06-125 AGAAAGAGCAAGCCUCAUGU 1845 TTC TG-06-128 AGAAAUCAACUGGACAAGCA 1846 TTC TG-06-131 UGAACAUGGUGUGUAAAAGG 1847 TTC TG-06-132 AGAAGAUUCAAUUUGCAAAG 1848 TTC TG-06-133 AUGGUAGGCACAAGCUCAGC 1849 TTC TG-06-134 GAAUUCUAUGGUAGGCACAA 1850 TTC TG-06-135 GGAAAGCUGAGCUUGUGCCU 1851 TTC TG-06-138 AGGGAUUUAUACUACAAAGA 1852 TTC TG-06-139 AGGAGCAGCUAGUUGGUAAG 1853 TTC TG-06-140 AAACUUAGCCUGGACCCCCU 1854 TTC TG-06-141 ACUGGCCUUAACCUGGCAGC 1855 TTC TG-06-142 UUCCACUGGCCUUAACCUGG 1856 TTC TG-06-143 GAAUCAAUCCUACUGUGGAC 1857 TTC TG-06-144 GUGGGCAGCGAGGAGUCCAC 1858 TTC TG-06-145 UGGGUCCACCUUGUCUCCUG 1859 TTC TG-06-146 GAAGUCUCACUGGUCAGCAG 1860 TTC TG-06-147 GUGUUUCCUGGGUCCACCUU 1861 TTC TG-06-149 AGCCCAGUUAGGAUUUGGGA 1862 TTC TG-06-150 UCCCUCUGCGCGUAAUCUGA 1863 TTC TG-06-151 CUCUGCGCGUAAUCUGACGC 1864 TTC TG-06-152 GCCUCGCCCUCCCCAAACAG 1865 TTC TG-06-153 GUUAAUGUUUAAUCAGAUAG 1866 TTC TG-06-154 AGGGUGUGGGUGCUUGACGC 1867 TTC TG-06-155 GCAGCGACGUCGAGGCGCUC 1868 TTC TG-06-157 GGGUCUGAGCCUGGAGGAGU 1869 TTC TG-06-158 GGAGCAGGGCGCGUGAAGGG 1870 TTC TG-06-159 GCGCGCCCCUUCACGCGCCC 1871 TTC TG-06-160 CGCGCCCUGCUCCUGAACUU 1872 TTC TG-06-161 GCUCCUGCACAGUCCUCCCC 1873 TTC TG-06-167 CACUGAAUAGCGCAGCCGCA 1874 TTC TG-06-168 GUGGGAAGGUUCGCGGGGUU 1875 TTC TG-06-169 CGGGGUUGGGAGACCCGGAG 1876 TTC TG-06-170 UCGGCCUCCGGGUCUCCCAA 1877 TTC TG-06-171 CAGUACGUUCCAGGCAUUCA 1878 TTC TG-06-449 GCUGAAACAGAUGGAAUACU 1879 TTC TG-06-249 AAACCAAAUCGGAACCCACU 1880 TTC TG-06-386 UGUUGCCUGUAAUUGGAAUU 1881 TTC TG-06-122 CCUUUGUUUCUUCCCAGUAU 1883 TTC TG-06-127 UCCUCCUGCCUGGUACACAA 1884 TTC TG-06-137 GAAUGUACCUAUAUGACGUC 1885 TTC TG-06-431 CCCCGGCCUCCCAUCCCUAC 1886 TTC TG-06-433 CUUGGCACGAUCUUGGGGAC 1887 TTC TG-06-445 GAUUUGGUUUGGAAAACAUG 1888 TTC TG-06-446 CUCCAGGCCCUCCACCCUCC 1889 TTC TG-06-447 CACCCCGCCCCUGUCUCGGG 1890 TTC TG-06-355 CCAACCUCAGAAACUUGGAG 1891 TTC TG-06-356 GAGGUUGGAGAAGGUAGCCA 1892 TTC TG-06-359 AUCUACUCAUUCAGUCUAUG 1893 TTC TG-06-360 CCUCAUAGACUGAAUGAGUA 1894 TTC TG-06-361 GUCUAUGAGGGGAAGGCAAU 1895 TTC TG-06-362 AGCCAUUGCCUUCCCCUCAU 1896 TTC TG-06-363 UCCCUCUAAAAAUGCCACUU 1897 TTC TG-06-364 CUUCACCCCACAAGCAUCCU 1899 TTC TG-06-365 UGAGUUAUUCUUUCCCUUCA 1900 TTC TG-06-366 GGGCAGAGGGGACCAUCCUC 1901 TTC TG-06-367 UCCUUCAGGGCAGAGGGGAC 1902 TTC TG-06-368 CCUCCUGCCUUCCUCCUUCA 1903 TTC TG-06-369 GGGGCCUCCCCUCCACCACA 1904 TTC TG-06-370 GACUUACCCUGAUUGCUGGU 1905 TTC TG-06-371 CCCACACCCUGGCCAGCAAA 1906 TTC TG-06-372 CAAAUGGGUUCCCCCACACC 1907 TTC TG-06-373 CCCUCUUCUCAAAUGGGUUC 1908 TTC TG-06-374 UUUGGGCAACUUAUGGGAGG 1909 TTC TG-06-375 UCCCUCACCAAUUACCCCUC 1910 TTC TG-06-376 CAUCCCAUAUCCUCCACUGC 1911 TTC TG-06-377 AUCUGUCGCAGAGCCCAGGG 1912 TTC TG-06-378 GAGGGAGGUGGGGGAGGAAG 1913 TTC TG-06-379 UCCCCCACCUCCCUCAGAAC 1914 TTC TG-06-380 UGGGCCUGGGGACAUCCAUG 1915 TTC TG-06-381 UCAUUCUCUGGGUGCACGGU 1916 TTC TG-06-382 CUGGGUGCACGGUAACGACC 1917 TTC TG-06-383 CUGCUGCUCCCCUUUGGGAC 1918 TTC TG-06-384 UGCUCCAGGGGAGGCCUUUG 1919 TTC TG-06-385 UCAUCAAAGGCCUCCCCUGG 1920 TTC TG-06-450 UCGGCUGAAACAGAUGGAAU 1921 TTC TG-06-451 AUCUGUUUCAGCCGAAGAAA 1922 TTC TG-06-452 UUUCUUCGGCUGAAACAGAU 1923 TTC TG-06-453 GCCGAAGAAAAGAACCAGCU 1924 TTC TG-06-454 CCCCUGCCCCUUCAGCUGGU 1925 TTC TG-06-455 CGAGGCCCAUUGGCGUCCUU 1926 TTC TG-06-456 CUGCCUGAGUCCUAAAGGAC 1927 TTC TG-06-457 CACAGCCUGAGGGCCAGAAG 1928 TTC TG-06-458 GGCCCUCAGGCUGUGGGAAG 1929 TTC TG-06-459 UCCCGGGGCGAGACCACUAG 1930 TTC TG-06-460 CGGGGCGAGACCACUAGCUU 1931 TTC TG-06-461 AAGUAUUACCAGCCCAGGAC 1932 TTC TG-06-462 GUGUCCCCCAGCUUGGAGUC 1933 TTC TG-06-463 UCUCACUAGCUGUGGUGCUU 1934 TTC TG-06-464 CUCAUGGUCAACAGAACUUU 1937 TTC TG-06-465 GUUGACCAUGAGUGAACUUA 1938 TTC TG-06-466 CCUCUGCCCCAGGAGCUGUG 1939 TTC TG-06-467 GCCACUCACAGCUGCCUGCC 1940 TTC TG-06-468 GUCUGAGUGUGCUGGGUGGC 1941 TTC TG-06-469 UUGUUCCCUGAGCCUUUGAC 1942 TTC TG-06-470 CUGAGCCUUUGACUUUCUCG 1943 TTC TG-06-471 CGAGGGAUGUUGUGGGGUUG 1944 TTC TG-06-472 UAUCCUGGCCACAACCCCAC 1945 TTC TG-06-473 AGUUACCACUGCUCCAAAAC 1946 TTC TG-06-474 GGAAAUAGUGAGUACCCCAU 1947 TTC TG-06-475 GGUGGUCAUACAGCCUCUGC 1948 TTC TG-06-476 ACCAGAGAAGAAACAUCCUC 1949 TTC TG-06-477 AAACUUCCACCAGAGAAGAA 1950 TTC TG-06-478 UCUCUGGUGGAAGUUUGGAA 1951 TTC TG-06-479 CUGGUGGAAGUUUGGAACAG 1952 TTC TG-06-480 CACAAAAUAACCAUUGAAUG 1953 TTC TG-06-481 AUUCCCACAAAAUAACCAUU 1954 TTC TG-06-482 AAAUUCGAUUCCCACAAAAU 1955 TTC TG-06-483 UUCUAAAUUCGAUUCCCACA 1956 TTC TG-06-484 CAUGACUAAAAGAAAAGGAU 1957 TTC TG-06-485 UUUAGUCAUGAGAAACUGAG 1958 TTC TG-06-486 AAUGCACCUGGGGUGACCUC 1959 TTC TG-06-487 GGAAACCCAGUUCUAAUGCA 1960 TTC TG-06-488 AGAACUGACACUCCACUGCA 1961 TTC TG-06-489 AAGACCCAUCUGAAAAUGCC 1962 TTC TG-06-490 GAUGGGUCUUUGAAGCAUUA 1963 TTC TG-06-491 CAUGACACCAUCAUCGCUGA 1964 TTC TG-06-492 GCGAUGAUGGUGUCAUGAGA 1965 TTC TG-06-493 UGGUACCUCCUAAUCCUAGA 1966 TTC TG-06-494 AGGAUUAGGAGGUACCAUGA 1967 TTC TG-06-495 CAGCUCUGUAUCUUUGUUCA 1968 TTC TG-06-496 GACGGUGGAUAAAGAACUGU 1969 TTC TG-06-497 UUAUCCACCGUCUGAAAUGU 1970 TTC TG-06-498 CGUCAGGUGCUACCAUCAAA 1971 TTC TG-06-499 UCCAAGCAGACUCUGAUUGC 1972 TTC TG-06-500 AAGCAGACUCUGAUUGCCCA 1973 TTC TG-06-501 AAAAUCCAAACAAGUUCUGA 1974 TTC TG-06-502 ACUCUGACUGGAGUCCAAGA 1975 TTC TG-06-503 CUGGCUCCCCACAGCCUCAU 1976 TTC TG-06-504 UGAGGCUGUGGGGAGCCAGU 1977 TTC TG-06-505 UAAGCAGGUAUGUCUGCCUG 1978 TTC TG-06-506 CAGGGGUUCCUCCCCCAUGA 1979 TTC TG-06-507 AGGGAAAUCAUAGCGGGAGA 1980 TTC TG-06-508 CCCGCUAUGAUUUCCCUUGA 1981 TTC TG-06-509 CUUGAAGGCUGAUUAUUAAA 1982 TTC TG-06-510 CUUGCCAUGUGAUUGAUCUC 1983 TTC TG-06-511 GCCAUCAGUGAAAGCAGCUU 1984 TTC TG-06-512 UGGAGAGCUUGCAGAAUCAU 1985 TTC TG-06-513 GCUCAUGAUUCUGCAAGCUC 1986 TTC TG-06-514 UUUAUAUAGCAACACAAAAG 1987 TTC TG-06-515 UAAAGAGAGAGAAAAGUCAA 1988 TTC TG-06-516 CUCUCUUUAAGAAGUGUUGC 1989 TTC TG-06-517 GCCUGCAUUUGUAGAGCAUC 1990 TTC TG-06-518 CAGCAGGCCUAUGUCAUAGG 1991 TTC TG-06-519 GGUCCACGGUUUCCUGGCUC 1993 TTC TG-06-520 UGGCUCCAAAGCCCAUGAUU 1994 TTC TG-06-521 CUCAAUUUAUUCUGACUGGG 1995 TTC TG-06-522 GACUGGGGCAUGGGGGAGGG 1996 TTC TG-06-523 UCUGUACCUGCACCCAGCUC 1997 TTC TG-06-524 GGCAAAAAUGGGAACUACGG 1998 TTC TG-06-525 AAUGUGCCAUUCAGGCAAAA 1999 TTC TG-06-526 UUAUCAUCUACUAUACUCUG 2001 TTC TG-06-527 UCCAUGUCAUCAUGUUCCUC 2002 TTC TG-06-528 AUGUCAUCAUGUUCCUCCUU 2003 TTC TG-06-529 UCCUUGCAUGGGGCCAGGAU 2004 TTC TG-06-530 GCACCACCACGUAGGUGCCA 2005 TTC TG-06-531 AUGGCCUUCUUCCUGGCUUC 2006 TTC TG-06-532 CCAGGAAGCCAGGAAGAAGG 2007 TTC TG-06-533 UCCUGGCUUCCUGGUGAAGA 2008 TTC TG-06-534 UGGCUUCCUGGUGAAGAUGA 2009 TTC TG-06-535 UGGUGAAGAUGAGUGGCGAC 2010 TTC TG-06-536 CAAAAAGGGUGGCUCACCAG 2011 TTC TG-06-537 UGAUAGGGCUGGGCCACUGC 2012 TTC TG-06-538 GCAAUGGGCCUACUAAGCAC 2013 TTC TG-06-539 AUACAGAAAGCCAGUAGUUA 2014 TTC TG-06-540 GUAUAGAAUUCCCUUUAAGC 2015 TTC TG-06-541 CUUUAAGCCUGGCCAUGCCC 2016 TTC TG-06-542 AAUGAAGAUAGACGUACCAC 2017 TTC TG-06-543 GUCUCCUCGUCUUUCAAAUG 2018 TTC TG-06-544 UUUGAAAGACGAGGAGACUG 2019 TTC TG-06-545 GAGGGGACCACACAGACAGC 2020 TTC TG-06-546 UGUGCCAAUGCAUCUGCUGC 2021 TTC TG-06-547 GUAGGCAGCAGAUGCAUUGG 2022 TTC TG-06-548 UUUGAAGCUGUUGCUAUCCA 2023 TTC TG-06-549 CUCUGGAUAGCAACAGCUUC 2024 TTC TG-06-550 UUAGGACAGGGUGGCCCUCC 2025 TTC TG-06-551 GCCCCUCCACCGAAGAUGUG 2026 TTC TG-06-552 GCACCACCUUCUAGCCCACC 2029 TTC TG-06-553 AGCCCACCUCGUUUCCUGGC 2030 TTC TG-06-554 UGGCCUCUAACUUGAUGAGA 2031 TTC TG-06-555 CACUGAUUCUCCACAUGGCA 2032 TTC TG-06-556 CCACAUGGCAGGCGGUGCUU 2033 TTC TG-06-557 UAGCCUCCUGCAGACAGUGA 2034 TTC TG-06-558 GCCACGGUAUGCUGAGCUGA 2035 TTC TG-06-559 AAGGCAGGGACCCUGUCAAU 2036 TTC TG-06-560 AUCAGUCUGCUCAACACACG 2037 TTC TG-06-561 CCUCUGCAGCACACAGUAGG 2038 TTC TG-06-562 CUUGAGCUUACAGUUCAGGA 2039 TTC TG-06-563 GGAGGAGAGACUGACCAGUG 2040 TTC TG-06-564 UCUCUCCCCAAGGCUGAGCA 2041 TTC TG-06-565 UCGUCUCUCCCCAAGGCUGA 2042 TTC TG-06-566 GCUUGGCCUACUCUCCUCUG 2043 TTC TG-06-567 GUUUGCCUUCUGCUUGGCCU 2044 TTC TG-06-568 AACUGGGCAUCAUACCAGCC 2045 TTC TG-06-569 AGUCCUGCCCAGCCCCUUAU 2046 TTC TG-06-570 UCUAUCUGUAAACCAGUUAU 2047 TTC TG-06-571 UUUAAGGACUAAAUGAGGUC 2048 TTC TG-06-572 CGACCUCAUUUAGUCCUUAA 2049 TTC TG-06-573 GUACCUAGCAUCUGCUGAAU 2050 TTC TG-06-574 GCAGAUGCUAGGUACGGAAA 2051 TTC TG-06-575 GCGAGUUUCCGUACCUAGCA 2052 TTC TG-06-576 UAACCUGCCCCCACUUCAGC 2053 TTC TG-06-577 UAUCCCCAGAGGCUUCUUAA 2054 TTC TG-06-578 GACCUAAGUGGUAACAGCCU 2055 TTC TG-06-579 CUCUCCUUACCCUUCAGACC 2056 TTC TG-06-580 CUCUGCCCAGUUGGAGCCGG 2057 TTC TG-06-581 CCGCUGCCAUGCGCAGGGAG 2059 TTC TG-06-582 CCAGCCUGCUCAGUGCAAAC 2060 TTC TG-06-583 GUUUGUCCCCUAGUCUAUUC 2061 TTC TG-06-584 CUCCAUGUCCAUCCUGCCCA 2062 TTC TG-06-585 GAACUUGACAUCUUGUCUGG 2063 TTC TG-06-586 GAAUCCUUCCUAAAAGGAAU 2064 TTC TG-06-587 UAAAAGGAAUCCUCUAUGCC 2065 TTC TG-06-588 GCAGGCCUUGAAGUUGCCCC 2066 TTC TG-06-589 ACGGGAUGCUCUGGGCAAAG 2067 TTC TG-06-590 UCCGCCCGGUACCGUGGAGG 2068 TTC TG-06-591 GCUCAGAUGGGGUGGGGCAG 2069 TTC TG-06-592 UGUUGCCCCACAAAUGCAAA 2070 TTC TG-06-593 AAAUGGUGAGAAAAGGAAAA 2071 TTC TG-06-594 CACCAUUUGGAAUGGCCCAG 2072 TTC TG-06-595 AAGGUAAGUGCAGCCUGCUG 2073 TTC TG-06-596 UCUGAUGGUGACUCUACCUA 2074 TTC TG-06-597 UGGGGCUCCCUGCCUGGGCC 2075 TTC TG-06-598 CUCUAGGCCUUUCUUUCCAC 2076 TTC TG-06-599 UUCCACUGUUCCCUCUGCCU 2077 TTC TG-06-600 CUCUGCCUGGUGUGGCCUGG 2078 TTC TG-06-601 AUAGCCAGGCCACACCAGGC 2079 TTC TG-06-602 AUGGCCGCUCCUCCUCCCUC 2080 TTC TG-06-603 AGCAGGGACUUGCAGGUGGC 2081 TTC TG-06-604 CCGACUGAAUUGCCACCUGC 2082 TTC TG-06-605 GUCGGGGAAGACUCUAGAUG 2083 TTC TG-06-606 CUCCUCAGGCCAGGUGCAUC 2084 TTC TG-06-607 UUCUCUCCUCAGGCCAGGUG 2085 TTC TG-06-608 AGUUGGACUGUGUUAAGUUU 2086 TTC TG-06-609 CCCCAAGCUCUGCGUCCUGG 2087 TTC TG-06-610 CCCCUUACCGGUUCUCGUGG 2088 TTC TG-06-611 CAAGAUCCCACGAGAACCGG 2089 TTC TG-06-612 CGUGGGAUCUUGGGAAGCCA 2090 TTC TG-06-613 UCUAUGAGCUUUGUCGUUCU 2091 TTC TG-06-614 AUGAGCUUUGUCGUUCUUGU 2092 TTC TG-06-615 CACAGGUUGCUGUGAGACUC 2093 TTC TG-06-616 ACUCAUUGGAGUCUCACAGC 2094 TTC TG-06-617 AAAAGCAUCUGCACAUCCUU 2095 TTC TG-06-618 CUUCCAAAAGCAUCUGCACA 2096 TTC TG-06-619 CCACACCCAGCCCACCAGCU 2097 TTC TG-06-620 GCUGCUGCCACCCUUGCCAG 2098 TTC TG-06-621 UACAGAGGAGCUGUCCUCUC 2099 TTC TG-06-622 UUUCCAACCAGGUGAGACCU 2100 TTC TG-06-623 AACCAGGUGAGACCUCUUCA 2101 TTC TG-06-624 GUGGAGCCCUGGAGCCCCCU 2102 TTC TG-06-625 CAGUCCCUGCCUGGACUGGG 2103 TTC TG-06-626 AACCGAGGGGGUGGUAAUUU 2104 TTC TG-06-627 CUUGCCUCUUCCGUGUCCCA 2105 TTC TG-06-628 GUGUCCCAACAGCGGCAGCA 2106 TTC TG-06-629 UUGUCUCAUAAGGACACUUG 2108 TTC TG-06-630 GGCCCAAGGGAGAGGAGGGA 2109 TTC TG-06-631 CUCCUCUCCCUUGGGCCAGA 2110 TTC TG-06-632 UCCCCAUAGGAUGCCCAUGG 2111 TTC TG-06-633 CCAUAGGAUGCCCAUGGAUU 2112 TTC TG-06-634 CGCUUCCCCCGAGUGUCUGU 2113 TTC TG-06-635 CCCGAGUGUCUGUGGGAGGU 2114 TTC TG-06-636 ACACCCCUGCCUGCCAUUCC 2116 TTC TG-06-637 GGAGUCAUAUCAAGGGCUUG 2117 TTC TG-06-638 UCCAGCCAAGCCCUUGAUAU 2118 TTC TG-06-639 UCAUUCAUGGGGAGGCCACA 2119 TTC TG-06-640 UUCAUGGGGAGGCCACAAGC 2120 TTC TG-06-641 UGGGGAGGCCACAAGCAUGG 2121 TTC TG-06-642 CUGUCAGGUAUUGAGUGAGG 2122 TTC TG-06-643 UUCACAUUUGUAUCCCCAGC 2124 TTC TG-06-644 UUUCAUUCACAUUUGUAUCC 2125 TTC TG-06-645 GGAUACACUGUUGGGGGAAG 2126 TTC TG-06-646 CCCAACAGUGUAUCCAGAAG 2127 TTC TG-06-647 UUAAACAAAUGCUACUUGAC 2128 TTC TG-06-648 GAGCUCUCAGCCUAUCCAGA 2129 TTC TG-06-649 GGAUAGGCUGAGAGCUCUGA 2130 TTC TG-06-650 GCUGGAUACACAGGCUCGCA 2131 TTC TG-06-651 UGAUCCUUCUGCUGGAUACA 2132 TTC TG-06-652 UGGAGGAAGCGCUGUUCUAG 2133 TTC TG-06-653 AGCCAAGACCUACGGGGGCA 2134 TTC TG-06-654 ACUGCUUGGACACCGUCCCC 2135 TTC TG-06-655 UUCCACUGCUUGGACACCGU 2136 TTC TG-06-656 AUCCACGUUCAUUCCACUGC 2137 TTC TG-06-657 GCACAGGCCACACUCCCUCC 2138 TTC TG-06-658 CAUCUGACCUGGAGGCCACC 2139 TTC TG-06-659 CAGGCGUAUGGCAGGGCUGC 2141 TTC TG-06-660 CUCUCACCAGGCAGCCCUGC 2142 TTC TG-06-661 AGCCUCUGGAAAGCUCUGUG 2143 TTC TG-06-662 UGAGGCCACCUUGCCACGCU 2144 TTC TG-06-663 CUGUGACAGCGUGGCAAGGU 2145 TTC TG-06-664 AAACCCCCGGGUGAGGCAGG 2146 TTC TG-06-665 UAGGCCUCCCUCUAUCUUCC 2147 TTC TG-06-666 AGUGAGAGGCUGGAAAGGGG 2148 TTC TG-06-667 UUCCAGUGAGAGGCUGGAAA 2149 TTC TG-06-668 AGCCUCUCACUGGAAGGAAG 2150 TTC TG-06-669 UGCCCGCUCACACCAGCCCA 2151 TTC TG-06-670 AAGUGCAGGCGGUUCCUGCC 2152 TTC TG-06-671 AUCUGCCGCUGGGGCCACAC 2153 TTC TG-06-672 GCUGCAAGAUGAUGUGACCA 2154 TTC TG-06-673 GGUCCCACCCGUGCUUGGGA 2155 TTC TG-06-674 UCGUCGUGUGUGAGGAGGGA 2156 TTC TG-06-675 CUCCUCACACACGACGAGGA 2157 TTC TG-06-676 AGUCCAUGUUCCUCGUCGUG 2158 TTC TG-06-677 GCUCGAUGUGCGUUGUGUGG 2159 TTC TG-06-678 CUCCCUGGACGUAAGCCACA 2160 TTC TG-06-679 AGAUAAGCCUGUAUUCCCCG 2161 TTC TG-06-680 CCGGGCUGUCUGCCAAUGUA 2162 TTC TG-06-681 AGGCUGACGGGACAACUGGA 2163 TTC TG-06-682 CUCAGAGCUUCCAGGCUGAC 2164 TTC TG-06-683 UGAGCACCUGUAUCCCCUGC 2165 TTC TG-06-684 ACAUUCCAUAGCCCAGCUCA 2166 TTC TG-06-685 AUAGCCCAGCUCAAUAUCUA 2167 TTC TG-06-686 UCUAGGGUGGCGAGCACUGU 2168 TTC TG-06-687 GGUCGGAGCUCACAGCGCUC 2169 TTC TG-06-688 CAGUGUAGCACCGGGCACAU 2170 TTC TG-06-689 CUCAUCAAUAGGCAUCUACC 2171 TTC TG-06-690 GUAGCAUGCUGAGCAGGUCC 2172 TTC TG-06-691 UCUGUAGCAUGCUGAGCAGG 2173 TTC TG-06-692 UGCCGAGACUGGAGGCCUUA 2174 TTC TG-06-693 GACUGUGCCCAGACCUACUA 2175 TTC TG-06-694 GGCAAGGUCGGCCCCCAGUC 2176 TTC TG-06-695 UGUGGGAUCUCAGAGCAGCC 2177 TTC TG-06-696 GUGGCUGCUCUGAGAUCCCA 2178 TTC TG-06-697 CCAAAUAAGGUCUGGCUCAC 2179 TTC TG-06-698 CUCAUAAAGACACAUCACAG 2180 TTC TG-06-699 CCAAUCUCCACCUCUGUCUC 2181 TTC TG-06-700 UCCCAGAGCCUUCGCUGCUG 2182 TTC TG-06-701 CAGAGCCUUCGCUGCUGAGU 2183 TTC TG-06-702 CAGACUCAGCAGCGAAGGCU 2184 TTC TG-06-703 CUGCUGAGUCUGGGAAUUUG 2185 TTC TG-06-704 GUCACAAAUUCCCAGACUCA 2186 TTC TG-06-705 UAUGGCUUCGGUCACAAAUU 2187 TTC TG-06-706 CAUCUCAGGACAGGUGAGCA 2188 TTC TG-06-707 GAAGUGCCAUCUGAACAGCA 2189 TTC TG-06-708 GAUGGCACUUCAGAAGACUC 2190 TTC TG-06-709 GAAGACUCAGGAGACCCUGG 2191 TTC TG-06-710 UGGCUGCAGGGGUUCCAGGG 2192 TTC TG-06-711 GCUGGCGCAGGACUCUGCUA 2193 TTC TG-06-712 GGCAGGUUGCUGCUAGCAGA 2194 TTC TG-06-713 UUUGGCCUGGCUGAGAGUUU 2195 TTC TG-06-714 GAGACCUGCGCUGGAGCGGA 2196 TTC TG-06-715 UCUCUCCCUUCUCCAUCCAG 2197 TTC TG-06-716 CCAUCCAGCAGGCUGGACCU 2198 TTC TG-06-717 CCUAUACCCUAACCUUUGUC 2199 TTC TG-06-718 CCAAGAAGCAGGCACUGGGG 2200 TTC TG-06-719 CUGAGGUUGUGACUCGUGUG 2201 TTC TG-06-720 GCCUCACACGAGUCACAACC 2202 TTC TG-06-721 CCACUCCACAAGAUACCAGG 2203 TTC TG-06-722 UGUCUCUAAAAUGAGCCGGC 2204 TTC TG-06-723 CCUUUGAGUCUUUAAAUCUU 2205 TTC TG-06-724 CAGCUCACCGAGUCUGCAAG 2206 TTC TG-06-725 UGCAGACUCGGUGAGCUGUG 2207 TTC TG-06-726 UAUGAAGGAGCAGGAUGACU 2208 TTC TG-06-727 UGGCAGUAGCAUUGCCAGCU 2209 TTC TG-06-728 CCAGUGCCUGGGAUGUGCUC 2211 TTC TG-06-729 GUGUGUUAACUAUAAGGUUG 2212 TTC TG-06-730 AAGGCGACAUUUGUGGGAGA 2214 TTC TG-06-731 CGGUGGUCACUCUGUAUGCU 2215 TTC TG-06-732 CGAAGUCGGUGACCAUGACC 2216 TTC TG-06-733 AGAAUGUGCCCGAGGAGGAC 2217 TTC TG-06-734 ACAGACAGGUAAGCACGGCC 2218 TTC TG-06-735 CACAACUGAUGGCAGGGAGG 2219 TTC TG-06-736 UCCAUCCAGCCACCUGCUGA 2220 TTC TG-06-737 CAUGUGGUCCUUGUGUUCGU 2221 TTC TG-06-738 UCGAGCAGGCCAGCAAGUGU 2222 TTC TG-06-739 CUUGGCAGUUGAGCACGCGC 2223 TTC TG-06-740 UGGUUAGGAGACAUUAGCUC 2224 TTC TG-06-741 CUGGCUCUGCGGCAGAGGCU 2225 TTC TG-06-742 UCUGCACUCGUGGCCACUGG 2226 TTC TG-06-743 CAGUGGCCACGAGUGCAGAU 2227 TTC TG-06-744 UCAUCUGCACUCGUGGCCAC 2228 TTC TG-06-745 GCCUUGACCCUGGGUCAAUG 2229 TTC TG-06-746 ACAGUUCCACACUGCUCCCC 2230 TTC TG-06-747 AUGUGGAGGGACUCGAGGUG 2231 TTC TG-06-748 AUCUUCUGCUUGCAUACCUC 2232 TTC TG-06-749 GCUUGCAUACCUCUGAGACC 2233 TTC TG-06-750 AGACUGUGACUACAUUUAGU 2235 TTC TG-06-751 CAACUGGACUUCAUAGGGGG 2236 TTC TG-06-752 CUGUCCACCGGCCCCCAGAG 2237 TTC TG-06-753 UUCUGUGGCCAGACAUUGAG 2238 TTC TG-06-754 GUGGCCAGACAUUGAGCAAG 2239 TTC TG-06-755 UCAACUAUUUAGCAGCUACG 2240 TTC TG-06-756 CCAGCUUGAGCUGUGCGACC 2241 TTC TG-06-757 CAGCGAGUUCCCCAGCUUGA 2242 TTC TG-06-758 ACUGUAAGCCCCAGCCCCCA 2243 TTC TG-06-759 CAGCCUUUGAAACAGGCUAG 2244 TTC TG-06-760 AAGGCUGAGAAGGCCCAGGA 2245 TTC TG-06-761 GCCCUGAGACUUUCCUACAG 2246 TTC TG-06-762 UGCCUUUAAAACUGAACAUC 2247 TTC TG-06-763 GCCCCAUCAGGUGACCCCUU 2248 TTC TG-06-764 GGAACUGACCUGACUGAGCC 2249 TTC TG-06-765 UGAAGGUCAGUGUGUGGAGG 2250 TTC TG-06-766 GGGAAAGAACAGCCUCCCCU 2251 TTC TG-06-767 UUCCCAGAAAGGCCUUCCCC 2252 TTC TG-06-768 CCAGGCCUGGUGCUCUGGCC 2254 TTC TG-06-769 CCAGGAAGUCCUCCAGAGGC 2255 TTC TG-06-770 UGGAGAAGUCCCUUCUUUGG 2256 TTC TG-06-771 UUGGGGUCCCAGUCAGUGUA 2257 TTC TG-06-772 CAUACACUGACUGGGACCCC 2258 TTC TG-06-773 UCCUCUGUAAGCAGGUGAUU 2259 TTC TG-06-774 UCACCUCCACACUCAGUGCC 2260 TTC TG-06-775 CCUCCACACUCAGUGCCACU 2261 TTC TG-06-776 AGCUCCAUCCUUGGCCACGG 2262 TTC TG-06-777 GGAUCCUGGCCUCUAAGAUG 2263 TTC TG-06-778 CCCCUGUCAAAUGAGGUGUG 2264 TTC TG-06-779 AGGUCCCCUUGCACAUCAGG 2265 TTC TG-06-780 AACCCUCUGCCAGCCUGUGA 2266 TTC TG-06-781 GGCCUCAGUGGCACUCCACU 2267 TTC TG-06-782 UUCUGGCCUCAGUGGCACUC 2268 TTC TG-06-783 UUAGACAAUCCUGGGAGCAA 2269 TTC TG-06-784 AGUUUGUGUGGGUCCAACAC 2271 TTC TG-06-785 CCCGCCACUCUCUGAGGCCU 2272 TTC TG-06-786 CCACCCAACUUCCCCCGCCA 2273 TTC TG-06-787 CAUUCCUCUGAGGCUCAUCC 2274 TTC TG-06-788 UCUGAGGCUCAUCCUCUUGG 2275 TTC TG-06-789 AUGAAAGAGAGGCACCAAGA 2276 TTC TG-06-790 UGGAAAGGGAUAAUAAGGUU 2277 TTC TG-06-791 UAUAUUCAGACGCUUAGACA 2278 TTC TG-06-792 GACGCUUAGACAGAGCCAGG 2279 TTC TG-06-793 CUGUGCCUGGCUCUGUCUAA 2280 TTC TG-06-794 AGCUCAUGUGACCGUGCGGG 2281 TTC TG-06-795 GCAGGAAUUGCCAGCCUGCC 2283 TTC TG-06-796 UGCAGAAUUUGAUGUUGCAA 2284 TTC TG-06-797 UUCUUCCCUGGGAGGCCUCA 2286 TTC TG-06-798 UCCCUGGGAGGCCUCAGUCU 2287 TTC TG-06-799 CUGGGAGGCCUCAGUCUGUU 2288 TTC TG-06-800 CAGCAGCAUUUCCACUGGCU 2289 TTC TG-06-801 CAGCCCCUCCCUUACAGGCA 2290 TTC TG-06-802 UCCCAGGCCUGGAGUUUAUU 2291 TTC TG-06-803 GAAUAAACUCCAGGCCUGGG 2292 TTC TG-06-804 GAAAAGCCAGCUGGUCCAGC 2293 TTC TG-06-805 GGGACGAUGCCUGCCUCUAC 2294 TTC TG-06-806 UGUGGCACGUGGGCUUCUUG 2295 TTC TG-06-807 UGUGGCACGUUCCUGGAGGC 2296 TTC TG-06-808 GCCUCCAGGAACGUGCCACA 2297 TTC TG-06-809 UGGAGGCCGAACCCUUCUGG 2298 TTC TG-06-810 AAAGCCAGAAGGGUUCGGCC 2299 TTC TG-06-811 GGCUUUGGAAGGAGUCGUCA 2300 TTC TG-06-812 UCCCCAGCCUCCCGCAUGGC 2301 TTC TG-06-813 AGCCCCUUCCUCCCCAGCCU 2302 TTC TG-06-814 GACUCUGCGAUGAUGGAGGU 2303 TTC TG-06-815 GGAGGGAGAGUGGCCAGGAC 2304 TTC TG-06-816 GGUACCCGCCCCCUCCCCAU 2305 TTC TG-06-817 CAUUAGCCUUGCUCAAGUUG 2306 TTC TG-06-818 UCGGGUGAGAGGUCUGAGCC 2307 TTC TG-06-819 CCUAGAUACCCGCAGUGUCC 2308 TTC TG-06-820 UUCCCCUAGAUACCCGCAGU 2309 TTC TG-06-821 AGACUUGAAGUGGAACAAGA 2310 TTC TG-06-822 ACUUCAAGUCUGGAACUUCA 2311 TTC TG-06-823 AGUCUGGAACUUCAAGUCUG 2312 TTC TG-06-824 AGUCUGUGUGUGUGCGUGCG 2313 TTC TG-06-825 GCCGCCAGGGAAGCCUUGAU 2314 TTC TG-06-826 CUGGCGGCCGAAUUUAAAGG 2315 TTC TG-06-827 CCCCGUGGCACUUAGAACCA 2316 TTC TG-06-828 GUGUAUCAAGUGGUUCUAAG 2317 TTC TG-06-829 UAUCUCCCCCACUAGGAUGU 2318 TTC TG-06-830 CAAUGCCCCUGUGGAGUUUA 2319 TTC TG-06-831 UUAGGAGGGGACAUUUGAGU 2320 TTC TG-06-832 AGGUCAUCACAGUUGGGGCC 2322 TTC TG-06-833 UCUCUGGUCCCCCUGCACAG 2323 TTC TG-06-834 AGGACACUCAGUCUGAUGAG 2324 TTC TG-06-835 UCUGUGCACUCGCCUCCCUC 2325 TTC TG-06-836 CUGACCCUCGGGCUGGGCAG 2326 TTC TG-06-837 UCCAUCAAGCUCCCGAUCAA 2327 TTC TG-06-838 CCUGGCCGAUAAGACAGCAA 2328 TTC TG-06-839 CGAAGGUAAGCCGCCUGCAG 2329 TTC TG-06-840 AGAAGAGAGCUUAGUGUCUG 2330 TTC TG-06-841 CCCCUGCACCAGGCAUUGCA 2331 TTC TG-06-842 CUGCCAAAGAUGUCAUCAAU 2332 TTC TG-06-843 CUGAGGACCAGCGGGUACUG 2333 TTC TG-06-844 CCCUUGUCUGUGUAAGGAGG 2334 TTC TG-06-845 GAGCCCCAUUCUCAUUUAAU 2336 TTC TG-06-846 UUAAGCCCUCCUCUCUCCUA 2337 TTC TG-06-847 UGGUAGGAGAGAGGAGGGCU 2338 TTC TG-06-848 GUGGAGGUCCCCUCACUCCC 2339 TTC TG-06-849 CACUCCUGGAGAAACUGGAG 2340 TTC TG-06-850 CCAGGAGUGGGAAGCGGCGG 2341 TTC TG-06-851 GUAAGCUUACAGGGCUGGCC 2342 TTC TG-06-852 CGCGGCUGGGGGCUGCUGGA 2343 TTC TG-06-853 CGCUGUGGCUCUCUCCAGCA 2344 TTC TG-06-854 UAGAGGCUGCAGGACAGUGC 2345 TTC TG-06-855 AUGCUCACCUGGGUGUGAGC 2346 TTC TG-06-856 ACCAAAAUGCUGCAACCAGA 2348 TTC TG-06-857 GGCUUGAGGAGAUGGGGUCU 2349 TTC TG-06-858 AAAUGGAGAUAGAGAGAAAU 2350 TTC TG-06-859 AAACACAGAGUGGUUUCAAA 2351 TTC TG-06-860 UCCAAACACAGAGUGGUUUC 2352 TTC TG-06-861 GCCAGUGGGCAGCUCUGAAU 2353 TTC TG-06-862 GAGCUGCCCACUGGCAGAAC 2354 TTC TG-06-863 UUGGGCAGGAGUGAGCUCCU 2355 TTC TG-06-864 GGGGACAAGGAGCUCACUCC 2356 TTC TG-06-865 AAGCCCAUUCUAAAGCAGAU 2357 TTC TG-06-866 AAAGCAGAUUCCCAUUUCCG 2358 TTC TG-06-867 CAUUUCCGUCUUUGACUCUA 2359 TTC TG-06-868 GUCUUUGACUCUAAGGCCCA 2360 TTC TG-06-869 CCUUAUGCACCCACUGCCCG 2361 TTC TG-06-870 AUACUCUGGUUCUGCCACUU 2362 TTC TG-06-871 AUGCCCUUUGAGCCUGGGCA 2364 TTC TG-06-872 CCUCAUCUCAGCUUCCUCCU 2365 TTC TG-06-873 UCCUCCAUAAGAGGGAAAAA 2366 TTC TG-06-874 GCCCCAGCCGGGGGCCUCUC 2367 TTC TG-06-875 AACCGAGGUCUGCCCUCCUU 2368 TTC TG-06-876 CCCUGCCGCUCUAUAGCUGU 2369 TTC TG-06-877 UCAUACAGAGAUGUUAAGUA 2370 TTC TG-06-878 AGCUAUCGUUACUAUUGUUU 2371 TTC TG-06-879 UCACCCGUUGCUUUAAAAUC 2372 TTC TG-06-880 ACACAGGGUAGCCCGUCAAU 2373 TTC TG-06-881 UGCUACCUGCCUGGGCAUGU 2374 TTC TG-06-882 GGUUGGGUGGAGCAUGAGAG 2375 TTC TG-06-883 AGGCUGGAGUCCCACUGUCU 2377 TTC TG-06-884 CCUGGACGUGCUCAGACGAG 2378 TTC TG-06-885 CGUCUGAGCACGUCCAGGGG 2379 TTC TG-06-886 CAAACCCUCAGUGGUUCCCC 2380 TTC TG-06-887 GGGCACAGCAGGCUGGCAUG 2381 TTC TG-06-888 UGAACAUCCAUCCUACAUGC 2382 TTC TG-06-889 GGAAAGAUGAGCAUAGUCAG 2383 TTC TG-06-890 CUCCAAGCCAGGACCCCUGA 2384 TTC TG-06-891 GGGGUCCUGGCUUGGAGGGA 2385 TTC TG-06-892 AAAGGGGAGCGUGAUUAGAG 2386 TTC TG-06-893 AACUGACAUGUGCCUGUGAG 2387 TTC TG-06-894 AUGACUUCAAACUGACAUGU 2388 TTC TG-06-895 UGGAGUCAGAUUCCAUGACU 2389 TTC TG-06-896 CUUAGCUGCAAAAUGGUGCU 2390 TTC TG-06-897 CUAUGUCCUAGCUGCAAGGG 2391 TTC TG-06-898 GAGCACAUGCCAGGCUCCAU 2392 TTC TG-06-899 CACGUGUCAUCUUCACAGUG 2393 TTC TG-06-900 CAGUGUCCCUGUGAGUAGGU 2394 TTC TG-06-901 CUUUCCAUCUUACAAAUGAG 2395 TTC TG-06-902 UAGCCAAUGGGUGUGUCUGA 2397 TTC TG-06-903 GAGGUGGUUCAGACAGACCC 2398 TTC TG-06-904 GACAGACCCCGGCUUACCCU 2399 TTC TG-06-905 AGGGUAAGCCGGGGUCUGUC 2400 TTC TG-06-906 GCCUGCUGGCUGCAUAGGGA 2401 TTC TG-06-907 ACCCAGAGAUGGAGACAGUG 2402 TTC TG-06-908 CAGGGAAAACACCAUCUUUC 2403 TTC TG-06-909 CUGAGAAACUAAGGCUCAGA 2404 TTC TG-06-910 UUGAGUUGUUUCUAGGUUUC 2405 TTC TG-06-911 AGGUUUCCUAGCUCUUGCCU 2406 TTC TG-06-912 UAGCUCUUGCCUCAGACCUU 2407 TTC TG-06-913 CAUCUGAGCUGGCUUUCCUC 2408 TTC TG-06-331 UCUGCCCCAGGCUGCAGCUC 2409 TTC TG-06-915 UGCUGCCAUGCCCCAGGUCU 2410 TTC TG-06-916 AGACCUGGGGCAUGGCAGCA 2411 TTC TG-06-917 AUGCUCCUUGACUUUGCAUU 2412 TTC TG-06-332 CCUGCUCCUGAGGGGCCGGG 2413 TTC TG-06-919 GUGUCAGUUUGUGCCACCAC 2414 TTC TG-06-920 GCCAUUGUGUGGACAGCAUG 2415 TTC TG-06-921 ACUCCAAGUGGAGUGGGGUA 2416 TTC TG-06-922 UUAUGCCAUAUUUAUGCACA 2417 TTC TG-06-923 GCAUGCAGCUCAGGCACCCC 2418 TTC TG-06-924 UGCCUUGCUGGUCAUGCUAA 2419 TTC TG-06-925 AGGGCUUGGCACAUGCCUUG 2420 TTC TG-06-926 AGAAGGCCCGGCUGUCACAU 2421 TTC TG-06-927 AGAAACCUGAGUGUAUAACU 2422 TTC TG-06-928 UUUAAGAGUGGACUCCUUAG 2423 TTC TG-06-929 GGUCUGGAUGGUGCAUUCCU 2424 TTC TG-06-930 UCGAGAGCAAAAGACAGUCU 2425 TTC TG-06-931 AGGUGCUCUUCCUGGCACUG 2426 TTC TG-06-932 CCCUCCUGGAGCAUCUAUUU 2427 TTC TG-06-933 UCCACUAAAAUAGAUGCUCC 2428 TTC TG-06-934 GUACUCUAUAUUAAUGGUUU 2430 TTC TG-06-935 UCCACCUUGUCAGCGAGACC 2431 TTC TG-06-936 CUGCCUCAUGGCCUGUUUCG 2432 TTC TG-06-937 AGGCAAAGCAAAGGCCCCCA 2433 TTC TG-06-938 UGGUACUCCCUGCACAUCCC 2434 TTC TG-06-939 CACCUCUCUGGUUUCCUGGU 2435 TTC TG-06-940 GAUCCAGGCCAGACCACACU 2436 TTC TG-06-941 CAGCUCAGCAGCUAGGCCAC 2437 TTC TG-06-942 GCCCAAGGUCCUUGUCAUCU 2438 TTC TG-06-943 GAGGGAUGAGUUUGGCACUG 2440 TTC TG-06-944 UGCCUGGUUUGAGGGCCGUG 2441 TTC TG-06-945 GCACCAUGGCUGACCAAACA 2442 TTC TG-06-946 GUGAGGCCAAAGUGCAGACG 2443 TTC TG-06-947 CCCUCCGACAUCCUUCUGUG 2444 TTC TG-06-948 UUUCUCCCUCCGACAUCCUU 2445 TTC TG-06-949 UUUCCUCGGGCUCUGGCAGG 2446 TTC TG-06-950 UCGGGCUCUGGCAGGUGACC 2447 TTC TG-06-951 CUGGUGCUGCCUGUAGUGCU 2448 TTC TG-06-952 GACUUGUCCCUCUCUCAGCC 2449 TTC TG-06-953 GCCUUUCCGGGGCUGCUGGC 2450 TTC TG-06-333 GGGGCUGCUGGCCUGGCCCU 2451 TTC TG-06-955 AGGCAAGGAGGCUGCCCCAC 2452 TTC TG-06-956 UGGCACCUCCACCUGGGGAG 2453 TTC TG-06-957 CCAUUCAAACAGGUCGAGCU 2454 TTC TG-06-958 AACAGGUCGAGCUGUGCUCG 2455 TTC TG-06-959 GCCCACGGACAUCGGCACAU 2456 TTC TG-06-960 GUGCCAGGCAUUCAAUCCUC 2457 TTC TG-06-961 AUCCUCAGGUCUCCACCAAG 2458 TTC TG-06-962 UCCCAUGGAUAGGGGAGGGG 2459 TTC TG-06-963 CAUGGAUAGGGGAGGGGGCG 2460 TTC TG-06-964 CCACAGUUAGCUGGAGAUGA 2461 TTC TG-06-965 GGAUGGCAUCUAGCCAGAGG 2462 TTC TG-06-966 UGAGCCACCUUUACUCUGCU 2463 TTC TG-06-967 UCCUCUGUGAAGUAGGGGUG 2465 TTC TG-06-968 CAGAGGAAGAAACCUGGAAC 2466 TTC TG-06-335 UGCUGUGUGAGCUUGGCAGG 2467 TTC TG-06-970 GGCUCAGUUCCUGCUGUGUG 2468 TTC TG-06-971 GAGCCAGCCCAAUCUGCGUU 2469 TTC TG-06-972 UACUUCACCCGGCUGGGCUC 2470 TTC TG-06-973 CCCGGCUGGGCUCCUCAUUU 2471 TTC TG-06-974 CAGCCUCACUGUUACCCGUA 2472 TTC TG-06-336 CCUUCCCAGCCUCACUGUUA 2473 TTC TG-06-976 UGGUCUGUGUUCCCCUUCCC 2474 TTC TG-06-977 GCCAUCACUCACCGAGCUUC 2475 TTC TG-06-978 AUGCCUGCAGGCAUCGUUCU 2476 TTC TG-06-337 GUUAUCACCCAGGCCUGAUU 2477 TTC TG-06-338 CUGGCCUGGCGGAGAUGCUU 2478 TTC TG-06-339 AAGGCAUGGUCGGGGGAGAG 2479 TTC TG-06-341 AGUUACAAAAGCAAAACAGG 2480 TTC TG-06-983 UAGUAUAAGCAAGGCAUCAC 2481 TTC TG-06-984 ACAAACUUACCCAGUUCCUA 2482 TTC TG-06-985 CAUCACCAGUACUUGCCCAA 2483 TTC TG-06-986 UAGGAUAGGCACAAGGAGUA 2484 TTC TG-06-987 UUCCUAGGAUAGGCACAAGG 2485 TTC TG-06-988 UGCAGCUCCCCUGACCACCC 2486 TTC TG-06-989 UUUCUCCCCAGUACCUGGCA 2487 TTC TG-06-990 CCCCAGUACCUGGCACACAG 2488 TTC TG-06-991 GUAAAUACUCGGGCCAGGCU 2489 TTC TG-06-992 GUAAUGAGCCAGUGCUAAGU 2490 TTC TG-06-993 UGAUUUAAAAUUCAGAACAG 2491 TTC TG-06-994 GAACAGUCUCAGAUUGGGUG 2492 TTC TG-06-995 UAAACACAAGCAAUCCUCCU 2493 TTC TG-06-996 AGACCCUGGGCAACAGUGAG 2494 TTC TG-06-997 AUGUGGGACCUCCAGGCCCU 2495 TTC TG-06-998 CCAGCCUUAGAGUGGAGGGC 2496 TTC TG-06-999 CUCUCUCUCUAGACAGCCCA 2497 TTC TG-06-1000 UUAUGACAUGGGCUGUCUAG 2498 TTC TG-06-1001 GACAAUUCAGUGUCAUAUAU 2499 TTC TG-06-1002 AUAUAUGACACUGAAUUGUC 2500 TTC TG-06-1003 GUGUCAUAUAUGGAAAGCAU 2501 TTC TG-06-1004 AGAGUUGACAGAUGGCAAUG 2502 TTC TG-06-1005 AGCCAUUGCCAUCUGUCAAC 2503 TTC TG-06-1006 AACGGGCAGAGAUAACACAG 2504 TTC TG-06-1007 GUGGAGGGGAAGGAGAGAGA 2505 TTC TG-06-1008 CCUCCACAGAAUCAAGUAUC 2506 TTC TG-06-1009 AACAUCACAGAGCUGUCAGG 2507 TTC TG-06-1010 UGCAGAGGGUUAGCAGGUGG 2508 TTC TG-06-1011 UCCCCGAUCCCUGGUGACCA 2509 TTC TG-06-1012 CUAUUUGCUAGUCCAGAUUU 2511 TTC TG-06-1013 UAGUGGCCAGCGUUGCUCAC 2512 TTC TG-06-1014 UGCUAGAUCCCACAGGUCUC 2513 TTC TG-06-1015 GCAUCCUCCUCUAAGCUUUG 2514 TTC TG-06-1016 UCUGCAAAGCUUAGAGGAGG 2515 TTC TG-06-1017 GGAUUCAUCUGCAAAGCUUA 2516 TTC TG-06-1018 CUGGAGGGGCUGACCAUUUC 2517 TTC TG-06-1019 UUUCUCUGGAGGGGCUGACC 2518 TTC TG-06-1020 UCUUAGUACUUUACACUAAU 2519 TTC TG-06-1021 CCCGCCCACUACGGCUGUGU 2520 TTC TG-06-1022 UAUAUCAGAACACAGCCGUA 2521 TTC TG-06-1023 UCAUAUAUCAGAACACAGCC 2522 TTC TG-06-1024 GAUAUAUGAAGAAUGGCGGC 2523 TTC TG-06-1025 AAAACAGAGUUGGAGUCUUG 2524 TTC TG-06-1026 UAGCUUCUAAGAGUAUAAAA 2525 TTC TG-06-1027 UGUGUGGCAAAGUUCUUAGC 2526 TTC TG-06-1028 AAAUUUGGUUCAUGUGUGGC 2527 TTC TG-06-1029 UCCCUAGUGUAUCUACUUCC 2528 TTC TG-06-1030 CUAGUGUAUCUACUUCCUUU 2529 TTC TG-06-1031 AAAGGAAGUAGAUACACUAG 2530 TTC TG-06-1032 UCUGCUACCUCUUGUGUAUA 2531 TTC TG-06-1033 AGUCUGCUUGUUCCAAGCUC 2532 TTC TG-06-1034 GAGCUUGGAACAAGCAGACU 2533 TTC TG-06-1035 AAGCUCAGAAGGUAACUGCA 2534 TTC TG-06-1036 CUGCUAACAUCGAGGUGUGU 2535 TTC TG-06-1037 UAAAACUGACUGUAGUUGUC 2536 TTC TG-06-1038 UUCCCAGGAUGCCUUCAACG 2537 TTC TG-06-1039 GCCCGUUGAAGGCAUCCUGG 2538 TTC TG-06-1040 CAGGAUGCCUUCAACGGGCA 2539 TTC TG-06-1041 ACGGGCAGAAUCGGCCAUCU 2540 TTC TG-06-1042 CAAGAAGCUCCCUUAGUGAG 2541 TTC TG-06-1043 UGAGAACACACAGCAUUAUU 2542 TTC TG-06-1044 UGCUCUGUUUGCAGACCAUU 2543 TTC TG-06-1045 AAAUGGUCUGCAAACAGAGC 2544 TTC TG-06-126 CCUUUUCAUCCUCCUGCCUG 2672 TTC TG-06-129 UUUUACACACCAUGUUCAAG 2675 TTC TG-06-148 GCCGGGCCCACCUUUUCAGU 2694 TTC TG-06-1046 UCUCUUACAUGGGGGGAAAC 2714 TTC c.gRNA修飾 In some embodiments, the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 1824-2544, 2672, 2675, 2694, and 2714, as described in Table 9. In some embodiments, the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 1824-1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments, the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855-1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875. In some embodiments, the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NO: 1855, 1867, and 1869. In a specific embodiment, the targeting sequence of the gRNA consists of the sequence of SEQ ID NO: 1855. In another specific embodiment, the targeting sequence of the gRNA consists of the sequence of SEQ ID NO: 1867. In another specific embodiment, the targeting sequence of the gRNA consists of the sequence of SEQ ID NO: 1869. In some embodiments, the aforementioned targeting sequence is linked to the gRNA scaffold of gRNA 174 (SEQ ID NO: 1744), 235 (SEQ ID NO: 1745) or 316 (SEQ ID NO: 1746) or a chemically modified version thereof. surface 9 : Using long-term suppressor fusion proteins PCSK9 Specific targeting sequence Targeting sequence RNA-seq SEQ ID PAM Sequence TG-06-342 AAUUACAGGCAACAGGAAGG 1824 TTC TG-06-343 CCCCAUGUAAGAGAGGAAGU 1825 TTC TG-06-344 CAGUUUCUGCCUCGCCGCGG 1826 TTC TG-06-345 GCCUCGCCGCGGCACAGGUG 1827 TTC TG-06-346 CCCACCUGUGCCGCGGCGAG 1828 TTC TG-06-347 CUCCUUCACCCACCUGUGCC 1829 TTC TG-06-348 AGGCAUUCACUCCUUCACCC 1830 TTC TG-06-349 CUGUGCCUGGUGCAGUUCCC 1831 TTC TG-06-350 GUGUCAUAAAGAAAUUGCCU 1832 TTC TG-06-351 UUAUGACACAGAACUCAUGC 1833 TTC TG-06-001 GAGGAGGACGGCCUGGCCGA 1834 TTC TG-06-002 ACCGCUGCGCCAAGGUGCGG 1835 TTC TG-06-004 GCCAGGCCGUCCUCCUCGGA 1836 TTC TG-06-005 GUGCUCGGGUGCUUCGGCCA 1837 TTC TG-06-117 ACUUUGUUUGCAAAGACCUC 1838 TTC TG-06-118 GAGUGAAAUGGCCUGCUCUG 1839 TTC TG-06-119 GAGCAGGCCAUUUCACUCGG 1840 TTC TG-06-120 CUCGGAAUCUGCUGUGCAUC 1841 TTC TG-06-121 GGAAGGGCUGUCGAUACUGG 1842 TTC TG-06-123 UCCCAGUAUCGACAGCCCUU 1843 TTC TG-06-124 CAGUAUCGACAGCCCUUCCA 1844 TTC TG-06-125 AGAAAGAGCAAGCCUCAUGU 1845 TTC TG-06-128 AGAAAUCAACUGGACAAGCA 1846 TTC TG-06-131 UGAACAUGGUGUGUAAAAGG 1847 TTC TG-06-132 AGAAGAUUCAAUUUGCAAAG 1848 TTC TG-06-133 AUGGUAGGCACAAGCUCAGC 1849 TTC TG-06-134 GAAUUCUAUGGUAGGCACAA 1850 TTC TG-06-135 GGAAAGCUGAGCUUGUGCCU 1851 TTC TG-06-138 AGGGAUUUAUACUACAAAGA 1852 TTC TG-06-139 AGGAGCAGCUAGUUGGUAAG 1853 TTC TG-06-140 AAACUUAGCCUGGACCCCCU 1854 TTC TG-06-141 ACUGGCCUUAACCUGGCAGC 1855 TTC TG-06-142 UUCCACUGGCCUUAACCUGG 1856 TTC TG-06-143 GAAUCAAUCCUACUGUGGAC 1857 TTC TG-06-144 GUGGGCAGCGAGGAGUCCAC 1858 TTC TG-06-145 UGGGUCCACCUUGUCUCCUG 1859 TTC TG-06-146 GAAGUCUCACUGGUCAGCAG 1860 TTC TG-06-147 GUGUUUCCUGGGUCCACCUU 1861 TTC TG-06-149 AGCCCAGUUAGGAUUUGGGA 1862 TTC TG-06-150 UCCCUCUGCGCGUAAUCUGA 1863 TTC TG-06-151 CUCUGCGCGUAAUCUGACGC 1864 TTC TG-06-152 GCCUCGCCCUCCCCAAACAG 1865 TTC TG-06-153 GUUAAUGUUUAAUCAGAUAG 1866 TTC TG-06-154 AGGGUGUGGGUGCUUGACGC 1867 TTC TG-06-155 GCAGCGACGUCGAGGCGCUC 1868 TTC TG-06-157 GGGUCUGAGCCUGGAGGAGU 1869 TTC TG-06-158 GGAGCAGGGCGCGUGAAGGG 1870 TTC TG-06-159 GCGCGCCCCUUCACGCGCCC 1871 TTC TG-06-160 CGCGCCCUGCUCCUGAACUU 1872 TTC TG-06-161 GCUCCUGCACAGUCCUCCCC 1873 TTC TG-06-167 CACUGAAUAGCGCAGCCGCA 1874 TTC TG-06-168 GUGGGAAGGUUCGCGGGGUU 1875 TTC TG-06-169 CGGGGUUGGGAGACCCGGAG 1876 TTC TG-06-170 UCGGCCUCCGGGUCUCCCAA 1877 TTC TG-06-171 CAGUACGUUCCAGGCAUUCA 1878 TTC TG-06-449 GCUGAAACAGAUGGAAUACU 1879 TTC TG-06-249 AAACCAAAUCGGAACCCACU 1880 TTC TG-06-386 UGUUGCCUGUAAUUGGAAUU 1881 TTC TG-06-122 CCUUUGUUUCUUCCCAGUAU 1883 TTC TG-06-127 UCCUCCUGCCUGGUACACAA 1884 TTC TG-06-137 GAAUGUACCUAUAUGACGUC 1885 TTC TG-06-431 CCCCGGCCUCCCAUCCCUAC 1886 TTC TG-06-433 CUUGGCACGAUCUUGGGGAC 1887 TTC TG-06-445 GAUUUGGUUUGGAAAACAUG 1888 TTC TG-06-446 CUCCAGGCCCUCCACCCUCC 1889 TTC TG-06-447 CACCCCGCCCCUGUCUCGGG 1890 TTC TG-06-355 CCAACCUCAGAAACUUGGAG 1891 TTC TG-06-356 GAGGUUGGAGAAGGUAGCCA 1892 TTC TG-06-359 AUCUACUCAUUCAGUCUAUG 1893 TTC TG-06-360 CCUCAUAGACUGAAUGAGUA 1894 TTC TG-06-361 GUCUAUGAGGGGAAGGCAAU 1895 TTC TG-06-362 AGCCAUUGCCUUCCCCUCAU 1896 TTC TG-06-363 UCCCUCUAAAAAUGCCACUU 1897 TTC TG-06-364 CUUCACCCCACAAGCAUCCU 1899 TTC TG-06-365 UGAGUUAUUCUUUCCCUUCA 1900 TTC TG-06-366 GGGCAGAGGGGACCAUCCUC 1901 TTC TG-06-367 UCCUUCAGGGCAGAGGGGAC 1902 TTC TG-06-368 CCUCCUGCCUUCCUCCUUCA 1903 TTC TG-06-369 GGGGCCUCCCCUCCACCACA 1904 TTC TG-06-370 GACUUACCCUGAUUGCUGGU 1905 TTC TG-06-371 CCCACACCCUGGCCAGCAAA 1906 TTC TG-06-372 CAAAUGGGUUCCCCCACACC 1907 TTC TG-06-373 CCCUCUUCUCAAAUGGGUUC 1908 TTC TG-06-374 UUUGGGCAACUUAUGGGAGG 1909 TTC TG-06-375 UCCCUCACCAAUUACCCCUC 1910 TTC TG-06-376 CAUCCCAUAUCCUCCACUGC 1911 TTC TG-06-377 AUCUGUCGCAGAGCCCAGGG 1912 TTC TG-06-378 GAGGGAGGUGGGGGAGGAAG 1913 TTC TG-06-379 UCCCCCACCUCCCUCAGAAC 1914 TTC TG-06-380 UGGGCCUGGGGACAUCCAUG 1915 TTC TG-06-381 UCAUUCUCUGGGUGCACGGU 1916 TTC TG-06-382 CUGGGUGCACGGUAACGACC 1917 TTC TG-06-383 CUGCUGCUCCCCUUUGGGAC 1918 TTC TG-06-384 UGCUCCAGGGGAGGCCUUUG 1919 TTC TG-06-385 UCAUCAAAGGCCUCCCCUGG 1920 TTC TG-06-450 UCGGCUGAAACAGAUGGAAU 1921 TTC TG-06-451 AUCUGUUUCAGCCGAAGAAA 1922 TTC TG-06-452 UUUCUUCGGCUGAAACAGAU 1923 TTC TG-06-453 GCCGAAGAAAAGAACCAGCU 1924 TTC TG-06-454 CCCCUGCCCCUUCAGCUGGU 1925 TTC TG-06-455 CGAGGCCCAUUGGCGUCCUU 1926 TTC TG-06-456 CUGCCUGAGUCCUAAAGGAC 1927 TTC TG-06-457 CACAGCCUGAGGGCCAGAAG 1928 TTC TG-06-458 GGCCCUCAGGCUGUGGGAAG 1929 TTC TG-06-459 UCCCGGGGCGAGACCACUAG 1930 TTC TG-06-460 CGGGGCGAGACCACUAGCUU 1931 TTC TG-06-461 AAGUAUUACCAGCCCAGGAC 1932 TTC TG-06-462 GUGUCCCCCAGCUUGGAGUC 1933 TTC TG-06-463 UCUCACUAGCUGUGGUGCUU 1934 TTC TG-06-464 CUCAUGGUCAACAGAACUUU 1937 TTC TG-06-465 GUUGACCAUGAGUGAACUUA 1938 TTC TG-06-466 CCUCUGCCCCAGGAGCUGUG 1939 TTC TG-06-467 GCCACUCACAGCUGCCUGCC 1940 TTC TG-06-468 GUCUGAGUGUGCUGGGUGGC 1941 TTC TG-06-469 UUGUUCCCUGAGCCUUUGAC 1942 TTC TG-06-470 CUGAGCCUUUGACUUUCUCG 1943 TTC TG-06-471 CGAGGGAUGUUGUGGGGUUG 1944 TTC TG-06-472 UAUCCUGGCCACAACCCCAC 1945 TTC TG-06-473 AGUUACCACUGCUCCAAAAC 1946 TTC TG-06-474 GGAAAUAGUGAGUACCCCAU 1947 TTC TG-06-475 GGUGGUCAUACAGCCUCUGC 1948 TTC TG-06-476 ACCAGAGAAGAAACAUCCUC 1949 TTC TG-06-477 AAACUUCCACCAGAGAAGAA 1950 TTC TG-06-478 UCUCUGGUGGAAGUUUGGAA 1951 TTC TG-06-479 CUGGUGGAAGUUUGGAACAG 1952 TTC TG-06-480 CACAAAAUAACCAUUGAAUG 1953 TTC TG-06-481 AUUCCCACAAAAUAACCAUU 1954 TTC TG-06-482 AAAUUCGAUUCCCACAAAAU 1955 TTC TG-06-483 UUCUAAAUUCGAUUCCCACA 1956 TTC TG-06-484 CAUGACUAAAAGAAAAGGAU 1957 TTC TG-06-485 UUUAGUCAUGAGAAACUGAG 1958 TTC TG-06-486 AAUGCACCUGGGGUGACCUC 1959 TTC TG-06-487 GGAAACCCAGUUCUAAUGCA 1960 TTC TG-06-488 AGAACUGACACUCCACUGCA 1961 TTC TG-06-489 AAGACCCAUCUGAAAAUGCC 1962 TTC TG-06-490 GAUGGGUCUUUGAAGCAUUA 1963 TTC TG-06-491 CAUGACACCAUCAUCGCUGA 1964 TTC TG-06-492 GCGAUGAUGGUGUCAUGAGA 1965 TTC TG-06-493 UGGUACCUCCUAAUCCUAGA 1966 TTC TG-06-494 AGGAUUAGGAGGUACCAUGA 1967 TTC TG-06-495 CAGCUCUGUAUCUUUGUUCA 1968 TTC TG-06-496 GACGGUGGAUAAAGAACUGU 1969 TTC TG-06-497 UUAUCCACCGUCUGAAAUGU 1970 TTC TG-06-498 CGUCAGGUGCUACCAUCAAA 1971 TTC TG-06-499 UCCAAGCAGACUCUGAUUGC 1972 TTC TG-06-500 AAGCAGACUCUGAUUGCCCA 1973 TTC TG-06-501 AAAAUCCAAACAAGUUCUGA 1974 TTC TG-06-502 ACUCUGACUGGAGUCCAAGA 1975 TTC TG-06-503 CUGGCUCCCCACAGCCUCAU 1976 TTC TG-06-504 UGAGGCUGUGGGGAGCCAGU 1977 TTC TG-06-505 UAAGCAGGUAUGUCUGCCUG 1978 TTC TG-06-506 CAGGGGUUCCUCCCCCAUGA 1979 TTC TG-06-507 AGGGAAAUCAUAGCGGGAGA 1980 TTC TG-06-508 CCCGCUAUGAUUUCCCUUGA 1981 TTC TG-06-509 CUUGAAGGCUGAUUAUUAAA 1982 TTC TG-06-510 CUUGCCAUGUGAUUGAUCUC 1983 TTC TG-06-511 GCCAUCAGUGAAAGCAGCUU 1984 TTC TG-06-512 UGGAGAGCUUGCAGAAUCAU 1985 TTC TG-06-513 GCUCAUGAUUCUGCAAGCUC 1986 TTC TG-06-514 UUUAUAUAGCAACACAAAAG 1987 TTC TG-06-515 UAAAGAGAGAGAAAAGUCAA 1988 TTC TG-06-516 CUCUCUUUAAGAAGUGUUGC 1989 TTC TG-06-517 GCCUGCAUUUGUAGAGCAUC 1990 TTC TG-06-518 CAGCAGGCCUAUGUCAUAGG 1991 TTC TG-06-519 GGUCCACGGUUUCCUGGCUC 1993 TTC TG-06-520 UGGCUCCAAAGCCCAUGAUU 1994 TTC TG-06-521 CUCAAUUUAUUCUGACUGGG 1995 TTC TG-06-522 GACUGGGGCAUGGGGGAGGG 1996 TTC TG-06-523 UCUGUACCUGCACCCAGCUC 1997 TTC TG-06-524 GGCAAAAAUGGGAACUACGG 1998 TTC TG-06-525 AAUGUGCCAUUCAGGCAAAA 1999 TTC TG-06-526 UUAUCAUCUACUAUACUCUG 2001 TTC TG-06-527 UCCAUGUCAUCAUGUUCCUC 2002 TTC TG-06-528 AUGUCAUCAUGUUCCUCCUU 2003 TTC TG-06-529 UCCUUGCAUGGGGCCAGGAU 2004 TTC TG-06-530 GCACCACCACGUAGGUGCCA 2005 TTC TG-06-531 AUGGCCUUCUUCCUGGCUUC 2006 TTC TG-06-532 CCAGGAAGCCAGGAAGAAGG 2007 TTC TG-06-533 UCCUGGCUUCCUGGUGAAGA 2008 TTC TG-06-534 UGGCUUCCUGGUGAAGAUGA 2009 TTC TG-06-535 UGGUGAAGAUGAGUGGCGAC 2010 TTC TG-06-536 CAAAAAGGGUGGCUCACCAG 2011 TTC TG-06-537 UGAUAGGGCUGGGCCACUGC 2012 TTC TG-06-538 GCAAUGGGCCUACUAAGCAC 2013 TTC TG-06-539 AUACAGAAAGCCAGUAGUUA 2014 TTC TG-06-540 GUAUAGAAUUCCCUUUAAGC 2015 TTC TG-06-541 CUUUAAGCCUGGCCAUGCCC 2016 TTC TG-06-542 AAUGAAGAUAGACGUACCAC 2017 TTC TG-06-543 GUCUCCUCGUCUUUCAAAUG 2018 TTC TG-06-544 UUUGAAAGACGAGGAGACUG 2019 TTC TG-06-545 GAGGGGACCACACAGACAGC 2020 TTC TG-06-546 UGUGCCAAUGCAUCUGCUGC 2021 TTC TG-06-547 GUAGGCAGCAGAUGCAUUGG 2022 TTC TG-06-548 UUUGAAGCUGUUGCUAUCCA 2023 TTC TG-06-549 CUCUGGAUAGCAACAGCUUC 2024 TTC TG-06-550 UUAGGACAGGGUGGCCCUCC 2025 TTC TG-06-551 GCCCCUCCACCGAAGAUGUG 2026 TTC TG-06-552 GCACCACCUUCUAGCCCACC 2029 TTC TG-06-553 AGCCCACCUCGUUUCCUGGC 2030 TTC TG-06-554 UGGCCUCUAACUUGAUGAGA 2031 TTC TG-06-555 CACUGAUUCUCCACAUGGCA 2032 TTC TG-06-556 CCACAUGGCAGGCGGUGCUU 2033 TTC TG-06-557 UAGCCUCCUGCAGACAGUGA 2034 TTC TG-06-558 GCCACGGUAUGCUGAGCUGA 2035 TTC TG-06-559 AAGGCAGGGACCCUGUCAAU 2036 TTC TG-06-560 AUCAGUCUGCUCAACACACG 2037 TTC TG-06-561 CCUCUGCAGCACACAGUAGG 2038 TTC TG-06-562 CUUGAGCUUACAGUUCAGGA 2039 TTC TG-06-563 GGAGGAGAGACUGACCAGUG 2040 TTC TG-06-564 UCUCUCCCCAAGGCUGAGCA 2041 TTC TG-06-565 UCGUCUCUCCCCAAGGCUGA 2042 TTC TG-06-566 GCUUGGCCUACUCUCCUCUG 2043 TTC TG-06-567 GUUUGCCUUCUGCUUGGCCU 2044 TTC TG-06-568 AACUGGGCAUCAUACCAGCC 2045 TTC TG-06-569 AGUCCUGCCCAGCCCCUUAU 2046 TTC TG-06-570 UCUAUCUGUAAACCAGUUAU 2047 TTC TG-06-571 UUUAAGGACUAAAUGAGGUC 2048 TTC TG-06-572 CGACCUCAUUUAGUCCUUAA 2049 TTC TG-06-573 GUACCUAGCAUCUGCUGAAU 2050 TTC TG-06-574 GCAGAUGCUAGGUACGGAAA 2051 TTC TG-06-575 GCGAGUUUCCGUACCUAGCA 2052 TTC TG-06-576 UAACCUGCCCCCACUUCAGC 2053 TTC TG-06-577 UAUCCCCAGAGGCUUCUUAA 2054 TTC TG-06-578 GACCUAAGUGGUAACAGCCU 2055 TTC TG-06-579 CUCUCCUUACCCUUCAGACC 2056 TTC TG-06-580 CUCUGCCCAGUUGGAGCCGG 2057 TTC TG-06-581 CCGCUGCCAUGCGCAGGGAG 2059 TTC TG-06-582 CCAGCCUGCUCAGUGCAAAC 2060 TTC TG-06-583 GUUUGUCCCCUAGUCUAUUC 2061 TTC TG-06-584 CUCCAUGUCCAUCCUGCCCA 2062 TTC TG-06-585 GAACUUGACAUCUUGUCUGG 2063 TTC TG-06-586 GAAUCCUUCCUAAAAGGAAU 2064 TTC TG-06-587 UAAAAGGAAUCCUCUAUGCC 2065 TTC TG-06-588 GCAGGCCUUGAAGUUGCCCC 2066 TTC TG-06-589 ACGGGAUGCUCUGGGCAAAG 2067 TTC TG-06-590 UCCGCCCGGUACCGUGGAGG 2068 TTC TG-06-591 GCUCAGAUGGGGUGGGGCAG 2069 TTC TG-06-592 UGUUGCCCCACAAAUGCAAA 2070 TTC TG-06-593 AAAUGGUGAGAAAAGGAAAA 2071 TTC TG-06-594 CACCAUUUGGAAUGGCCCAG 2072 TTC TG-06-595 AAGGUAAGUGCAGCCUGCUG 2073 TTC TG-06-596 UCUGAUGGUGACUCUACCUA 2074 TTC TG-06-597 UGGGGCUCCCUGCCUGGGCC 2075 TTC TG-06-598 CUCUAGGCCUUUCUUUCCAC 2076 TTC TG-06-599 UUCCACUGUUCCCUCUGCCU 2077 TTC TG-06-600 CUCUGCCUGGUGUGGCCUGG 2078 TTC TG-06-601 AUAGCCAGGCCACACCAGGC 2079 TTC TG-06-602 AUGGCCGCUCCUCCUCCCUC 2080 TTC TG-06-603 AGCAGGGACUUGCAGGUGGC 2081 TTC TG-06-604 CCGACUGAAUUGCCACCUGC 2082 TTC TG-06-605 GUCGGGGAAGACUCUAGAUG 2083 TTC TG-06-606 CUCCUCAGGCCAGGUGCAUC 2084 TTC TG-06-607 UUCUCUCCUCAGGCCAGGUG 2085 TTC TG-06-608 AGUUGGACUGUGUUAAGUUU 2086 TTC TG-06-609 CCCCAAGCUCUGCGUCCUGG 2087 TTC TG-06-610 CCCCUUACCGGUUCUCGUGG 2088 TTC TG-06-611 CAAGAUCCCACGAGAACCGG 2089 TTC TG-06-612 CGUGGGAUCUUGGGAAGCCA 2090 TTC TG-06-613 UCUAUGAGCUUUGUCGUUCU 2091 TTC TG-06-614 AUGAGCUUUGUCGUUCUUGU 2092 TTC TG-06-615 CACAGGUUGCUGUGAGACUC 2093 TTC TG-06-616 ACUCAUUGGAGUCUCACAGC 2094 TTC TG-06-617 AAAAGCAUCUGCACAUCCUU 2095 TTC TG-06-618 CUUCCAAAAGCAUCUGCACA 2096 TTC TG-06-619 CCACACCCAGCCCACCAGCU 2097 TTC TG-06-620 GCUGCUGCCACCCUUGCCAG 2098 TTC TG-06-621 UACAGAGGAGCUGUCCUCUC 2099 TTC TG-06-622 UUUCCAACCAGGUGAGACCU 2100 TTC TG-06-623 AACCAGGUGAGACCUCUUCA 2101 TTC TG-06-624 GUGGAGCCCUGGAGCCCCCU 2102 TTC TG-06-625 CAGUCCCUGCCUGGACUGGG 2103 TTC TG-06-626 AACCGAGGGGGUGGUAAUUU 2104 TTC TG-06-627 CUUGCCUCUUCCGUGUCCCA 2105 TTC TG-06-628 GUGUCCCAACAGCGGCAGCA 2106 TTC TG-06-629 UUGUCUCAUAAGGACACUUG 2108 TTC TG-06-630 GGCCCAAGGGAGGAGGGA 2109 TTC TG-06-631 CUCCUCUCCCUUGGGCCAGA 2110 TTC TG-06-632 UCCCCAUAGGAUGCCCAUGG 2111 TTC TG-06-633 CCAUAGGAUGCCCAUGGAUU 2112 TTC TG-06-634 CGCUUCCCCCGAGUGUCUGU 2113 TTC TG-06-635 CCCGAGUGUCUGUGGGAGGU 2114 TTC TG-06-636 ACACCCCUGCCUGCCAUUCC 2116 TTC TG-06-637 GGAGUCAUAUCAAGGGCUUG 2117 TTC TG-06-638 UCCAGCCAAGCCCUUGAUAU 2118 TTC TG-06-639 UCAUUCAUGGGGAGGCCACA 2119 TTC TG-06-640 UUCAUGGGGAGGCCACAAGC 2120 TTC TG-06-641 UGGGGAGGCCACAAGCAUGG 2121 TTC TG-06-642 CUGUCAGGUAUUGAGUGAGG 2122 TTC TG-06-643 UUCACAUUUGUAUCCCCAGC 2124 TTC TG-06-644 UUUCAUUCACAUUUGUAUCC 2125 TTC TG-06-645 GGAUACACUGUUGGGGGAAG 2126 TTC TG-06-646 CCCAACAGUGUAUCCAGAAG 2127 TTC TG-06-647 UUAAACAAAUGCUACUUGAC 2128 TTC TG-06-648 GAGCUCUCAGCCUAUCCAGA 2129 TTC TG-06-649 GGAUAGGCUGAGAGCUCUGA 2130 TTC TG-06-650 GCUGGAUACACAGGCUCGCA 2131 TTC TG-06-651 UGAUCCUUCUGCUGGAUACA 2132 TTC TG-06-652 UGGAGGAAGCGCUGUUCUAG 2133 TTC TG-06-653 AGCCAAGACCUACGGGGGCA 2134 TTC TG-06-654 ACUGCUUGGACACCGUCCCC 2135 TTC TG-06-655 UUCCACUGCUUGGACACCGU 2136 TTC TG-06-656 AUCCACGUUCAUUCCACUGC 2137 TTC TG-06-657 GCACAGGCCACACUCCCUCC 2138 TTC TG-06-658 CAUCUGACCUGGAGGCCACC 2139 TTC TG-06-659 CAGGCGUAUGGCAGGGCUGC 2141 TTC TG-06-660 CUCUCACCAGGCAGCCCUGC 2142 TTC TG-06-661 AGCCUCUGGAAAGCUCUGUG 2143 TTC TG-06-662 UGAGGCCACCUUGCCACGCU 2144 TTC TG-06-663 CUGUGACAGCGUGGCAAGGU 2145 TTC TG-06-664 AAACCCCCGGGUGAGGCAGG 2146 TTC TG-06-665 UAGGCCUCCCUCUAUCUUCC 2147 TTC TG-06-666 AGUGAGAGGCUGGAAAGGGG 2148 TTC TG-06-667 UUCCAGUGAGAGGCUGGAAA 2149 TTC TG-06-668 AGCCUCUCACUGGAAGGAAG 2150 TTC TG-06-669 UGCCCGCUCACACCAGCCCA 2151 TTC TG-06-670 AAGUGCAGGCGGUUCCUGCC 2152 TTC TG-06-671 AUCUGCCGCUGGGGCCACAC 2153 TTC TG-06-672 GCUGCAAGAUGAUGUGACCA 2154 TTC TG-06-673 GGUCCCACCCGUGCUUGGGA 2155 TTC TG-06-674 UCGUCGUGUGUGAGGAGGGA 2156 TTC TG-06-675 CUCCUCACACACGACGAGGA 2157 TTC TG-06-676 AGUCCAUGUUCCUCGUCGUG 2158 TTC TG-06-677 GCUCGAUGUGCGUUGUGUGG 2159 TTC TG-06-678 CUCCCUGGACGUAAGCCACA 2160 TTC TG-06-679 AGAUAAGCCUGUAUUCCCCG 2161 TTC TG-06-680 CCGGGCUGUCUGCCAAUGUA 2162 TTC TG-06-681 AGGCUGACGGGACAACUGGA 2163 TTC TG-06-682 CUCAGAGCUUCCAGGCUGAC 2164 TTC TG-06-683 UGAGCACCUGUAUCCCCUGC 2165 TTC TG-06-684 ACAUUCCAUAGCCCAGCUCA 2166 TTC TG-06-685 AUAGCCCAGCUCAAUAUCUA 2167 TTC TG-06-686 UCUAGGGUGGCGAGCACUGU 2168 TTC TG-06-687 GGUCGGAGCUCACAGCGCUC 2169 TTC TG-06-688 CAGUGUAGCACCGGGCACAU 2170 TTC TG-06-689 CUCAUCAAUAGGCAUCUACC 2171 TTC TG-06-690 GUAGCAUGCUGAGCAGGUCC 2172 TTC TG-06-691 UCUGUAGCAUGCUGAGCAGG 2173 TTC TG-06-692 UGCCGAGACUGGAGGCCUUA 2174 TTC TG-06-693 GACUGUGCCCAGACCUACUA 2175 TTC TG-06-694 GGCAAGGUCGGCCCCCAGUC 2176 TTC TG-06-695 UGUGGGAUCUCAGAGCAGCC 2177 TTC TG-06-696 GUGGCUGCUCUGAGAUCCCA 2178 TTC TG-06-697 CCAAAUAAGGUCUGGCUCAC 2179 TTC TG-06-698 CUCAUAAAGACACAUCACAG 2180 TTC TG-06-699 CCAAUCUCCACCUCUGUCUC 2181 TTC TG-06-700 UCCCAGAGCCUUCGCUGCUG 2182 TTC TG-06-701 CAGAGCCUUCGCUGCUGAGU 2183 TTC TG-06-702 CAGACUCAGCAGCGAAGGCU 2184 TTC TG-06-703 CUGCUGAGUCUGGGAAUUUG 2185 TTC TG-06-704 GUCACAAAUUCCCAGACUCA 2186 TTC TG-06-705 UAUGGCUUCGGUCACAAAUU 2187 TTC TG-06-706 CAUCUCAGGACAGGUGAGCA 2188 TTC TG-06-707 GAAGUGCCAUCUGAACAGCA 2189 TTC TG-06-708 GAUGGCACUUCAGAAGACUC 2190 TTC TG-06-709 GAAGACUCAGGAGACCCUGG 2191 TTC TG-06-710 UGGCUGCAGGGGUUCCAGGG 2192 TTC TG-06-711 GCUGGCGCAGGACUCUGCUA 2193 TTC TG-06-712 GGCAGGUUGCUGCUAGCAGA 2194 TTC TG-06-713 UUUGGCCUGGCUGAGAGUUU 2195 TTC TG-06-714 GAGACCUGCGCUGGAGCGGA 2196 TTC TG-06-715 UCUCUCCCUUCUCCAUCCAG 2197 TTC TG-06-716 CCAUCCAGCAGGCUGGACCU 2198 TTC TG-06-717 CCUAUACCCUAACCUUUGUC 2199 TTC TG-06-718 CCAAGAAGCAGGCACUGGGG 2200 TTC TG-06-719 CUGAGGUUGUGACUCGUGUG 2201 TTC TG-06-720 GCCUCACACGAGUCACAACC 2202 TTC TG-06-721 CCACUCCACAAGAUACCAGG 2203 TTC TG-06-722 UGUCUCUAAAAUGAGCCGGC 2204 TTC TG-06-723 CCUUUGAGUCUUUAAAUCUU 2205 TTC TG-06-724 CAGCUCACCGAGUCUGCAAG 2206 TTC TG-06-725 UGCAGACUCGGUGAGCUGUG 2207 TTC TG-06-726 UAUGAAGGAGCAGGAUGACU 2208 TTC TG-06-727 UGGCAGUAGCAUUGCCAGCU 2209 TTC TG-06-728 CCAGUGCCUGGGAUGUGCUC 2211 TTC TG-06-729 GUGUGUUAACUAUAAGGUUG 2212 TTC TG-06-730 AAGGCGACAUUUGUGGGAGA 2214 TTC TG-06-731 CGGUGGUCACUCUGUAUGCU 2215 TTC TG-06-732 CGAAGUCGGUGACCAUGACC 2216 TTC TG-06-733 AGAAUGUGCCCGAGGAGGAC 2217 TTC TG-06-734 ACAGACAGGUAAGCACGGCC 2218 TTC TG-06-735 CACAACUGAUGGCAGGGAGG 2219 TTC TG-06-736 UCCAUCCAGCCACCUGCUGA 2220 TTC TG-06-737 CAUGUGGUCCUUGUGUUCGU 2221 TTC TG-06-738 UCGAGCAGGCCAGCAAGUGU 2222 TTC TG-06-739 CUUGGCAGUUGAGCACGCGC 2223 TTC TG-06-740 UGGUUAGGAGACAUUAGCUC 2224 TTC TG-06-741 CUGGCUCUGCGGCAGAGGCU 2225 TTC TG-06-742 UCUGCACUCGUGGCCACUGG 2226 TTC TG-06-743 CAGUGGCCACGAGUGCAGAU 2227 TTC TG-06-744 UCAUCUGCACUCGUGGCCAC 2228 TTC TG-06-745 GCCUUGACCCUGGGUCAAUG 2229 TTC TG-06-746 ACAGUUCCACACUGCUCCCC 2230 TTC TG-06-747 AUGUGGAGGGACUCGAGGUG 2231 TTC TG-06-748 AUCUUCUGCUUGCAUACCUC 2232 TTC TG-06-749 GCUUGCAUACCUCUGAGACC 2233 TTC TG-06-750 AGACUGUGACUACAUUUAGU 2235 TTC TG-06-751 CAACUGGACUUCAUAGGGGG 2236 TTC TG-06-752 CUGUCCACCGGCCCCCAGAG 2237 TTC TG-06-753 UUCUGUGGCCAGACAUUGAG 2238 TTC TG-06-754 GUGGCCAGACAUUGAGCAAG 2239 TTC TG-06-755 UCAACUAUUUAGCAGCUACG 2240 TTC TG-06-756 CCAGCUUGAGCUGUGCGACC 2241 TTC TG-06-757 CAGCGAGUUCCCCAGCUUGA 2242 TTC TG-06-758 ACUGUAAGCCCCAGCCCCCA 2243 TTC TG-06-759 CAGCCUUUGAAACAGGCUAG 2244 TTC TG-06-760 AAGGCUGAGAAGGCCCAGGA 2245 TTC TG-06-761 GCCCUGAGACUUUCCUACAG 2246 TTC TG-06-762 UGCCUUUAAAACUGAACAUC 2247 TTC TG-06-763 GCCCCAUCAGGUGACCCCUU 2248 TTC TG-06-764 GGAACUGACCUGACUGAGCC 2249 TTC TG-06-765 UGAAGGUCAGUGUGUGGAGG 2250 TTC TG-06-766 GGGAAAGAACAGCCUCCCCU 2251 TTC TG-06-767 UUCCCAGAAAGGCCUUCCCC 2252 TTC TG-06-768 CCAGGCCUGGUGCUCUGGCC 2254 TTC TG-06-769 CCAGGAAGUCCUCCAGAGGC 2255 TTC TG-06-770 UGGAGAAGUCCCUUCUUUGG 2256 TTC TG-06-771 UUGGGGUCCCAGUCAGUGUA 2257 TTC TG-06-772 CAUACACUGACUGGGACCCC 2258 TTC TG-06-773 UCCUCUGUAAGCAGGUGAUU 2259 TTC TG-06-774 UCACCUCCACACUCAGUGCC 2260 TTC TG-06-775 CCUCCACACUCAGUGCCACU 2261 TTC TG-06-776 AGCUCCAUCCUUGGCCACGG 2262 TTC TG-06-777 GGAUCCUGGCCUCUAAGAUG 2263 TTC TG-06-778 CCCCUGUCAAAUGAGGUGUG 2264 TTC TG-06-779 AGGUCCCCUUGCACAUCAGG 2265 TTC TG-06-780 AACCCUCUGCCAGCCUGUGA 2266 TTC TG-06-781 GGCCUCAGUGGCACUCCACU 2267 TTC TG-06-782 UUCUGGCCUCAGUGGCACUC 2268 TTC TG-06-783 UUAGACAAUCCUGGGAGCAA 2269 TTC TG-06-784 AGUUUGUGUGGGUCCAACAC 2271 TTC TG-06-785 CCCGCCACUCUCUGAGGCCU 2272 TTC TG-06-786 CCACCCAACUUCCCCCGCCA 2273 TTC TG-06-787 CAUUCCUCUGAGGCUCAUCC 2274 TTC TG-06-788 UCUGAGGCUCAUCCUCUUGG 2275 TTC TG-06-789 AUGAAAGAGAGGCACCAAGA 2276 TTC TG-06-790 UGGAAAGGGAUAAUAAGGUU 2277 TTC TG-06-791 UAUAUUCAGACGCUUAGACA 2278 TTC TG-06-792 GACGCUUAGACAGAGCCAGG 2279 TTC TG-06-793 CUGUGCCUGGCUCUGUCUAA 2280 TTC TG-06-794 AGCUCAUGUGACCGUGCGGG 2281 TTC TG-06-795 GCAGGAAUUGCCAGCCUGCC 2283 TTC TG-06-796 UGCAGAAUUUGAUGUUGCAA 2284 TTC TG-06-797 UUCUUCCCUGGGAGGCCUCA 2286 TTC TG-06-798 UCCCUGGGAGGCCUCAGUCU 2287 TTC TG-06-799 CUGGGAGGCCUCAGUCUGUU 2288 TTC TG-06-800 CAGCAGCAUUUCCACUGGCU 2289 TTC TG-06-801 CAGCCCCUCCCUUACAGGCA 2290 TTC TG-06-802 UCCCAGGCCUGGAGUUUAUU 2291 TTC TG-06-803 GAAUAAACUCCAGGCCUGGG 2292 TTC TG-06-804 GAAAAGCCAGCUGGUCCAGC 2293 TTC TG-06-805 GGGACGAUGCCUGCCUCUAC 2294 TTC TG-06-806 UGUGGCACGUGGGCUUCUUG 2295 TTC TG-06-807 UGUGGCACGUUCCUGGAGGC 2296 TTC TG-06-808 GCCUCCAGGAACGUGCCACA 2297 TTC TG-06-809 UGGAGGCCGAACCCUUCUGG 2298 TTC TG-06-810 AAAGCCAGAAGGGUUCGGCC 2299 TTC TG-06-811 GGCUUUGGAAGGAGUCGUCA 2300 TTC TG-06-812 UCCCCAGCCUCCCGCAUGGC 2301 TTC TG-06-813 AGCCCCUUCCUCCCCAGCCU 2302 TTC TG-06-814 GACUCUGCGAUGAUGGAGGU 2303 TTC TG-06-815 GGAGGGAGAGUGGCCAGGAC 2304 TTC TG-06-816 GGUACCCGCCCCCUCCCCAU 2305 TTC TG-06-817 CAUUAGCCUUGCUCAAGUUG 2306 TTC TG-06-818 UCGGGUGAGAGGUCUGAGCC 2307 TTC TG-06-819 CCUAGAUACCCGCAGUGUCC 2308 TTC TG-06-820 UUCCCCUAGAUACCCGCAGU 2309 TTC TG-06-821 AGACUUGAAGUGGAACAAGA 2310 TTC TG-06-822 ACUUCAAGUCUGGAACUUCA 2311 TTC TG-06-823 AGUCUGGAACUUCAAGUCUG 2312 TTC TG-06-824 AGUCUGUGUGUGUGCGUGCG 2313 TTC TG-06-825 GCCGCCAGGGAAGCCUUGAU 2314 TTC TG-06-826 CUGGCGGCCGAAUUUAAAGG 2315 TTC TG-06-827 CCCCGUGGCACUUAGAACCA 2316 TTC TG-06-828 GUGUAUCAAGUGGUUCUAAG 2317 TTC TG-06-829 UAUCUCCCCCACUAGGAUGU 2318 TTC TG-06-830 CAAUGCCCCUGUGGAGUUUA 2319 TTC TG-06-831 UUAGGAGGGGACAUUUGAGU 2320 TTC TG-06-832 AGGUCAUCACAGUUGGGGCC 2322 TTC TG-06-833 UCUCUGGUCCCCCUGCACAG 2323 TTC TG-06-834 AGGACACUCAGUCUGAUGAG 2324 TTC TG-06-835 UCUGUGCACUCGCCUCCCUC 2325 TTC TG-06-836 CUGACCCUCGGGCUGGGCAG 2326 TTC TG-06-837 UCCAUCAAGCUCCCGAUCAA 2327 TTC TG-06-838 CCUGGCCGAUAAGACAGCAA 2328 TTC TG-06-839 CGAAGGUAAGCCGCCUGCAG 2329 TTC TG-06-840 AGAAGAGAGCUUAGUGUCUG 2330 TTC TG-06-841 CCCCUGCACCAGGCAUUGCA 2331 TTC TG-06-842 CUGCCAAAGAUGUCAUCAAU 2332 TTC TG-06-843 CUGAGGACCAGCGGGUACUG 2333 TTC TG-06-844 CCCUUGUCUGUGUAAGGAGG 2334 TTC TG-06-845 GAGCCCCAUUCUCAUUUAAU 2336 TTC TG-06-846 UUAAGCCCUCCUCUCUCCUA 2337 TTC TG-06-847 UGGUAGGAGAGAGGAGGGCU 2338 TTC TG-06-848 GUGGAGGUCCCCUCACUCCC 2339 TTC TG-06-849 CACUCCUGGAGAAACUGGAG 2340 TTC TG-06-850 CCAGGAGUGGGAAGCGGCGG 2341 TTC TG-06-851 GUAAGCUUACAGGGCUGGCC 2342 TTC TG-06-852 CGCGGCUGGGGGCUGCUGGA 2343 TTC TG-06-853 CGCUGUGGCUCUCUCCAGCA 2344 TTC TG-06-854 UAGAGGCUGCAGGACAGUGC 2345 TTC TG-06-855 AUGCUCACCUGGGUGUGAGC 2346 TTC TG-06-856 ACCAAAAUGCUGCAACCAGA 2348 TTC TG-06-857 GGCUUGAGGAGAUGGGGUCU 2349 TTC TG-06-858 AAAUGGAGAUAGAGAGAAAU 2350 TTC TG-06-859 AAACACAGAGUGGUUUCAAA 2351 TTC TG-06-860 UCCAAACACAGAGUGGUUUC 2352 TTC TG-06-861 GCCAGUGGGCAGCUCUGAAU 2353 TTC TG-06-862 GAGCUGCCCACUGGCAGAAC 2354 TTC TG-06-863 UUGGGCAGGAGUGAGCUCCU 2355 TTC TG-06-864 GGGGACAAGGAGCUCACUCC 2356 TTC TG-06-865 AAGCCCAUUCUAAAGCAGAU 2357 TTC TG-06-866 AAAGCAGAUUCCCAUUUCCG 2358 TTC TG-06-867 CAUUUCCGUCUUUGACUCUA 2359 TTC TG-06-868 GUCUUUGACUCUAAGGCCCA 2360 TTC TG-06-869 CCUUAUGCACCCACUGCCCG 2361 TTC TG-06-870 AUACUCUGGUUCUGCCACUU 2362 TTC TG-06-871 AUGCCCUUUGAGCCUGGGCA 2364 TTC TG-06-872 CCUCAUCUCAGCUUCCUCCU 2365 TTC TG-06-873 UCCUCCAUAAGAGGGAAAAA 2366 TTC TG-06-874 GCCCCAGCCGGGGGCCUCUC 2367 TTC TG-06-875 AACCGAGGUCUGCCCUCCUU 2368 TTC TG-06-876 CCCUGCCGCUCUAUAGCUGU 2369 TTC TG-06-877 UCAUACAGAGAUGUUAAGUA 2370 TTC TG-06-878 AGCUAUCGUUACUAUUGUUU 2371 TTC TG-06-879 UCACCCGUUGCUUUAAAAUC 2372 TTC TG-06-880 ACACAGGGUAGCCCGUCAAU 2373 TTC TG-06-881 UGCUACCUGCCUGGGCAUGU 2374 TTC TG-06-882 GGUUGGGUGGAGCAUGAGAG 2375 TTC TG-06-883 AGGCUGGAGUCCCACUGUCU 2377 TTC TG-06-884 CCUGGACGUGCUCAGACGAG 2378 TTC TG-06-885 CGUCUGAGCACGUCCAGGGG 2379 TTC TG-06-886 CAAACCCUCAGUGGUUCCCC 2380 TTC TG-06-887 GGGCACAGCAGGCUGGCAUG 2381 TTC TG-06-888 UGAACAUCCAUCCUACAUGC 2382 TTC TG-06-889 GGAAAGAUGAGCAUAGUCAG 2383 TTC TG-06-890 CUCCAAGCCAGGACCCCUGA 2384 TTC TG-06-891 GGGGUCCUGGCUUGGAGGGA 2385 TTC TG-06-892 AAAGGGGAGCGUGAUUAGAG 2386 TTC TG-06-893 AACUGACAUGUGCCUGUGAG 2387 TTC TG-06-894 AUGACUUCAAACUGACAUGU 2388 TTC TG-06-895 UGGAGUCAGAUUCCAUGACU 2389 TTC TG-06-896 CUUAGCUGCAAAAUGGUGCU 2390 TTC TG-06-897 CUAUGUCCUAGCUGCAAGGG 2391 TTC TG-06-898 GAGCACAUGCCAGGCUCCAU 2392 TTC TG-06-899 CACGUGUCAUCUUCACAGUG 2393 TTC TG-06-900 CAGUGUCCCUGUGAGUAGGU 2394 TTC TG-06-901 CUUUCCAUCUUACAAAUGAG 2395 TTC TG-06-902 UAGCCAAUGGGUGUGUCUGA 2397 TTC TG-06-903 GAGGUGGUUCAGACAGACCC 2398 TTC TG-06-904 GACAGACCCCGGCUUACCCU 2399 TTC TG-06-905 AGGGUAAGCCGGGGUCUGUC 2400 TTC TG-06-906 GCCUGCUGGCUGCAUAGGGA 2401 TTC TG-06-907 ACCCAGAGAUGGAGACAGUG 2402 TTC TG-06-908 CAGGGAAAACACCAUCUUUC 2403 TTC TG-06-909 CUGAGAAACUAAGGCUCAGA 2404 TTC TG-06-910 UUGAGUUGUUUCUAGGUUUC 2405 TTC TG-06-911 AGGUUUCCUAGCUCUUGCCU 2406 TTC TG-06-912 UAGCUCUUGCCUCAGACCUU 2407 TTC TG-06-913 CAUCUGAGCUGGCUUUCCUC 2408 TTC TG-06-331 UCUGCCCCAGGCUGCAGCUC 2409 TTC TG-06-915 UGCUGCCAUGCCCCAGGUCU 2410 TTC TG-06-916 AGACCUGGGGCAUGGCAGCA 2411 TTC TG-06-917 AUGCUCCUUGACUUUGCAUU 2412 TTC TG-06-332 CCUGCUCCUGAGGGGCCGGG 2413 TTC TG-06-919 GUGUCAGUUUGUGCCACCAC 2414 TTC TG-06-920 GCCAUUGUGUGGACAGCAUG 2415 TTC TG-06-921 ACUCCAAGUGGAGUGGGGUA 2416 TTC TG-06-922 UUAUGCCAUAUUUAUGCACA 2417 TTC TG-06-923 GCAUGCAGCUCAGGCACCCC 2418 TTC TG-06-924 UGCCUUGCUGGUCAUGCUAA 2419 TTC TG-06-925 AGGGCUUGGCACAUGCCUUG 2420 TTC TG-06-926 AGAAGGCCCGGCUGUCACAU 2421 TTC TG-06-927 AGAAACCUGAGUGUAUAACU 2422 TTC TG-06-928 UUUAAGAGUGGACUCCUUAG 2423 TTC TG-06-929 GGUCUGGAUGGUGCAUUCCU 2424 TTC TG-06-930 UCGAGAGCAAAAGACAGUCU 2425 TTC TG-06-931 AGGUGCUCUUCCUGGCACUG 2426 TTC TG-06-932 CCCUCCUGGAGCAUCUAUUU 2427 TTC TG-06-933 UCCACUAAAAUAGAUGCUCC 2428 TTC TG-06-934 GUACUCUAUAUUAAUGGUUU 2430 TTC TG-06-935 UCCACCUUGUCAGCGAGACC 2431 TTC TG-06-936 CUGCCUCAUGGCCUGUUUCG 2432 TTC TG-06-937 AGGCAAAGCAAAGGCCCCCA 2433 TTC TG-06-938 UGGUACUCCCUGCACAUCCC 2434 TTC TG-06-939 CACCUCUCUGGUUUCCUGGU 2435 TTC TG-06-940 GAUCCAGGCCAGACCACACU 2436 TTC TG-06-941 CAGCUCAGCAGCUAGGCCAC 2437 TTC TG-06-942 GCCCAAGGUCCUUGUCAUCU 2438 TTC TG-06-943 GAGGGAUGAGUUUGGCACUG 2440 TTC TG-06-944 UGCCUGGUUUGAGGGCCGUG 2441 TTC TG-06-945 GCACCAUGGCUGACCAAACA 2442 TTC TG-06-946 GUGAGGCCAAAGUGCAGACG 2443 TTC TG-06-947 CCCUCCGACAUCCUUCUGUG 2444 TTC TG-06-948 UUUCUCCCUCCGACAUCCUU 2445 TTC TG-06-949 UUUCCUCGGGCUCUGGCAGG 2446 TTC TG-06-950 UCGGGCUCUGGCAGGUGACC 2447 TTC TG-06-951 CUGGUGCUGCCUGUAGUGCU 2448 TTC TG-06-952 GACUUGUCCCUCUCUCAGCC 2449 TTC TG-06-953 GCCUUUCCGGGGCUGCUGGC 2450 TTC TG-06-333 GGGGCUGCUGGCCUGGCCCU 2451 TTC TG-06-955 AGGCAAGGAGGCUGCCCCAC 2452 TTC TG-06-956 UGGCACCUCCACCUGGGGAG 2453 TTC TG-06-957 CCAUUCAAACAGGUCGAGCU 2454 TTC TG-06-958 AACAGGUCGAGCUGUGCUCG 2455 TTC TG-06-959 GCCCACGGACAUCGGCACAU 2456 TTC TG-06-960 GUGCCAGGCAUUCAAUCCUC 2457 TTC TG-06-961 AUCCUCAGGUCUCCACCAAG 2458 TTC TG-06-962 UCCCAUGGAUAGGGGAGGGG 2459 TTC TG-06-963 CAUGGAUAGGGGAGGGGGCG 2460 TTC TG-06-964 CCACAGUUAGCUGGAGAUGA 2461 TTC TG-06-965 GGAUGGCAUCUAGCCAGAGG 2462 TTC TG-06-966 UGAGCCACCUUUACUCUGCU 2463 TTC TG-06-967 UCCUCUGUGAAGUAGGGGUG 2465 TTC TG-06-968 CAGAGGAAGAAACCUGGAAC 2466 TTC TG-06-335 UGCUGUGUGAGCUUGGCAGG 2467 TTC TG-06-970 GGCUCAGUUCCUGCUGUGUG 2468 TTC TG-06-971 GAGCCAGCCCAAUCUGCGUU 2469 TTC TG-06-972 UACUUCACCCGGCUGGGCUC 2470 TTC TG-06-973 CCCGGCUGGGCUCCUCAUUU 2471 TTC TG-06-974 CAGCCUCACUGUUACCCGUA 2472 TTC TG-06-336 CCUUCCCAGCCUCACUGUUA 2473 TTC TG-06-976 UGGUCUGUGUUCCCCUUCCC 2474 TTC TG-06-977 GCCAUCACUCACCGAGCUUC 2475 TTC TG-06-978 AUGCCUGCAGGCAUCGUUCU 2476 TTC TG-06-337 GUUAUCACCCAGGCCUGAUU 2477 TTC TG-06-338 CUGGCCUGGCGGAGAUGCUU 2478 TTC TG-06-339 AAGGCAUGGUCGGGGGAGAG 2479 TTC TG-06-341 AGUUACAAAAGCAAAACAGG 2480 TTC TG-06-983 UAGUAUAAGCAAGGCAUCAC 2481 TTC TG-06-984 ACAAACUUACCCAGUUCCUA 2482 TTC TG-06-985 CAUCACCAGUACUUGCCCAA 2483 TTC TG-06-986 UAGGAUAGGCACAAGGAGUA 2484 TTC TG-06-987 UUCCUAGGAUAGGCACAAGG 2485 TTC TG-06-988 UGCAGCUCCCCUGACCACCC 2486 TTC TG-06-989 UUUCUCCCCAGUACCUGGCA 2487 TTC TG-06-990 CCCCAGUACCUGGCACACAG 2488 TTC TG-06-991 GUAAAUACUCGGGCCAGGCU 2489 TTC TG-06-992 GUAAUGAGCCAGUGCUAAGU 2490 TTC TG-06-993 UGAUUUAAAAUUCAGAACAG 2491 TTC TG-06-994 GAACAGUCUCAGAUUGGGUG 2492 TTC TG-06-995 UAAACACAAGCAAUCCUCCU 2493 TTC TG-06-996 AGACCCUGGGCAACAGUGAG 2494 TTC TG-06-997 AUGUGGGACCUCCAGGCCCU 2495 TTC TG-06-998 CCAGCCUUAGAGUGGAGGGC 2496 TTC TG-06-999 CUCUCUCUCUAGACAGCCCA 2497 TTC TG-06-1000 UUAUGACAUGGGCUGUCUAG 2498 TTC TG-06-1001 GACAAUUCAGUGUCAUAUAU 2499 TTC TG-06-1002 AUAUAUGACACUGAAUUGUC 2500 TTC TG-06-1003 GUGUCAUAUAUGGAAAGCAU 2501 TTC TG-06-1004 AGAGUUGACAGAUGGCAAUG 2502 TTC TG-06-1005 AGCCAUUGCCAUCUGUCAAC 2503 TTC TG-06-1006 AACGGGCAGAGAUAACACAG 2504 TTC TG-06-1007 GUGGAGGGGAAGGAGAGAGA 2505 TTC TG-06-1008 CCUCCACAGAAUCAAGUAUC 2506 TTC TG-06-1009 AACAUCACAGAGCUGUCAGG 2507 TTC TG-06-1010 UGCAGAGGGUUAGCAGGUGG 2508 TTC TG-06-1011 UCCCCGAUCCCUGGUGACCA 2509 TTC TG-06-1012 CUAUUUGCUAGUCCAGAUUU 2511 TTC TG-06-1013 UAGUGGCCAGCGUUGCUCAC 2512 TTC TG-06-1014 UGCUAGAUCCCACAGGUCUC 2513 TTC TG-06-1015 GCAUCCUCCUCUAAGCUUUG 2514 TTC TG-06-1016 UCUGCAAAGCUUAGAGGAGG 2515 TTC TG-06-1017 GGAUUCAUCUGCAAAGCUUA 2516 TTC TG-06-1018 CUGGAGGGGCUGACCAUUUC 2517 TTC TG-06-1019 UUUCUCUGGAGGGGCUGACC 2518 TTC TG-06-1020 UCUUAGUACUUUACACUAAU 2519 TTC TG-06-1021 CCCGCCCACUACGGCUGUGU 2520 TTC TG-06-1022 UAUAUCAGAACACAGCCGUA 2521 TTC TG-06-1023 UCAUAUAUCAGAACACAGCC 2522 TTC TG-06-1024 GAUAUAUGAAGAAUGGCGGC 2523 TTC TG-06-1025 AAAACAGAGUUGGAGUCUUG 2524 TTC TG-06-1026 UAGCUUCUAAGAGUAUAAAA 2525 TTC TG-06-1027 UGUGUGGCAAAGUUCUUAGC 2526 TTC TG-06-1028 AAAUUUGGUUCAUGUGUGGC 2527 TTC TG-06-1029 UCCCUAGUGUAUCUACUUCC 2528 TTC TG-06-1030 CUAGUGUAUCUACUUCCUUU 2529 TTC TG-06-1031 AAAGGAAGUAGAUACACUAG 2530 TTC TG-06-1032 UCUGCUACCUCUUGUGUAUA 2531 TTC TG-06-1033 AGUCUGCUUGUUCCAAGCUC 2532 TTC TG-06-1034 GAGCUUGGAACAAGCAGACU 2533 TTC TG-06-1035 AAGCUCAGAAGGUAACUGCA 2534 TTC TG-06-1036 CUGCUAACAUCGAGGUGUGU 2535 TTC TG-06-1037 UAAAACUGACUGUAGUUGUC 2536 TTC TG-06-1038 UUCCCAGGAUGCCUUCAACG 2537 TTC TG-06-1039 GCCCGUUGAAGGCAUCCUGG 2538 TTC TG-06-1040 CAGGAUGCCUUCAACGGGCA 2539 TTC TG-06-1041 ACGGGCAGAAUCGGCCAUCU 2540 TTC TG-06-1042 CAAGAAGCUCCCUUAGUGAG 2541 TTC TG-06-1043 UGAGAACACACAGCAUUAUU 2542 TTC TG-06-1044 UGCUCUGUUUGCAGACCAUU 2543 TTC TG-06-1045 AAAUGGUCUGCAAACAGAGC 2544 TTC TG-06-126 CCUUUUCAUCCUCCUGCCUG 2672 TTC TG-06-129 UUUUACACACCAUGUUCAAG 2675 TTC TG-06-148 GCCGGGCCCACCUUUUCAGU 2694 TTC TG-06-1046 UCUCUUACAUGGGGGGAAAC 2714 TTC c.gRNA modification

在另一態樣中,本發明係關於gRNA (本文中有時稱為gRNA變異體),其包含相對於衍生gRNA之參考gRNA的修飾。gRNA可用於本文所描述之長期基因抑制子融合蛋白系統中。在一些實施例中,用於本揭示之系統中的gRNA變異體相對於本揭示之gRNA序列包含一或多個核苷酸取代、插入、缺失或交換或置換域,其使特徵改良。修飾及交換區或域之例示性區域包括RNA三螺旋體、假結、支架莖環及延伸莖環。在一些實施例中,本揭示之gRNA變異體包含來自不同gRNA之至少一第一交換區,產生嵌合gRNA。此類嵌合gRNA之代表性實例係引導物316 (SEQ ID NO: 1746),其中gRNA支架235 (SEQ ID NO:1745)之延伸莖環經gRNA支架174 (SEQ ID NO: 1744)之延伸莖環置換,其中所得316變異體仍能夠與長期抑制子融合蛋白形成RNP且當在活體外或活體內分析中在可比條件下評定時,展現與親本235相比經改良之特徵。In another aspect, the present invention relates to gRNAs (sometimes referred to herein as gRNA variants) comprising modifications relative to a reference gRNA from which the gRNA is derived. The gRNA can be used in the long-term gene suppressor fusion protein system described herein. In some embodiments, the gRNA variants used in the disclosed systems comprise one or more nucleotide substitutions, insertions, deletions, or exchanges or replacement domains relative to the gRNA sequence disclosed herein, which improve the characteristics. Exemplary regions of modifications and exchange regions or domains include RNA triple helices, pseudoknots, scaffold stem loops, and extended stem loops. In some embodiments, the gRNA variants disclosed herein comprise at least one first exchange region from a different gRNA, resulting in a chimeric gRNA. A representative example of such a chimeric gRNA is guide 316 (SEQ ID NO: 1746), in which the extended stem loop of gRNA scaffold 235 (SEQ ID NO: 1745) is replaced by the extended stem loop of gRNA scaffold 174 (SEQ ID NO: 1744), wherein the resulting 316 variant is still able to form RNPs with long-term suppressor fusion proteins and exhibits improved properties compared to the parental 235 when assessed under comparable conditions in in vitro or in vivo assays.

當將gRNA支架變異體與作為其來源之gRNA支架相比較時具有一或多種經改良功能、特徵或添加一或多種新功能,同時保持能夠與長期抑制子融合蛋白複合且將核糖核蛋白引導至RNP與 PCSK9目標核酸之複合物中的功能特性的所有gRNA均設想處於本發明之範疇內。在一些實施例中,gRNA具有選自由以下組成之群之經改良特徵:假結莖穩定性增加、三螺旋體區穩定性增加、支架莖穩定性增加、延伸莖穩定性、脫靶摺疊中間物減少、與長期抑制子融合蛋白的結合親和力增加,以及與長期抑制子融合蛋白複合時之抑制活性增加,或其任何組合。在一些情況下,在活體外分析(包括各實例之分析)中評定經改良特徵。在其他情況下,活體內評定經改良特徵。 All gRNAs that have one or more improved functions, features, or add one or more new functions when the gRNA scaffold variants are compared to the gRNA scaffold from which they are derived, while maintaining the functional properties of being able to complex with a long-term suppressor fusion protein and direct the ribonucleoprotein into a complex of an RNP and a PCSK9 target nucleic acid are contemplated to be within the scope of the present invention. In some embodiments, the gRNA has an improved feature selected from the group consisting of increased pseudostem stability, increased triple helical region stability, increased scaffold stem stability, extended stem stability, reduced off-target fold intermediates, increased binding affinity to a long-term suppressor fusion protein, and increased inhibitory activity when complexed with a long-term suppressor fusion protein, or any combination thereof. In some cases, the improved characteristics are assessed in an in vitro assay (including assays in each example). In other cases, the improved characteristics are assessed in vivo.

表10提供本揭示之例示性gRNA變異體支架序列,其用作gRNA支架或用於產生用於本揭示之LTRP:gRNA系統之gRNA。在一些實施例中,用於系統之gRNA變異體支架包含選自由SEQ ID NO: 1744至1746組成之群的序列或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%、至少約95%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%序列一致性之序列,其中該gRNA變異體仍能夠與本揭示之長期抑制子融合蛋白形成RNP。在一些實施例中,用於系統之gRNA變異體支架包含選自由SEQ ID NO: 1744至1746組成之群的序列。在一些實施例中,用於系統之gRNA變異體支架包含SEQ ID NO: 1744。在一些實施例中,用於系統之gRNA變異體支架包含SEQ ID NO: 1745。在一些實施例中,用於系統之gRNA變異體支架包含SEQ ID NO: 1746。應理解,在其中載體包含gRNA之DNA編碼序列的彼等實施例中,胸腺嘧啶(T)鹼基可取代本文所描述之gRNA序列實施例中之任一者的尿嘧啶(U)鹼基。類似地,本文所揭示之任何RNA序列可由尿嘧啶鹼基經胸腺嘧啶取代之DNA編碼。在一些實施例中,本揭示提供下文所描述的經化學修飾之表10的gRNA變異體。在一些實施例中,gRNA包含有包含SEQ ID NO:1744至1746之序列的支架,且經化學修飾。 10 gRNA 支架序列 SEQ ID NO: 支架變異體ID 核苷酸序列 1744 174 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAG 1745 235 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAG 1746 316 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAG Table 10 provides exemplary gRNA variant scaffold sequences of the present disclosure, which are used as gRNA scaffolds or for generating gRNAs for use in the LTRP:gRNA systems of the present disclosure. In some embodiments, the gRNA variant scaffolds used in the system include a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746 or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity thereto, wherein the gRNA variant is still capable of forming RNPs with the long-term suppressor fusion protein of the present disclosure. In some embodiments, the gRNA variant scaffolds used in the system include a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746. In some embodiments, the gRNA variant scaffold for the system comprises SEQ ID NO: 1744. In some embodiments, the gRNA variant scaffold for the system comprises SEQ ID NO: 1745. In some embodiments, the gRNA variant scaffold for the system comprises SEQ ID NO: 1746. It should be understood that in those embodiments in which the vector comprises a DNA encoding sequence of a gRNA, a thymine (T) base can replace the uracil (U) base of any of the gRNA sequence embodiments described herein. Similarly, any RNA sequence disclosed herein can be encoded by a DNA in which the uracil base is replaced by a thymine. In some embodiments, the present disclosure provides the chemically modified gRNA variants of Table 10 described below. In some embodiments, the gRNA comprises a scaffold comprising a sequence of SEQ ID NO: 1744 to 1746 and is chemically modified. Table 10 : gRNA scaffold sequence SEQ ID NO: Stent variant ID Nucleotide sequence 1744 174 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAG 1745 235 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCCGUAAGAGGCAUCAGAG 1746 316 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAG

考慮用於本揭示之系統中的額外gRNA變異體係選自由SEQ ID NO: 1747至1821組成之群。在一些實施例中,gRNA包含有包含SEQ ID NO: 1747至1821之序列的支架,且經化學修飾。Additional gRNA variants contemplated for use in the systems of the present disclosure are selected from the group consisting of SEQ ID NOs: 1747 to 1821. In some embodiments, the gRNA comprises a scaffold comprising a sequence of SEQ ID NOs: 1747 to 1821 and is chemically modified.

引導支架可藉由包括重組方式或固相RNA合成的若干方法製造。然而,當使用固相RNA合成時,支架的長度會影響可製造性,更長的長度會導致製造成本增加、純度及產率降低以及合成失敗率較高。為了用於粒子調配物,諸如脂質奈米粒子(LNP)調配物,支架之固相RNA合成較佳,以便產生商業開發所需的數量。雖然先前實驗已將gRNA支架235 (SEQ ID NO: 1745)鑑別為相對於gRNA支架174 (SEQ ID NO: 1744)具有增強之特性,但其增加之長度(在核苷酸中)使其在LNP調配物中之用途由於合成製造限制而不太理想。因此,尋求替代序列。在一些實施例中,本揭示提供gRNA變異體支架,其與作為其來源之gRNA支架相比具有經改良之可製造性。在一些實施例中,本揭示提供gRNA,其中gRNA支架及所連接靶向序列具有小於約115個核苷酸、小於約110個核苷酸或小於約100個核苷酸之序列。在一特定實施例中,316 gRNA支架(SEQ ID NO:1746)與作為其來源之235支架相比具有更短的序列。設計316 gRNA支架,其中支架235序列藉由域交換進行修飾,其中支架174之延伸莖環置換235支架之延伸莖環,產生嵌合gRNA支架316,其具有序列ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAG (SEQ ID NO: 1746),該序列具有89個核苷酸,與gRNA支架235之99個核苷酸形成比較。所得316支架具有的其他優勢在於,延伸莖環不含CpG模體;一種賦予引起免疫反應之可能性減少的增強之特性。在一些實施例中,316支架之較短序列長度賦予在以合成方式產生具有正確及完整序列之引導物的能力方面的較高保真度之改良,以及增強的成功併入LNP之能力。在一些實施例中,本揭示提供下文所描述的經化學修飾之gRNA 316變異體。 d.經化學修飾之gRNA The guide scaffold can be made by several methods including recombinant methods or solid phase RNA synthesis. However, when solid phase RNA synthesis is used, the length of the scaffold affects manufacturability, with longer lengths resulting in increased manufacturing costs, reduced purity and yield, and higher synthesis failure rates. For use in particle formulations, such as lipid nanoparticle (LNP) formulations, solid phase RNA synthesis of the scaffold is preferred in order to produce the quantities required for commercial development. Although previous experiments have identified gRNA scaffold 235 (SEQ ID NO: 1745) as having enhanced properties relative to gRNA scaffold 174 (SEQ ID NO: 1744), its increased length (in nucleotides) makes its use in LNP formulations less ideal due to synthetic manufacturing limitations. Therefore, alternative sequences are sought. In some embodiments, the disclosure provides gRNA variant scaffolds having improved manufacturability compared to the gRNA scaffolds from which they are derived. In some embodiments, the disclosure provides gRNAs wherein the gRNA scaffold and the linked targeting sequence have a sequence of less than about 115 nucleotides, less than about 110 nucleotides, or less than about 100 nucleotides. In a particular embodiment, the 316 gRNA scaffold (SEQ ID NO: 1746) has a shorter sequence than the 235 scaffold from which it is derived. The 316 gRNA scaffold was designed in which the scaffold 235 sequence was modified by domain swapping, in which the extended stem loop of scaffold 174 replaced the extended stem loop of scaffold 235, resulting in a chimeric gRNA scaffold 316 having the sequence ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAG (SEQ ID NO: 1746), which has 89 nucleotides compared to the 99 nucleotides of gRNA scaffold 235. The resulting 316 scaffold has the additional advantage that the extended stem loop does not contain CpG motifs; a property that confers an enhanced reduced potential to elicit an immune response. In some embodiments, the shorter sequence length of the 316 scaffold confers a higher fidelity improvement in the ability to synthetically generate guides with the correct and complete sequence, as well as an enhanced ability to be successfully incorporated into LNPs. In some embodiments, the disclosure provides chemically modified gRNA 316 variants described below. d. Chemically modified gRNA

在一些實施例中,gRNA具有一或多種化學修飾。在一些實施例中,化學修飾為將2'O-甲基添加至序列之一或多個核苷酸。在一些實施例中,化學修飾係該序列之兩個或更多個核苷酸之間的硫代磷酸酯鍵之取代。在一些實施例中,化學修飾係在gRNA各末端上兩個或更多個核苷酸之間的硫代磷酸酯鍵之取代。在一些實施例中,gRNA包含位於距gRNA之5'末端、3'末端或兩個末端1、2、3或4個核苷酸處之兩個或更多個核苷酸之間的硫代磷酸酯鍵之取代。在一些實施例中,gRNA包含將2'O-甲基添加至gRNA之一或多個核苷酸。在一些實施例中,位於距gRNA之5'末端、3'末端或兩個末端1、2、3或4個核苷酸處之一或多個核苷酸係藉由添加2'O-甲基來修飾。在一些實施例中,支架之5'末端之前1、2或3個核苷酸(亦即在gRNA 174、235及316之情況下的A、C及U)係藉由添加2'O-甲基來修飾且經修飾之核苷酸中之各者係藉由硫代磷酸酯鍵連接至鄰接核苷酸。類似地,連接至支架之3'末端之靶向序列之3'末端的最後1、2或3個核苷酸經類似地修飾。在一些實施例中,本揭示提供具有化學修飾之gRNA,該等化學修飾係選自由表22中所闡述之SEQ ID NO: 2948至2956、2958至2966及2968至2976之序列組成之群或與其具有至少約70%、至少約80%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在任何前述內容中,該序列之3'末端上之20個核苷酸經與 PCSK9目標核酸序列互補之靶向序列置換,視情況,該靶向序列係選自由SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群,但包括gRNA之3'末端上之化學修飾。在一些實施例中,該序列之3'末端上之20個核苷酸經與 PCSK9目標核酸序列互補之靶向序列置換,該靶向序列選自由SEQ ID NO: 1834、1849、1853、1855至1858、1860、1862、1863、1867、1869、1870、1872、1874及1875組成之群,但包括gRNA之3'末端上之化學修飾。在一些實施例中,該序列之3'末端上之20個核苷酸經與 PCSK9目標核酸序列互補之靶向序列置換,該靶向序列選自由SEQ ID NO: 1855、1867及1869組成之群,但包括gRNA之3'末端上之化學修飾。在一些實施例中,具有化學修飾之gRNA包含選自由以下組成之群的序列:SEQ ID NO: 2948至2956、2958至2966及2968至2976之序列,其中3'末端上之20個核苷酸經靶向序列置換,該靶向序列選自由SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群,但具有3'末端上之化學修飾。在一些實施例中,經化學修飾之gRNA包含SEQ ID NO: 2968之序列,其中3'末端上之20個核苷酸經靶向序列置換,該靶向序列選自由SEQ ID NO: 1824-1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群,但具有3'末端上之化學修飾。在一些實施例中,經化學修飾之gRNA包含SEQ ID NO: 2968之序列,其中3'末端上之20個核苷酸經靶向序列置換,該靶向序列選自由SEQ ID NO: 1855、1867及1869組成之群,但具有3'末端上之化學修飾。在一些實施例中,經修飾之gRNA包含選自由SEQ ID NO: 22780至22803組成之群的序列。在一些實施例中,經修飾之gRNA包含選自由SEQ ID NO: 22788至22790組成之群的序列。gRNA變異體174、235及316之結構的示意圖分別顯示於圖7至圖9,且gRNA變異體235及316之經化學修飾型式顯示於圖10至圖14中。在一些實施例中,與沒有化學修飾之gRNA相比,具有化學修飾之gRNA展現經改良之穩定性。 e.與抑制子融合蛋白形成複合物 In some embodiments, the gRNA has one or more chemical modifications. In some embodiments, the chemical modification is the addition of a 2'O-methyl group to one or more nucleotides of the sequence. In some embodiments, the chemical modification is the replacement of a phosphorothioate bond between two or more nucleotides of the sequence. In some embodiments, the chemical modification is the replacement of a phosphorothioate bond between two or more nucleotides at each end of the gRNA. In some embodiments, the gRNA comprises the replacement of a phosphorothioate bond between two or more nucleotides at 1, 2, 3, or 4 nucleotides from the 5' end, 3' end, or both ends of the gRNA. In some embodiments, the gRNA comprises the addition of a 2'O-methyl group to one or more nucleotides of the gRNA. In some embodiments, one or more nucleotides located 1, 2, 3, or 4 nucleotides from the 5' end, 3' end, or both ends of the gRNA are modified by adding a 2'O-methyl group. In some embodiments, 1, 2, or 3 nucleotides before the 5' end of the scaffold (i.e., A, C, and U in the case of gRNAs 174, 235, and 316) are modified by adding a 2'O-methyl group and each of the modified nucleotides is linked to the adjacent nucleotide by a phosphorothioate bond. Similarly, the last 1, 2, or 3 nucleotides at the 3' end of the targeting sequence linked to the 3' end of the scaffold are similarly modified. In some embodiments, the present disclosure provides gRNAs with chemical modifications selected from the group consisting of SEQ ID NOs: 2948 to 2956, 2958 to 2966, and 2968 to 2976 as described in Table 22, or sequences having at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In any of the foregoing, the 20 nucleotides on the 3' end of the sequence are replaced with a targeting sequence complementary to the PCSK9 target nucleic acid sequence, optionally selected from the group consisting of SEQ ID NOs: 1824 to 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694 and 2714, but including chemical modifications on the 3' end of the gRNA. In some embodiments, the 20 nucleotides at the 3' end of the sequence are replaced with a targeting sequence complementary to a PCSK9 target nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855 to 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875, but including a chemical modification at the 3' end of the gRNA. In some embodiments, the 20 nucleotides at the 3' end of the sequence are replaced with a targeting sequence complementary to a PCSK9 target nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1855, 1867, and 1869, but including a chemical modification at the 3' end of the gRNA. In some embodiments, the gRNA with a chemical modification comprises a sequence selected from the group consisting of SEQ ID NOs: 2948 to 2956, 2958 to 2966, and 2968 to 2976, wherein 20 nucleotides on the 3' end are replaced with a targeting sequence selected from the group consisting of SEQ ID NOs: 1824 to 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714, but with a chemical modification on the 3' end. In some embodiments, the chemically modified gRNA comprises a sequence of SEQ ID NO: 2968, wherein 20 nucleotides on the 3' end are replaced by a targeting sequence selected from the group consisting of SEQ ID NOs: 1824-1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714, but with a chemical modification on the 3' end. In some embodiments, the chemically modified gRNA comprises a sequence of SEQ ID NO: 2968, wherein 20 nucleotides on the 3' end are replaced by a targeting sequence selected from the group consisting of SEQ ID NOs: 1855, 1867, and 1869, but with a chemical modification on the 3' end. In some embodiments, the modified gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 22780 to 22803. In some embodiments, the modified gRNA comprises a sequence selected from the group consisting of SEQ ID NO: 22788 to 22790. Schematic diagrams of the structures of gRNA variants 174, 235, and 316 are shown in Figures 7 to 9, respectively, and chemically modified versions of gRNA variants 235 and 316 are shown in Figures 10 to 14. In some embodiments, the gRNA with chemical modification exhibits improved stability compared to the gRNA without chemical modification. e. Formation of complex with suppressor fusion protein

在目標細胞中遞送或表現系統之組件後,gRNA變異體能夠與長期抑制子融合蛋白複合為RNP且結合至 PCSK9基因之目標核酸。在一些實施例中,當與參考gRNA相比時,gRNA變異體具有與長期抑制子融合蛋白形成RNP複合物之經改良能力。在一些實施例中,改良核糖核蛋白複合物形成可提高組裝功能性RNP之效率。在一些實施例中,大於90%、大於93%、大於95%、大於96%、大於97%、大於98%或大於99%的包含gRNA變異體及其靶向序列以及本揭示之長期抑制子融合蛋白之RNP勝任用於目標核酸之基因抑制。 VII. 聚核苷酸及載體 After delivery or expression of the components of the system in the target cell, the gRNA variants are able to complex with the long-term suppressor fusion protein into RNPs and bind to the target nucleic acid of the PCSK9 gene. In some embodiments, the gRNA variants have an improved ability to form RNP complexes with the long-term suppressor fusion protein when compared to the reference gRNA. In some embodiments, the improved ribonucleoprotein complex formation can increase the efficiency of assembling functional RNPs. In some embodiments, greater than 90%, greater than 93%, greater than 95%, greater than 96%, greater than 97%, greater than 98% or greater than 99% of the RNPs comprising the gRNA variants and their targeting sequences and the long-term suppressor fusion proteins disclosed herein are competent for gene inhibition of the target nucleic acid. VII. Polynucleotides and Vectors

本發明提供編碼長期抑制子融合蛋白質及/或gRNA之聚核苷酸,其在 PCSK9基因之抑制及表觀遺傳修飾方面具有效用。本揭示提供編碼mRNA之聚核苷酸,例如編碼相應mRNA之DNA聚核苷酸,該mRNA編碼長期抑制子融合蛋白。 The present invention provides polynucleotides encoding long-term suppressor fusion proteins and/or gRNAs that are useful in the inhibition and epigenetic modification of the PCSK9 gene. The present disclosure provides polynucleotides encoding mRNAs, such as DNA polynucleotides encoding corresponding mRNAs, that encode long-term suppressor fusion proteins.

本揭示之長期抑制子融合蛋白或編碼長期抑制子融合蛋白之mRNA可使用此項技術中已知之習知方法,藉由活體外合成來製備。各種商業合成裝置為可用的,例如Applied Biosystems,Inc., Beckman之自動化合成器等。天然存在之胺基酸或核苷酸(適當時)可藉由使用合成器經非天然胺基酸或核苷酸取代。製備之特定次序及方式將由便利性、經濟因素、所需之純度及其類似者確定。gRNA亦可以合成方式產生;例如藉由使用此項技術中已知之T7 RNA聚合酶系統產生。The long-term suppressor fusion proteins disclosed herein or mRNA encoding long-term suppressor fusion proteins can be prepared by in vitro synthesis using conventional methods known in the art. Various commercial synthesis apparatuses are available, such as automated synthesizers from Applied Biosystems, Inc., Beckman, and the like. Naturally occurring amino acids or nucleotides (where appropriate) can be replaced by non-natural amino acids or nucleotides using a synthesizer. The specific order and manner of preparation will be determined by convenience, economic factors, desired purity, and the like. gRNA can also be produced synthetically; for example, by using the T7 RNA polymerase system known in the art.

長期抑制子融合蛋白及/或gRNA亦可藉由使用此項技術中已知之標準重組以重組方式產生編碼本文所描述之任一實施例的長期抑制子融合蛋白或gRNA之聚核苷酸序列,且將編碼基因併入適合於宿主細胞之表現載體中來製備。為了產生本文所描述之任一實施例之經編碼長期抑制子融合蛋白及/或gRNA,該等方法包括用包含編碼聚核苷酸之表現載體轉化適當宿主細胞,及在引起或允許所得的本文所描述之任一實施例之長期抑制子融合蛋白或gRNA在經轉化宿主細胞中表現或轉錄的條件下培養宿主細胞,藉由本文所描述之方法或藉由此項技術中已知或如實例中所描述之標準純化方法回收。使用分子生物學中之標準重組技術製造本揭示之聚核苷酸及表現載體。Long-term suppressor fusion proteins and/or gRNAs can also be prepared by recombinantly generating a polynucleotide sequence encoding a long-term suppressor fusion protein or gRNA of any of the embodiments described herein using standard recombination known in the art, and incorporating the encoding gene into an expression vector suitable for a host cell. To produce an encoded long-term suppressor fusion protein and/or gRNA of any of the embodiments described herein, the methods include transforming a suitable host cell with an expression vector comprising the encoding polynucleotide, and culturing the host cell under conditions that cause or allow the resulting long-term suppressor fusion protein or gRNA of any of the embodiments described herein to be expressed or transcribed in the transformed host cell, and recovering by the methods described herein or by standard purification methods known in the art or as described in the examples. The polynucleotides and expression vectors of the present disclosure are made using standard recombinant techniques in molecular biology.

本揭示之長期抑制子融合蛋白及/或gRNA亦可根據習知重組合成方法分離及純化。可製備表現宿主之溶胞物,且使用高效液相層析(HPLC)、排阻層析、凝膠電泳、親和力層析或其他純化技術純化溶胞物。在多數情況下,相對於涉及產物製備及其純化方法之污染物,所使用之組合物將佔所需產物的50重量%或更大,更通常75重量%或更大,較佳95重量%或更大,且出於治療目的,通常99.5重量%或更大。通常,百分比將按總蛋白質計。因此,在一些情況下,本揭示之長期抑制子融合蛋白或gRNA的純度為至少80%、純度為至少85%、純度為至少90%、純度為至少95%、純度為至少98%或純度為至少99% (例如不含污染物或其他大分子等)。The long-term suppressor fusion proteins and/or gRNA disclosed herein can also be isolated and purified according to known recombinant synthesis methods. Lysates expressing the host can be prepared and purified using high performance liquid chromatography (HPLC), exclusion chromatography, gel electrophoresis, affinity chromatography or other purification techniques. In most cases, the composition used will account for 50% or more by weight of the desired product, more usually 75% or more by weight, preferably 95% or more by weight, and for therapeutic purposes, usually 99.5% or more by weight, relative to contaminants involved in the preparation of the product and its purification method. Typically, the percentage will be based on total protein. Thus, in some cases, the long-term suppressor fusion protein or gRNA disclosed herein is at least 80% pure, at least 85% pure, at least 90% pure, at least 95% pure, at least 98% pure, or at least 99% pure (e.g., free of contaminants or other macromolecules, etc.).

另外,本揭示提供載體,其包含編碼本文所描述之長期抑制子融合蛋白及gRNA的聚核苷酸。在一些情況下,當以抑制子融合蛋白及gRNA或RNP形式遞送系統時,利用載體進行LTRP:gRNA系統之CasX及gRNA組分的表現及回收。在其他情況下,如下文更充分描述,利用載體將編碼聚核苷酸遞送至目標細胞以抑制及/或表觀遺傳修飾目標核酸。在一些實施例中,將編碼長期抑制子融合蛋白及gRNA之序列在相同載體上進行模板化。在一些實施例中,將編碼長期抑制子融合蛋白及gRNA之序列在不同載體上進行模板化。適合的載體描述於例如WO2023235818A2、WO2022120095A1及WO2020247882A1中,各案以引用之方式併入本文中。如WO2023235818A2 WO2022120095A1及WO2020247882A1中所描述,取決於所用宿主/載體系統,表現載體中可使用多種適合的轉錄及轉譯控制元件中之任一者,包括持續型及誘導型啟動子、轉錄強化子元件、轉錄終止子等。In addition, the present disclosure provides vectors comprising polynucleotides encoding the long-term suppressor fusion proteins and gRNAs described herein. In some cases, when the system is delivered in the form of suppressor fusion proteins and gRNAs or RNPs, the vector is used to express and recover the CasX and gRNA components of the LTRP:gRNA system. In other cases, as described more fully below, the vector is used to deliver the encoding polynucleotides to the target cell to inhibit and/or epigenetically modify the target nucleic acid. In some embodiments, the sequences encoding the long-term suppressor fusion proteins and gRNAs are templated on the same vector. In some embodiments, the sequences encoding the long-term suppressor fusion proteins and gRNAs are templated on different vectors. Suitable vectors are described, for example, in WO2023235818A2, WO2022120095A1, and WO2020247882A1, each of which is incorporated herein by reference. As described in WO2023235818A2, WO2022120095A1, and WO2020247882A1, any of a variety of suitable transcriptional and translational control elements may be used in the expression vector, depending on the host/vector system used, including perturbative and inducible promoters, transcriptional enhancer elements, transcriptional terminators, and the like.

本揭示提供編碼本文所描述之任一實施例之長期抑制子融合蛋白的聚核苷酸序列。在一些實施例中,本揭示提供用於載體中之編碼長期抑制子融合蛋白之DNA序列。在一些實施例中,本揭示提供編碼本文所描述之任一實施例之長期抑制子融合蛋白之mRNA序列,其用於遞送至細胞之粒子系統中。在一些實施例中,本揭示提供一種編碼本文所描述之任一實施例之長期抑制子融合蛋白的mRNA序列,其用於遞送至細胞之LNP粒子調配物中。在一特定實施例中,本揭示提供gRNA及編碼本文所描述之任一實施例之長期抑制子融合蛋白的mRNA序列,其用於遞送至細胞之LNP粒子調配物中。在一些實施例中,本揭示提供編碼本文所描述之任一實施例之gRNA變異體之經分離聚核苷酸序列,該RNA變異體具有與 PCSK9目標核酸序列互補的連接靶向序列。 The present disclosure provides polynucleotide sequences encoding the long-term suppressor fusion protein of any embodiment described herein. In some embodiments, the present disclosure provides DNA sequences encoding the long-term suppressor fusion protein for use in vectors. In some embodiments, the present disclosure provides mRNA sequences encoding the long-term suppressor fusion protein of any embodiment described herein, which are used in particle systems for delivery to cells. In some embodiments, the present disclosure provides an mRNA sequence encoding the long-term suppressor fusion protein of any embodiment described herein, which is used in LNP particle formulations for delivery to cells. In a specific embodiment, the present disclosure provides gRNA and mRNA sequences encoding the long-term suppressor fusion protein of any embodiment described herein, which are used in LNP particle formulations for delivery to cells. In some embodiments, the disclosure provides isolated polynucleotide sequences encoding a gRNA variant of any of the embodiments described herein, the RNA variant having a linked targeting sequence that is complementary to a PCSK9 target nucleic acid sequence.

在一些實施例中,本揭示係關於產生編碼本文所描述之任一實施例的長期抑制子融合蛋白或gRNA (包括其變異體)之聚核苷酸序列的方法,以及表現由該等聚核苷酸序列轉錄之蛋白質或RNA的方法。一般而言,該等方法包括產生編碼本文所描述之任一實施例之長期抑制子融合蛋白或gRNA的聚核苷酸序列及將編碼基因併入表現載體中。在一些實施例中,載體經設計用於轉導細胞以抑制及/或表觀遺傳修飾 PCSK9目標核酸。此等載體可包括反轉錄病毒載體、慢病毒載體、腺病毒載體、腺相關病毒(AAV)載體、單純疱疹病毒(HSV)載體、質體、微環、奈米質體、DNA載體及RNA載體。在其他實施例中,表現載體經設計用於在無細胞系統或宿主細胞中產生長期抑制子融合蛋白、編碼該長期抑制子融合蛋白之mRNA、或gRNA。為了在宿主細胞中產生本文所描述之任一實施例的經編碼長期抑制子融合蛋白或gRNA,該等方法包括用包含編碼聚核苷酸之表現載體轉化適當宿主細胞,及在使得或允許所得的本文所描述之任一實施例之長期抑制子融合蛋白或gRNA在經轉化之宿主細胞中表現或轉錄之條件下培養宿主細胞,由此產生長期抑制子融合蛋白或gRNA,其係藉由本文所描述之方法(例如以下實例中描述之方法)或藉由此項技術中已知之標準純化方法回收。使用分子生物學中之標準重組技術製造本揭示之聚核苷酸及表現載體。 In some embodiments, the disclosure relates to methods of generating polynucleotide sequences encoding long-term suppressor fusion proteins or gRNAs (including variants thereof) of any of the embodiments described herein, and methods of expressing proteins or RNAs transcribed from the polynucleotide sequences. In general, the methods include generating polynucleotide sequences encoding long-term suppressor fusion proteins or gRNAs of any of the embodiments described herein and incorporating the encoding genes into expression vectors. In some embodiments, the vectors are designed for transducing cells to inhibit and/or epigenetically modify PCSK9 target nucleic acids. Such vectors may include retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated virus (AAV) vectors, herpes simplex virus (HSV) vectors, plasmids, microcircles, nanoplasmids, DNA vectors, and RNA vectors. In other embodiments, the expression vector is designed for producing a long-term suppressor fusion protein, mRNA encoding the long-term suppressor fusion protein, or gRNA in a cell-free system or host cell. To produce the encoded long-term suppressor fusion protein or gRNA of any embodiment described herein in a host cell, the methods include transforming a suitable host cell with an expression vector comprising an encoding polynucleotide, and culturing the host cell under conditions that allow or permit the resulting long-term suppressor fusion protein or gRNA of any embodiment described herein to be expressed or transcribed in the transformed host cell, thereby producing the long-term suppressor fusion protein or gRNA, which is recovered by the methods described herein (e.g., the methods described in the examples below) or by standard purification methods known in the art. The polynucleotides and expression vectors of the present disclosure are made using standard recombinant techniques in molecular biology.

根據本揭示,編碼本文所描述之任一實施例之長期抑制子融合蛋白或gRNA的核酸序列係用於生成導引在適當宿主細胞中表現之重組DNA分子。若干選殖策略適合於進行本揭示,其中有許多係用於生成構築體,該構築體包含編碼本揭示之長期抑制子融合蛋白或gRNA或者其互補序列的基因。在一些實施例中,使用選殖策略產生編碼構築體之基因,該構築體包含編碼長期抑制子融合蛋白或gRNA之核苷酸。在一些實施例中,使用基因(例如作為載體之一部分)轉化宿主細胞以表現該基因,例如表現長期抑制子融合蛋白或gRNA。According to the present disclosure, a nucleic acid sequence encoding a long-term suppressor fusion protein or gRNA of any of the embodiments described herein is used to generate a recombinant DNA molecule directed for expression in an appropriate host cell. Several cloning strategies are suitable for carrying out the present disclosure, many of which are used to generate a construct comprising a gene encoding a long-term suppressor fusion protein or gRNA disclosed herein or a complementary sequence thereof. In some embodiments, a cloning strategy is used to generate a gene encoding a construct comprising nucleotides encoding a long-term suppressor fusion protein or gRNA. In some embodiments, a gene is used (e.g., as part of a vector) to transform a host cell to express the gene, e.g., to express a long-term suppressor fusion protein or gRNA.

在一種方法中,首先製備構築體,該構築體含有編碼長期抑制子融合蛋白或gRNA之DNA序列。製備此類構築體之例示性方法描述於實例中。隨後使用構築體產生適用於轉化宿主細胞(諸如原核或真核宿主細胞)以在長期抑制子融合蛋白或gRNA之情況下表現及回收蛋白質構築體的表現載體。必要時,宿主細胞為大腸桿菌( E.coli)。在其他實施例中,宿主細胞為真核細胞。真核宿主細胞可選自幼倉鼠腎纖維母細胞(BHK)細胞、人類胚胎腎293 (HEK293)細胞、人類胚胎腎293T (HEK293T)細胞、NS0細胞、SP2/0細胞、YO骨髓瘤細胞、P3X63小鼠骨髓瘤細胞、PER細胞、PER.C6細胞、融合瘤細胞、NIH3T3細胞、CV-1 (猿猴) SV40遺傳物質來源(COS)細胞、希拉細胞(HeLa)、中國倉鼠卵巢(CHO)細胞、酵母細胞,或此項技術中已知適合於產生重組產物的其他真核細胞。用於產生表現載體、轉化宿主細胞以及表現及回收長期抑制子融合蛋白或gRNA之例示性方法描述於實例中。 In one method, a construct is first prepared that contains a DNA sequence encoding a long-term suppressor fusion protein or gRNA. Exemplary methods for preparing such constructs are described in the Examples. The construct is then used to generate an expression vector suitable for transforming a host cell (such as a prokaryotic or eukaryotic host cell) to express and recover the protein construct in the presence of a long-term suppressor fusion protein or gRNA. When necessary, the host cell is E. coli. In other embodiments, the host cell is a eukaryotic cell. Eukaryotic host cells can be selected from baby hamster kidney fibroblasts (BHK) cells, human embryonic kidney 293 (HEK293) cells, human embryonic kidney 293T (HEK293T) cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells, fusion tumor cells, NIH3T3 cells, CV-1 (simian) SV40 genetic material source (COS) cells, HeLa cells (HeLa), Chinese hamster ovary (CHO) cells, yeast cells, or other eukaryotic cells known in the art to be suitable for producing recombinant products. Exemplary methods for producing expression vectors, transforming host cells, and expressing and recovering long-term suppressor fusion proteins or gRNAs are described in the Examples.

編碼長期抑制子融合蛋白或gRNA構築體之基因可分一或多個步驟,以完全合成方式或藉由合成法結合酶法(諸如限制酶介導之選殖、PCR及重疊延伸)製備,包括實例中更全面描述之方法。本文所揭示之方法可用於例如將編碼各種組分之聚核苷酸的序列接合至所需序列之基因中。編碼多肽組合物之基因係使用基因合成之標準技術自寡核苷酸組裝。Genes encoding long-term suppressor fusion proteins or gRNA constructs can be prepared in one or more steps, either completely synthetically or by a combination of synthetic methods and enzymatic methods such as restriction enzyme-mediated cloning, PCR, and overlapping extension, including methods more fully described in the Examples. The methods disclosed herein can be used, for example, to join sequences of polynucleotides encoding various components into genes of desired sequences. Genes encoding polypeptide compositions are assembled from oligonucleotides using standard techniques for gene synthesis.

在一些實施例中,編碼長期抑制子融合蛋白之核苷酸序列經密碼子最佳化。此類型最佳化可能需要編碼核苷酸序列之突變來模仿預期宿主生物體或細胞之密碼子偏好,同時編碼相同蛋白。因此,密碼子可改變,但經編碼之蛋白質保持不變。舉例而言,若長期抑制子融合蛋白之既定目標細胞係人類細胞,則可使用人類密碼子最佳化之編碼長期抑制子融合蛋白之核苷酸序列。作為另一非限制性實例,若既定宿主細胞係小鼠細胞,則可生成小鼠密碼子最佳化之編碼長期抑制子融合蛋白之核苷酸序列。基因設計可使用使適合於用於產生長期抑制子融合蛋白或gRNA之宿主細胞之密碼子使用及胺基酸組成最佳化的演算法進行。在一種本揭示方法中,編碼構築體之組分的聚核苷酸庫產生且接著組裝,如上文所述。隨後組裝所得基因,且所得基因用於轉化宿主細胞且產生及回收長期抑制子融合蛋白或gRNA組合物以評估其特性或用於修飾本文所描述之 PCSK9目標核酸。 In some embodiments, the nucleotide sequence encoding the long-term suppressor fusion protein is codon optimized. This type of optimization may require mutations in the coding nucleotide sequence to mimic the codon preference of the intended host organism or cell while encoding the same protein. Thus, the codons may change, but the encoded protein remains unchanged. For example, if the intended target cell for the long-term suppressor fusion protein is a human cell, a human codon-optimized nucleotide sequence encoding the long-term suppressor fusion protein may be used. As another non-limiting example, if the intended host cell is a mouse cell, a mouse codon-optimized nucleotide sequence encoding the long-term suppressor fusion protein may be generated. Genetic design may be performed using an algorithm that optimizes codon usage and amino acid composition of a host cell suitable for producing a long-term suppressor fusion protein or gRNA. In one disclosed method, a polynucleotide library encoding components of the construct is generated and then assembled as described above. The resulting genes are then assembled and used to transform host cells and produce and recover long-term suppressor fusion proteins or gRNA compositions to assess their properties or to modify the PCSK9 target nucleic acids described herein.

在一些實施例中,編碼gRNA之核苷酸序列可操作地連接於控制元件,例如轉錄控制元件,諸如啟動子。在一些實施例中,編碼長期抑制子融合蛋白之核苷酸序列可操作地連接於控制元件,例如轉錄控制元件,諸如啟動子。在一些情況下,啟動子為持續型活性啟動子。在一些情況下,啟動子為可調節啟動子。在一些情況下,啟動子為誘導型啟動子。在一些情況下,啟動子為組織特異性啟動子。在一些情況下,啟動子為細胞類型特異性啟動子。在一些情況下,轉錄控制元件(例如啟動子)在所靶向細胞類型或所靶向細胞群體中起作用。舉例而言,在一些情況下,轉錄控制元件可在真核細胞,例如肝細胞或肝竇內皮細胞中起作用。In some embodiments, the nucleotide sequence encoding the gRNA is operably linked to a control element, such as a transcriptional control element, such as a promoter. In some embodiments, the nucleotide sequence encoding the long-term suppressor fusion protein is operably linked to a control element, such as a transcriptional control element, such as a promoter. In some cases, the promoter is a continuously active promoter. In some cases, the promoter is a regulatable promoter. In some cases, the promoter is an induced promoter. In some cases, the promoter is a tissue-specific promoter. In some cases, the promoter is a cell type-specific promoter. In some cases, the transcriptional control element (e.g., a promoter) is functional in a targeted cell type or targeted cell population. For example, in some cases, the transcriptional control element can be functional in eukaryotic cells, such as hepatocytes or hepatic sinus endothelial cells.

可操作地連接於編碼本揭示之長期抑制子融合蛋白之聚核苷酸的Pol II啟動子的非限制性實例包括但不限於:EF-1α、EF-1α核心啟動子、Jens Tornoe (JeT)、巨細胞病毒(CMV)啟動子、CMV即刻早期(CMVIE)啟動子、CMV強化子、單純疱疹病毒(HSV)胸苷激酶、早期及晚期猿猴病毒40 (SV40)、SV40強化子、來自反轉錄病毒之長末端重複序列(LTR)、小鼠金屬硫蛋白-I、腺病毒主要晚期啟動子(Ad MLP)、CMV啟動子全長啟動子、最小CMV啟動子、雞β-肌動蛋白啟動子(CBA)、CBA雜合體(CBh)、雞β-肌動蛋白啟動子與巨細胞病毒強化子(CB7)、雞β-肌動蛋白啟動子與兔β-球蛋白剪接接受體部位融合物(CAG)、勞氏肉瘤病毒(rous sarcoma virus,RSV)啟動子、HIV-Ltr啟動子、hPGK啟動子、HSV TK啟動子、7SK啟動子、Mini-TK啟動子、賦予神經元特異性表現之人類突觸蛋白I (SYN)啟動子、β-肌動蛋白啟動子、超核心啟動子1 (SCP1)、 用於在神經元中選擇性表現之Mecp2啟動子、最小IL-2啟動子、勞氏肉瘤病毒強化子/啟動子(單一)、脾病灶形成病毒長末端重複序列(LTR)啟動子、TBG啟動子、人類甲狀腺素結合球蛋白基因的啟動子(肝特異性)、PGK啟動子、人類泛素C啟動子(UBC)、UCOE啟動子(HNRPA2B1-CBX3之啟動子)、合成CAG啟動子、組蛋白H2啟動子、組蛋白H3啟動子、U1a1小核RNA啟動子(226 nt)、U1a1小核RNA啟動子(226 nt)、U1b2小核RNA啟動子(246 nt) 26、GUSB啟動子、CBh啟動子、視紫質(Rho)啟動子、易緘默化的脾病灶形成病毒(SFFV)啟動子、人類H1啟動子(H1)、 POL1啟動子、TTR最小強化子/啟動子、b-驅動蛋白啟動子、小鼠乳房腫瘤病毒長末端重複序列(LTR)啟動子、人類真核生物起始因子4A (EIF4A1)啟動子、ROSA26啟動子、甘油醛3-磷酸脫氫酶(GAPDH)啟動子、tRNA啟動子及前述各者之截短型式及序列變異體。在一特定實施例中,pol II啟動子為EF-1α,其中該啟動子增強轉染效率、轉殖基因轉錄或CRISPR核酸酶之表現、表現陽性純系之比例及游離型載體在長期培養中之拷貝數。Non-limiting examples of Pol II promoters that are operably linked to a polynucleotide encoding a long-term suppressor fusion protein disclosed herein include, but are not limited to: EF-1α, EF-1α core promoter, Jens Tornoe (JeT), cytomegalovirus (CMV) promoter, CMV immediate early (CMVIE) promoter, CMV enhancer, herpes simplex virus (HSV) thymidine kinase, early and late simian virus 40 (SV40), SV40 enhancer, long terminal repeats (LTR) from retrovirus, mouse metallothionein-I, adenovirus major late promoter (Ad MLP), CMV promoter full-length promoter, minimal CMV promoter, chicken β-actin promoter (CBA), CBA hybrid (CBh), chicken β-actin promoter and cytomegalovirus enhancer (CB7), chicken β-actin promoter and rabbit β-globin splicing acceptor site fusion (CAG), Rous sarcoma virus (RSV) promoter, HIV-Ltr promoter, hPGK promoter, HSV TK promoter, 7SK promoter, Mini-TK promoter, human synaptokinin I (SYN) promoter with neuron-specific expression, β-actin promoter, super core promoter 1 (SCP1), Mecp2 promoter for selective expression in neurons, minimal IL-2 promoter, Rous sarcoma virus enhancer/promoter (single), spleen focus forming virus long terminal repeat (LTR) promoter, TBG promoter, human thyroxine binding globulin gene promoter (liver specific), PGK promoter, human ubiquitin C promoter (UBC), UCOE promoter (promoter of HNRPA2B1-CBX3), synthetic CAG promoter, histone H2 promoter, histone H3 promoter, U1a1 small nuclear RNA promoter (226 nt), U1a1 small nuclear RNA promoter (226 nt), U1b2 small nuclear RNA promoter (246 nt) 26, GUSB promoter, CBh promoter, rhodopsin (Rho) promoter, silencing spleen focus forming virus (SFFV) promoter, human H1 promoter (H1), POL1 promoter, TTR minimal enhancer/promoter, b-kinesin promoter, mouse mammary tumor virus long terminal repeat sequence (LTR) promoter, human eukaryotic initiation factor 4A (EIF4A1) promoter, ROSA26 promoter, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) promoter, tRNA promoter, and truncated versions and sequence variants of the foregoing. In a specific embodiment, the pol II promoter is EF-1α, wherein the promoter enhances transfection efficiency, transcription of transgenic genes or expression of CRISPR nucleases, the proportion of expression-positive clones, and the copy number of episomal vectors in long-term culture.

可操作地連接於編碼本揭示之gRNA變異體之聚核苷酸的Pol III啟動子的非限制性實例包括但不限於:U6、微型U6、U6截短啟動子、7SK及H1變異體、BiH1 (雙向H1啟動子)、BiU6、Bi7SK、BiH1 (雙向U6、7SK及H1啟動子)、大猩猩U6、恆河猴U6、人類7SK、人類H1啟動子,以及其等之截短型式及序列變異體。在前述實施例中,pol III啟動子增強gRNA之轉錄。在一特定實施例中,Pol III啟動子為U6,其中該啟動子增強gRNA之表現。有關使用此等啟動子之實驗詳情及資料提供於實例中。Non-limiting examples of Pol III promoters operably linked to polynucleotides encoding gRNA variants disclosed herein include, but are not limited to: U6, mini-U6, U6 truncated promoter, 7SK and H1 variants, BiH1 (bidirectional H1 promoter), BiU6, Bi7SK, BiH1 (bidirectional U6, 7SK and H1 promoter), gorilla U6, rhesus monkey U6, human 7SK, human H1 promoter, and truncated versions and sequence variants thereof. In the aforementioned embodiments, the Pol III promoter enhances transcription of the gRNA. In a specific embodiment, the Pol III promoter is U6, wherein the promoter enhances expression of the gRNA. Experimental details and data regarding the use of such promoters are provided in the Examples.

適當載體及啟動子之選擇完全符合一般技術者之水平,因為其與控制表現相關。表現載體亦可含有用於轉譯起始之核糖體結合位點及轉錄終止子。表現載體亦可包括用於擴增表現之適當的序列。表現載體亦可包括編碼蛋白質標籤(例如6×His標籤、紅血球凝集素標籤、螢光蛋白等)之核苷酸序列,該等蛋白質標籤可與長期抑制子融合蛋白融合,由此產生用於純化或偵測之嵌合蛋白。The selection of appropriate vectors and promoters is well within the skill of the art as it relates to controlled expression. The expression vector may also contain a ribosome binding site for initiation of translation and a transcription terminator. The expression vector may also include appropriate sequences for amplifying expression. The expression vector may also include a nucleotide sequence encoding a protein tag (e.g., a 6×His tag, a hemagglutinin tag, a fluorescent protein, etc.) that may be fused to a long-term suppressor fusion protein to generate a chimeric protein for purification or detection.

本揭示之重組表現載體亦可包含促進本揭示之蛋白質及gRNA之穩固表現的元件。舉例而言,重組表現載體可包括聚腺苷酸化信號(聚腺苷酸)、內含子序列或轉錄後調控元件(諸如土拔鼠肝炎轉錄後調控元件(WPRE))中之一或多者。例示性聚腺苷酸序列包括hGH 聚腺苷酸信號(短)、HSV TK 聚腺苷酸信號、合成聚腺苷酸化信號、在兩個60 A伸長段之間具有SphI限制位點的分裂聚腺苷酸序列(SEQ ID NO: 3307)、SV40 聚腺苷酸信號、β-球蛋白聚腺苷酸信號及其等之類似者。一般熟習此項技術者將能夠選擇將包括在本文所描述之重組表現載體中之適合元件。The recombinant expression vectors of the present disclosure may also include elements that promote the stable expression of the proteins and gRNAs of the present disclosure. For example, the recombinant expression vectors may include one or more of a polyadenylation signal (polyA), an intron sequence, or a post-transcriptional regulatory element such as a woodchuck hepatitis post-transcriptional regulatory element (WPRE). Exemplary polyA sequences include hGH polyA signal (short), HSV TK polyA signal, synthetic polyA signal, a split polyA sequence with a SphI restriction site between two 60 A stretches (SEQ ID NO: 3307), SV40 polyA signal, β-globin polyA signal, and the like. One of ordinary skill in the art will be able to select suitable elements to be included in the recombinant expression vectors described herein.

編碼長期抑制子融合蛋白或gRNA序列之聚核苷酸可個別選殖至表現載體中。適當載體及啟動子之選擇完全符合一般技術者之水平,因為其與控制表現相關,例如用於抑制PCSK9基因之表現及/或表觀遺傳修飾。表現載體亦可含有用於轉譯起始之核糖體結合位點以及轉錄終止子。表現載體亦可包括用於擴增表現之適當的序列。Polynucleotides encoding long-term suppressor fusion proteins or gRNA sequences can be individually selected and cloned into expression vectors. The selection of appropriate vectors and promoters is well within the skill of the art as it relates to controlling expression, such as for inhibiting expression of the PCSK9 gene and/or epigenetic modification. The expression vector may also contain a ribosome binding site for translation initiation and a transcriptional terminator. The expression vector may also include appropriate sequences for amplifying expression.

核酸序列係藉由多種程序插入至載體中。一般而言,DNA係使用此項技術中已知之技術插入至適當的限制性核酸內切酶位點中。載體組分一般包括但不限於以下中之一或多者:信號序列、複製起點、一或多個標記基因、強化子元件、啟動子及轉錄終止序列。含有此等組分中之一或多者之適合之載體的構築採用熟習此項技術者已知之標準接合技術。此等技術為此項技術中熟知且詳盡描述於科學及專利文獻中。各種載體為公開可用的。載體可例如呈可便利地經受重組DNA程序之質體、黏質體、病毒粒子或噬菌體形式,且載體之選擇將通常取決於其所引入之宿主細胞。因此,載體可為自主複製載體,亦即,以染色體外實體形式存在之載體,其複製獨立於染色體複製,例如質體。或者,載體可為當引入宿主細胞中時整合至宿主細胞基因體中且連同其已整合之染色體進行複製之載體。在引入適合宿主細胞中後,即可使用此項技術中已知之任何核酸或蛋白質分析來測定長期抑制子融合蛋白或gRNA之表現。舉例而言,可使用與聚核苷酸之任何區域互補之探針,藉由習知雜交分析(例如北方墨點分析)、擴增程序(例如RT-PCR)、SAGE (美國專利第5,695,937號)及基於陣列之技術(參見例如美國專利第5,405,783號、第5,412,087號及第5,445,934號)偵測及/或定量長期抑制子融合蛋白之轉錄mRNA的存在。Nucleic acid sequences are inserted into vectors by a variety of procedures. In general, DNA is inserted into appropriate restriction endonuclease sites using techniques known in the art. Vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. The construction of a suitable vector containing one or more of these components employs standard ligation techniques known to those skilled in the art. These techniques are well known in the art and are described in detail in scientific and patent literature. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, a viscid, a virion, or a phage that can be conveniently subjected to a recombinant DNA procedure, and the selection of the vector will generally depend on the host cell into which it is introduced. Thus, the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity whose replication is independent of chromosomal replication, such as a plasmid. Alternatively, the vector may be one that, when introduced into a host cell, is integrated into the host cell genome and replicates along with the chromosome into which it has been integrated. Once introduced into a suitable host cell, the expression of the long-term suppressor fusion protein or gRNA may be determined using any nucleic acid or protein assay known in the art. For example, probes complementary to any region of the polynucleotide can be used to detect and/or quantify the presence of transcribed mRNA of a long-term suppressor fusion protein by known hybridization analysis (e.g., Northern blot analysis), amplification procedures (e.g., RT-PCR), SAGE (U.S. Patent No. 5,695,937), and array-based techniques (see, e.g., U.S. Patent Nos. 5,405,783, 5,412,087, and 5,445,934).

在一些實施例中,載體係經產生用於長期抑制子融合蛋白之轉錄以及所得編碼mRNA之表現及回收。在一些實施例中,mRNA係使用PCR產物或線性化質體DNA模板及T7 RNA聚合酶藉由活體外轉錄(IVT)來產生,其中質體含有T7啟動子。若使用PCR產物,則編碼候選mRNA之DNA序列將選殖至含有T7啟動子之質體中,其中質體DNA模板將經線性化,且隨後用於進行IVT反應以表現mRNA。此等載體之生成及mRNA之產生及回收的例示性方法提供於以下實例中。 VIII. 用於遞送LTRP:gRNA系統之粒子 In some embodiments, vectors are generated for transcription of long-term suppressor fusion proteins and expression and recovery of the resulting encoding mRNA. In some embodiments, mRNA is generated by in vitro transcription (IVT) using PCR products or linearized plastid DNA templates and T7 RNA polymerase, where the plastid contains a T7 promoter. If PCR products are used, the DNA sequence encoding the candidate mRNA will be cloned into plastids containing the T7 promoter, where the plastid DNA template will be linearized and then used to perform an IVT reaction to express the mRNA. Exemplary methods for the generation of such vectors and the generation and recovery of mRNA are provided in the following examples. VIII. Particles for delivery of LTRP:gRNA systems

在另一態樣中,本揭示提供用於向細胞或個體遞送LTRP:gRNA系統以用於 PCSK9基因之轉錄抑制或緘默化的粒子組合物。設想在本揭示之範疇內的粒子包括但不限於奈米粒子,諸如合成奈米粒子、聚合物奈米粒子、脂質奈米粒子、病毒粒子及病毒樣粒子。本揭示之粒子可囊封有效負載,諸如本文所描述之gRNA變異體視情況與編碼本文所描述之任一實施例之長期抑制子融合蛋白的mRNA的組合。或者或另外,例如當締合成核糖核蛋白(RNP)複合物時,本揭示之粒子可囊封gRNA變異體及長期抑制子融合蛋白之有效負載。在一些實施例中,該等粒子係合成奈米粒子,其囊封gRNA變異體及編碼本文所描述之任一實施例之長期抑制子融合蛋白的mRNA的有效負載。在一些實施例中,合成奈米粒子包含可生物降解的聚合物奈米粒子(PNP)。在一些實施例中,用於產生可生物降解的聚合物奈米粒子(PNP)之材料包括聚丙交酯、聚(乳酸-共-乙醇酸) (PLGA)、聚(氰基丙烯酸乙酯)、聚(氰基丙烯酸丁酯)、聚(氰基丙烯酸異丁酯)及聚(氰基丙烯酸異己酯)、聚麩胺酸(PGA)、聚(ɛ-己內酯) (PCL)、環糊精及作為最常用於合成PNP之聚合物的天然聚合物,例如幾丁聚醣、白蛋白、明膠及海藻酸鹽。(Production and clinical development of nanoparticles for gene delivery. Molecular Therapy-Methods & Clinical Development 3:16023; doi:10.1038 (2016))。在其他實施例中,該等粒子係脂質奈米粒子,其囊封gRNA變異體及編碼本文所描述之任一實施例之長期抑制子融合蛋白的mRNA,下文對其進行更全面的描述。在其他實施例中,該等粒子係脂質奈米粒子(LNP),其將gRNA變異體及編碼本文所描述之任一實施例的長期抑制子融合蛋白之mRNA分開囊封於不同粒子中,該不同粒子經共同調配為混合物以供投與,下文對其進行更全面的描述。在其他實施例中,該等粒子係脂質奈米粒子,其將gRNA變異體及編碼任一實施例之長期抑制子融合蛋白的mRNA分開囊封,且該兩種類型之粒子係分開投與。 a.脂質奈米粒子(LNP) In another aspect, the present disclosure provides a particle composition for delivering a LTRP:gRNA system to a cell or individual for transcriptional inhibition or silencing of a PCSK9 gene. Particles contemplated within the scope of the present disclosure include, but are not limited to, nanoparticles, such as synthetic nanoparticles, polymer nanoparticles, lipid nanoparticles, viral particles, and virus-like particles. The particles of the present disclosure may encapsulate a payload, such as a gRNA variant described herein, optionally in combination with an mRNA encoding a long-term suppressor fusion protein of any of the embodiments described herein. Alternatively or additionally, for example, when a ribonucleoprotein (RNP) complex is synthesized, the particles of the present disclosure may encapsulate a payload of a gRNA variant and a long-term suppressor fusion protein. In some embodiments, the particles are synthetic nanoparticles that encapsulate a payload of gRNA variants and mRNA encoding a long-term suppressor fusion protein of any of the embodiments described herein. In some embodiments, the synthetic nanoparticles comprise biodegradable polymer nanoparticles (PNPs). In some embodiments, the materials used to produce biodegradable polymer nanoparticles (PNPs) include polylactide, poly(lactic-co-glycolic acid) (PLGA), poly(ethyl cyanoacrylate), poly(butyl cyanoacrylate), poly(isobutyl cyanoacrylate) and poly(isohexyl cyanoacrylate), polyglutamine (PGA), poly(ɛ-caprolactone) (PCL), cyclodextrins, and natural polymers such as chitosan, albumin, gelatin, and alginate, which are the most commonly used polymers for synthesizing PNPs. (Production and clinical development of nanoparticles for gene delivery. Molecular Therapy-Methods & Clinical Development 3:16023; doi:10.1038 (2016)). In other embodiments, the particles are lipid nanoparticles that encapsulate gRNA variants and mRNA encoding the long-term suppressor fusion protein of any embodiment described herein, which is described more fully below. In other embodiments, the particles are lipid nanoparticles (LNPs) that encapsulate gRNA variants and mRNA encoding the long-term suppressor fusion protein of any embodiment described herein separately in different particles, which are co-formulated as a mixture for administration, which is described more fully below. In other embodiments, the particles are lipid nanoparticles that separately encapsulate the gRNA variant and the mRNA encoding the long-term suppressor fusion protein of any embodiment, and the two types of particles are administered separately. a. Lipid Nanoparticles (LNP)

在另一態樣中,本揭示提供用於向細胞或向個體遞送本揭示之LTRP:gRNA系統以用於轉錄抑制 PCSK9基因之脂質奈米粒子(LNP)。在一些實施例中,本揭示之LNP為組織特異性或器官(例如,肝臟)特異性的,具有極佳生物相容性,且可高效遞送系統,且因此可有效地用於 PCSK9基因之轉錄抑制。 In another aspect, the present disclosure provides lipid nanoparticles (LNPs) for delivering the LTRP:gRNA system disclosed herein to cells or individuals for transcriptional inhibition of PCSK9 genes. In some embodiments, the LNPs disclosed herein are tissue-specific or organ-specific (e.g., liver), have excellent biocompatibility, and can efficiently deliver the system, and thus can be effectively used for transcriptional inhibition of PCSK9 genes.

本揭示進一步提供包含複數個本文所描述之LNP之LNP組合物及醫藥組合物。The present disclosure further provides LNP compositions and pharmaceutical compositions comprising a plurality of the LNPs described herein.

在其原生形式中,核酸聚合物在生物流體中一般不穩定且無法穿透進入目標細胞之細胞質中,因此需要遞送系統。已證明脂質奈米粒子(LNP)適用於保護核酸及將核酸遞送至組織及細胞。此外,與DNA載體相比,在LNP中使用mRNA編碼長期抑制子融合蛋白將消除不期望之基因體整合的可能性。此外,mRNA有效地轉染有絲分裂及非有絲分裂細胞,因為其在細胞質區室中發揮其功能而不需要進入細胞核。因此,以LNP作為遞送平台將提供額外優勢,即能夠將編碼長期抑制子融合蛋白之mRNA與gRNA兩者共同調配至單一LNP粒子中。In their native form, nucleic acid polymers are generally unstable in biological fluids and cannot penetrate into the cytoplasm of target cells, so a delivery system is needed. Lipid nanoparticles (LNPs) have been shown to be suitable for protecting nucleic acids and delivering nucleic acids to tissues and cells. In addition, the use of mRNA encoding long-term suppressor fusion proteins in LNPs will eliminate the possibility of undesired genomic integration compared to DNA vectors. In addition, mRNA effectively transfects mitotic and non-mitotic cells because it exerts its function in the cytoplasmic compartment without entering the cell nucleus. Therefore, using LNPs as a delivery platform will provide the additional advantage of being able to co-deliver both mRNA encoding long-term suppressor fusion proteins and gRNA into a single LNP particle.

因此,在各種實施例中,本揭示涵蓋脂質奈米粒子及組合物,其可用於達成多種目的,包括活體外及活體內遞送所囊封或締合(例如複合)之治療劑(諸如核酸)至細胞。在某些實施例中,本揭示涵蓋治療或預防有需要個體之疾病或病症的方法,其藉由使個體與脂質奈米粒子接觸來進行,該脂質奈米粒子囊封適合治療劑或與其締合,該適合治療劑透過組合物中使用之一或多種脂質組分之間的各種物理、化學或靜電相互作用而複合以製得LNP。在一些實施例中,適合的治療劑包含本文所描述之LTRP:gRNA系統。Thus, in various embodiments, the disclosure encompasses lipid nanoparticles and compositions that can be used to achieve a variety of purposes, including the delivery of encapsulated or conjugated (e.g., complexed) therapeutic agents (e.g., nucleic acids) to cells in vitro and in vivo. In certain embodiments, the disclosure encompasses methods of treating or preventing a disease or condition in an individual in need thereof by contacting the individual with a lipid nanoparticle that encapsulates or conjugates a suitable therapeutic agent that is complexed through various physical, chemical, or electrostatic interactions between one or more lipid components used in the composition to produce the LNP. In some embodiments, the suitable therapeutic agent comprises the LTRP:gRNA system described herein.

在某些實施例中,脂質奈米粒子適用於遞送核酸,包括例如本揭示之編碼長期抑制子融合蛋白之mRNA及gRNA變異體。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6528至14626 (未經修飾之mRNA)及14627至22725 (經N1-甲基-假尿苷修飾之mRNA)組成之群的編碼長期抑制子融合蛋白的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6528至8134、9741至11347、14628至16233及17840至19446組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6529至6537、9742至9750、14628、14636及17841至17849組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6529至6537、9742至9750、14628、14636及17841至17849組成之群的序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6531、9744、14630及17843組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6531、9744、14630及17843組成之群的序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6529、9742、14628及17841組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6529、9742、14628及17841組成之群的序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6530、9743、14629及17842組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6530、9743、14629及17842組成之群的序列。在一些實施例中,LNP包含gRNA,該gRNA包含選自由SEQ ID NO: 1744至1746、2948至2956、2958至2966及2968至2974組成之群的支架序列,及與 PCSK9基因之序列互補的所連接靶向序列(在SEQ ID NO: 2948至2956、2958至2966及2968至2974之情況下,3'末端上之20個非靶向核苷酸經與 PCSK9基因之序列互補但保留了3'末端上之化學修飾之靶向序列置換)。在一些實施例中,LNP包含gRNA,該gRNA包含選自由SEQ ID NO: 2278至22803組成之群的序列。在一些實施例中,LNP包含gRNA,該gRNA包含選自由SEQ ID NO: 2278至22790組成之群的序列。在一些實施例中,本揭示提供LNP,其中gRNA及編碼長期抑制子融合蛋白之mRNA係併入單一LNP粒子中。在其他實施例中,本揭示提供LNP,其中gRNA及編碼長期抑制子融合蛋白之mRNA併入至LNP之單獨群體中,該等群體可按不同比率一起調配以供投與。 In certain embodiments, lipid nanoparticles are suitable for delivery of nucleic acids, including, for example, mRNAs encoding long-term suppressor fusion proteins and gRNA variants disclosed herein. In some embodiments, LNPs comprise mRNAs comprising a sequence encoding a long-term suppressor fusion protein selected from the group consisting of SEQ ID NOs: 6528 to 14626 (unmodified mRNAs) and 14627 to 22725 (N1-methyl-pseudouridine modified mRNAs) or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6528-8134, 9741-11347, 14628-16233, and 17840-19446, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537, 9742 to 9750, 14628, 14636, and 17841 to 17849, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537, 9742 to 9750, 14628, 14636, and 17841 to 17849. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6531, 9744, 14630, and 17843, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6531, 9744, 14630, and 17843. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529, 9742, 14628, and 17841, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529, 9742, 14628, and 17841. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6530, 9743, 14629, and 17842, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6530, 9743, 14629, and 17842. In some embodiments, the LNP comprises a gRNA comprising a scaffold sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746, 2948 to 2956, 2958 to 2966, and 2968 to 2974, and a linked targeting sequence complementary to the sequence of the PCSK9 gene (in the case of SEQ ID NOs: 2948 to 2956, 2958 to 2966, and 2968 to 2974, the 20 non-targeting nucleotides at the 3' end are replaced by a targeting sequence complementary to the sequence of the PCSK9 gene but retaining the chemical modification at the 3' end). In some embodiments, the LNP comprises a gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 2278 to 22803. In some embodiments, the LNP comprises a gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 2278 to 22790. In some embodiments, the disclosure provides LNPs wherein the gRNA and the mRNA encoding the long-term suppressor fusion protein are incorporated into a single LNP particle. In other embodiments, the disclosure provides LNPs wherein the gRNA and the mRNA encoding the long-term suppressor fusion protein are incorporated into separate populations of LNPs, which populations can be formulated together in different ratios for administration.

本揭示之脂質奈米粒子及脂質奈米粒子組合物可用於藉由使細胞與包含一或多種本文所描述之可離子化脂質的脂質奈米粒子接觸而在活體外及活體內抑制所需蛋白質之表現,其中該脂質奈米粒子囊封與經表現以產生所需蛋白質(例如編碼長期抑制子融合蛋白質之信使RNA)之核酸或與該核酸締合。在一些實施例中,脂質奈米粒子及組合物活可用於藉由使細胞與包含一或多種本文所描述之陽離子型脂質的脂質奈米粒子接觸在活體外及活體內抑制目標基因表現,其中該脂質奈米粒子囊封本揭示之LTRP:gRNA系統中的一或多個核酸或與該一或多個核酸締合。本揭示之實施例之脂質奈米粒子及組合物亦可單獨或以組合形式用於共同遞送不同核酸(例如,mRNA及質體DNA),諸如可適用於提供需要不同核酸(例如,編碼適合的基因抑制子或酶之mRNA及用於靶向基因之gRNA)之共定位的作用。The lipid nanoparticles and lipid nanoparticle compositions disclosed herein can be used to inhibit the expression of a desired protein in vitro and in vivo by contacting cells with lipid nanoparticles comprising one or more ionizable lipids described herein, wherein the lipid nanoparticles encapsulate or conjugate with a nucleic acid expressed to produce a desired protein (e.g., a messenger RNA encoding a long-term suppressor fusion protein). In some embodiments, the lipid nanoparticles and compositions can be used to inhibit the expression of a target gene in vitro and in vivo by contacting cells with lipid nanoparticles comprising one or more cationic lipids described herein, wherein the lipid nanoparticles encapsulate or conjugate with one or more nucleic acids in the LTRP:gRNA system disclosed herein. The lipid nanoparticles and compositions of the embodiments of the present disclosure can also be used alone or in combination to co-deliver different nucleic acids (e.g., mRNA and plasmid DNA), such as to provide effects requiring co-localization of different nucleic acids (e.g., mRNA encoding a suitable gene repressor or enzyme and gRNA for targeting a gene).

在一些實施例中,本文所描述之LNP及LNP組合物包括至少一種陽離子型脂質、至少一種結合脂質、至少一種類固醇或其衍生物、至少一種額外脂質或其任何組合。或者,本揭示之脂質組合物可包括可離子化脂質,諸如可離子化陽離子型脂質、輔助脂質(通常為磷脂)、膽固醇及聚乙二醇-脂質結合物(PEG-脂質),以藉由例如降低血漿蛋白之吸收比以及在奈米粒子上形成水合層來改良生物環境中之膠態穩定性。此等脂質組合物可在50:10:37-39:1.5-2.5或20-50:8-65:25-40:1-2.5之典型莫耳比下調配,其中進行變化以調節個別特性。In some embodiments, the LNPs and LNP compositions described herein include at least one cationic lipid, at least one binding lipid, at least one steroid or its derivative, at least one additional lipid, or any combination thereof. Alternatively, the lipid compositions disclosed herein may include ionizable lipids, such as ionizable cationic lipids, auxiliary lipids (usually phospholipids), cholesterol, and polyethylene glycol-lipid conjugates (PEG-lipids) to improve colloidal stability in biological environments by, for example, reducing the absorption rate of plasma proteins and forming a hydration layer on the nanoparticles. These lipid compositions can be formulated at typical molar ratios of 50:10:37-39:1.5-2.5 or 20-50:8-65:25-40:1-2.5, with variations made to adjust individual properties.

本揭示之LNP及LNP組合物經組態以在活體外及活體內保護本揭示之系統之經囊封有效負載且將該經囊封有效負載遞送至組織及細胞。本文中進一步詳細描述本揭示之LNP及LNP組合物之各種實施例。 陽離子型脂質 The LNPs and LNP compositions of the present disclosure are configured to protect the encapsulated payload of the systems of the present disclosure in vitro and in vivo and to deliver the encapsulated payload to tissues and cells. Various embodiments of the LNPs and LNP compositions of the present disclosure are described in further detail herein. Cationic Lipids

在一些實施例中,本揭示之LNP及LNP組合物包括至少一種陽離子型脂質。術語「陽離子型脂質」係指具有淨正電荷之脂質物種。在一些實施例中,陽離子型脂質係在所選pH (諸如生理pH)下具有淨正電荷之可離子化陽離子型脂質。在一些實施例中,可離子化陽離子型脂質之pKa小於約7,使得LNP及LNP組合物在相對較低的pH下達成有效負載的有效囊封。在一些實施例中,陽離子型脂質之pKa為5至8、5.5至7.5、6至7或6.5至7。在一些實施例中,陽離子型脂質可在低於陽離子型脂質之pKa之pH下質子化,且在高於該pKa之pH下,其可為實質上中性的。LNP及LNP組合物可在活體內安全地遞送至目標器官(例如肝、肺、心臟、脾,以及腫瘤)及/或目標細胞(肝細胞、LSEC、心臟細胞、癌細胞等),且在內吞作用後展現正電荷以透過與胞內體膜之陰離子型蛋白的靜電相互作用而釋放所囊封的有效負載。In some embodiments, the LNPs and LNP compositions disclosed herein include at least one cationic lipid. The term "cationic lipid" refers to a lipid species having a net positive charge. In some embodiments, the cationic lipid is an ionizable cationic lipid having a net positive charge at a selected pH (e.g., physiological pH). In some embodiments, the pKa of the ionizable cationic lipid is less than about 7, so that the LNPs and LNP compositions achieve effective encapsulation of the effective load at a relatively low pH. In some embodiments, the pKa of the cationic lipid is 5 to 8, 5.5 to 7.5, 6 to 7, or 6.5 to 7. In some embodiments, the cationic lipids may be protonated at a pH lower than the pKa of the cationic lipids, and at a pH higher than the pKa, they may be substantially neutral. LNPs and LNP compositions can be safely delivered to target organs (e.g., liver, lung, heart, spleen, and tumor) and/or target cells (hepatocytes, LSEC, heart cells, cancer cells, etc.) in vivo, and exhibit a positive charge after endocytosis to release the encapsulated payload through electrostatic interactions with cationic proteins of endosomal membranes.

利用永久陽離子型脂質的早期LNP調配使得LNP具有陽性表面電荷且被吞噬細胞快速清除,已證實該等陽性表面電荷在活體內具有毒性。藉由變成帶有三級胺(尤其pKa <7之三級胺)的可離子化陽離子型脂質,使得LNP藉由與mRNA之磷酸酯主鏈之負電荷進行靜電相互作用而實現在低pH下之有效囊封核酸聚合物,其在生理pH值下亦產生很大程度上中性之系統,因此緩解與永久帶電陽離子型脂質相關的問題。Early LNP formulations using permanently cationic lipids resulted in LNPs with positive surface charges and rapid clearance by phagocytic cells, which have been shown to be toxic in vivo. By becoming ionizable cationic lipids with tertiary amines (particularly tertiary amines with pKa <7), LNPs achieve efficient encapsulation of nucleic acid polymers at low pH by electrostatically interacting with the negative charges of the phosphate backbone of mRNA, which also results in a largely neutral system at physiological pH, thereby alleviating the problems associated with permanently charged cationic lipids.

如本文所用,「可離子化脂質(ionizable lipid)」意謂容易質子化之含胺脂質,且例如其可為電荷狀態視周圍pH而改變的脂質。可離子化脂質可在低於陽離子型脂質之pKa之pH下質子化(帶正電),且在高於該pKa之pH下,其可為實質上中性的。在一個實例中,LNP可包含質子化可離子化脂質及/或顯示中性之可離子化脂質。在一些實施例中,LNP之pKa為5至8、5.5至7.5、6至7或6.5至7。LNP之pKa可影響目標細胞或器官中LNP之核酸有效負載的活體內穩定性及釋放。在一些實施例中,具有前述pKa範圍之LNP可在活體內安全地遞送至目標器官(例如肝、肺、心臟、脾以及腫瘤)及/或目標細胞(肝細胞、LSEC、心臟細胞、癌細胞等),且在內吞作用後展現正電荷以透過與胞內體膜之陰離子型蛋白質的靜電相互作用而釋放所囊封的有效負載。As used herein, "ionizable lipid" means an amine-containing lipid that is easily protonated, and for example, it can be a lipid whose charge state changes depending on the surrounding pH. An ionizable lipid can be protonated (positively charged) at a pH below the pKa of a cationic lipid, and at a pH above the pKa, it can be substantially neutral. In one example, an LNP can include a protonated ionizable lipid and/or an ionizable lipid that exhibits neutrality. In some embodiments, the pKa of the LNP is 5 to 8, 5.5 to 7.5, 6 to 7, or 6.5 to 7. The pKa of the LNP can affect the in vivo stability and release of the nucleic acid payload of the LNP in the target cell or organ. In some embodiments, LNPs having the aforementioned pKa range can be safely delivered to target organs (e.g., liver, lung, heart, spleen, and tumor) and/or target cells (hepatocytes, LSECs, cardiac cells, cancer cells, etc.) in vivo, and exhibit a positive charge after endocytosis to release the encapsulated payload through electrostatic interactions with cationic proteins of endosomal membranes.

可離子化脂質為通常具有類似於脂質之特徵的可離子化化合物,且經由與核酸(例如本揭示之mRNA)的靜電相互作用,可發揮將核酸有效負載高效地囊封於LNP內的作用。Ionizable lipids are ionizable compounds that generally have lipid-like characteristics and can play a role in efficiently encapsulating nucleic acids (such as mRNA of the present disclosure) into LNPs through electrostatic interactions with nucleic acids.

根據可離子化脂質中所含之胺及尾基之類型,LNP之(i)核酸囊封效率、(ii) PDI (多分散性指數)及/或(iii)對構成器官之組織及/或細胞(例如肝細胞或肝中之肝竇內皮細胞)的核酸遞送效率可不同。在某些實施例中,可離子化脂質係可離子化陽離子型脂質,且其佔粒子中存在之總脂質的約46 mol%至約66 mol%。Depending on the type of amine and tail groups contained in the ionizable lipid, the (i) nucleic acid encapsulation efficiency, (ii) PDI (polydispersity index) and/or (iii) nucleic acid delivery efficiency of LNP to tissues and/or cells constituting an organ (e.g., hepatocytes or hepatic sinus endothelial cells in the liver) may vary. In certain embodiments, the ionizable lipid is an ionizable cationic lipid and accounts for about 46 mol% to about 66 mol% of the total lipid present in the particle.

包括含胺之可離子化脂質的LNP可具有一或多個種類的以下特徵:(1)高效地囊封核酸之能力;(2)所製備粒子之大小均勻(或具有低PDI值);及/或(3)對諸如肝、肺、心臟、脾、骨髓之器官以及腫瘤,及/或構成此等器官之細胞(例如肝細胞、LSEC、心臟細胞、癌細胞等)的極佳核酸遞送效率。LNPs comprising ionizable amine-containing lipids may have one or more of the following characteristics: (1) the ability to efficiently encapsulate nucleic acids; (2) the uniform size of the prepared particles (or having a low PDI value); and/or (3) excellent nucleic acid delivery efficiency to organs such as the liver, lungs, heart, spleen, bone marrow, and tumors, and/or cells constituting these organs (e.g., hepatocytes, LSECs, heart cells, cancer cells, etc.).

在特定實施例中,陽離子型脂質形式在經由靜電相互作用進行核酸囊封及藉由破壞胞內體膜進行細胞內釋放兩方面發揮重要作用。核酸有效負載藉由其與帶正電之陽離子型脂質形成之離子相互作用囊封於LNP內。用於本揭示之LNP中的陽離子型脂質組分之非限制性實例係選自DLin-MC3-DMA (4-(二甲基胺基)丁酸三十七碳-6,9,28,31-四烯-19-基酯)、DLin-KC2-DMA (2,2-二亞油基-4-(2-二甲胺基乙基)-[1,3]-二氧雜環戊烷)及TNT (1,3,5-三𠯤烷-2,4,6-三酮)及TT (N1,N3,N5-參(2-胺基乙基)苯-1,3,5-三甲醯胺)。用於本揭示之LNP中之輔助脂質的非限制性實例係選自DSPC (1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼)、POPC (2-油醯基-1-軟脂醯基-sn-甘油-3-磷酸膽鹼)及DOPE (1,2-二油醯基-sn-甘油-3-磷酸乙醇胺)、1,2-二油醯基-sn-甘油-3-磷酸基-(1'-rac-甘油)、DOPG、1,2-二肉豆蔻醯基-sn-甘油-3-磷酸乙醇胺(DMPE)、1,2-二月桂醯基-sn-甘油-3-磷酸膽鹼(DLPC)、鞘脂以及神經醯胺。針對LNP之穩定性、循環及尺寸,膽固醇及PEG-DMG ((R)-2,3-雙(十八烷氧基)丙基-1-(甲氧基聚乙二醇2000)胺基甲酸酯)、PEG-DSG (1,2-二硬脂醯基-rac-甘油-3-甲基聚氧基乙二醇2000)或DSPE-PEG2k (1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-N-[胺基(聚乙二醇)-2000])係本揭示之LNP中使用的組分。In certain embodiments, cationic lipid forms play an important role in both nucleic acid encapsulation via electrostatic interactions and intracellular release by disrupting endosomal membranes. Nucleic acid payloads are encapsulated within LNPs through ionic interactions with positively charged cationic lipids. Non-limiting examples of cationic lipid components used in the LNPs of the present disclosure are selected from DLin-MC3-DMA (4-(dimethylamino)butyric acid heptaheptacontriacont-6,9,28,31-tetraen-19-yl ester), DLin-KC2-DMA (2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane), TNT (1,3,5-trioxane-2,4,6-trione), and TT (N1,N3,N5-tris(2-aminoethyl)benzene-1,3,5-trimethylamide). Non-limiting examples of auxiliary lipids used in the LNPs of the present disclosure are selected from DSPC (1,2-distearyl-sn-glycero-3-phosphocholine), POPC (2-oleyl-1-lauryl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), DOPG, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-dilauryl-sn-glycero-3-phosphocholine (DLPC), sphingolipids and ceramides. Regarding the stability, circulation and size of LNPs, cholesterol and PEG-DMG ((R)-2,3-bis(octadecyloxy)propyl-1-(methoxypolyethylene glycol 2000) carbamate), PEG-DSG (1,2-distearyl-rac-glycero-3-methylpolyoxyethylene glycol 2000) or DSPE-PEG2k (1,2-distearyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]) are the components used in the LNPs disclosed herein.

在一些實施例中,本揭示之LNP中之陽離子型脂質包含三級胺。在一些實施例中,三級胺包括藉由醚鍵連接至三級胺之N的烷基鏈。在一些實施例中,烷基鏈包含具有0至3個雙鍵之C12-C30烷基鏈。在一些實施例中,烷基鏈包含C16-C22烷基鏈。在一些實施例中,烷基鏈包含C18烷基鏈。多種陽離子型脂質及相關類似物已描述於美國專利公開案第20060083780號、第20060240554號、第20110117125號、第20190336608號、第20190381180號及第20200121809號;美國專利第5,208,036號;第5,264,618號;第5,279,833號;第5,283,185號;第5,753,613號;第5,785,992號;第9,738,593號;第10,106,490號;第10,166,298號;第10,221,127號;及第11,219,634號;以及PCT公開案第WO 96/10390號,各案揭示內容以全文引用的方式併入本文中。In some embodiments, the cationic lipid in the LNP of the present disclosure comprises a tertiary amine. In some embodiments, the tertiary amine comprises an alkyl chain connected to the N of the tertiary amine by an ether bond. In some embodiments, the alkyl chain comprises a C12-C30 alkyl chain having 0 to 3 double bonds. In some embodiments, the alkyl chain comprises a C16-C22 alkyl chain. In some embodiments, the alkyl chain comprises a C18 alkyl chain. Various cationic lipids and related analogs have been described in U.S. Patent Publication Nos. 20060083780, 20060240554, 20110117125, 20190336608, 20190381180, and 20200121809; U.S. Patent Nos. 5,208,036; 5,26 No. 4,618; No. 5,279,833; No. 5,283,185; No. 5,753,613; No. 5,785,992; No. 9,738,593; No. 10,106,490; No. 10,166,298; No. 10,221,127; and No. 11,219,634; and PCT Publication No. WO 96/10390, the disclosures of each of which are incorporated herein by reference in their entirety.

在一些實施例中,本揭示之LNP中之陽離子型脂質可包含例如一或多種可離子化陽離子型脂質,其中該可離子化陽離子型脂質為二烷基脂質。在其他實施例中,可離子化陽離子型脂質為三烷基脂質。In some embodiments, the cationic lipids in the LNPs disclosed herein may include, for example, one or more ionizable cationic lipids, wherein the ionizable cationic lipids are dialkyl lipids. In other embodiments, the ionizable cationic lipids are trialkyl lipids.

在一些實施例中,本揭示之LNP中的陽離子型脂質係選自1,2-二亞油氧基-N,N-二甲基胺基丙烷(DLinDMA)、1,2-二次亞麻氧基-N,N-二甲基胺基丙烷(DLenDMA)、2,2-二亞油基-4-(2-二甲胺基乙基)-[1,3]-二氧雜環戊烷(DLin-K-C2-DMA)、2,2-二亞油基-4-(3-二甲胺基丙基)-[1,3]-二氧雜環戊烷(DLin-K-C3-DMA)、2,2-二亞油基-4-(4-二甲胺基丁基)-[1,3]-二氧雜環戊烷(DLin-K-C4-DMA)、2,2-二亞油基-5-二甲胺基甲基-[1,3]-二㗁烷(DLin-K6-DMA)、2,2-二亞油基-4-N-甲基哌𠯤并-[1,3]-二氧雜環戊烷(DLin-K-MPZ)、2,2-二亞油基-4-二甲胺基甲基-[1,3]-二氧雜環戊烷(DLin-K-DMA)、1,2-二亞油基胺甲醯基氧基-3-二甲基胺基丙烷(DLin-C-DAP)、1,2-二亞油基氧基-3-(二甲胺基)乙醯氧基丙烷(DLin-DAC)、1,2-二亞油基氧基-3-(N-𠰌啉基)丙烷(DLin-MA)、1,2-二亞油醯基-3-二甲基胺基丙烷(DLinDAP)、1,2-二亞油基硫基-3-二甲基胺基丙烷(DLin-S-DMA)、1-亞油醯基-2-亞油氧基-3-二甲基胺基丙烷(DLin-2-DMAP)、1,2-二亞油氧基-3-三甲基胺基丙烷氯化鹽(DLin-TMA.Cl)、1,2-二亞油醯基-3-三甲基胺基丙烷氯化鹽(DLin-TAP.Cl)、1,2-二亞油氧基-3-(N-甲基哌𠯤基)丙烷(DLin-MPZ)、3-(N,N-二亞油基胺基)-1,2-丙二醇(DLinAP)、3-(N,N-二油烯基胺基)-1,2-丙二醇(DOAP)、1,2-二亞油基側氧基-3-(2-N,N-二甲胺基)乙氧基丙烷(DLin-EG-DMA)、氯化N,N-二油基-N,N-二甲銨(DODAC)、1,2-二油烯基氧基-N,N-二甲基胺基丙烷(DODMA)、1,2-二硬脂基氧基-N,N-二甲基胺基丙烷(DSDMA)、氯化N-(1-(2,3-二油烯基氧基)丙基)-N,N,N-三甲銨(DOTMA)、溴化N,N-二硬脂基-N,N-二甲銨(DDAB)、氯化N-(1-(2,3-二油醯氧基)丙基)-N,N,N-三甲銨(DOTAP)、3-(N-(N′,N′-二甲基胺基乙烷)-胺甲醯基)膽固醇(DC-Chol)、溴化N-(1,2-二肉豆蔻基氧基丙-3-基)-N,N-二甲基-N-羥基乙基銨(DMRIE)、2,3-二油烯基氧基-N-[2(精胺-甲醯胺基)乙基]-N,N-二甲基-1-丙銨三氟乙酸鹽(DOSPA)、二(十八烷基)醯胺基甘胺醯基精胺(DOGS)、3-二甲基胺基-2-(膽甾-5-烯-3-β-氧基丁-4-氧基)-1-(順式,順式-9,12-十八碳二烯氧基)丙烷(CLinDMA)、2-[5′-(膽甾-5-烯-3-β-氧基)-3′-氧雜戊烯氧基)-3-二甲基-1-(順式,順式-9′,1-2′-十八碳二烯氧基)丙烷(CpLinDMA)、N,N-二甲基-3,4-二油烯基氧基苯甲胺(DMOBA)、1,2-N,N′-二油烯基胺基甲醯基-3-二甲基胺基丙烷(DOcarbDAP)、1,2-N,N′-二亞油基胺甲醯基-3-二甲基胺基丙烷(DLincarbDAP)及前述各者之任何組合。In some embodiments, the cationic lipid in the LNP disclosed herein is selected from 1,2-dilinoleyl-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleyl-N,N-dimethylaminopropane (DLenDMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-K-C2-DMA), 2,2-dilinoleyl-4-(3-dimethylaminopropyl)-[1,3]-dioxolane ( DLin-K-C3-DMA), 2,2-dilinoleyl-4-(4-dimethylaminobutyl)-[1,3]-dioxolane (DLin-K-C4-DMA), 2,2-dilinoleyl-5-dimethylaminomethyl-[1,3]-dioxolane (DLin-K6-DMA), 2,2-dilinoleyl-4-N-methylpiperidin-[1,3]-dioxolane (DLin-K-MPZ), 2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]- 1,2-Dilinoleylaminomethyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyloxy-3-(dimethylamino)acetyloxypropane (DLin-DAC), 1,2-Dilinoleyloxy-3-(N-phenanthroline)propane (DLin-MA), 1,2-Dilinoleyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane ( DLin-S-DMA), 1-linoleyl-2-linoleyl-3-dimethylaminopropane (DLin-2-DMAP), 1,2-dilinoleyl-3-trimethylaminopropane chloride (DLin-TMA.Cl), 1,2-dilinoleyl-3-trimethylaminopropane chloride (DLin-TAP.Cl), 1,2-dilinoleyl-3-(N-methylpiperidinyl)propane (DLin-MPZ), 3-(N,N-dilinoleylamino)-1,2-propane diol (DLinAP), 3-(N,N-dioleylamino)-1,2-propanediol (DOAP), 1,2-dilinoleyl-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), 1,2-distearyloxy-N,N-dimethylaminopropane (DSDMA), N- (1-(2,3-dioleyloxy)propyl)-N,N,N-trimethoxyammonium (DOTMA), N,N-distearyl-N,N-dimethoxyammonium bromide (DDAB), N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethoxyammonium chloride (DOTAP), 3-(N-(N′,N′-dimethylaminoethane)-aminoformyl)cholesterol (DC-Chol), N-(1,2-dimyristyloxypropyl-3-yl)-N,N-dimethyl-N-hydroxyethyl bromide 2,3-Dioleyloxy-N-[2(spermine-carboxamido)ethyl]-N,N-dimethyl-1-propanemethane trifluoroacetate (DOSPA), dioctadecylamidoglyceryl spermine (DOGS), 3-dimethylamino-2-(cholest-5-ene-3-β-oxybut-4-oxy)-1-(cis,cis-9,12-octadecadienyloxy)propane (CLinDMA), 2-[5′-(cholest-5-ene-3-β-oxy)- 3′-oxopentenyloxy)-3-dimethyl-1-(cis,cis-9′,1-2′-octadecadienyloxy)propane (CpLinDMA), N,N-dimethyl-3,4-dioleyloxybenzylamine (DMOBA), 1,2-N,N′-dioleylaminomethyl-3-dimethylaminopropane (DOcarbDAP), 1,2-N,N′-dilinoleylaminomethyl-3-dimethylaminopropane (DLincarbDAP), and any combination thereof.

在一些實施例中,本揭示之LNP中之陽離子型脂質係選自4-(二甲基胺基)丁酸三十七碳-6,9,28,31-四烯-19-基酯(DLin-MC3-DMA)、2,2-二亞油基-4-(2-二甲胺基乙基)-[1,3]-二氧雜環戊烷(DLin- KC2-DMA)、(1,3,5-三𠯤烷-2,4,6-三酮) (TNT)、N1,N3,N5-參(2-胺基乙基)苯-1,3,5-三甲醯胺(TT)及前述各者之任何組合。In some embodiments, the cationic lipid in the LNP of the present disclosure is selected from 4-(dimethylamino) butyric acid triheptadecanoate-6,9,28,31-tetraen-19-yl ester (DLin-MC3-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), (1,3,5-trioxane-2,4,6-trione) (TNT), N1,N3,N5-tris(2-aminoethyl)benzene-1,3,5-trimethylamide (TT), and any combination thereof.

在一些實施例中,本揭示之LNP中之N/P比(來自陽離子型/可離子化脂質的氮與來自核酸的磷酸酯)在約3:1至7:1、或約4:1至6:1範圍內,或為3:1,或為4:1,或為5:1,或為6:1,或為7:1。 結合脂質 In some embodiments, the N/P ratio (nitrogen from cationic/ionizable lipids to phosphate from nucleic acids) in the disclosed LNPs is in the range of about 3:1 to 7:1, or about 4:1 to 6:1, or 3:1, or 4:1, or 5:1, or 6:1, or 7:1. Lipid Binding

在一些實施例中,本揭示之LNP及LNP組合物包括至少一種結合脂質。在一些實施例中,結合脂質可選自聚乙二醇(PEG)-脂質結合物、聚醯胺(ATTA)-脂質結合物、陽離子-聚合物-脂質結合物(CPL)及前述各者之任何組合。在一些情況下,結合脂質可阻抑本揭示之LNP的聚集。In some embodiments, the LNP and LNP compositions disclosed herein include at least one conjugated lipid. In some embodiments, the conjugated lipid can be selected from polyethylene glycol (PEG)-lipid conjugates, polyamide (ATTA)-lipid conjugates, cation-polymer-lipid conjugates (CPL) and any combination of the foregoing. In some cases, the conjugated lipid can inhibit the aggregation of the LNP disclosed herein.

在一些實施例中,本揭示之LNP之結合脂質包含聚乙二醇化脂質。術語「聚乙二醇(PEG)-脂質結合物」、「聚乙二醇化脂質」、「脂質-PEG結合物」、「脂質-PEG」、「PEG-脂質」、「PEG-脂質」或「脂質-PEG」在本文中可互換使用且係指連接至聚乙二醇(PEG)聚合物(其為親水性聚合物)的脂質。聚乙二醇化脂質促成LNP及LNP組合物之穩定性且減少LNP之聚集。In some embodiments, the conjugated lipid of the LNP of the present disclosure comprises a pegylated lipid. The terms "polyethylene glycol (PEG)-lipid conjugate", "pegylated lipid", "lipid-PEG conjugate", "lipid-PEG", "PEG-lipid", "PEG-lipid" or "lipid-PEG" are used interchangeably herein and refer to a lipid linked to a polyethylene glycol (PEG) polymer, which is a hydrophilic polymer. The pegylated lipid contributes to the stability of the LNP and LNP compositions and reduces the aggregation of the LNP.

由於PEG-脂質可形成表面脂質,所以LNP之尺寸可容易藉由改變表面(PEG)脂質與核心(可離子化陽離子)脂質之比例來改變。在一些實施例中,本揭示之PEG-脂質可在約1 mol%至5 mol%之間變化以修改粒子特性,諸如尺寸、穩定性及循環時間。Since PEG-lipids can form surface lipids, the size of LNPs can be easily varied by changing the ratio of surface (PEG) lipids to core (cationic ionizable) lipids. In some embodiments, the PEG-lipids disclosed herein can be varied between about 1 mol% and 5 mol% to modify particle properties such as size, stability, and circulation time.

脂質-PEG結合物促成LNP內之奈米粒子在血清中的粒子穩定性,且起到預防奈米粒子之間的聚集的作用。另外,脂質-PEG結合物可保護核酸,諸如編碼本揭示之長期抑制子融合蛋白之mRNA或本揭示之gRNA免於在核酸之活體內遞送期間降解酶且增強核酸之活體內穩定性,並且增加囊封於奈米粒子中之所遞送核酸之半衰期。PEG-脂質結合物之實例包括但不限於PEG-DAG結合物、PEG-DAA結合物及其等之混合物。在某些實施例中,PEG-脂質結合物係選自由以下組成之群組:PEG-二醯基甘油(PEG-DAG)結合物、PEG-二烷氧基丙基(PEG-DAA)結合物、PEG-磷脂結合物、PEG-神經醯胺(PEG-Cer)結合物及其等之混合物。The lipid-PEG conjugate contributes to the particle stability of the nanoparticles in the LNP in serum and plays a role in preventing the aggregation between the nanoparticles. In addition, the lipid-PEG conjugate can protect nucleic acids, such as mRNA encoding the long-term inhibitor fusion protein disclosed herein or the gRNA disclosed herein, from degrading enzymes during the in vivo delivery of nucleic acids and enhance the in vivo stability of nucleic acids, and increase the half-life of the delivered nucleic acids encapsulated in the nanoparticles. Examples of PEG-lipid conjugates include, but are not limited to, PEG-DAG conjugates, PEG-DAA conjugates, and mixtures thereof. In certain embodiments, the PEG-lipid conjugate is selected from the group consisting of: PEG-diacylglycerol (PEG-DAG) conjugates, PEG-dialkoxypropyl (PEG-DAA) conjugates, PEG-phospholipid conjugates, PEG-ceramide (PEG-Cer) conjugates, and mixtures thereof.

在一些實施例中,本揭示之LNP之聚乙二醇化脂質係選自PEG-神經醯胺、PEG-二醯基甘油、PEG -二烷基氧基丙基、PEG-二烷氧基丙基胺基甲酸酯、PEG-磷脂醯乙醇胺、PEG-磷脂、PEG-丁二酸二醯基甘油及前述各者之任何組合。In some embodiments, the PEGylated lipid of the LNP disclosed herein is selected from PEG-ceramide, PEG-diacylglycerol, PEG-dialkyloxypropyl, PEG-dialkyloxypropylcarbamate, PEG-phosphatidylethanolamine, PEG-phospholipids, PEG-succinic acid diacylglycerol, and any combination thereof.

在一些實施例中,本揭示之LNP之聚乙二醇化脂質為PEG-二烷氧基丙基。在一些實施例中,聚乙二醇化脂質係選自PEG-二癸氧基丙基(C10)、PEG-二月桂氧基丙基(C12)、PEG-二肉豆蔻氧基丙基(C14)、PEG-二軟脂氧基丙基(C16)、PEG-二硬脂醯氧基丙基(C18)及前述各者之任何組合。In some embodiments, the PEGylated lipid of the LNP disclosed herein is PEG-dialkoxypropyl. In some embodiments, the PEGylated lipid is selected from PEG-didecyloxypropyl (C10), PEG-dilauryloxypropyl (C12), PEG-dimyristyloxypropyl (C14), PEG-dimaloxypropyl (C16), PEG-distearyloxypropyl (C18) and any combination thereof.

在其他實施例中,本揭示之LNP的脂質-PEG結合物可為結合至磷脂之PEG,諸如磷脂醯乙醇胺(PEG-PE);結合至神經醯胺之PEG (PEG-CER、神經醯胺-PEG結合物、神經醯胺-PEG);膽固醇或結合至其衍生物之PEG;PEG-c-DOMG;PEG-DMG;PEG-DLPE;PEG-DMPE;PEG-DPPC;PEG-DSPE (DSPE-PEG)及其等之混合物,且例如,可為C16-PEG2000神經醯胺(N-軟脂醯基-神經鞘胺醇-1-{丁二醯基[甲氧基(聚乙二醇)2000]})、DMG-PEG 2000、14:0 PEG2000 PE。In other embodiments, the lipid-PEG conjugate of the LNP disclosed herein can be PEG conjugated to phospholipids, such as phosphatidylethanolamine (PEG-PE); PEG conjugated to ceramide (PEG-CER, ceramide-PEG conjugate, ceramide-PEG); cholesterol or PEG conjugated to its derivatives; PEG-c-DOMG; PEG-DMG; PEG-DLPE; PEG-DMPE; PEG-DPPC; PEG-DSPE (DSPE-PEG) and mixtures thereof, and for example, can be C16-PEG2000 ceramide (N-lauryl-sphingosine-1-{succinyl[methoxy(polyethylene glycol) 2000]}), DMG-PEG 2000, 14:0 PEG2000 PE.

在一些實施例中,本揭示之LNP之聚乙二醇化脂質係選自1-(單甲氧基-聚乙二醇)-2,3-二肉豆蔻醯基甘油、4-O-(2′,3′-二(十四醯氧基)丙基-1-O-(ω-甲氧基(聚乙氧基)乙基)丁二酸酯(PEG-S-DMG)、ω-甲氧基(聚乙氧基)乙基-N-(2,3-二(十四烷氧基)丙基)胺基甲酸酯、2,3-二(十四烷氧基)丙基-N-(ω-甲氧基(聚乙氧基)乙基)胺基甲酸酯,及前述各者之任何組合。In some embodiments, the PEGylated lipid of the LNP disclosed herein is selected from 1-(monomethoxy-polyethylene glycol)-2,3-dimyristylglycerol, 4-O-(2′,3′-di(tetradecyloxy)propyl-1-O-(ω-methoxy(polyethoxy)ethyl)succinate (PEG-S-DMG), ω-methoxy(polyethoxy)ethyl-N-(2,3-di(tetradecyloxy)propyl)carbamate, 2,3-di(tetradecyloxy)propyl-N-(ω-methoxy(polyethoxy)ethyl)carbamate, and any combination thereof.

在一些實施例中,本揭示之LNP的聚乙二醇化脂質係選自mPEG2000-1,2-二-O-烷基-sn3-胺甲醯基甘油酯(PEG-C-DOMG)、1-[8′-(1,2-二肉豆蔻醯基-3-丙氧基)-甲醯胺基-3′,6′-二氧雜辛基]胺甲醯基-w-甲基-聚(乙二醇)(2 KPEG-DMG)及前述各者之任何組合。In some embodiments, the PEGylated lipid of the LNP disclosed herein is selected from mPEG2000-1,2-di-O-alkyl-sn3-aminomethylglycerol (PEG-C-DOMG), 1-[8′-(1,2-dimyristyl-3-propoxy)-formamido-3′,6′-dioxooctyl]aminomethyl-w-methyl-poly(ethylene glycol) (2KPEG-DMG), and any combination thereof.

在一些實施例中,PEG直接連接至聚乙二醇化脂質之脂質。在其他實施例中,PEG藉由選自無酯連接子部分或含酯連接子部分之連接子部分連接至聚乙二醇化脂質之脂質。無酯連接子部分之非限制性實例包括醯胺基(-C(O)NH-)、胺基(-NR-)、羰基(-C(O)-)、胺基甲酸酯(-NHC(O)O-)、脲(-NHC(O)NH-)、二硫化物(-S-S-)、醚(-O-)、丁二醯基(-(O)CCH2CH2C(O)-)、丁二醯胺基(-NHC(O)CH2CH2C(O)NH-)、醚、二硫化物及其等之組合。舉例而言,連接子可含有胺基甲酸酯連接子部分及醯胺基連接子部分。含酯連接子部分之非限制性實例包括碳酸酯(-OC(O)O-)、丁二醯基、磷酸酯(-O-(O)POH-O-)、磺酸酯及其等之組合。In some embodiments, PEG is directly linked to the lipid of the PEGylated lipid. In other embodiments, PEG is linked to the lipid of the PEGylated lipid via a linker moiety selected from a non-ester linker moiety or an ester linker moiety. Non-limiting examples of non-ester linker moieties include amide (-C(O)NH-), amine (-NR-), carbonyl (-C(O)-), carbamate (-NHC(O)O-), urea (-NHC(O)NH-), disulfide (-S-S-), ether (-O-), succinyl (-(O)CCH2CH2C(O)-), succinyl (-NHC(O)CH2CH2C(O)NH-), ether, disulfide, and combinations thereof. For example, the linker may contain a carbamate linker moiety and an amide linker moiety. Non-limiting examples of ester-containing linker moieties include carbonate (—OC(O)O—), succinyl, phosphate (—O—(O)POH—O—), sulfonate, and combinations thereof.

本文所描述之本揭示之LNP之聚乙二醇化脂質的PEG部分可具有在約550道爾頓至約10,000道爾頓範圍內之平均分子量。在某些實施例中,PEG部分具有約750道爾頓至約5,000道爾頓、約1,000道爾頓至約4,000道爾頓、約1,500道爾頓至約3,000道爾頓、約750道爾頓至約3,000道爾頓、或約1750道爾頓至約2,000道爾頓之平均分子量。The PEG moiety of the PEGylated lipid of the LNP of the present disclosure described herein can have an average molecular weight ranging from about 550 daltons to about 10,000 daltons. In certain embodiments, the PEG moiety has an average molecular weight of about 750 daltons to about 5,000 daltons, about 1,000 daltons to about 4,000 daltons, about 1,500 daltons to about 3,000 daltons, about 750 daltons to about 3,000 daltons, or about 1750 daltons to about 2,000 daltons.

在一些實施例中,結合脂質(例如,聚乙二醇化脂質)佔LNP及/或LNP組合物中存在之總脂質的約1 mol%至約60 mol%、約2 mol%至約50 mol%、約5 mol%至約40 mol%或約5 mol%至約20 mol%。在某些實施例中,結合脂質佔粒子中存在之總脂質的約0.5 mol%至約3 mol%。In some embodiments, the bound lipid (e.g., PEGylated lipid) comprises about 1 mol% to about 60 mol%, about 2 mol% to about 50 mol%, about 5 mol% to about 40 mol%, or about 5 mol% to about 20 mol% of the total lipid present in the LNP and/or LNP composition. In certain embodiments, the bound lipid comprises about 0.5 mol% to about 3 mol% of the total lipid present in the particle.

在額外實施例中,結合脂質(例如,聚乙二醇化脂質)佔LNP及/或LNP組合物中存在之總脂質的至少約1、2、5、10、15、20、25、30、35、40、45、50、55或60 mol%,或前述任一者之中間範圍。In additional embodiments, the bound lipid (e.g., PEGylated lipid) comprises at least about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 mol %, or ranges intermediate thereto, of the total lipid present in the LNP and/or LNP composition.

對於本揭示之LNP之脂質-PEG結合物中之脂質,可使用(但不限於)能夠結合於聚乙二醇之任何脂質,且亦可使用作為LNP之其他元件的磷脂及/或膽固醇。在一些實施例中,脂質-PEG結合物中之脂質可為神經醯胺、二肉豆蔻醯基甘油(DMG)、丁二醯基-二醯基甘油(s-DAG)、二硬脂醯基磷脂醯膽鹼(DSPC)、二硬脂醯基磷脂醯乙醇胺(DSPE)或膽固醇,但不限於此。For the lipid in the lipid-PEG conjugate of the LNP disclosed herein, any lipid that can be conjugated to polyethylene glycol can be used (but not limited to), and phospholipids and/or cholesterol as other components of LNP can also be used. In some embodiments, the lipid in the lipid-PEG conjugate can be ceramide, dimyristylglycerol (DMG), succinyl-dioylglycerol (s-DAG), distearylphosphatidylcholine (DSPC), distearylphosphatidylethanolamine (DSPE) or cholesterol, but is not limited thereto.

在本揭示之LNP的脂質-PEG結合物中,PEG可直接結合至脂質或經由連接子部分連接至脂質。可使用適合於使PEG結合至脂質的任何連接子部分,且其例如包括無酯連接子部分及含酯連接子部分。無酯連接子部分包括醯胺基(-C(O)NH-)、胺基(-NR-)、羰基(-C(O)-)、胺基甲酸酯(-NHC(O)O-)、脲(-NHC(O)NH-)、二硫化物(-S-S-)、醚(-O-)、丁二醯基(-(O)CCH2CH2C(O)-)、丁二醯胺基(-NHC(O)CH2CH2C(O)NH-)、醚、二硫化物及其等之組合(例如含有胺基甲酸酯連接子部分及醯胺基連接子部分兩者的連接子),但不限於此。含酯連接子部分包括例如碳酸酯(-OC(O)O-)、丁二醯基、磷酸酯(-O-(O)POH-O-)、磺酸酯及其組合,但不限於此。 類固醇 In the lipid-PEG conjugates of the LNPs disclosed herein, PEG can be directly conjugated to the lipid or conjugated to the lipid via a linker moiety. Any linker moiety suitable for conjugating PEG to the lipid can be used, and includes, for example, non-ester linker moieties and ester-containing linker moieties. Non-ester linker moieties include amide (-C(O)NH-), amine (-NR-), carbonyl (-C(O)-), carbamate (-NHC(O)O-), urea (-NHC(O)NH-), disulfide (-SS-), ether (-O-), succinyl (-(O)CCH2CH2C(O)-), succinyl (-NHC(O)CH2CH2C(O)NH-), ether, disulfide, and combinations thereof (e.g., linkers containing both carbamate linker moieties and amide linker moieties), but are not limited thereto. Ester -containing linker moieties include, for example, but are not limited to, carbonate (—OC(O)O—), succinyl, phosphate (—O—(O)POH—O—), sulfonate, and combinations thereof.

在一些實施例中,本揭示之LNP及LNP組合物包括至少一種類固醇或其衍生物。在一些實施例中,類固醇包含膽固醇。在一些實施例中,LNP及LNP組合物包含選自膽甾烷醇、膽甾烷酮、膽甾烯酮、糞甾醇、膽固醇基-2′-羥基乙基醚、膽固醇基-4′-羥基丁基醚及前述各者之任何組合的膽固醇衍生物。In some embodiments, the LNP and LNP compositions disclosed herein include at least one steroid or its derivative. In some embodiments, the steroid comprises cholesterol. In some embodiments, the LNP and LNP compositions comprise a cholesterol derivative selected from cholestanol, cholestanone, cholestenone, naphthalene sterol, cholesteryl-2′-hydroxyethyl ether, cholesteryl-4′-hydroxybutyl ether, and any combination of the foregoing.

在一些實施例中,本揭示之LNP的類固醇(例如膽固醇)佔LNP及/或LNP組合物中存在之總脂質的約1 mol%至約60 mol%、約2 mol%至約50 mol%、約5 mol%至約40 mol%或約5 mol%至約20 mol%。在其他實施例中,本揭示之LNP之類固醇(例如膽固醇)佔LNP及/或LNP組合物中存在之總脂質的至少約1 mol%、2 mol%、5 mol%、10 mol%、15 mol%、20 mol%、25 mol%、30 mol%、35 mol%、40 mol%、45 mol%、50 mol%、55 mol%或60 mol%,或前述任一者之中間範圍。 額外脂質 In some embodiments, the steroid (e.g., cholesterol) of the LNPs of the present disclosure comprises about 1 mol% to about 60 mol%, about 2 mol% to about 50 mol%, about 5 mol% to about 40 mol%, or about 5 mol% to about 20 mol% of the total lipid present in the LNP and/or LNP composition. In other embodiments, the steroid (e.g., cholesterol) of the LNPs of the present disclosure comprises at least about 1 mol%, 2 mol%, 5 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol%, 30 mol%, 35 mol%, 40 mol%, 45 mol%, 50 mol%, 55 mol%, or 60 mol%, or an intermediate range of any of the foregoing, of the total lipid present in the LNP and/or LNP composition. Additional lipids

在一些態樣中,本揭示之LNP及LNP組合物包括至少一種額外脂質。在一些實施例中,額外脂質為選自陰離子型脂質、中性脂質或兩者之非陽離子型脂質。在一些實施例中,額外脂質包含至少一種磷脂。在一些實施例中,磷脂係選自陰離子型磷脂、中性磷脂或兩者。LNP及LNP組合物之要素的磷脂可起到覆蓋及保護由LNP中之陽離子型脂質與核酸之相互作用形成之LNP核心的作用,且可藉由結合於目標細胞之磷脂雙層而有助於在細胞內遞送核酸期間的細胞膜滲透及胞內體逃逸。可促進LNP與細胞之融合的磷脂可包括但不限於選自以下所描述之群的磷脂中之任一者。In some aspects, the LNP and LNP compositions disclosed herein include at least one additional lipid. In some embodiments, the additional lipid is a non-cationic lipid selected from anionic lipids, neutral lipids, or both. In some embodiments, the additional lipid comprises at least one phospholipid. In some embodiments, the phospholipid is selected from anionic phospholipids, neutral phospholipids, or both. The phospholipids of the elements of LNP and LNP compositions can play a role in covering and protecting the LNP core formed by the interaction of the cationic lipids and nucleic acids in the LNP, and can contribute to cell membrane permeation and endosome escape during intracellular delivery of nucleic acids by binding to the phospholipid bilayer of the target cell. The phospholipids that can promote the fusion of LNPs with cells may include, but are not limited to, any one of the phospholipids selected from the group described below.

在一些實施例中,LNP及LNP組合物包含選自(但不限於)以下之至少一種磷脂:二軟脂醯基-磷脂醯膽鹼(DPPC)、二硬脂醯基-磷脂醯膽鹼(DSPC)、二油醯基-磷脂醯乙醇胺(DOPE)、二油醯基-磷脂醯膽鹼(DOPC)、二油醯基-磷脂醯甘油(DOPG)、軟脂醯油醯基-磷脂醯膽鹼(POPC)、軟脂醯油醯基-磷脂醯乙醇胺(POPE)、軟脂醯油醯基-磷脂醯甘油(POPG)、二軟脂醯基-磷脂醯乙醇胺(DPPE)、二軟脂醯基-磷脂醯甘油(DPPG)、二肉豆蔻醯基-磷脂醯乙醇胺(DMPE)、二硬脂醯基-磷脂醯乙醇胺(DSPE)、單甲基-磷脂醯乙醇胺、二甲基-磷脂醯乙醇胺、二反油醯基-磷脂醯乙醇胺(DEPE)、硬脂醯油醯基-磷脂醯乙醇胺(SOPE)、蛋磷脂醯膽鹼(EPC)、磷脂醯乙醇胺(PE)、1,2-二油醯基-sn-甘油-3-磷酸乙醇胺、1-軟脂醯基-2-油醯基-sn-甘油-3-磷酸膽鹼(POPC)、1,2-二油醯基-sn-甘油-3-[磷酸基-L-絲胺酸] (DOPS)、1,2-二油醯基-sn-甘油-3-[磷酸基-L-絲胺酸],以及前述各者之任何組合。在一個實例中,包含DOPE之LNP可有效進行mRNA遞送(藥物遞送功效極佳)。In some embodiments, LNPs and LNP compositions comprise at least one phospholipid selected from, but not limited to, dioleyl-phosphatidylcholine (DPPC), distearyl-phosphatidylcholine (DSPC), dioleyl-phosphatidylethanolamine (DOPE), dioleyl-phosphatidylcholine (DOP C), dioleyl-phosphatidylglycerol (DOPG), phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), phosphatidylglycerol (POPG), dimalloy-phosphatidylethanolamine (DPPE), dimalloy-phosphatidylglycerol Oil (DPPG), dimyristoyl-phosphatidylethanolamine (DMPE), distearyl-phosphatidylethanolamine (DSPE), monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine, dioleyl-phosphatidylethanolamine (DEPE), stearyloleyl-phosphatidylethanolamine (SOPE), egg phosphatidylcholine (EPC), phosphatidylethanolamine (PE), 1,2-dioleyl-sn-glycero-3-phosphoethanolamine, 1-oleoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleyl-sn-glycero-3-[phospho-L-serine] (DOPS), 1,2-dioleyl-sn-glycero-3-[phospho-L-serine], and any combination thereof. In one embodiment, LNPs containing DOPE can effectively deliver mRNA (with excellent drug delivery efficacy).

在一些實施例中,本揭示之LNP的額外脂質(例如磷脂)佔LNP及/或LNP組合物中存在之總脂質的約1 mol%至約60 mol%、約2 mol%至約50 mol%、約5 mol%至約40 mol%或約5 mol%至約20 mol%。在其他實施例中,本揭示之LNP的額外脂質(例如磷脂)佔LNP及/或LNP組合物中存在之總脂質的至少約1、2、5、10、15、20、25、30、35、40、45、50、55或60 mol%,或前述任一者之中間範圍。In some embodiments, the additional lipids (e.g., phospholipids) of the LNPs of the present disclosure account for about 1 mol% to about 60 mol%, about 2 mol% to about 50 mol%, about 5 mol% to about 40 mol%, or about 5 mol% to about 20 mol% of the total lipids present in the LNP and/or LNP composition. In other embodiments, the additional lipids (e.g., phospholipids) of the LNPs of the present disclosure account for at least about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 mol% of the total lipids present in the LNP and/or LNP composition, or an intermediate range of any of the foregoing.

應瞭解,LNP及/或LNP組合物中所存在之總脂質包含陽離子型脂質或可離子化離子脂質、結合脂質(例如聚乙二醇化脂質)、類固醇(例如膽固醇)及額外脂質(例如磷脂)之組合。It is understood that the total lipids present in LNPs and/or LNP compositions include a combination of cationic lipids or ionizable lipids, binding lipids (e.g., PEGylated lipids), steroids (e.g., cholesterol), and additional lipids (e.g., phospholipids).

LNP及/或LNP組合物可藉由以下方式製備:將總脂質(或其一部分)溶解於有機溶劑(例如乙醇)中,隨後經由微混合器與溶解於酸性緩衝液(例如pH 4)中之有效負載(例如系統之核酸)混合。在此pH下,陽離子型脂質帶正電且與帶負電核酸聚合物相互作用。接著,當對中性緩衝液透析時,將含有核酸之所得奈米結構轉化為中性LNP,接著可移除有機溶劑(例如乙醇)且將LNP更換至生理學相關緩衝液中。因此形成之LNP及/或LNP組合物具有不同電子密集奈米結構化核心,其中陽離子型脂質在囊封的有效載荷周圍組織成反向微胞,與傳統雙層脂質體結構相反。在另一實施例中,LNP可與核酸形成泡樣結構,該等核酸沿非電子緻密脂質核心位於水袋中。 b.脂質奈米粒子特性 LNPs and/or LNP compositions can be prepared by dissolving the total lipids (or a portion thereof) in an organic solvent (e.g., ethanol), followed by mixing with a payload (e.g., nucleic acid of the system) dissolved in an acidic buffer (e.g., pH 4) via a micromixer. At this pH, cationic lipids are positively charged and interact with negatively charged nucleic acid polymers. The resulting nanostructures containing nucleic acids are then converted to neutral LNPs when dialyzed against a neutral buffer, after which the organic solvent (e.g., ethanol) can be removed and the LNPs replaced in a physiologically relevant buffer. The LNPs and/or LNP compositions thus formed have different electron-dense nanostructured cores, in which cationic lipids are organized into reverse micelles around the encapsulated payload, which is opposite to the traditional double-layer liposome structure. In another embodiment, LNPs can form bubble-like structures with nucleic acids, which are located in water pockets along the non-electron dense lipid core. b. Lipid Nanoparticle Characteristics

在一些實施例中,LNP及/或LNP組合物包含約50 mol%至約85 mol%陽離子型脂質或可離子化陽離子型脂質、約0.5 mol%至約10 mol%結合脂質(例如聚乙二醇化脂質)、約0.5 mol%至約10 mol%類固醇(例如膽固醇)及約5 mol%至約50 mol%額外脂質(例如磷脂)。在一些實施例中,LNP及/或LNP組合物包含約50 mol%至約85 mol%陽離子型脂質或可離子化陽離子型脂質、約0.5 mol%至約5 mol%結合脂質(例如聚乙二醇化脂質)、約0.5 mol%至約5 mol%類固醇(例如膽固醇)及約5 mol%至約20 mol%額外脂質(例如磷脂)。In some embodiments, LNPs and/or LNP compositions comprise about 50 mol% to about 85 mol% cationic lipids or ionizable cationic lipids, about 0.5 mol% to about 10 mol% binding lipids (e.g., PEGylated lipids), about 0.5 mol% to about 10 mol% steroids (e.g., cholesterol), and about 5 mol% to about 50 mol% additional lipids (e.g., phospholipids). In some embodiments, LNPs and/or LNP compositions comprise about 50 mol% to about 85 mol% cationic lipids or ionizable cationic lipids, about 0.5 mol% to about 5 mol% binding lipids (e.g., PEGylated lipids), about 0.5 mol% to about 5 mol% steroids (e.g., cholesterol), and about 5 mol% to about 20 mol% additional lipids (e.g., phospholipids).

在一些實施例中,本揭示之LNP及/或LNP組合物以20至50:10至30:30至60:0.5至5之莫耳比,以25至45:10至25:40至50:0.5至3之莫耳比,以25至45:10至20:40至55:0.5至3之莫耳比,或以25至45:10至20:40至55:1.0至1.5之莫耳比包含陽離子型脂質:額外脂質(例如磷脂):類固醇(例如膽固醇):結合脂質(例如聚乙二醇化脂質)。In some embodiments, the LNPs and/or LNP compositions disclosed herein comprise cationic lipid: additional lipid (e.g., phospholipid): steroid (e.g., cholesterol): conjugated lipid (e.g., PEGylated lipid) in a molar ratio of 20-50:10-30:30-60:0.5-5, in a molar ratio of 25-45:10-25:40-50:0.5-3, in a molar ratio of 25-45:10-20:40-55:0.5-3, or in a molar ratio of 25-45:10-20:40-55:1.0-1.5.

在一些實施例中,本揭示之LNP及/或LNP組合物之總脂質:有效負載比(質量/質量)為約1至約100。在一些實施例中,總脂質:有效負載比為約1至約50、約2至約25、約3至約20、約4至約15或約5至約10。在一些實施例中,總脂質:有效負載比為約5至約15,例如約5、6、7、8、9、10、11、12、13、14、15或前述任一者之中間範圍。In some embodiments, the total lipid:payload ratio (mass/mass) of the LNPs and/or LNP compositions of the present disclosure is about 1 to about 100. In some embodiments, the total lipid:payload ratio is about 1 to about 50, about 2 to about 25, about 3 to about 20, about 4 to about 15, or about 5 to about 10. In some embodiments, the total lipid:payload ratio is about 5 to about 15, such as about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or a range intermediate to any of the foregoing.

在某些實施例中,本揭示之LNP包含約5:1至約15:1之總脂質:核酸質量比。在一些實施例中,LNP中包含的陽離子型脂質與核酸之重量比可為1至20:1、1至15:1、1至10:1、5至20:1、5至15:1、5至10:1、7.5至20:1、7.5至15:1或7.5至10:1。In certain embodiments, the LNPs of the present disclosure comprise a total lipid:nucleic acid mass ratio of about 5: 1 to about 15: 1. In some embodiments, the weight ratio of cationic lipid to nucleic acid contained in the LNP may be 1 to 20: 1, 1 to 15: 1, 1 to 10: 1, 5 to 20: 1, 5 to 15: 1, 5 to 10: 1, 7.5 to 20: 1, 7.5 to 15: 1, or 7.5 to 10: 1.

在一些實施例中,本揭示之LNP可包含20至50重量份之陽離子型脂質、10至30重量份之磷脂、20至60重量份(或20至60重量份)之膽固醇及0.1至10重量份(或0.25至10重量份、0.5至5重量份)之脂質-PEG結合物。或者,LNP可包含以總奈米粒子重量計20至50重量%之陽離子型脂質、10至30重量%之磷脂、20至60重量% (或30至60重量%)之膽固醇及0.1至10重量% (或0.25至10重量%、0.5至5重量%)之脂質-PEG結合物。作為另一替代方案,LNP可包含以總奈米粒子重量計25至50重量%之陽離子型脂質、10至20重量%之磷脂、35至55重量%之膽固醇及0.1至10重量% (或0.25至10重量%、0.5至5重量%)之脂質-PEG結合物。In some embodiments, the LNP of the present disclosure may comprise 20 to 50 parts by weight of cationic lipids, 10 to 30 parts by weight of phospholipids, 20 to 60 parts by weight (or 20 to 60 parts by weight) of cholesterol, and 0.1 to 10 parts by weight (or 0.25 to 10 parts by weight, 0.5 to 5 parts by weight) of lipid-PEG conjugates. Alternatively, the LNP may comprise 20 to 50% by weight of cationic lipids, 10 to 30% by weight of phospholipids, 20 to 60% by weight (or 30 to 60% by weight) of cholesterol, and 0.1 to 10% by weight (or 0.25 to 10% by weight, 0.5 to 5% by weight) of lipid-PEG conjugates based on the total nanoparticle weight. As another alternative, the LNP may comprise 25-50 wt% cationic lipid, 10-20 wt% phospholipid, 35-55 wt% cholesterol, and 0.1-10 wt% (or 0.25-10 wt%, 0.5-5 wt%) lipid-PEG conjugate based on the total nanoparticle weight.

在一些實施例中,本揭示之LNP的平均直徑為約20至200 nm、20至180 nm、20至170 nm、20至150 nm、20至120 nm、20至100 nm、20至90 nm、30至200 nm、30至180 nm、30至170 nm、30至150 nm、30至120 nm、30至100 nm、30至90 nm、40至200 nm、40至180 nm、40至170 nm、40至150 nm、40至120 nm、40至100 nm、40至90 nm、40至80 nm、40至70 nm、50至200 nm、50至180 nm、50至170 nm、50至150 nm、50至120 nm、50至100 nm、50至90 nm、60至200 nm、60至180 nm、60至170 nm、60至150 nm、60至120 nm、60至100 nm、60至90 nm、70至200 nm、70至180 nm、70至170 nm、70至150 nm、70至120 nm、70至100 nm、70至90 nm、80至200 nm、80至180 nm、80至170 nm、80至150 nm、80至120 nm、80至100 nm、80至90 nm、90至200 nm、90至180 nm、90至170 nm、90至150 nm、90至120 nm或90至100 nm,或前述任一者之中間範圍。In some embodiments, the average diameter of the LNPs of the present disclosure is about 20-200 nm, 20-180 nm, 20-170 nm, 20-150 nm, 20-120 nm, 20-100 nm, 20-90 nm, 30-200 nm, 30-180 nm, 30-170 nm, 30-150 nm, 30-120 nm, 30-100 nm, 30-90 nm, 40-200 nm, 40-180 nm, 40-170 nm, 40-150 nm, 40-120 nm, 40-100 nm, 40-90 nm, 40-80 nm, 40-70 nm, 50-200 nm, 50-180 nm, 50-170 nm, 50-150 nm, 50-120 nm, 50-100 nm, 170 nm, 80 to 150 nm, 80 to 120 nm, 80 to 100 nm, 80 to 90 nm, 90 to 200 nm, 90 to 180 nm, 90 to 170 nm, 90 to 150 nm, 90 to 120 nm, 90 to 100 nm, 60 to 90 nm, 70 to 200 nm, 70 to 180 nm, 70 to 170 nm, 70 to 150 nm, 70 to 120 nm, 70 to 100 nm, 70 to 90 nm, 80 to 200 nm, 80 to 180 nm, 80 to 170 nm, 80 to 150 nm, 80 to 120 nm, 80 to 100 nm, 80 to 90 nm, 90 to 200 nm, 90 to 180 nm, 90 to 170 nm, 90 to 150 nm, 90 to 120 nm or 90 to 100 nm, or ranges intermediate to any of the foregoing.

在一些實施例中,本揭示之LNP及/或LNP組合物在酸性pH下具有正電荷且可透過由有效負載(例如治療劑)之負電荷產生之靜電電荷囊封有效負載(例如治療劑,諸如LTRP:gRNA系統,或編碼其之聚核苷酸)。術語「囊封」係指環繞有效負載(例如治療劑)且在生理條件下包埋有效負載(例如治療劑)以形成LNP的脂質之混合物。如本文所用之術語「囊封效率」係經LNP囊封之有效負載(例如治療劑)的量除以用於將有效負載(例如治療劑)裝載至LNP中之有效負載(例如治療劑)的總量。LNP及/或LNP組合物之囊封效率可為70%或更大、75%或更大、80%或更大、85%或更大、90%或更大、91%或更大、92%或更大、94%或更大,或95%或更大。在其他實施例中,LNP及/或LNP組合物之囊封效率為約80%至99%、約85%至98%、約88%至95%、約90%至95%,或有效負載(例如,系統之核酸)可完全囊封在LNP組合物之脂質部分內,由此保護其免被酶降解。在一些實施例中,在37℃下將LNP及/或LNP組合物暴露於核酸酶至少約20、30、45或60分鐘或至少約2、3、4、5、6、7、8、9、10、12、14、16、18、20、22、24、26、28、30、32、34或36小時之後,有效負載(例如治療劑)實質上不降解。在一些實施例中,有效負載(例如系統之核酸)與LNP及/或LNP組合物之脂質部分複合。本揭示之LNP及/或LNP組合物對哺乳動物(諸如人類)無毒。In some embodiments, the LNPs and/or LNP compositions disclosed herein have a positive charge at acidic pH and can encapsulate a payload (e.g., a therapeutic agent, such as a LTRP:gRNA system, or a polynucleotide encoding the same) through electrostatic charge generated by the negative charge of the payload (e.g., therapeutic agent). The term "encapsulation" refers to a mixture of lipids that surround a payload (e.g., a therapeutic agent) and entrap the payload (e.g., a therapeutic agent) under physiological conditions to form an LNP. As used herein, the term "encapsulation efficiency" is the amount of payload (e.g., a therapeutic agent) encapsulated by the LNP divided by the total amount of payload (e.g., a therapeutic agent) used to load the payload (e.g., a therapeutic agent) into the LNP. The encapsulation efficiency of the LNP and/or LNP composition can be 70% or greater, 75% or greater, 80% or greater, 85% or greater, 90% or greater, 91% or greater, 92% or greater, 94% or greater, or 95% or greater. In other embodiments, the encapsulation efficiency of the LNP and/or LNP composition is about 80% to 99%, about 85% to 98%, about 88% to 95%, about 90% to 95%, or the effective load (e.g., the nucleic acid of the system) can be completely encapsulated in the lipid portion of the LNP composition, thereby protecting it from enzymatic degradation. In some embodiments, the effective load (e.g., therapeutic agent) is not substantially degraded after the LNP and/or LNP composition is exposed to a nuclease for at least about 20, 30, 45, or 60 minutes, or at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, or 36 hours at 37°C. In some embodiments, the effective load (e.g., nucleic acid of the system) is complexed with the lipid portion of the LNP and/or LNP composition. The LNP and/or LNP composition disclosed herein is non-toxic to mammals, such as humans.

術語「經完全囊封」指示LNP及/或LNP組合物中之有效負載(例如系統之核酸)在暴露於使游離DNA、RNA或蛋白質顯著降解的條件後不會顯著降解。在完全囊封之系統中,LNP及/或LNP組合物中小於約25%、更佳小於約10%且最佳小於約5%的有效負載(例如系統之核酸)係在將降解100%未囊封有效負載之條件下降解。「經完全囊封」亦指示LNP及/或LNP組合物係血清穩定的,且在活體內投與後不分解成其組分部分。The term "fully encapsulated" indicates that the payload (e.g., nucleic acid of the system) in the LNP and/or LNP composition is not significantly degraded after exposure to conditions that significantly degrade free DNA, RNA, or protein. In a fully encapsulated system, less than about 25%, more preferably less than about 10%, and most preferably less than about 5% of the payload (e.g., nucleic acid of the system) in the LNP and/or LNP composition is degraded under conditions that would degrade 100% of the non-encapsulated payload. "Fully encapsulated" also indicates that the LNP and/or LNP composition is serum stable and does not break down into its component parts after in vivo administration.

在一些實施例中,囊封有有效負載(例如治療劑)之LNP及/或LNP組合物之量為約30%至約100%、約40%至約100%、約50%至約100%、約60%至約100%、約70%至約100%、約80%至約100%、約90%至約100%、約30%至約95%、約40%至約95%、約50%至約95%、約60%至約95%、約70%至約95%、約80%至約95%、約85%至約95%、約90%至約95%、約30%至約90%、約40%至約90%、約50%至約90%、約60%至約90%、約70%至約90%、約80%至約90%,或至少約30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或前述任一者之中間範圍。In some embodiments, the amount of LNP and/or LNP composition encapsulated with a payload (e.g., a therapeutic agent) is about 30% to about 100%, about 40% to about 100%, about 50% to about 100%, about 60% to about 100%, about 70% to about 100%, about 80% to about 100%, about 90% to about 100%, about 30% to about 95%, about 40% to about 95%, about 50% to about 95%, about 60% to about 95%, about 70% to about 95%, about 80% to about 95%, about 85% to about 100%. To about 95%, about 90% to about 95%, about 30% to about 90%, about 40% to about 90%, about 50% to about 90%, about 60% to about 90%, about 70% to about 90%, about 80% to about 90%, or at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or ranges intermediate to any of the foregoing.

在一些實施例中,囊封於LNP及/或LNP組合物內之有效負載(例如核酸)的量為約30%至約100%、約40%至約100%、約50%至約100%、約60%至約100%、約70%至約100%、約80%至約100%、約90%至約100%、約30%至約95%、約40%至約95%、約50%至約95%、約60%至約95%%、約70%至約95%、約80%至約95%、約85%至約95%、約90%至約95%、約30%至約90%、約40%至約90%、約50%至約90%、約60%至約90%、約70%至約90%、約80%至約90%、或至少約30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或前述任一者之中間範圍。In some embodiments, the amount of effective load (e.g., nucleic acid) encapsulated within the LNP and/or LNP composition is about 30% to about 100%, about 40% to about 100%, about 50% to about 100%, about 60% to about 100%, about 70% to about 100%, about 80% to about 100%, about 90% to about 100%, about 30% to about 95%, about 40% to about 95%, about 50% to about 95%, about 60% to about 95%, about 70% to about 95%, about 80% to about 95%, about 85% to about 100%. To about 95%, about 90% to about 95%, about 30% to about 90%, about 40% to about 90%, about 50% to about 90%, about 60% to about 90%, about 70% to about 90%, about 80% to about 90%, or at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or ranges intermediate to any of the foregoing.

在一些實施例中,本揭示之核酸,諸如編碼長期抑制子融合蛋白之mRNA及/或gRNA,可提供於溶液中以與脂質溶液混合,使得該等核酸可囊封於脂質奈米粒子中。適合核酸溶液可為含有以各種濃度囊封之核酸的任何水溶液。舉例而言,適合的核酸溶液可含有濃度為或大於約0.01 mg/ml、0.05 mg/ml、0.06 mg/ml、0.07 mg/ml、0.08 mg/ml、0.09 mg/ml、0.1 mg/ml、0.15 mg/ml、0.2 mg/ml、0.3 mg/ml、0.4 mg/ml、0.5 mg/ml、0.6 mg/ml、0.7 mg/ml、0.8 mg/ml、0.9 mg/ml、1.0 mg/ml、1.25 mg/ml、1.5 mg/ml、1.75 mg/ml或2.0 mg/ml之一或多種核酸。在一些實施例中,核酸包含編碼長期抑制子融合蛋白之mRNA,且適合之mRNA溶液可含有濃度在約0.01至2.0 mg/ml、0.01至1.5 mg/ml、0.01至1.25 mg/ml、0.01至1.0 mg/ml、0.01至0.9 mg/ml、0.01至0.8 mg/ml、0.01至0.7 mg/ml、0.01至0.6 mg/ml、0.01至0.5 mg/ml、0.01至0.4 mg/ml、0.01至0.3 mg/ml、0.01至0.2 mg/ml、0.01至0.1 mg/ml、0.05至1.0 mg/ml、0.05至0.9 mg/ml、0.05至0.8 mg/ml、0.05至0.7 mg/ml、0.05至0.6 mg/ml、0.05至0.5 mg/ml、0.05至0.4 mg/ml、0.05至0.3 mg/ml、0.05至0.2 mg/ml、0.05至0.1 mg/ml、0.1至1.0 mg/ml、0.2至0.9 mg/ml、0.3至0.8 mg/ml、0.4至0.7 mg/ml或0.5至0.6 mg/ml範圍內之mRNA。在一些實施例中,適合的mRNA溶液可含有以下濃度之mRNA:至多約5.0 mg/ml、4.0 mg/ml、3.0 mg/ml、2.0 mg/ml、1.0 mg/ml、0.9 mg/ml、0.8 mg/ml、0.7 mg/ml、0.6 mg/ml、0.5 mg/ml、0.4 mg/ml、0.3 mg/ml、0.2 mg/ml、0.1 mg/ml、0.05 mg/ml、0.04 mg/ml、0.03 mg/ml、0.02 mg/ml、0.01 mg/ml或0.05 mg/ml。在一些實施例中,適合之gRNA溶液可含有以下濃度之gRNA:至多約5.0 mg/ml、4.0 mg/ml、3.0 mg/ml、2.0 mg/ml、1.0 mg/ml、0.9 mg/ml、0.8 mg/ml、0.7 mg/ml、0.6 mg/ml、0.5 mg/ml、0.4 mg/ml、0.3 mg/ml、0.2 mg/ml、0.1 mg/ml、0.05 mg/ml、0.04 mg/ml、0.03 mg/ml、0.02 mg/ml、0.01 mg/ml或0.05 mg/ml。In some embodiments, nucleic acids of the present disclosure, such as mRNA and/or gRNA encoding long-term suppressor fusion proteins, can be provided in a solution to be mixed with a lipid solution so that the nucleic acids can be encapsulated in lipid nanoparticles. Suitable nucleic acid solutions can be any aqueous solution containing encapsulated nucleic acids at various concentrations. For example, a suitable nucleic acid solution can contain one or more nucleic acids at a concentration of or greater than about 0.01 mg/ml, 0.05 mg/ml, 0.06 mg/ml, 0.07 mg/ml, 0.08 mg/ml, 0.09 mg/ml, 0.1 mg/ml, 0.15 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 mg/ml, 0.5 mg/ml, 0.6 mg/ml, 0.7 mg/ml, 0.8 mg/ml, 0.9 mg/ml, 1.0 mg/ml, 1.25 mg/ml, 1.5 mg/ml, 1.75 mg/ml, or 2.0 mg/ml. In some embodiments, the nucleic acid comprises an mRNA encoding a long-term suppressor fusion protein, and a suitable mRNA solution may contain a concentration of about 0.01 to 2.0 mg/ml, 0.01 to 1.5 mg/ml, 0.01 to 1.25 mg/ml, 0.01 to 1.0 mg/ml, 0.01 to 0.9 mg/ml, 0.01 to 0.8 mg/ml, 0.01 to 0.7 mg/ml, 0.01 to 0.6 mg/ml, 0.01 to 0.5 mg/ml, 0.01 to 0.4 mg/ml, 0.01 to 0.3 mg/ml, 0.01 to 0.2 mg/ml, 0.01 to 0.1 mg/ml, 0.05 to 1.0 mg/ml, 0.05 to 0.9 mg/ml, 0.05 to 0.8 mg/ml, 0.05 to 0.7 In some embodiments, the present invention relates to mRNA in the range of 0.1 to 0.6 mg/ml, 0.05 to 0.5 mg/ml, 0.05 to 0.4 mg/ml, 0.05 to 0.3 mg/ml, 0.05 to 0.2 mg/ml, 0.05 to 0.1 mg/ml, 0.1 to 1.0 mg/ml, 0.2 to 0.9 mg/ml, 0.3 to 0.8 mg/ml, 0.4 to 0.7 mg/ml or 0.5 to 0.6 mg/ml. In some embodiments, a suitable mRNA solution may contain mRNA at a concentration of up to about 5.0 mg/ml, 4.0 mg/ml, 3.0 mg/ml, 2.0 mg/ml, 1.0 mg/ml, 0.9 mg/ml, 0.8 mg/ml, 0.7 mg/ml, 0.6 mg/ml, 0.5 mg/ml, 0.4 mg/ml, 0.3 mg/ml, 0.2 mg/ml, 0.1 mg/ml, 0.05 mg/ml, 0.04 mg/ml, 0.03 mg/ml, 0.02 mg/ml, 0.01 mg/ml or 0.05 mg/ml. In some embodiments, a suitable gRNA solution may contain gRNA at a concentration of up to about 5.0 mg/ml, 4.0 mg/ml, 3.0 mg/ml, 2.0 mg/ml, 1.0 mg/ml, 0.9 mg/ml, 0.8 mg/ml, 0.7 mg/ml, 0.6 mg/ml, 0.5 mg/ml, 0.4 mg/ml, 0.3 mg/ml, 0.2 mg/ml, 0.1 mg/ml, 0.05 mg/ml, 0.04 mg/ml, 0.03 mg/ml, 0.02 mg/ml, 0.01 mg/ml, or 0.05 mg/ml.

在一些實施例中,LNP之平均直徑可為20nm至200nm、20至180nm、20nm至170nm、20nm至150nm、20nm至120nm、20nm至100nm、20nm至90nm、30nm至200nm、30至180nm、30nm至170nm、30nm至150nm、30nm至120nm、30nm至100nm、30nm至90nm、40nm至200nm、40至180nm、40nm至170nm、40nm至150nm、40nm至120nm、40nm至100nm、40nm至90nm、40nm至80nm、40nm至70nm、50nm至200nm、50至180nm、50nm至170nm、50nm至150nm、50nm至120nm、50nm至100nm、50nm至90nm、60nm至200nm、60至180nm、60nm至170nm、60nm至150nm、60nm至120nm、60nm至100nm、60nm至90nm、70nm至200nm、70至180nm、70nm至170nm、70nm至150nm、70nm至120nm、70nm至100nm、70nm至90nm、80nm至200nm、80至180nm、80nm至170nm、80nm至150nm、80nm至120nm、80nm至100nm、80nm至90nm、90nm至200nm、90至180nm、90nm至170nm、90nm至150nm、90nm至120nm或90nm至100nm,以便容易引入肝組織、肝細胞及/或LSEC (肝竇內皮細胞)中。可設定LNP之尺寸以容易引入至器官或組織中,包括但不限於肝、肺、心臟、脾,以及引入至腫瘤。當LNP之尺寸小於以上範圍時,可能難以維持穩定性,因為LNP之表面積過度增加,且因此遞送至目標組織及/或藥物作用可能減少。LNP可特異性地靶向肝臟組織。不希望受理論所束縛,認為LNP可用於遞送治療劑之一種機制係透過模擬天然脂蛋白之代謝行為,且因此LNP可透過肝臟進行之脂質代謝過程有效地遞送至個體。在治療劑遞送至肝細胞及/或LSEC (肝竇內皮細胞)期間,自肝竇內腔通向肝細胞及LSEC之孔壁的直徑在哺乳動物中為約140 nm且在人類中為約100 nm,因此當相比於直徑在上述範圍外之LNP時,用於遞送具有直徑在上述範圍內之LNP的治療劑組合物對肝細胞及LSEC可具有極佳遞送效率。In some embodiments, the average diameter of the LNPs may be 20 nm to 200 nm, 20 to 180 nm, 20 nm to 170 nm, 20 nm to 150 nm, 20 nm to 120 nm, 20 nm to 100 nm, 20 nm to 90 nm, 30 nm to 200 nm, 30 to 180 nm, 30 nm to 170 nm, 30 nm to 150 nm, 30 nm to 120 nm, 30 nm to 100 nm, 30 nm to 300 nm, to 90nm, 40nm to 200nm, 40 to 180nm, 40nm to 170nm, 40nm to 150nm, 40nm to 120nm, 40nm to 100nm, 40nm to 90nm, 40nm to 80nm, 40nm to 70nm, 50nm to 200nm, 50 to 180nm, 50nm to 170nm, 50nm to 150nm, 50nm to 120nm, 50nm to 10 0nm, 50nm to 90nm, 60nm to 200nm, 60 to 180nm, 60nm to 170nm, 60nm to 150nm, 60nm to 120nm, 60nm to 100nm, 60nm to 90nm, 70nm to 200nm, 70 to 180nm, 70nm to 170nm, 70nm to 150nm, 70nm to 120nm, 70nm to 100nm, 70nm to 90nm In some embodiments, the LNPs are sized to be easily introduced into liver tissue, hepatocytes and/or LSECs (hepatic sinus endothelial cells). The size of the LNPs can be set to be easily introduced into organs or tissues, including but not limited to the liver, lungs, heart, spleen, and into tumors. When the size of LNP is smaller than the above range, it may be difficult to maintain stability because the surface area of LNP is excessively increased, and thus delivery to the target tissue and/or drug effect may be reduced. LNP can specifically target liver tissue. Without wishing to be bound by theory, it is believed that one mechanism by which LNP can be used to deliver therapeutic agents is by mimicking the metabolic behavior of natural lipoproteins, and thus LNP can be effectively delivered to an individual through the lipid metabolism process carried out by the liver. During delivery of therapeutic agents to hepatocytes and/or LSECs (hepatic sinus endothelial cells), the diameter of the pore wall leading from the hepatic sinus lumen to the hepatocytes and LSECs is about 140 nm in mammals and about 100 nm in humans, and thus a therapeutic agent composition for delivering LNPs having a diameter within the above range may have excellent delivery efficiency to hepatocytes and LSECs when compared to LNPs having a diameter outside the above range.

根據一個實例,LNP組合物之LNP可包含在上述範圍內或莫耳比為20至50:10至30:30至60:0.5至5,莫耳比為25至45:10至25:40至50:0.5至3,莫耳比為25至45:10至20:40至55:0.5至3,或莫耳比為25至45:10至20:40至55:1.0至1.5的陽離子型脂質:磷脂:膽固醇:脂質-PEG結合物。包含以上範圍內之莫耳比之組分的LNP可具有對目標器官之細胞具有特異性的治療劑之極佳遞送效率。According to one example, the LNP of the LNP composition may include cationic lipid: phospholipid: cholesterol: lipid-PEG conjugate in the above range or in a molar ratio of 20 to 50: 10 to 30: 30 to 60: 0.5 to 5, a molar ratio of 25 to 45: 10 to 25: 40 to 50: 0.5 to 3, a molar ratio of 25 to 45: 10 to 20: 40 to 55: 0.5 to 3, or a molar ratio of 25 to 45: 10 to 20: 40 to 55: 1.0 to 1.5. LNPs containing components in a molar ratio within the above range may have excellent delivery efficiency of therapeutic agents specific to cells of target organs.

在某些態樣中,藉由顯示5至8、5.5至7.5、6至7或6.5至7之pKa,LNP在酸性pH條件下展現正電荷,且可藉由易於經由與治療劑(諸如顯示負電荷之核酸)之靜電相互作用而與核酸形成複合物,高效地囊封核酸。在此類情況下,LNP可有效地用作用於細胞內或活體內遞送治療劑(例如核酸)之組合物。In certain aspects, LNPs exhibit a positive charge under acidic pH conditions by showing a pKa of 5 to 8, 5.5 to 7.5, 6 to 7, or 6.5 to 7, and can efficiently encapsulate nucleic acids by easily forming complexes with nucleic acids through electrostatic interactions with therapeutic agents (such as nucleic acids that exhibit a negative charge). In such cases, LNPs can be effectively used as compositions for delivering therapeutic agents (such as nucleic acids) into cells or in vivo.

在本文中,「囊封(encapsulate)」或「囊封(encapsulation)」係指併入治療劑有效遞送,亦即藉由粒子表面環繞治療劑及/或將治療劑嵌入於粒子內部。囊封效率意謂囊封於LNP中之治療劑的含量相對於用於製備LNP之總治療劑含量。As used herein, "encapsulate" or "encapsulation" refers to the incorporation of a therapeutic agent for efficient delivery, i.e., by surrounding the therapeutic agent on the particle surface and/or embedding the therapeutic agent inside the particle. Encapsulation efficiency refers to the amount of therapeutic agent encapsulated in the LNP relative to the total amount of therapeutic agent used to prepare the LNP.

組合物之核酸囊封於LNP中可為組合物中70%或更多、75%或更多、80%或更多、85%或更多、90%或更多、91%或更多、92%或更多、94%或更多、或95%或更多之LNP囊封核酸。在一些實施例中,組合物之核酸囊封於LNP中使得組合物中80%至99%之間、80%至97%之間、80%至95%之間、85%至95%之間、87%至95%之間、90%至95%之間、91%或更高至95%或更低、91%或更高至94%或更低、超過91%至95%或更低、92%至99%、92%至97%之間或92%至95%之間的LNP囊封核酸。在一些實施例中,本揭示之任一實施例之編碼長期抑制子融合蛋白之mRNA及gRNA完全囊封於LNP中。The nucleic acid of the composition is encapsulated in LNP, and can be 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 94% or more, or 95% or more of the LNP encapsulated nucleic acid in the composition. In some embodiments, the nucleic acid of the composition is encapsulated in LNP so that between 80% and 99%, between 80% and 97%, between 80% and 95%, between 85% and 95%, between 87% and 95%, between 90% and 95%, between 91% or more and 95% or less, between 91% or more and 94% or less, more than 91% and 95% or less, between 92% and 99%, between 92% and 97%, or between 92% and 95% of the LNP encapsulated nucleic acid in the composition. In some embodiments, the mRNA and gRNA encoding the long-term suppressor fusion protein of any embodiment of the present disclosure are completely encapsulated in LNPs.

藉由LNP遞送核酸的目標器官包括但不限於肝臟、肺、心臟、脾臟以及腫瘤。根據一個實例之LNP為肝臟組織特異性的且具有極佳生物相容性,且可高效地遞送組合物之核酸,因此其可有效地用於相關技術領域,諸如脂質奈米粒子介導之基因療法。在一特定實施例中,藉由根據一個實例之LNP遞送核酸的目標細胞可為活體內肝細胞及/或LSEC。在其他實施例中,本揭示提供經調配用於遞送各實施例之核酸至離體細胞的LNP。Target organs for delivery of nucleic acids by LNP include, but are not limited to, liver, lung, heart, spleen, and tumor. According to one embodiment, the LNP is liver tissue specific and has excellent biocompatibility, and can efficiently deliver nucleic acids of the composition, so it can be effectively used in related technical fields, such as lipid nanoparticle-mediated gene therapy. In a specific embodiment, the target cells for delivery of nucleic acids by LNP according to one embodiment can be in vivo liver cells and/or LSEC. In other embodiments, the present disclosure provides LNPs formulated for delivery of nucleic acids of each embodiment to ex vivo cells.

本揭示提供一種醫藥組合物,該醫藥組合物包含:複數個LNP,其包含核酸,諸如本文所描述的編碼長期抑制子融合蛋白之mRNA及/或gRNA變異體;及醫藥學上可接受之載劑。The present disclosure provides a pharmaceutical composition comprising: a plurality of LNPs comprising a nucleic acid, such as an mRNA and/or a gRNA variant encoding a long-term suppressor fusion protein as described herein; and a pharmaceutically acceptable carrier.

在某些實施例中,包含核酸之LNP具有電子緻密核心。In certain embodiments, LNPs comprising nucleic acids have an electron-dense core.

本揭示提供包含一或多種核酸之LNP,其包含:(a)本文所描述之編碼長期抑制子融合蛋白之mRNA及/或gRNA變異體;(b)一或多種陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約50 mol%至約85 mol%;(c)一或多種非陽離子型脂質,其佔LNP中存在之總脂質的約13 mol%至約49.5 mol%;及(d)一或多種抑制LNP聚集之結合脂質,其佔粒子中存在之總脂質的約0.5 mol%至約2 mol%。在另一實施例中,本揭示提供包含一或多種核酸之LNP,其包含:(a)本文所描述之編碼長期抑制子融合蛋白之mRNA及/或gRNA變異體;(b)一或多種陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約22 mol%至約85 mol%;(c)一或多種非陽離子型脂質/磷脂,其佔LNP中存在之總脂質的約10 mol%至約70 mol%;(d) 15 mol%至約50 mol%固醇,及(e)該粒子中1 mol %至約5 mol %脂質-PEG或脂質-PEG-肽。在某些實施例中,長期抑制子融合蛋白mRNA及gRNA可存在於相同核酸-脂質粒子中,或其可存在於不同核酸-脂質粒子中。The present disclosure provides LNPs comprising one or more nucleic acids, comprising: (a) mRNA and/or gRNA variants encoding long-term suppressor fusion proteins described herein; (b) one or more cationic lipids or ionizable cationic lipids or salts thereof, which account for about 50 mol% to about 85 mol% of the total lipids present in the LNP; (c) one or more non-cationic lipids, which account for about 13 mol% to about 49.5 mol% of the total lipids present in the LNP; and (d) one or more binding lipids that inhibit LNP aggregation, which account for about 0.5 mol% to about 2 mol% of the total lipids present in the particle. In another embodiment, the present disclosure provides LNPs comprising one or more nucleic acids, comprising: (a) mRNA and/or gRNA variants encoding a long-term suppressor fusion protein described herein; (b) one or more cationic lipids or ionizable cationic lipids or salts thereof, which constitute about 22 mol% to about 85 mol% of the total lipids present in the LNP; (c) one or more non-cationic lipids/phospholipids, which constitute about 10 mol% to about 70 mol% of the total lipids present in the LNP; (d) 15 mol% to about 50 mol% sterols, and (e) 1 mol% to about 5 mol% lipid-PEG or lipid-PEG-peptide in the particle. In certain embodiments, the long-term suppressor fusion protein mRNA and gRNA may be present in the same nucleic acid-lipid particle, or they may be present in different nucleic acid-lipid particles.

本揭示提供包含一或多種核酸之LNP,其包含:(a)編碼本文所描述之長期抑制子融合蛋白之mRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約52 mol%至約62 mol%;(c)磷脂與膽固醇或其衍生物之混合物,其佔LNP中存在之總脂質的約36 mol%至約47 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約1 mol%至約2 mol%。在特定實施例中,調配物為四組分系統,其包含約1.4 mol% PEG-脂質結合物(例如PEG2000-C-DMA)、約57.1 mol%陽離子型脂質(例如DLin-K-C2-DMA)或其鹽、約7.1 mol% DPPC (或DSPC)及約34.3 mol%膽固醇(或其衍生物)。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。The present disclosure provides LNPs comprising one or more nucleic acids, comprising: (a) mRNA encoding a long-term inhibitor fusion protein described herein; (b) a cationic lipid or a salt thereof, which accounts for about 52 mol% to about 62 mol% of the total lipids present in the LNP; (c) a mixture of phospholipids and cholesterol or a derivative thereof, which accounts for about 36 mol% to about 47 mol% of the total lipids present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 1 mol% to about 2 mol% of the total lipids present in the LNP. In certain embodiments, the formulation is a four-component system comprising about 1.4 mol% PEG-lipid conjugate (e.g., PEG2000-C-DMA), about 57.1 mol% cationic lipid (e.g., DLin-K-C2-DMA) or a salt thereof, about 7.1 mol% DPPC (or DSPC), and about 34.3 mol% cholesterol (or its derivatives). In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及/或gRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約46.5 mol%至約66.5 mol%;(c)膽固醇或其衍生物,其佔LNP中存在之總脂質的約31.5 mol%至約42.5 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約1 mol%至約2 mol%。在特定實施例中,調配物為三組分系統,其不含磷脂且包含約1.5 mol% PEG-脂質結合物(例如PEG2000-C-DMA)、約61.5 mol%陽離子型脂質(例如DLin-K-C2-DMA)或其鹽及約36.9 mol%膽固醇(或其衍生物)。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。In other embodiments, the LNP comprising one or more nucleic acids comprises: (a) mRNA and/or gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) a cationic lipid or a salt thereof, which accounts for about 46.5 mol% to about 66.5 mol% of the total lipid present in the LNP; (c) cholesterol or a derivative thereof, which accounts for about 31.5 mol% to about 42.5 mol% of the total lipid present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 1 mol% to about 2 mol% of the total lipid present in the LNP. In certain embodiments, the formulation is a three-component system that is phospholipid-free and comprises about 1.5 mol% PEG-lipid conjugate (e.g., PEG2000-C-DMA), about 61.5 mol% cationic lipid (e.g., DLin-K-C2-DMA) or a salt thereof, and about 36.9 mol% cholesterol (or its derivatives). In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein.

額外調配物描述於PCT公開案第WO 2009/127060 號以及美國專利公開案第US 2011/0071208 A1號及第US 2011/0076335 A1號中,該等案之揭示內容以全文引用的方式併入本文中。Additional formulations are described in PCT Publication No. WO 2009/127060 and U.S. Patent Publication Nos. US 2011/0071208 A1 and US 2011/0076335 A1, the disclosures of which are incorporated herein by reference in their entirety.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及gRNA;(b)一或多種陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約2 mol%至約50 mol%;(c)一或多種非陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約5 mol%至約90 mol%;及(d)一或多種抑制粒子聚集之結合脂質,其佔LNP中存在之總脂質的約0.5 mol%至約20 mol%。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。In other embodiments, LNPs comprising one or more nucleic acids comprise: (a) mRNA and gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) one or more cationic lipids or ionizable cationic lipids or salts thereof, which account for about 2 mol% to about 50 mol% of the total lipids present in the LNP; (c) one or more non-cationic lipids or ionizable cationic lipids or salts thereof, which account for about 5 mol% to about 90 mol% of the total lipids present in the LNP; and (d) one or more binding lipids that inhibit particle aggregation, which account for about 0.5 mol% to about 20 mol% of the total lipids present in the LNP. In some embodiments, LNPs comprise mRNA and gRNA encoding CasX described herein.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及gRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約30 mol%至約50 mol%;(c)磷脂與膽固醇或其衍生物之混合物,其佔LNP中存在之總脂質的約47 mol%至約69 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約1 mol%至約3 mol%。在特定實施例中,調配物為四組分系統,其包含約2 mol% PEG-脂質結合物(例如PEG2000-C-DMA)、約40 mol%陽離子型脂質(例如DLin-K-C2-DMA)或其鹽、約10 mol% DPPC (或DSPC)及約48 mol%膽固醇(或其衍生物)。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。In other embodiments, the LNP comprising one or more nucleic acids comprises: (a) mRNA and gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) a cationic lipid or a salt thereof, which accounts for about 30 mol% to about 50 mol% of the total lipids present in the LNP; (c) a mixture of phospholipids and cholesterol or a derivative thereof, which accounts for about 47 mol% to about 69 mol% of the total lipids present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 1 mol% to about 3 mol% of the total lipids present in the LNP. In certain embodiments, the formulation is a four-component system comprising about 2 mol% PEG-lipid conjugate (e.g., PEG2000-C-DMA), about 40 mol% cationic lipid (e.g., DLin-K-C2-DMA) or a salt thereof, about 10 mol% DPPC (or DSPC), and about 48 mol% cholesterol (or its derivatives). In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及gRNA;(b)一或多種陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約50 mol%至約65 mol%;(c)一或多種非陽離子型脂質或可離子化陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約25 mol%至約45 mol%;及(d)一或多種抑制粒子聚集之結合脂質,其佔LNP中存在之總脂質的約5 mol%至約10 mol%。In other embodiments, the LNP comprising one or more nucleic acids comprises: (a) mRNA and gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) one or more cationic lipids or ionizable cationic lipids or salts thereof, which account for about 50 mol% to about 65 mol% of the total lipids present in the LNP; (c) one or more non-cationic lipids or ionizable cationic lipids or salts thereof, which account for about 25 mol% to about 45 mol% of the total lipids present in the LNP; and (d) one or more binding lipids that inhibit particle aggregation, which account for about 5 mol% to about 10 mol% of the total lipids present in the LNP.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及gRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約50 mol%至約60 mol%;(c)磷脂與膽固醇或其衍生物之混合物,其佔LNP中存在之總脂質的約35 mol%至約45 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約5 mol%至約10 mol%。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。In other embodiments, LNPs comprising one or more nucleic acids comprise: (a) mRNA and gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) a cationic lipid or a salt thereof, which accounts for about 50 mol% to about 60 mol% of the total lipids present in the LNP; (c) a mixture of phospholipids and cholesterol or a derivative thereof, which accounts for about 35 mol% to about 45 mol% of the total lipids present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 5 mol% to about 10 mol% of the total lipids present in the LNP. In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein.

在某些實施例中,調配物中之非陽離子型脂質混合物包含: (i)佔LNP中存在之總脂質的約10 mol%至約70 mol%的磷脂;(ii)佔LNP中存在之總脂質的約15 mol%至約50 mol%的膽固醇或其衍生物;及1至5%脂質-PEG或脂質-PEG-肽。在特定實施例中,調配物為四組分系統,其包含約7 mol% PEG-脂質結合物(例如PEG750-C-DMA)、約54 mol%陽離子型脂質(例如DLin-K-C2-DMA)或其鹽、約7 mol% DPPC (或DSPC)及約32 mol%膽固醇(或其衍生物)。In certain embodiments, the non-cationic lipid mixture in the formulation comprises: (i) about 10 mol% to about 70 mol% of phospholipids of the total lipids present in the LNP; (ii) about 15 mol% to about 50 mol% of cholesterol or its derivatives of the total lipids present in the LNP; and 1 to 5% lipid-PEG or lipid-PEG-peptide. In a specific embodiment, the formulation is a four-component system comprising about 7 mol% PEG-lipid conjugate (e.g., PEG750-C-DMA), about 54 mol% cationic lipid (e.g., DLin-K-C2-DMA) or a salt thereof, about 7 mol% DPPC (or DSPC), and about 32 mol% cholesterol (or its derivatives).

在其他實施例中,包含一或多種核酸之LNP包含: (a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及/或gRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約55 mol%至約65 mol%;(c)膽固醇或其衍生物,其佔LNP中存在之總脂質的約30 mol%至約40 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約5 mol%至約10 mol%。在特定實施例中,調配物為三組分系統,其不含磷脂且包含約7 mol% PEG-脂質結合物(例如PEG750-C-DMA)、約58 mol%陽離子型脂質(例如DLin-K-C2-DMA)或其鹽及約35 mol%膽固醇(或其衍生物)。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。In other embodiments, the LNP comprising one or more nucleic acids comprises: (a) mRNA and/or gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) a cationic lipid or a salt thereof, which accounts for about 55 mol% to about 65 mol% of the total lipid present in the LNP; (c) cholesterol or a derivative thereof, which accounts for about 30 mol% to about 40 mol% of the total lipid present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 5 mol% to about 10 mol% of the total lipid present in the LNP. In certain embodiments, the formulation is a three-component system that is phospholipid-free and comprises about 7 mol% PEG-lipid conjugate (e.g., PEG750-C-DMA), about 58 mol% cationic lipid (e.g., DLin-K-C2-DMA) or a salt thereof, and about 35 mol% cholesterol (or its derivatives). In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein.

在其他實施例中,包含一或多種核酸之LNP包含:(a)本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA及/或gRNA;(b)陽離子型脂質或其鹽,其佔LNP中存在之總脂質的約48 mol%至約62 mol%;(c)磷脂與膽固醇或其衍生物之混合物,其中磷脂佔LNP中存在之總脂質的約7 mol%至約17 mol%,且其中膽固醇或其衍生物佔LNP中存在之總脂質的約25 mol%至約40 mol%;及(d) PEG-脂質結合物,其佔LNP中存在之總脂質的約0.5 mol%至約3.0 mol%。在一些實施例中,LNP包含編碼本文所描述之CasX的mRNA及gRNA。 IX. 用於抑制PCSK9目標核酸之方法 In other embodiments, the LNP comprising one or more nucleic acids comprises: (a) mRNA and/or gRNA encoding a long-term suppressor fusion protein of any embodiment described herein; (b) a cationic lipid or a salt thereof, which accounts for about 48 mol% to about 62 mol% of the total lipids present in the LNP; (c) a mixture of phospholipids and cholesterol or a derivative thereof, wherein the phospholipids account for about 7 mol% to about 17 mol% of the total lipids present in the LNP, and wherein cholesterol or a derivative thereof accounts for about 25 mol% to about 40 mol% of the total lipids present in the LNP; and (d) a PEG-lipid conjugate, which accounts for about 0.5 mol% to about 3.0 mol% of the total lipids present in the LNP. In some embodiments, the LNP comprises mRNA and gRNA encoding CasX described herein. IX. Methods for inhibiting PCSK9 target nucleic acid

在另一態樣中,本揭示係關於抑制或緘默化細胞群體中 PCSK9基因之目標核酸序列之轉錄的方法。在一些實施例中,該方法包含使群體之細胞與本揭示之LTRP:gRNA系統在個體中活體外、離體或活體內接觸。本文所提供之系統的可程式化性質允許精確靶向以在 PCSK9基因之目標核酸中之一或多個預定關注區域處達成所需效應。在一些實施例中,可能需要抑制或緘默化細胞中包含引起個體之PCSK9相關疾病或病症之突變的基因。 In another aspect, the disclosure is about a method for inhibiting or silencing the transcription of a target nucleic acid sequence of a PCSK9 gene in a cell population. In some embodiments, the method comprises contacting a cell of a population with a LTRP:gRNA system disclosed herein in vitro, in vitro, or in vivo in an individual. The programmable nature of the system provided herein allows precise targeting to achieve a desired effect at one or more predetermined regions of interest in the target nucleic acid of a PCSK9 gene. In some embodiments, it may be desirable to inhibit or silence a gene that contains a mutation that causes a PCSK9-related disease or condition in an individual.

在一些實施例中,該方法包含向細胞中引入本揭示之長期抑制子融合蛋白及一或多個具有與目標核酸互補之靶向序列的gRNA,其中該長期抑制子融合蛋白能夠與該gRNA複合形成RNP,且其中該RNP能夠結合目標核酸且抑制或緘默化細胞中 PCSK9基因之轉錄(應理解,額外細胞因子可經募集且參與抑制)。在一些實施例中,該方法包含向細胞中引入編碼本揭示之長期融合抑制子蛋白質之mRNA及具有與 PCSK9目標核酸互補之靶向序列的一或多個gRNA,其中長期抑制子融合蛋白質被表現,能夠與gRNA複合以形成RNP,且其中RNP能夠結合目標核酸且抑制或緘默化細胞中 PCSK9基因之轉錄。在一些實施例中,編碼長期抑制子融合蛋白之mRNA及gRNA可共調配於奈米粒子中以遞送至群體之細胞。在一些實施例中,編碼長期抑制子融合蛋白之mRNA及gRNA可調配於單獨的奈米粒子中以遞送至群體之細胞。在一些實施例中,奈米粒子係脂質奈米粒子(LNP),如本文所描述。 In some embodiments, the method comprises introducing into a cell a long-term suppressor fusion protein disclosed herein and one or more gRNAs having a targeting sequence complementary to a target nucleic acid, wherein the long-term suppressor fusion protein is capable of complexing with the gRNA to form RNPs, and wherein the RNPs are capable of binding to the target nucleic acid and inhibiting or silencing transcription of a PCSK9 gene in the cell (it will be understood that additional cytokines may be recruited and participate in the inhibition). In some embodiments, the method comprises introducing into a cell an mRNA encoding a long-term fusion suppressor protein disclosed herein and one or more gRNAs having a targeting sequence complementary to a PCSK9 target nucleic acid, wherein the long-term suppressor fusion protein is expressed, is capable of complexing with the gRNA to form RNPs, and wherein the RNPs are capable of binding to the target nucleic acid and inhibiting or silencing transcription of a PCSK9 gene in the cell. In some embodiments, the mRNA encoding the long-term suppressor fusion protein and the gRNA can be co-formulated in a nanoparticle for delivery to a population of cells. In some embodiments, the mRNA encoding the long-term suppressor fusion protein and the gRNA can be formulated in separate nanoparticles for delivery to a population of cells. In some embodiments, the nanoparticle is a lipid nanoparticle (LNP), as described herein.

在基因轉錄抑制方法之一些實施例中,本揭示之LTRP:gRNA系統可經設計以靶向尋求轉錄抑制之PCSK9基因或基因區域之任何區域或其附近。當要抑制整個 PCSK9基因時,本揭示考慮使用具有與涵蓋或接近轉錄起始位點(TSS)之序列互補之靶向序列的引導物。核心啟動子用作轉錄機構之結合平台,該轉錄機構包含Pol II及其相關通用轉錄因子(GTF) (Haberle, V.等人Eukaryotic core promoters and the functional basis of transcription initiation (Nat Rev Mol Cell Biol. 19(10):621 (2018))。已提出TSS選擇之變化性涉及DNA『蜷縮』及『反蜷縮』,其標誌為:(i) RNA聚合酶前邊緣而非後邊緣相對於DNA之正向及反向移動,及(ii)轉錄泡之膨脹及收縮。在一些實施例中,LTRP:gRNA系統之gRNA之靶向序列與位於 PCSK9基因中之轉錄起始位點(TSS)之1 kb內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之TSS上游20 bp、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp、1 kb或1.5 kb內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之TSS下游20 bp、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp、1 kb或1.5 kb內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之TSS上游700 bp至下游700 bp、上游500 bp至下游500 bp、上游300 bp至下游300 bp或上游100 bp至下游100 bp內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之強化子20 bp、50 bp、100 bp、150 bp、200 bp、250 bp、500 bp或1 kb內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之3'至5'非轉譯區1 kb內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與位於 PCSK9基因之開讀框內的目標核酸序列互補。在該方法之一些實施例中,LTRP:gRNA系統之gRNA的靶向序列與 PCSK9基因之外顯子的目標核酸序列互補。在一特定實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之外顯子1的目標核酸序列互補。在該方法之其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之內含子之目標核酸序列互補。在該方法之其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之內含子-外顯子接合點的目標核酸序列互補。在該方法之其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之調控元件的目標核酸序列互補。在該方法之其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之基因間區的序列互補。在該方法之其他實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之外顯子、內含子或調控元件之接合點互補。在靶向序列與調控元件互補之情況下,此等調控元件包括但不限於啟動子區、強化子區、基因間區、5'非轉譯區(5' UTR)、3'非轉譯區(3' UTR)、保守元件及包含順式調控元件之區域。在該方法之一些實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之強化子之1 kb內的基因目標核酸序列互補。在該方法之一些實施例中,本揭示之系統之gRNA的靶向序列與 PCSK9基因之3'非轉譯區內的基因目標核酸序列互補。啟動子區意欲涵蓋編碼序列之起始點之5 kb內的核苷酸,或在基因強化子元件或保守元件的情況下,可與 PCSK9基因之編碼序列相距數千bp、數十萬bp或甚至數百萬bp。在前述內容中,目標為其中目標之編碼 PCSK9基因既定被抑制以使得基因產物在細胞中不表現或表現量較低的彼等目標。在一些實施例中,在本揭示之系統之RNP結合於目標核酸之結合位置後,該系統能夠抑制在RNP之結合位置5'的 PCSK9基因之轉錄。在其他實施例中,在系統之RNP結合於目標核酸之結合位置後,該系統能夠抑制在RNP之結合位置3'的 PCSK9基因之轉錄。 In some embodiments of gene transcription inhibition methods, the LTRP: gRNA system disclosed herein can be designed to target any region or vicinity of the PCSK9 gene or gene region for which transcription inhibition is sought. When the entire PCSK9 gene is to be inhibited, the disclosure contemplates the use of a guide having a targeting sequence complementary to a sequence covering or near a transcription start site (TSS). The core promoter serves as a binding platform for the transcriptional machinery, which includes Pol II and its associated general transcription factor (GTF) (Haberle, V. et al. Eukaryotic core promoters and the functional basis of transcription initiation (Nat Rev Mol Cell Biol. 19(10):621 (2018)). It has been proposed that the variability of TSS selection involves DNA "coiling" and "anti-coiling", which is marked by: (i) forward and reverse movement of the leading edge of RNA polymerase but not the trailing edge relative to DNA, and (ii) expansion and contraction of the transcription bubble. In some embodiments, the targeting sequence of the gRNA of the LTRP:gRNA system is located at one of the transcription start sites (TSS) in the PCSK9 gene. kb. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system is complementary to a target nucleic acid sequence located within 20 bp, 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, 1 kb or 1.5 kb upstream of the TSS of the PCSK9 gene. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system is complementary to a target nucleic acid sequence located within 20 bp, 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, 1 kb or 1.5 kb downstream of the TSS of the PCSK9 gene. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system is complementary to a target nucleic acid sequence located within 700 bp upstream to 700 bp downstream of the TSS of the PCSK9 gene. bp, 500 bp upstream to 500 bp downstream, 300 bp upstream to 300 bp downstream, or 100 bp upstream to 100 bp downstream. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system is complementary to a target nucleic acid sequence located within 20 bp, 50 bp, 100 bp, 150 bp, 200 bp, 250 bp, 500 bp, or 1 kb of the enhancer of the PCSK9 gene. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system is complementary to a target nucleic acid sequence located within 1 kb of the 3' to 5' non-translated region of the PCSK9 gene. kb. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system complements the target nucleic acid sequence located in the open reading frame of the PCSK9 gene. In some embodiments of the method, the targeting sequence of the gRNA of the LTRP:gRNA system complements the target nucleic acid sequence of the exon of the PCSK9 gene. In a specific embodiment, the targeting sequence of the gRNA of the system disclosed herein complements the target nucleic acid sequence of exon 1 of the PCSK9 gene. In other embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein complements the target nucleic acid sequence of the intron of the PCSK9 gene. In other embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein complements the target nucleic acid sequence of the intron-exon junction of the PCSK9 gene. In other embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein is complementary to the target nucleic acid sequence of the regulatory element of the PCSK9 gene. In other embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein is complementary to the sequence of the intergenic region of the PCSK9 gene. In other embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein is complementary to the junction of the exon, intron or regulatory element of the PCSK9 gene. In the case where the targeting sequence and the regulatory element are complementary, these regulatory elements include but are not limited to the promoter region, the enhancer region, the intergenic region, the 5' non-translated region (5'UTR), the 3' non-translated region (3'UTR), the conservative element and the region containing the cis-regulatory element. In some embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein is complementary to the gene target nucleic acid sequence within 1 kb of the enhancer of the PCSK9 gene. In some embodiments of the method, the targeting sequence of the gRNA of the system disclosed herein is complementary to the gene target nucleic acid sequence within the 3' non-translated region of the PCSK9 gene. The promoter region is intended to cover nucleotides within 5 kb of the start point of the coding sequence, or in the case of a gene enhancer element or a conservative element, it can be thousands of bp, hundreds of thousands of bp, or even millions of bp away from the coding sequence of the PCSK9 gene. In the foregoing, the target is one in which the target's coding PCSK9 gene is intended to be inhibited so that the gene product is not expressed or expressed at a lower level in the cell. In some embodiments, after the RNP of the system disclosed herein binds to the binding site of the target nucleic acid, the system can inhibit the transcription of the PCSK9 gene 5' to the binding site of the RNP. In other embodiments, after the RNP of the system binds to the binding site of the target nucleic acid, the system can inhibit the transcription of the PCSK9 gene 3' to the binding site of the RNP.

本揭示提供轉錄抑制或緘默化細胞群體中之 PCSK9目標基因的方法。在一些實施例中,用於轉錄抑制或緘默化 PCSK9基因之方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至14626 (未經修飾之mRNA)及14628至22725 (經N1-甲基-假尿苷修飾之mRNA)組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,該方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至8134、9742至11347、14628至16233及17840至19446組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,該方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至8134、9742至11347、14628至16233及17840至19446組成之群的序列。在一些實施例中,該方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至6537及9742至9750組成之群的序列或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%一致性之序列。在一些實施例中,該方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至6537及9742至9750組成之群的序列。在一些實施例中,mRNA包含連接至編碼LTRP之mRNA序列之5' UTR的5'的5'帽序列,視情況其中該5'帽具有選自由以下組成之群的核酸序列:m7G(5')ppp(5')mAG、m7G(5′)ppp (5′(A,G(5′)ppp(5′)A及G(5′)ppp(5′)G。在一些實施例中,該方法包含使細胞群體與LTRP:gRNA系統接觸,該LTRP:gRNA系統包含gRNA,其包含選自由SEQ ID NO: 1744至1746組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列,且該gRNA包含與 PCSK9基因之目標核酸互補的所連接靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含gRNA變異體,其包含SEQ ID NO: 1744之序列及所連接靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含gRNA,其包含SEQ ID NO: 1745之序列及所連接靶向序列。在一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至2544、2672、2675、2694及2714組成之群。在一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群。在一些實施例中,gRNA之靶向序列係選自由以下組成之群:SEQ ID NO: 1834、1849、1853、1855、1856、1857、1858、1860、1862、1863、1867、1869、1870、1872、1874及1875。在一些實施例中,靶向序列係選自由SEQ ID NO: 1855、1867及1869組成之群。 The present disclosure provides methods for transcriptionally inhibiting or silencing a PCSK9 target gene in a cell population. In some embodiments, the method for transcriptionally inhibiting or silencing a PCSK 9 gene comprises contacting a cell population with a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 (unmodified mRNAs) and 14628 to 22725 (N1-methyl-pseudouridine-modified mRNAs), or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the method comprises contacting a cell population with a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-8134, 9742-11347, 14628-16233, and 17840-19446, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the method comprises contacting a cell population with a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-8134, 9742-11347, 14628-16233, and 17840-19446. In some embodiments, the method comprises contacting a cell population with a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-6537 and 9742-9750, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% identity thereto. In some embodiments, the method comprises contacting a cell population with a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750. In some embodiments, the mRNA comprises a 5' cap sequence linked to the 5' UTR of the mRNA sequence encoding the LTRP, optionally wherein the 5' cap has a nucleic acid sequence selected from the group consisting of m7G(5')ppp(5')mAG, m7G(5')ppp(5')A, G(5')ppp(5')A, and G(5')ppp(5')G. In some embodiments, the method comprises contacting a cell population with a LTRP:gRNA system comprising a gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto, and the gRNA comprises a linked targeting sequence that is complementary to the target nucleic acid of the PCSK9 gene. In some embodiments of the method, the LTRP: gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1744 and a linked targeting sequence. In some embodiments of the method, the LTRP: gRNA system comprises a gRNA comprising a sequence of SEQ ID NO: 1745 and a linked targeting sequence. In some embodiments, the targeting sequence of the gRNA is selected from SEQ ID NO: In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 2544, 2672, 2675, 2694, and 2714. In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855, 1856, 1857, 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875. In some embodiments, the targeting sequence is selected from the group consisting of SEQ ID NOs: The group formed by 1855, 1867 and 1869.

在轉錄抑制或緘默化細胞群體中之 PCSK9目標基因之方法的一些實施例中,LTRP:gRNA系統包含含有序列SEQ ID NO: 1746及所連接靶向序列之gRNA變異體。在該方法之一些實施例中,LTRP:gRNA系統包含含有一或多個化學修飾之gRNA變異體,包括如下gRNA變異體,其包含選自由SEQ ID NO: 2948至2956、2958至2966及2968至2976組成之群的序列及與取代所列序列之gRNA之3'末端上的20個核苷酸的 PCSK9目標核酸互補之靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含有包含SEQ ID NO: 1746之序列且具有化學修飾之gRNA變異體,其視情況包含選自由SEQ ID NO: 2968至2976組成之群的序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一個實施例中,LTRP:gRNA系統包含有包含SEQ ID NO: 1746之序列且具有化學修飾之gRNA變異體,其視情況包含SEQ ID NO: 2968之序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在一些實施例中,經修飾之gRNA包含選自由SEQ ID NO: 22788至22803組成之群的序列。在一些實施例中,經修飾之gRNA包含選自由SEQ ID NO: 22788至22790組成之群的序列。 In some embodiments of the method of transcriptionally inhibiting or silencing a PCSK9 target gene in a cell population, the LTRP:gRNA system comprises a gRNA variant comprising the sequence SEQ ID NO: 1746 and a linked targeting sequence. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising one or more chemically modified gRNA variants, including a gRNA variant comprising a sequence selected from the group consisting of SEQ ID NO: 2948 to 2956, 2958 to 2966, and 2968 to 2976 and a targeting sequence complementary to a PCSK9 target nucleic acid that replaces 20 nucleotides on the 3' end of the gRNA of the listed sequence. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 and having a chemical modification, which optionally comprises a sequence selected from the group consisting of SEQ ID NOs: 2968 to 2976, and a targeting sequence complementary to the PCSK9 target nucleic acid 20 nucleotides on the 3' end of the gRNA replacing the listed sequence. In one embodiment of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 and having a chemical modification, which optionally comprises a sequence of SEQ ID NO: 2968, and a targeting sequence complementary to the PCSK9 target nucleic acid 20 nucleotides on the 3' end of the gRNA replacing the listed sequence. In some embodiments, the modified gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22803. In some embodiments, the modified gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 22788-22790.

在一些實施例中,用於轉錄抑制或緘默化細胞群體中之 PCSK9基因之方法包含使細胞與包含gRNA變異體及編碼長期抑制子融合蛋白之mRNA的LNP接觸。在該方法之一些實施例中,LNP包含選自由SEQ ID NO: 6529至14626及14628至22725組成之群的mRNA序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在該方法之一些實施例中,LNP包含有包含選自由SEQ ID NO: 6529至14626及14628至22725組成之群的序列的mRNA。在一些實施例中,該方法包含使細胞群體與包含選自由SEQ ID NO: 6529至8134、9742至11347、14628至16233及17840至19446之序列組成之群的mRNA或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的LNP接觸。在一些實施例中,該方法包含使細胞群體與包含含有選自由SEQ ID NO: 6529至8134、9742至11347、14628至16233及17840至19446之序列組成之群的序列的mRNA之LNP接觸。在一些實施例中,該方法包含使細胞群體與包含選自由SEQ ID NO: 6529至6537及9742至9750之序列組成之群的mRNA或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%一致性之序列的LNP接觸。在一些實施例中,該方法包含使細胞群體與包含有包含選自由SEQ ID NO: 6529至6537及9742至9750之序列組成之群的序列的mRNA之LNP接觸。在一些實施例中,mRNA進一步包含連接至編碼LTRP之mRNA序列之5' UTR的5'的5'帽序列,視情況其中該5'帽具有選自由以下組成之群的核酸序列:m7G(5')ppp(5')mAG、m7G(5′)ppp (5′(A,G(5′)ppp(5′)A及G(5′)ppp(5′)G。在一些實施例中,mRNA包含5' UTR、3' UTR及/或聚腺苷酸序列。在該方法之一些實施例中,LNP包含gRNA,該gRNA包含選自由SEQ ID NO: 1744至1746組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列,且該gRNA包含與 PCSK9基因之目標核酸互補之靶向序列。在方法之一些實施例中,LNP包含具有所連接靶向序列之gRNA變異體174 (SEQ ID NO: 1744)。在該方法之一些實施例中,LNP包含有包含SEQ ID NO: 1745之序列及所連接靶向序列的gRNA。在該方法之一些實施例中,LNP包含有包含SEQ ID NO: 1746之序列及所連接靶向序列的gRNA。在該方法之一些實施例中,LNP包含具有化學修飾之gRNA變異體,其視情況包含SEQ ID NO: 2948至2956、2958至2966及2968至2976之序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一些實施例中,LNP包含具有化學修飾之gRNA,其包含選自由SEQ ID NO: 2968至2976組成之群的序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之目標核酸互補的靶向序列。在該方法之一特定實施例中,LNP包含具有化學修飾之gRNA,其包含SEQ ID NO: 2968之序列及與取代所列序列之gRNA之3'末端上20個核苷酸之目標核酸互補的靶向序列。在一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至2544、2672、2675、2694及2714組成之群。在一些實施例中,gRNA之靶向序列係選自由以下組成之群:SEQ ID NO: 1824至1879、1880、1883、1884、1888、1889、2672、2675、2694及2714。在一些實施例中,gRNA之靶向序列係選自由以下組成之群:SEQ ID NO: 1834、1849、1853、1855、1856、1857、1858、1860、1862、1863、1867、1869、1870、1872、1874及1875。在一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1855、1867及1869組成之群。在該方法之一些實施例中,LNP包含有包含選自由SEQ ID NO: 22788至22803組成之群的序列的經化學修飾之gRNA。在一些實施例中,LNP包含有包含選自由SEQ ID NO: 22788至22790組成之群的序列的經化學修飾之gRNA。 In some embodiments, the method for transcriptionally inhibiting or silencing the PCSK9 gene in a cell population comprises contacting the cell with a LNP comprising a gRNA variant and an mRNA encoding a long-term suppressor fusion protein. In some embodiments of the method, the LNP comprises an mRNA sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725. In some embodiments, the method comprises contacting a cell population with an LNP comprising an mRNA selected from the group consisting of SEQ ID NOs: 6529-8134, 9742-11347, 14628-16233, and 17840-19446, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the method comprises contacting a cell population with an LNP comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-8134, 9742-11347, 14628-16233, and 17840-19446. In some embodiments, the method comprises contacting a cell population with an LNP comprising an mRNA selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity thereto. In some embodiments, the method comprises contacting a cell population with an LNP comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750. In some embodiments, the mRNA further comprises a 5' cap sequence linked to the 5'UTR of the mRNA sequence encoding the LTRP, optionally wherein the 5' cap has a nucleic acid sequence selected from the group consisting of: m7G(5')ppp(5')mAG, m7G(5')ppp(5'(A, G(5')ppp(5')A, and G(5')ppp(5')G. In some embodiments, the mRNA comprises a 5'UTR, a 3'UTR, and/or a poly(A) sequence. In some embodiments of the method, the LNP comprises a gRNA comprising a sequence selected from SEQ ID NO: 1744 to 1746 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto, and the gRNA comprises a targeting sequence complementary to the target nucleic acid of the PCSK9 gene. In some embodiments of the method, the LNP comprises a gRNA variant 174 (SEQ ID NO: 1744) with a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA comprising a sequence comprising SEQ ID NO: 1745 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA comprising a sequence comprising SEQ ID NO: 1746 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a chemically modified gRNA variant, which optionally comprises SEQ ID NO: 2948 to 2956, 2958 to 2966 and 2968 to 2976, and a targeting sequence that is complementary to the PCSK9 target nucleic acid of 20 nucleotides at the 3' end of the gRNA that replaces the listed sequence. In some embodiments of the method, the LNP comprises a gRNA with a chemical modification, which comprises a sequence selected from the group consisting of SEQ ID NO: 2968 to 2976, and a targeting sequence that is complementary to the target nucleic acid of 20 nucleotides at the 3' end of the gRNA that replaces the listed sequence. In a specific embodiment of the method, the LNP comprises a gRNA with a chemical modification, which comprises a sequence of SEQ ID NO: 2968 and a targeting sequence that is complementary to the target nucleic acid of 20 nucleotides at the 3' end of the gRNA that replaces the listed sequence. In some embodiments, the targeting sequence of the gRNA is selected from SEQ ID NO: In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 2544, 2672, 2675, 2694, and 2714. In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 1879, 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855, 1856, 1857, 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875. In some embodiments, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1855, 1867, and 1869. In some embodiments of the method, the LNP comprises a chemically modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22803. In some embodiments, the LNP comprises a chemically modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22790.

在用於轉錄抑制或緘默化 PCSK9基因之方法的一些實施例中,使細胞群體與實施例之LTRP:gRNA系統接觸使得至少約1%、至少約2%、至少約3%、至少約4%、至少約5%、至少約6%、至少約7%、至少約8%、至少約9%、或至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%或至少約80%或更多的細胞之 PCSK9目標核酸受到抑制。在該方法之一些實施例中,群體之細胞中之 PCSK9基因經抑制或緘默化,使得與 PCSK9基因尚未靶向之細胞相比,PCSK9蛋白之表現減少至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、至少約80%或至少約90%。在該方法之一些實施例中,群體之細胞之抑制發生於活體外。在該方法之一些實施例中,群體之細胞之抑制係離體發生。在該方法之一些實施例中,細胞係選自由以下組成之群:嚙齒動物細胞、小鼠細胞、大鼠細胞、靈長類動物細胞及非人類靈長類動物細胞。在該方法之一些實施例中,細胞為人類細胞。 In some embodiments of the method for transcriptional inhibition or silencing of a PCSK9 gene, a cell population is contacted with the LTRP:gRNA system of the embodiments such that at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, or at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, or at least about 80% or more of the cells have their PCSK9 target nucleic acid inhibited. In some embodiments of the method, the PCSK9 gene in the cells of the population is inhibited or silenced such that the expression of the PCSK9 protein is reduced by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% compared to cells in which the PCSK9 gene has not been targeted. In some embodiments of the method, the inhibition of the population of cells occurs in vitro. In some embodiments of the method, the inhibition of the population of cells occurs ex vivo. In some embodiments of the method, the cells are selected from the group consisting of rodent cells, mouse cells, rat cells, primate cells, and non-human primate cells. In some embodiments of the method, the cells are human cells.

在該方法之一些實施例中,抑制係在將細胞引入個體中之前活體外發生於細胞內部。在一些實施例中,細胞對於個體而言為自體或同種異體的。在該方法之一些實施例中,細胞之抑制係活體內發生於個體中。本文所描述之系統及方法可用於各種與疾病相關之細胞,例如肝臟細胞、腸細胞、腎臟細胞、中樞神經系統細胞、平滑肌細胞、巨噬細胞或動脈壁細胞,其中 PCSK9基因待受到抑制或緘默化。因此,此方法可用於在患有PCSK9相關病症之個體中應用,該病症諸如(但不限於)體染色體顯性高膽固醇血症(ADH)、高膽固醇血症、總膽固醇水平升高、高脂質血症、低密度脂蛋白(LDL)水平升高、LDL-膽固醇水平升高、高密度脂蛋白水平降低、肝臟脂肪變性、冠心病、缺血、中風、周邊血管疾病、血栓形成、2型糖尿病、高血壓、動脈粥樣硬化、肥胖症、阿茲海默氏症(Alzheimer's disease)、神經退化、老年性黃斑部病變(AMD)或其等之組合。 In some embodiments of the method, the inhibition occurs in vitro within the cell before the cell is introduced into the individual. In some embodiments, the cell is autologous or allogeneic to the individual. In some embodiments of the method, the inhibition of the cell occurs in vivo in the individual. The systems and methods described herein can be used in various disease-related cells, such as liver cells, intestinal cells, kidney cells, central nervous system cells, smooth muscle cells, macrophages, or arterial wall cells, in which the PCSK9 gene is to be inhibited or silenced. Thus, the method can be used for application in individuals suffering from a PCSK9-related disorder, such as, but not limited to, somatic dominant hypercholesterolemia (ADH), hypercholesterolemia, elevated total cholesterol levels, hyperlipidemia, elevated low-density lipoprotein (LDL) levels, elevated LDL-cholesterol levels, decreased high-density lipoprotein levels, hepatic steatosis, coronary heart disease, ischemia, stroke, peripheral vascular disease, thrombosis, type 2 diabetes, hypertension, atherosclerosis, obesity, Alzheimer's disease, neurodegeneration, age-related macular degeneration (AMD), or a combination thereof.

本揭示提供一種用於逆轉由LTRP:gRNA系統引起之抑制的方法。在該方法之一些實施例中,抑制可藉由使用DNMT抑制劑逆轉。在該方法之一些實施例中,抑制可藉由使用DNMT之胞苷類似物抑制劑逆轉。在一些實施例中,抑制可藉由使用選自由以下組成之群的抑制劑逆轉:阿紮胞苷(azacytidine)、地西他濱(decitabine)、氯法拉濱(clofarabine)及澤布拉林(zebularine)。在該方法之一些實施例中,其中抑制之逆轉係在用本揭示之系統治療之個體中發生,該方法包含投與治療有效劑量之DNMT抑制劑。 X. 治療方法 The present disclosure provides a method for reversing inhibition caused by a LTRP:gRNA system. In some embodiments of the method, inhibition can be reversed by using a DNMT inhibitor. In some embodiments of the method, inhibition can be reversed by using a cytidine analog inhibitor of DNMT. In some embodiments, inhibition can be reversed by using an inhibitor selected from the group consisting of: azacytidine, decitabine, clofarabine, and zebularine. In some embodiments of the method, wherein reversal of inhibition occurs in an individual treated with the system of the present disclosure, the method comprises administering a therapeutically effective amount of a DNMT inhibitor. X. Treatment Methods

在另一態樣中,本發明係關於使用本揭示之LTRP:gRNA系統治療有需要個體之PCSK9相關疾病或病症之方法。本揭示提供治療有需要個體之PCSK9相關病症之方法,該病症包括(但不限於)體染色體顯性高膽固醇血症(ADH)、高膽固醇血症、總膽固醇水平升高、低密度脂蛋白(LDL)水平升高、高密度脂蛋白水平降低、肝臟脂肪變性、動脈粥樣硬化性心血管疾病及冠狀動脈疾病、缺血、中風、周邊血管疾病、血栓形成、2型糖尿病、高血壓、肥胖症、阿茲海默氏症(Alzheimer's disease)、神經退化、老年性黃斑部病變(AMD)或其等之組合。在一些實施例中,本揭示之方法可藉由向個體投與治療有效劑量之本揭示之組合物來預防、治療及/或減輕個體之PCSK9相關病症。在一些實施例中,向個體投與之組合物進一步包含醫藥學上可接受之載劑、稀釋劑或賦形劑。In another aspect, the present invention relates to methods for treating PCSK9-related diseases or disorders in individuals in need thereof using the LTRP:gRNA system disclosed herein. The present disclosure provides methods for treating PCSK9-related disorders in individuals in need thereof, including but not limited to somatic dominant hypercholesterolemia (ADH), hypercholesterolemia, elevated total cholesterol levels, elevated low-density lipoprotein (LDL) levels, reduced high-density lipoprotein levels, hepatic steatosis, atherosclerotic cardiovascular disease and coronary artery disease, ischemia, stroke, peripheral vascular disease, thrombosis, type 2 diabetes, hypertension, obesity, Alzheimer's disease, neurodegeneration, age-related macular degeneration (AMD), or a combination thereof. In some embodiments, the methods disclosed herein can prevent, treat and/or alleviate PCSK9-related disorders in an individual by administering a therapeutically effective amount of the composition disclosed herein to the individual. In some embodiments, the composition administered to the individual further comprises a pharmaceutically acceptable carrier, diluent or excipient.

本文所描述之方法可用於處理個體中與疾病相關之多種細胞(例如肝臟細胞、腸細胞、腎臟細胞、中樞神經系統細胞、平滑肌細胞、巨噬細胞或動脈壁細胞),其中 PCSK9基因將被抑制或緘默化。 The methods described herein can be used to treat a variety of cells associated with a disease in an individual (e.g., liver cells, intestinal cells, kidney cells, central nervous system cells, smooth muscle cells, macrophages, or arterial wall cells) in which the PCSK9 gene is to be inhibited or silenced.

在一些實施例中,可能需要減少或消除包含突變之個體中的PCSK9蛋白之基因的表現,例如導致高膽固醇血症或家族性或體染色體顯性高膽固醇血症之顯性突變。在一些情況下,個體之 PCSK9基因之一個或兩個對偶基因包含突變。在一些情況下,PCSK9相關疾病或病症突變為功能獲得型突變,包括但不限於編碼選自由以下組成之群的胺基酸取代的突變:相對於SEQ ID NO: 1823之序列的S127R、D129G、F216L、D374H及D374Y。在其他情況下,PCSK9相關病症突變為功能喪失型突變,包括但不限於編碼選自由以下組成之群的胺基酸取代的突變:相對於SEQ ID NO: 1823之序列的R46L、G106R、Y142X、N157K、R237W及C679X。在一些實施例中,可能需要減少或消除膽固醇水平升高之個體中PCSK9蛋白之表現,該膽固醇水平升高並非 PCSK9基因突變之結果。 In some embodiments, it may be desirable to reduce or eliminate the expression of a gene for a PCSK9 protein in an individual comprising a mutation, such as a dominant mutation that causes hypercholesterolemia or familial or autosomal dominant hypercholesterolemia. In some cases, one or both alleles of the PCSK9 gene of the individual comprise a mutation. In some cases, the PCSK9-related disease or disorder mutation is a gain-of-function mutation, including but not limited to a mutation encoding an amino acid substitution selected from the group consisting of: S127R, D129G, F216L, D374H, and D374Y relative to the sequence of SEQ ID NO: 1823. In other cases, the PCSK9-associated disease mutation is a loss-of-function mutation, including but not limited to a mutation encoding an amino acid substitution selected from the group consisting of: R46L, G106R, Y142X, N157K, R237W, and C679X relative to the sequence of SEQ ID NO: 1823. In some embodiments, it may be desirable to reduce or eliminate the expression of PCSK9 protein in an individual with elevated cholesterol levels that are not the result of a PCSK9 gene mutation.

在一些實施例中,本揭示提供治療有需要個體之PCSK9相關疾病或病症的方法,其包含抑制或緘默化個體之細胞中之 PCSK9基因,該方法包含使該等細胞與治療有效劑量之以下接觸:i) LTRP: gRNA系統,其包含本文所描述之任一實施例之長期抑制子融合蛋白及gRNA;ii)編碼本文所描述之任一實施例之長期抑制子融合蛋白及gRNA之核酸;iii)LNP或合成奈米粒子,其包含本文所描述之任一實施例之gRNA及編碼之長期抑制子融合蛋白之mRNA;iv)包含gRNA之LNP或合成奈米粒子,及包含本文所描述之任一實施例之編碼長期抑制子融合蛋白之mRNA的LNP或合成奈米粒子;或v) i)至iv)中之兩者或更多者之組合,其中該gRNA所靶向之細胞之目標核酸序列係由長期抑制子融合蛋白抑制或緘默化。 In some embodiments, the present disclosure provides a method for treating a PCSK9-related disease or condition in an individual in need thereof, comprising inhibiting or silencing a PCSK9 gene in cells of the individual, the method comprising contacting the cells with a therapeutically effective amount of: i) an LTRP:gRNA system comprising a long-term suppressor fusion protein of any embodiment described herein and a gRNA; ii) a nucleic acid encoding a long-term suppressor fusion protein of any embodiment described herein and a gRNA; iii) an LNP or synthetic nanoparticle comprising a gRNA of any embodiment described herein and an mRNA encoding a long-term suppressor fusion protein; iv) an LNP or synthetic nanoparticle comprising a gRNA and an LNP or synthetic nanoparticle comprising an mRNA encoding a long-term suppressor fusion protein of any embodiment described herein; or v) A combination of two or more of i) to iv), wherein the target nucleic acid sequence of the cell targeted by the gRNA is inhibited or silenced by the long-term suppressor fusion protein.

在一些實施例中,本揭示提供一種治療有需要個體之PCSK9相關疾病或病症的方法,其包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至14626及14628至22725之序列組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,本揭示提供一種治療有需要個體之PCSK9相關疾病或病症的方法,其包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至14626及14628至22725之序列組成之群的序列。在一些實施例中,該方法包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17840至19446之序列組成之群的序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,該方法包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17840至19446之序列組成之群的序列。在一些實施例中,該方法包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至6537及9742至9750之序列組成之群的序列,或與其具有至少約80%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在一些實施例中,該方法包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含mRNA,其包含選自由SEQ ID NO: 6529至6537及9742至9750之序列組成之群的序列。在一些實施例中,mRNA進一步包含連接至編碼LTRP之mRNA序列之5' UTR的5'的5'帽序列,視情況其中該5'帽具有選自由以下組成之群的核酸序列:m7G(5')ppp(5')mAG、m7G(5′)ppp (5′(A,G(5′)ppp(5′)A及G(5′)ppp(5′)G。在一些實施例中,mRNA包含5' UTR、3'UTR、聚腺苷酸或其等之組合。In some embodiments, the present disclosure provides a method of treating a PCSK9-related disease or condition in a subject in need thereof, comprising administering a therapeutically effective amount of a LTRP:gRNA system, wherein the LTRP:gRNA system comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the present disclosure provides a method of treating a PCSK9-related disease or condition in a subject in need thereof, comprising administering a therapeutically effective amount of a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725. In some embodiments, the method comprises administering a therapeutically effective amount of a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-8134, 9741-11347, 14628-16233, and 17840-19446, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the method comprises administering a therapeutically effective dose of a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529-8134, 9741-11347, 14628-16233, and 17840-19446. In some embodiments, the method comprises administering a therapeutically effective amount of a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750, or a sequence having at least about 80%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments, the method comprises administering a therapeutically effective amount of a LTRP:gRNA system comprising an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750. In some embodiments, the mRNA further comprises a 5' cap sequence linked to the 5' UTR of the mRNA sequence encoding the LTRP, wherein the 5' cap has a nucleic acid sequence selected from the group consisting of m7G(5')ppp(5')mAG, m7G(5')ppp(5'(A, G(5')ppp(5')A, and G(5')ppp(5')G. In some embodiments, the mRNA comprises a 5' UTR, a 3' UTR, poly A, or a combination thereof.

在治療有需要個體之PCSK9相關疾病或病症之方法的一些實施例中,該方法包含投與治療有效劑量之LTRP:gRNA系統,該LTRP:gRNA系統包含:gRNA,其包含選自由SEQ ID NO: 1744至1746組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列,且該gRNA包含與 PCSK9基因之目標核酸互補之所連接靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含gRNA變異體,其包含SEQ ID NO: 1744之序列及所連接靶向序列。在該方法之一些實施例中,LNP包含gRNA變異體,其包含SEQ ID NO: 1745之序列及所連接靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含gRNA變異體,其包含SEQ ID NO: 1746之序列及所連接靶向序列。在該方法之一些實施例中,LNP包含具有化學修飾之gRNA變異體,其視情況包含選自由SEQ ID NO: 2948至2956、2958至2966及2968至2976組成之群的序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含有包含具有化學修飾之SEQ ID NO: 1746之序列的gRNA變異體,其視情況包含選自由SEQ ID NO: 2968至2976組成之群的序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一些實施例中,LTRP:gRNA系統包含有包含具有化學修飾之SEQ ID NO: 1746之序列的gRNA變異體,其包含SEQ ID NO: 2968之序列,及與取代所列序列之gRNA之3'末端上20個核苷酸之 PCSK9目標核酸互補的靶向序列。在一些實施例中,經化學修飾之gRNA包含選自由SEQ ID NO: 22788至22803組成之群的序列。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至2544、2672、2675、2694及2714組成之群。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至1879、1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1834、1849、1853、1855、1856、1857、1858、1860、1862、1863、1867、1869、1870、1872、1874及1875組成之群。在該方法之一些實施例中,靶向序列係選自由SEQ ID NO: 1855、1867及1869組成之群。在一些實施例中,經化學修飾之gRNA包含選自由SEQ ID NO: 22788至22790組成之群的序列。 In some embodiments of the method of treating a PCSK9-related disease or condition in an individual in need thereof, the method comprises administering a therapeutically effective amount of a LTRP:gRNA system comprising: a gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto, and the gRNA comprises a linked targeting sequence that is complementary to a target nucleic acid of a PCSK9 gene. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1744 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA variant comprising a sequence of SEQ ID NO: 1745 and a linked targeting sequence. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA variant with a chemical modification, optionally comprising a sequence selected from the group consisting of SEQ ID NOs: 2948 to 2956, 2958 to 2966, and 2968 to 2976, and a targeting sequence complementary to a PCSK9 target nucleic acid replacing 20 nucleotides on the 3' end of the gRNA of the listed sequence. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 with a chemical modification, which optionally comprises a sequence selected from the group consisting of SEQ ID NOs: 2968 to 2976, and a targeting sequence complementary to a PCSK9 target nucleic acid 20 nucleotides from the 3' end of the gRNA replacing the listed sequence. In some embodiments of the method, the LTRP:gRNA system comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 with a chemical modification, which comprises a sequence of SEQ ID NO: 2968, and a targeting sequence complementary to a PCSK9 target nucleic acid 20 nucleotides from the 3' end of the gRNA replacing the listed sequence. In some embodiments, the chemically modified gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22803. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824-2544, 2672, 2675, 2694, and 2714. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824-1879, 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855, 1856, 1857, 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875. In some embodiments of the method, the targeting sequence is selected from the group consisting of SEQ ID NOs: 1855, 1867, and 1869. In some embodiments, the chemically modified gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22790.

在治療有需要個體之PCSK9相關疾病或病症之方法的一些實施例中,該方法包含投與治療有效劑量之LNP,該LNP包含LTRP:gRNA系統,該LTRP:gRNA系統包含具有與 PCSK9基因之目標核酸互補之所連接靶向序列之gRNA及編碼長期抑制子融合蛋白之mRNA。在該方法之一些實施例中,LNP包含mRNA,該mRNA包含選自由SEQ ID NO: 6529至14626及14628至22725組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在該方法之一些實施例中,LNP包含有包含選自由SEQ ID NO: 6529至14626及14628至22725組成之群的序列的mRNA。在該方法之一些實施例中,LNP包含mRNA,其包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17840至19446組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在該方法之一些實施例中,LNP包含有包含選自由SEQ ID NO: 6529至8134、9741至11347、14628至16233及17840至19446組成之群的序列的mRNA。在該方法之一些實施例中,LNP包含mRNA,其包含選自由SEQ ID NO: 6529至6537及9742至9750組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。在該方法之一些實施例中,LNP包含有包含選自由SEQ ID NO: 6529至6537及9742至9750組成之群的序列的mRNA。在一些實施例中,mRNA進一步包含連接至編碼LTRP之mRNA序列之5' UTR的5'的5'帽序列,視情況其中該5'帽具有選自由以下組成之群的核酸序列:m7G(5')ppp(5')mAG、m7G(5′)ppp (5′(A,G(5′)ppp(5′)A 及G(5′)ppp(5′)G。在一些實施例中,mRNA包含5' UTR、3'UTR、聚腺苷酸或其等之組合。 In some embodiments of the method of treating a PCSK9-related disease or condition in an individual in need thereof, the method comprises administering a therapeutically effective amount of an LNP comprising an LTRP:gRNA system comprising a gRNA having a linked targeting sequence complementary to a target nucleic acid of a PCSK9 gene and an mRNA encoding a long-term suppressor fusion protein. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 14626 and 14628 to 22725. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 8134, 9741 to 11347, 14628 to 16233, and 17840 to 19446, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 8134, 9741 to 11347, 14628 to 16233, and 17840 to 19446. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. In some embodiments of the method, the LNP comprises an mRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 9742 to 9750. In some embodiments, the mRNA further comprises a 5' cap sequence linked to the 5' UTR of the mRNA sequence encoding the LTRP, wherein the 5' cap has a nucleic acid sequence selected from the group consisting of: m7G(5')ppp(5')mAG, m7G(5')ppp(5'(A, G(5')ppp(5')A and G(5')ppp(5')G. In some embodiments, the mRNA comprises a 5' UTR, a 3' UTR, poly A or a combination thereof.

在一些實施例中,用於 PCSK9基因之轉錄抑制或緘默化之方法包含向個體投與治療有效劑量之LNP,該LNP包含LTRP:gRNA系統,該LTRP:gRNA系統包含:gRNA,其包含選自由SEQ ID NO: 1744至1746組成之群的序列或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列,且該gRNA包含與 PCSK9基因之目標核酸互補之所連接靶向序列。在該方法之一些實施例中,LNP包含gRNA變異體,其包含SEQ ID NO: 1744之序列及所連接靶向序列。在該方法之一些實施例中,LNP包含gRNA變異體,其包含SEQ ID NO: 1745之序列及所連接靶向序列。在該方法之一些實施例中,LNP包含gRNA變異體,其包含SEQ ID NO: 1746之序列及所連接靶向序列。在該方法之一些實施例中,LNP包含具有化學修飾之gRNA變異體,其視情況包含選自由SEQ ID NO: 2948至2956、2958至2966及2968至2976組成之群的序列,及與取代所列序列之gRNA的3'末端上之20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一些實施例中,LNP包含具有化學修飾之gRNA變異體316,其包含選自由SEQ ID NO: 2968至2976組成之群的序列及與取代所列序列之gRNA的3'末端上之20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一個實施例中,LNP包含具有化學修飾之gRNA變異體,其包含SEQ ID NO: 2968之序列及與取代所列序列之gRNA的3'末端上之20個核苷酸之 PCSK9目標核酸互補的靶向序列。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至2544、2672、2675、2694及2714組成之群。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1824至1879、1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群。在該方法之一些實施例中,gRNA之靶向序列係選自由SEQ ID NO: 1834、1849、1853、1855、1856、1857、1858、1860、1862、1863、1867、1869、1870、1872、1874及1875組成之群。在該方法之一些實施例中,靶向序列係選自由SEQ ID NO: 1855、1867及1869組成之群。在一些實施例中,LNP包含經修飾之gRNA,其包含選自由SEQ ID NO: 22788至22803組成之群的序列。在一些實施例中,LNP包含經修飾之gRNA,其包含選自由SEQ ID NO: 22788至22790組成之群的序列。 In some embodiments, the method for transcriptional inhibition or silencing of the PCSK9 gene comprises administering to an individual a therapeutically effective dose of LNP, the LNP comprising a LTRP: gRNA system, the LTRP: gRNA system comprising: a gRNA comprising a sequence selected from the group consisting of SEQ ID NO: 1744 to 1746 or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto, and the gRNA comprises a linked targeting sequence that is complementary to the target nucleic acid of the PCSK9 gene. In some embodiments of the method, the LNP comprises a gRNA variant comprising a sequence of SEQ ID NO: 1744 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA variant comprising a sequence of SEQ ID NO: 1745 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA variant comprising a sequence of SEQ ID NO: 1746 and a linked targeting sequence. In some embodiments of the method, the LNP comprises a gRNA variant with a chemical modification, optionally comprising a sequence selected from the group consisting of SEQ ID NOs: 2948 to 2956, 2958 to 2966, and 2968 to 2976, and a targeting sequence complementary to a PCSK9 target nucleic acid replacing 20 nucleotides on the 3' end of the gRNA of the listed sequence. In some embodiments of the method, the LNP comprises a chemically modified gRNA variant 316 comprising a sequence selected from the group consisting of SEQ ID NOs: 2968 to 2976 and a targeting sequence complementary to the PCSK9 target nucleic acid of 20 nucleotides at the 3' end of the gRNA replacing the listed sequence. In one embodiment of the method, the LNP comprises a chemically modified gRNA variant comprising a sequence of SEQ ID NO: 2968 and a targeting sequence complementary to the PCSK9 target nucleic acid of 20 nucleotides at the 3' end of the gRNA replacing the listed sequence. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 2544, 2672, 2675, 2694 and 2714. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1824 to 1879, 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments of the method, the targeting sequence of the gRNA is selected from the group consisting of SEQ ID NOs: 1834, 1849, 1853, 1855, 1856, 1857, 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874, and 1875. In some embodiments of the method, the targeting sequence is selected from the group consisting of SEQ ID NOs: 1855, 1867, and 1869. In some embodiments, the LNP comprises a modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22803. In some embodiments, the LNP comprises a modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 22788 to 22790.

在治療有需要個體之PCSK9相關疾病或病症之方法之一些實施例中,該方法導致所靶向器官之至少約1%、至少約2%、至少約3%、至少約4%、至少約5%、至少約6%、至少約7%、至少約8%、至少約9%、或至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%或更多的細胞中 PCSK9基因之轉錄抑制或緘默化。在該方法之一些實施例中,所靶向器官之細胞中P CSK9基因經抑制,使得PCSK9蛋白質之表現相較於未處理細胞減少至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、至少約80%或至少約90%。經治療個體之細胞可為選自由以下組成之群的細胞:嚙齒動物細胞、小鼠細胞、大鼠細胞、靈長類動物細胞及非人類靈長類動物細胞。在一些實施例中,經治療個體之真核生物細胞為人類細胞。在一些實施例中,細胞為涉及產生LDL之細胞,包括但不限於肝細胞、或腸細胞、腎臟細胞、中樞神經系統細胞、平滑肌細胞、巨噬細胞、視網膜細胞,或動脈壁(諸如內皮)之細胞。在一些實施例中,細胞為眼細胞。在治療個體之PCSK9相關病症之方法的一些實施例中,個體係選自由小鼠、大鼠、豬、非人類靈長類動物及人類組成之群。 In some embodiments of the method for treating a PCSK9-related disease or condition in an individual in need thereof, the method results in transcriptional inhibition or silencing of the PCSK9 gene in at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, or at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% or more of the cells of the targeted organ. In some embodiments of the method, the PCSK9 gene in the cells of the targeted organ is inhibited so that the expression of the PCSK9 protein is reduced by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80% or at least about 90% compared to untreated cells. The cells of the treated individual can be selected from the group consisting of rodent cells, mouse cells, rat cells, primate cells, and non-human primate cells. In some embodiments, the eukaryotic cells of the treated individual are human cells. In some embodiments, the cells are cells involved in the production of LDL, including but not limited to liver cells, or intestinal cells, kidney cells, central nervous system cells, smooth muscle cells, macrophages, retinal cells, or cells of the arterial wall (such as endothelium). In some embodiments, the cells are eye cells. In some embodiments of the methods of treating a PCSK9-related disorder in a subject, the subject is selected from the group consisting of a mouse, a rat, a pig, a non-human primate, and a human.

多種治療策略可用於治療患有PCSK9相關病症之個體的方法中。在一些實施例中,本揭示提供治療患有PCSK9相關病症之個體的方法,該方法包含根據包含一或多個連續劑量之治療方案,使用治療有效劑量向該個體投與LTRP:gRNA組合物。在治療方案之一些實施例中,治療有效劑量之組合物係以單次劑量投與。在治療方案之其他實施例中,治療有效劑量係經至少兩週、或至少一個月、或至少兩個月、或至少三個月、或至少四個月、或至少五個月、或至少六個月之時段以兩個或更多個劑量向個體投與。在治療方案之一些實施例中,有效劑量係藉由選自由靜脈內、門靜脈內注射、腹膜內、肌肉內、皮下、眼內及經口途徑組成之群的途徑投與。A variety of treatment strategies can be used in methods for treating individuals with PCSK9-related disorders. In some embodiments, the disclosure provides methods for treating individuals with PCSK9-related disorders, the methods comprising administering a LTRP:gRNA composition to the individual according to a treatment regimen comprising one or more consecutive doses. In some embodiments of the treatment regimen, the composition of the therapeutically effective dose is administered in a single dose. In other embodiments of the treatment regimen, the therapeutically effective dose is administered to the individual in two or more doses over a period of at least two weeks, or at least one month, or at least two months, or at least three months, or at least four months, or at least five months, or at least six months. In some embodiments of the treatment regimen, the effective amount is administered by a route selected from the group consisting of intravenous, intraportal injection, intraperitoneal, intramuscular, subcutaneous, intraocular, and oral routes.

在治療方法之一些實施例中,向患有PCSK9相關疾病或病症之個體投與治療有效量之LTRP:gRNA模態(包括包含gRNA及編碼長期抑制子融合蛋白之mRNA的LNP)引起潛在PCSK9相關病症或病症之預防或減輕,使得在個體中觀測到改善,儘管該個體仍可罹患潛在病症。在一些實施例中,投與治療有效量之LTRP:gRNA模態使得至少一個臨床相關終點改善,該至少一個臨床相關終點包括但不限於:LDL-膽固醇相對於基線變化、斑塊動脈粥瘤體積減少、冠狀動脈斑塊減少、動脈粥樣硬化性心血管疾病(ASCVD)減少、心臟血管死亡、非致命心肌梗塞、缺血性中風、非致命中風、冠狀動脈血管再形成、不穩定型心絞痛,或視力。在一些實施例中,投與治療有效量之LTRP:gRNA模態使得至少兩個臨床相關終點改善。在一些實施例中,個體係選自小鼠、大鼠、豬、犬、非人類靈長類動物及人類。In some embodiments of the methods of treatment, administration of a therapeutically effective amount of a LTRP:gRNA modality (including LNPs comprising a gRNA and an mRNA encoding a long-term suppressor fusion protein) to an individual suffering from a PCSK9-associated disease or disorder results in prevention or alleviation of the underlying PCSK9-associated disorder or disorder, such that an improvement is observed in the individual, notwithstanding that the individual may still suffer from the underlying disorder. In some embodiments, administration of a therapeutically effective amount of a LTRP:gRNA modality results in improvement in at least one clinically relevant endpoint, including but not limited to: change from baseline in LDL-cholesterol, reduction in plaque atheroma volume, reduction in coronary plaque, reduction in atherosclerotic cardiovascular disease (ASCVD), cardiovascular death, non-fatal myocardial infarction, ischemic stroke, non-fatal stroke, coronary revascularization, unstable angina, or vision. In some embodiments, administration of a therapeutically effective amount of a LTRP:gRNA modality results in improvement in at least two clinically relevant endpoints. In some embodiments, the subject is selected from mouse, rat, pig, dog, non-human primate, and human.

在一些實施例中,治療方法進一步包含投與化學治療劑,其中該藥劑有效降低LDL水平。此類藥劑包括但不限於史他汀(statins)、菸酸、纖維酸酯或抗PCSK9抗體藥物。在一些實施例中,治療個體之PCSK9相關疾病或病症之方法包含用增加肝LDL受體(LDLR)表現之治療劑來預治療個體。在一些實施例中,治療劑為PCSK9抑制劑,諸如單株抗體、基於核酸之藥劑或小分子。例示性治療劑包括但不限於依羅庫單抗(evolocumab)、因利司然(inclisiran)、阿利庫單抗(alirocumab)或MK-0616。不希望受理論或機制束縛,咸信用PCSK9抑制劑預治療可引起肝LDL受體(LDLR)表現增加,其又可促進隨後向個體投與之包含CasX:gRNA組合物之LNP的吸收。藉由增加LNP之肝細胞吸收,預期將增強 PCSK9基因之編輯以使得可獲得PCSK9相關病症之改善。 In some embodiments, the treatment method further comprises administering a chemotherapeutic agent, wherein the agent is effective in reducing LDL levels. Such agents include, but are not limited to, statins, niacin, cellulose esters, or anti-PCSK9 antibody drugs. In some embodiments, the method of treating a PCSK9-related disease or condition in an individual comprises pre-treating the individual with a therapeutic agent that increases liver LDL receptor (LDLR) expression. In some embodiments, the therapeutic agent is a PCSK9 inhibitor, such as a monoclonal antibody, a nucleic acid-based agent, or a small molecule. Exemplary therapeutic agents include, but are not limited to, evolocumab, inclisiran, alirocumab, or MK-0616. Without wishing to be bound by theory or mechanism, it is believed that pretreatment with a PCSK9 inhibitor may result in increased hepatic LDL receptor (LDLR) expression, which in turn may promote the uptake of LNPs containing a CasX:gRNA composition subsequently administered to an individual. By increasing hepatocyte uptake of LNPs, it is expected that editing of the PCSK9 gene will be enhanced so that improvements in PCSK9-related disorders may be achieved.

自用於分析之經治療個體獲得樣本(諸如體液或組織)以測定治療之有效性的方法及製備樣本以允許分析之方法為熟習此項技術者所熟知。RNA及蛋白質水平之分析方法在上文論述且為熟習此項技術者所熟知。治療作用亦可藉由利用此項技術中已知之常規臨床方法量測自與一或多種本揭示之化合物接觸之動物收集的前述流體、組織或器官中之目標基因表現相關之生物標記物來評定。PCSK9病症之生物標記物包括但不限於PCSK9水平、低密度脂蛋白(LDL-膽固醇)、脂蛋白元B、非HDL膽固醇、三酸甘油酯及脂蛋白a、可溶性CD40配位體、骨橋蛋白(OPN)、骨保護素(OPG)、基質金屬蛋白酶(MMP)及骨髓過氧化酶(MPOP),其中標記物之濃度係與已知生理學上正常濃度或未患PCSK9病症之個體中的濃度相比。Methods for obtaining samples (such as body fluids or tissues) from treated individuals for analysis to determine the effectiveness of treatment and methods for preparing samples to allow analysis are well known to those skilled in the art. Methods for analysis of RNA and protein levels are discussed above and are well known to those skilled in the art. The effect of treatment can also be assessed by measuring biomarkers associated with target gene expression in the aforementioned fluids, tissues or organs collected from animals contacted with one or more compounds of the present disclosure using routine clinical methods known in the art. Biomarkers for PCSK9 disorder include, but are not limited to, PCSK9 levels, low density lipoprotein (LDL-cholesterol), lipoprotein B, non-HDL cholesterol, triglycerides and lipoprotein a, soluble CD40 ligand, osteopontin (OPN), osteoprotegerin (OPG), matrix metalloproteinases (MMPs) and myeloperoxidase (MPOP), wherein the concentrations of the markers are compared to known physiologically normal concentrations or concentrations in individuals without PCSK9 disorder.

存在表現PCSK9之突變形式之若干小鼠模型且適合於評估治療方法。PCSK9相關病症之轉殖基因小鼠模型包括具有hPCSK9之基因敲入小鼠模型(Carreras, A. In vivogenome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. MC Biology 17:4 (2019); Herbert B.等人Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol. 30(7):1333 (2010))。 XI. 組合物、醫藥組合物、套組及製品 Several mouse models exist that express mutant forms of PCSK9 and are suitable for evaluating therapeutic approaches. Transgenic mouse models of PCSK9-related disorders include knock-in mouse models with hPCSK9 (Carreras, A. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. MC Biology 17:4 (2019); Herbert B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol. 30(7):1333 (2010)). XI. Compositions, Pharmaceutical Compositions, Kits and Articles

在一些實施例中,本揭示提供包含以下之組合物: i)本揭示之長期抑制子融合蛋白及包含與 PCSK9基因之序列互補之靶向序列的gRNA;ii)一或多種編碼i)之長期抑制子融合蛋白及gRNA之核酸;iii)包含gRNA及編碼長期抑制子融合蛋白之mRNA之LNP或合成奈米粒子,或iv)包含gRNA之LNP或合成奈米粒子及包含編碼長期抑制子融合蛋白之mRNA的LNP或合成奈米粒子。 In some embodiments, the present disclosure provides a composition comprising: i) a long-term suppressor fusion protein of the present disclosure and a gRNA comprising a targeting sequence complementary to the sequence of the PCSK9 gene; ii) one or more nucleic acids encoding the long-term suppressor fusion protein of i) and the gRNA; iii) an LNP or synthetic nanoparticle comprising a gRNA and an mRNA encoding the long-term suppressor fusion protein, or iv) an LNP or synthetic nanoparticle comprising a gRNA and an LNP or synthetic nanoparticle comprising an mRNA encoding the long-term suppressor fusion protein.

在一些實施例中,本揭示提供包含以下之醫藥組合物:i)本揭示之任一實施例之長期抑制子融合蛋白及包含與 PCSK9基因之序列互補之靶向序列的gRNA;ii)一或多種編碼i)之長期抑制子融合蛋白及gRNA之核酸;iii)包含gRNA及編碼長期抑制子融合蛋白之mRNA之LNP或合成奈米粒子,或iv)包含gRNA之LNP或合成奈米粒子,及包含編碼長期抑制子融合蛋白之mRNA以及一或多種醫藥學上適合之賦形劑、緩衝劑、稀釋劑或載劑之LNP或合成奈米粒子。在一些實施例中,醫藥組合物經調配以用於選自由靜脈內、門靜脈內注射、腹膜內、肌肉內、皮下、眼內及經口途徑組成之群的投與途徑。在一個實施例中,醫藥組合物呈液體形式或冷凍形式。在另一實施例中,醫藥組合物在用於單次注射之預填充注射器中。在另一實施例中,醫藥組合物呈固體形式,例如醫藥組合物經凍乾。 In some embodiments, the present disclosure provides a pharmaceutical composition comprising: i) a long-term suppressor fusion protein of any embodiment of the present disclosure and a gRNA comprising a targeting sequence complementary to the sequence of the PCSK9 gene; ii) one or more nucleic acids encoding the long-term suppressor fusion protein of i) and the gRNA; iii) an LNP or synthetic nanoparticle comprising a gRNA and an mRNA encoding the long-term suppressor fusion protein, or iv) an LNP or synthetic nanoparticle comprising a gRNA and an mRNA encoding the long-term suppressor fusion protein and an LNP or synthetic nanoparticle comprising one or more pharmaceutically suitable excipients, buffers, diluents, or carriers. In some embodiments, the pharmaceutical composition is formulated for a route of administration selected from the group consisting of intravenous, intraportal injection, intraperitoneal, intramuscular, subcutaneous, intraocular, and oral routes. In one embodiment, the pharmaceutical composition is in liquid form or frozen form. In another embodiment, the pharmaceutical composition is in a prefilled syringe for a single injection. In another embodiment, the pharmaceutical composition is in solid form, for example, the pharmaceutical composition is lyophilized.

賦形劑可包括鹽、等張劑、血清蛋白、緩衝劑或其他pH控制劑、抗氧化劑、增稠劑、不帶電聚合物、防腐劑或低溫保護劑。本揭示之組合物中使用之賦形劑可進一步包括等張劑及緩衝劑或其他pH控制劑。可添加此等賦形劑以達到較佳pH值範圍(約6.0至8.0)及容積滲透濃度(約50至400 mmol/L)。適合緩衝劑之實例係乙酸鹽、硼酸鹽、碳酸鹽、檸檬酸鹽、磷酸鹽及磺酸化有機分子緩衝劑。此等緩衝劑可以0.01至1.0% (w/v)之濃度存在於組合物中。等張劑可選自此項技術中已知之試劑中之任一者,例如甘露糖醇、右旋糖、葡萄糖及氯化鈉,或其他電解質。在一些實施例中,等張劑可為葡萄糖或氯化鈉。等張劑之用量可使組合物具有與引入該組合物之生物環境之滲透壓相同或類似的滲透壓。組合物中等張劑之濃度將取決於所用特定等張劑之性質且可在約0.1%至10%範圍內。當使用葡萄糖時,其較佳以1至5% w/v,更尤其5% w/v之濃度使用。當等張劑為氯化鈉時,其較佳以至多1% w/v,尤其0.9% w/v之量使用。本揭示之組合物可進一步含有防腐劑。防腐劑之實例包括聚六亞甲基-雙胍、苯紮氯銨(benzalkonium chloride)、穩定之氧氯複合物(諸如稱為Purite®之複合物)、乙酸苯汞、氯丁醇、山梨酸、氯己定(chlorhexidine)、苯甲醇、對羥苯甲酸酯及硫柳汞。通常,此等防腐劑係以約0.001至1.0%之濃度存在。此外,本揭示之組合物亦可含有低溫保存劑。較佳低溫防腐劑為葡萄糖、蔗糖、甘露糖醇、乳糖、海藻糖、山梨糖醇、膠態二氧化矽、分子量較佳低於100,000 g/mol之聚葡萄糖、甘油及分子量低於100,000 g/mol之聚乙二醇或其混合物。最佳為葡萄糖、海藻糖及聚乙二醇。通常,此等低溫防腐劑以約0.01%至10%之濃度存在。Excipients may include salts, isotonic agents, serum proteins, buffers or other pH control agents, antioxidants, thickeners, uncharged polymers, preservatives or cryoprotectants. Excipients used in the compositions disclosed herein may further include isotonic agents and buffers or other pH control agents. Such excipients may be added to achieve a preferred pH range (about 6.0 to 8.0) and volume osmotic concentration (about 50 to 400 mmol/L). Examples of suitable buffers are acetates, borates, carbonates, citrates, phosphates and sulfonated organic molecule buffers. Such buffers may be present in the composition at a concentration of 0.01 to 1.0% (w/v). The isotonic agent may be selected from any of the reagents known in the art, such as mannitol, dextrose, glucose, and sodium chloride, or other electrolytes. In some embodiments, the isotonic agent may be glucose or sodium chloride. The amount of the isotonic agent may be such that the composition has an osmotic pressure that is the same as or similar to the osmotic pressure of the biological environment into which the composition is introduced. The concentration of the isotonic agent in the composition will depend on the nature of the particular isotonic agent used and may be in the range of about 0.1% to 10%. When glucose is used, it is preferably used at a concentration of 1 to 5% w/v, more particularly 5% w/v. When the isotonic agent is sodium chloride, it is preferably used in an amount of up to 1% w/v, especially 0.9% w/v. The composition disclosed herein may further contain a preservative. Examples of preservatives include polyhexamethylene-biguanide, benzalkonium chloride, stable oxychloride complexes (such as the complex called Purite®), phenylmercuric acetate, chlorobutanol, sorbic acid, chlorhexidine, benzyl alcohol, para-hydroxybenzoate and thimerosal. Typically, these preservatives are present in a concentration of about 0.001 to 1.0%. In addition, the composition disclosed herein may also contain a low temperature preservative. Preferred low-temperature preservatives are glucose, sucrose, mannitol, lactose, trehalose, sorbitol, colloidal silicon dioxide, polydextrose with a molecular weight preferably less than 100,000 g/mol, glycerol, and polyethylene glycol with a molecular weight less than 100,000 g/mol, or mixtures thereof. Glucose, trehalose, and polyethylene glycol are the most preferred. Typically, these low-temperature preservatives are present in a concentration of about 0.01% to 10%.

適用於投與之額外醫藥調配物適用於本文所揭示之方法及組合物中(參見例如Remington's Pharmaceutical Sciences (1990)第18版, Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (2023)第23版, Elsevier Publishing; The Merck Index (1996)第12版,Merck Publishing Group, Whitehouse, N.J.;及Pharmaceutical Principles of Solid Dosage Forms, Technonic Publishing Co., Inc., Lancaster, Pa., (1993))。Additional pharmaceutical formulations suitable for administration are suitable for use in the methods and compositions disclosed herein (see, e.g., Remington's Pharmaceutical Sciences (1990) 18th edition, Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (2023) 23rd edition, Elsevier Publishing; The Merck Index (1996) 12th edition, Merck Publishing Group, Whitehouse, N.J.; and Pharmaceutical Principles of Solid Dosage Forms, Technonic Publishing Co., Inc., Lancaster, Pa., (1993)).

在其他實施例中,本文提供套組,其包含本文所描述的LTRP:gRNA系統、聚核苷酸、載體及LNP調配物。在其他實施例中,本文提供套組,其包含長期抑制子融合蛋白及包含與 PCSK9基因之序列互補之靶向序列的本揭示之任一實施例的一個或複數個CasX gRNA。在某些實施例中,本文提供套組,其包含編碼長期抑制子融合蛋白之mRNA及包含與 PCSK9基因目標核酸序列之序列互補之靶向序列的本揭示之任一實施例的一個或複數個gRNA。 In other embodiments, kits are provided herein, comprising the LTRP:gRNA systems, polynucleotides, vectors, and LNP formulations described herein. In other embodiments, kits are provided herein, comprising a long-term suppressor fusion protein and one or more CasX gRNAs of any embodiment of the disclosure comprising a targeting sequence complementary to the sequence of the PCSK9 gene. In certain embodiments, kits are provided herein, comprising an mRNA encoding a long-term suppressor fusion protein and one or more gRNAs of any embodiment of the disclosure comprising a targeting sequence complementary to the sequence of the PCSK9 gene target nucleic acid sequence.

在一些實施例中,本文提供套組,其包含囊封編碼長期抑制子融合蛋白之mRNA及包含與 PCSK9基因之序列互補之靶向序列的本揭示之任一實施例的一個或複數個gRNA的LNP調配物。在一些實施例中,mRNA進一步包含連接至mRNA序列之5' UTR的5'的5'帽序列,其中該5'帽具有選自由以下組成之群的核酸序列:m7G(5')ppp(5')mAG、m7G(5′)ppp (5′(A,G(5′)ppp(5′)A 及G(5′)ppp(5′)G。在一些實施例中,套組包含有包含mRNA之第一LNP調配物及包含gRNA之第二LNP調配物。在一些實施例中,mRNA及gRNA囊封於單一LNP調配物中。 In some embodiments, provided herein are kits comprising an LNP formulation encapsulating an mRNA encoding a long-term suppressor fusion protein and one or more gRNAs of any embodiment of the present disclosure comprising a targeting sequence complementary to the sequence of the PCSK9 gene. In some embodiments, the mRNA further comprises a 5' cap sequence linked to the 5' UTR of the mRNA sequence, wherein the 5' cap has a nucleic acid sequence selected from the group consisting of: m7G(5')ppp(5')mAG, m7G(5')ppp(5'(A, G(5')ppp(5')A and G(5')ppp(5')G. In some embodiments, the kit comprises a first LNP formulation comprising an mRNA and a second LNP formulation comprising a gRNA. In some embodiments, the mRNA and the gRNA are encapsulated in a single LNP formulation.

在例示性實施例中,本揭示之套組包含mRNA,其包含選自由SEQ ID NO: 6528至14626及14627至22725組成之群的編碼長期抑制子融合蛋白之序列;及gRNA,其包含選自由SEQ ID NO: 1744至1746及2947至2976組成之群的序列及與 PCSK9基因中之目標核酸互補之連接靶向序列。在一些實施例中,靶向序列係選自由SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714組成之群。在一些實施例中,本揭示之套組包含mRNA,其包含選自由SEQ ID NO: 6528至14626及14627至22725組成之群的編碼長期抑制子融合蛋白之序列;及經修飾之gRNA,其包含選自由SEQ ID NO: 2278至22803組成之群的序列。在一些實施例中,本揭示之套組包含mRNA,其包含選自由SEQ ID NO: 6528至14626及14627至22725組成之群的編碼長期抑制子融合蛋白之序列;及經修飾之gRNA,其包含選自由SEQ ID NO: 2278至22790組成之群的序列。 In an exemplary embodiment, the kit of the present disclosure comprises an mRNA comprising a sequence encoding a long-term suppressor fusion protein selected from the group consisting of SEQ ID NOs: 6528 to 14626 and 14627 to 22725; and a gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746 and 2947 to 2976 and a linked targeting sequence complementary to a target nucleic acid in a PCSK9 gene. In some embodiments, the targeting sequence is selected from the group consisting of SEQ ID NOs: 1824 to 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694, and 2714. In some embodiments, the kits of the present disclosure comprise an mRNA comprising a sequence encoding a long-term suppressor fusion protein selected from the group consisting of SEQ ID NOs: 6528 to 14626 and 14627 to 22725; and a modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 2278 to 22803. In some embodiments, the kits of the present disclosure comprise an mRNA comprising a sequence encoding a long-term suppressor fusion protein selected from the group consisting of SEQ ID NOs: 6528 to 14626 and 14627 to 22725; and a modified gRNA comprising a sequence selected from the group consisting of SEQ ID NOs: 2278 to 22790.

在一些實施例中,套組包含載體,該載體包含編碼本揭示之長期抑制子融合蛋白及gRNA之序列。In some embodiments, the kit comprises a vector comprising a sequence encoding a long-term suppressor fusion protein and a gRNA disclosed in the code book.

在一些實施例中,套組進一步包含緩衝劑、核酸酶抑制劑、蛋白酶抑制劑、脂質體、治療劑、標記、標記顯現試劑、使用說明書或前述之任何組合。在一些實施例中,套組進一步包含醫藥學上可接受之載劑、稀釋劑或賦形劑。In some embodiments, the kit further comprises a buffer, a nuclease inhibitor, a protease inhibitor, a liposome, a therapeutic agent, a label, a label display reagent, instructions for use, or any combination thereof. In some embodiments, the kit further comprises a pharmaceutically acceptable carrier, diluent, or formulation.

在一些實施例中,套組進一步包含適合容器(例如管、小瓶或盤)。In some embodiments, the kit further comprises a suitable container (e.g., a tube, a vial, or a tray).

在一些實施例中,套組包含用於基因抑制應用之適當對照組合物,及使用說明書。In some embodiments, the kit comprises appropriate control compositions for gene suppression applications, and instructions for use.

在一些實施例中,本揭示提供用於治療患有PCSK9相關疾病之個體的組合物。在一些實施例中,本揭示提供長期抑制子融合蛋白及gRNA之組合物,其係用於製造用於治療個體之疾病的藥劑。在一些實施例中,本揭示提供包含長期抑制子融合蛋白及gRNA之LNP組合物,其用於製造用於治療個體之疾病的藥劑。In some embodiments, the disclosure provides compositions for treating individuals with PCSK9-related diseases. In some embodiments, the disclosure provides compositions of long-term inhibitor fusion proteins and gRNAs for use in the manufacture of medicaments for treating diseases in individuals. In some embodiments, the disclosure provides LNP compositions comprising long-term inhibitor fusion proteins and gRNAs for use in the manufacture of medicaments for treating diseases in individuals.

以下實例僅為說明性的且不意欲以任何方式限制本揭示之任何態樣。 實例 實例 1 評估間隔子當與 LTRP5-ADD 分子配對時在人類肝細胞中實現 PCSK9 基因座之抑制 The following examples are illustrative only and are not intended to limit any aspect of the present disclosure in any way. Examples Example 1 : Evaluation of spacers for suppression of the PCSK9 locus in human hepatocytes when paired with LTRP5-ADD molecules

進行實驗以證明多個具有TTC識別模體的間隔子在與含有ADD域的呈組態5之LTRP分子(LTRP5;圖解於圖1)配對時可誘導持久抑制人類細胞中治療相關內源基因座。特定地,在人類Huh7細胞中進行最初概念驗證實驗,以評估展現對非人類靈長類動物(NHP)基因體之序列保守性的間隔子的子集,以識別用於測試未來活體內NHP研究中之主導間隔子。 材料及方法: Experiments were performed to demonstrate that multiple spacers with TTC recognition motifs can induce persistent repression of therapeutically relevant endogenous loci in human cells when paired with an ADD domain-containing LTRP molecule in configuration 5 (LTRP5; schematically illustrated in Figure 1). Specifically, initial proof-of-concept experiments were performed in human Huh7 cells to evaluate a subset of spacers that exhibit sequence conservation to the non-human primate (NHP) genome to identify leading spacers for testing in future in vivo NHP studies. Materials and Methods:

用於與含有ADD域之LTRP5分子進行實驗測試之 PCSK9靶向間隔子的計算選擇: Computational selection of PCSK9 targeting spacers for experimental testing with LTRP5 molecules containing the ADD domain:

為確定整個人類 PCSK9基因座中之潛在LTRP特異性間隔子,將目標搜尋區域定義為在轉錄起始位點(TSS)上游5 KB起始至轉錄終止位點下游5 KB。基於TTC PAM之可用性確定間隔子;因此,在整個目標 PCSK9基因座中識別出總共1,121個TTC間隔子。隨後此等間隔子在功能上藉由基於彼等定位套疊關鍵基因體特徵而註釋,亦即確定推定之間隔子是否靶向啟動子區內之外顯子、內含子或候選順式-調節元件(cCRE),及/或與基因變異(例如SNP)之共同位點重疊。為了縮小且確定用於實驗篩選的初始間隔子群組,對所提取的間隔子進行一組過濾準則。首先,藉由移除含有多至一個與中靶(on-target)位點的鹼基對錯配之脫靶(off-target)位點的間隔子來排除非特異性間隔子。此外,排除含有以下單核苷酸重複序列之間隔子:長度超過四個鹼基對(bp)之胸腺嘧啶核苷酸重複序列,或長度超過5 bp之腺嘌呤、鳥嘌呤或胞嘧啶核苷酸重複序列。接著,自此過濾集合排除在間隔子之最後四個核苷酸中具有超過一個含有錯配之脫靶位點之間隔子。最後,排除以在TSS上游>2KB且在轉錄終止位點下游>2KB為目標之間隔子。此產生722個TTC間隔子之經過濾集合(SEQ ID NO: 1824至2545)。自此722間隔子之經過濾集合中,選擇TSS-近端(在TSS之上游及下游1100 bp內)之間隔子用於實驗評估,使得鑑別出67個TTC間隔子。另外兩個間隔子TG-06-354及TG-06-352位於1100 bp臨限值窗口之外,亦被選擇包括在其中。所得69個TTC間隔子之序列示於表11中。 11 靶向人類 PCSK9 基因座之 69 TTC 間隔子之 RNA 序列。粗體間隔子係人類與非人類靈長類動物基因體之間具有序列一致性 (sequence consensus) 的間隔子且在此實例中進行評定 間隔子ID 間隔子RNA 序列 SEQ ID NO: TG-06-342 AAUUACAGGCAACAGGAAGG 1824 TG-06-343 CCCCAUGUAAGAGAGGAAGU 1825 TG-06-344 CAGUUUCUGCCUCGCCGCGG 1826 TG-06-345 GCCUCGCCGCGGCACAGGUG 1827 TG-06-346 CCCACCUGUGCCGCGGCGAG 1828 TG-06-347 CUCCUUCACCCACCUGUGCC 1829 TG-06-348 AGGCAUUCACUCCUUCACCC 1830 TG-06-349 CUGUGCCUGGUGCAGUUCCC 1831 TG-06-350 GUGUCAUAAAGAAAUUGCCU 1832 TG-06-351 UUAUGACACAGAACUCAUGC 1833 TG-06-001 GAGGAGGACGGCCUGGCCGA 1834 TG-06-002 ACCGCUGCGCCAAGGUGCGG 1835 TG-06-004 GCCAGGCCGUCCUCCUCGGA 1836 TG-06-005 GUGCUCGGGUGCUUCGGCCA 1837 TG-06-117 ACUUUGUUUGCAAAGACCUC 1838 TG-06-118 GAGUGAAAUGGCCUGCUCUG 1839 TG-06-119 GAGCAGGCCAUUUCACUCGG 1840 TG-06-120 CUCGGAAUCUGCUGUGCAUC 1841 TG-06-121 GGAAGGGCUGUCGAUACUGG 1842 TG-06-123 UCCCAGUAUCGACAGCCCUU 1843 TG-06-124 CAGUAUCGACAGCCCUUCCA 1844 TG-06-125 AGAAAGAGCAAGCCUCAUGU 1845 TG-06-128 AGAAAUCAACUGGACAAGCA 1846 TG-06-131 UGAACAUGGUGUGUAAAAGG 1847 TG-06-132 AGAAGAUUCAAUUUGCAAAG 1848 TG-06-133 AUGGUAGGCACAAGCUCAGC 1849 TG-06-134 GAAUUCUAUGGUAGGCACAA 1850 TG-06-135 GGAAAGCUGAGCUUGUGCCU 1851 TG-06-138 AGGGAUUUAUACUACAAAGA 1852 TG-06-139 AGGAGCAGCUAGUUGGUAAG 1853 TG-06-140 AAACUUAGCCUGGACCCCCU 1854 TG-06-141 ACUGGCCUUAACCUGGCAGC 1855 TG-06-142 UUCCACUGGCCUUAACCUGG 1856 TG-06-143 GAAUCAAUCCUACUGUGGAC 1857 TG-06-144 GUGGGCAGCGAGGAGUCCAC 1858 TG-06-145 UGGGUCCACCUUGUCUCCUG 1859 TG-06-146 GAAGUCUCACUGGUCAGCAG 1860 TG-06-147 GUGUUUCCUGGGUCCACCUU 1861 TG-06-149 AGCCCAGUUAGGAUUUGGGA 1862 TG-06-150 UCCCUCUGCGCGUAAUCUGA 1863 TG-06-151 CUCUGCGCGUAAUCUGACGC 1864 TG-06-152 GCCUCGCCCUCCCCAAACAG 1865 TG-06-153 GUUAAUGUUUAAUCAGAUAG 1866 TG-06-154 AGGGUGUGGGUGCUUGACGC 1867 TG-06-155 GCAGCGACGUCGAGGCGCUC 1868 TG-06-157 GGGUCUGAGCCUGGAGGAGU 1869 TG-06-158 GGAGCAGGGCGCGUGAAGGG 1870 TG-06-159 GCGCGCCCCUUCACGCGCCC 1871 TG-06-160 CGCGCCCUGCUCCUGAACUU 1872 TG-06-161 GCUCCUGCACAGUCCUCCCC 1873 TG-06-167 CACUGAAUAGCGCAGCCGCA 1874 TG-06-168 GUGGGAAGGUUCGCGGGGUU 1875 TG-06-169 CGGGGUUGGGAGACCCGGAG 1876 TG-06-170 UCGGCCUCCGGGUCUCCCAA 1877 TG-06-171 CAGUACGUUCCAGGCAUUCA 1878 TG-06-172 GCUGAAACAGAUGGAAUACU 1879 TG-06-249 AAACCAAAUCGGAACCCACU 1880 HS-6-147 UGUUGCCUGUAAUUGGAAUU 1881 HS-6-149 CCUUCCUGUUGCCUGUAAUU 1882 TG-06-122 CCUUUGUUUCUUCCCAGUAU 1883 TG-06-127 UCCUCCUGCCUGGUACACAA 1884 TG-06-137 GAAUGUACCUAUAUGACGUC 1885 TG-06-188 CCCCGGCCUCCCAUCCCUAC 1886 TG-06-243 CUUGGCACGAUCUUGGGGAC 1887 TG-06-250 GAUUUGGUUUGGAAAACAUG 1888 TG-06-251 CUCCAGGCCCUCCACCCUCC 1889 HS-6-159 CACCCCGCCCCUGUCUCGGG 1890 TG-06-354 CCCCUGCCCCUUCAGCUGGU 1925 TG-06-352 UCCCUCACCAAUUACCCCUC 1910 To identify potential LTRP-specific spacers throughout the human PCSK9 locus, a target search region was defined starting 5 KB upstream of the transcription start site (TSS) and ending 5 KB downstream of the transcription stop site. Spacers were identified based on the availability of TTC PAMs; thus, a total of 1,121 TTC spacers were identified throughout the targeted PCSK9 locus. These spacers were then functionally annotated based on their positioning by overlapping key genomic features, i.e., determining whether the putative spacers target exons, introns, or candidate cis-regulatory elements (cCREs) within the promoter region, and/or overlap with common sites of genetic variation (e.g., SNPs). In order to narrow down and identify the initial set of spacers for experimental screening, a set of filtering criteria was applied to the extracted spacers. First, non-specific spacers were excluded by removing spacers containing up to one off-target site with a base pair mismatch with the on-target site. In addition, spacers containing the following single nucleotide repeat sequences were excluded: thymine nucleotide repeat sequences longer than four base pairs (bp), or adenine, guanine, or cytosine nucleotide repeat sequences longer than 5 bp. Then, from this filtering set, spacers with more than one off-target site containing a mismatch in the last four nucleotides of the spacer were excluded. Finally, spacers that were targeted >2 KB upstream of the TSS and >2 KB downstream of the transcriptional stop site were excluded. This resulted in a filtered set of 722 TTC spacers (SEQ ID NOs: 1824 to 2545). From this filtered set of 722 spacers, TSS-proximal (within 1100 bp upstream and downstream of the TSS) spacers were selected for experimental evaluation, resulting in the identification of 67 TTC spacers. Two additional spacers, TG-06-354 and TG-06-352, were located outside the 1100 bp critical window and were also selected for inclusion. The sequences of the resulting 69 TTC spacers are shown in Table 11. Table 11 : RNA sequences of 69 TTC spacers targeting the human PCSK9 locus . Bold spacers are those with sequence consensus between human and non-human primate genomes and were evaluated in this example. Spacer ID Spacer RNA sequence SEQ ID NO: TG-06-342 AAUUACAGGCAACAGGAAGG 1824 TG-06-343 CCCCAUGUAAGAGAGGAAGU 1825 TG-06-344 CAGUUUCUGCCUCGCCGCGG 1826 TG-06-345 GCCUCGCCGCGGCACAGGUG 1827 TG-06-346 CCCACCUGUGCCGCGGCGAG 1828 TG-06-347 CUCCUUCACCCACCUGUGCC 1829 TG-06-348 AGGCAUUCACUCCUUCACCC 1830 TG-06-349 CUGUGCCUGGUGCAGUUCCC 1831 TG-06-350 GUGUCAUAAAGAAAUUGCCU 1832 TG-06-351 UUAUGACACAGAACUCAUGC 1833 TG-06-001 GAGGAGGACGGCCUGGCCGA 1834 TG-06-002 ACCGCUGCGCCAAGGUGCGG 1835 TG-06-004 GCCAGGCCGUCCUCCUCGGA 1836 TG-06-005 GUGCUCGGGUGCUUCGGCCA 1837 TG-06-117 ACUUUGUUUGCAAAGACCUC 1838 TG-06-118 GAGUGAAAUGGCCUGCUCUG 1839 TG-06-119 GAGCAGGCCAUUUCACUCGG 1840 TG-06-120 CUCGGAAUCUGCUGUGCAUC 1841 TG-06-121 GGAAGGGCUGUCGAUACUGG 1842 TG-06-123 UCCCAGUAUCGACAGCCCUU 1843 TG-06-124 CAGUAUCGACAGCCCUUCCA 1844 TG-06-125 AGAAAGAGCAAGCCUCAUGU 1845 TG-06-128 AGAAAUCAACUGGACAAGCA 1846 TG-06-131 UGAACAUGGUGUGUAAAAGG 1847 TG-06-132 AGAAGAUUCAAUUUGCAAAG 1848 TG-06-133 AUGGUAGGCACAAGCUCAGC 1849 TG-06-134 GAAUUCUAUGGUAGGCACAA 1850 TG-06-135 GGAAAGCUGAGCUUGUGCCU 1851 TG-06-138 AGGGAUUUAUACUACAAAGA 1852 TG-06-139 AGGAGCAGCUAGUUGGUAAG 1853 TG-06-140 AAACUUAGCCUGGACCCCCU 1854 TG-06-141 ACUGGCCUUAACCUGGCAGC 1855 TG-06-142 UUCCACUGGCCUUAACCUGG 1856 TG-06-143 GAAUCAAUCCUACUGUGGAC 1857 TG-06-144 GUGGGCAGCGAGGAGUCCAC 1858 TG-06-145 UGGGUCCACCUUGUCUCCUG 1859 TG-06-146 GAAGUCUCACUGGUCAGCAG 1860 TG-06-147 GUGUUUCCUGGGUCCACCUU 1861 TG-06-149 AGCCCAGUUAGGAUUUGGGA 1862 TG-06-150 UCCCUCUGCGCGUAAUCUGA 1863 TG-06-151 CUCUGCGCGUAAUCUGACGC 1864 TG-06-152 GCCUCGCCCUCCCCAAACAG 1865 TG-06-153 GUUAAUGUUUAAUCAGAUAG 1866 TG-06-154 AGGGUGUGGGUGCUUGACGC 1867 TG-06-155 GCAGCGACGUCGAGGCGCUC 1868 TG-06-157 GGGUCUGAGCCUGGAGGAGU 1869 TG-06-158 GGAGCAGGGCGCGUGAAGGG 1870 TG-06-159 GCGCGCCCCUUCACGCGCCC 1871 TG-06-160 CGCGCCCUGCUCCUGAACUU 1872 TG-06-161 GCUCCUGCACAGUCCUCCCC 1873 TG-06-167 CACUGAAUAGCGCAGCCGCA 1874 TG-06-168 GUGGGAAGGUUCGCGGGGUU 1875 TG-06-169 CGGGGUUGGGAGACCCGGAG 1876 TG-06-170 UCGGCCUCCGGGUCUCCCAA 1877 TG-06-171 CAGUACGUUCCAGGCAUUCA 1878 TG-06-172 GCUGAAACAGAUGGAAUACU 1879 TG-06-249 AAACCAAAUCGGAACCCACU 1880 HS-6-147 UGUUGCCUGUAAUUGGAAUU 1881 HS-6-149 CCUUCCUGUUGCCUGUAAUU 1882 TG-06-122 CCUUUGUUUCUUCCCAGUAU 1883 TG-06-127 UCCUCCUGCCUGGUACACAA 1884 TG-06-137 GAAUGUACCUAUAUGACGUC 1885 TG-06-188 CCCCGGCCUCCCAUCCCUAC 1886 TG-06-243 CUUGGCACGAUCUUGGGGAC 1887 TG-06-250 GAUUUGGUUUGGAAAACAUG 1888 TG-06-251 CUCCAGGCCCUCCACCCUCC 1889 HS-6-159 CACCCCGCCCCUGUCUCGGG 1890 TG-06-354 CCCCUGCCCCUUCAGCUGGU 1925 TG-06-352 UCCCUCACCAAUUACCCCUC 1910

評定PCSK9分泌水平以選擇對非人類靈長類動物基因體具有序列保守性之 PCSK9靶向間隔子: Assessment of PCSK9 secretion levels to select PCSK9 targeting spacers with sequence conservation to non-human primate genomes:

在經鑑別的69個TTC間隔子中,首先測試展現人類與非人類靈長類動物基因體之間的序列保守性的15個間隔子(表11中之粗體間隔子)以評定其對PCSK9分泌水平之影響。Of the 69 TTC spacers identified, 15 spacers that exhibited sequence conservation between the human and non-human primate genomes (bold spacers in Table 11) were first tested to assess their effects on PCSK9 secretion levels.

編碼以下分子之mRNA係藉由內部活體外轉錄(IVT)生成,該內部活體外轉錄係利用CleanCap® AG及N1-甲基-假尿苷進行。隨後,IVT反應受到DNA酶消化及管柱上oligodT純化影響:1)催化活性CasX 676 (如實例2中所描述)、2) dXR1(與ZIM3-KRAB域融合的dCasX),及3) LTRP5-ADD-ZIM3 (含有ADD域及ZIM3-KRAB域的LTRP5)  CasX 676之DNA及mRNA序列顯示於表19及20中;dXR1之DNA及mRNA序列顯示於表12及13中;LTRP5-ZIM3-ADD之DNA及mRNA序列顯示於表15及16中。mRNA encoding the following molecules was generated by internal in vitro transcription (IVT) using CleanCap® AG and N1-methyl-pseudouridine. The IVT reaction was then subjected to DNase digestion and on-column oligodT purification: 1) catalytically active CasX 676 (as described in Example 2), 2) dXR1 (dCasX fused to the ZIM3-KRAB domain), and 3) LTRP5-ADD-ZIM3 (LTRP5 containing the ADD domain and the ZIM3-KRAB domain) The DNA and mRNA sequences of CasX 676 are shown in Tables 19 and 20; the DNA and mRNA sequences of dXR1 are shown in Tables 12 and 13; the DNA and mRNA sequences of LTRP5-ZIM3-ADD are shown in Tables 15 and 16.

含有靶向 PCSK9基因座之NHP保守間隔子(表11中的粗體間隔子)之gRNA係使用gRNA支架316設計且以化學方式合成。此外, B2M靶向gRNA用作非靶向對照,而間隔子TG-06-138 (亦稱為間隔子6.138;SEQ ID NO: 1852)用於與dXR1配對,且間隔子TG-06-001 (亦稱為間隔子6.1;SEQ ID NO: 1834)用於與CasX 676配對。鑒於並非NHP保守間隔子的間隔子TG-06-157 (亦稱為間隔子6.157;SEQ ID NO: 1869)在持續抑制 PCSK9基因座方面展現出的功效,包括該間隔子作為陽性對照,其顯示於下文實例2中。 gRNAs containing NHP conserved spacers targeting the PCSK9 locus (bold spacers in Table 11) were designed and chemically synthesized using gRNA scaffold 316. In addition, B2M targeting gRNA was used as a non-targeting control, while spacer TG-06-138 (also known as spacer 6.138; SEQ ID NO: 1852) was used to pair with dXR1, and spacer TG-06-001 (also known as spacer 6.1; SEQ ID NO: 1834) was used to pair with CasX 676. In view of the efficacy of spacer TG-06-157 (also known as spacer 6.157; SEQ ID NO: 1869), which is not a NHP conserved spacer, in sustained suppression of the PCSK9 locus, the spacer was included as a positive control, which is shown in Example 2 below.

為評定PCSK9分泌,用編碼催化活性CasX 676、dXR1或LTRP5-ADD-ZIM3之mRNA及具有支架316及靶向 B2MPCSK9基因座之間隔子的gRNA轉染所接種之Huh7細胞。在轉染後6天、18天及36天收集培養基上清液,以藉由ELISA評定PCSK9分泌水平。PCSK9分泌水平係以總細胞計數標準化。作為額外對照,亦量測自含有未經處理之初始細胞之孔收集之培養基上清液中的PCSK9分泌。 To assess PCSK9 secretion, inoculated Huh7 cells were transfected with mRNA encoding catalytically active CasX 676, dXR1, or LTRP5-ADD-ZIM3 and gRNA with scaffold 316 and a spacer targeting the B2M or PCSK9 locus. Culture supernatants were collected 6, 18, and 36 days after transfection to assess PCSK9 secretion levels by ELISA. PCSK9 secretion levels were normalized to total cell counts. As an additional control, PCSK9 secretion was also measured in culture supernatants collected from wells containing untreated naive cells.

在第二個實驗中,使用LTRP5-ADD-ZIM3及具有支架316及靶向B2M或PCSK9基因座之間隔子的gRNA,將來自前一實驗的前16個間隔子經脂質體轉染至初代人類肝細胞(PHH) 中,且在脂質體轉染後6天收集上清液。In the second experiment, the first 16 spacers from the previous experiment were transfected into primary human hepatocytes (PHH) via liposomes using LTRP5-ADD-ZIM3 and gRNA with scaffold 316 and spacers targeting the B2M or PCSK9 loci, and supernatants were collected 6 days after liposome transfection.

將Lonza批次31 (1輪)或271 (2輪)細胞接種至96孔盤中,且使用MessengerMax試劑與高(150 ng)或中等(75 ng)劑量的mRNA+gRNA進行共脂質體轉染。將細胞在培養物保持六天,然後藉由分泌蛋白ELISA及轉錄物RT-qPCR評定PCSK9減弱,總共3輪獨立篩選。收集中等劑量mRNA/gRNA脂質體轉染用於擴增子亞硫酸氫鹽定序。細胞增殖六天,然後對含有34個CpG二核苷酸之PCSK9 TSS近端區(上游約200 bp至下游約150 bp)進行DNA提取及擴增子亞硫酸氫鹽定序。藉由PCSK9轉錄物RT-qPCR (如實例16中所描述)及上清液PCSK9 HTRF ELISA (如實例16中所描述)確認減弱。亦提取總RNA用於RNA-seq以評定特異性。Lonza batch 31 (round 1) or 271 (round 2) cells were seeded into 96-well plates and co-lipofected with high (150 ng) or medium (75 ng) doses of mRNA+gRNA using MessengerMax reagent. Cells were maintained in culture for six days and PCSK9 attenuation was assessed by secreted protein ELISA and transcript RT-qPCR for a total of three independent rounds of screening. Medium dose mRNA/gRNA lipofectamines were collected for amplicon bisulfite sequencing. Cells were propagated for six days and DNA was extracted and amplicon bisulfite sequenced for the proximal region of the PCSK9 TSS containing 34 CpG dinucleotides (approximately 200 bp upstream to approximately 150 bp downstream). Reduction was confirmed by PCSK9 transcript RT-qPCR (as described in Example 16) and supernatant PCSK9 HTRF ELISA (as described in Example 16). Total RNA was also extracted for RNA-seq to assess specificity.

在第三個實驗中評定抑制之耐久性。將HuH7用高劑量之LTRP5-ADD-ZIM3及具有支架316及靶向B2M或PCSK9基因座之間隔子(代表上述實驗中的11個活性最強的靶向序列)的gRNA在6個重複孔中進行脂質體轉染,每2週使用PCSK9上清液ELISA讀出使細胞在培養物中增殖。在第1週分割的複製盤將n自6增加至12,以供後續讀出。 結果: Durability of inhibition was assessed in a third experiment. HuH7 were lipofected with high doses of LTRP5-ADD-ZIM3 and gRNAs with scaffold 316 and spacers targeting either the B2M or PCSK9 loci (representing the 11 most active targeting sequences in the above experiments) in 6 replicate wells, and cells were allowed to proliferate in culture every 2 weeks with PCSK9 supernatant ELISA readouts. Replicate plates split at week 1 increased n from 6 to 12 for subsequent readouts. Results:

在三個時間點對經編碼催化活性CasX 676、dXR1或LTRP5-ADD-ZIM3之mRNA以及靶向 PCSK9基因座的NHP保守gRNA轉染的Huh7細胞的標準化PCSK9分泌水平的定量顯示於圖2中。資料表明,當與對照條件(亦即初始的未經處理之細胞、經dXR1處理之細胞及經非靶向對照處理之細胞)相比時,使用大部分NHP保守間隔子與LTRP5-ADD-ZIM3引起持續抑制直至轉染後36天(使用靶向B2M基因座之間隔子7.37)。具體而言,與使用間隔子6.1與CasX 676配對所觀測到的PCSK9分泌水平相比較,使用TSS近端間隔子TG-06-147、TG-06-167、TG-06-133、TG-06-146及TG-06-154與LTRP5-ADD-ZIM3配對引起類似或進一步降低的持續抑制水平(圖2)。有趣的是,使用TG-06-352 (其經定位超出此處稱為「TSS-近端」之1100 bp臨限值窗口)亦產生有效抑制(圖2)。類似於實例2中觀測到的發現,用LTRP5-ADD-ZIM3與間隔子6.157處理引起分泌PCSK9水平之持續抑制,而用dXR1及間隔子6.138處理則引起暫態抑制。此外,用三種mRNA分子中之任一者與靶向 B2M基因座之間隔子7.37處理不影響PCSK9分泌(圖2)。 Quantification of normalized PCSK9 secretion levels of Huh7 cells transfected with mRNA encoding catalytically active CasX 676, dXR1, or LTRP5-ADD-ZIM3 and NHP conserved gRNA targeting the PCSK9 locus at three time points is shown in Figure 2. The data show that the use of the most NHP conserved spacers with LTRP5-ADD-ZIM3 caused sustained repression until 36 days after transfection (using spacer 7.37 targeting the B2M locus) when compared to control conditions (i.e., initial untreated cells, cells treated with dXR1, and cells treated with a non-targeting control). Specifically, the use of TSS-proximal spacers TG-06-147, TG-06-167, TG-06-133, TG-06-146, and TG-06-154 with LTRP5-ADD-ZIM3 resulted in similar or further reduced levels of sustained inhibition compared to the levels of PCSK9 secretion observed using spacer 6.1 paired with CasX 676 (Figure 2). Interestingly, the use of TG-06-352 (which was positioned beyond the 1100 bp threshold window referred to herein as "TSS-proximal") also resulted in effective inhibition (Figure 2). Similar to the findings observed in Example 2, treatment with LTRP5-ADD-ZIM3 and spacer 6.157 caused a sustained inhibition of secreted PCSK9 levels, while treatment with dXR1 and spacer 6.138 caused a transient inhibition. In addition, treatment with any of the three mRNA molecules and spacer 7.37 targeting the B2M locus did not affect PCSK9 secretion (Figure 2).

藉由RT-qPCR及ELISA對前16個間隔子序列評定的活性水平證明TG-06-154、TG-06-141及TG-06-157係活性最強之間隔子(表17)。靶向序列TG-06-154藉由ELISA在各輪次及劑量中表現出最高的平均分泌蛋白減弱。PCSK9靶向間隔子引發約40至60%的平均CpG甲基化,但展現出較低的平均CpG甲基化的靶向間隔子TG-06-146及TG-06-142除外(表17)。Activity levels assessed by RT-qPCR and ELISA for the top 16 spacer sequences demonstrated that TG-06-154, TG-06-141, and TG-06-157 were the most active spacers (Table 17). Targeted sequence TG-06-154 showed the highest average secreted protein reduction by ELISA across rounds and doses. PCSK9 targeted spacers induced average CpG methylation of approximately 40 to 60%, with the exception of targeted spacers TG-06-146 and TG-06-142, which exhibited lower average CpG methylation (Table 17).

抑制之特異性及持久性係定量於表18中。用LTRP5-ADD-ZIM3以及靶向序列TG-06-133、TG-06-139、TG-06-158及TG-06-160進行處理表明,脫靶差異表現基因之數目增加,而靶向序列TG-06-141、TG-06-144、TG-06-154及TG-06-157展現不超過1個差異性表現之脫靶基因。藉由自第1週至第9週的PCSK9減少百分比變化量測之持久性表明,PCSK9靶向間隔子在9週內將抑制維持在初始抑制的約30%之內,但靶向間隔子TG-06-001、TG-06-139及TG-06-150除外(表18)。The specificity and durability of inhibition are quantified in Table 18. Treatment with LTRP5-ADD-ZIM3 and targeting sequences TG-06-133, TG-06-139, TG-06-158, and TG-06-160 showed an increase in the number of off-target differentially expressed genes, while targeting sequences TG-06-141, TG-06-144, TG-06-154, and TG-06-157 exhibited no more than 1 differentially expressed off-target gene. Persistence, measured by the percent change in PCSK9 reduction from week 1 to week 9, indicated that the PCSK9 targeted spacers maintained inhibition within approximately 30% of initial inhibition over 9 weeks, with the exception of the targeted spacers TG-06-001, TG-06-139, and TG-06-150 (Table 18).

此等結果證明遞送編碼具有ADD域的LTRP分子之mRNA與適當的 PCSK9靶向gRNA可引起人類細胞中內源性目標基因座之持續抑制。此外,此等實驗顯示,與非人類靈長類動物物種具有共同序列之若干人類間隔子由於靶向治療相關基因座而實現強表型作用,其支持在利用非人類靈長類動物模型進行臨床前功效研究中此等所選間隔子的潛在用途。 12 此實例之實驗 #1 中評定之 dXR1 LTRP1-ZIM3 mRNA 分子之編碼序列 * dXR 或LTRP ID 組分 DNA 序列 SEQ ID NO: dXR1 (經密碼子最佳化) 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START 密碼子+ NLS + 連接子 ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGGGGCGGCAGCGGCGGCGGCAGCGCC 3048 dCasX491 CAGGAGATTAAACGGATCAACAAGATCAGAAGAAGACTTGTGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTGGTTAGAGTGATGACACCCGATCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCTGAAAATATCCCCCAGCCCATCAGCAATACATCTAGAGCCAACCTGAATAAGCTGCTGACCGATTACACCGAAATGAAGAAGGCGATCCTGCATGTGTACTGGGAAGAGTTCCAGAAGGACCCTGTGGGCCTGATGAGCCGGGTGGCCCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAACCTGAGATGGACGAGAAGGGCAACCTGACCACCGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCCCTGTTCGTGTACAAGCTGGAGCAGGTGTCTGAGAAGGGCAAGGCTTACACCAACTACTTCGGACGGTGCAATGTGGCCGAGCACGAAAAGCTGATCCTGCTGGCCCAGCTGAAGCCCGAGAAGGATAGCGACGAAGCCGTGACATATAGCCTGGGAAAGTTTGGGCAGAGGGCCCTGGATTTCTACAGCATTCATGTGACCAAGGAGTCCACCCACCCCGTGAAGCCCCTGGCCCAGATCGCCGGAAACAGATACGCCTCCGGACCTGTGGGAAAGGCCCTGAGCGACGCATGTATGGGCACAATCGCCTCCTTCCTGTCTAAGTACCAGGACATCATCATCGAACACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGGGAGCTGGCCGGCAAGGAAAACCTGGAATACCCTAGCGTGACCCTGCCACCTCAGCCTCACACCAAGGAGGGCGTTGATGCCTACAACGAAGTGATCGCCCGGGTGCGAATGTGGGTGAACCTGAACCTGTGGCAGAAGCTGAAGCTAAGCAGAGATGATGCCAAGCCTCTGCTGAGACTGAAGGGATTCCCTTCCTTTCCTCTGGTCGAGAGACAGGCCAACGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAACGAGAAAAAGGAGGATGGCAAGGTGTTTTGGCAGAATCTGGCTGGCTACAAGAGACAGGAAGCCCTGAGACCATACCTGAGCAGCGAGGAAGATCGGAAGAAGGGAAAGAAATTCGCTCGGTACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGAAAGGTGTACGACGAGGCCTGGGAGCGGATTGACAAGAAAGTGGAAGGCCTGAGCAAGCACATCAAGCTGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGCGGGCTAAGGCCAGCTTCGTGATCGAGGGCCTGAAGGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGGGACCTGCGGGGAAAGCCCTTCGCCATCGAAGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGTGCCTTCATCTGGCAGAAGGACGGCGTGAAGAAGCTGAACCTGTACCTGATCATCAACTACTTCAAGGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCTGAAGCCTTCGAAGCCAACAGATTCTACACCGTGATCAACAAAAAGAGCGGCGAGATCGTGCCCATGGAGGTGAACTTCAACTTCGACGACCCCAACCTGATCATCCTGCCTCTGGCCTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAACGACCTGCTGTCCCTGGAAACCGGCAGCCTGAAGCTGGCCAACGGAAGAGTGATCGAGAAGACACTGTACAACAGAAGAACCCGGCAGGATGAGCCTGCCCTGTTCGTGGCCCTGACCTTCGAGCGGCGGGAGGTCCTGGACTCCTCCAATATCAAACCAATGAACCTGATCGGCGTGGCAAGAGGCGAAAACATCCCCGCCGTGATCGCCCTGACCGACCCCGAGGGCTGCCCACTGAGCCGGTTTAAGGATAGCCTGGGAAACCCAACCCACATCCTGAGAATCGGCGAGAGCTATAAGGAGAAGCAGCGGACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGAGAGCCGGCGGCTACAGCCGGAAGTACGCCAGCAAAGCCAAGAATCTGGCAGACGATATGGTGAGAAACACCGCTAGAGATCTGCTGTACTACGCCGTGACCCAGGATGCCATGCTGATCTTCGCCAACCTGAGCCGGGGCTTCGGCCGGCAGGGCAAGCGGACCTTCATGGCCGAGAGACAGTACACACGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGAGCAAGACCTACCTGTCCAAGACACTGGCCCAGTACACCTCCAAGACATGCAGCAACTGTGGGTTTACCATCACCAGCGCCGACTACGACAGGGTGCTGGAGAAGCTGAAGAAGACAGCAACAGGCTGGATGACCACAATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATTACCTACTACAACAGATACAAGAGACAGAACGTAGTCAAGGACCTGTCCGTCGAGCTGGATAGACTGAGCGAAGAATCTGTGAACAACGACATCTCCTCCTGGACAAAGGGCAGAAGCGGAGAAGCTCTGAGCCTCCTGAAGAAAAGATTCTCCCATAGACCCGTGCAGGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCAGCCGAGCAAGCCGCCCTGAACATCGCCAGATCCTGGCTGTTCCTGCGGAGCCAGGAGTACAAGAAATACCAGACAAACAAGACAACCGGCAACACCGATAAGAGAGCCTTCGTCGAGACCTGGCAGTCCTTTTACCGGAAGAAGCTTAAGGAGGTGTGGAAACCTGCCGTG 3049 連接子+ 緩衝序列 CGGTCTGGCGGATCTGGCGGAGGCTCCACAAGC 3050 ZIM3-KRAB ATGAACAACTCCCAGGGCAGAGTGACCTTCGAGGACGTGACCGTGAATTTTACACAGGGAGAGTGGCAGAGACTGAACCCCGAGCAGAGAAACCTGTACCGGGATGTGATGCTGGAAAACTACAGCAATCTGGTGTCCGTGGGCCAGGGCGAGACCACAAAGCCTGACGTGATCCTGCGTCTGGAGCAGGGCAAGGAACCCTGGCTGGAGGAGGAGGAGGTGCTGGGAAGCGGACGGGCCGAGAAGAACGGCGACATCGGCGGACAGATCTGGAAGCCTAAGGACGTGAAAGAAAGCCTG 3051 緩衝序列 + NLS ACCAGCCCCAAGAAAAAGAGAAAAGTC 3052 標誌 GACTACAAGGATGACGATGACAAGGACTACAAGGATGACGACGACAAG 3053 STOP 密碼子+ 緩衝序列 TAATAGATAAGCGGCCGCTTAATTAA 3054 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 緩衝序列 TCTAG 3056 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 LTRP1 (經密碼子最佳化) 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START 密碼子+ NLS + 緩衝序列 + 連接子 ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGGGTGAACGGCAGCGGCAGCGGCGGCGGC 3058 START 密碼子+ DNMT3A催化域 ATGAACCACGACCAGGAGTTCGACCCCCCTAAGGTGTACCCTCCCGTCCCCGCCGAGAAGAGAAAGCCCATCCGGGTCCTGAGCCTGTTCGATGGCATCGCCACCGGTCTGCTGGTGCTGAAGGACCTGGGCATCCAGGTGGATAGGTACATTGCCTCCGAGGTGTGCGAGGACTCCATCACCGTGGGAATGGTGCGTCATCAGGGCAAGATCATGTACGTGGGCGACGTGCGGAGCGTGACACAGAAGCATATCCAGGAGTGGGGCCCTTTCGACCTGGTGATCGGCGGCAGCCCTTGCAATGACCTGAGCATCGTGAACCCAGCCCGGAAGGGCCTGTACGAGGGAACCGGCAGACTGTTCTTCGAGTTTTACAGACTGCTGCACGACGCCCGGCCTAAGGAAGGCGACGACCGGCCCTTCTTTTGGCTGTTCGAGAATGTGGTGGCCATGGGAGTCAGCGACAAGCGGGATATTAGCCGGTTCCTGGAGAGCAACCCCGTGATGATCGATGCCAAGGAAGTGAGCGCCGCCCACCGGGCCAGATACTTCTGGGGCAATCTGCCTGGCATGAACAGACCCCTGGCCAGCACCGTGAACGACAAGCTGGAGCTGCAGGAGTGCCTGGAGCACGGCCGGATCGCCAAGTTCAGCAAGGTGAGAACCATCACCACCCGAAGCAACAGCATCAAACAAGGCAAGGACCAGCACTTTCCTGTGTTCATGAACGAGAAGGAGGACATCCTGTGGTGTACCGAGATGGAGAGAGTGTTCGGGTTCCCAGTCCACTACACAGATGTCAGCAACATGTCTAGACTGGCCAGACAGAGACTGCTGGGAAGAAGCTGGTCCGTCCCTGTGATCAGACACCTGTTCGCCCCTCTGAAGGAGTACTTCGCCTGCGTG 3059 連接子 AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCTTCTCTAGCGGCCTGGTGCCACTGTCCCTGAGAGGGAGCCAC 3060 DNMT3L相互作用域 ATGGGCCCCATGGAGATCTACAAAACCGTGAGCGCCTGGAAGCGGCAGCCTGTGCGCGTGCTGAGCCTGTTTCGGAATATCGATAAAGTCCTGAAAAGCCTGGGATTCCTGGAGAGCGGCTCTGGCTCCGGCGGTGGCACCCTGAAGTACGTGGAGGATGTGACAAACGTGGTCAGACGGGATGTGGAGAAGTGGGGCCCCTTCGATCTGGTGTACGGCAGCACCCAACCCCTGGGCAGCTCTTGTGACCGGTGCCCTGGCTGGTACATGTTTCAGTTCCACCGGATCCTGCAGTACGCCCTGCCGAGACAGGAGTCCCAGCGGCCATTCTTTTGGATTTTCATGGACAACTTGCTGCTGACCGAGGATGACCAGGAAACTACCACTCGGTTCCTGCAGACCGAAGCCGTGACCCTGCAGGACGTGAGAGGCCGGGACTACCAGAACGCCATGCGGGTGTGGTCCAACATCCCTGGACTGAAAAGCAAGCACGCACCTCTGACCCCTAAAGAAGAGGAGTACCTGCAGGCCCAGGTGCGGAGCAGAAGCAAGCTGGACGCCCCTAAGGTGGATCTGCTGGTGAAGAATTGCCTCCTGCCCCTGAGAGAGTACTTCAAGTATTTCAGCCAGAATAGTCTGCCCCTG 3061 連接子 GGCGGCCCAAGCAGCGGCGCCCCTCCTCCCAGCGGCGGCAGCCCAGCCGGCTCCCCAACCTCTACCGAGGAGGGCACCTCTGAGTCCGCCACCCCCGAGAGCGGCCCTGGCACCTCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCTGCCGGCAGCCCCACCTCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCTAGTGAGGGCGGCTCTGGCGGCGGCAGCGCC 3062 dCasX491 CAGGAGATTAAACGGATCAACAAGATCAGAAGAAGACTTGTGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTGGTTAGAGTGATGACACCCGATCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCTGAAAATATCCCCCAGCCCATCAGCAATACATCTAGAGCCAACCTGAATAAGCTGCTGACCGATTACACCGAAATGAAGAAGGCGATCCTGCATGTGTACTGGGAAGAGTTCCAGAAGGACCCTGTGGGCCTGATGAGCCGGGTGGCCCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAACCTGAGATGGACGAGAAGGGCAACCTGACCACCGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCCCTGTTCGTGTACAAGCTGGAGCAGGTGTCTGAGAAGGGCAAGGCTTACACCAACTACTTCGGACGGTGCAATGTGGCCGAGCACGAAAAGCTGATCCTGCTGGCCCAGCTGAAGCCCGAGAAGGATAGCGACGAAGCCGTGACATATAGCCTGGGAAAGTTTGGGCAGAGGGCCCTGGATTTCTACAGCATTCATGTGACCAAGGAGTCCACCCACCCCGTGAAGCCCCTGGCCCAGATCGCCGGAAACAGATACGCCTCCGGACCTGTGGGAAAGGCCCTGAGCGACGCATGTATGGGCACAATCGCCTCCTTCCTGTCTAAGTACCAGGACATCATCATCGAACACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGGGAGCTGGCCGGCAAGGAAAACCTGGAATACCCTAGCGTGACCCTGCCACCTCAGCCTCACACCAAGGAGGGCGTTGATGCCTACAACGAAGTGATCGCCCGGGTGCGAATGTGGGTGAACCTGAACCTGTGGCAGAAGCTGAAGCTAAGCAGAGATGATGCCAAGCCTCTGCTGAGACTGAAGGGATTCCCTTCCTTTCCTCTGGTCGAGAGACAGGCCAACGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAACGAGAAAAAGGAGGATGGCAAGGTGTTTTGGCAGAATCTGGCTGGCTACAAGAGACAGGAAGCCCTGAGACCATACCTGAGCAGCGAGGAAGATCGGAAGAAGGGAAAGAAATTCGCTCGGTACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGAAAGGTGTACGACGAGGCCTGGGAGCGGATTGACAAGAAAGTGGAAGGCCTGAGCAAGCACATCAAGCTGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGCGGGCTAAGGCCAGCTTCGTGATCGAGGGCCTGAAGGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGGGACCTGCGGGGAAAGCCCTTCGCCATCGAAGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGTGCCTTCATCTGGCAGAAGGACGGCGTGAAGAAGCTGAACCTGTACCTGATCATCAACTACTTCAAGGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCTGAAGCCTTCGAAGCCAACAGATTCTACACCGTGATCAACAAAAAGAGCGGCGAGATCGTGCCCATGGAGGTGAACTTCAACTTCGACGACCCCAACCTGATCATCCTGCCTCTGGCCTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAACGACCTGCTGTCCCTGGAAACCGGCAGCCTGAAGCTGGCCAACGGAAGAGTGATCGAGAAGACACTGTACAACAGAAGAACCCGGCAGGATGAGCCTGCCCTGTTCGTGGCCCTGACCTTCGAGCGGCGGGAGGTCCTGGACTCCTCCAATATCAAACCAATGAACCTGATCGGCGTGGCAAGAGGCGAAAACATCCCCGCCGTGATCGCCCTGACCGACCCCGAGGGCTGCCCACTGAGCCGGTTTAAGGATAGCCTGGGAAACCCAACCCACATCCTGAGAATCGGCGAGAGCTATAAGGAGAAGCAGCGGACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGAGAGCCGGCGGCTACAGCCGGAAGTACGCCAGCAAAGCCAAGAATCTGGCAGACGATATGGTGAGAAACACCGCTAGAGATCTGCTGTACTACGCCGTGACCCAGGATGCCATGCTGATCTTCGCCAACCTGAGCCGGGGCTTCGGCCGGCAGGGCAAGCGGACCTTCATGGCCGAGAGACAGTACACACGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGAGCAAGACCTACCTGTCCAAGACACTGGCCCAGTACACCTCCAAGACATGCAGCAACTGTGGGTTTACCATCACCAGCGCCGACTACGACAGGGTGCTGGAGAAGCTGAAGAAGACAGCAACAGGCTGGATGACCACAATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATTACCTACTACAACAGATACAAGAGACAGAACGTAGTCAAGGACCTGTCCGTCGAGCTGGATAGACTGAGCGAAGAATCTGTGAACAACGACATCTCCTCCTGGACAAAGGGCAGAAGCGGAGAAGCTCTGAGCCTCCTGAAGAAAAGATTCTCCCATAGACCCGTGCAGGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCAGCCGAGCAAGCCGCCCTGAACATCGCCAGATCCTGGCTGTTCCTGCGGAGCCAGGAGTACAAGAAATACCAGACAAACAAGACAACCGGCAACACCGATAAGAGAGCCTTCGTCGAGACCTGGCAGTCCTTTTACCGGAAGAAGCTTAAGGAGGTGTGGAAACCTGCCGTG 3049 連接子 CGGTCTGGCGGATCTGGCGGAGGCTCCACAAGC 3050 ZIM3-KRAB ATGAACAACTCCCAGGGCAGAGTGACCTTCGAGGACGTGACCGTGAATTTTACACAGGGAGAGTGGCAGAGACTGAACCCCGAGCAGAGAAACCTGTACCGGGATGTGATGCTGGAAAACTACAGCAATCTGGTGTCCGTGGGCCAGGGCGAGACCACAAAGCCTGACGTGATCCTGCGTCTGGAGCAGGGCAAGGAACCCTGGCTGGAGGAGGAGGAGGTGCTGGGAAGCGGACGGGCCGAGAAGAACGGCGACATCGGCGGACAGATCTGGAAGCCTAAGGACGTGAAAGAAAGCCTG 3051 緩衝序列 + NLS ACCAGCCCCAAGAAAAAGAGAAAAGTC 3052 標誌 GACTACAAGGATGACGATGACAAGGACTACAAGGATGACGACGACAAG 3053 STOP 密碼子+ 緩衝序列 TAATAGATAAGCGGCCGCTTAATTAA 3054 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 緩衝序列 TCTAG 3056 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 *各組分以在構築體內之5'至3'次序列出 13 此實例之實驗 #1 中評定之 dXR1 LTRP1-ZIM3 mRNA 分子之全長 RNA 序列 。修飾『 = N1- 甲基 - 假尿苷 dXR 或LTRP ID RNA 序列 SEQ ID NO: dXR1 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGGGCGGCAGCGGCGGCGGCAGCGCCCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψGGCAAGAGGCGAAAACAmψCCCCGCCGmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCGGCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACAAGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGACCAGCCCCAAGAAAAAGAGAAAAGmψCGACmψACAAGGAmψGACGAmψGACAAGGACmψACAAGGAmψGACGACGACAAGmψAAmψAGAmψAAGCGGCCGCmψmψAAmψmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψcmψagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3063 LTRP1 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGGmψGAACGGCAGCGGCAGCGGCGGCGGCAmψGAACCACGACCAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCCGAGAAGAGAAAGCCCAmψCCGGGmψCCmψGAGCCmψGmψmψCGAmψGGCAmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAmψAGGmψACAmψmψGCCmψCCGAGGmψGmψGCGAGGACmψCCAmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψGCGGAGCGmψGACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAACCCAGCCCGGAAGGGCCmψGmψACGAGGGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACGACCGGCCCmψmψCmψmψmψmψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAGCAACCCCGmψGAmψGAmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGACCCCmψGGCCAGCACCGmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCACCACCCGAAGCAACAGCAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACCGAGAmψGGAGAGAGmψGmψmψCGGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGAAGAAGCmψGGmψCCGmψCCCmψGmψGAmψCAGACACCmψGmψmψCGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCmψmψCmψCmψAGCGGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAAACCGmψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGmψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψmψCCmψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGAAGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAGmψGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCCmψGGGCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψmψCAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGCGGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACmψmψGCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGCCGmψGACCCmψGCAGGACGmψGAGAGGCCGGGACmψACCAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψGACCCCmψAAAGAAGAGGAGmψACCmψGCAGGCCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCmψCCmψGCCCCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGCGGCCCAAGCAGCGGCGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCCGAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCmψGCCGGCAGCCCCACCmψCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGGGCGGCmψCmψGGCGGCGGCAGCGCCCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψGGCAAGAGGCGAAAACAmψCCCCGCCGmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCGGCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACAAGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGACCAGCCCCAAGAAAAAGAGAAAAGmψCGACmψACAAGGAmψGACGAmψGACAAGGACmψACAAGGAmψGACGACGACAAGmψAAmψAGAmψAAGCGGCCGCmψmψAAmψmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψcmψagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3064 14 此實例之實驗 #1 中評定之 dXR1 LTRP1-ZIM3 分子之全長蛋白序列 dXR 或LTRP ID AA 序列 SEQ ID NO: dXR1 MAPKKKRKVSRGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3065 LTRP1 MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3066 15 此實例中評定之 LTRP5-ZIM3 LTRP5-ZIM3-ADD mRNA 分子之編碼 DNA RNA 序列 * LTRP 分子 組分 DNA 序列 SEQ ID NO RNA 序列 SEQ ID NO LTRP5-ZIM3 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 AAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC 3115 START 密碼子+ NLS + 連接子 ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGG 3104 AUGGCCCCUAAGAAGAAGCGUAAAGUGAGCCGG 3116 START 密碼子+ DNMT3A催化域 參見表 12 中之序列 3059 AUGAACCACGACCAGGAGUUCGACCCCCCUAAGGUGUACCCUCCCGUCCCCGCCGAGAAGAGAAAGCCCAUCCGGGUCCUGAGCCUGUUCGAUGGCAUCGCCACCGGUCUGCUGGUGCUGAAGGACCUGGGCAUCCAGGUGGAUAGGUACAUUGCCUCCGAGGUGUGCGAGGACUCCAUCACCGUGGGAAUGGUGCGUCAUCAGGGCAAGAUCAUGUACGUGGGCGACGUGCGGAGCGUGACACAGAAGCAUAUCCAGGAGUGGGGCCCUUUCGACCUGGUGAUCGGCGGCAGCCCUUGCAAUGACCUGAGCAUCGUGAACCCAGCCCGGAAGGGCCUGUACGAGGGAACCGGCAGACUGUUCUUCGAGUUUUACAGACUGCUGCACGACGCCCGGCCUAAGGAAGGCGACGACCGGCCCUUCUUUUGGCUGUUCGAGAAUGUGGUGGCCAUGGGAGUCAGCGACAAGCGGGAUAUUAGCCGGUUCCUGGAGAGCAACCCCGUGAUGAUCGAUGCCAAGGAAGUGAGCGCCGCCCACCGGGCCAGAUACUUCUGGGGCAAUCUGCCUGGCAUGAACAGACCCCUGGCCAGCACCGUGAACGACAAGCUGGAGCUGCAGGAGUGCCUGGAGCACGGCCGGAUCGCCAAGUUCAGCAAGGUGAGAACCAUCACCACCCGAAGCAACAGCAUCAAACAAGGCAAGGACCAGCACUUUCCUGUGUUCAUGAACGAGAAGGAGGACAUCCUGUGGUGUACCGAGAUGGAGAGAGUGUUCGGGUUCCCAGUCCACUACACAGAUGUCAGCAACAUGUCUAGACUGGCCAGACAGAGACUGCUGGGAAGAAGCUGGUCCGUCCCUGUGAUCAGACACCUGUUCGCCCCUCUGAAGGAGUACUUCGCCUGCGUG 3117 連接子 AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCTTCTCTAGCGGCCTGGTGCCACTGTCCCTGAGAGGGAGCCAC 3060 AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCUUCUCUAGCGGCCUGGUGCCACUGUCCCUGAGAGGGAGCCAC 3118 DNMT3L相互作用域 參見表 12 中之序列 3061 AUGGGCCCCAUGGAGAUCUACAAAACCGUGAGCGCCUGGAAGCGGCAGCCUGUGCGCGUGCUGAGCCUGUUUCGGAAUAUCGAUAAAGUCCUGAAAAGCCUGGGAUUCCUGGAGAGCGGCUCUGGCUCCGGCGGUGGCACCCUGAAGUACGUGGAGGAUGUGACAAACGUGGUCAGACGGGAUGUGGAGAAGUGGGGCCCCUUCGAUCUGGUGUACGGCAGCACCCAACCCCUGGGCAGCUCUUGUGACCGGUGCCCUGGCUGGUACAUGUUUCAGUUCCACCGGAUCCUGCAGUACGCCCUGCCGAGACAGGAGUCCCAGCGGCCAUUCUUUUGGAUUUUCAUGGACAACUUGCUGCUGACCGAGGAUGACCAGGAAACUACCACUCGGUUCCUGCAGACCGAAGCCGUGACCCUGCAGGACGUGAGAGGCCGGGACUACCAGAACGCCAUGCGGGUGUGGUCCAACAUCCCUGGACUGAAAAGCAAGCACGCACCUCUGACCCCUAAAGAAGAGGAGUACCUGCAGGCCCAGGUGCGGAGCAGAAGCAAGCUGGACGCCCCUAAGGUGGAUCUGCUGGUGAAGAAUUGCCUCCUGCCCCUGAGAGAGUACUUCAAGUAUUUCAGCCAGAAUAGUCUGCCCCUG 3119 連接子 GGAGGCAGCGGCGGCGGC 3105 GGAGGCAGCGGCGGCGGC 3105 ZIM3-KRAB 參見表 12 中之序列 3051 AUGAACAACUCCCAGGGCAGAGUGACCUUCGAGGACGUGACCGUGAAUUUUACACAGGGAGAGUGGCAGAGACUGAACCCCGAGCAGAGAAACCUGUACCGGGAUGUGAUGCUGGAAAACUACAGCAAUCUGGUGUCCGUGGGCCAGGGCGAGACCACAAAGCCUGACGUGAUCCUGCGUCUGGAGCAGGGCAAGGAACCCUGGCUGGAGGAGGAGGAGGUGCUGGGAAGCGGACGGGCCGAGAAGAACGGCGACAUCGGCGGACAGAUCUGGAAGCCUAAGGACGUGAAAGAAAGCCUG 3120 連接子 GGCGGCCCAAGCAGCGGCGCCCCTCCTCCCAGCGGCGGCAGCCCAGCCGGCTCCCCAACCTCTACCGAGGAGGGCACCTCTGAGTCCGCCACCCCCGAGAGCGGCCCTGGCACCTCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCTGCCGGCAGCCCCACCTCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCTAGTGAG 3106 GGCGGCCCAAGCAGCGGCGCCCCUCCUCCCAGCGGCGGCAGCCCAGCCGGCUCCCCAACCUCUACCGAGGAGGGCACCUCUGAGUCCGCCACCCCCGAGAGCGGCCCUGGCACCUCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCUGCCGGCAGCCCCACCUCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCUAGUGAG 3121 dCasX491 參見表 12 中之序列 3049 CAGGAGAUUAAACGGAUCAACAAGAUCAGAAGAAGACUUGUGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAUGAAAACCCUGCUGGUUAGAGUGAUGACACCCGAUCUGAGAGAGCGGCUGGAAAACCUGAGAAAGAAGCCUGAAAAUAUCCCCCAGCCCAUCAGCAAUACAUCUAGAGCCAACCUGAAUAAGCUGCUGACCGAUUACACCGAAAUGAAGAAGGCGAUCCUGCAUGUGUACUGGGAAGAGUUCCAGAAGGACCCUGUGGGCCUGAUGAGCCGGGUGGCCCAGCCUGCCAGCAAGAAGAUCGAUCAGAACAAGCUGAAACCUGAGAUGGACGAGAAGGGCAACCUGACCACCGCCGGCUUUGCCUGCUCUCAGUGUGGCCAGCCCCUGUUCGUGUACAAGCUGGAGCAGGUGUCUGAGAAGGGCAAGGCUUACACCAACUACUUCGGACGGUGCAAUGUGGCCGAGCACGAAAAGCUGAUCCUGCUGGCCCAGCUGAAGCCCGAGAAGGAUAGCGACGAAGCCGUGACAUAUAGCCUGGGAAAGUUUGGGCAGAGGGCCCUGGAUUUCUACAGCAUUCAUGUGACCAAGGAGUCCACCCACCCCGUGAAGCCCCUGGCCCAGAUCGCCGGAAACAGAUACGCCUCCGGACCUGUGGGAAAGGCCCUGAGCGACGCAUGUAUGGGCACAAUCGCCUCCUUCCUGUCUAAGUACCAGGACAUCAUCAUCGAACACCAGAAGGUGGUGAAGGGCAACCAGAAGAGACUGGAGAGCCUGCGGGAGCUGGCCGGCAAGGAAAACCUGGAAUACCCUAGCGUGACCCUGCCACCUCAGCCUCACACCAAGGAGGGCGUUGAUGCCUACAACGAAGUGAUCGCCCGGGUGCGAAUGUGGGUGAACCUGAACCUGUGGCAGAAGCUGAAGCUAAGCAGAGAUGAUGCCAAGCCUCUGCUGAGACUGAAGGGAUUCCCUUCCUUUCCUCUGGUCGAGAGACAGGCCAACGAAGUGGACUGGUGGGACAUGGUGUGUAACGUGAAGAAGCUGAUCAACGAGAAAAAGGAGGAUGGCAAGGUGUUUUGGCAGAAUCUGGCUGGCUACAAGAGACAGGAAGCCCUGAGACCAUACCUGAGCAGCGAGGAAGAUCGGAAGAAGGGAAAGAAAUUCGCUCGGUACCAGCUGGGCGACCUGCUGCUGCACCUGGAAAAGAAGCACGGCGAGGACUGGGGAAAGGUGUACGACGAGGCCUGGGAGCGGAUUGACAAGAAAGUGGAAGGCCUGAGCAAGCACAUCAAGCUGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCUGACCGACUGGCUGCGGGCUAAGGCCAGCUUCGUGAUCGAGGGCCUGAAGGAGGCCGACAAGGACGAGUUCUGCAGAUGCGAGCUGAAGCUGCAGAAGUGGUACGGGGACCUGCGGGGAAAGCCCUUCGCCAUCGAAGCCGAGAACAGCAUCCUGGACAUCAGCGGCUUCAGCAAGCAGUACAACUGUGCCUUCAUCUGGCAGAAGGACGGCGUGAAGAAGCUGAACCUGUACCUGAUCAUCAACUACUUCAAGGGCGGCAAGCUGCGGUUCAAGAAGAUCAAACCUGAAGCCUUCGAAGCCAACAGAUUCUACACCGUGAUCAACAAAAAGAGCGGCGAGAUCGUGCCCAUGGAGGUGAACUUCAACUUCGACGACCCCAACCUGAUCAUCCUGCCUCUGGCCUUUGGCAAGAGACAGGGCAGAGAAUUCAUCUGGAACGACCUGCUGUCCCUGGAAACCGGCAGCCUGAAGCUGGCCAACGGAAGAGUGAUCGAGAAGACACUGUACAACAGAAGAACCCGGCAGGAUGAGCCUGCCCUGUUCGUGGCCCUGACCUUCGAGCGGCGGGAGGUCCUGGACUCCUCCAAUAUCAAACCAAUGAACCUGAUCGGCGUGGCAAGAGGCGAAAACAUCCCCGCCGUGAUCGCCCUGACCGACCCCGAGGGCUGCCCACUGAGCCGGUUUAAGGAUAGCCUGGGAAACCCAACCCACAUCCUGAGAAUCGGCGAGAGCUAUAAGGAGAAGCAGCGGACCAUCCAGGCCAAGAAGGAGGUGGAGCAGCGGAGAGCCGGCGGCUACAGCCGGAAGUACGCCAGCAAAGCCAAGAAUCUGGCAGACGAUAUGGUGAGAAACACCGCUAGAGAUCUGCUGUACUACGCCGUGACCCAGGAUGCCAUGCUGAUCUUCGCCAACCUGAGCCGGGGCUUCGGCCGGCAGGGCAAGCGGACCUUCAUGGCCGAGAGACAGUACACACGGAUGGAGGACUGGCUGACCGCCAAGCUGGCCUACGAGGGCCUGAGCAAGACCUACCUGUCCAAGACACUGGCCCAGUACACCUCCAAGACAUGCAGCAACUGUGGGUUUACCAUCACCAGCGCCGACUACGACAGGGUGCUGGAGAAGCUGAAGAAGACAGCAACAGGCUGGAUGACCACAAUUAACGGCAAGGAGCUGAAGGUGGAGGGCCAGAUUACCUACUACAACAGAUACAAGAGACAGAACGUAGUCAAGGACCUGUCCGUCGAGCUGGAUAGACUGAGCGAAGAAUCUGUGAACAACGACAUCUCCUCCUGGACAAAGGGCAGAAGCGGAGAAGCUCUGAGCCUCCUGAAGAAAAGAUUCUCCCAUAGACCCGUGCAGGAGAAGUUCGUGUGCCUGAACUGCGGCUUCGAGACACACGCAGCCGAGCAAGCCGCCCUGAACAUCGCCAGAUCCUGGCUGUUCCUGCGGAGCCAGGAGUACAAGAAAUACCAGACAAACAAGACAACCGGCAACACCGAUAAGAGAGCCUUCGUCGAGACCUGGCAGUCCUUUUACCGGAAGAAGCUUAAGGAGGUGUGGAAACCUGCCGUG 3122 緩衝液 + 連接子 CGGTCTGGCGGATCTGGCGGAGGCTCCACCAGC 3107 CGGUCUGGCGGAUCUGGCGGAGGCUCCACCAGC 3123 NLS + STOP 密碼子+ 緩衝序列 CCCAAGAAAAAGAGAAAAGTCTAATAGATAA 3108 CCCAAGAAAAAGAGAAAAGUCUAAUAGAUAA 3124 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 GCUGCCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG 3125 緩衝序列 TCTAG 3056 UCUAG 3126 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3109 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3109 LTRP5-ADD-ZIM3 5'UTR 參見以上序列 3047 參見以上序列 3115 START 密碼子+ NLS + 連接子 參見以上序列 3104 參見以上序列 3116 START 密碼子+ DNMT3A ADD域 ATGGAACGCCTCGTCTACGAGGTGCGGCAGAAGTGCAGAAACATCGAGGACATCTGCATCTCCTGCGGATCTCTGAACGTGACCCTGGAGCACCCACTGTTCATCGGCGGCATGTGCCAGAACTGTAAAAACTGTTTTCTGGAGTGTGCCTATCAATACGACGATGACGGCTACCAGAGCTACTGCACCATCTGTTGCGGCGGAAGAGAGGTGCTGATGTGTGGAAATAACAACTGCTGCCGGTGCTTCTGCGTGGAATGCGTGGACCTGCTGGTGGGCCCCGGCGCCGCCCAGGCCGCTATTAAGGAAGATCCTTGGAACTGCTACATGTGCGGCCACAAGGGCACATACGGCCTGCTGAGACGGAGAGAGGACTGGCCTAGCAGACTGCAGATGTTCTTCGCCAAT 3111 AUGGAACGCCUCGUCUACGAGGUGCGGCAGAAGUGCAGAAACAUCGAGGACAUCUGCAUCUCCUGCGGAUCUCUGAACGUGACCCUGGAGCACCCACUGUUCAUCGGCGGCAUGUGCCAGAACUGUAAAAACUGUUUUCUGGAGUGUGCCUAUCAAUACGACGAUGACGGCUACCAGAGCUACUGCACCAUCUGUUGCGGCGGAAGAGAGGUGCUGAUGUGUGGAAAUAACAACUGCUGCCGGUGCUUCUGCGUGGAAUGCGUGGACCUGCUGGUGGGCCCCGGCGCCGCCCAGGCCGCUAUUAAGGAAGAUCCUUGGAACUGCUACAUGUGCGGCCACAAGGGCACAUACGGCCUGCUGAGACGGAGAGAGGACUGGCCUAGCAGACUGCAGAUGUUCUUCGCCAAU 3127 DNMT3A催化域 AACCACGACCAGGAGTTCGACCCCCCTAAGGTGTACCCTCCCGTCCCCGCCGAGAAGAGAAAGCCCATCCGGGTCCTGAGCCTGTTCGATGGCATCGCCACCGGTCTGCTGGTGCTGAAGGACCTGGGCATCCAGGTGGATAGGTACATTGCCTCCGAGGTGTGCGAGGACTCCATCACCGTGGGAATGGTGCGTCATCAGGGCAAGATCATGTACGTGGGCGACGTGCGGAGCGTGACACAGAAGCATATCCAGGAGTGGGGCCCTTTCGACCTGGTGATCGGCGGCAGCCCTTGCAATGACCTGAGCATCGTGAACCCAGCCCGGAAGGGCCTGTACGAGGGAACCGGCAGACTGTTCTTCGAGTTTTACAGACTGCTGCACGACGCCCGGCCTAAGGAAGGCGACGACCGGCCCTTCTTTTGGCTGTTCGAGAATGTGGTGGCCATGGGAGTCAGCGACAAGCGGGATATTAGCCGGTTCCTGGAGAGCAACCCCGTGATGATCGATGCCAAGGAAGTGAGCGCCGCCCACCGGGCCAGATACTTCTGGGGCAATCTGCCTGGCATGAACAGACCCCTGGCCAGCACCGTGAACGACAAGCTGGAGCTGCAGGAGTGCCTGGAGCACGGCCGGATCGCCAAGTTCAGCAAGGTGAGAACCATCACCACCCGAAGCAACAGCATCAAACAAGGCAAGGACCAGCACTTTCCTGTGTTCATGAACGAGAAGGAGGACATCCTGTGGTGTACCGAGATGGAGAGAGTGTTCGGGTTCCCAGTCCACTACACAGATGTCAGCAACATGTCTAGACTGGCCAGACAGAGACTGCTGGGAAGAAGCTGGTCCGTCCCTGTGATCAGACACCTGTTCGCCCCTCTGAAGGAGTACTTCGCCTGCGTG 3112 AACCACGACCAGGAGUUCGACCCCCCUAAGGUGUACCCUCCCGUCCCCGCCGAGAAGAGAAAGCCCAUCCGGGUCCUGAGCCUGUUCGAUGGCAUCGCCACCGGUCUGCUGGUGCUGAAGGACCUGGGCAUCCAGGUGGAUAGGUACAUUGCCUCCGAGGUGUGCGAGGACUCCAUCACCGUGGGAAUGGUGCGUCAUCAGGGCAAGAUCAUGUACGUGGGCGACGUGCGGAGCGUGACACAGAAGCAUAUCCAGGAGUGGGGCCCUUUCGACCUGGUGAUCGGCGGCAGCCCUUGCAAUGACCUGAGCAUCGUGAACCCAGCCCGGAAGGGCCUGUACGAGGGAACCGGCAGACUGUUCUUCGAGUUUUACAGACUGCUGCACGACGCCCGGCCUAAGGAAGGCGACGACCGGCCCUUCUUUUGGCUGUUCGAGAAUGUGGUGGCCAUGGGAGUCAGCGACAAGCGGGAUAUUAGCCGGUUCCUGGAGAGCAACCCCGUGAUGAUCGAUGCCAAGGAAGUGAGCGCCGCCCACCGGGCCAGAUACUUCUGGGGCAAUCUGCCUGGCAUGAACAGACCCCUGGCCAGCACCGUGAACGACAAGCUGGAGCUGCAGGAGUGCCUGGAGCACGGCCGGAUCGCCAAGUUCAGCAAGGUGAGAACCAUCACCACCCGAAGCAACAGCAUCAAACAAGGCAAGGACCAGCACUUUCCUGUGUUCAUGAACGAGAAGGAGGACAUCCUGUGGUGUACCGAGAUGGAGAGAGUGUUCGGGUUCCCAGUCCACUACACAGAUGUCAGCAACAUGUCUAGACUGGCCAGACAGAGACUGCUGGGAAGAAGCUGGUCCGUCCCUGUGAUCAGACACCUGUUCGCCCCUCUGAAGGAGUACUUCGCCUGCGUG 3128 連接子 參見以上序列 3060 參見以上序列 3118 DNMT3L相互作用域 參見以上序列 3061 參見以上序列 3119 連接子 參見以上序列 3105 參見以上序列 3105 ZIM3-KRAB 參見表 12 中之序列 3051 參見以上序列 3120 連接子 參見以上序列 3106 參見以上序列 3121 dCasX491 參見以上序列 3049 參見以上序列 3122 緩衝液 + 連接子 參見以上序列 3107 參見以上序列 3123 NLS + STOP 密碼子+ 緩衝序列 參見以上序列 3108 參見以上序列 3124 3'UTR 參見以上序列 3055 參見以上序列 3125 緩衝序列 參見以上序列 3056 參見以上序列 3126 聚腺苷酸尾 參見以上序列 3109 參見以上序列 3109 *各組分以在構築體內之5'至3'次序列出 16 此實例中評定之 LTRP5-ZIM3 LTRP5-ZIM3-ADD mRNA 分子之全長 RNA 序列。 修飾『 = N1- 甲基 - 假尿苷 LTRP 分子 RNA 序列 SEQ ID NO LTRP5-ZIM3 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGAmψGAACCACGACCAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCCGAGAAGAGAAAGCCCAmψCCGGGmψCCmψGAGCCmψGmψmψCGAmψGGCAmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAmψAGGmψACAmψmψGCCmψCCGAGGmψGmψGCGAGGACmψCCAmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψGCGGAGCGmψGACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAACCCAGCCCGGAAGGGCCmψGmψACGAGGGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACGACCGGCCCmψmψCmψmψmψmψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAGCAACCCCGmψGAmψGAmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGACCCCmψGGCCAGCACCGmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCACCACCCGAAGCAACAGCAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACCGAGAmψGGAGAGAGmψGmψmψCGGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGAAGAAGCmψGGmψCCGmψCCCmψGmψGAmψCAGACACCmψGmψmψCGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCmψmψCmψCmψAGCGGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAAACCGmψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGmψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψmψCCmψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGAAGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAGmψGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCCmψGGGCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψmψCAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGCGGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACmψmψGCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGCCGmψGACCCmψGCAGGACGmψGAGAGGCCGGGACmψACCAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψGACCCCmψAAAGAAGAGGAGmψACCmψGCAGGCCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCmψCCmψGCCCCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGAGGCAGCGGCGGCGGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGGGCGGCCCAAGCAGCGGCGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCCGAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCmψGCCGGCAGCCCCACCmψCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψGGCAAGAGGCGAAAACAmψCCCCGCCGmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCGGCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACCAGCCCCAAGAAAAAGAGAAAAGmψCmψAAmψAGAmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3129 LTRP5-ADD-ZIM3 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGAmψGGAACGCCmψCGmψCmψACGAGGmψGCGGCAGAAGmψGCAGAAACAmψCGAGGACAmψCmψGCAmψCmψCCmψGCGGAmψCmψCmψGAACGmψGACCCmψGGAGCACCCACmψGmψmψCAmψCGGCGGCAmψGmψGCCAGAACmψGmψAAAAACmψGmψmψmψmψCmψGGAGmψGmψGCCmψAmψCAAmψACGACGAmψGACGGCmψACCAGAGCmψACmψGCACCAmψCmψGmψmψGCGGCGGAAGAGAGGmψGCmψGAmψGmψGmψGGAAAmψAACAACmψGCmψGCCGGmψGCmψmψCmψGCGmψGGAAmψGCGmψGGACCmψGCmψGGmψGGGCCCCGGCGCCGCCCAGGCCGCmψAmψmψAAGGAAGAmψCCmψmψGGAACmψGCmψACAmψGmψGCGGCCACAAGGGCACAmψACGGCCmψGCmψGAGACGGAGAGAGGACmψGGCCmψAGCAGACmψGCAGAmψGmψmψCmψmψCGCCAAmψAACCACGACCAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCCGAGAAGAGAAAGCCCAmψCCGGGmψCCmψGAGCCmψGmψmψCGAmψGGCAmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAmψAGGmψACAmψmψGCCmψCCGAGGmψGmψGCGAGGACmψCCAmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψGCGGAGCGmψGACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAACCCAGCCCGGAAGGGCCmψGmψACGAGGGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACGACCGGCCCmψmψCmψmψmψmψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAGCAACCCCGmψGAmψGAmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGACCCCmψGGCCAGCACCGmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCACCACCCGAAGCAACAGCAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACCGAGAmψGGAGAGAGmψGmψmψCGGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGAAGAAGCmψGGmψCCGmψCCCmψGmψGAmψCAGACACCmψGmψmψCGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCmψmψCmψCmψAGCGGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAAACCGmψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGmψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψmψCCmψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGAAGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAGmψGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCCmψGGGCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψmψCAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGCGGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACmψmψGCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGCCGmψGACCCmψGCAGGACGmψGAGAGGCCGGGACmψACCAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψGACCCCmψAAAGAAGAGGAGmψACCmψGCAGGCCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCmψCCmψGCCCCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGAGGCAGCGGCGGCGGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGGGCGGCCCAAGCAGCGGCGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCCGAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCmψGCCGGCAGCCCCACCmψCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψGGCAAGAGGCGAAAACAmψCCCCGCCGmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCGGCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACCAGCCCCAAGAAAAAGAGAAAAGmψCmψAAmψAGAmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3130 17 藉由 ELISA RT-qPCR 測定之前 16 個間隔子活性及平均 CpG 甲基化百分比 (mCpG) 間隔子ID ELISA 減少% RT-qPCR 減少% 平均% mCpG TG-06-001 -54.60 -53.66 59.00 TG-06-133 -26.60 -58.51 42.90 TG-06-139 -51.50 -63.03 55.90 TG-06-141 -53.70 -58.85 53.70 TG-06-142 -18.50 -31.76 28.40 TG-06-143 -27.20 -51.60 46.10 TG-06-144 -28.10 -41.68 54.70 TG-06-146 -22.10 -45.31 31.00 TG-06-149 -57.50 -42.07 56.90 TG-06-150 -56.30 -55.68 56.40 TG-06-154 -66.50 -55.28 45.50 TG-06-157 -55.60 -52.86 54.40 TG-06-158 -56.50 -57.04 49.40 TG-06-160 -42.00 -54.91 57.30 TG-06-167 -37.80 -50.29 46.00 TG-06-168 -39.90 -50.34 48.80 初始 N/A N/A 6.70 NT N/A N/A 1.50 18 藉由硫酸氫鹽定序及 RNA-seq 測定之前 16 個間隔子持久性及特異性 間隔子ID 第9 與第1 的Δ%PCSK9 脫靶差異表現基因# TG-06-154 -22.30 0 TG-06-157 -28.30 1 TG-06-001 -63.50 2 TG-06-141 -10.80 1 TG-06-149 -26.70 0 TG-06-158 0.40 376 TG-06-150 -35.50 2 TG-06-160 -23.50 18 TG-06-139 -34.90 24 TG-06-144 -21.30 0 TG-06-133 -29.40 6 實例 2 證明編碼含有 ADD 域之 LTRP mRNA 可誘導多個人類細胞株源中內源性基因座之抑制 These results demonstrate that delivery of mRNA encoding LTRP molecules with ADD domains with appropriate PCSK9- targeting gRNA can result in sustained repression of endogenous target loci in human cells. In addition, these experiments show that several human spacers that share common sequences with non-human primate species achieve strong phenotypic effects due to targeting therapeutically relevant loci, which supports the potential use of these selected spacers in preclinical efficacy studies using non-human primate models. Table 12 : Coding sequences of dXR1 and LTRP1-ZIM3 mRNA molecules evaluated in Experiment #1 of this Example * dXR or LTRP ID Components DNA Sequence SEQ ID NO: dXR1 (codon optimized) 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START codon + NLS + linker ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGGGGCGGCAGCGGCGGCGGCAGCGCC 3048 dCasX491 CAGGAGATTAAACGGATCAACAAGATCAGAAGAAGACTTGTGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTGGTTTAGAGTGATGACACCCGATCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCTGAAAATATCCCCCAGCCCATCAGCAATACA TCTAGAGCCAACCTGAATAAGCTGCTGACCGATTACACCGAAATGAAGAAGGCGATCCTGCATGTGTACTGGGAAGAGTTCCAGAAGGACCCTGTGGGCCTGATGAGCCGGGTGGCCCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAACCTGAGATGGACGAGAAGGGCAACCTG ACCACCGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCCCTGTTCGTGTACAAGCTGGAGCAGGTGTCTGAGAAGGGCAAGGCTTACACCAACTTCGGACGGTGCAATGTGGCCGAGCACGAAAAGCTGATCCTGCTGGCCCAGCTGAAGCCCGAGAAGGATAGCGACGAAGCCGTGACA TATAGCCTGGGAAAGTTTGGGCAGAGGGCCCTGGATTTCTACAGCATTCATGTGACCAAGGAGTCCACCCACCCCGTGAAGCCCTGGCCCAGATCGCCGGAAACAGATACGCCTCCGGACCTGTGGGAAAGGCCCTGAGCGACGCATGTATGGGCACAATCGCCTCCTTCCTGTCTAAGTAC CAGGACATCATCGAACACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGGGAGCTGGCCGGCAAGGAAAACCTGGAATACCCTAGCGTGACCCTGCCACCTCAGCCTCACACCAAGGAGGGCGTTGATGCCTACAACGAAGTGATCGCCCGGGTGCGAATGTGGGTG AACCTGAACCTGTGGCAGAAGCTGAAGCTAAGCAGAGATGATGCCAAGCCTCTGCTGAGACTGAAGGGATTCCCTTCCTTTCCTCTGGTCGAGAGACAGGCCAACGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAACGAGAAAAAGGAGGATGGCAAGGTGTTTTGG CAGAATCTGGCTGGCTACAAGAGACAGGAAGCCCTGAGACCATACCTGAGCAGCGAGGAAGATCGGAAGAAGGGAAAGAAATTCGCTCGGTACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGAAAGGTGTACGACGAGGCCTGGGAGCGGATTGACAAG AAAGTGGAAGGCCTGAGCAAGCACATCAAGCTGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGCGGGCTAAGGCCAGCTTCGTGATCGAGGGCCTGAAGGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGGG ACCTGCGGGGAAAGCCCTTCGCCATCGAAGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGTGCCTTCATCTGGCAGAAGGACGGCGTGAAGAAGCTGAACCTGTACCTGATCATCAACTACTTCAAGGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCTGAAG CCTTCGAAGCCAACAGATTCTACACCGTGATCAACAAAAAGAGCGGCGAGATCGTGCCCATGGAGGTGAACTTCAACTTCGACGACCCCAACCTGATCATCCTGCCTCTGGCCTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAACGACCTGCTGTCCCTGGAAACCGGCAGCCTGAAGC TGGCCAACGGAAGAGTGATCGAGAAGACACTGTACAACAGAAGAACCCGGCAGGATGAGCCTGCCCTGTTCGTGGCCCTGACCTTCGAGCGGCGGGAGGTCCTGGACTCCTCCAATATCAAACCAATGAACCTGATCGGCGTGGCAAGAGGCGAAAACATCCCCGCCGTGATCGCCCTGACCG ACCCCGAGGGCTGCCCACTGAGCCGGTTTAAGGATAGCCTGGGAAACCCAACCCACATCCTGAGAATCGGCGAGAGCTATAAGGAGAAGCAGCGGACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGAGAGCCGGCGGCTACAGCCGGAAGTACGCCAGCAAAGCCAAGAATCTGGCAGACGA TATGGTGAGAAACACCGCTAGAGATCTGCTGTACTACGCCGTGACCCAGGATGCCATGCTGATCTTCGCCAACCTGAGCCGGGGCTTCGGCCGGCAGGGCAAGCGGACCTTCATGGCCGAGAGACAGTACACACGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGAGCAA GACCTACCTGTCCAAGACACTGGCCCAGTACACCTCCAAGACATGCAGCAACTGTGGGTTTACCATCACCAGCGCCGACTACGACAGGGTGCTGGAGAAGCTGAAGAAGACAGCAACAGGCTGGATGACCACAATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATTACCTACTACAACAG ATACAAGAGACAGAACGTAGTCAAGGACCTGTCCGTCGAGCTGGATAGACTGAGCGAAGAATCTGTGAACAACGACATCTCCTCCTGGACAAAGGGCAGAAGCGGAGAAGCTCTGAGCCTCCTGAAGAAAAGATTCTCCCATAGACCCGTGCAGGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCAGCCGAGCAAGCCGCCCTGAACATCGCCAGATCCTGGCTGTTCCTGCGGAGCCAGGAGTACAAGAAATACCAGACAAACAAGACAACCGGCAACACCGATAAGAGAGCCTTCGTCGAGACCTGGCAGTCCTTTACCGGAAGAAGCTTAAGGAGGTGTGGAAACCTGCCGTG 3049 Connector + Buffer Sequence CGGTCTGGCGGATCTGGCGGAGGCTCCACAAGC 3050 ZIM3-KRAB ATGAACAACTCCCAGGGCAGAGTGACCTTCGAGGACGTGACCGTGAATTTTACACAGGGAGAGTGGCAGAGACTGAACCCCGAGCAGAGAAAACCTGTACCGGGATGGTGATGCTGGAAAACTACAGCAATCTGGTGTCCGTGGGCCAGGGC GAGACCACAAAGCCTGACGTGATCCTGCGTCTGGAGCAGGGCAAGGAACCCTGGCTGGAGGAGGAGGAGGTGCTGGGAAGCGGACGGGCCGAGAAGAACGGCGACATCGGCGGACAGATCTGGAAGCCTAAGGACGTGAAAGAAAGCCTG 3051 Buffer Sequence + NLS ACCAGCCCCAAGAAAAAGAGAAAAGTC 3052 Logo GACTACAAGGATGACGATGACAAGGACTACAAGGATGACGACGACAAG 3053 STOP codon + buffer sequence TAATAGATAAGCGGCCGCTTAATTAA 3054 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 Buffer sequence TCTAG 3056 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 LTRP1 (codon optimized) 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START codon + NLS + buffer sequence + linker ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGGGTGAACGGCAGCGGCAGCGGCGGCGGC 3058 START codon + DNMT3A catalytic domain ATGAACCACGACCAGGAGTTCGACCCCCCTAAGGTGTACCCTCCCGTCCCCGCCGAGAAGAGAAAGCCCATCCGGGTCCTGAGCCTGTTCGATGGCATCGCCACCGGTCTGCTGGTGCTGAAGGACCTGGGCATCCAGGTGGATAGGTACATTGCCTCCGAGGTGTGCGAGGACTCCATCACCGTGGGAATGGTGCGTCATCAGGGCAAGATCATGTACGTGGGCG ACGTGCGGAGCGTGACACAGAAGCATATCCAGGAGTGGGGCCCTTTCGACCTGGTGATCGGCGGCAGCCCTTGCAATGACCTGAGCATCGTGAACCCAGCCCGGAAGGGCCTGTACGAGGGAACCGGCAGACTGTTCTTCGAGTTTTACAGACTGCTGCACGACGCCCGGCCTAAGGAAGGCGACGACCGGCCCTTTCTTTTGGCTGTTCGAGAATGTGGTGGCCATG GGAGTCAGCGACAAGCGGGATATTAGCCGGTTCCTGGAGAGCAACCCCGTGATGATCGATGCCAAGGAAGTGAGCGCCGCCCACCGGGCCAGATACTTCTGGGGCAATCTGCCTGGCATGAACAGACCCCTGGCCAGCACCGTGAACGACAAGCTGGAGCTGCAGGAGTGCCTGGAGCACGGCCGGATCGCCAAGTTCAGCAAGGTGAGAACCATCACCACCCGAA GCAACAGCATCAAACAAGGCAAGGACCAGCACTTTCCTGTGTTCATGAACGAGAGGAGGACATCCTGTGGTGTACCGAGATGGAGAGAGTGTTCGGGTTCCCAGTCCACTACACAGATGTCAGCAACATGTCTAGACTGGCCAGACAGAGACTGCTGGGAAGAAGCTGGTCCGTCCCTGTGATCAGACACCTGTTCGCCCCTCTGAAGGAGTACTTCGCCTGCGTG 3059 Connector AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCTTCTCTAGCGGCCTGGTGCCACTGTCCCTGAGAGGGAGCCAC 3060 DNMT3L interaction domain ATGGGCCCCATGGAGATCTACAAAACCGTGAGCGCCTGGAAGCGGCAGCCTGTGCGCGTGCTGAGCCTGTTTCGGAATATCGATAAAGTCCTGAAAAGCCTGGGATTCCTGGAGAGCGGCTCTGGCTCCGGCGGTGGCACCCTGAAGTACGTGGAGGATGT GACAAACGTGGTCAGACGGGATGTGGAGAAGTGGGGCCCCTTCGATCTGGTGTACGGCAGCACCCAACCCCTGGGCAGCTCTTGTGACCGGTGCCCTGGCTGGTACATGTTTCAGTTCCACCGGATCCTGCAGTACGCCCTGCCGAGACAGGAGTCCCAGC GGCCATTCTTTTGGATTTTCATGGACAACTTGCTGCTGACCGAGGATGACCAGGAAACTACCACTCGGTTCCTGCAGACCGAAGCCGTGACCCTGCAGGACGTGAGAGGCCGGGACTACCAGAACGCCATGCGGGTGTGGTCCAACATCCCTGGACTGAAA AGCAAGCACGCACCTCTGACCCCTAAAGAAGAGGAGTACCTGCAGGCCCAGGTGCGGAGCAGAAGCAAGCTGGACGCCCCTAAGGTGGATCTGCTGGTGAAGAATTGCCTCCTGCCCCTGAGAGAGTACTTCAAGTATTTCAGCCAGAATAGTCTGCCCCTG 3061 Connector GGCGGCCCAAGCAGCGGCGCCCCTCCTCCCAGCGGCGGCAGCCCAGCCGGCTCCCCAACCTCTACCGAGGAGGGCACCTCTGAGTCCGCCACCCCCGAGAGCGGCCCTGGCACCTCCACCGAGCCCAGCGAG GGCAGCGCACCCGGCAGCCCTGCCGGCAGCCCCACCTCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCTAGTGAGGGCGGCTCTGGCGGCGGCAGCGCC 3062 dCasX491 CAGGAGATTAAACGGATCAACAAGATCAGAAGAAGACTTGTGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTGGTTTAGAGTGATGACACCCGATCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCTGAAAATATCCCCCAGCCCATCAGCAATACA TCTAGAGCCAACCTGAATAAGCTGCTGACCGATTACACCGAAATGAAGAAGGCGATCCTGCATGTGTACTGGGAAGAGTTCCAGAAGGACCCTGTGGGCCTGATGAGCCGGGTGGCCCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAACCTGAGATGGACGAGAAGGGCAACCTG ACCACCGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCCCTGTTCGTGTACAAGCTGGAGCAGGTGTCTGAGAAGGGCAAGGCTTACACCAACTTCGGACGGTGCAATGTGGCCGAGCACGAAAAGCTGATCCTGCTGGCCCAGCTGAAGCCCGAGAAGGATAGCGACGAAGCCGTGACA TATAGCCTGGGAAAGTTTGGGCAGAGGGCCCTGGATTTCTACAGCATTCATGTGACCAAGGAGTCCACCCACCCCGTGAAGCCCTGGCCCAGATCGCCGGAAACAGATACGCCTCCGGACCTGTGGGAAAGGCCCTGAGCGACGCATGTATGGGCACAATCGCCTCCTTCCTGTCTAAGTAC CAGGACATCATCGAACACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGGGAGCTGGCCGGCAAGGAAAACCTGGAATACCCTAGCGTGACCCTGCCACCTCAGCCTCACACCAAGGAGGGCGTTGATGCCTACAACGAAGTGATCGCCCGGGTGCGAATGTGGGTG AACCTGAACCTGTGGCAGAAGCTGAAGCTAAGCAGAGATGATGCCAAGCCTCTGCTGAGACTGAAGGGATTCCCTTCCTTTCCTCTGGTCGAGAGACAGGCCAACGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAACGAGAAAAAGGAGGATGGCAAGGTGTTTTGG CAGAATCTGGCTGGCTACAAGAGACAGGAAGCCCTGAGACCATACCTGAGCAGCGAGGAAGATCGGAAGAAGGGAAAGAAATTCGCTCGGTACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGAAAGGTGTACGACGAGGCCTGGGAGCGGATTGACAAG AAAGTGGAAGGCCTGAGCAAGCACATCAAGCTGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGCGGGCTAAGGCCAGCTTCGTGATCGAGGGCCTGAAGGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGGG ACCTGCGGGGAAAGCCCTTCGCCATCGAAGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGTGCCTTCATCTGGCAGAAGGACGGCGTGAAGAAGCTGAACCTGTACCTGATCATCAACTACTTCAAGGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCTGAAG CCTTCGAAGCCAACAGATTCTACACCGTGATCAACAAAAAGAGCGGCGAGATCGTGCCCATGGAGGTGAACTTCAACTTCGACGACCCCAACCTGATCATCCTGCCTCTGGCCTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAACGACCTGCTGTCCCTGGAAACCGGCAGCCTGAAGC TGGCCAACGGAAGAGTGATCGAGAAGACACTGTACAACAGAAGAACCCGGCAGGATGAGCCTGCCCTGTTCGTGGCCCTGACCTTCGAGCGGCGGGAGGTCCTGGACTCCTCCAATATCAAACCAATGAACCTGATCGGCGTGGCAAGAGGCGAAAACATCCCCGCCGTGATCGCCCTGACCG ACCCCGAGGGCTGCCCACTGAGCCGGTTTAAGGATAGCCTGGGAAACCCAACCCACATCCTGAGAATCGGCGAGAGCTATAAGGAGAAGCAGCGGACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGAGAGCCGGCGGCTACAGCCGGAAGTACGCCAGCAAAGCCAAGAATCTGGCAGACGA TATGGTGAGAAACACCGCTAGAGATCTGCTGTACTACGCCGTGACCCAGGATGCCATGCTGATCTTCGCCAACCTGAGCCGGGGCTTCGGCCGGCAGGGCAAGCGGACCTTCATGGCCGAGAGACAGTACACACGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGAGCAA GACCTACCTGTCCAAGACACTGGCCCAGTACACCTCCAAGACATGCAGCAACTGTGGGTTTACCATCACCAGCGCCGACTACGACAGGGTGCTGGAGAAGCTGAAGAAGACAGCAACAGGCTGGATGACCACAATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATTACCTACTACAACAG ATACAAGAGACAGAACGTAGTCAAGGACCTGTCCGTCGAGCTGGATAGACTGAGCGAAGAATCTGTGAACAACGACATCTCCTCCTGGACAAAGGGCAGAAGCGGAGAAGCTCTGAGCCTCCTGAAGAAAAGATTCTCCCATAGACCCGTGCAGGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCAGCCGAGCAAGCCGCCCTGAACATCGCCAGATCCTGGCTGTTCCTGCGGAGCCAGGAGTACAAGAAATACCAGACAAACAAGACAACCGGCAACACCGATAAGAGAGCCTTCGTCGAGACCTGGCAGTCCTTTACCGGAAGAAGCTTAAGGAGGTGTGGAAACCTGCCGTG 3049 Connector CGGTCTGGCGGATCTGGCGGAGGCTCCACAAGC 3050 ZIM3-KRAB ATGAACAACTCCCAGGGCAGAGTGACCTTCGAGGACGTGACCGTGAATTTTACACAGGGAGAGTGGCAGAGACTGAACCCCGAGCAGAGAAAACCTGTACCGGGATGGTGATGCTGGAAAACTACAGCAATCTGGTGTCCGTGGGCCAGGGC GAGACCACAAAGCCTGACGTGATCCTGCGTCTGGAGCAGGGCAAGGAACCCTGGCTGGAGGAGGAGGAGGTGCTGGGAAGCGGACGGGCCGAGAAGAACGGCGACATCGGCGGACAGATCTGGAAGCCTAAGGACGTGAAAGAAAGCCTG 3051 Buffer Sequence + NLS ACCAGCCCCAAGAAAAAGAGAAAAGTC 3052 Logo GACTACAAGGATGACGATGACAAGGACTACAAGGATGACGACGACAAG 3053 STOP codon + buffer sequence TAATAGATAAGCGGCCGCTTAATTAA 3054 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 Buffer sequence TCTAG 3056 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 * The components are listed in 5' to 3' order within the construct. Table 13 : Full-length RNA sequences of dXR1 and LTRP1-ZIM3 mRNA molecules evaluated in Experiment #1 of this example . Modification ' ' = N1- methyl - pseudouridine dXR or LTRP ID RNA- seq SEQ ID NO: dXR1 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGGGCGGCAGCGGCGGCGGCAGCGCCCAGGAGAmψmψAAACGGAmψCA ACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAA ACCmψGAGAAAGAAGCCmψGAAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAmψGmψ GmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACC mψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGm ψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψ mψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGm ψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAA GGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACC mψGmψGGCAGAAGCmψGAAGCmψAAGCAGAAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψ GGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCm ψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGC CmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGC CAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGC CGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψ mψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACm ψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAA GCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψ CCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψGGCAAGAGGCGAAAACAmψCCCCGCCmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGG GAAACCCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGCCGGCGGCmψACAGCCGGAAGmψACGCCAGCAAA GCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGG CCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGC CCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAA CGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGA ACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGG CmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAG AGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACAAGCAmψGAACAA CmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACm ψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACG GGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGACCAGCCCCAAGAAAAAGAGAAAAGmψCGACmψACAAGGAmψGACGAmψGACAAGGACmψA CAAGGAmψGACGACGACAAGmψAAmψAGAmψAAGCGGCCGCmψmψAAmψmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψ ACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψcmψagaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3063 LTRP1 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGGmψGAACGGCAGCGGCAGCGGCGGCGGCAmψGAACCACGACCAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCCGAGAAGAGAAAGCCCAmψCCGGGmψ CCmψGAGCCmψGmψmψCGAmψGGCAmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAmψAGGmψACAmψmψGCCmψC CGAGGmψGmψGCGAGGACmψCCAmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψGCGGAGCGmψGACA CAGAAGCAmψAmψCCAGGAGmψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAACCCAGCCC GGAAGGGCCmψGmψACGAGGGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACGAC CGGCCCmψmψCmψmψmψmψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAG CAACCCCGmψGAmψGAmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGACC CCmψGGCCAGCACCGmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCA CCACCCGAAGCAACAGCAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACC GAGAmψGGAGAGAGmψGmψmψCGGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGA AGAAGCmψGGmψCCGmψCCCmψGmψGAmψCAGACACCmψGmψmψCGGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAAC GCCAACAGCCGGGGCCCCAGCmψmψCmψCmψAGCGGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAA ACCGmψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGmψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψm ψCCmψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGAAGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAG mψGGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCmψGGGCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψmψ CAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGCGGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACmψmψ GCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGCCGmψGACCCmψGCAGGACGmψGAGAGGCCGGGACmψAC CAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψGAACCCmψAAAGAAGAGGAGmψACCmψGCAGG CCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCmψCCmψGCCCCmψGAGAGAGmψACmψm ψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGCGGCCCAAGCAGCGGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCCGAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGC CCmψGCCGGCAGCCCCACCmψCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGGGCGGCmψCmψGGCGGCGGCAGCGCCCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGA CAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAAmψA mψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGAmψCCmψGCAm ψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAA GCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψ ACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψC CmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψm ψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψCCACCCACCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGm ψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAG GmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCm ψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGA AGCmψGAAGCmψAAGCAGAmψGAmψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGC CAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCA GAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGm ψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGA CAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψ GCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψG GmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGm ψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψm ψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGm ψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAAC GACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAm ψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCG GCGmψGGCAAGAGGCGAAAACAmψCCCCGCCmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGC GGCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCC GmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAG mψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACA CCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGG CmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAA GGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGC mψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACG CAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGG CAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCG GmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACAAGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψAC ACAGGGAAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGm ψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAA GCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCmψGACCAGCCCCAAGAAAAAGAGAAA AGmψCGACmψACAAGGAmψGACGAmψGACAAGGACmψACAAGGAmψGACGACGACAAGmψAAmψAGAmψAAGCGGCCGCmψmψAAmψmψAAGCmψGCCmψ mψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGC CmψGAGmψAGGAAGmψcmψagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3064 Table 14 : Full-length protein sequences of dXR1 and LTRP1-ZIM3 molecules evaluated in Experiment #1 of this Example dXR or LTRP ID AA sequence SEQ ID NO: dXR1 MAPKKKRKVSRGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKG NLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQK RLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQL GDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGG KLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPL SRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITS ADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAF VETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3065 LTRP1 MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWG PFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLAST VNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNS NANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGW YMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNC LLPLREYFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEI KRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKL KPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYAS GPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPS FPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEE ERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPE AFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVA RGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKR TFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVN NDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGST SMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3066 Table 15 : DNA and RNA sequences encoding LTRP5-ZIM3 and LTRP5-ZIM3-ADD mRNA molecules evaluated in this example * LTRP molecules Components DNA Sequence SEQ ID NO RNA- seq SEQ ID NO LTRP5-ZIM3 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 AAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC 3115 START codon + NLS + linker ATGGCCCCTAAGAAGAAGCGTAAAGTGAGCCGG 3104 AUGGCCCCUAAGAAGAAGCGUAAAGUGAGCCGG 3116 START codon + DNMT3A catalytic domain See the sequence in Table 12 3059 AUGAACCACGACCAGGAGUUCGACCCCCUAAGGUGUACCCUCCCGUCCCCGCCGAGAAGAGAAAGCCCAUCCGGGUCCUGAGCCUGUUCGAUGGCAUCGCCACCGGUCUGCUGGUGCUGAAGGACCUGGGCAUCCAGGUGGAUAGGUACAUUGCCUCCGAGGUGUGCGAGGACUCCAUCACCGUGGGAAUGGUGCGUCAUCAGGGCAAGAUCAUGUACGUGGGCG ACGUGCGGAGCGUGACACAGAAGCAUAUCCAGGAGUGGGGCCUUUCGACCUGGUGAUCGGCGGCAGCCCUUGCAAUGACCUGAGCAUCGUGAACCCAGCCCGGAAGGGCCUGUACGAGGGAACCGGCAGACUGUUCUUCGAGUUUACAGACUGCUGCACGACGCCCGGCCUAAGGAAGGCGACGACCGGCCCUUCUUUUGGCUGUUCGAGAAUGUGGUGGCCAUG GGAGUCAGCGACAAGCGGGAUAUUAGCCGGUUCCUGGAGAGCAACCCCGUGAUGAUCGAUGCCAAGGAAGUGAGCGCCGCCCACCGGGCCAGAUACUUCUGGGGCAAUCUGCCUGGCAUGAACAGACCCCUGGCCAGCACCGUGAACGACAAGCUGGAGCUGCAGGAGUGCCUGGAGCACGGCCGGAUCGCCAAGUUCAGCAAGGUGAGAACCAUCACCACCCGAA GCAACAGCAUCAAACAAGGCAAGGACCAGCACUUUCCUGUGUUCAUGAACGAGAAGGAGGACAUCCUGGUGUACCGAGAUGGAGAGUGUUCGGGUUCCCAGUCCACUACACAGAUGUCAGCAACAUGUCUAGACUGGCCAGACAGAGACUGCUGGGAAGAAGCUGGUCCGUCCCCUGUGAUCAGACACCUGUUCGCCCUCUGAAGGAGUACUUCGCCUGCGUG 3117 Connector AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCTTCTCTAGCGGCCTGGTGCCACTGTCCCTGAGAGGGAGCCAC 3060 AGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCUUCUCUAGCGGCCUGGGCCACUGUCCCUGAGAGGGAGCCAC 3118 DNMT3L interaction domain See the sequence in Table 12 3061 AUGGGCCCCAUGGAGAUACAAAACCGUGAGCGCCCUGGAAGCGGCAGCCUGUGCGCGUGCUGAGCCUGUUUCGGAAUAUCGAUAAAGUCCUGAAAAGCCUGGGAUUCCUGGAGAGCGGCUCUGGCUCCGGCGGUGGCACCCUGAAGUACGUGGAGGAUGU GACAAACGUGGUCAGACGGGAUGUGGAGAAGUGGGGCCCCUUCGAUCUGGUGUACGGCAGCACCCAACCCCUGGGCAGCUCUUGUGACCGGUGCCCUGGCUGGUACAUGUUUCAGUUCCACCGGAUCCUGCAGUACGCCCUGCCGAGACAGGAGUCCCAGC GGCCAUUCUUUUGGAUUUCCAUGGACAACUUGCUGCUGACCGAGGAUGACCAGGAAACUACCACUCGGUUCCUGCAGACCGAAGCCGUGACCCUGCAGGACGUGAGAGGCCGGGACUACCAGAACGCCAUGCGGGUGUGGUCCAACAUCCCUGGACUGAAA AGCAAGCACGCACCUCUGACCCCUAAAGAAGAGGAGUACCUGCAGGCCCAGGUGCGGAGCAGAAGCAAGCUGGACGCCCCUAAGGUGGAUCUGCUGGUGAAGAAUUGCCUCCUGCCCCUGAGAGAGUACUUCAAGUAUUUCAGCCAGAAUAGUCUGCCCCUG 3119 Connector GGAGGCAGCGGCGGCGGC 3105 GGAGGCAGCGGCGGCGGC 3105 ZIM3-KRAB See the sequence in Table 12 3051 AUGAACAACUCCCAGGGCAGAGUGACCUUCGAGGACGUGACCGUGAAUUUUACACAGGGAGAGUGGCAGAGACUGAACCCCGAGCAGAGAAACCUGUACCGGGAUGUGAUGCUGGAAAACUACAGCAAUCUGGUGUCCGUGGGCCAGGGC GAGACCACAAAGCCUGACGUGAUCCUGCGUCUGGAGCAGGGCAAGGAACCCUGGCUGGAGGAGGAGGAGGUGCUGGGAAGCGGACGGGCCGAAGAACGGCGACAUCGGCGGACAGAUCUGGAAGCCUAAGGACGUGAAAGAAAGCCUG 3120 Connector GGCGGCCCAAGCAGCGGCGCCCCTCCTCCCAGCGGCGGCAGCCCAGCCGGCTCCCCAACCTCTACCGAGGAGGGCACCTCTGAGTCCGCCACCCCCGAGAGCGGCCCTGGCACCTCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCTGCCGGCAGCCCCACCTCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCTAGTGAG 3106 GGCGGCCCAAGCAGCGGCGCCCCUCCUCCCAGCGGCGGCAGCCCAGCCGGCUCCCCAACCUCUACCGAGGAGGGCACCUCUGAGUCCGCCACCCCCGAGAGCGGCCCUGGCACCUCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCUGCCGGCAGCCCCACCUCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCUAGUGAG 3121 dCasX491 See the sequence in Table 12 3049 CAGGAGAUUAAACGGAUCAACAAGAUCAGAAGAAGACUUGUGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAUGAAAACCCUGCUGGUUAGAGUGAUGACACCCGAUCUGAGAGAGCGGCUGGAAAACCUGAGAAAGAAGCCUGAAAAUAUCCCCCAGCCCAUCAGCAAUACA UCUAGAGCCAACCUGAAUAAGCUGCUGACCGAUUACACCGAAAUGAAGAAGGCGAUCCUGCAUGUGUACUGGGAAGAGUUCCAGAAGGACCCUGUGGGCCUGAUGAGCCGGGUGGCCCAGCCUGCCAGCAAGAAGAUCGAUCAGAACAAGCUGAAACCUGAGAUGGACGAGAAGGGCAACCUG ACCACCGCCGGCUUUGCCUGCUCUCAGUGUGGCCAGCCCCUGUUCGUGUACAAGCUGGAGCAGGUGUCUGAGAAGGGCAAGGCUUACACCAACUACUUCGGACGGUGCAAUGUGGCCGAGCACGAAAAGCUGAUCCUGCUGGCCCAGCUGAAGCCCGAGAAGGAUAGCGACGAAGCCGUGACA UAUAGCCUGGGAAAGUUUGGGCAGAGGGCCCUGGAUUUCUACAGCAUUCAUGUGACCAGGAGUCCACCCACCCGUGAAGCCCCUGGCCCAGAUCGCCGGAAACAGAUACGCCUCCGGACCUGUGGGAAAGGCCCUGAGCGACGCAUGUAUGGGCACAAUCGCCUCCUUCCUGUCUAAGUAC CAGGACAUCAUCAUCGAACACCAGAAGGUGGUGAAGGGCAACCAGAAGAGACUGGAGAGCCUGCGGGAGCUGGCCGGCAAGGAAAACCUGGAAUACCCUAGCGUGACCCUGCCACCUCAGCCUCACACCAAGGAGGGCGUUGAUGCCUACAACGAAGUGAUCGCCCGGGUGCGAAUGUGGGG AACCUGAACCUGUGGCAGAAGCUGAAGCUAAGCAGAGAUGAUGCCAAGCCUGCUGAGACUGAAGGGAUUCCCUUCCUUUCCUCUGGUCGAGACAGGCCAACGAAGUGGACUGGUGGGACAUGGUGUGUAACGUGAAGAAGCUGAUCAACGAGAAAAAGGAGGAUGGCAAGGUGUUUUGG CAGAAUCUGGCUGGCUACAAGAGACAGGAAGCCCUGAGACCAUACCUGAGCAGCGAGGAAGAUCGGAAGAAGGGAAAGAAAUUCGCUCGGUACCAGCUGGGCGACCUGCUGCUGCACCUGGAAAAGAAGCACGGCGAGGACUGGGGAAAGGUGUACGACGAGGCCUGGGAGCGGAUUGACAAG AAAGUGGAAGGCCUGAGCAAGCACAUCAAGCUGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCUGACCGACUGGCUGCGGGCUAAGGCCAGCUUCGUGAUCGAGGGCCUGAAGGAGGCCGACAAGGACGAGUUCUGCAGAUGCGAGCUGAAGCUGCAGAAGUGGUACGGGG ACCUGCGGGGAAAGCCCUUCGCCAUCGAAGCCGAGAACAGCAUCCUGGACAUCAGCGGCUUCAGCAAGCAGUACAACUGUGCCUUCAUCUGGCAGAAGGACGGCGUGAAGAAGCUGAACCUGUACCUGAUCAUCAACUACUUCAAGGGCGGCAAGCUGCGGUUCAAGAAGAUCAAACCUGAAG CCUUCGAAGCCAACAGAUUCUACACCGUGAUCAACAAAAAGAGCGGCGAGAUCGUGCCCAUGGAGGUGAACUUCAACUUCGACGACCCCAACCUGAUCAUCCUGCCUGGCCUUUGGCAAGAGACAGGGCAGAGAAUUCAUCUGGAACGACCUGCUGUCCCUGGAAACCGGCAGCCUGAAGC UGGCCAACGGAAGAGUGAUCGAGAAGACACUGUACAACAGAAGAACCCGGCAGGAUGAGCCUGCCUGUUCGUGGCCCUGACCUUCGAGCGGCGGGAGGUCCUGGACUCCUCCAAUAUCAAACCAAUGAACCUGAUCGGCGUGGCAAGAGGCGAAAACAUCCCCGCCGUGAUCGCCCUGACCG ACCCCGAGGGCUGCCCACUGAGCCGGUUUAAGGAUAGCCUGGGAAACCCAACCCACAUCCUGAGAAUCGGCGAGAGCUAUAAGGAGAAGCAGCGGACCAUCCAGGCCAAGAAGGAGGUGGAGCAGCGGAGAGCCGGCGGCUACAGCCGGAAGUACGCCAGCAAAGCCAAGAAUCUGGCAGACGA UAUGGUGAGAAACACCGCUAGAGAUCUGCUGUACUACGCCGUGACCCAGGAUGCCAUGCUGAUCUUCGCCAACCUGAGCCGGGGCUUCGGCCGGCAGGGCAAGCGGACCUUCAUGGCCGAGAGACAGUACACACGGAUGGAGGACUGGCUGACCGCCAAGCUGGCCUACGAGGGCCUGAGCAA GACCUACCUGUCCAAGACACUGGCCCAGUACACCUCCAAGACAUGCAGCAACUGUGGGUUUACCAUCACCAGCGCCGACUACGACAGGGUGCUGGAGAAGCUGAAGAAGACAGCACAGGCUGGAUGACCACAAUUAACGGCAAGGAGCUGAAGGUGGAGGGCCAGAUUACCUACUACAACAG AUACAAGAGACAGAACGUAGUCAAGGACCUGUCCGUCGAGCUGGAUAGACUGAGCGAAGAAUCUGUGAACAACGACAUCUCCUCCUGGACAAAGGGCAGAAGCGGAGAAGCUCUGAGCCUCCUGAAGAAAAGAUUCUCCCAUAGACCCGUGCAGGAGAAGUUCGUGUGCCUGAACUGCGGCUU CGAGACACACGCAGCCGAGCAAGCCGCCCUGAACAUCGCCAGAUCCUGGCUGUUCCUGCGGAGCCAGGAGUACAAGAAAUACCAGACAAACAAGACAACCGGCAACACCGAUAAGAGAGCCUUCGUCGAGACCUGGCAGUCCUUUUACCGGAAGAAGCUUAAGGAGGUGUGGAAACCUGCCGUG 3122 Buffer + Connector CGGTCTGGCGGATCTGGCGGAGGCTCCACCAGC 3107 CGGUCUGGCGGAUCUGGCGGAGGCUCCACCAGC 3123 NLS + STOP codon + buffer sequence CCCAAGAAAAAGAGAAAAGTCTAATAGATAA 3108 CCCAAGAAAAAGAGAAAAGUCUAAUAGAUAA 3124 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 GCUGCCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG 3125 Buffer sequence TCTAG 3056 UCUAG 3126 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3109 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3109 LTRP5-ADD-ZIM3 5'UTR See above sequence 3047 See above sequence 3115 START codon + NLS + linker See above sequence 3104 See above sequence 3116 START codon + DNMT3A ADD domain ATGGAACGCCTCGTCTACGAGGTGCGGCAGAAGTGCAGAAACATCGAGGACATCTGCATCTCCTGCGGATCTCTGAACGTGACCCTGGAGCACCCACTGTTCATCGGCGGCATGTGCCAGAACTGTAAAAACTGTTTTCTGGAGTGTGCCTATCAATACGACGATGACGGCTACCAGAGCTACTGCACCATCTGTTGCGGCGGA AGAGAGGTGCTGATGTGTGGAAATAACAACTGCTGCCGGTGCTTCTGCGTGGAATGCGTGGACCTGCTGGTGGGCCCCGGCGCCGCCCAGGCCGCTATTAAGGAAGATCCTTGGAACTGCTACATGTGCGGCCACAAGGGCACATACGGCCTGCTGAGACGGAGAGAGGACTGGCCTAGCAGACTGCAGATGTTCTTCGCCAAT 3111 AUGGAACGCCUCGUACGAGGUGCGGCAGAAGUGCAGAAACAUCGAGGACAUCUGCAUCCUGCGGAUCUCUGAACGUGACCCUGGAGCACCCACUGUUCAUCGGCGGCAUGUGCCAGAACUGUAAAAACUGUUUUCUGGAGUGUGCCUAUCAAUACGACGAUGACGGCUACCAGAGCUACUGCACCAUCUGUUGCGGCGGA AGAGAGGUGCUGAUGUGUGGAAAUAACAACUGCUGCCGGUGCUUCUGCGUGGAAUGCGUGGACCUGCUGGUGGGCCCCGGCGCCGCCCAGGCCGCUAUUAAGGAAGAUCCUUGGAACUGCUACAUGUGCGGCCACAAGGGCACAUACGGCCUGCUGAGACGGAGAGAGGACUGGCCUAGCAGACUGCAGAUGUUCUUCGCCAAU 3127 DNMT3A catalytic domain AACCACGACCAGGAGTTCGACCCCCCTAAGGTGTACCCTCCCGTCCCCGCCGAGAAGAGAAAGCCCATCCGGGTCCTGAGCCTGTTCGATGGCATCGCCACCGGTCTGCTGGTGCTGAAGGACCTGGGCATCCAGGTGGATAGGTACATTGCCTCCGAGGTGTGCGAGGACTCCATCACCGTGGGAATGGTGCGTCATCAGGGCAAGATCATGTACGTGGGCGAC GTGCGGAGCGTGACACAGAAGCATATCCAGGAGTGGGGCCCTTTCGACCTGGTGATCGGCGGCAGCCCTTGCAATGACCTGAGCATCGTGAACCCAGCCCGGAAGGGCCTGTACGAGGGAACCGGCAGACTGTTCTTCGAGTTTTACAGACTGCTGCACGACGCCCGGCCTAAGGAAGGCGACGACCGGCCCTTTCTTTTGGCTGTTCGAGAATGTGGTGGCCATGG GAGTCAGCGACAAGCGGGATATTAGCCGGTTCCTGGAGAGCAACCCCGTGATGATCGATGCCAAGGAAGTGAGCGCCGCCCACCGGGCCAGATACTTCTGGGGCAATCTGCCTGGCATGAACAGACCCCTGGCCAGCACCGTGAACGACAAGCTGGAGCTGCAGGAGTGCCTGGAGCACGGCCGGATCGCCAAGTTCAGCAAGGTGAGAACCATCACCACCCGAAG CAACAGCATCAAACAAGGCAAGGACCAGCACTTTCCTGTGTTCATGAACGAAGGAGGACATCCTGTGGTGTACCGAGATGGAGAGAGTGTTCGGGTTCCCAGTCCACTACACAGATGTCAGCAACATGTCTAGACTGGCCAGACAGAGACTGCTGGGAAGAAGCTGGTCCGTCCCTGTGATCAGACACCTGTTCGCCCCTCTGAAGGAGTACTTCGCCTGCGTG 3112 AACCACGACCAGGAGUUCGACCCCCUAAGGUGUACCCUCCCGUCCCCGCCGAGAAGAGAAAGCCCAUCCGGUCCUGAGCCUGUUCGAUGGCAUCGCCACCGGUCUGCUGGUGCUGAAGGACCUGGGCAUCCAGGUGGAUAGGUACAUUGCCUCCGAGGUGUGCGAGGACUCCAUCACCGUGGGAAUGGUGCGUCAUCAGGGCAAGAUCAUGUACGUGGGCGAC GUGCGGAGCUGACACAGAAGCAUAUCCAGGAGUGGGGCCUUUCGACCUGGUGAUCGGCGGCAGCCCUUGCAAUGACCUGAGCAUCGUGAACCCAGCCCGGAAGGGCCUGUACGAGGGAACCGGCAGACUGUUCUUCGAGUUUACAGACUGCUGCACGACGCCCGGCCUAAGGAAGGCGACGACCGGCCCUUCUUUUGGCUGUUCGAGAAUGUGGUGGCCAUGG GAGUCAGCGACAAGCGGGAUAUUAGCCGGUUCCUGGAGAGCAACCCCGUGAUGAUCGAUGCCAAGGAAGUGAGCGCCGCCCACCGGGCCAGAUACUUCUGGGGCAAUCUGCCUGGCAUGAACAGACCCCUGGCCAGCACCGUGAACGACAAGCUGGAGCUGCAGGAGUGCCUGGAGCACGGCCGGAUCGCCAAGUUCAGCAAGGUGAGAACCAUCACCACCCGAAG CAACAGCAUCAAACAAGGCAAGGACCAGCACUUUCCUGUGUUCAUGAACGAAGGAGGACAUCCUGUGGUGUACCGAGAUGGAGAGUGUUCGGGUUCCCAGUCCACUACACAGAUGUCAGCAACAUGUCUAGACUGGCCAGACAGAGACUGCUGGGAAGAAGCUGGUCCGUCCCCUGUGAUCAGACACCUGUUCGCCCCUCUGAAGGAGUACUUCGCCUGCGUG 3128 Connector See above sequence 3060 See above sequence 3118 DNMT3L interaction domain See above sequence 3061 See above sequence 3119 Connector See above sequence 3105 See above sequence 3105 ZIM3-KRAB See the sequence in Table 12 3051 See above sequence 3120 Connector See above sequence 3106 See above sequence 3121 dCasX491 See above sequence 3049 See above sequence 3122 Buffer + Connector See above sequence 3107 See above sequence 3123 NLS + STOP codon + buffer sequence See above sequence 3108 See above sequence 3124 3'UTR See above sequence 3055 See above sequence 3125 Buffer sequence See above sequence 3056 See above sequence 3126 Poly(A) tail See above sequence 3109 See above sequence 3109 * The components are listed in 5' to 3' order within the construct Table 16 : Full-length RNA sequences of LTRP5-ZIM3 and LTRP5-ZIM3-ADD mRNA molecules evaluated in this example . Modification ' ' = N1- methyl - pseudouridine LTRP molecules RNA- seq SEQ ID NO LTRP5-ZIM3 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGAmψGAACCACGAC CAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCCGAGAAGAGAAAGCCCAmψCCGGGmψCCmψGAGCCmψGmψmψCGAmψGGC AmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAmψAGGmψACAmψmψGCCmψCCGAGGmψGmψGCGAGGACmψCC AmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψGCGGAGCGmψGACACAGAAGCAmψAmψCCAGGAGm ψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAACCCAGCCCGGAAGGGCCmψGmψACGAG GGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACGACCGGCCCmψmψCmψmψmψ mψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAGCAACCCCGmψGAmψG AmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGAACCCmψGGCCAGCACC GmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCACCACCCGAAGCA ACAGCAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACCGAGAmψGGAG AGAGmψGmψmψCGGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGAAGAAGCmψ GGmψCCGmψCCCmψGmψGAmψCAGACACCmψGmψmψCGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAACGCCAACA GCCGGGGCCCCAGCmψmψCmψCmψAGCGGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAAACCGm ψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGmψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψmψCC mψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGAAGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAGm ψGGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCmψGGGCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψm ψCAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGCGGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACm ψmψGCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGCCGmψGACCCmψGCAGGACGmψGAGAGGCCGGGA CmψACCAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψGACCCCmψAAAGAAGAGGAGmψACC mψGCAGGCCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCmψCCmψGCCCCmψGAGAGA GmψACmψmψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGAGGCAGCGGCGGCGGCAmψGAACAACmψCCCAGGGCAGAGmψGACCmψ mψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAmψGC mψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGA ACCCmψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψ GAAAGAAAGCCmψGGGCGGCCCAAGCAGCGGCGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCCGAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCmψGCCGGCAGCCCCACCmψC CACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACACCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACA CCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCmψGAAAmψAmψCCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψ GAAmψAAGCmψGCmψGACCGAmψmψACACCGAAAmψGAAGAAGGCGamψCCmψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψG GGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGA CCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAGCmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGC mψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCCCAGCmψGAAGCCCGAGAAGGAmψAG CGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAmψGmψGACCAAGGAGmψC CACCCACCCCGmψGAAGCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGCAmψGmψAmψ GGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψG GAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψ GAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGAmψGAm ψGCCAAGCCmψCmψGCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGA CAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAG AGACAGGAAGCCCmψGAGACCAmψACCmψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCm ψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGC mψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGC GGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCm ψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAGGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψC AAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψGCCCAmψGGAGGmψGAACmψmψC AACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψCmψGGAACGACCmψGCm ψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGGAmψGAGCCm ψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGmψ GGCAAGAGGCGAAAACAmψCCCCGCCmψGAmψCGCCCmψGACCGACCCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACCCACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCG GCmψACAGCCGGAAGmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGC CGmψGACCCAGGAmψGCCAmψGCmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGA CAGmψACACACGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAG mψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψmψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGC AACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGm ψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψCmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAA GCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCAGGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψm ψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCGGAGCCAGGAGmψACAAGAAAmψACCAGACA AACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAGAAGCmψmψAAGGAGGmψGmψGG AAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACCAGCCCCAAGAAAAAGAGAAAAGmψCmψAAmψAGAmψAAGCmψGCCmψmψC mψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3129 LTRP5-ADD-ZIM3 AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψAAGAAGAAGCGmψAAAGmψGAGCCGGAmψGGAACGCCmψCGmψCmψ ACGAGGmψGCGGCAGAAGmψGCAGAAACAmψCGAGGACAmψCmψGCAmψCmψCCmψGCGGAmψCmψCmψGAACGmψGACCCmψGGAGCACCCACmψGmψmψCAmψC GGCGGCAmψGmψGCCAGAACmψGmψAAAAACmψGmψmψmψmψCmψGGAGmψGmψGCCmψAmψCAAmψACGACGAmψGACGGCmψACCAGAGCmψACmψGCACCAmψ CmψGmψmψGCGGCGGAAGAGAGGmψGCmψGAmψGmψGmψGGAAAmψAACAACmψGCmψGCCGGmψGCmψmψCmψGCGmψGGAAmψGCGmψGGACCmψGCmψGGmψG GGCCCCGGCGCCGCCCAGGCCGCmψAmψmψAAGGAAGAmψCCmψmψGGAACmψGCmψACAmψGmψGCGGCCACAAGGGCACAmψACGGCCmψGCmψGAGACGGAGA GAGGACmψGGCCmψAGCAGACmψGCAGAmψGmψmψCmψmψCGCCAAmψAACCACGACCAGGAGmψmψCGACCCCCCmψAAGGmψGmψACCCmψCCCGmψCCCCGCC GAGAAGAGAAAGCCCAmψCCGGGmψCCmψGAGCCmψGmψmψCGAmψGGCAmψCGCCACCGGmψCmψGCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAGGmψGGAm ψAGGmψACAmψmψGCCmψCCGAGGmψGmψGCGAGGACmψCCAmψCACCGmψGGGAAmψGGmψGCGmψCAmψCAGGGCAAGAmψCAmψGmψACGmψGGGCGACGmψG CGGAGCGmψGACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCmψmψmψCGACCmψGGmψGAmψCGGCGGCAGCCCmψmψGCAAmψGACCmψGAGCAmψCGmψGAA CCCAGCCCGGAAGGGCCmψGmψACGAGGGAACCGGCAGACmψGmψmψCmψmψCGAGmψmψmψmψACAGACmψGCmψGCACGACGCCCGGCCmψAAGGAAGGCGACG ACCGGCCCmψmψCmψmψmψmψGGCmψGmψmψCGAGAAmψGmψGGmψGGCCAmψGGGAGmψCAGCGACAAGCGGGAmψAmψmψAGCCGGmψmψCCmψGGAGAGCAAC CCCGmψGAmψGAmψCGAmψGCCAAGGAAGmψGAGCGCCGCCCACCGGGCCAGAmψACmψmψCmψGGGGCAAmψCmψGCCmψGGCAmψGAACAGACCCCmψGGCCAG CACCGmψGAACGACAAGCmψGGAGCmψGCAGGAGmψGCCmψGGAGCACGGCCGGAmψCGCCAAGmψmψCAGCAAGGmψGAGAACCAmψCACCACCCGAAGCAACAG CAmψCAAACAAGGCAAGGACCAGCACmψmψmψCCmψGmψGmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGmψACCGAGAmψGGAGAGAGmψGmψmψC GGGmψmψCCCAGmψCCACmψACACAGAmψGmψCAGCAACAmψGmψCmψAGACmψGGCCAGACAGAGACmψGCmψGGGAAGAAGCmψGGmψCCGmψCCCmψGmψGAm ψCAGACACCmψGmψmψCGCCCCmψCmψGAAGGAGmψACmψmψCGCCmψGCGmψGAGCAGCGGCAACAGCAACGCCAACAGCCGGGGCCCCAGCmψmψCmψCmψAGC GGCCmψGGmψGCCACmψGmψCCCmψGAGAGGGAGCCACAmψGGGCCCCAmψGGAGAmψCmψACAAAACCGmψGAGCGCCmψGGAAGCGGCAGCCmψGmψGCGCGm ψGCmψGAGCCmψGmψmψmψCGGAAmψAmψCGAmψAAAGmψCCmψGAAAAGCCmψGGGAmψmψCCmψGGAGAGCGGCmψCmψGGCmψCCGGCGGmψGGCACCCmψGA AGmψACGmψGGAGGAmψGmψGACAAACGmψGGmψCAGACGGGAmψGmψGGAGAAGmψGGGGCCCCmψmψCGAmψCmψGGmψGmψACGGCAGCACCCAACCCCmψGG GCAGCmψCmψmψGmψGACCGGmψGCCCmψGGCmψGGmψACAmψGmψmψmψCAGmψmψCCACCGGAmψCCmψGCAGmψACGCCCmψGCCGAGACAGGAGmψCCCAGC GGCCAmψmψCmψmψmψmψGGAmψmψmψmψCAmψGGACAACmψmψGCmψGCmψGACCGAGGAmψGACCAGGAAACmψACCACmψCGGmψmψCCmψGCAGACCGAAGC CGmψGACCCmψGCAGGACGmψGAGAGGCCGGGACmψACCAGAACGCCAmψGCGGGmψGmψGGmψCCAACAmψCCCmψGGACmψGAAAAGCAAGCACGCACCmψCmψ GACCCCmψAAAGAAGAGGAGmψACCmψGCAGGCCCAGGmψGCGGAGCAGAAGCAAGCmψGGACGCCCCmψAAGGmψGGAmψCmψGCmψGGmψGAAGAAmψmψGCCm ψCCmψGCCCCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψCAGCCAGAAmψAGmψCmψGCCCCmψGGGAGGCAGCGGCGGCGGCAmψGAACAACmψCCCAGGGCAG AGmψGACCmψmψCGAGGACGmψGACCGmψGAAmψmψmψmψACACAGGGAGAGmψGGCAGAGACmψGAACCCCGAGCAGAGAAACCmψGmψACCGGGAmψGmψGAm ψGCmψGGAAAACmψACAGCAAmψCmψGGmψGmψCCGmψGGGCCAGGGCGAGACCACAAAGCCmψGACGmψGAmψCCmψGCGmψCmψGGAGCAGGGCAAGGAACCCm ψGGCmψGGAGGAGGAGGAGGmψGCmψGGGAAGCGGACGGGCCGAGAAGAACGGCGACAmψCGGCGGACAGAmψCmψGGAAGCCmψAAGGACGmψGAAAGAAAGCCm ψGGGCGGCCCAAGCAGCGGCGCCCCmψCCmψCCCAGCGGCGGCAGCCCAGCCGGCmψCCCCAACCmψCmψACCGAGGAGGGCACCmψCmψGAGmψCCGCCACCCCC GAGAGCGGCCCmψGGCACCmψCCACCGAGCCCAGCGAGGGCAGCGCACCCGGCAGCCCmψGCCGGCAGCCCCACCmψCCACAGAGGAGGGAACCAGCACCGAGCCCAGCGAAGGCAGCGCCCCAGGCACCAGCACCGAGCCmψAGmψGAGCAGGAGAmψmψAAACGGAmψCAACAAGAmψCAGAAGAAGACmψmψGmψGAAAGACAGCAACA CCAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψGGmψmψAGAGmψGAmψGACACCCGAmψCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAG CCmψGAAAAmψAmψCCCCAGCCCAmψCAGCAAmψACAmψCmψAGAGCCAACCmψGAAmψAAGCmψGCmψGACCGAmψmψACACGAAAmψGAAGAAGGCGAmψCC mψGCAmψGmψGmψACmψGGGAAGAGmψmψCCAGAAGGACCCmψGmψGGGCCmψGAmψGAGCCGGGmψGGCCCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACA AGCmψGAAACCmψGAGAmψGGACGAGAAGGGCAACCmψGACCACCGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCCCmψGmψmψCGmψGmψACAAG CmψGGAGCAGGmψGmψCmψGAGAAGGGCAAGGCmψmψACACCAACmψACmψmψCGGACGGmψGCAAmψGmψGGCCGAGCACGAAAAGCmψGAmψCCmψGCmψGGCC CAGCmψGAAGCCCGAGAAGGAmψAGCGACGAAGCCGmψGACAmψAmψAGCCmψGGGAAAGmψmψmψGGGCAGAGGGCCCmψGGAmψmψmψCmψACAGCAmψmψCAm ψGmψGACCAAGGAGmψCCACCCACCCCGmψGAAGCCCCmψGGCCCAGAmψCGCCGGAAACAGAmψACGCCmψCCGGACCmψGmψGGGAAAGGCCCmψGAGCGACGC AmψGmψAmψGGGCACAAmψCGCCmψCCmψmψCCmψGmψCmψAAGmψACCAGGACAmψCAmψCAmψCGAACACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACm ψGGAGAGCCmψGCGGGAGCmψGGCCGGCAAGGAAAACCmψGGAAmψACCCmψAGCGmψGACCCmψGCCACCmψCAGCCmψCACACCAAGGAGGGCGmψmψGAmψGC CmψACAACGAAGmψGAmψCGCCCGGGmψGCGAAmψGmψGGGmψGAACCmψGAACCmψGmψGGCAGAAGCmψGAAGCmψAAGCAGAGamψGAmψGCCAAGCCmψCmψ GCmψGAGACmψGAAGGGAmψmψCCCmψmψCCmψmψmψCCmψCmψGGmψCGAGAGACAGGCCAACGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψG AAGAAGCmψGAmψCAACGAGAAAAAGGAGGAmψGGCAAGGmψGmψmψmψmψGGCAGAAmψCmψGGCmψGGCmψACAAGAGACAGGAAGCCCmψGAGACCAmψACCm ψGAGCAGCGAGGAAGAmψCGGAAGAAGGGAAAGAAAmψmψCGCmψCGGmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACm ψGGGGAAAGGmψGmψACGACGAGGCCmψGGGAGCGGAmψmψGACAAGAAAGmψGGAAGGCCmψGAGCAAGCACAmψCAAGCmψGGAAGAGGAACGGAGAAGCGAGG ACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGCGGGCmψAAGGCCAGCmψmψCGmψGAmψCGAGGGCCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψG CAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGGGACCmψGCGGGGAAAGCCCmψmψCGCCAmψCGAAGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGC mψmψCAGCAAGCAGmψACAACmψGmψGCCmψmψCAmψCmψGGCAGAAGGACGGCGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψACmψmψCAAG GGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCmψGAAGCCmψmψCGAAGCCAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGAGCGGCGAGAmψCGmψ GCCCAmψGGAGGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψCAmψCCmψGCCmψCmψGGCCmψmψmψGGCAAGAGACAGGGCAGAGAAmψmψCAmψ CmψGGAACGACCmψGCmψGmψCCCmψGGAAACCGGCAGCCmψGAAGCmψGGCCAACGGAAGAGmψGAmψCGAGAAGACACmψGmψACAACAGAAGAACCCGGCAGG AmψGAGCCmψGCCCmψGmψmψCGmψGGCCCmψGACCmψmψCGAGCGGCGGGAGGmψCCmψGGACmψCCmψCCAAmψAmψCAAACCAAmψGAACCmψGAmψCGGCGm ψGGCAAGAGGCGAAAACAmψCCCCGCCgmψGAmψCGCCCmψGACCGACCCGAGGGCmψGCCCACmψGAGCCGGmψmψmψAAGGAmψAGCCmψGGGAAACCCAACC CACAmψCCmψGAGAAmψCGGCGAGAGCmψAmψAAGGAGAAGCAGCGGACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGAGAGCCGGCGGCmψACAGCCGGAA GmψACGCCAGCAAAGCCAAGAAmψCmψGGCAGACGAmψAmψGGmψGAGAAACACCGCmψAGAGAmψCmψGCmψGmψACmψACGCCGmψGACCCAGGAmψGCCAmψG CmψGAmψCmψmψCGCCAACCmψGAGCCGGGGCmψmψCGGCCGGCAGGGCAAGCGGACCmψmψCAmψGGCCGAGAGACAGmψACACACGGAmψGGAGGACmψGGCmψ GACCGCCAAGCmψGGCCmψACGAGGCCmψGAGCAAGACCmψACCmψGmψCCAAGACACmψGGCCCAGmψACACCmψCCAAGACAmψGCAGCAACmψGmψGGGmψm ψmψACCAmψCACCAGCGCCGACmψACGACAGGGmψGCmψGGAGAAGCmψGAAGAAGACAGCAACAGGCmψGGAmψGACCACAAmψmψAACGGCAAGGAGCmψGAAG GmψGGAGGGCCAGAmψmψACCmψACmψACAACAGAmψACAAGAGACAGAACGmψAGmψCAAGGACCmψGmψCCGmψCGAGCmψGGAmψAGACmψGAGCGAAGAAmψ CmψGmψGAACAACGACAmψCmψCCmψCCmψGGACAAAGGGCAGAAGCGGAGAAGCmψCmψGAGCCmψCCmψGAAGAAAAGAmψmψCmψCCCAmψAGACCCGmψGCA GGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCAGCCGAGCAAGCCGCCCmψGAACAmψCGCCAGAmψCCmψGGCmψGmψmψCCmψGCG GAGCCAGGAGmψACAAGAAAmψACCAGACAAACAAGACAACCGGCAACACCGAmψAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGmψCCmψmψmψmψACCGGAAG AAGCmψmψAAGGAGGmψGmψGGAAACCmψGCCGmψGCGGmψCmψGGCGGAmψCmψGGCGGAGGCmψCCACCAGCCCCAAGAAAAAGAGAAAAGmψCmψAAmψAGAm ψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAm ψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3130 Table 17 : Activity and average CpG methylation percentage (mCpG) of the 16 spacers measured by ELISA and RT-qPCR Spacer ID ELISA reduction% RT-qPCR reduction% Average % mCpG TG-06-001 -54.60 -53.66 59.00 TG-06-133 -26.60 -58.51 42.90 TG-06-139 -51.50 -63.03 55.90 TG-06-141 -53.70 -58.85 53.70 TG-06-142 -18.50 -31.76 28.40 TG-06-143 -27.20 -51.60 46.10 TG-06-144 -28.10 -41.68 54.70 TG-06-146 -22.10 -45.31 31.00 TG-06-149 -57.50 -42.07 56.90 TG-06-150 -56.30 -55.68 56.40 TG-06-154 -66.50 -55.28 45.50 TG-06-157 -55.60 -52.86 54.40 TG-06-158 -56.50 -57.04 49.40 TG-06-160 -42.00 -54.91 57.30 TG-06-167 -37.80 -50.29 46.00 TG-06-168 -39.90 -50.34 48.80 initial N/A N/A 6.70 NT N/A N/A 1.50 Table 18 : Persistence and specificity of the previous 16 spacers determined by bisulfate sequencing and RNA-seq Spacer ID Δ% PCSK9 at Week 9 vs Week 1 Off-target differentially expressed genes# TG-06-154 -22.30 0 TG-06-157 -28.30 1 TG-06-001 -63.50 2 TG-06-141 -10.80 1 TG-06-149 -26.70 0 TG-06-158 0.40 376 TG-06-150 -35.50 2 TG-06-160 -23.50 18 TG-06-139 -34.90 twenty four TG-06-144 -21.30 0 TG-06-133 -29.40 6 Example 2 : Demonstration that mRNA encoding an LTRP containing an ADD domain can induce repression of endogenous loci in multiple human cell lines

進行實驗以證明當作為與靶向gRNA共轉染之mRNA遞送時,編碼含有ADD域之LTRP之mRNA可誘導各種人類細胞株中內源性目標基因座的長期抑制。 材料及方法 mRNA之產生: Experiments were performed to demonstrate that mRNA encoding an LTRP containing an ADD domain can induce long-term repression of endogenous target loci in various human cell lines when delivered as mRNA co-transfected with a targeting gRNA. Materials and Methods mRNA Generation:

編碼以下分子之mRNA係遵循如實例1中所描述之類似方法由IVT產生:1)催化活性CasX 676,2) dXR1,及3) LTRP5-ADD-ZIM3。編碼此等分子之序列除使用公開可用之密碼子最佳化工具及調整諸如GC含量之參數外,亦使用密碼子利用率表進行密碼子最佳化。編碼催化活性CasX 676之DNA及mRNA序列分別顯示於表19及表20中。編碼dXR1之DNA及mRNA序列分別顯示於表12及表13中。編碼LTRP5-ZIM3-ADD之DNA及mRNA序列分別顯示於表15及表16中。 19 此實例中評定之催化活性 CasX 676 mRNA 分子之編碼序列 * CasX mRNA ID 組分(ID) 描述 DNA 序列 SEQ ID NO: CasX 676 mRNA 5'UTR TriLink AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START 密碼子+ c-MYC NLS   ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676   CAGGAGATCAAGCGGATTAATAAAATTCGGAGAAGACTGGTGAAGGATTCTAACACAAAGAAGGCTGGCAAGACACGGGGCCCTATGAAGACACTGCTGGTGAGAGTGATGACACCCGACCTGAGAGAAAGACTGGAAAACCTGAGAAAGAAGCCTGAGAATATCCCCCAGCCCATCAGCAACACAAGCCGGGCCAACCTGAATAAGCTGCTGACCGACTACACCGAAATGAAGAAGGCCATCCTGCACGTGTATTGGGAAGAGTTCCAGAAAGACCCAGTCGGCCTGATGAGCAGAGTGGCTCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAGCCCGAAATGGACGAGAAGGGGAACCTGACAACCGCCGGCTTTGCCTGTAGCCAGTGCGGCCAGCCCCTGTTTGTGTACAAACTGGAACAGGTGAGCGAAAAGGGCAAGGCTTACACGAATTACTTCGGCAGATGCAACGTGGCCGAGCACGAGAAGCTGATCAAGCTGGCCCAGCTGAAGCCTGAGAAGGATAGCGATGAGGCAGTGACATATTCCCTGGGCAAGTTCGGACAGCGGGCCCTGGATTTTTATTCCATTCATGTGACCAAGGAATCCACCCACCCCGTCAAGCCTCTTGCCCAAATTGCCGGCAACAGATACGCCTCCAGCCCCGTGGGCAAGGCCCTGAGCGACGCCTGTATGGGCACCATCGCCAGCTTCCTGTCTAAGTACCAGGACATTATCATCGAGCACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGCGAGCTGGCCGGCAAGGAAAACCTGGAGTATCCTAGCGTGACCCTGCCTCCTCAGCCTCATACAAAGGAGGGCGTGGATGCCTACAACGAAGTGATCGCCCGGGTGCGGATGTGGGTGAACCTGAATCTGTGGCAGAAGCTGAAGCTGTCTAGAGACGACGCCAAGCCCCTGCTGAGACTGAAGGGCTTCCCCAGCTTCCCTCTGGTGGAGAGACAGGCAAATGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAATGAGAAGAAGGAGGACGGCAAAGTGTTCTGGCAGAATCTGGCCGGCTACAAGCGTCAGGAGGCCCTGCGGCCCTACCTGAGCAGCGAGGAAGACAGAAAGAAGGGCAAGAAGTTCGCCCGGTATCAGCTGGGGGACCTGCTGCTGCACCTCGAGAAGAAGCACGGCGAAGACTGGGGGAAGGTGTACGATGAGGCCTGGGAGCGGATCGATAAGAAGGTGGAGGGCCTGAGCAAGCACATCAAGCTGGAGGAGGAACGGAGATCTGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGAGAGCCAAGGCCAGCTTCGTCATCGAGGGGCTGAAGGAGGCCGACAAGGACGAGTTCTGCCGGTGCGAACTGAAGCTGCAGAAGTGGTACGGAGATCTGAGAGGCAAACCTTTCGCCATCGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTTATTTGGCAGAAGGACGGAGTGAAGAAGCTGAACCTGTACCTGATCATCAACTATTTCAAGGGCGGCAAGCTGAGATTCAAGAAGATCAAGCCTGAAGCCTTCGAGGCCAACAGATTCTACACCGTGATTAACAAGAAAAGCGGAGAGATCGTGCCAATGGAAGTGAACTTCAACTTCGACGACCCTAACCTGATCATCCTGCCCCTGGCATTTGGCAAGCGGCAGGGCAGAGAGTTCATCTGGAACGACCTGCTGTCTCTGGAGACCGGCAGCCTGAAGCTGGCCAACGGCAGAGTGATCGAGAAGACACTGTACAACAGACGAACCAGACAAGACGAGCCCGCCCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAATATCAAGCCTATGAACCTGATCGGCGTGGACCGGGGCGAGAACATCCCTGCCGTGATCGCCCTTACCGACCCCGAGGGATGCCCTCTGAGCCGGTTTAAAGACAGCCTGGGCAACCCTACCCACATCCTGAGAATTGGCGAGTCCTACAAGGAGAAGCAGAGAACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGCGGGCTGGCGGCTACTCCCGGAAGTACGCCAGCAAGGCCAAGAACCTGGCCGACGACATGGTTAGAAATACCGCCAGAGACCTCCTGTACTACGCTGTGACCCAGGACGCCATGCTGATCTTCGAGAACCTGAGCAGAGGCTTCGGCAGACAGGGCAAGAGAACCTTCATGGCCGAGAGACAGTACACCCGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGCCCTCTAAGACCTACCTGTCCAAGACCTTGGCACAGTACACCAGCAAGACATGCTCTAACTGCGGCTTCACAATCACGAGCGCCGACTACGACCGGGTGCTGGAGAAACTGAAGAAGACCGCCACAGGCTGGATGACCACCATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATCACCTACTACAACAGGTACAAACGGCAGAACGTGGTGAAGGACCTGAGCGTGGAACTGGATAGACTGAGCGAGGAAAGCGTAAACAATGACATCAGCAGCTGGACCAAGGGCCGGAGCGGCGAGGCCCTGAGCCTGCTGAAGAAGAGATTCTCCCACAGACCAGTGCAGGAGAAGTTCGTGTGTCTGAACTGCGGCTTCGAGACCCACGCCGACGAGCAAGCCGCCCTGAACATCGCCCGGTCTTGGCTTTTCCTGCGGAGCCAGGAGTACAAGAAGTACCAGACAAACAAGACCACAGGCAACACAGACAAGAGAGCCTTCGTCGAGACCTGGCAGAGCTTCTACAGAAAGAAGCTGAAGGAGGTGTGGAAGCCTGCCGTG 3134 c-MYC NLS + STOP 密碼子   GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR 小鼠HBA GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055  XbaI限制位點(部分)   TCTAG 3056 聚腺苷酸尾   AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 *各組分以在構築體內之5'至3'次序列出 20 在此實例中評定之催化活性 CasX 676 mRNA 分子之全長 RNA 序列。 修飾『 = N1- 甲基 - 假尿苷 CasX mRNA RNA 序列 SEQ ID NO: CasX 676 mRNA AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψGCmψGCCAAGAGAGmψGAAGCmψGGAmψAGCAGACAGGAGAmψCAAGCGGAmψmψAAmψAAAAmψmψCGGAGAAGACmψGGmψGAAGGAmψmψCmψAACACAAAGAAGGCmψGGCAAGACACGGGGCCCmψAmψGAAGACACmψGCmψGGmψGAGAGmψGAmψGACACCCGACCmψGAGAGAAAGACmψGGAAAACCmψGAGAAAGAAGCCmψGAGAAmψAmψCCCCCAGCCCAmψCAGCAACACAAGCCGGGCCAACCmψGAAmψAAGCmψGCmψGACCGACmψACACCGAAAmψGAAGAAGGCCAmψCCmψGCACGmψGmψAmψmψGGGAAGAGmψmψCCAGAAAGACCCAGmψCGGCCmψGAmψGAGCAGAGmψGGCmψCAGCCmψGCCAGCAAGAAGAmψCGAmψCAGAACAAGCmψGAAGCCCGAAAmψGGACGAGAAGGGGAACCmψGACAACCGCCGGCmψmψmψGCCmψGmψAGCCAGmψGCGGCCAGCCCCmψGmψmψmψGmψGmψACAAACmψGGAACAGGmψGAGCGAAAAGGGCAAGGCmψmψACACGAAmψmψACmψmψCGGCAGAmψGCAACGmψGGCCGAGCACGAGAAGCmψGAmψCAAGCmψGGCCCAGCmψGAAGCCmψGAGAAGGAmψAGCGAmψGAGGCAGmψGACAmψAmψmψCCCmψGGGCAAGmψmψCGGACAGCGGGCCCmψGGAmψmψmψmψmψAmψmψCCAmψmψCAmψGmψGACCAAGGAAmψCCACCCACCCCGmψCAAGCCmψCmψmψGCCCAAAmψmψGCCGGCAACAGAmψACGCCmψCCAGCCCCGmψGGGCAAGGCCCmψGAGCGACGCCmψGmψAmψGGGCACCAmψCGCCAGCmψmψCCmψGmψCmψAAGmψACCAGGACAmψmψAmψCAmψCGAGCACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGCGAGCmψGGCCGGCAAGGAAAACCmψGGAGmψAmψCCmψAGCGmψGACCCmψGCCmψCCmψCAGCCmψCAmψACAAAGGAGGGCGmψGGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGGAmψGmψGGGmψGAACCmψGAAmψCmψGmψGGCAGAAGCmψGAAGCmψGmψCmψAGAGACGACGCCAAGCCCCmψGCmψGAGACmψGAAGGGCmψmψCCCCAGCmψmψCCCmψCmψGGmψGGAGAGACAGGCAAAmψGAAGmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAAmψGAGAAGAAGGAGGACGGCAAAGmψGmψmψCmψGGCAGAAmψCmψGGCCGGCmψACAAGCGmψCAGGAGGCCCmψGCGGCCCmψACCmψGAGCAGCGAGGAAGACAGAAAGAAGGGCAAGAAGmψmψCGCCCGGmψAmψCAGCmψGGGGGACCmψGCmψGCmψGCACCmψCGAGAAGAAGCACGGCGAAGACmψGGGGGAAGGmψGmψACGAmψGAGGCCmψGGGAGCGGAmψCGAmψAAGAAGGmψGGAGGGCCmψGAGCAAGCACAmψCAAGCmψGGAGGAGGAACGGAGAmψCmψGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGAGAGCCAAGGCCAGCmψmψCGmψCAmψCGAGGGGCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCCGGmψGCGAACmψGAAGCmψGCAGAAGmψGGmψACGGAGAmψCmψGAGAGGCAAACCmψmψmψCGCCAmψCGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGCGCCmψmψmψAmψmψmψGGCAGAAGGACGGAGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψAmψmψmψCAAGGGCGGCAAGCmψGAGAmψmψCAAGAAGAmψCAAGCCmψGAAGCCmψmψCGAGGCCAACAGAmψmψCmψACACCGmψGAmψmψAACAAGAAAAGCGGAGAGAmψCGmψGCCAAmψGGAAGmψGAACmψmψCAACmψmψCGACGACCCmψAACCmψGAmψCAmψCCmψGCCCCmψGGCAmψmψmψGGCAAGCGGCAGGGCAGAGAGmψmψCAmψCmψGGAACGACCmψGCmψGmψCmψCmψGGAGACCGGCAGCCmψGAAGCmψGGCCAACGGCAGAGmψGAmψCGAGAAGACACmψGmψACAACAGACGAACCAGACAAGACGAGCCCGCCCmψGmψmψmψGmψGGCCCmψGACCmψmψCGAGAGAAGAGAGGmψGCmψGGACAGCAGCAAmψAmψCAAGCCmψAmψGAACCmψGAmψCGGCGmψGGACCGGGGCGAGAACAmψCCCmψGCCGmψGAmψCGCCCmψmψACCGACCCCGAGGGAmψGCCCmψCmψGAGCCGGmψmψmψAAAGACAGCCmψGGGCAACCCmψACCCACAmψCCmψGAGAAmψmψGGCGAGmψCCmψACAAGGAGAAGCAGAGAACCAmψCCAGGCCAAGAAGGAGGmψGGAGCAGCGGCGGGCmψGGCGGCmψACmψCCCGGAAGmψACGCCAGCAAGGCCAAGAACCmψGGCCGACGACAmψGGmψmψAGAAAmψACCGCCAGAGACCmψCCmψGmψACmψACGCmψGmψGACCCAGGACGCCAmψGCmψGAmψCmψmψCGAGAACCmψGAGCAGAGGCmψmψCGGCAGACAGGGCAAGAGAACCmψmψCAmψGGCCGAGAGACAGmψACACCCGGAmψGGAGGACmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGCCCmψCmψAAGACCmψACCmψGmψCCAAGACCmψmψGGCACAGmψACACCAGCAAGACAmψGCmψCmψAACmψGCGGCmψmψCACAAmψCACGAGCGCCGACmψACGACCGGGmψGCmψGGAGAAACmψGAAGAAGACCGCCACAGGCmψGGAmψGACCACCAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGGCCAGAmψCACCmψACmψACAACAGGmψACAAACGGCAGAACGmψGGmψGAAGGACCmψGAGCGmψGGAACmψGGAmψAGACmψGAGCGAGGAAAGCGmψAAACAAmψGACAmψCAGCAGCmψGGACCAAGGGCCGGAGCGGCGAGGCCCmψGAGCCmψGCmψGAAGAAGAGAmψmψCmψCCCACAGACCAGmψGCAGGAGAAGmψmψCGmψGmψGmψCmψGAACmψGCGGCmψmψCGAGACCCACGCCGACGAGCAAGCCGCCCmψGAACAmψCGCCCGGmψCmψmψGGCmψmψmψmψCCmψGCGGAGCCAGGAGmψACAAGAAGmψACCAGACAAACAAGACCACAGGCAACACAGACAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGAGCmψmψCmψACAGAAAGAAGCmψGAAGGAGGmψGmψGGAAGCCmψGCCGmψGGGAAGCCCCGCmψGCCAAGAGAGmψGAAGCmψGGACmψAAmψAGAmψAAGCmψGCCmψmψCmψGCGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψCmψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3136 gRNA之合成: mRNA encoding the following molecules were generated by IVT following similar methods as described in Example 1: 1) catalytically active CasX 676, 2) dXR1, and 3) LTRP5-ADD-ZIM3. The sequences encoding these molecules were codon optimized using a codon usage table in addition to using publicly available codon optimization tools and adjusting parameters such as GC content. The DNA and mRNA sequences encoding catalytically active CasX 676 are shown in Tables 19 and 20, respectively. The DNA and mRNA sequences encoding dXR1 are shown in Tables 12 and 13, respectively. The DNA and mRNA sequences encoding LTRP5-ZIM3-ADD are shown in Tables 15 and 16, respectively. Table 19 : Coding sequences of catalytically active CasX 676 mRNA molecules evaluated in this example * CasX mRNA ID Component (ID) describe DNA Sequence SEQ ID NO: CasX 676 mRNA 5'UTR TriLink AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START codon + c-MYC NLS ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676 CAGGAGATCAAGCGGATTAATAAAATTCGGAGAAGACTGGTGAAGGATTCTAACACAAAGAAGGCTGGCAAGACACGGGGCCCTATGAAGACACTGCTGGTGAGAGTGATGACACCCGACCTGAGAGAAAGACTGGAAAACCTGAGAAAGAAGCCTGAGAATATCCCCCAGCCCATCAGCAAC ACAAGCCGGGCCAACCTGAATAAGCTGCTGACCGACTACACCGAAATGAAGAAGGCCATCCTGCAGTGTATTGGGAAGAGTTCCAGAAAGACCCAGTCGGCCTGATGAGCAGAGTGGCTCAGCCTGCCAGCAAGAAGATCGATCAGAACAAGCTGAAGCCCGAAATGGACGAGAAGGGGAACC TGACAACCGCCGGCTTTGCCTGTAGCCAGTGCGGCCAGCCCCTGTTTGTGTACAAACTGGAACAGGTGAGCGAAAAGGGCAAGGCTTACACGAATTACTTCGGCAGATGCAACGTGGCCGAGCACGAGCTGATCAAGCTGGCCCAGCTGAAGCCTGAGAAGGATAGCGATGAGGCAGTGA CATATTCCCTGGGCAAGTTCGGACAGCGGGCCCTGGATTTTTATTCCATTCATGTGACCAAGGAATCCACCCACCCCGTCAAGCCTCTTGCCCAAATTGCCGGCAACAGATACGCCTCCAGCCCCGTGGGCAAGGCCCTGAGCGACGCCTGTATGGGCACCATCGCCAGCTTCCTGTCTAAGTA CCAGGACATTCATCGAGCACCAGAAGGTGGTGAAGGGCAACCAGAAGAGACTGGAGAGCCTGCGCGAGCTGGCCGGCAAGGAAAACCTGGAGTATCCTAGCGTGACCCTGCCTCCTCAGCCTCATACAAAGGAGGGCGTGGATGCCTACAACGAAGTGATCGCCCGGGTGCGGATGTGGGT GAACCTGAATCTGTGGCAGAAGCTGAAGCTGTCTAGAGACGACGCCAAGCCCCTGCTGAGACTGAAGGGCTTCCCCAGCTTCCCTCTGGTGGAGAGACAGGCAAATGAAGTGGACTGGTGGGACATGGTGTGTAACGTGAAGAAGCTGATCAATGAGAAGAAGGAGGACGGCAAAGTGTTCTGG CAGAATCTGGCCGGCTACAAGCGTCAGGAGGCCCTGCGGCCCTAACCTGAGCAGCGAGGAAGACAGAAAGAAGGGCAAGAAGTTCGCCCGGTATCAGCTGGGGGGACCTGCTGCTGCACCTCGAGAAGAAGCACGGCGAAGACTGGGGGAAGGTGTACGATGAGGCCTGGGAGCGGATCGATAAG AAGGGTGGAGGGCCTGAGCAAGCACATCAAGCTGGAGGAGGAACGGAGATCTGAGGACGCCCAGAGCAAGGCCGCCCTGACCGACTGGCTGAGAGCCAAGGCCAGCTTCGTCATCGAGGGGCTGAAGGAGGCCGACAAGGACGAGTTCTGCCGGTGCGAACTGAAGCTGCAGAAGTGGTACGGAG ATCTGAGAGGCAAACCTTTCGCCATCGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTTATTTGGCAGAAGGACGGAGTGAAGAAGCTGAACCTGTACCTGATCATCAACTATTTCAAGGGCGGCAAGCTGAGATTCAAGAAGATCAAGCCTGAAG CCTTCGAGGCCACAGATTCTACACCGTGATTAACAAGAAAAGCGGAGAGATCGTGCCAATGGAAGTGAACTTCAACTTCGACGACCCTAACCTGATCATCCTGCCCCTGGCATTTGGCAAGCGGCAGGGCAGAGAGTTCATCTGGAACGACCTGCTGTCTCTGGAGACCGGCAGCCTGAAGCT GGCCAACGGCAGAGTGATCGAGAAGACACTGTACAACAGACGAACCAGACAAGACGAGCCCGCCCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAATATCAAGCCTATGAACCTGATCGGCGTGGACCGGGGCGAGAACATCCCTGCCGTGATCGCCCTTACCGA CCCCGAGGGATGCCCTCTGAGCCGGTTTAAAGACAGCCTGGGCAACCCTACCCACATCCTGAGAATTGGCGAGTCCTACAAGGAGAAGCAGAGAACCATCCAGGCCAAGAAGGAGGTGGAGCAGCGGCGGGCTGGCGGCTACTCCCGGAAGTACGCCAGCAAGGCCAAGAACCTGGCCGACGAC ATGGTTAGAAATACCGCCAGAGACCTCCTGTACTACGCTGTGACCCAGGACGCCATGCTGATCTTCGAGAACCTGAGCAGAGGCTTCGGCAGACAGGGCAAGAGAACCTTCATGGCCGAGAGACAGTACACCCGGATGGAGGACTGGCTGACCGCCAAGCTGGCCTACGAGGGCCTGCCCTCT AAGACCTACCTGTCCAAGACCTTGGCACAGTACACCAGCAAGACATGCTCTAACTGCGGCTTCACAATCACGAGCGCCGACTACGACCGGGTGCTGGAGAAACTGAAGAAGACCGCCACAGGCTGGATGACCACCATTAACGGCAAGGAGCTGAAGGTGGAGGGCCAGATCACCTACTACAACA GGTACAAACGGCAGAACGTGGTGAAGGACCTGAGCGTGGAACTGGATAGACTGAGCGAGGAAAGCGTAAACAATGACATCAGCAGCTGGACCAAGGGCCGGAGCGGCGAGGCCCTGAGCCTGCTGAAGAAGAGATTCTCCCACAGACCAGTGCAGGAGAAGTTCGTGTGTCTGAACTGCGGCTT CGAGACCCACGCCGACGAGCAAGCCGCCCTGAACATCGCCCGGTCTTGGCTTTTCCTGCGGAGCCAGGAGTACAAGAAGTACCAGACAAACAAGACCACAGGCAACACAGACAAGAGAGCCTTCGTCGAGACCTGGCAGAGCTTCTACAGAAAGAAGCTGAAGGAGGTGTGGAAGCCTGCCGTG 3134 c-MYC NLS + STOP codon GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR Mouse HBA GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 XbaI restriction site (partial) TCTAG 3056 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 * The components are listed in 5' to 3' order within the construct Table 20 : Full-length RNA sequences of catalytically active CasX 676 mRNA molecules evaluated in this example . Modification ' ' = N1- methyl - pseudouridine CasX mRNA RNA- seq SEQ ID NO: CasX 676 mRNA AAAmψAAGAGAGAAAAGAAGAGmψAAGAAGAAAmψAmψAAGAGCCACCAmψGGCCCCmψGCmψGCCAAGAGAGmψGAAGCmψGGAmψAGCAGACAGGAGamψCAAGCGGAmψmψAA mψAAAAmψmψCGGAGAAGACmψGGmψGAAGGAmψmψCmψAACACAAAGAAGGCmψGGCAAGACACGGGGCCCmψAmψGAAGACACmψGCmψGGmψGAGAGmψGAmψGACACCCGACC mψGAGAGAAAGACmψGGAAAACCmψGAGAAAGAAGCCmψGAGAAmψAmψCCCCCAGCCCAmψCAGCAACACAAGCCGGGCCAACCmψGAAmψAAGCmψGCmψGACCGACmψACACCG AAAmψGAAGAAGGCCAmψCCmψGCACGmψGmψAmψmψGGGAAGAGmψmψCCAGAAAGACCCAGmψCGGCCmψGAmψGAGCAGAGmψGGCmψCAGCCmψGCCAGCAAGAAGAmψCGAm ψCAGAACAAGCmψGAAGCCCGAAAmψGGACGAGAAGGGGAACCmψGACAACCGCCGGCmψmψmψGCCmψGmψAGCCAGmψGCGGCCAGCCCCmψGmψmψmψGmψGmψACAAACmψGG AACAGGmψGAGCGAAAAGGGCAAGGCmψmψACACGAAmψmψACmψmψCGGCAGAmψGCAACGmψGGCCGAGCACGAGAAGCmψGAmψCAAGCmψGGCCCAGCmψGAAGCCmψGAGAA GGAmψAGCGAmψGAGGCAGmψGACAmψAmψmψCCCmψGGGCAAGmψmψCGGACAGCGGGCCCmψGGAmψmψmψmψmψAmψmψCCAmψmψCAmψGmψGACCAAGAAmψCCACCCACC CCGmψCAAGCCmψCmψmψGCCCAAAmψmψGCCGGCAACAGAmψACGCCmψCCAGCCCGmψGGGCAAGGCCCmψGAGCGACGCCmψGmψAmψGGGCACCAmψCGCCAGCmψmψCCmψ GmψCmψAAGmψACCAGGACAmψmψAmψCAmψCGAGCACCAGAAGGmψGGmψGAAGGGCAACCAGAAGAGACmψGGAGAGCCmψGCGCGAGCmψGGCCGGCAAGGAAAACCmψGGAGm ψAmψCCmψAGCGmψGACCCmψGCCmψCCmψCAGCCmψCAmψACAAAGGAGGGCGmψGGAmψGCCmψACAACGAAGmψGAmψCGCCCGGGmψGCGGAmψGmψGGGmψGAACCmψGAAm ψCmψGmψGGCAGAAGCmψGAAGCmψGmψCmψAGAGACGACGCCAAGCCCCmψGCmψGAGACmψGAAGGGCmψmψCCCCAGCmψmψCCCmψCmψGGmψGGAGAGACAGGCAAAmψGAA GmψGGACmψGGmψGGGACAmψGGmψGmψGmψAACGmψGAAGAAGCmψGAmψCAAmψGAGAAGAAGGAGGACGGCAAAGmψGmψmψCmψGGCAGAAmψCmψGGCCGGCmψACAAGCGm ψCAGGAGGCCCmψGCGGCCCmψACCmψGAGCAGCGAGGAAGACAGAAAGAAGGGCAAGAAGmψmψCGCCCGGmψAmψCAGCmψGGGGGACCmψGCmψGCmψGCACCmψCGAGAAGAA GCACGGCGAAGACmψGGGGGAAGGmψGmψACGAmψGAGGCCmψGGGAGCGGAmψCGAmψAAGAAGGmψGGAGGGCCmψGAGCAAGCACAmψCAAGCmψGGAGGAGGAACGGAGAmψC mψGAGGACGCCCAGAGCAAGGCCGCCCmψGACCGACmψGGCmψGAGAGCCAAGGCCAGCmψmψCGmψCAmψCGAGGGGCmψGAAGGAGGCCGACAAGGACGAGmψmψCmψGCCGGmψ GCGAACmψGAAGCmψGCAGAAGmψGGmψACGGAGAmψCmψGAGAGGCAAACCmψmψmψCGCCAmψCGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGm ψACAACmψGCGCCmψmψmψAmψmψmψGGCAGAAGGACGGAGmψGAAGAAGCmψGAACCmψGmψACCmψGAmψCAmψCAACmψAmψmψmψCAAGGGCGGCAAGCmψGAGAmψmψCAAG AAGAmψCAAGCCmψGAAGCCmψmψCGAGGCCAACAGAmψmψCmψACACCGmψGAmψmψAACAAGAAAAGCGGAGAGAmψCGmψGCCAAmψGGAAGmψGAACmψmψCAACmψmψCGAC GACCCmψAACCmψGAmψCAmψCCmψGCCCCmψGGCAmψmψmψGGCAAGCGGCAGGGCAGAGAGmψmψCAmψCmψGGAACGACCmψGCmψGmψCmψCmψGGAGACCGGCAGCCmψGAA GCmψGGCCAACGGCAGAGmψGAmψCGAGAAGACACmψGmψACAACAGACGAACCAGACAAGACGAGCCCGCCCmψGmψmψmψGmψGGCCCmψGACCmψmψCGAGAGAAGAGAGGmψG CmψGGACAGCAGCAAmψAmψCAAGCCmψAmψGAACCmψGAmψCGGCGmψGGACCGGGGCGAGAACAmψCCCmψGCCGmψGAmψCGCCCmψmψACCGACCCCGAGGGAmψGCCCmψCm ψGAGCCGGmψmψmψAAAGACAGCCmψGGGCAACCmψACCCACAmψCCmψGAGAAmψmψGGCGAGmψCCmψACAAGGAGAAGCAGAGAACCAmψCCAGGCCAAGAAGGAGGmψGGAG CAGCCGGCGGGCmψGGCGGCmψACmψCCCGGAAGmψACGCCAGCAAGGCCAAGAACCmψGGCCGACGACAmψGGmψmψAGAAAmψACCGCCAGAGACCmψCCmψGmψACmψACGCmψG mψGACCCAGGACGCCAmψGCmψGAmψCmψmψCGAGAACCmψGAGCAGAGGCmψmψCGGCAGACAGGGCAAGAGAACCmψmψCAmψGGCCGAGAGACAGmψACACCCGGAmψGGAGGA CmψGGCmψGACCGCCAAGCmψGGCCmψACGAGGGCCmψGCCCmψCmψAAGACCmψACCmψGmψCCAAGACCmψmψGGCACAGmψACACCAGCAAGACAmψGCmψCmψAACmψGCGGC mψmψCACAAmψCACGAGCGCCGACmψACGACCGGGmψGCmψGGAGAAACmψGAAGAAGACCGCCACAGGCmψGGAmψGACCACCAmψmψAACGGCAAGGAGCmψGAAGGmψGGAGGG CCAGAmψCACCmψACmψACAACAGGmψACAAACGGCAGAACGmψGGmψGAAGGACCmψGAGCGmψGGAACmψGGAmψAGACmψGAGCGAGGAAAGCGmψAAACAAmψGACAmψCAGC AGCmψGGACCAAGGGCCGGAGCGGCGAGGCCCmψGAGCCmψGCmψGAAGAAGAGAmψmψCmψCCCACAGACCAGmψGCAGGAGAAGmψmψCGmψGmψGmψCmψGAACmψGCGGCmψm ψCGAGACCCACGCCGACGAGCAAGCCGCCCmψGAACAmψCGCCCGGmψCmψmψGGCmψmψmψmψCCmψGCGGAGCCAGGAGmψACAAGAAGmψACCAGACAAACAAGACCACAGGCA ACACAGACAAGAGAGCCmψmψCGmψCGAGACCmψGGCAGAGCmψmψCmψACAGAAAGAAGCmψGAAGGAGGmψGmψGGAAGCCmψGCCGmψGGGAAGCCCCGCmψGCCAAGAGAGmψ GAAGCmψGGACmψAAmψAGAmψAAGCmψGCCmψmψCmψGCGGGGGCmψmψGCCmψmψCmψGGCCAmψGCCCmψmψCmψmψCmψCmψCCCmψmψGCACCmψGmψACCmψCmψmψGGmψC mψmψmψGAAmψAAAGCCmψGAGmψAGGAAGmψCmψAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3136 Synthesis of gRNA:

靶向人類P CSK9基因座之gRNA係使用gRNA支架316設計且以化學方式合成。此外, B2M靶向gRNA係用作實驗對照。此實例中評定之靶向間隔子的序列列於表21中。 21 此實例中評定之間隔子之序列 間隔子ID 目標 靶向間隔子序列(RNA) SEQ ID NO 7.37 人類 B2M GGCCGAGAUGUCUCGCUCCG 3137 6.1 人類 PCSK9 GAGGAGGACGGCCUGGCCGA 1834 6.125 人類 PCSK9 AGAAAGAGCAAGCCUCAUGU 1845 6.138 人類 PCSK9 AGGGAUUUAUACUACAAAGA 1852 6.153 人類 PCSK9 GUUAAUGUUUAAUCAGAUAG 1866 6.157 人類 PCSK9 GGGUCUGAGCCUGGAGGAGU 1869 6.172 人類 PCSK9 GCUGAAACAGAUGGAAUACU 1879 6.181 人類 PCSK9 UCAUCUGCACUCGUGGCCAC 2228 將mRNA及gRNA轉染至HepG2細胞、Hep3B細胞及Huh7細胞中,且進行ELISA以評定PCSK9分泌: The gRNA targeting the human PCSK9 locus was designed using gRNA scaffold 316 and chemically synthesized. In addition, B2M targeting gRNA was used as an experimental control. The sequences of the targeting spacers evaluated in this example are listed in Table 21. Table 21 : Sequences of the spacers evaluated in this example Spacer ID Target Targeting spacer sequence (RNA) SEQ ID NO 7.37 Human B2M GGCCGAGAUGUCUCGCUCCG 3137 6.1 Human PCSK9 GAGGAGGACGGCCUGGCCGA 1834 6.125 Human PCSK9 AGAAAGAGCAAGCCUCAUGU 1845 6.138 Human PCSK9 AGGGAUUUAUACUACAAAGA 1852 6.153 Human PCSK9 GUUAAUGUUUAAUCAGAUAG 1866 6.157 Human PCSK9 GGGUCUGAGCCUGGAGGAGU 1869 6.172 Human PCSK9 GCUGAAACAGAUGGAAUACU 1879 6.181 Human PCSK9 UCAUCUGCACUCGUGGCCAC 2228 mRNA and gRNA were transfected into HepG2 cells, Hep3B cells, and Huh7 cells, and ELISA was performed to assess PCSK9 secretion:

在此實驗中使用以下三種人類肝細胞癌細胞株:HepG2細胞、Hep3B細胞及Huh7細胞。每孔接種各細胞株之約15,000個細胞;次日,用編碼催化活性CasX 676、dXR1或LTRP5-ADD-ZIM3之mRNA及具有支架316及靶向 B2MPCSK9基因座之間隔子的gRNA轉染所接種細胞(特定間隔子及序列參見表21)。轉染後4天收集培養基上清液以藉由ELISA評定PCSK9分泌水平,且將PCSK9分泌水平以總細胞計數標準化且示於圖3至圖5。繼續培養經處理之Huh7細胞,且轉染後14及27天收集培養基上清液用於藉由ELISA量測PCSK9分泌。作為額外實驗對照,亦量測自含有未經處理之初始細胞之孔收集的培養基上清液中之PCSK9分泌。 結果: The following three human hepatocellular carcinoma cell lines were used in this experiment: HepG2 cells, Hep3B cells, and Huh7 cells. Approximately 15,000 cells of each cell line were seeded per well; the next day, the seeded cells were transfected with mRNA encoding catalytically active CasX 676, dXR1, or LTRP5-ADD-ZIM3 and gRNA with scaffold 316 and a spacer targeting the B2M or PCSK9 locus (see Table 21 for specific spacers and sequences). The culture supernatant was collected 4 days after transfection to assess PCSK9 secretion levels by ELISA, and the PCSK9 secretion levels were normalized to total cell counts and are shown in Figures 3 to 5. Treated Huh7 cells were continued to be cultured and culture supernatants were collected 14 and 27 days after transfection for measurement of PCSK9 secretion by ELISA. As an additional experimental control, PCSK9 secretion was also measured in culture supernatants collected from wells containing untreated naive cells. Results:

用編碼催化活性CasX 676、dXR1或LTRP5-ADD-ZIM3之mRNA及靶向 B2MPCSK9基因座之gRNA轉染HepG2細胞、Hep3B細胞及Huh7細胞,且量測所分泌PCSK9水平。在轉染後4天,各條件之標準化PCSK9分泌水平之定量描繪於圖3至圖5中。資料表明在Huh7細胞中觀測到藉由CasX 676、dXR1或LTRP5-ADD-ZIM3對PCSK9分泌之最高效的減弱,而HepG2細胞對所分泌PCSK9水平未展現出有效的減弱(圖3至圖5)。同時,Hep3B細胞總體上展現低PCSK9分泌水平,說明在所用細胞株中,Hep3B細胞株最不適於誘導及展現PCSK9抑制(圖3至圖5)。 HepG2 cells, Hep3B cells, and Huh7 cells were transfected with mRNA encoding catalytically active CasX 676, dXR1, or LTRP5-ADD-ZIM3 and gRNA targeting B2M or PCSK9 loci, and secreted PCSK9 levels were measured. Quantification of normalized PCSK9 secretion levels for each condition 4 days after transfection is depicted in Figures 3 to 5. The data show that the most efficient attenuation of PCSK9 secretion by CasX 676, dXR1, or LTRP5-ADD-ZIM3 was observed in Huh7 cells, while HepG2 cells did not show effective attenuation of secreted PCSK9 levels (Figures 3 to 5). Meanwhile, Hep3B cells showed overall low PCSK9 secretion levels, indicating that among the cell lines used, the Hep3B cell line was the least suitable for inducing and exhibiting PCSK9 inhibition (Figures 3 to 5).

轉染後,繼續培養經處理之Huh7細胞直至第27天,且在第14天及第27天量測PCSK9分泌。圖6中之條形圖示出在第4天、第14天及第27天時間點PCSK9抑制之定量結果,該等結果顯示為相對於在第4天時間點偵測到的初始對照的水平的PCSK9基因減弱。資料表明用具有間隔子6.138及6.157之gRNA處理具有LTRP5-ADD-ZIM3之Huh7細胞引起PCSK9分泌之最有效抑制,且此抑制持續至轉染後第27天(圖6)。類似地,在用催化活性CasX 676及間隔子6.1處理Huh7細胞時觀測到持續基因減弱。雖然用dXR1及間隔子6.138處理在第4天引起初始強力抑制,但此抑制效應為暫態的,因為PCSK9分泌水平在轉染後第14天及第27天返回至基線水平(圖6)。如所預期,在此時程實驗期間,用三個mRNA分子中之任一者與靶向 B2M基因座之間隔子7.37處理並不影響PCSK9分泌水平。 After transfection, treated Huh7 cells were cultured until day 27, and PCSK9 secretion was measured at day 14 and day 27. The bar graph in FIG. 6 shows the quantitative results of PCSK9 inhibition at day 4, day 14, and day 27 time points, which are shown as PCSK9 gene attenuation relative to the level of the initial control detected at the day 4 time point. The data show that treatment of Huh7 cells with LTRP5-ADD-ZIM3 with gRNAs having spacers 6.138 and 6.157 caused the most effective inhibition of PCSK9 secretion, and this inhibition lasted until day 27 after transfection ( FIG. 6 ). Similarly, persistent gene attenuation was observed when Huh7 cells were treated with catalytically active CasX 676 and spacer 6.1. Although treatment with dXR1 and spacer 6.138 caused an initial strong inhibition at day 4, this inhibitory effect was transient, as PCSK9 secretion levels returned to baseline levels at days 14 and 27 post-transfection (Figure 6). As expected, treatment with any of the three mRNA molecules and spacer 7.37 targeting the B2M locus did not affect PCSK9 secretion levels during this time course experiment.

此等實驗證明使用具有ADD域之LTRP分子與適當的靶向間隔子可引起各種人類細胞株中內源性目標基因座之長期緘默化。此等發現亦表明具有ADD域之LTRP分子可作為mRNA與靶向gRNA共同遞送至細胞以誘導抑制。 實例 3 經修飾之 gRNA 之設計及其在活體外及活體內與 CasX mRNA 一起遞送時在改良編輯方面的評定 These experiments demonstrate that the use of LTRP molecules with ADD domains and appropriate targeting spacers can induce long-term silencing of endogenous target loci in various human cell lines. These findings also suggest that LTRP molecules with ADD domains can be co-delivered to cells as mRNAs with targeting gRNAs to induce repression. Example 3 : Design of modified gRNAs and their evaluation in improving editing when delivered with CasX mRNA in vitro and in vivo

進行實驗以鑑別新gRNA變異體序列,且證明此等gRNA變異體之化學修飾增強CasX:gRNA系統在活體外與CasX mRNA一起遞送時之編輯效率。 材料及方法: gRNA之合成: Experiments were performed to identify novel gRNA variant sequences and to demonstrate that chemical modification of these gRNA variants enhances the editing efficiency of the CasX:gRNA system when delivered with CasX mRNA in vitro. Materials and Methods: Synthesis of gRNA:

此實例中測試之所有gRNA係以經化學方式合成且來源於gRNA支架174、235及316。gRNA支架174、235及316之序列及其化學修飾概況列於表22中。所得gRNA之序列(包括靶向 PCSK9B2MROSA26之間隔子)及其在此實例中所分析之化學修飾概況列於表23中。gRNA支架變異體174、235及316之結構的示意圖分別顯示於圖7至圖9中,且gRNA變異體之化學修飾之位點示意性地顯示於圖10、圖11、圖12、圖13及圖14中。 22 gRNA 支架序列及其不同化學修飾概況 ( 由型式編號表示 ) 其中「 NNNNNNNNNNNNNNNNNNNN 」係間隔子預留位置。化學修飾 *= 硫代磷酸酯鍵 m=2'OMe 修飾 gRNA 支架( 型式)) gRNA 序列 SEQ ID NO: 174 (v0) ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNNNN 2947 174 (v1) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2948 174 (v2) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNNNN*mU*mU*mU 2949 174 (v3) mA*mC*mU*mGmGmCmGmCmUmUmUmUmAmUmCmUmGmAmUUACUUUGmAmGmAmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUmCmAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2950 174 (v4) mA*mC*mU*mGmGmCmGmCUUUUmAmUmCmUmGmAmUUACUUUGmAmGmAmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2951 174 (v5) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2952 174 (v6) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2953 174 (v7) mA*mC*mU*GGmCGmCmUUUUAmUmCUGAUUACUUUGmAmGAGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2954 174 (v8) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2955 174 (v9) mA*mC*mU*GGmCmGCmUUUUAmUmCUGAUUACUUUGmAmGAGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2956 235 (v0) ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNNNN 2957 235 (v1) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2958 235 (v2) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNNNN*mU*mU*mU 2959 235 (v3) mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2960 235 (v4) mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2961 235 (v5) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2962 235 (v6) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2963 235 (v7) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2964 235 (v8) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2965 235 (v9) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2966 316 (v0) ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNNNNNNN 2967 316 (v1) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2968 316 (v2) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNNNNNNN*mU*mU*mU 2969 316 (v3) mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUmCmAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2970 316 (v4) mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2971 316 (v5) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2972 316 (v6) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2973 316 (v7) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2974 316 (v8) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2975 316 (v9) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNNNN*mN*mN*mN 2976 23 gRNA 之序列及其在此實例中分析之不同化學修飾概況 ( 由型式編號表示 ) 。化學修飾 *= 硫代磷酸酯鍵 m=2'OMe 修飾 gRNA ID(支架變異體-間隔子) 目標 gRNA 序列 SEQ ID NO: 174-6.7 (v0) 人類 PCSK9 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUCCUGGCUUCCUGGUGAAGA 3145 174-6.7 (v1) 人類 PCSK9 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUCCUGGCUUCCUGGUGAmA*mG*mA 3074 174-6.8 (v0) 人類 PCSK9 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUGGCUUCCUGGUGAAGAUGA 3146 174-6.8 (v1) 人類 PCSK9 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUGGCUUCCUGGUGAAGAmU*mG*mA 3147 174-7.9 (v0) 人類 B2M ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGUGUAGUACAAGAGAUAGAA 3148 174-7.9 (v1) 人類 B2M mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGUGUAGUACAAGAGAUAmG*mA*mA 3149 316-6.7 (v0) 人類 PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUCCUGGCUUCCUGGUGAAGA 3150 316-6.7 (v1’) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3151 316-6.8 (v0) 人類 PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUGGCUUCCUGGUGAAGAUGA 3152 316-6.8 (v1’) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3153 316-7.9 (v0) 人類 B2M ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGGUGUAGUACAAGAGAUAGAA 3154 316-7.9 (v1’) 人類 B2M mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGGUGUAGUACAAGAGAUAmG*mA*mA 3155 174-7.37 (v0) 人類 B2M ACUGGCGCUUUUAUCUgAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAgUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGGCCGAGAUGUCUCGCUC 3156 174-7.37 (v1*) 人類 B2M mA*mC*mU*GGCGCUUUUAUCUgAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAgUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGGCCGAGAUGUCUCG*mC*mU*mC 3157 235-6.7 (v0) 人類 PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAAGA 3158 235-6.7 (v1) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3159 235-6.7 (v2) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAAGAU*mU*mU*mU 3160 235-6.7 (v3) 人類 PCSK9 mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3161 235-6.7 (v4) 人類 PCSK9 mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3162 235-6.7 (v5) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3163 235-6.7 (v6) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3164 235-6.8 (v0) 人類 PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAUGA 3165 235-6.8 (v1) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3166 235-6.8 (v2) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAUGA*mU*mU*mU 3167 235-6.8 (v3) 人類 PCSK9 mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3168 235-6.8 (v4) 人類 PCSK9 mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3169 235-6.8 (v5) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3170 235-6.8 (v6) 人類 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3171 316-27.107 (v0) 小鼠 PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGCUGGCUUCUUGGUGAAGAUG 3172 316-27.107 (v1) 小鼠 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3173 316-27.107 (v7)   小鼠 PCSK9 mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3174 316-27.107 (v8) 小鼠 PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3175 316-27.107 (v9*) 小鼠 PCSK9 mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGCUGGCUUCUUGGUGAA*mG*mA*mU*mG 3176 174-35.2 (v0) ROSA26 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGAGAAGAUGGGCGGGAGUCUU 3177 174-35.2 (v2) ROSA26 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGAGAAGAUGGGCGGGAGUCUU*mU*mU*mU 3178 316-35.2 (v0) ROSA26 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGAGAAGAUGGGCGGGAGUCUU 3179 316-35.2 (v1) ROSA26 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGAGAAGAUGGGCGGGAGU*mC*mU*mU 3180 316-35.2 (v5) ROSA26 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGAGAAGAUGGGCGGGAGU*mC*mU*mU 3181 注意,標註有v1'設計之gRNA在gRNA之3'末端上少含一個硫代磷酸酯鍵。標註有v1*之gRNA在gRNA之3'末端上多含一個硫代磷酸酯鍵。標註有v9*之gRNA在gRNA之3'末端上多含一個硫代磷酸酯鍵。 gRNA活性之生物化學表徵: All gRNAs tested in this example were chemically synthesized and derived from gRNA scaffolds 174, 235, and 316. The sequences of gRNA scaffolds 174, 235, and 316 and their chemical modification profiles are listed in Table 22. The sequences of the resulting gRNAs (including spacers targeting PCSK9 , B2M , or ROSA26 ) and their chemical modification profiles analyzed in this example are listed in Table 23. Schematic diagrams of the structures of gRNA scaffold variants 174, 235, and 316 are shown in Figures 7 to 9, respectively, and the sites of chemical modification of the gRNA variants are schematically shown in Figures 10, 11, 12, 13, and 14. Table 22 : Overview of gRNA scaffold sequences and their different chemical modifications ( indicated by model number ) , where " NNNNNNNNNNNNNNNNNNNN " is the reserved position for the spacer. Chemical modification : * = phosphorothioate bond ; m = 2'OMe modification gRNA scaffold ( type) gRNA sequences SEQ ID NO: 174 (v0) ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNN 2947 174 (v1) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2948 174 (v2) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUUCGGAGGGAGCAUCAAAGNNNNNNNNNNNNNNNNNN*mU*mU*mU 2949 174 (v3) mA*mC*mU*mGmGmCmGmCmUmUmUmUmAmUmCmUmGmAmUUACUUUGmAmGmAmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGU AGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUmCmAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2950 174 (v4) mA*mC*mU*mGmGmCmGmCUUUUmAmUmCmUmGmAmUUACUUUGmAmGmAmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUA GUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2951 174 (v5) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2952 174 (v6) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNNNNmN*mN*mN 2953 174 (v7) mA*mC*mU*GGmCGmCmUUUUAmUmCUGAUUACUUUGmAmGAGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGG mGmUAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNN*mN*mN*mN 2954 174 (v8) mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmU mAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAAAGNNNNNNNNNNNNNNN*mN*mN*mN 2955 174 (v9) mA*mC*mU*GGmCmGCmUUUUAmUmCUGAUUACUUUGmAmGAGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAAAGNNNNNNNNNNNNNNN*mN*mN*mN 2956 235 (v0) ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNN 2957 235 (v1) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2958 235 (v2) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGNNNNNNNNNNNNNNNNNN*mU*mU*mU 2959 235 (v3) mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmU mAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2960 235 (v4) mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUm AmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNNNNmN*mN*mN 2961 235 (v5) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGGUmAmAmAmGmCmCm GmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNNmN*mN*mN 2962 235 (v6) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNNmN*mN*mN 2963 235 (v7) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGGmGmUmAmAAm GmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2964 235 (v8) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmUmAmAAmGmCm CmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2965 235 (v9) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGUAAAmGmCm CmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2966 316 (v0) ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNNNNN 2967 316 (v1) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2968 316 (v2) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGNNNNNNNNNNNNNNNNNN*mU*mU*mU 2969 316 (v3) mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGU AGUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUmCmAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2970 316 (v4) mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUA GUGmGmGmUmAmAmAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2971 316 (v5) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2972 316 (v6) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2973 316 (v7) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGG mGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2974 316 (v8) mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmU mAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2975 316 (v9) mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGNNNNNNNNNNNNNNN*mN*mN*mN 2976 Table 23 : Sequences of gRNAs and their overview of the different chemical modifications analyzed in this example ( indicated by model number ) . Chemical modifications : * = phosphorothioate bond ; m = 2'OMe modification gRNA ID (Scaffold variant-spacer) Target gRNA sequences SEQ ID NO: 174-6.7 (v0) Human PCSK9 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUCCUGGCUUCCUGGUGAAGA 3145 174-6.7 (v1) Human PCSK9 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUCCUGGCUUCCUGGUGAmA*mG*mA 3074 174-6.8 (v0) Human PCSK9 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUGGCUUCCUGGUGAAGAUGA 3146 174-6.8 (v1) Human PCSK9 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGUGGCUUCCUGGUGAAGAmU*mG*mA 3147 174-7.9 (v0) Human B2M ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGUGUAGUACAAGAGAUAGAA 3148 174-7.9 (v1) Human B2M mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGUGUAGUACAAGAGAUAmG*mA*mA 3149 316-6.7 (v0) Human PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUCCUGGCUUCCUGGUGAAGA 3150 316-6.7 (v1') Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3151 316-6.8 (v0) Human PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUGGCUUCCUGGUGAAGAUGA 3152 316-6.8 (v1') Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3153 316-7.9 (v0) Human B2M ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGGUGUAGUACAAGAGAUAGAA 3154 316-7.9 (v1') Human B2M mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGGUGUAGUACAAGAGAUAmG*mA*mA 3155 174-7.37 (v0) Human B2M ACUGGCGCUUUUAUCUgAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAgUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGGCCGAGAUGUCUCGCUC 3156 174-7.37 (v1*) Human B2M mA*mC*mU*GGCGCUUUUAUCUgAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAgUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGGGCCGAGAUGUCUCG*mC*mU*mC 3157 235-6.7 (v0) Human PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAAGA 3158 235-6.7 (v1) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3159 235-6.7 (v2) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUCCUGGCUUCCUGGUGAAGAU*mU*mU*mU 3160 235-6.7 (v3) Human PCSK9 mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmU mAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3161 235-6.7 (v4) Human PCSK9 mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUm AmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3162 235-6.7 (v5) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGGUmAmAmAmGmCmCm GmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3163 235-6.7 (v6) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUCCUGGCUUCCUGGUGAmA*mG*mA 3164 235-6.8 (v0) Human PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAUGA 3165 235-6.8 (v1) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3166 235-6.8 (v2) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCCGCUUACGGACUUCGGUCCGUAAGAGGCAUCAGAGUGGCUUCCUGGUGAAGAUGA*mU*mU*mU 3167 235-6.8 (v3) Human PCSK9 mA*mC*mU*mGmGmCmGmCmUmUmCmUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmU mAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUmCmAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3168 235-6.8 (v4) Human PCSK9 mA*mC*mU*mGmGmCmGmCUUCUmAmUmCmUmGmAmUUACUCUGmAmGmCmGmCmCmAmUmCmAmCmCAGCGAmCmUAUmGmUmCmGUAGUGmGmGmUm AmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCmAmUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3169 235-6.8 (v5) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGGUmAmAmAmGmCmCm GmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3170 235-6.8 (v6) Human PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUmAmAmAmGmCmCmGmCmUmUmAmCmGmGmAmCmUmUmCmGmGmUmCmCmGmUmAmAmGmAmGmGmCAUCAGAGUGGCUUCCUGGUGAAGAmU*mG*mA 3171 316-27.107 (v0) Mouse PCSK9 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGCUGGCUUCUUGGUGAAGAUG 3172 316-27.107 (v1) Mouse PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3173 316-27.107 (v7) Mouse PCSK9 mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGG mGmUmAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3174 316-27.107 (v8) Mouse PCSK9 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCmAmUmCmAmCCAGCmGmAmCmUAUmGmUmCmGUAGUGGmGmU mAmAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCmAmUCAGAGCUGGCUUCUUGGUGAAG*mA*mU*mG 3175 316-27.107 (v9*) Mouse PCSK9 mA*mC*mU*GGmCGmCmUUCUAmUmCUGAUUACUCUGmAmGCGCCAUCACCAGCmGmAmCmUAUmGmUmCmGUAGUGGG UAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGCUGGCUUCUUGGUGAA*mG*mA*mU*mG 3176 174-35.2 (v0) ROSA26 ACUGGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGAGAAGAUGGGCGGGAGUCUU 3177 174-35.2 (v2) ROSA26 mA*mC*mU*GGCGCUUUUAUCUGAUUACUUUGAGAGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAAAGAGAAGAUGGGCGGGAGUCUU*mU*mU*mU 3178 316-35.2 (v0) ROSA26 ACUGGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGAGAAGAUGGGCGGGAGUCUU 3179 316-35.2 (v1) ROSA26 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGACUAUGUCGUAGUGGGUAAAGCUCCCUCUUCGGAGGGAGCAUCAGAGAGAAGAUGGGCGGGAGU*mC*mU*mU 3180 316-35.2 (v5) ROSA26 mA*mC*mU*GGCGCUUCUAUCUGAUUACUCUGAGCGCCAUCACCAGCGAmCmUAUmGmUmCmGUAGUGGGGUAAAmGmCmUmCmCmCmUmCmUmUmCmGmGmAmGmGmGmAmGmCAUCAGAGAGAAGAUGGGCGGGAGU*mC*mU*mU 3181 Note that gRNAs labeled with v1' design have one less phosphorothioate bond at the 3' end of the gRNA. gRNAs labeled with v1* have one more phosphorothioate bond at the 3' end of the gRNA. gRNAs labeled with v9* have one more phosphorothioate bond at the 3' end of the gRNA. Biochemical Signs of gRNA Activity:

在5'末端上具有螢光部分之目標DNA寡核苷酸為市售購買的(列於表24中之序列)。藉由將寡核苷酸以1:1比率混合於1×裂解緩衝液(20 mM Tris HCl pH 7.5、150 mM NaCl、1 mM TCEP、5%甘油、10 mM MgCl 2)中,隨後加熱至95℃持續10分鐘,且接著使溶液冷卻至室溫來形成雙股DNA (dsDNA)目標。將CasX核糖核蛋白(RNP)在1×裂解緩衝液中用CasX 491及指定gRNA重構,最終濃度為1 µM且指定gRNA過量1.2倍。使RNP在37℃下形成,保持10分鐘。 Target DNA oligonucleotides with a fluorescent moiety on the 5' end were commercially purchased (sequences listed in Table 24). Double-stranded DNA (dsDNA) targets were formed by mixing the oligonucleotides at a 1:1 ratio in 1× lysis buffer (20 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM TCEP, 5% glycerol, 10 mM MgCl 2 ), followed by heating to 95°C for 10 minutes, and then cooling the solution to room temperature. CasX ribonucleoprotein (RNP) was reconstituted with CasX 491 and the designated gRNA in 1× lysis buffer at a final concentration of 1 µM and a 1.2-fold excess of the designated gRNA. RNPs were allowed to form at 37°C for 10 minutes.

測定gRNA支架之各種結構及化學修飾對CasX 491 RNP之裂解率的影響。用200 nM之最終RNP濃度及10 nM之最終目標濃度製備裂解反應,且反應係在16℃下進行且藉由添加經標記之目標DNA受質起始(表24)。在0.25、0.5、1、2、5及10分鐘獲取反應的等分試樣且藉由添加相等體積之95%甲醯胺及20 mM EDTA來淬滅。使樣本在95℃變性10分鐘且在10%脲-PAGE凝膠上解析。將凝膠在Typhoon TM雷射-掃描儀平台上成像且使用ImageQuant TMTL 8.2影像分析軟體(Cytiva TM)定量。針對各CasX:gRNA組合測定非目標股裂解之表觀一級速率常數(k 裂解 ­)。 The effects of various structural and chemical modifications of the gRNA scaffold on the cleavage rate of CasX 491 RNP were determined. Cleavage reactions were prepared with a final RNP concentration of 200 nM and a final target concentration of 10 nM, and the reactions were performed at 16°C and initiated by the addition of labeled target DNA substrate (Table 24). Aliquots of the reactions were taken at 0.25, 0.5, 1, 2, 5, and 10 minutes and quenched by adding equal volumes of 95% formamide and 20 mM EDTA. Samples were denatured at 95°C for 10 minutes and resolved on 10% urea-PAGE gels. Gels were imaged on a Typhoon laser-scanner platform and quantified using ImageQuant TL 8.2 image analysis software (Cytiva ). The apparent first-order rate constant for off-target strand cleavage (k cleavage ) was determined for each CasX:gRNA combination. ­ ).

為了確定由各gRNA形成之勝任型分率,製備具有100 nM之最終RNP濃度及100 nM之最終目標濃度的裂解反應。反應係在37℃下進行且藉由添加經標記之目標受質來起始(表24)。在0.5、1、2、5、10及30分鐘獲取等分試樣且藉由添加相等體積之95%甲醯胺及25 mM EDTA來淬滅。藉由在95℃加熱10分鐘使樣本變性且在10%脲-PAGE凝膠上解析。如上對凝膠進行成像及定量。假定CasX在分析條件下充當單次周轉酶,由以下觀測結果所指示:低於化學計算量的酶即使在延長時間標度下仍無法裂解超過化學計算量的目標受質,反而將接近與存在之酶之量成比例的平穩段。因此,在長時間標度上藉由等莫耳量之RNP裂解的目標受質之分率將指示恰當地形成且對裂解具有活性的RNP分率。用兩相速率模型擬合裂解跡線,因為裂解反應在此濃度方案下明顯偏離單相。確定各擬合之平穩段且以各RNP之活性分率報導於表27中。 24 用於 gRNA 活性之生物化學表徵的在 5' 末端上具有螢光部分之目標 DNA 受質寡核苷酸的序列。 /700/ = IRDye700; /800/ = IRDye800 DNA 受質 序列 6.7/6.8目標上股 (SEQ ID NO: 3182) /700/catgtcttccatggccttcttcctggcttcctggtgaagatgagtggcgacctgctggag 6.7/6.8目標下股 (SEQ ID NO: 3183) /800/ctccagcaggtcgccactcatcttcaccaggaagccaggaagaaggccatggaagacatg CasX mRNA之活體外轉錄: To determine the fraction of competence formed by each gRNA, cleavage reactions were prepared with a final RNP concentration of 100 nM and a final target concentration of 100 nM. Reactions were performed at 37°C and initiated by adding labeled target substrate (Table 24). Aliquots were taken at 0.5, 1, 2, 5, 10, and 30 minutes and quenched by adding equal volumes of 95% formamide and 25 mM EDTA. Samples were denatured by heating at 95°C for 10 minutes and resolved on 10% urea-PAGE gels. Gels were imaged and quantified as above. It is assumed that CasX acts as a single turnover enzyme under the assay conditions, as indicated by the observation that substoichiometric amounts of enzyme will fail to cleave target substrates in excess of stoichiometric amounts even on extended time scales, but will instead approach a plateau proportional to the amount of enzyme present. Therefore, the fraction of target substrate cleaved by equimolar amounts of RNPs on long time scales will indicate the fraction of RNPs that are properly formed and active for cleavage. The cleavage traces were fit with a two-phase rate model, as the cleavage reaction deviates significantly from a single phase under this concentration regime. Each fitted plateau was determined and reported in Table 27 as the fractional activity of each RNP. Table 24 : Sequences of target DNA substrate oligonucleotides with a fluorescent moiety on the 5' end for biochemical characterization of gRNA activity. /700/ = IRDye700; /800/ = IRDye800 DNA Substrate sequence 6.7/6.8 Target Stock (SEQ ID NO: 3182) /700/catgtcttccatggccttcttcctggcttcctggtgaagatgagtggcgacctgctggag 6.7/6.8 target stock placement (SEQ ID NO: 3183) /800/ctccagcaggtcgccactcatcttcaccaggaagccaggaagaaggccatggaagacatg In vitro transcription of CasX mRNA:

藉由PCR,使用含有T7啟動子之正向引子,隨後用瓊脂糖凝膠提取適當大小的DNA來產生用於活體外轉錄之編碼CasX 491的DNA模板(關於編碼序列參見表25)。在各活體外轉錄反應中使用最終濃度為25 ng/µL之模板DNA,該活體外轉錄反應係按照製造商推薦之方案略加修改後進行。在37℃下用CleanCap® AG及N1-甲基-假尿苷進行2至3小時之活體外轉錄反應培育之後,對模板DNA進行DNA酶消化且使用Zymo RNA miniprep套組進行基於管柱之純化。按照製造商的方案使用大腸桿菌聚腺苷酸聚合酶添加聚腺苷酸尾,隨後如上所陳述進行基於管柱之純化。將加聚腺苷酸尾的經活體外轉錄之RNA在不含RNA酶之水中溶離,在Agilent TapeStation上分析其完整性,且快速冷凍,隨後儲存於-80℃。 25 此實例中評定之 CasX mRNA 分子之編碼序列 * CasX 491 mRNA ID 組分(ID) DNA 序列 SEQ ID NO: CasX 491 mRNA #1 5'UTR GACCGGCCGCCACC 3082 START 密碼子+ c-MYC NLS + 連接子 ATGGCCCCAGCGGCCAAACGGGTGAAGCTGGACTCTAGA 3184 CasX 491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACCAGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTGACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTACCAGGACATCATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTCAACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGGCAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCGATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGGCCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGCTGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGACCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAGACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGCGCAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGACATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGAGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAAGACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGGTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCCGATGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3185 連接子+ c-MYC NLS GGCTCCCCCGCCGCGAAGCGAGTGAAACTGGACGGATCCGGC 3186 P2A mScarlet + STOP 密碼子 GCAACAAACTTCTCTCTGCTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGATGGTATCAAAGGGTGAGGCGGTCATTAAGGAATTCATGCGGTTCAAAGTTCACATGGAGGGGAGTATGAATGGTCACGAATTTGAGATCGAGGGTGAGGGAGAGGGTAGACCTTACGAAGGCACCCAGACAGCAAAACTCAAAGTCACTAAGGGCGGCCCACTCCCTTTCTCATGGGATATACTGAGTCCTCAATTTATGTATGGCTCCCGGGCCTTTATCAAGCATCCAGCCGACATACCCGATTACTATAAACAGTCATTCCCCGAGGGATTCAAATGGGAGAGAGTGATGAATTTTGAAGACGGGGGTGCCGTGACCGTAACTCAAGATACCTCTTTGGAAGATGGTACCCTCATTTACAAGGTTAAGCTTAGAGGAACTAATTTCCCACCAGACGGACCCGTTATGCAGAAAAAAACCATGGGTTGGGAGGCTAGCACCGAACGGCTGTATCCAGAGGATGGAGTTTTGAAAGGTGATATTAAGATGGCCCTGCGCCTGAAAGACGGAGGGCGGTACCTCGCAGATTTCAAAACTACCTACAAAGCTAAGAAACCGGTCCAAATGCCGGGTGCTTATAACGTCGATAGGAAGCTGGATATAACATCACACAACGAAGACTATACGGTTGTCGAACAGTATGAGCGATCTGAGGGGAGGCACAGCACGGGCGGGATGGATGAGCTTTACAAGTGA 3187 CasX 676 mRNA #2 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START 密碼子+ c-MYC NLS ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676 參見表 19 中之序列 3134 c-MYC NLS + STOP 密碼子 GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 XbaI限制位點(部分) TCTAG 3056 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 *各組分以在構築體內之5'至3'次序列出 經由轉染活體外遞送gRNA及CasX mRNA: DNA templates encoding CasX 491 for in vitro transcription (see Table 25 for coding sequences) were generated by PCR using a forward primer containing a T7 promoter followed by agarose gel extraction of the appropriate size. A final concentration of 25 ng/µL of template DNA was used in each in vitro transcription reaction, which was performed according to the manufacturer's recommended protocol with slight modifications. After incubation of the in vitro transcription reactions for 2 to 3 hours at 37°C with CleanCap® AG and N1-methyl-pseudouridine, the template DNA was DNase digested and column-based purified using the Zymo RNA miniprep kit. The poly(A) tail was added using E. coli poly(A) polymerase according to the manufacturer's protocol, followed by column-based purification as described above. The poly(A)-tailed ex vivo transcribed RNA was dissolved in RNase-free water, analyzed for integrity on an Agilent TapeStation, and flash frozen and subsequently stored at -80°C. Table 25 : Coding sequences of CasX mRNA molecules evaluated in this example * CasX 491 mRNA ID Component (ID) DNA Sequence SEQ ID NO: CasX 491 mRNA #1 5'UTR GACCGGCCGCCACC 3082 START codon + c-MYC NLS + linker ATGGCCCCAGCGGCCAAACGGGTGAAGCTGGACTCTAGA 3184 CasX 491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACC AGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTG ACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACC TACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTAC CAGGACATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTC AACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGG CAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAG AAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCG ATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGG CCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGC TGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGACCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAG ACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGCGCAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGA CATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGAGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAA GACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAG GTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCCGATGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3185 Linker + c-MYC NLS GGCTCCCCCGCCGCGAAGCGAGTGAAACTGGACGGATCCGGC 3186 P2A mScarlet + STOP code GCAACAAACTTCTCTCTGCTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGATGGTATCAAAGGGTGAGGCGGTCATTAAGGAATTCATGCGGTTCAAAGTTCACATGGAGGGGAGTATGAATGGTCACGAATTTGAGATCGAGGGTGAGGGAGAGGGTAGACCTTACGAAGGCACCCAGACA GCAAAACTCAAAGTCACTAAGGGCGGCCCACTCCCTTTCTCATGGGATATACTGAGTCCTCAATTTATGTATGGCTCCCGGGCCTTTATCAAGCATCCAGCCGACATACCCGATTACTATAAACAGTCATTCCCCGAGGGATTCAAATGGGAGAGAGTGATGAATTTTGAAGACGGGGGTGCCGTGACC GTAACTCAAGATACCTCTTTGGAAGATGGTACCCTCATTTACAAGGTTAAGCTTAGAGGAACTAATTTCCCACCAGACGGACCCGTTATGCAGAAAAAAACCATGGGTTGGGAGGCTAGCACCGAACGGCTGTATCCAGAGGATGGAGTTTTGAAAGGTGATATTAAGATGGCCCTGCGCCTGAAAGAC GGAGGCGGTACCTCGCAGATTTCAAAACTACCTACAAAGCTAAGAAACCGGTCCAAATGCCGGGTGCTTATAACGTCGATAGGAAGCTGGATATAACATCACACAACGAAGACTATACGGTTGTCGAACAGTATGAGCGATCTGAGGGGAGGCACAGCACGGGCGGGATGGATGAGCTTTACAAGTGA 3187 CasX 676 mRNA #2 5'UTR AAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACC 3047 START codon + c-MYC NLS ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676 See the sequence in Table 19 3134 c-MYC NLS + STOP codon GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR GCTGCCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG 3055 XbaI restriction site (partial) TCTAG 3056 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 * Components are listed in 5' to 3' sequence within the construct. Delivery of gRNA and CasX mRNA in vitro via transfection:

與使用具有支架變異體316之 PCSK9靶向gRNA之條件相比,針對使用CasX 491 mRNA與具有支架變異體174之 PCSK9靶向gRNA共同遞送的條件來評定 PCSK9基因座之編輯以及後續對分泌之PCSK9水平的影響。使用脂染胺將100 ng編碼CasX 491與P2A及mScarlet螢光蛋白的活體外轉錄之mRNA與gRNA 174-6.7、174-6.8、316-6.7及316-6.8之型式1 (v1)一起轉染至HepG2細胞中(參見表23)。更換培養基後,在轉染後28小時收集以下各物:1)收集經轉染細胞,以藉由次世代定序(next generation sequencing;NGS)評定在PCSK9基因座處之編輯;及2)收集培養基上清液以藉由ELISA量測所分泌之PCSK9蛋白質水平。對於藉由NGS進行編輯分析,用一組靶向PCSK9基因座之引子自所提取之200 ng gDNA中擴增出擴增子,且經處理用於定序(描述如下)。亦按照製造商說明書,使用來自CISBio的基於螢光共振能量轉移之免疫分析來分析培養基上清液中所分泌之PCSK9水平。此處,使用支架174及靶向內源性 B2M(β-2-微球蛋白)基因座之間隔子7.37 (v0;參見表23)的gRNA用作非靶向(NT)對照。此等結果顯示於圖15中。 The editing of the PCSK9 locus and the subsequent effect on secreted PCSK9 levels were assessed for conditions using CasX 491 mRNA co-delivered with PCSK9 targeting gRNA with scaffold variant 174 compared to conditions using PCSK9 targeting gRNA with scaffold variant 316. 100 ng of in vitro transcribed mRNA encoding CasX 491 with P2A and mScarlet fluorescein was transfected into HepG2 cells with gRNA 174-6.7, 174-6.8, 316-6.7 and version 1 (v1) of 316-6.8 using lipofectamine (see Table 23). After changing the medium, the following were collected 28 hours after transfection: 1) transfected cells were collected to assess editing at the PCSK9 locus by next generation sequencing (NGS); and 2) culture supernatants were collected to measure secreted PCSK9 protein levels by ELISA. For editing analysis by NGS, amplicon was amplified from 200 ng of extracted gDNA with a set of primers targeting the PCSK9 locus and processed for sequencing (described below). Secreted PCSK9 levels in culture supernatants were also analyzed using a fluorescence resonance energy transfer-based immunoassay from CISBio according to the manufacturer's instructions. Here, scaffold 174 and a gRNA targeting spacer 7.37 (v0; see Table 23) of the endogenous B2M (β-2-microglobulin) locus were used as a non-targeting (NT) control. These results are shown in FIG. 15 .

為比較 B2M靶向gRNA之未經修飾之型式0 (v0)及經化學修飾型式1 (v1)的編輯效力,96孔盤每孔接種約6E4個HepG2肝細胞。24小時後,使用脂染胺與100 ng編碼CasX 491之活體外轉錄mRNA及不同劑量(1、5或50 ng)之含有支架變異體174及間隔子7.37之 B2M靶向gRNA之v0或v1型共轉染所接種細胞(參見表23)。轉染後六天,收集細胞,用於經由B2M依賴性HLA蛋白之免疫染色,接著使用Attune TMNxT流式細胞儀進行流動式細胞測量術來分析B2M蛋白表現。此等結果顯示於圖16中。 To compare the editing efficacy of unmodified version 0 (v0) and chemically modified version 1 (v1) of B2M targeting gRNA, approximately 6E4 HepG2 hepatocytes were seeded per well of a 96-well plate. 24 hours later, the seeded cells were co-transfected with lipofectamine and 100 ng of ex vivo transcribed mRNA encoding CasX 491 and different doses (1, 5 or 50 ng) of v0 or v1 of B2M targeting gRNA containing scaffold variant 174 and spacer 7.37 (see Table 23). Six days after transfection, cells were harvested for immunostaining of B2M-dependent HLA proteins, followed by flow cytometry analysis of B2M protein expression using an Attune NxT flow cytometer. These results are shown in Figure 16.

評定經化學修飾之 PCSK9靶向gRNA的v1至v6變異體(表23)對編輯效力的影響及後續對分泌之PCSK9水平的影響。簡言之,使用脂染胺將100 ng編碼CasX變異體491及P2A及mScarlet螢光蛋白的活體外轉錄之mRNA與50 ng指定經化學修飾之gRNA轉染至HepG2細胞中。更換培養基後,在轉染後28小時收集以下各物:1)如上文所描述,收集經轉染細胞,以藉由NGS評定在 PCSK9基因座處之編輯;及2)如上文所描述,收集培養基上清液以藉由ELISA量測所分泌之PCSK9蛋白質水平。此處, B2M靶向gRNA用作非靶向對照。此等結果顯示於表28中。 NGS處理及分析: The effects of v1 to v6 variants of chemically modified PCSK9 targeting gRNAs (Table 23) on editing efficacy and subsequent effects on secreted PCSK9 levels were assessed. Briefly, 100 ng of in vitro transcribed mRNA encoding CasX variant 491 and P2A and mScarlet fluorescent protein were transfected into HepG2 cells with 50 ng of the specified chemically modified gRNA using lipofectamine. After changing the medium, the following were collected 28 hours after transfection: 1) transfected cells were collected as described above to assess editing at the PCSK9 locus by NGS; and 2) culture supernatants were collected as described above to measure secreted PCSK9 protein levels by ELISA. Here, B2M targeting gRNA was used as a non-targeting control. These results are shown in Table 28. NGS Processing and Analysis:

按照製造商說明書使用Zymo Quick-DNA Miniprep Plus套組提取來自所收集細胞之基因體DNA (gDNA)。藉由用一組靶向人類 PCSK9基因座之引子擴增所提取之約50至200 ng gDNA的所關注區域來形成目標擴增子。此等基因特異性引子在5′末端含有額外序列以引入Illumina讀段1及2序列。此外,其含有充當獨特分子識別符(UMI)之16核苷酸隨機序列。使用Fragment Analyzer DNA分析儀套組(Agilent,dsDNA 35-1500 bp)評定擴增子之品質及定量。根據製造商說明書,在Illumina MiSeq™上對擴增子進行定序。藉由修整品質及銜接子序列且將讀段1及讀段2合併為單個插入序列來處理原始fastq定序檔案;接著藉由CRISPResso2 (v 2.0.29)程式來分析插入序列。確定在間隔子之3'末端周圍的窗口中經修飾之讀段的百分比。對於各者,CasX分子之活性經定量為此窗口內任何地方含有插入、取代及/或缺失之讀段的總百分比。 脂質奈米粒子(LNP)之調配: Genomic DNA (gDNA) from the collected cells was extracted using the Zymo Quick-DNA Miniprep Plus kit according to the manufacturer's instructions. Targeted amplicon was formed by amplifying the region of interest of approximately 50 to 200 ng of extracted gDNA with a set of primers targeting the human PCSK9 locus. These gene-specific primers contain additional sequences at the 5′ end to introduce Illumina read 1 and 2 sequences. In addition, they contain a 16-nucleotide random sequence that serves as a unique molecular identifier (UMI). The quality and quantification of the amplicon was assessed using the Fragment Analyzer DNA analyzer kit (Agilent, dsDNA 35-1500 bp). Amplicon was sequenced on an Illumina MiSeq™ according to the manufacturer's instructions. The raw fastq sequencing files were processed by trimming the quality and adapter sequences and merging reads 1 and 2 into a single insert sequence; the insert sequence was then analyzed by the CRISPResso2 (v 2.0.29) program. The percentage of modified reads in the window around the 3' end of the spacer was determined. For each, the activity of the CasX molecule was quantified as the total percentage of reads containing insertions, substitutions and/or deletions anywhere within this window. Formulation of Lipid Nanoparticles (LNPs):

按照製造商之指南,使用GenVoy-ILM TM脂質在Precision NanoSystems Inc. (PNI) Ignite TMBenchtop系統上將CasX mRNA及gRNA囊封至LNP中。GenVoy-ILM TM脂質係由PNI製造,其組成為呈50:10:37.5:2.5 mol%的可離子化脂質:DSPC:膽固醇:穩定劑。 CasX mRNA and gRNA were encapsulated into LNPs using GenVoy-ILM lipids on a Precision NanoSystems Inc. (PNI) Ignite Benchtop system according to the manufacturer's instructions. GenVoy-ILM lipids were manufactured by PNI and had a composition of ionizable lipid: DSPC: cholesterol: stabilizer at 50:10:37.5:2.5 mol%.

簡言之,為了調配LNP,將相等質量比之CasX mRNA及gRNA稀釋於PNI調配緩衝液(pH 4.0)中。將GenVoy-ILM TM以1:1稀釋於無水乙醇中。使用預定N/P比進行mRNA/gRNA共同調配。將RNA及脂質在PNI Ignite TMBenchtop系統上以預定流動速率比(RNA:Genvoy-ILM TM)穿過PNI層流濾筒。調配後,將LNP稀釋於PBS (pH 7.4)中,以降低乙醇濃度且提高pH,由此提高粒子之穩定性。藉由在4℃下使用10k Slide-A-Lyzer™滲析卡匣(Thermo Scientific™)滲析透析至PBS (pH 7.4)中來達成mRNA/sgRNA-LNP之緩衝液交換。滲析之後,將mRNA/gRNA-LNP使用100 kDa Amicon®-Ultra離心過濾器(Millipore)濃縮至> 0.5 mg/mL,隨後過濾滅菌。在Stunner (Unchained Labs)上分析所調配LNP以測定其直徑及多分散性指數(PDI)。藉由RiboGreen TM分析,使用Invitrogen之Quant-iT TMRiboGreen TMRNA分析套組測定囊封效率及RNA濃度。在本文所描述之各個實驗中使用LNP將CasX mRNA及gRNA遞送至目標細胞及組織。 活體外遞送囊封CasX mRNA及靶向gRNA之LNP: Briefly, to prepare LNPs, CasX mRNA and gRNA were diluted in PNI preparation buffer (pH 4.0) at equal mass ratios. GenVoy-ILM was diluted 1:1 in absolute ethanol. mRNA/gRNA co-formulation was performed using a predetermined N/P ratio. RNA and lipids were passed through a PNI laminar flow filter cartridge on a PNI Ignite Benchtop system at a predetermined flow rate ratio (RNA:Genvoy-ILM ). After preparation, LNPs were diluted in PBS (pH 7.4) to reduce the ethanol concentration and increase the pH, thereby improving the stability of the particles. Buffer exchange of mRNA/sgRNA-LNPs was achieved by dialysis into PBS (pH 7.4) at 4°C using a 10k Slide-A-Lyzer™ Dialysis Cassette (Thermo Scientific™). After dialysis, mRNA/gRNA-LNPs were concentrated to > 0.5 mg/mL using a 100 kDa Amicon®-Ultra centrifugal filter (Millipore) and subsequently filter-sterilized. The formulated LNPs were analyzed on a Stunner (Unchained Labs) to determine their diameter and polydispersity index (PDI). Encapsulation efficiency and RNA concentration were determined by RiboGreen analysis using Invitrogen's Quant-iT RiboGreen RNA Assay Kit. In each of the experiments described herein, LNPs were used to deliver CasX mRNA and gRNA to target cells and tissues. In vitro delivery of LNPs encapsulating CasX mRNA and targeting gRNA:

於96孔盤中每孔接種約50,000個HepG2細胞,該等細胞在含有10% FBS及1%青黴素鏈黴素(PenStrep)之DMEM/F-12培養基中培養。次日,用變化濃度之LNP處理所接種之細胞,LNP以250 ng起始,按六個2倍連續稀釋製備。調配此等LNP以囊封CasX 491 mRNA及併入支架變異體174或316與間隔子7.9之靶向 B2M的gRNA (v1;參見表23)。在LNP處理之後24小時更換培養基,且再培養細胞六天,然後收集細胞用來提取gDNA,以用於藉由NGS評定在B2M基因座處之編輯,及經由HLA免疫染色,隨後使用Attune NxT流式細胞儀進行流動式細胞測量術來分析B2M蛋白質表現。簡言之,對於編輯評定,用靶向人類 B2M基因座之引子自所提取之200 ng gDNA中擴增出擴增子,且使用如下所述之方法藉由NGS處理。此等分析之結果顯示於圖17及圖18中。 Approximately 50,000 HepG2 cells were seeded per well in a 96-well plate in DMEM/F-12 medium containing 10% FBS and 1% PenStrep. The next day, the seeded cells were treated with varying concentrations of LNPs, starting at 250 ng, prepared in six 2-fold serial dilutions. These LNPs were formulated to encapsulate CasX 491 mRNA and gRNA targeting B2M (v1; see Table 23) incorporating scaffold variants 174 or 316 and spacer 7.9. The medium was changed 24 hours after LNP treatment, and the cells were cultured for an additional six days before being harvested for extraction of gDNA for assessment of editing at the B2M locus by NGS, and HLA immunostaining followed by flow cytometry analysis of B2M protein expression using an Attune NxT flow cytometer. Briefly, for editing assessment, amplicon was amplified from 200 ng of gDNA extracted with primers targeting the human B2M locus and processed by NGS using the method described below. The results of these analyses are shown in Figures 17 and 18.

在96孔盤中每孔接種約20,000個小鼠Hepa1-6細胞。次日,用變化濃度之LNP處理所接種之細胞,LNP以1000 ng起始,按八個2倍連續稀釋製備。調配此等LNP以囊封CasX 676 mRNA #2 (參見表25)及併入支架變異體316與間隔子35.2之靶向 ROSA26的gRNA (v1或v5;參見表23)。在用LNP處理後24小時更換培養基,且再培養細胞七天,然後收集細胞用來提取gDNA,以用於藉由NGS評定在 ROSA26基因座處之編輯。簡言之,用靶向小鼠 ROSA26基因座之引子自所提取之gDNA中擴增出擴增子,且使用如下所述類似方法藉由NGS處理。此實驗之結果顯示於圖19中。 活體內遞送囊封CasX mRNA及靶向gRNA之LNP: Approximately 20,000 mouse Hepa1-6 cells were seeded per well in a 96-well plate. The next day, the seeded cells were treated with varying concentrations of LNPs, starting at 1000 ng, prepared in eight 2-fold serial dilutions. These LNPs were formulated to encapsulate CasX 676 mRNA #2 (see Table 25) and a gRNA targeting ROSA26 (v1 or v5; see Table 23) incorporating scaffold variant 316 and spacer 35.2. The medium was changed 24 hours after treatment with LNPs, and the cells were cultured for an additional seven days before being harvested for extraction of gDNA for evaluation of editing at the ROSA26 locus by NGS. Briefly, amplicon was amplified from extracted gDNA with primers targeting the mouse ROSA26 locus and processed by NGS using a similar method as described below. The results of this experiment are shown in Figure 19. In vivo delivery of LNPs encapsulating CasX mRNA and targeting gRNA:

為評定活體內使用v1及v5支架316之作用,使用1:1的mRNA:gRNA質量比將CasX 676 mRNA #2 (參見表25)以及使用支架316與間隔子35.2之靶向 ROSA26的gRNA (v1或v5;參見表23)囊封在同一LNP內。將所調配LNP經緩衝液交換為PBS以用於活體內注射。簡言之,將LNP經由後眼眶竇經靜脈內投與至4週齡C57BL/6小鼠中。在注射之後觀測小鼠五分鐘以確保其自麻醉恢復,隨後置放於飼養籠中。初始的未注射之動物用作實驗對照。投與後六天,將小鼠處死,且按照製造商說明書使用Zymo Research Quick DNA/RNA Miniprep套組收集肝臟組織以用於提取gDNA。隨後用一組靶向小鼠 ROSA26基因座之引子自所提取之gDNA中擴增出目標擴增子,且使用如下文所述之類似方法處理以藉由NGS評定編輯。此實驗之結果顯示於圖20中。 To assess the effects of using v1 and v5 scaffolds 316 in vivo, CasX 676 mRNA #2 (see Table 25) and gRNA targeting ROSA26 (v1 or v5; see Table 23) using scaffold 316 and spacer 35.2 were encapsulated in the same LNP using a 1:1 mRNA:gRNA mass ratio. The formulated LNPs were exchanged with PBS for intravitreal injection. Briefly, LNPs were administered intravenously via the posterior orbital sinus to 4-week-old C57BL/6 mice. Mice were observed for five minutes after injection to ensure recovery from anesthesia and then placed in cages. Initial, non-injected animals were used as experimental controls. Six days after administration, mice were sacrificed and liver tissue was collected for gDNA extraction using the Zymo Research Quick DNA/RNA Miniprep kit according to the manufacturer's instructions. The target amplicon was then amplified from the extracted gDNA using a set of primers targeting the mouse ROSA26 locus and processed using a similar method as described below to evaluate the edit by NGS. The results of this experiment are shown in Figure 20.

為了比較活體內使用v7、v8及v9之支架316對 PCSK9基因座之編輯的影響,對於各gRNA,使用1:1的mRNA:gRNA質量比將CasX 676 mRNA #1 (關於序列參見表26)以及使用支架316與間隔子27.107之 PCSK9靶向gRNA (v1、v7、v8或v9;參見表23)囊封在同一LNP內。如以上所描述,將LNP經後眼眶投與至6週齡C57BL/6小鼠中,且注射後七天將小鼠處死以收集肝臟組織用來提取gDNA,以用於藉由NGS評定 PCSK9基因座處之編輯。此實驗之結果顯示於圖21中。 26 CasX 676 mRNA #1 分子之編碼序列 CasX ID 組分(ID) 描述 DNA 序列 SEQ ID NO: CasX 676 mRNA #1 5'UTR hHBA ACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCGCCACC 3188 START 密碼子+ c-MYC NLS   ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676   參見表19 中之序列 3134 c-MYC NLS + STOP 密碼子   GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR hHBA GCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3189 聚腺苷酸尾   AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 *各組分以在構築體內之5'至3'次序列出 結果: 評定各種化學修飾對 gRNA 活性之影響: To compare the effects of scaffold 316 using v7, v8, and v9 on editing of the PCSK9 locus in vivo, CasX 676 mRNA #1 (see Table 26 for sequence) and PCSK9 targeting gRNAs (v1, v7, v8, or v9; see Table 23) using scaffold 316 and spacer 27.107 were encapsulated in the same LNP using a 1:1 mRNA:gRNA mass ratio for each gRNA. LNPs were administered retro-orbitally to 6-week-old C57BL/6 mice as described above, and mice were sacrificed seven days after injection to collect liver tissue for extraction of gDNA for assessment of editing at the PCSK9 locus by NGS. The results of this experiment are shown in Figure 21. Table 26 : Coding sequence of CasX 676 mRNA #1 molecule CasX ID Component (ID) describe DNA Sequence SEQ ID NO: CasX 676 mRNA #1 5'UTR HbA ACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCGCCACC 3188 START codon + c-MYC NLS ATGGCCCCTGCTGCCAAGAGAGTGAAGCTGGATAGCAGA 3133 CasX 676 See the sequence in Table 19 3134 c-MYC NLS + STOP codon GGAAGCCCCGCTGCCAAGAGAGTGAAGCTGGACTAATAGATAA 3135 3'UTR HbA GCTGGAGCCTCGGTGGCCATGCTTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3189 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 *Each component is listed in the order of 5' to 3' in the construct. Results: Evaluation of the effects of various chemical modifications on gRNA activity:

涉及Cas9之若干研究已證明,對gRNA進行化學修飾可顯著改良與Cas9 mRNA一起遞送時的編輯活性。在將Cas9 mRNA及gRNA遞送至目標細胞中之後,未受保護之gRNA在mRNA轉譯過程期間易降解。添加化學修飾(諸如2'O-甲基(2'OMe)基團及硫代磷酸酯鍵)可降低gRNA對細胞RNA酶之易感性,但亦有可能破壞gRNA摺疊及其與CRISPR-Cas蛋白質之相互作用。鑒於CasX與Cas9以及其各別gRNA之間缺乏結構類似性,必須從頭設計及驗證適當化學修飾概況。使用來自δ變形菌綱之野生型CasX之公開結構(PDB編碼6NY1、6NY2及6NY3)作為參考物,選擇似乎可能適合於修飾之殘基。然而,公開之結構為野生型CasX直系同源物及gRNA的結構,與用作本文呈現之經工程改造的變異體之基礎的物種有所不同,且其亦缺乏有把握地確定蛋白質側鏈與RNA主鏈之間的相互作用的解析度。此等限制為確定哪些核苷酸可安全地進行修飾帶來極大的不確定性。因此,設計六種化學修飾概況(表示為型式)用於初始測試,且此六種概況繪示於圖10及圖11中。v1概況經設計為簡單的末端保護結構,其中前三個及後三個核苷酸經2'OMe及硫代磷酸酯鍵修飾。在v2概況中,添加3'UUU尾以模擬用於細胞轉錄系統中之終止序列,且將經修飾之核苷酸移動至參與目標識別之間隔子區之外。v3概況包括如同v1中之末端保護,以及在基於結構分析被鑑別為潛在可修飾之所有核苷酸上添加2'OMe修飾。v4概況係基於v3進行建模,但移除三螺旋體區域中之所有修飾,因為根據預測此結構對RNA螺旋結構及主鏈可撓性之任何擾動均更敏感。v5概況維持支架莖及延伸莖區中之化學修飾,而v6概況僅具有延伸莖中之修飾。延伸莖係RNP中完全暴露於溶劑之區域,且其能夠經其他髮夾結構置換且因此可能對化學修飾相對不敏感。Several studies involving Cas9 have demonstrated that chemical modification of gRNAs can significantly improve editing activity when delivered with Cas9 mRNA. After delivery of Cas9 mRNA and gRNA into target cells, unprotected gRNAs are susceptible to degradation during the mRNA translation process. Adding chemical modifications such as 2'O-methyl (2'OMe) groups and phosphorothioate bonds can reduce the susceptibility of gRNAs to cellular RNases, but may also disrupt gRNA folding and its interaction with CRISPR-Cas proteins. Given the lack of structural similarity between CasX and Cas9 and their respective gRNAs, appropriate chemical modification profiles must be designed and validated de novo. Using the published structure of wild-type CasX from Deltaproteobacteria (PDB codes 6NY1, 6NY2, and 6NY3) as a reference, residues that seemed likely to be suitable for modification were selected. However, the published structures are those of wild-type CasX orthologs and gRNAs, which are different from the species used as the basis for the engineered variants presented herein, and they also lack the resolution to confidently determine the interactions between the protein side chains and the RNA backbone. These limitations bring great uncertainty to determining which nucleotides can be safely modified. Therefore, six chemical modification profiles (represented as patterns) were designed for initial testing, and these six profiles are shown in Figures 10 and 11. The v1 profile was designed as a simple end-protection structure in which the first and last three nucleotides were modified with 2'OMe and phosphorothioate bonds. In the v2 profile, a 3'UUU tail was added to mimic the termination sequence used in cellular transcription systems, and the modified nucleotides were moved outside the spacer region involved in target recognition. The v3 profile included end-protection as in v1, and the addition of 2'OMe modifications on all nucleotides identified as potentially modifiable based on structural analysis. The v4 profile was modeled based on v3, but with all modifications in the triple helical region removed, as this structure is predicted to be more sensitive to any perturbations of the RNA helical structure and backbone flexibility. The v5 profile maintains chemical modifications in both the scaffold stem and the extension stem regions, whereas the v6 profile has modifications only in the extension stem. The extension stem is the region of the RNP that is fully exposed to solvents and which can be replaced by other hairpin structures and therefore may be relatively insensitive to chemical modifications.

首先相對於未經修飾之gRNA (v0),評定經最低程度修飾之v1 gRNA,以確定當gRNA與CasX mRNA共同遞送至目標細胞時此類化學修飾對編輯之潛在益處。將具有間隔子7.37的經修飾(v1)及未經修飾(v0)之 B2M靶向gRNA與CasX mRNA共轉染至HepG2細胞中,且藉由流動式細胞測量術偵測B2M依賴性HLA複合物表面呈現之損失來量測 B2M基因座處的編輯(圖16)。資料表明,與在多個劑量之v0 gRNA下所觀測到的水平相比,使用v1 gRNA導致的B2M表現損失要大得多,由此證實gRNA之末端修飾在遞送CasX mRNA及gRNA後增加CasX介導之編輯活性。 Minimally modified v1 gRNAs were first evaluated relative to unmodified gRNAs (v0) to determine the potential benefit of such chemical modifications on editing when gRNAs were co-delivered with CasX mRNA to target cells. Modified (v1) and unmodified (v0) B2M -targeting gRNAs with spacer 7.37 were co-transfected with CasX mRNA into HepG2 cells, and editing at the B2M locus was measured by flow cytometry to detect loss of B2M-dependent HLA complex surface presentation ( FIG. 16 ). The data showed that the use of v1 gRNA resulted in a much greater loss of B2M expression compared to the levels observed at multiple doses of v0 gRNA, confirming that terminal modifications of the gRNA increase CasX-mediated editing activity following delivery of CasX mRNA and gRNA.

使用利用支架變異體235及間隔子6.7及6.8的 PCSK9靶向gRNA評定較廣泛gRNA化學修飾概況集合,以確定額外化學修飾是否將能夠支持活性RNP之形成。進行上文所描述之活體外裂解分析以測定具有各種化學修飾概況之此等經工程改造的gRNA的k 裂解及分率能力。自此等活體外裂解分析之結果顯示於表27中。資料表明具有v3概況之gRNA不展現活性,表明添加一些化學修飾會顯著干擾RNP形成或活性。添加v4化學修飾引起過量RNP條件中之合理裂解率,但展現極低的分率能力。v3與v4修飾之間的差異證實,三螺旋體區域之修飾阻止任何活性RNP形成,此歸因於gRNA無法正常摺疊或gRNA-蛋白質相互作用遭到破壞。由附加v4修飾引起的分率能力降低表明,雖然gRNA能夠與CasX蛋白成功組裝形成裂解勝任型RNP,但絕大部分gRNA摺疊錯誤,或附加的化學修飾降低gRNA對CasX蛋白之親和力,且阻礙RNP之形成效率。應用v5或v6概況產生的勝任型分率與使用v1及v2修飾之反應獲得的勝任型分率相當,但略低於後者。當v5與v6 gRNA之間的k 裂解值相對一致時,v5與v6 gRNA之k 裂解值均幾乎為v1及v2 gRNA的一半。考慮到在經修飾之延伸莖中,gRNA與CasX蛋白之間缺乏預期的相互作用,v6 gRNA之k 裂解值降低尤其出人意料。然而,對於v5及v6 gRNA兩者,由2'OMe修飾引起之gRNA可撓性降低可能阻抑有效裂解所需之RNP結構變化,或包括2'OMe基團可能對參與CasX蛋白相互作用之髮夾的經修飾初始鹼基對產生負面影響。 27 對具有使用支架 235 及含有指示化學修飾概況 ( 由型式編號表示 ) 之各種 PCSK9 靶向 gRNA CasX RNP 所評定之裂解活性之參數 gRNA(支架變異體-間隔子,型式編號) k 裂解(min -1) 分率能力 235-6.7, v1 0.901 0.398 235-6.8, v1 1.36 0.398 235-6.7, v2 0.454 0.386 235-6.8, v2 2.03 0.361 235-6.7, v3 0 0 235-6.8, v3 0 0 235-6.7, v4 0.434 0.031 235-6.8, v4 0.257 0.005 235-6.7, v5 0.506 0.313 235-6.8, v5 0.680 0.388 235-6.7, v6 0.462 0.346 235-6.8, v6 0.715 0.325 A broader set of gRNA chemical modification profiles was assessed using PCSK9 targeting gRNAs utilizing scaffold variant 235 and spacers 6.7 and 6.8 to determine whether additional chemical modifications would be able to support the formation of active RNPs. The in vitro cleavage assays described above were performed to determine the k cleavage and fractional capacity of these engineered gRNAs with various chemical modification profiles. The results from these in vitro cleavage assays are shown in Table 27. The data indicate that gRNAs with v3 profiles do not exhibit activity, indicating that adding some chemical modifications significantly interferes with RNP formation or activity. Adding v4 chemical modifications resulted in reasonable cleavage rates in excess RNP conditions, but exhibited extremely low fractional capacity. The difference between v3 and v4 modifications demonstrates that modification of the triple helical region prevents any active RNP formation, either due to a failure of the gRNA to fold properly or disruption of the gRNA-protein interaction. The reduction in fractional competence caused by the addition of the v4 modification suggests that, although the gRNA is able to successfully assemble with the CasX protein to form cleavage-competent RNPs, the vast majority of gRNAs fold incorrectly, or the additional chemical modification reduces the gRNA's affinity for the CasX protein and blocks the efficiency of RNP formation. Application of the v5 or v6 profiles yielded competent fractions comparable to, but slightly lower than, those obtained for reactions using the v1 and v2 modifications. While the kcleavage values between v5 and v6 gRNAs were relatively consistent, the kcleavage values for both v5 and v6 gRNAs were almost half of those for v1 and v2 gRNAs. The reduced kcleavage value for v6 gRNA was particularly unexpected given the lack of expected interaction between the gRNA and the CasX protein in the modified elongated stem. However, for both v5 and v6 gRNAs, the reduced gRNA flexibility caused by the 2'OMe modification may inhibit RNP structural changes required for efficient cleavage, or the inclusion of the 2'OMe group may have a negative impact on the modified initial base pair of the hairpin involved in the interaction with the CasX protein. Table 27 : Parameters of cleavage activity assessed for CasX RNPs with various PCSK9- targeting gRNAs using scaffold 235 and containing the indicated chemical modification profiles ( indicated by pattern numbers ) gRNA (scaffold variant-spacer, model number) k cleavage (min -1 ) Fraction capacity 235-6.7, v1 0.901 0.398 235-6.8, v1 1.36 0.398 235-6.7, v2 0.454 0.386 235-6.8, v2 2.03 0.361 235-6.7, v3 0 0 235-6.8, v3 0 0 235-6.7, v4 0.434 0.031 235-6.8, v4 0.257 0.005 235-6.7, v5 0.506 0.313 235-6.8, v5 0.680 0.388 235-6.7, v6 0.462 0.346 235-6.8, v6 0.715 0.325

隨後在基於細胞之分析中評定基於支架235的經化學修飾之 PCSK9靶向gRNA的編輯。使用脂染胺將CasX mRNA及經化學修飾之 PCSK9靶向gRNA共轉染至HepG2細胞中。藉由NGS測定的在PCSK9基因座處之插入/缺失率及藉由ELISA測定之分泌之PCSK9水平來量測編輯水平,且資料顯示於表28中。資料表明,使用v3及v4 gRNA引起 PCSK9基因座處之最低程度的編輯活性,與來自表27中所示之生物化學活體外裂解分析之發現一致。同時,使用v5及v6 gRNA引起藉由插入/缺失率及PCSK9分泌量測的編輯水平略微低於使用v1及v2 gRNA達到的水平(表28)。具體而言,結果顯示,使用具有末端修飾之v1及v2 gRNA在 PCSK9基因座產生約80-85%編輯,表明向gRNA末端添加化學修飾足以實現CasX之有效編輯。儘管資料表明使用v5及v6 gRNA產生活體外有效編輯,但在轉染單次劑量之gRNA的此實驗中使用v1 gRNA觀測到編輯接近飽和水平。因此,單次劑量的使用使得清楚評定化學修飾對引導限制條件下之編輯的影響具有挑戰性。因此,選擇概況v1及v5進行進一步測試,因為v1含有最簡單的修飾概況,且v5為修飾最重之概況,其在活體外應用顯示出穩健活性(表27及表28)。 28 :在經 CasX 491 mRNA 及使用支架 235 及間隔子 6.7 6.8 之各種經化學修飾之 PCSK9 靶向 gRNA 共轉染的 HepG2 細胞中,藉由 NGS 測定的在 PCSK9 基因座處之插入 / 缺失率及藉由 ELISA 測定的分泌之 PCSK9 水平所量測的編輯水平 實驗條件 插入/ 缺失率( 編輯分率) 分泌之PCSK9 (ng/mL) 平均值 標準偏差 平均值 標準偏差 僅CasX mRNA 0.0021 0.003 52 14 235-6.7, v1 0.83 0.0058 18 5.7 235-6.7, v2 0.79 0.0071 21 4 235-6.7, v3 0.024 0.02 48 19 235-6.7, v4 0.12 0.006 34 5.5 235-6.7, v5 0.73 0.023 21 9 235-6.7, v6 0.75 0.0069 22 8.8 235-6.8, v1 0.85 0.017 16 4.4 235-6.8, v2 0.83 0.0028 20 1.5 235-6.8, v3 0.023 0.0027 39 2.7 235-6.8, v4 0.088 0.0086 42 10 235-6.8, v5 0.77 0.017 19 1.6 235-6.8, v6 0.78 0.014 24 6.9 非靶向對照 0.0019 0.0026 42 12 The editing of the chemically modified PCSK9 targeting gRNA based on scaffold 235 was then assessed in a cell-based assay. CasX mRNA and chemically modified PCSK9 targeting gRNA were co-transfected into HepG2 cells using lipofectamine. Editing levels were measured by indel rates at the PCSK9 locus as determined by NGS and secreted PCSK9 levels as determined by ELISA, and the data are shown in Table 28. The data showed that the use of v3 and v4 gRNAs resulted in the lowest level of editing activity at the PCSK9 locus, consistent with the findings from the biochemical in vitro cleavage assay shown in Table 27. At the same time, the use of v5 and v6 gRNAs resulted in slightly lower editing levels measured by indel rates and PCSK9 secretion than those achieved using v1 and v2 gRNAs (Table 28). Specifically, the results showed that the use of v1 and v2 gRNAs with terminal modifications produced approximately 80-85% editing at the PCSK9 locus, indicating that adding chemical modifications to the gRNA ends is sufficient to achieve efficient editing of CasX. Although the data indicate that efficient editing in vitro is produced using v5 and v6 gRNAs, editing was observed to be close to saturation levels using v1 gRNA in this experiment in which a single dose of gRNA was transfected. Therefore, the use of a single dose makes it challenging to clearly assess the effects of chemical modifications on editing under guide-limiting conditions. Therefore, profiles v1 and v5 were selected for further testing because v1 contains the simplest modification profile and v5 is the most heavily modified profile, which showed robust activity in in vitro applications (Tables 27 and 28). Table 28 : Editing levels measured by indel rates at the PCSK9 locus as determined by NGS and secreted PCSK9 levels as determined by ELISA in HepG2 cells co-transfected with CasX 491 mRNA and various chemically modified PCSK9 targeting gRNAs using scaffold 235 and spacer 6.7 or 6.8 Experimental conditions Insertion/ deletion rate ( editing score) Secreted PCSK9 (ng/mL) average value Standard Deviation average value Standard Deviation CasX mRNA only 0.0021 0.003 52 14 235-6.7, v1 0.83 0.0058 18 5.7 235-6.7, v2 0.79 0.0071 twenty one 4 235-6.7, v3 0.024 0.02 48 19 235-6.7, v4 0.12 0.006 34 5.5 235-6.7, v5 0.73 0.023 twenty one 9 235-6.7, v6 0.75 0.0069 twenty two 8.8 235-6.8, v1 0.85 0.017 16 4.4 235-6.8, v2 0.83 0.0028 20 1.5 235-6.8, v3 0.023 0.0027 39 2.7 235-6.8, v4 0.088 0.0086 42 10 235-6.8, v5 0.77 0.017 19 1.6 235-6.8, v6 0.78 0.014 twenty four 6.9 Non-targeted controls 0.0019 0.0026 42 12

在另一基於細胞之分析中進一步測試v1及v5概況以評定其對編輯效率之影響。LNP經調配以共囊封CasX 676 mRNA #2以及使用新設計之gRNA支架316的v1及v5型經化學修飾之 ROSA26靶向gRNA (在下面小節中將進一步描述)。「v5」概括略經修飾以應用於316支架。在接近延伸莖之5'的非鹼基配對之區域中移除三個2'OMe修飾以將修飾限制於兩個莖環區。用多種劑量之所得LNP處理Hepa1-6肝細胞且在處理後八天收集以評定 ROSA26 因座處之編輯,其量測為藉由NGS偵測之插入/缺失率(圖19)。資料表明,與藉由v1對應物達成之水平相比,用遞送v5型 ROSA26靶向gRNA的LNP進行處理在整個劑量範圍內引起明顯較低的編輯水平(圖19)。對於圖19中使用v5 gRNA所觀測到的相對活性相對於表28中觀測到的差異,可能有若干種解釋。第一及最可能的解釋為表28中所示的用於實現編輯之單次劑量過高,無法準確量測使用v5 gRNA與v1 gRNA之間的活性差異。亦有可能為在v5之316型式中之莖環模體外移除了修飾,對引導活性產生不利地影響。儘管此等修飾有可能提供比由莖環修飾賦予之活動代價更重要的穩定性益處,但鑒於迄今為止修飾水平的增加導致活性的降低,其似乎不太可能。最後一種可能的解釋為v5概況中之修飾可透過經修飾之核苷酸主鏈與LNP之可離子化脂質之間的差異性相互作用而對LNP調配物或行為產生負面影響,從而可能導致內化後更低效的gRNA囊封或更低效的gRNA釋放。 The v1 and v5 profiles were further tested in another cell-based assay to assess their impact on editing efficiency. LNPs were formulated to co-encapsulate CasX 676 mRNA #2 and v1 and v5 chemically modified ROSA26- targeting gRNAs using the newly designed gRNA scaffold 316 (described further in the following subsection). The "v5" profile was slightly modified for application to the 316 scaffold. Three 2'OMe modifications were removed in the region of non-basic pairing close to the 5' of the extended stem to limit modifications to the two stem loop regions. Hepa1-6 hepatocytes were treated with various doses of the resulting LNPs and collected eight days after treatment to assess editing at the ROSA26 locus , which was measured as the insertion/deletion rate detected by NGS (Figure 19). The data indicate that treatment with LNPs delivering the v5 version of the ROSA26 -targeting gRNA resulted in significantly lower levels of editing across the dose range compared to the levels achieved with the v1 counterpart (Figure 19). There are several possible explanations for the difference in relative activity observed using the v5 gRNA in Figure 19 compared to that observed in Table 28. The first and most likely explanation is that the single dose used to achieve editing shown in Table 28 was too high to accurately measure the difference in activity between using the v5 gRNA and the v1 gRNA. It is also possible that the stem loop motif in the 316 version of v5 is removed in vitro, adversely affecting the guided activity. Although it is possible that these modifications provide stability benefits that outweigh the activity costs conferred by the stem-loop modifications, this seems unlikely given that increasing levels of modification have so far resulted in decreased activity. A final possible explanation is that modifications in the v5 profile may negatively affect LNP formulation or behavior through differential interactions between the modified nucleotide backbone and the ionizable lipids of the LNP, potentially leading to less efficient gRNA encapsulation or less efficient gRNA release after internalization.

進一步在活體內測試共囊封CasX mRNA #2以及基於支架316的v1及v5型經化學修飾之 ROSA26靶向gRNA的LNP。圖20顯示編輯分析之結果,以 ROSA26基因座處之插入/缺失率量測的編輯百分比表示。資料表明在活體內LNP遞送之更相關測試條件下,相比於使用v1 gRNA達成之編輯,使用v5 gRNA達成之編輯降低約5倍。此等發現支持表27中對於v5 gRNA在生物化學上觀測到之裂解率降低,表明v5修飾已干擾CasX活性之一些態樣。鑒於在v5及v6概況(表27)中偵測到活性之一致降低,編輯降低可歸因於延伸莖區中之修飾。儘管gRNA之延伸莖與CasX蛋白具有最小相互作用,但在第一鹼基對處添加2'OMe基團有可能破壞CasX蛋白-gRNA相互作用,或破壞延伸莖與假結及三螺旋體區域相接處的複雜RNA摺疊。更具體而言,包括2'OMe基團可能不利地影響gRNA延伸莖之基礎鹼基對及CasX蛋白之殘基R49、K50及K51。最後,CasX之結構研究表明有效DNA裂解需要gRNA之可撓性(Liu J,等人,CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature566:218-223 (2019); Tsuchida CA,等人,Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell82(6): 1199-1209 (2022))。因此,在整個延伸莖中添加2'OMe基團可能會加強更剛性的A-形式螺旋結構,且阻止有效裂解所需的gRNA可撓性。此外,可能的係,v5及v6概況中之支架莖中的額外修飾可能對活性不利,但鑒於v5與v6概況之間的比較有限,因此當前並不清楚此情況。 LNPs co-encapsulating CasX mRNA #2 and chemically modified ROSA26- targeting gRNAs of type v1 and v5 based on scaffold 316 were further tested in vivo. Figure 20 shows the results of the editing analysis, expressed as the percentage of editing measured by the insertion/deletion rate at the ROSA26 locus. The data indicate that under more relevant testing conditions of LNP delivery in vivo, edits achieved using v5 gRNA were reduced by approximately 5-fold compared to edits achieved using v1 gRNA. These findings support the reduced cleavage rate observed biochemically for v5 gRNA in Table 27, indicating that v5 modification has interfered with some aspects of CasX activity. Given the consistent reduction in activity detected in v5 and v6 profiles (Table 27), the reduction in editing can be attributed to modifications in the extended stem region. Although the extension stem of the gRNA has minimal interaction with the CasX protein, the addition of a 2'OMe group at the first base pair has the potential to disrupt the CasX protein-gRNA interaction or the complex RNA folding where the extension stem meets the pseudoknot and triple helix regions. More specifically, the inclusion of a 2'OMe group may adversely affect the base pairing of the gRNA extension stem and residues R49, K50, and K51 of the CasX protein. Finally, structural studies of CasX suggest that gRNA flexibility is required for efficient DNA cleavage (Liu J, et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218-223 (2019); Tsuchida CA, et al., Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell 82(6): 1199-1209 (2022)). Therefore, the addition of 2'OMe groups throughout the extension stem may enforce a more rigid A-form helical structure and prevent gRNA flexibility required for efficient cleavage. In addition, it is possible that additional modifications in the scaffold stem in the v5 and v6 profiles may be detrimental to activity, but given the limited comparison between the v5 and v6 profiles, this is not currently clear.

設計額外修飾概況,旨在增強gRNA穩定性同時減輕對RNP裂解活性之不良作用。使用最近公開之浮黴菌門之野生型CasX結構(PDB編碼7WAY、7WAZ、7WB0、7WB1),其與所評定之經工程改造之CasX變異體具有更高同源性,設計gRNA之額外化學修飾概況且繪示於圖12中。此等概況示出在新設計之gRNA支架變異體中添加2'OMe基團及硫代磷酸酯鍵,其描述於隨後小節中。此等新gRNA化學修飾概況係基於在表28中觀測到之使用v5 gRNA顯示足夠編輯活性的初始資料設計的,該資料表明對延伸莖及支架莖區之修飾不會對活性產生不利影響。v7概況經設計以在整個gRNA結構中可能可修飾之殘基處包括2'OMe,但鑒於之前在v3概況中觀測到添加此類修飾會產生顯著負面影響,排除三螺旋體區域。亦設計更保守性概況v8及v9,如圖12中所示。對於v8構築體,移除假結及三螺旋體環區之修飾,但保留支架莖、延伸莖及其側接單股區以及5'及3'端的修飾。對於v9概況,移除側接莖環之單股區的修飾,但保留莖環本身以及假結、三螺旋環以及5'及3'端的修飾。在 PCSK9基因座處對新設計之gRNA支架變異體316之額外化學修飾概況v7、v8及v9 (下文將進一步討論)進行活體內評定。活體內編輯分析之結果示於圖21中,其定量為在 PCSK9基因座處以NGS偵測到之插入/缺失率量測的編輯百分比。儘管總體上偵測到低編輯效率,但資料表明,與使用v1 gRNA所達成的插入/缺失率相比,使用v7、v8及v9 gRNA在 PCSK9基因座處產生更低的編輯水平(圖21)。不希望受理論束縛,鑒於圖19至圖20中之發現顯示利用v5 gRNA達成之編輯活性較低,故v7、v8及v9概況類似地展現出相對較低的編輯活性亦不足為奇。如圖12中所示出,v7、v8及v9概況包括整個延伸莖區之修飾,該等修飾可能干擾RNP活性。 使用活體外裂解分析比較 gRNA 支架變異體 174 316 Design of additional modification profiles aimed at enhancing gRNA stability while mitigating adverse effects on RNP cleavage activity. Using the recently published wild-type CasX structure of Planctomycetes (PDB codes 7WAY, 7WAZ, 7WB0, 7WB1), which has higher homology to the engineered CasX variants evaluated, additional chemical modification profiles of gRNAs were designed and are shown in Figure 12. These profiles show the addition of 2'OMe groups and phosphorothioate bonds in the newly designed gRNA scaffold variants, which are described in the following subsections. These new gRNA chemical modification profiles were designed based on the initial data observed in Table 28 using the v5 gRNA that showed sufficient editing activity, which indicated that modifications to the extension stem and scaffold stem regions did not adversely affect activity. The v7 profile was designed to include 2'OMe at potentially modifiable residues throughout the gRNA structure, but the triple helical region was excluded in view of the significant negative effects previously observed in the v3 profile on the addition of such modifications. The more conservative profiles v8 and v9 were also designed, as shown in Figure 12. For the v8 construct, modifications to the pseudoknot and triple helical loop regions were removed, but modifications to the scaffold stem, extension stem and its flanking single-stranded regions, as well as the 5' and 3' ends were retained. For the v9 profile, modifications of the single-stranded regions flanking the stem loop were removed, but modifications of the stem loop itself as well as the pseudoknot, triple helix loop, and 5' and 3' ends were retained. Additional chemical modification profiles v7, v8, and v9 (discussed further below) of the newly designed gRNA scaffold variant 316 were evaluated in vivo at the PCSK9 locus. The results of the in vivo editing analysis are shown in FIG21 , which are quantitatively measured as the percentage of editing measured by the insertion/deletion rate detected by NGS at the PCSK9 locus. Although low editing efficiencies were detected overall, the data showed that the use of v7, v8, and v9 gRNAs produced lower editing levels at the PCSK9 locus compared to the insertion/deletion rate achieved using v1 gRNA ( FIG21 ). Without wishing to be bound by theory, it is not surprising that the v7, v8, and v9 profiles similarly exhibit relatively low editing activity, given the findings in Figures 19-20 showing low editing activity achieved with the v5 gRNA. As shown in Figure 12, the v7, v8, and v9 profiles include modifications throughout the extended stem region that may interfere with RNP activity. Comparison of gRNA scaffold variants 174 and 316 using in vitro cleavage assays :

先前工作已確定,在多種遞送條件下,gRNA支架變異體235為表現最好的支架變異體。然而,相對於包括支架174 (當使用20 bp間隔子時,為109 bp)之gRNA,支架235之長度較長(當使用20 bp間隔子時,為119 bp),增加固相RNA合成之困難,此將導致製造成本增加、純度及產率降低以及合成失敗率較高。為解決此等問題但同時保留使用支架變異體235之經改良活性,主要在支架235序列之基礎上設計嵌合gRNA支架,但將支架235之延伸莖環置換為支架變異體174的較短延長莖環(圖7至圖9)。所得嵌合支架被命名為支架316,其與支架174及靶向 PCSK9之間隔子6.7及6.8以及靶向 B2M之間隔子7.9平行合成,具有v1化學修飾概況,在所有gRNA的前三個及後三個核苷酸上均有2'OMe及硫代磷酸酯鍵(參見表23)。之所以選擇支架174而非支架235作為比較物,此係因為支架174係先前表徵最佳的支架,其長度與變異體316相同。 Previous work has identified gRNA scaffold variant 235 as the best performing scaffold variant under a variety of delivery conditions. However, the longer length of scaffold 235 (119 bp when using a 20 bp spacer) relative to gRNAs including scaffold 174 (109 bp when using a 20 bp spacer) increases the difficulty of solid-phase RNA synthesis, which will lead to increased manufacturing costs, reduced purity and yield, and higher synthesis failure rates. To address these issues while retaining the improved activity of using scaffold variant 235, a chimeric gRNA scaffold was designed based primarily on the scaffold 235 sequence, but the extended stem loop of scaffold 235 was replaced with the shorter extended stem loop of scaffold variant 174 (Figures 7 to 9). The resulting chimeric scaffold was named scaffold 316, which was synthesized in parallel with scaffold 174 and spacers 6.7 and 6.8 targeting PCSK9 and spacer 7.9 targeting B2M , and had a v1 chemical modification profile with 2'OMe and phosphorothioate bonds on the first and last three nucleotides of all gRNAs (see Table 23). Scaffold 174 was chosen as a comparator rather than scaffold 235 because it was the best characterized scaffold previously and had the same length as variant 316.

評定具有支架174及316以及間隔子6.7及6.8之gRNA的活體外裂解活性。在RNP相對於匹配dsDNA目標過量20倍之情況下進行裂解分析。對全部四種引導物之裂解率進行定量,且結果顯示於表29中。資料表明,在間隔子6.7之情形下,使用支架174或316產生類似裂解率,其中支架316引起之裂解略快於支架174所達成之裂解。在間隔子6.8之情形下,裂解活性差異更明顯:使用支架316之CasX RNP對DNA的裂解幾乎係使用支架174之CasX RNP的兩倍(表29)。The in vitro cleavage activity of gRNAs with scaffolds 174 and 316 and spacers 6.7 and 6.8 was assessed. Cleavage assays were performed with a 20-fold excess of RNP relative to the matched dsDNA target. The cleavage rates of all four guides were quantified and the results are shown in Table 29. The data show that in the case of spacer 6.7, the use of scaffolds 174 or 316 resulted in similar cleavage rates, with cleavage caused by scaffold 316 being slightly faster than that achieved by scaffold 174. In the case of spacer 6.8, the difference in cleavage activity was more pronounced: CasX RNPs using scaffold 316 cleaved DNA almost twice as much as CasX RNPs using scaffold 174 (Table 29).

亦用等莫耳量之RNP及DNA目標歷經較長時間過程進行分析,以評定預期RNP中具有裂解活性的分率。因為CasX RNP在所測試之時間標度內基本上單次周轉,且預期所用濃度實質上高於DNA-結合反應之K D,所以裂解DNA之量應近似活性RNP之量。對於間隔子6.7或6.8,併入支架316之CasX RNP之活性分率比使用支架174之CasX RNP之活性分率高25至30% (表29)。此等資料表明,使用支架316之更高分率gRNA經適當摺疊以與CasX蛋白締合,或使用支架316之gRNA能夠與CasX蛋白更大程度地締合。相比於支架174,支架316攜帶突變,預期使正確gRNA摺疊所需的假結及三螺旋體結構穩定。特定言之,與gRNA結構中其他地方發現之簡單髮夾相比,此等模體更可能發生錯誤摺疊,因此該等模體的穩定性增加可導致摺疊為活性構形之gRNA的分率略高。 29 對具有含有支架變異體 174 316 以及型式 1 (v1) 化學修飾概況之 gRNA CasX RNP 所評定之裂解活性的參數。 gRNA(支架變異體-間隔子) K 裂解(min -1) 分率能力 174-6.7, v1 0.236 0.194 174-6.8, v1 0.142 0.165 316-6.7, v1 0.264 0.244 316-6.8, v1 0.272 0.213 基於細胞之分析中gRNA支架變異體174及316之比較: The analysis was also performed over a longer time course with equimolar amounts of RNP and DNA target to assess the fraction of RNPs expected to have cleavage activity. Because CasX RNPs are essentially single-turnover in the time scale tested, and the concentrations used are expected to be substantially higher than the KD of the DNA-binding reaction, the amount of cleaved DNA should approximate the amount of active RNP. For spacers 6.7 or 6.8, the active fraction of CasX RNPs incorporating scaffold 316 was 25 to 30% higher than the active fraction of CasX RNPs using scaffold 174 (Table 29). These data suggest that a higher fraction of gRNAs using scaffold 316 are properly folded to bind to the CasX protein, or that gRNAs using scaffold 316 are able to bind to the CasX protein to a greater extent. Compared to scaffold 174, scaffold 316 carries mutations that are expected to stabilize the pseudoknot and triple helix structures required for correct gRNA folding. Specifically, these motifs are more likely to fold incorrectly than simple hairpins found elsewhere in the gRNA structure, so the increased stability of these motifs may result in a slightly higher fraction of gRNAs that fold into the active conformation. Table 29 : Parameters of cleavage activity assessed for CasX RNPs with gRNAs containing scaffold variants 174 or 316 and version 1 (v1) chemical modification profiles . gRNA (Scaffold variant-spacer) K cracking (min -1 ) Fraction capacity 174-6.7, v1 0.236 0.194 174-6.8, v1 0.142 0.165 316-6.7, v1 0.264 0.244 316-6.8, v1 0.272 0.213 Comparison of gRNA scaffold variants 174 and 316 in cell-based assays:

在基於細胞之分析中使用與變異體316相比之gRNA支架變異體174進行編輯評定。將CasX 491 mRNA及使用間隔子6.7及6.8之 PCSK9靶向gRNA的型式1 (v1)經脂質體轉染至HepG2細胞中。轉染後28小時收集經處理細胞以藉由NGS分析PCSK9基因座處之編輯水平及藉由ELISA分析分泌之PCSK9水平,且資料呈現於圖15中。資料表明,與使用 B2M靶向gRNA的非靶向對照相比,使用 PCSK9靶向gRNA中之任一者均在PCSK9基因座處產生高效編輯,且顯著減少PCSK9分泌。結果亦顯示,支架316之使用在 PCSK9基因座處產生的編輯比使用支架174所觀測到的編輯更有效(與支架174相比,使用支架316達成之編輯率提高約10個百分比點)。此發現進一步由ELISA結果支持,使得與使用支架174所達成的分泌相比,使用支架316能更有效地減少PCSK9分泌。 Editing was assessed using gRNA scaffold variant 174 compared to variant 316 in a cell-based assay. CasX 491 mRNA and version 1 (v1) of PCSK9 targeting gRNA using spacers 6.7 and 6.8 were transfected into HepG2 cells via liposomes. Treated cells were collected 28 hours after transfection to analyze editing levels at the PCSK9 locus by NGS and secreted PCSK9 levels by ELISA, and the data are presented in FIG15 . The data show that the use of any of the PCSK9 targeting gRNAs resulted in efficient editing at the PCSK9 locus and significantly reduced PCSK9 secretion compared to the non-targeting control using the B2M targeting gRNA. The results also showed that the use of scaffold 316 produced more efficient editing at the PCSK9 locus than the editing observed using scaffold 174 (approximately 10 percentage point increase in editing rate achieved using scaffold 316 compared to scaffold 174). This finding was further supported by the ELISA results, such that the use of scaffold 316 was more efficient in reducing PCSK9 secretion than the secretion achieved using scaffold 174.

亦在編輯分析中評定支架變異體174及316,其中LNP經調配以共同囊封CasX 491 mRNA及含有支架變異體之 B2M靶向gRNA。用各種劑量之所得LNP處理HepG2細胞,且在處理後七天收集,以評定B2M基因座處之編輯(藉由NGS偵測到之插入/缺失率量測(圖17))及B2M依賴性HLA複合物表面呈現的損失(藉由流動式細胞測量術所偵測(圖18))。來自兩種分析之結果表明,與以各劑量之遞送使用支架174之gRNA的LNP相比,用遞送使用支架316之 B2M靶向gRNA的LNP處理在B2M基因座處引起較高的編輯效力(圖17及圖18)。具體言之,在250 ng之最高劑量下,使用支架316產生之編輯水平比使用支架174獲得之水平高接近兩倍。與自活體外裂解分析觀測到的活性之相對適度差異相比,在使用支架316與使用支架174時編輯功效之此實質性增加可歸因於LNP調配期間gRNA結構及摺疊的不穩定。在LNP調配期間低pH條件及陽離子型脂質之締合會不利地影響gRNA結構之部分且引起展開。因此,gRNA有必要在遞送後在細胞質中快速再摺疊,以便與CasX蛋白結合形成RNP且避免RNA酶降解。與支架174相比,支架316中增加穩定性的突變可對支持gRNA在LNP遞送之後在細胞質中之適當再摺疊中提供實質性益處,而在生物化學實驗之前針對gRNA進行有意摺疊方案可能降低此等突變之影響。 實例 4 設計且評定密碼子最佳化之 CasX mRNA 與靶向 gRNA 一起活體外遞送時的編輯效率 Scaffold variants 174 and 316 were also assessed in an editing analysis, where LNPs were formulated to co-encapsulate CasX 491 mRNA and a B2M- targeting gRNA containing the scaffold variants. HepG2 cells were treated with various doses of the resulting LNPs and harvested seven days after treatment to assess editing at the B2M locus (measured by indel rates detected by NGS ( FIG. 17 )) and loss of B2M-dependent HLA complex surface presentation (detected by flow cytometry ( FIG. 18 )). Results from both analyses showed that treatment with LNPs delivering B2M -targeting gRNAs using scaffold 316 resulted in higher editing efficacy at the B2M locus than LNPs delivering gRNAs using scaffold 174 at all doses ( FIGS. 17 and 18 ). Specifically, at the highest dose of 250 ng, the level of editing produced using scaffold 316 was nearly two-fold higher than that obtained using scaffold 174. This substantial increase in editing efficacy when using scaffold 316 versus scaffold 174 can be attributed to the instability of gRNA structure and folding during LNP formulation, compared to the relative modest differences in activity observed from in vitro cleavage assays. Low pH conditions and the incorporation of cationic lipids during LNP formulation can adversely affect portions of the gRNA structure and cause unfolding. Therefore, it is necessary for the gRNA to rapidly refold in the cytoplasm after delivery in order to bind to the CasX protein to form RNPs and avoid RNase degradation. Mutations in scaffold 316 that increase stability compared to scaffold 174 may provide substantial benefits in supporting proper refolding of the gRNA in the cytoplasm after LNP delivery, while intentional folding protocols for the gRNA prior to biochemical experiments may reduce the impact of these mutations. Example 4 : Design and assessment of editing efficiency of codon-optimized CasX mRNA when delivered in vitro with targeting gRNA

mRNA序列及相關修飾可對基於mRNA之遞送的功效具有顯著影響。經修飾之核苷酸,包括編碼5'帽結構之彼等核苷酸,為mRNA穩定性、可轉譯性及免疫原性之重要決定因素。此處,對於所有設計及測試之CasX mRNA均使用「帽1」結構,其包括5' m7G,以5'-5'三磷酸酯鍵連接至一個帶有2'OMe修飾的起始核苷酸。此結構與缺少2'OMe修飾之「帽0」結構類似,此結構促進高效轉譯,且相比於「帽0」結構具有降低的免疫原性。此外,預期使用經修飾核鹼基會降低mRNA之免疫原性。此處,N1-甲基-假尿苷用於取代所有活體外轉錄反應之尿苷核糖苷,因為公開之研究已表明,N1-甲基-假尿苷實質上增強mRNA效能且降低mRNA免疫原性。預期修飾會潛在地藉由避免活化RIG-I (其為雙股RNA之主要胞溶質感測器,係活體外轉錄mRNA之常見摻雜物)來使活體內免疫原性降低且提高轉譯速率。The mRNA sequence and associated modifications can have a significant impact on the efficacy of mRNA-based delivery. Modified nucleotides, including those encoding the 5' cap structure, are important determinants of mRNA stability, translatability, and immunogenicity. Here, a "cap 1" structure was used for all designed and tested CasX mRNAs, which includes 5' m7G, linked to a start nucleotide with a 2'OMe modification via a 5'-5' triphosphate bond. This structure is similar to the "cap 0" structure lacking the 2'OMe modification, which promotes efficient translation and has reduced immunogenicity compared to the "cap 0" structure. In addition, the use of modified nucleobases is expected to reduce the immunogenicity of the mRNA. Here, N1-methyl-pseudouridine was used to replace the uridine riboside for all in vitro transcription reactions because published studies have shown that N1-methyl-pseudouridine substantially enhances mRNA potency and reduces mRNA immunogenicity. The modification is expected to potentially reduce in vivo immunogenicity and increase translation rate by avoiding activation of RIG-I, a major cytosolic sensor of double-stranded RNA, a common contaminant of in vitro transcribed mRNA.

亦將研聚腺苷酸尾之最佳化。聚腺苷酸尾對於轉譯及mRNA穩定性為必需的,其中較長尾部與較長mRNA半衰期相關。聚腺苷酸化可用聚腺苷酸聚合酶以轉錄方式進行,但此產生可變尾部長度且向mRNA生產過程添加步驟。由於具有含有120A尾部模板之質體的構築體在大腸桿菌中繁殖時不穩定,常常導致殖株的尾部長度顯著降低,因此使用含有80A尾部模板的質體進行mRNA生產,且以IIS型限制位點終止,以便進行徑流轉錄。亦選殖在兩條60A伸長段之間具有SphI限制位點的替代質體,因為已公開的研究證明類似構築體在大腸桿菌次選殖及擴增期間更穩定,且在哺乳動物細胞中產生具有等效活性的mRNA。將使用活體外編輯分析,在整個CasX mRNA及gRNA劑量範圍內比較此等替代型式的活性,以測定對編輯活性之後續影響。本文所描述之聚腺苷酸尾之序列列於表30中。Optimization of the poly(A) tail will also be studied. The poly(A) tail is essential for translation and mRNA stability, with longer tails being associated with longer mRNA half-life. Polyadenylation can be performed transcriptionally with poly(A) polymerase, but this produces variable tail lengths and adds steps to the mRNA production process. Since constructs with plasmids containing 120A tail templates are unstable when propagated in E. coli, often resulting in strains with significantly reduced tail lengths, mRNA production is performed using plasmids containing 80A tail templates and terminated with a type IIS restriction site for flow transcription. An alternative plasmid with a SphI restriction site between the two 60A stretches was also cloned, as published studies have demonstrated that similar constructs are more stable during subcloning and expansion in E. coli and produce mRNA with equivalent activity in mammalian cells. The activity of these alternative forms will be compared across a range of CasX mRNA and gRNA doses using in vitro editing assays to determine the subsequent effects on editing activity. The sequences of the poly(A) tails described herein are listed in Table 30.

編碼5'及3' UTR之序列以及用於CasX蛋白編碼序列之密碼子有助於轉譯之有效性。UTR係基於先前表徵為具有高mRNA穩定性之基因(例如編碼ɑ-球蛋白、β-球蛋白的基因),以及預期或先前證明在肝臟中尤其充分表現的基因(亦即編碼下列蛋白的基因:白蛋白、補體3及細胞色素P450 2E1)而選自標註的人類基因轉錄物。來自此等各種基因之5'及3' UTR之序列列於表30中。對於3' UTR,亦測試個別3' UTR之串接。將此等構築體選殖至含有T7啟動子、CasX變異體515或676及聚腺苷酸尾之質體中。為分離個別5'及3' UTR之影響,將各UTR分別選殖入含有3'或5' ɑ-球蛋白UTR的構築體中。進行IVT且將其藉由結合至聚(dT)珠粒進行純化,以捕捉全長轉錄物。所得mRNA最初將藉由使用一範圍內的劑量與 B2M靶向gRNA共轉染至HepG2細胞中來評定。將藉由HLA-免疫染色及流動式細胞測量術測定編輯效率。轉染後六天,收集細胞,用於經由B2M依賴性HLA蛋白之免疫染色,接著使用Attune TMNxT流式細胞儀進行流動式細胞測量術來分析B2M蛋白表現。效能最佳之個別UTR將組合成各種組態,調配成LNP,且在初代人類肝細胞及小鼠中測試。 The sequences encoding the 5' and 3' UTRs and the codons used for the CasX protein coding sequence contribute to the efficiency of translation. The UTRs were selected from annotated human gene transcripts based on genes previously characterized as having high mRNA stability (e.g., genes encoding α-globin, β-globin), and genes expected or previously shown to be particularly well expressed in the liver (i.e., genes encoding the following proteins: albumin, complement 3, and cytochrome P450 2E1). The sequences of the 5' and 3' UTRs from these various genes are listed in Table 30. For the 3' UTR, the concatenation of individual 3' UTRs was also tested. These constructs were cloned into plasmids containing the T7 promoter, CasX variants 515 or 676, and a poly(A) tail. To separate the effects of individual 5' and 3' UTRs, each UTR was cloned into a construct containing either the 3' or 5' α-globin UTR. IVT was performed and purified by binding to poly(dT) beads to capture the full-length transcript. The resulting mRNA will initially be assessed by co-transfection into HepG2 cells with B2M -targeting gRNA using a range of doses. Editing efficiency will be determined by HLA-immunostaining and flow cytometry. Six days after transfection, cells were harvested for immunostaining of B2M-dependent HLA proteins followed by flow cytometry analysis of B2M protein expression using an Attune NxT flow cytometer. The best performing individual UTRs will be combined into various configurations, formulated into LNPs, and tested in primary human hepatocytes and mice.

亦正在探索替代性密碼子最佳化。除用於其他遞送模態之CasX密碼子最佳化以外,藉由基於核糖體蛋白密碼子的使用來構建密碼子使用表且重新平衡CasX密碼子使用情況以進行匹配,來設計新型式。除了潛在改良轉譯速率之外,此亦有效地引起尿嘧啶鹼基之耗竭,從而可降低免疫原性。此密碼子最佳化亦用於產生mRNA。已利用各種可用的密碼子最佳化工具設計額外的密碼子使用,視需要調節設定以達成一範圍內的GC含量水平。將在用於測試上文所描述之UTR的類似實驗設計下測試此等密碼子最佳化,且前導密碼子最佳化之CasX候選物將與前導UTR候選物組合以產生新CasX前導物以供進一步驗證。 30 用於產生及最佳化 CasX mRNA 之指定元件之編碼 DNA 序列的清單 描述 編碼序列 SEQ ID NO: 聚腺苷酸尾 A 80 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 A 120 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3198 A 60SphIA 60 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCATGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3199 5' UTR ɑ-球蛋白 ACTCTTCTGGTCCCCACAGACTCAGAGAGAACCC 3200 β-球蛋白 ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACA 3201 白蛋白 CTAGCTTTTCTCTTCTGTCAACCCCACACGCCTTT 3202 細胞色素 P450 2E1 (CYP2E1) CTCCCGGGCTGGCAGCAGGGCCCCAGC 3203 補體3 (C3) ACTCCTCCCCATCCTCTCCCTCTGTCCCTCTGTCCCTCTGACCCTGCACTGTCCC 3204 3' UTR ɑ-球蛋白 GCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3189 白蛋白 CATCACATTTAAAAGCATCTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAAAAGCTTATTCATCTGTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAATCTAATAGAGTGGTACAGCACTGTTATTTTTCAAAGATGTGTTGCTATCCTGAAAATTCTGTAGGTTCTGTGGAAGTTCCAGTGTTCTCTCTTATTCCACTTCGGTAGAGGATTTCTAGTTTCTTGTGGGCTAATTAAATAAATCATTAATACTCTTCTAAGTTATGGATTATAAACATTCAAAATAATATTTTGACATTATGATAATTCTGAATAAAAGAACAAAAACCA 3205 白蛋白(截短) GCATCACATTTAAAAGCATCTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAATAGCTTATTCATCTCTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAACCTAGATCT 3206 β-球蛋白 GCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAA 3207 ɑ-球蛋白 + β-球蛋白 GCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAA 3208 β-球蛋白 + ɑ-球蛋白 GCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3209 實例 5 LTRP mRNA 及靶向 gRNA 經由 LNP 進行 LTRP 遞送以達成活體外目標基因座之抑制 Alternative codon optimizations are also being explored. In addition to CasX codon optimization for other delivery modalities, novel modalities are being designed by constructing a codon usage table based on the usage of ribosomal protein codons and rebalancing the CasX codon usage to match. In addition to potentially improving translation rates, this also effectively causes depletion of uracil bases, which can reduce immunogenicity. This codon optimization is also used to generate mRNA. Additional codon usage has been designed using various available codon optimization tools, adjusting the settings as necessary to achieve a range of GC content levels. These codon optimizations will be tested under similar experimental designs used to test the UTRs described above, and the lead codon optimized CasX candidates will be combined with the lead UTR candidates to generate new CasX leaders for further validation. Table 30 : List of DNA sequences encoding specified elements for the generation and optimization of CasX mRNA describe Coding sequence SEQ ID NO: Poly(A) tail A 80 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3057 A 120 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3198 A 60 SphIA 60 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCATGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3199 5' UTR α-globulin ACTCTTCTGGTCCCCACAGACTCAGAGAGAACCC 3200 β-Globulin ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACA 3201 albumin CTAGCTTTTCTCTTCTGTCAACCCCACACGCCTTTT 3202 Cytochrome P450 2E1 (CYP2E1) CTCCCGGGCTGGCAGCAGGGCCCCAGC 3203 Complement 3 (C3) ACTCCTCCCCATCCTCTCCCTCTGTCCCTCTGTCCCTCTGACCCTGCACTGTCCC 3204 3' UTR α-globulin GCTGGAGCCTCGGTGGCCATGCTTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3189 albumin CATCACATTTAAAAGCATCTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAAAAGCTTATTCATCTGTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAATCTAATAGAGTGGTACAGCACTGT TATTTTTCAAAGATGTGTTGCTATCCTGAAAATTCTGTAGGTTCTGTGGAAGTTCCAGTGTTCTCTCTTATTCCACTTCGGTAGAGGATTTCTAGTTTCTTGTGGGCTAATTAAATAAATCATTAATACTCTTCTAAGTTATGGATTATAAAACATTCAAAATAATATTTTGACATTATGATAATTCTGAATAAAAGAACAAAAACCA 3205 Albumin (truncated) GCATCACATTTAAAAGCATCTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAATAGCTTATTCATCTTCTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAACCTAGATCT 3206 β-Globulin GCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAA 3207 α-globulin + β-globulin GCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAGCTCTCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAA 3208 β-globulin + α-globulin GCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAAGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCA 3209 Example 5 : LTRP delivery of LTRP mRNA and targeting gRNA via LNP to achieve inhibition of target loci in vitro

進行實驗以評定在基於細胞之分析中遞送囊封LTRP mRNA及靶向gRNA之脂質奈米粒子(LNP)是否會誘導目標內源性基因座之持久抑制。 材料及方法: LTRP mRNA之產生: Experiments were performed to assess whether lipid nanoparticles (LNPs) delivering encapsulated LTRP mRNA and targeting gRNA in cell-based assays would induce persistent repression of the target endogenous locus. Materials and Methods: Generation of LTRP mRNA:

編碼LTRP分子之mRNA由IVT產生,如先前實例1中所描述。根據實例1中簡要描述的,對編碼LTRP分子之序列進行密碼子最佳化。編碼LTRP mRNA之DNA序列的實例列於表12及表31中,其中相應mRNA序列列於表13及表32中。mRNA encoding LTRP molecules was produced by IVT as previously described in Example 1. Sequences encoding LTRP molecules were codon optimized as briefly described in Example 1. Examples of DNA sequences encoding LTRP mRNAs are listed in Tables 12 and 31, with corresponding mRNA sequences listed in Tables 13 and 32.

如上文在實例2中所描述來合成靶向gRNA (例如靶向內源性 B2M基因座)。 LNP調配物: Targeting gRNA (e.g., targeting the endogenous B2M locus) was synthesized as described above in Example 2. LNP formulation:

為了調配LNP,將相等質量比之XR或LTRP mRNA及gRNA稀釋於PNI調配緩衝液(pH 4.0)中。將GenVoy-ILM TM以1:1稀釋於無水乙醇中。使用預定N/P比產生mRNA/gRNA共調配物。使RNA及脂質在PNI Ignite™ Benchtop系統上以預定流動速率比穿過PNI層流濾筒。調配後,將LNP於PBS (pH 7.4)中稀釋,以降低乙醇濃度且增加pH,由此增加粒子之穩定性。藉由在4℃使用10k Slide-A-Lyzer™滲析卡匣(Thermo Scientific™)隔夜滲析至PBS (pH 7.4)中來達成mRNA/sgRNA-LNP之緩衝液交換。滲析之後,使用100 kDa Amicon®-Ultra離心過濾器(Millipore)將mRNA/gRNA-LNP濃縮至>0.5 mg/mL,且接著過濾滅菌。在Stunner (Unchained Labs)上分析所調配LNP以測定其直徑及多分散性指數(PDI)。藉由RiboGreen™分析,使用Invitrogen之Quant-iT™ RiboGreen™ RNA分析套組測定囊封效率及RNA濃度。 將囊封LTRP mRNA及靶向gRNA之LNP遞送至小鼠肝臟Hepa1-6細胞中: To formulate LNPs, equal mass ratios of XR or LTRP mRNA and gRNA were diluted in PNI formulation buffer (pH 4.0). GenVoy-ILM was diluted 1:1 in absolute ethanol. mRNA/gRNA co-formulations were generated using a predetermined N/P ratio. RNA and lipids were passed through a PNI laminar flow filter cartridge on a PNI Ignite™ Benchtop system at a predetermined flow rate ratio. After formulation, LNPs were diluted in PBS (pH 7.4) to reduce ethanol concentration and increase pH, thereby increasing particle stability. Buffer exchange of mRNA/sgRNA-LNPs was achieved by overnight dialysis into PBS (pH 7.4) at 4°C using a 10k Slide-A-Lyzer™ Dialysis Cassette (Thermo Scientific™). After dialysis, mRNA/gRNA-LNPs were concentrated to >0.5 mg/mL using a 100 kDa Amicon®-Ultra centrifugal filter (Millipore) and then filter-sterilized. Formulated LNPs were analyzed on a Stunner (Unchained Labs) to determine their diameter and polydispersity index (PDI). Encapsulation efficiency and RNA concentration were determined by RiboGreen™ analysis using Invitrogen's Quant-iT™ RiboGreen™ RNA Assay Kit. LNPs encapsulating LTRP mRNA and targeting gRNA were delivered to mouse liver Hepa1-6 cells:

將Hepa1-6細胞接種於96孔盤中。次日,用不同濃度之LNP處理所接種之細胞,LNP係以250 ng起始,於六次2倍連續稀釋中製備。調配此等LNP以囊封LTRP mRNA及 B2M靶向gRNA。在LNP處理之後24小時更換培養基,並培養細胞,隨後在多個時間點(例如在處理後7天、14天、21天、28天及56天)收集細胞進行gDNA提取以藉由NGS對 B2M基因座進行編輯評定且進行亞硫酸氫鹽定序以評定 VEGFA基因座處之脫靶甲基化。 亞硫酸氫鹽定序以評定藉由目標基因座處之脫靶甲基化水平量測的LTRP特異性: Hepa1-6 cells were seeded in 96-well plates. The next day, the seeded cells were treated with different concentrations of LNPs, which were prepared in six 2-fold serial dilutions starting at 250 ng. These LNPs were formulated to encapsulate LTRP mRNA and B2M targeting gRNA. The medium was changed 24 hours after LNP treatment, and the cells were cultured and then collected at multiple time points (e.g., 7 days, 14 days, 21 days, 28 days, and 56 days after treatment) for gDNA extraction for editing assessment of the B2M locus by NGS and bisulfite sequencing to assess off-target methylation at the VEGFA locus. Bisulfite sequencing to assess LTRP specificity as measured by off-target methylation levels at the target locus:

為測定B2M基因座處之脫靶甲基化水平,按照製造商說明書使用Zymo Quick-DNA Miniprep Plus套組自所收集細胞提取gDNA。隨後按照製造之方案使用EZ DNA Methylation TM套組(Zymo)對所提取gDNA進行亞硫酸氫鹽轉化,將所有非甲基化胞嘧啶轉化成尿嘧啶。隨後使用次世代定序(NGS)對所得的經亞硫酸氫鹽處理之DNA進行定序,以測定 B2MVEGFA基因座處之脫靶甲基化水平。 NGS處理及分析: To determine the off-target methylation level at the B2M locus, gDNA was extracted from the collected cells using the Zymo Quick-DNA Miniprep Plus kit according to the manufacturer's instructions. The extracted gDNA was then bisulfite converted using the EZ DNA Methylation TM kit (Zymo) according to the manufacturer's protocol to convert all non-methylated cytosines to uracil. The resulting bisulfite-treated DNA was then sequenced using next-generation sequencing (NGS) to determine the off-target methylation level at the B2M and VEGFA loci. NGS processing and analysis:

利用對所關注的經亞硫酸氫鹽轉化之目標位置(人類 B2MVEGFA基因座)具特異性的一組引子,經由PCR自100 ng經亞硫酸氫鹽處理之DNA擴增目標擴增子。此等基因特異性引子在5′末端含有額外序列以引入Illumina TM銜接子。利用Cytiva Sera-Mag Select DNA淨化套組來純化經擴增DNA產物。使用Fragment Analyzer DNA分析套組(Agilent,dsDNA 35-1500 bp)評定擴增子之品質及定量。根據製造商說明書,在Illumina TMMiseq TM上對擴增子進行定序。使用Bismark亞硫酸氫鹽讀段定位程式(Bisulfite Read Mapper)及甲基化調用程式(Methylation caller)處理定序之原始fastq檔案。亞硫酸氫鹽處理之DNA之PCR擴增將所有尿嘧啶核苷酸轉化成胸腺嘧啶,且PCR產物之定序將決定胞嘧啶至胸腺嘧啶轉化速率,呈由各LTRP分子介導的 B2MVEGFA基因座處之潛在脫靶甲基化水平的讀數形式。 Target amplicon was amplified by PCR from 100 ng of bisulfite treated DNA using a set of primers specific for the bisulfite converted target loci of interest (human B2M and VEGFA loci). These gene specific primers contain additional sequence at the 5′ end to introduce the Illumina adapter. Amplified DNA products were purified using the Cytiva Sera-Mag Select DNA Cleanup Kit. Amplicon quality and quantification were assessed using the Fragment Analyzer DNA Analysis Kit (Agilent, dsDNA 35-1500 bp). Amplicon was sequenced on an Illumina Miseq according to the manufacturer's instructions. The sequenced raw fastq files were processed using the Bismark Bisulfite Read Mapper and Methylation caller. PCR amplification of bisulfite treated DNA will convert all uracil nucleotides to thymine, and sequencing of the PCR products will determine the cytosine to thymine conversion rate as a readout of potential off-target methylation levels at the B2M and VEGFA loci mediated by each LTRP molecule.

預期此實驗的結果顯示,LTRP mRNA及靶向gRNA可共同囊封於待遞送至目標細胞之LNP內以誘導目標內源性基因座之可遺傳緘默化。 31 此實例之實驗 #2 中評定之 LTRP1-ZIM3 LTRP5-ZIM3 mRNA 分子之編碼序列 * LTRP ID 組分 DNA 序列 SEQ ID NO: LTRP1 - ZIM3-KRAB 5'UTR GACCGGCCGCCACC 3082 起始密碼子+ NLS + 連接子 ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGAGTTAACGGATCAGGCTCTGGAGGTGGA 3083 起始密碼子+ DNMT3A催化域 ATGAACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGAGGAAGCCCATCCGCGTGCTGTCTCTCTTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGGGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGTCAAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG 3084 連接子 TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT 3085 DNMT3L相互作用域 ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGTCACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATCCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGCGGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAGAGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT 3086 連接子 GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG 3087 連接子+ 緩衝液 GGCGGTTCCGGCGGAGGAAGCGCT 3088 dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACCAGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTGACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTACCAGGACATCATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTCAACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGGCAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCGATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGGCCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGCTGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAGACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGACATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAAGACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGGTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3089 連接子+ 緩衝液 CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT 3090 ZIM3-KRAB ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCATGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC 3091 緩衝液 + NLS ACTAGTCCAAAAAAGAAGAGAAAGGTA 3092 標誌 GATTACAAAGATGACGATGACAAAGACTACAAGGATGATGATGATAAG 3093 緩衝液 GGATCCGGCTG 3094 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3095 LTRP5 - ZIM3-KRAB 5'UTR GACCGGCCGCCACC 3082 起始密碼子+ NLS + 緩衝液 ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGA 3096 起始密碼子+ DNMT3A催化域 ATGAACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGAGGAAGCCCATCCGCGTGCTGTCTCTCTTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGGGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGTCAAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG 3084 連接子 TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT 3085 DNMT3L相互作用域 ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGTCACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATCCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGCGGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAGAGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT 3086 連接子 GGCGGTTCCGGCGGAGGA 3097 ZIM3-KRAB ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCATGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC 3091 連接子 GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG 3087 dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACCAGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTGACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTACCAGGACATCATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTCAACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGGCAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCGATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGGCCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGCTGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAGACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGACATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAAGACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGGTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3089 連接子+ 緩衝液 CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT 3090 NLS CCAAAAAAGAAGAGAAAGGTA 3098 標誌 GATTACAAAGATGACGATGACAAAGACTACAAGGATGATGATGATAAG 3093 緩衝液 GGATCCGGCTG 3094 聚腺苷酸尾 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3095 *各組分以在構築體內之5'至3'次序列出 32 此實例之實驗 #2 中評定之 LTRP1-ZIM3 LTRP5-ZIM3 mRNA 分子之全長 RNA 序列。 修飾『 = N1- 甲基 - 假尿苷 LTRP ID RNA 序列 SEQ ID NO: LTRP1 - ZIM3-KRAB GACCGGCCGCCACCAmψGGCCCCAAAGAAGAAGCGGAAGGmψCmψCmψAGAGmψmψAACGGAmψCAGGCmψCmψGGAGGmψGGAAmψGAACCAmψGACCAGGAAmψmψmψGACCCCCCAAAGGmψmψmψACCCACCmψGmψGCCAGCmψGAGAAGAGGAAGCCCAmψCCGCGmψGCmψGmψCmψCmψCmψmψmψGAmψGGGAmψmψGCmψACAGGGCmψCCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAAGmψGGACCGCmψACAmψCGCCmψCCGAGGmψGmψGmψGAGGACmψCCAmψCACGGmψGGGCAmψGGmψGCGGCACCAGGGAAAGAmψCAmψGmψACGmψCGGGGACGmψCCGCAGCGmψCACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCAmψmψCGACCmψGGmψGAmψmψGGAGGCAGmψCCCmψGCAACGACCmψCmψCCAmψmψGmψCAACCCmψGCCCGCAAGGGACmψmψmψAmψGAGGGmψACmψGGCCGCCmψCmψmψCmψmψmψGAGmψmψCmψACCGCCmψCCmψGCAmψGAmψGCGCGGCCCAAGGAGGGAGAmψGAmψCGCCCCmψmψCmψmψCmψGGCmψCmψmψmψGAGAAmψGmψGGmψGGCCAmψGGGCGmψmψAGmψGACAAGAGGGACAmψCmψCGCGAmψmψmψCmψmψGAGmψCmψAACCCCGmψGAmψGAmψmψGACGCCAAAGAAGmψGmψCmψGCmψGCACACAGGGCCCGmψmψACmψmψCmψGGGGmψAACCmψmψCCmψGGCAmψGAACAGGCCmψmψmψGGCAmψCCACmψGmψGAAmψGAmψAAGCmψGGAGCmψGCAAGAGmψGmψCmψGGAGCACGGCAGAAmψAGCCAAGmψmψCAGCAAAGmψGAGGACCAmψmψACCACCAGGmψCAAACmψCmψAmψAAAGCAGGGCAAAGACCAGCAmψmψmψCCCCGmψCmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGCACmψGAAAmψGGAAAGGGmψGmψmψmψGGCmψmψCCCCGmψCCACmψACACAGACGmψGmψCCAACAmψGAGCCGCmψmψGGCGAGGCAGAGACmψGCmψGGGCCGGmψCGmψGGAGCGmψGCCGGmψCAmψCCGCCACCmψCmψmψCGCmψCCGCmψGAAGGAAmψAmψmψmψmψGCmψmψGmψGmψGmψCmψAGCGGCAAmψAGmψAACGCmψAACAGCCGCGGGCCGAGCmψmψCAGCAGCGGCCmψGGmψGCCGmψmψAAGCmψmψGCGCGGCAGCCAmψAmψGGGCCCmψAmψGGAGAmψAmψACAAGACAGmψGmψCmψGCAmψGGAAGAGACAGCCAGmψGCGGGmψACmψGAGCCmψCmψmψCAGAAACAmψCGACAAGGmψACmψAAAGAGmψmψmψGGGCmψmψCmψmψGGAAAGCGGmψmψCmψGGmψmψCmψGGGGGAGGAACGCmψGAAGmψACGmψGGAAGAmψGmψCACAAAmψGmψCGmψGAGGAGGGACGmψGGAGAAAmψGGGGCCCCmψmψmψGACCmψGGmψGmψACGGCmψCGACGCAGCCCCmψAGGCAGCmψCmψmψGmψGAmψCGCmψGmψCCCGGCmψGGmψACAmψGmψmψCCAGmψmψCCACCGGAmψCCmψGCAGmψAmψGCGCmψGCCmψCGCCAGGAGAGmψCAGCGGCCCmψmψCmψmψCmψGGAmψAmψmψCAmψGGACAAmψCmψGCmψGCmψGACmψGAGGAmψGACCAAGAGACAACmψACCCGCmψmψCCmψmψCAGACAGAGGCmψGmψGACCCmψCCAGGAmψGmψCCGmψGGCAGAGACmψACCAGAAmψGCmψAmψGCGGGmψGmψGGAGCAACAmψmψCCAGGGCmψGAAGAGCAAGCAmψGCGCCCCmψGACCCCAAAGGAAGAAGAGmψAmψCmψGCAAGCCCAAGmψCAGAAGCAGGAGCAAGCmψGGACGCCCCGAAAGmψmψGACCmψCCmψGGmψGAAGAACmψGCCmψmψCmψCCCGCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψmψmψCmψCAAAACmψCACmψmψCCmψCmψmψGGAGGGCCGAGCmψCmψGGCGCACCCCCACCAAGmψGGAGGGmψCmψCCmψGCCGGGmψCCCCAACAmψCmψACmψGAAGAAGGCACCAGCGAAmψCCGCAACGCCCGAGmψCAGGCCCmψGGmψACCmψCCACAGAACCAmψCmψGAAGGmψAGmψGCGCCmψGGmψmψCCCCAGCmψGGAAGCCCmψACmψmψCCACCGAAGAAGGCACGmψCAACCGAACCAAGmψGAAGGAmψCmψGCCCCmψGGGACCAGCACmψGAACCAmψCmψGAGGGCGGmψmψCCGGCGGAGGAAGCGCmψCAAGAGAmψCAAGAGAAmψCAACAAGAmψCAGAAGGAGACmψGGmψCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψCGmψCAGAGmψGAmψGACCCCmψGACCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCCGAGAACAmψCCCmψCAGCCmψAmψCAGCAACACCAGCAGGGCCAACCmψGAACAAGCmψGCmψGACCGACmψACACCGAGAmψGAAGAAAGCCAmψCCmψGCACGmψGmψACmψGGGAAGAGmψmψCCAGAAAGACCCCGmψGGGCCmψGAmψGAGCAGAGmψmψGCmψCAGCCmψGCCAGCAAGAAGAmψCGACCAGAACAAGCmψGAAGCCCGAGAmψGGACGAGAAGGGCAAmψCmψGACCACAGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCmψCmψGmψmψCGmψGmψACAAGCmψGGAACAGGmψGmψCCGAGAAAGGCAAGGCCmψACACCAACmψACmψmψCGGCAGAmψGmψAACGmψGGCCGAGCACGAGAAGCmψGAmψmψCmψGCmψGGCCCAGCmψGAAACCmψGAGAAGGACmψCmψGAmψGAGGCCGmψGACCmψACAGCCmψGGGCAAGmψmψmψGGACAGAGAGCCCmψGGACmψmψCmψACAGCAmψCCACGmψGACCAAAGAAAGCACACACCCCGmψGAAGCCCCmψGGCmψCAGAmψCGCCGGCAAmψAGAmψACGCCmψCmψGGACCmψGmψGGGCAAAGCCCmψGmψCCGAmψGCCmψGCAmψGGGAACAAmψCGCCAGCmψmψCCmψGAGCAAGmψACCAGGACAmψCAmψCAmψCGAGCACCAGAAGGmψGGmψCAAGGGCAACCAGAAGAGACmψGGAAAGCCmψGAGGGAGCmψGGCCGGCAAAGAGAACCmψGGAAmψACCCCAGCGmψGACCCmψGCCmψCCmψCAGCCmψCACACAAAAGAAGGCGmψGGACGCCmψACAACGAAGmψGAmψCGCCAGAGmψGAGAAmψGmψGGGmψCAACCmψGAACCmψGmψGGCAGAAGCmψGAAACmψGmψCCAGGGACGACGCCAAGCCmψCmψGCmψGAGACmψGAAGGGCmψmψCCCmψAGCmψmψCCCmψCmψGGmψGGAAAGACAGGCCAAmψGAAGmψGGAmψmψGGmψGGGACAmψGGmψCmψGCAACGmψGAAGAAGCmψGAmψCAACGAGAAGAAAGAGGAmψGGCAAGGmψmψmψmψCmψGGCAGAACCmψGGCCGGCmψACAAGAGACAAGAAGCCCmψGAGGCCmψmψACCmψGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGmψmψCGCCAGAmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGCAAAGmψGmψACGAmψGAGGCCmψGGGAGAGAAmψCGACAAGAAGGmψGGAAGGCCmψGAGCAAGCACAmψmψAAGCmψGGAAGAGGAAAGAAGGAGCGAGGACGCCCAAmψCmψAAAGCCGCmψCmψGACCGAmψmψGGCmψGAGAGCCAAGGCCAGCmψmψmψGmψGAmψCGAGGGCCmψGAAAGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGCGAmψCmψGAGAGGCAAGCCCmψmψCGCCAmψmψGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGCGCCmψmψCAmψmψmψGGCAGAAAGACGGCGmψCAAGAAACmψGAACCmψGmψACCmψGAmψCAmψCAAmψmψACmψmψCAAAGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCCGAGGCCmψmψCGAGGCmψAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGmψCCGGCGAGAmψCGmψGCCCAmψGGAAGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψmψAmψCCmψGCCmψCmψGGCCmψmψCGGCAAGAGACAGGGCAGAGAGmψmψCAmψCmψGGAACGAmψCmψGCmψGAGCCmψGGAAACCGGCmψCmψCmψGAAGCmψGGCCAAmψGGCAGAGmψGAmψCGAGAAAACCCmψGmψACAACAGGAGAACCAGACAGGACGAGCCmψGCmψCmψGmψmψmψGmψGGCCCmψGACCmψmψCGAGAGAAGAGAGGmψGCmψGGACAGCAGCAACAmψCAAGCCCAmψGAACCmψGAmψCGGCGmψGGCCCGGGGCGAGAAmψAmψCCCmψGCmψGmψGAmψCGCCCmψGACAGACCCmψGAAGGAmψGCCCACmψGAGCAGAmψmψCAAGGACmψCCCmψGGGCAACCCmψACACACAmψCCmψGAGAAmψCGGCGAGAGCmψACAAAGAGAAGCAGAGGACAAmψCCAGGCCAAGAAAGAGGmψGGAACAGAGAAGAGCCGGCGGAmψACmψCmψAGGAAGmψACGCCAGCAAGGCCAAGAAmψCmψGGCCGACGACAmψGGmψCCGAAACACCGCCAGAGAmψCmψGCmψGmψACmψACGCCGmψGACACAGGACGCCAmψGCmψGAmψCmψmψCGCGAAmψCmψGAGCAGAGGCmψmψCGGCCGGCAGGGCAAGAGAACCmψmψmψAmψGGCCGAGAGGCAGmψACACCAGAAmψGGAAGAmψmψGGCmψCACAGCmψAAACmψGGCCmψACGAGGGACmψGAGCAAGACCmψACCmψGmψCCAAAACACmψGGCCCAGmψAmψACCmψCCAAGACCmψGCAGCAAmψmψGCGGCmψmψCACCAmψCACCAGCGCCGACmψACGACAGAGmψGCmψGGAAAAGCmψCAAGAAAACCGCCACCGGCmψGGAmψGACCACCAmψCAACGGCAAAGAGCmψGAAGGmψmψGAGGGCCAGAmψCACCmψACmψACAACAGGmψACAAGAGGCAGAACGmψCGmψGAAGGAmψCmψGAGCGmψGGAACmψGGACAGACmψGAGCGAAGAGAGCGmψGAACAACGACAmψCAGCAGCmψGGACAAAGGGCAGAmψCAGGCGAGGCmψCmψGAGCCmψGCmψGAAGAAGAGGmψmψmψAGCCACAGACCmψGmψGCAAGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCCGCmψGAACAGGCmψGCCCmψGAACAmψmψGCCAGAAGCmψGGCmψGmψmψCCmψGAGAAGCCAAGAGmψACAAGAAGmψACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCmψmψmψGmψGGAAACCmψGGCAGAGCmψmψCmψACAGAAAAAAGCmψGAAAGAAGmψCmψGGAAGCCCGCCGmψGCGAmψCGGGCGGmψmψCCGGCGGAGGmψmψCCACmψAGmψAmψGAACAAmψmψCCCAGGGAAGAGmψGACCmψmψCGAGGAmψGmψCACmψGmψGAACmψmψCACCCAGGGGGAGmψGGCAGCGGCmψGAAmψCCCGAACAGAGAAACmψmψGmψACAGGGAmψGmψGAmψGCmψGGAGAAmψmψACAGCAACCmψmψGmψCmψCmψGmψGGGACAAGGGGAAACCACCAAACCCGAmψGmψGAmψCmψmψGAGGmψmψGGAACAAGGAAAGGAGCCAmψGGmψmψGGAGGAAGAGGAAGmψGCmψGGGAAGmψGGCCGmψGCAGAAAAAAAmψGGGGACAmψmψGGAGGGCAGAmψmψmψGGAAGCCAAAGGAmψGmψGAAAGAGAGmψCmψCACmψAGmψCCAAAAAAGAAGAGAAAGGmψAGAmψmψACAAAGAmψGACGAmψGACAAAGACmψACAAGGAmψGAmψGAmψGAmψAAGGGAmψCCGGCmψGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3099 LTRP5 - ZIM3-KRAB GACCGGCCGCCACCAmψGGCCCCAAAGAAGAAGCGGAAGGmψCmψCmψAGAAmψGAACCAmψGACCAGGAAmψmψmψGACCCCCCAAAGGmψmψmψACCCACCmψGmψGCCAGCmψGAGAAGAGGAAGCCCAmψCCGCGmψGCmψGmψCmψCmψCmψmψmψGAmψGGGAmψmψGCmψACAGGGCmψCCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAAGmψGGACCGCmψACAmψCGCCmψCCGAGGmψGmψGmψGAGGACmψCCAmψCACGGmψGGGCAmψGGmψGCGGCACCAGGGAAAGAmψCAmψGmψACGmψCGGGGACGmψCCGCAGCGmψCACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCAmψmψCGACCmψGGmψGAmψmψGGAGGCAGmψCCCmψGCAACGACCmψCmψCCAmψmψGmψCAACCCmψGCCCGCAAGGGACmψmψmψAmψGAGGGmψACmψGGCCGCCmψCmψmψCmψmψmψGAGmψmψCmψACCGCCmψCCmψGCAmψGAmψGCGCGGCCCAAGGAGGGAGAmψGAmψCGCCCCmψmψCmψmψCmψGGCmψCmψmψmψGAGAAmψGmψGGmψGGCCAmψGGGCGmψmψAGmψGACAAGAGGGACAmψCmψCGCGAmψmψmψCmψmψGAGmψCmψAACCCCGmψGAmψGAmψmψGACGCCAAAGAAGmψGmψCmψGCmψGCACACAGGGCCCGmψmψACmψmψCmψGGGGmψAACCmψmψCCmψGGCAmψGAACAGGCCmψmψmψGGCAmψCCACmψGmψGAAmψGAmψAAGCmψGGAGCmψGCAAGAGmψGmψCmψGGAGCACGGCAGAAmψAGCCAAGmψmψCAGCAAAGmψGAGGACCAmψmψACCACCAGGmψCAAACmψCmψAmψAAAGCAGGGCAAAGACCAGCAmψmψmψCCCCGmψCmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGCACmψGAAAmψGGAAAGGGmψGmψmψmψGGCmψmψCCCCGmψCCACmψACACAGACGmψGmψCCAACAmψGAGCCGCmψmψGGCGAGGCAGAGACmψGCmψGGGCCGGmψCGmψGGAGCGmψGCCGGmψCAmψCCGCCACCmψCmψmψCGCmψCCGCmψGAAGGAAmψAmψmψmψmψGCmψmψGmψGmψGmψCmψAGCGGCAAmψAGmψAACGCmψAACAGCCGCGGGCCGAGCmψmψCAGCAGCGGCCmψGGmψGCCGmψmψAAGCmψmψGCGCGGCAGCCAmψAmψGGGCCCmψAmψGGAGAmψAmψACAAGACAGmψGmψCmψGCAmψGGAAGAGACAGCCAGmψGCGGGmψACmψGAGCCmψCmψmψCAGAAACAmψCGACAAGGmψACmψAAAGAGmψmψmψGGGCmψmψCmψmψGGAAAGCGGmψmψCmψGGmψmψCmψGGGGGAGGAACGCmψGAAGmψACGmψGGAAGAmψGmψCACAAAmψGmψCGmψGAGGAGGGACGmψGGAGAAAmψGGGGCCCCmψmψmψGACCmψGGmψGmψACGGCmψCGACGCAGCCCCmψAGGCAGCmψCmψmψGmψGAmψCGCmψGmψCCCGGCmψGGmψACAmψGmψmψCCAGmψmψCCACCGGAmψCCmψGCAGmψAmψGCGCmψGCCmψCGCCAGGAGAGmψCAGCGGCCCmψmψCmψmψCmψGGAmψAmψmψCAmψGGACAAmψCmψGCmψGCmψGACmψGAGGAmψGACCAAGAGACAACmψACCCGCmψmψCCmψmψCAGACAGAGGCmψGmψGACCCmψCCAGGAmψGmψCCGmψGGCAGAGACmψACCAGAAmψGCmψAmψGCGGGmψGmψGGAGCAACAmψmψCCAGGGCmψGAAGAGCAAGCAmψGCGCCCCmψGACCCCAAAGGAAGAAGAGmψAmψCmψGCAAGCCCAAGmψCAGAAGCAGGAGCAAGCmψGGACGCCCCGAAAGmψmψGACCmψCCmψGGmψGAAGAACmψGCCmψmψCmψCCCGCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψmψmψCmψCAAAACmψCACmψmψCCmψCmψmψGGCGGmψmψCCGGCGGAGGAAmψGAACAAmψmψCCCAGGGAAGAGmψGACCmψmψCGAGGAmψGmψCACmψGmψGAACmψmψCACCCAGGGGGAGmψGGCAGCGGCmψGAAmψCCCGAACAGAGAAACmψmψGmψACAGGGAmψGmψGAmψGCmψGGAGAAmψmψACAGCAACCmψmψGmψCmψCmψGmψGGGACAAGGGGAAACCACCAAACCCGAmψGmψGAmψCmψmψGAGGmψmψGGAACAAGGAAAGGAGCCAmψGGmψmψGGAGGAAGAGGAAGmψGCmψGGGAAGmψGGCCGmψGCAGAAAAAAAmψGGGGACAmψmψGGAGGGCAGAmψmψmψGGAAGCCAAAGGAmψGmψGAAAGAGAGmψCmψCGGAGGGCCGAGCmψCmψGGCGCACCCCCACCAAGmψGGAGGGmψCmψCCmψGCCGGGmψCCCCAACAmψCmψACmψGAAGAAGGCACCAGCGAAmψCCGCAACGCCCGAGmψCAGGCCCmψGGmψACCmψCCACAGAACCAmψCmψGAAGGmψAGmψGCGCCmψGGmψmψCCCCAGCmψGGAAGCCCmψACmψmψCCACCGAAGAAGGCACGmψCAACCGAACCAAGmψGAAGGAmψCmψGCCCCmψGGGACCAGCACmψGAACCAmψCmψGAGCAAGAGAmψCAAGAGAAmψCAACAAGAmψCAGAAGGAGACmψGGmψCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψCGmψCAGAGmψGAmψGACCCCmψGACCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCCGAGAACAmψCCCmψCAGCCmψAmψCAGCAACACCAGCAGGGCCAACCmψGAACAAGCmψGCmψGACCGACmψACACCGAGAmψGAAGAAAGCCAmψCCmψGCACGmψGmψACmψGGGAAGAGmψmψCCAGAAAGACCCCGmψGGGCCmψGAmψGAGCAGAGmψmψGCmψCAGCCmψGCCAGCAAGAAGAmψCGACCAGAACAAGCmψGAAGCCCGAGAmψGGACGAGAAGGGCAAmψCmψGACCACAGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCmψCmψGmψmψCGmψGmψACAAGCmψGGAACAGGmψGmψCCGAGAAAGGCAAGGCCmψACACCAACmψACmψmψCGGCAGAmψGmψAACGmψGGCCGAGCACGAGAAGCmψGAmψmψCmψGCmψGGCCCAGCmψGAAACCmψGAGAAGGACmψCmψGAmψGAGGCCGmψGACCmψACAGCCmψGGGCAAGmψmψmψGGACAGAGAGCCCmψGGACmψmψCmψACAGCAmψCCACGmψGACCAAAGAAAGCACACACCCCGmψGAAGCCCCmψGGCmψCAGAmψCGCCGGCAAmψAGAmψACGCCmψCmψGGACCmψGmψGGGCAAAGCCCmψGmψCCGAmψGCCmψGCAmψGGGAACAAmψCGCCAGCmψmψCCmψGAGCAAGmψACCAGGACAmψCAmψCAmψCGAGCACCAGAAGGmψGGmψCAAGGGCAACCAGAAGAGACmψGGAAAGCCmψGAGGGAGCmψGGCCGGCAAAGAGAACCmψGGAAmψACCCCAGCGmψGACCCmψGCCmψCCmψCAGCCmψCACACAAAAGAAGGCGmψGGACGCCmψACAACGAAGmψGAmψCGCCAGAGmψGAGAAmψGmψGGGmψCAACCmψGAACCmψGmψGGCAGAAGCmψGAAACmψGmψCCAGGGACGACGCCAAGCCmψCmψGCmψGAGACmψGAAGGGCmψmψCCCmψAGCmψmψCCCmψCmψGGmψGGAAAGACAGGCCAAmψGAAGmψGGAmψmψGGmψGGGACAmψGGmψCmψGCAACGmψGAAGAAGCmψGAmψCAACGAGAAGAAAGAGGAmψGGCAAGGmψmψmψmψCmψGGCAGAACCmψGGCCGGCmψACAAGAGACAAGAAGCCCmψGAGGCCmψmψACCmψGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGmψmψCGCCAGAmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGCAAAGmψGmψACGAmψGAGGCCmψGGGAGAGAAmψCGACAAGAAGGmψGGAAGGCCmψGAGCAAGCACAmψmψAAGCmψGGAAGAGGAAAGAAGGAGCGAGGACGCCCAAmψCmψAAAGCCGCmψCmψGACCGAmψmψGGCmψGAGAGCCAAGGCCAGCmψmψmψGmψGAmψCGAGGGCCmψGAAAGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGCGAmψCmψGAGAGGCAAGCCCmψmψCGCCAmψmψGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGCGCCmψmψCAmψmψmψGGCAGAAAGACGGCGmψCAAGAAACmψGAACCmψGmψACCmψGAmψCAmψCAAmψmψACmψmψCAAAGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCCGAGGCCmψmψCGAGGCmψAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGmψCCGGCGAGAmψCGmψGCCCAmψGGAAGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψmψAmψCCmψGCCmψCmψGGCCmψmψCGGCAAGAGACAGGGCAGAGAGmψmψCAmψCmψGGAACGAmψCmψGCmψGAGCCmψGGAAACCGGCmψCmψCmψGAAGCmψGGCCAAmψGGCAGAGmψGAmψCGAGAAAACCCmψGmψACAACAGGAGAACCAGACAGGACGAGCCmψGCmψCmψGmψmψmψGmψGGCCCmψGACCmψmψCGAGAGAAGAGAGGmψGCmψGGACAGCAGCAACAmψCAAGCCCAmψGAACCmψGAmψCGGCGmψGGCCCGGGGCGAGAAmψAmψCCCmψGCmψGmψGAmψCGCCCmψGACAGACCCmψGAAGGAmψGCCCACmψGAGCAGAmψmψCAAGGACmψCCCmψGGGCAACCCmψACACACAmψCCmψGAGAAmψCGGCGAGAGCmψACAAAGAGAAGCAGAGGACAAmψCCAGGCCAAGAAAGAGGmψGGAACAGAGAAGAGCCGGCGGAmψACmψCmψAGGAAGmψACGCCAGCAAGGCCAAGAAmψCmψGGCCGACGACAmψGGmψCCGAAACACCGCCAGAGAmψCmψGCmψGmψACmψACGCCGmψGACACAGGACGCCAmψGCmψGAmψCmψmψCGCGAAmψCmψGAGCAGAGGCmψmψCGGCCGGCAGGGCAAGAGAACCmψmψmψAmψGGCCGAGAGGCAGmψACACCAGAAmψGGAAGAmψmψGGCmψCACAGCmψAAACmψGGCCmψACGAGGGACmψGAGCAAGACCmψACCmψGmψCCAAAACACmψGGCCCAGmψAmψACCmψCCAAGACCmψGCAGCAAmψmψGCGGCmψmψCACCAmψCACCAGCGCCGACmψACGACAGAGmψGCmψGGAAAAGCmψCAAGAAAACCGCCACCGGCmψGGAmψGACCACCAmψCAACGGCAAAGAGCmψGAAGGmψmψGAGGGCCAGAmψCACCmψACmψACAACAGGmψACAAGAGGCAGAACGmψCGmψGAAGGAmψCmψGAGCGmψGGAACmψGGACAGACmψGAGCGAAGAGAGCGmψGAACAACGACAmψCAGCAGCmψGGACAAAGGGCAGAmψCAGGCGAGGCmψCmψGAGCCmψGCmψGAAGAAGAGGmψmψmψAGCCACAGACCmψGmψGCAAGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCCGCmψGAACAGGCmψGCCCmψGAACAmψmψGCCAGAAGCmψGGCmψGmψmψCCmψGAGAAGCCAAGAGmψACAAGAAGmψACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCmψmψmψGmψGGAAACCmψGGCAGAGCmψmψCmψACAGAAAAAAGCmψGAAAGAAGmψCmψGGAAGCCCGCCGmψGCGAmψCGGGCGGmψmψCCGGCGGAGGmψmψCCACmψAGmψCCAAAAAAGAAGAGAAAGGmψAGAmψmψACAAAGAmψGACGAmψGACAAAGACmψACAAGGAmψGAmψGAmψGAmψAAGGGAmψCCGGCmψGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3100 實例 6 對編碼引導 RNA 支架之 DNA 進行 CpG- 耗竭會改良活體外 CasX 介導之編輯 It is expected that the results of this experiment show that LTRP mRNA and targeting gRNA can be co-encapsulated in LNPs to be delivered to target cells to induce transmissible transcription of target endogenous loci. Table 31 : Coding sequences of LTRP1-ZIM3 and LTRP5-ZIM3 mRNA molecules evaluated in Experiment #2 of this Example * LTRP ID Components DNA Sequence SEQ ID NO: LTRP1-ZIM3-KRAB 5'UTR GACCGGCCGCCACC 3082 Start codon + NLS + linker ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGAGTTAACGGATCAGGCTCTGGAGGTGGA 3083 Start codon + DNMT3A catalytic domain ATGAACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGGAAGCCCATCCGCGTGCTGTCTCTCTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGG ACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATG GGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGT CAAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG 3084 Connector TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT 3085 DNMT3L interaction domain ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGT CACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATCCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGC GGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAG AGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT 3086 Connector GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG 3087 Connector + Buffer GGCGGTTCCGGCGGAGGAAGCGCT 3088 dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACC AGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTG ACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACC TACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTAC CAGGACATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTC AACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGG CAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAG AAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCG ATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGG CCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGC TGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAG ACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGA CATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAA GACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAG GTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3089 Connector + Buffer CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT 3090 ZIM3-KRAB ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGG GAAACCACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCATGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC 3091 Buffer + NLS ACTAGTCCAAAAAAGAAGAGAAAGGTA 3092 Logo GATTACAAAGATGACGATGACAAAGACTACAAGGATGATGATGATAAG 3093 Buffer GGATCCGGCTG 3094 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3095 LTRP5-ZIM3-KRAB 5'UTR GACCGGCCGCCACC 3082 Start codon + NLS + buffer ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGA 3096 Start codon + DNMT3A catalytic domain ATGAACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGGAAGCCCATCCGCGTGCTGTCTCTCTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGG ACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATG GGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGT CAAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG 3084 Connector TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT 3085 DNMT3L interaction domain ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGT CACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATCCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGC GGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAG AGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT 3086 Connector GGCGGTTCCGGCGGAGGA 3097 ZIM3-KRAB ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGG GAAACCACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCATGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC 3091 Connector GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG 3087 dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACC AGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTG ACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACC TACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTAC CAGGACATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTC AACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGG CAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAG AAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCG ATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGG CCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGC TGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAG ACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGA CATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAA GACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAG GTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 3089 Connector + Buffer CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT 3090 NLS CCAAAAAAGAAGAGAAAGGTA 3098 Logo GATTACAAAGATGACGATGACAAAGACTACAAGGATGATGATGATAAG 3093 Buffer GGATCCGGCTG 3094 Poly(A) tail AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3095 * The components are listed in 5' to 3' order within the construct Table 32 : Full-length RNA sequences of LTRP1-ZIM3 and LTRP5-ZIM3 mRNA molecules evaluated in Experiment #2 of this example . Modification " " = N1- methyl - pseudouridine LTRP ID RNA- seq SEQ ID NO: LTRP1-ZIM3-KRAB GACCGGCCGCCACCAmψGGCCCCAAAGAAGAAGCGGAAGGmψCmψCmψAGAGmψmψAACGGAmψCAGGCmψCmψGGAGGmψGGAAmψGAACCAmψGACC AGGAAmψmψmψGACCCCCCAAAGGmψmψmψACCCACCmψGmψGCCAGCmψGAGAAGAGGAAGCCCAmψCCGCGmψGCmψGmψCmψCmψCmψmψmψGAmψ GGGAmψmψGCmψACAGGGCmψCCmψGGmψGCmψGAAGGACCmψGGGCAmψCCAAGmψGGACCGCmψACAmψCGCCmψCCGAGGmψGmψGmψGAGGACmψ CCAmψCACGGmψGGGCAmψGGmψGCGGCACCAGGGAAAGAmψCAmψGmψACGmψCGGGGACGmψCCGCAGCGmψCACACAGAAGCAmψAmψCCAGGAGmψ GGGGCCCAmψmψCGACCmψGGmψGAmψmψGGAGGCAGmψCCCmψGCAACGACCmψCmψCCAmψmψGmψCAACCCmψGCCCGCAAGGGACmψmψmψAmψG AGGGmψACmψGGCCGCCmψCmψmψCmψmψmψGAGmψmψCmψACCGCCmψCCmψGCAmψGAmψGCGCGGCCCAAGGAGGGAGamψGAmψCGCCCCmψmψC mψmψCmψGGCmψCmψmψmψGAGAAmψGmψGGmψGGCCAmψGGGCGmψmψAGmψGACAAGAGGGACAmψCmψCGCGAmψmψmψCmψmψGAGmψCmψAACC CCGmψGAmψGAmψmψGACGCCAAAGAAGmψGmψCmψGCmψGCACACAGGGCCCGmψmψACmψmψCmψGGGGmψAACCmψmψCCmψGGCAmψGAACAGGCC mψmψmψGGCAmψCCACmψGmψGAAmψGAmψAAGCmψGGAGCmψGCAAGAGmψGmψCmψGGAGCACGGCAGAAmψAGCCAAGmψmψCAGCAAAGmψGAGG ACCAmψmψACCACCAGGmψCAAACmψCmψAmψAAAGCAGGGCAAAGACCAGCAmψmψmψCCCCGmψCmψmψCAmψGAACGAGAAGGAGGACAmψCCmψG mψGGmψGCACmψGAAAmψGGAAAGGGmψGmψmψmψGGCmψmψCCCCGmψCCACmψACACAGACGmψGmψCCAACAmψGAGCCGCmψmψGGCGAGGCAGA GACmψGCmψGGGCCGGmψCGmψGGAGCGmψGCCGGmψCAmψCCGCCACCmψCmψmψCGCmψCCGCmψGAAGGAAmψAmψmψmψmψmψGCmψmψGmψGmψGmψ CmψAGCGGCAAmψAGmψAACGCmψAACAGCCGCGGGCCGAGCmψmψCAGCAGCGGCCmψGGmψGCCGmψmψAAGCmψmψGCGCGGCAGCCAmψAmψGGG CCCmψAmψGGAGAmψAmψACAAGACAGmψGmψCmψGCAmψGGAAGAGACAGCCAGmψGCGGGmψACmψGAGCCmψCmψmψCAGAAACAmψCGACAAGGmψ ACmψAAAGAGmψmψmψGGGCmψmψCmψmψGGAAAGCGGmψmψCmψGGmψmψCmψGGGGGAGGAACGCmψGAAGmψACGmψGGAAGAmψGmψCACAAAmψ GmψCGmψGAGGAGGGACGmψGGAGAAAmψGGGGCCCCmψmψmψGACCmψGGmψGmψACGGCmψCGACGCAGCCCCmψAGGCAGCmψCmψmψGmψGAmψCG CmψGmψCCCGGCmψGGmψACAmψGmψmψCCAGmψmψCCACCGGAmψCCmψGCAGmψAmψGCGCmψGCCmψCGCCAGGAGAGmψCAGCGGCCCmψmψCmψ mψCmψGGAmψAmψmψCAmψGGACAAmψCmψGCmψGCmψGACmψGAGGAmψGACCAAGAGACAACmψACCCGCmψmψCCmψmψCAGACAGAGGCmψGmψG ACCCmψCCAGGAmψGmψCCGmψGGCAGAGACmψACCAGAAmψGCmψAmψGCGGGmψGmψGGAGCAACAmψmψCCAGGGCmψGAAGAGCAAGCAmψGCGC CCCmψGACCCCAAAGGAAGAAGAGmψAmψCmψGCAAGCCCAAGmψCAGAAGCAGGAGCAAGCmψGGACGCCCGAAAGmψmψGACCmψCCmψGGmψGAAG AACmψGCCmψmψCmψCCCGCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψmψmψCmψCAAAACmψCACmψmψCCmψCmψmψGGAGGGCCGAGCmψCmψG GCGCACCCCCACCAAGmψGGAGGGmψCmψCCmψGCCGGGmψCCCCAACAmψCmψACmψGAAGAAGGCACCAGCGAAmψCCGCAACGCCCGAGmψCAGGC CCmψGGmψACCmψCCACAGAACCAmψCmψGAAGGmψAGmψGCGCCmψGGmψmψCCCCAGCmψGGAAGCCCmψACmψmψCCACCGAAGAAGGCACGmψCA ACCGAACCAAGmψGAAGGAmψCmψGCCCCmψGGGACCAGCACmψGAACCAmψCmψGAGGGCGGmψmψCCGGCGGAGGAAGCGCmψCAAGAGAmψCAAGAG AAmψCAACAAGAmψCAGAAGGAGACmψGGmψCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCAmψGAAAACCCmψGCmψCGmψCAGAGmψGAmψGACCCCmψGACCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCCGAGAACAmψCCCmψCAGCCmψAmψCAGCAACACCAGCAGGGCCAA CCmψGAACAAGCmψGCmψGACCGACmψACACCGAGAmψGAAGAAAGCCAmψCCmψGCACGmψGmψACmψGGGAAGAGmψmψCCAGAAAGACCCCGmψGG GCCmψGAmψGAGCAGAGmψmψGCmψCAGCCmψGCCAGCAAGAAGAmψCGACCAGAACAAGCmψGAAGCCCGAGAmψGGACGAGAAGGGCAAmψCmψGACC ACAGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCmψCmψGmψmψCGmψGmψACAAGCmψGGAACAGGmψGmψCCGAGAAAGGCAAGGCCm ψACACCAACmψACmψmψCGGCAGAmψGmψAACGmψGGCCGAGCACGAGAAGCmψGAmψmψCmψGCmψGGCCCAGCmψGAAACCmψGAGAAGGACmψCmψG AmψGAGGCCGmψGACCmψACAGCCmψGGGCAAGmψmψmψGGACAGAGAGCCCmψGGACmψmψCmψACAGCAmψCCACGmψGACCAAAGAAAGCACACAC CCCGmψGAAGCCCCmψGGCmψCAGAmψCGCCGGCAAmψAGAmψACGCCmψCmψGGACCmψGmψGGGCAAAGCCCmψGmψCCGAmψGCCmψGCAmψGGGAA CAAmψCGCCAGCmψmψCCmψGAGCAAGmψACCAGGACAmψCAmψCAmψCGAGCACCAGAAGGmψGGmψCAAGGGCAACCAGAAGAGACmψGGAAAGCCm ψGAGGGAGCmψGGCCGGCAAAGAGAACCmψGGAAmψACCCCAGCGmψGACCCmψGCCmψCCmψCAGCCmψCACACAAAAGAAGGCGmψGGACGCCmψAC AACGAAGmψGAmψCGCCAGAGmψGAGAAmψGmψGGGmψCAACCmψGAACCmψGmψGGCAGAAGCmψGAAACmψGmψCCAGGGACGACGCCAAGCCmψCm ψGCmψGAGACmψGAAGGGCmψmψCCCmψAGCmψmψCCCmψCmψGGmψGGAAAGACAGGCCAAmψGAAGmψGGAmψmψGGmψGGGACAmψGGmψCmψGCAA CGmψGAAGAAGCmψGAmψCAACGAGAAGAAAGAGGAmψGGCAAGGmψmψmψmψCmψGGCAGAACCmψGGCCGGCmψACAAGAGACAAGAAGCCCmψGAGGCCmψmψACCmψGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGmψmψCGCCAGAmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAG AAGCACGGCGAGGACmψGGGGCAAAGmψGmψACGAmψGAGGCCmψGGGAGAGAAmψCGACAAGAAGGmψGGAAGGCCmψGAGCAAGCACAmψmψAAGCm ψGGAAGAGGAAAGAAGGAGCGAGGACGCCCAAmψCmψAAAGCCGCmψCmψGACCGAmψmψGGCmψGAGAGCCAAGGCCAGCmψmψmψGmψGAmψCGAGGG CCmψGAAAGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGAAGCmψGCAGAAGmψGGmψACGGCGAmψCmψGAGAGGCAAGCCCmψmψCG CCAmψmψGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCAGCAAGCAGmψACAACmψGCGCCmψmψCAmψmψmψGGCAGAAAGACGGCGm ψCAAGAAACmψGAACCmψGmψACCmψGAmψCAmψCAAmψmψACmψmψCAAAGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCCGAGGCCmψmψC GAGGCmψAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGmψCCGGCGAGAmψCGmψGCCCAmψGGAAGmψGAACmψmψCAACmψmψCGACGACCCCA ACCmψGAmψmψAmψCCmψGCCmψCmψGGCCmψmψCGGCAAGAGACAGGGCAGAGAGmψmψCAmψCmψGGAACGAmψCmψGCmψGAGCCmψGGAAACCGG CmψCmψCmψGAAGCmψGGCCAAmψGGCAGAGmψGAmψCGAGAAAACCCmψGmψACAACAGGAGAACCAGACAGGACGAGCCmψGCmψCmψGmψmψmψGmψ GGCCCmψGACCmψmψCGAGAGAAGAGAGGmψGCmψGGACAGCAGCAACAmψCAAGCCCAmψGAACCmψGAmψCGGCGmψGGCCCGGGGCGAGAAmψAmψ CCCmψGCmψGmψGAmψCGCCCmψGACAGACCCmψGAAGGAmψGCCCACmψGAGCAGAmψmψCAAGGACmψCCCmψGGGCAACCCmψACACACAmψCCmψG AGAAmψCGGCGAGAGCmψACAAAGAGAAGCAGAGGACAAmψCCAGGCCAAGAAAGAGGmψGGAACAGAGAAGAGCCGGCGGAmψACmψCmψAGGAAGmψACGCCAGCAAGGCCAAGAAmψCmψGGCCGACGACAmψGGmψCCGAAACACCGCCAGAGAmψCmψGCmψGmψACmψACGCCGmψGACACAGGACGCCAmψ GCmψGAmψCmψmψCGCGAAmψCmψGAGCAGAGGCmψmψCGGCCGGCAGGGCAAGAGAACCmψmψmψAmψGGCCGAGAGGCAGmψACACCAGAAmψGGAA GAmψmψGGCmψCACAGCmψAAACmψGGCCmψACGAGGGACmψGAGCAAGACCmψACCmψGmψCCAAAACACmψGGCCCAGmψAmψACCmψCCAAGACCmψ GCAGCAAmψmψGCGGCmψmψCACCAmψCACCAGCGCCGACmψACGACAGAGmψGCmψGGAAAAGCmψCAAGAAAACCGCCACCGGCmψGGAmψGACCAC CAmψCAACGGCAAAGAGCmψGAAGGmψmψGAGGGCCAGAmψCACCmψACmψACAACAGGmψACAAGAGGCAGAACGmψCGmψGAAGGAmψCmψGAGCGm ψGGAACmψGGACAGACmψGAGCGAAGAGAGCGmψGAACAACGACAmψCAGCAGCmψGGACAAAGGGCAGAmψCAGGCGAGGCmψCmψGAGCCmψGCmψG AAGAAGAGGmψmψmψAGCCACAGACCmψGmψGCAAGAGAAGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCCGCmψGAACAGGCmψG CCCmψGAACAmψmψGCCAGAAGCmψGGCmψGmψmψCCmψGAGAAGCCAAGAGmψACAAGAAGmψACCAGACCAACAAGACCACCGGCAACACCGACAAG AGGGCCmψmψmψGmψGGAAACCmψGGCAGAGCmψmψCmψACAGAAAAAAGCmψGAAAGAAGmψCmψGGAAGCCCGCCGmψGCGAmψCGGGCGGmψmψCC GGCGGAGGmψmψCCACmψAGmψAmψGAACAAmψmψCCCAGGGAAGAGmψGACCmψmψCGAGGAmψGmψCACmψGmψGAACmψmψCACCCAGGGGGAGmψ GGCAGCGGCmψGAAmψCCCGAACAGAGAAACmψmψGmψACAGGGAmψGmψGAmψGCmψGGAGAAmψmψACAGCAACCmψmψGmψCmψCmψGmψGGGACAA GGGGAAACCACCAAACCCGAmψGmψGAmψCmψmψGAGGmψmψGGAACAAGGAAAGGAGCCAmψGGmψmψGGAGGAAGAGGAAGmψGCmψGGGAAGmψGG CCGmψGCAGAAAAAAAmψGGGGACAmψmψGGAGGGCAGAmψmψmψGGAAGCCAAAGGAmψGmψGAAAGAGAGmψCmψCACmψAGmψCCAAAAAAGAAGAG AAAGGmψAGAmψmψACAAAGAmψGACGAmψGACAAAGACmψACAAGGAmψGAmψGAmψGAmψAAGGGAmψCCGGCmψGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3099 LTRP5-ZIM3-KRAB GACCGGCCGCCACCAmψGGCCCCAAAGAAGAAGCGGAAGGmψCmψCmψAGAAmψGAACCAmψGACCAGGAAmψmψmψGACCCCCCAAAGGmψmψmψAC CCACCmψGmψGCCAGCmψGAGAAGAGGAAGCCCAmψCCGCGmψGCmψGmψCmψCmψCmψmψmψGAmψGGGAmψmψGCmψACAGGGCmψCCmψGGmψGCm ψGAAGGACCmψGGGCAmψCCAAGmψGGACCGCmψACAmψCGCCmψCCGAGGmψGmψGmψGAGGACmψCCAmψCACGGmψGGGCAmψGGmψGCGGCACC AGGGAAAGAmψCAmψGmψACGmψCGGGGACGmψCCGCAGCGmψCACACAGAAGCAmψAmψCCAGGAGmψGGGGCCCAmψmψCGACCmψGGmψGAmψmψG GAGGCAGmψCCCmψGCAACGACCmψCmψCCAmψmψGmψCAACCCmψGCCCGCAAGGGACmψmψmψAmψGAGGGmψACmψGGCCGCCmψCmψmψCmψmψ mψGAGmψmψCmψACCGCCmψCCmψGCAmψGAmψGCGCGGCCCAAGGAGGGAGAmψGAmψCGGCCCmψmψCmψmψCmψGGCmψCmψmψmψGAGAAmψGmψ GGmψGGCCAmψGGGCGmψmψAGmψGACAAGAGGGACAmψCmψCGCGAmψmψmψCmψmψGAGmψCmψAACCCCGmψGAmψGAmψmψGACGCCAAAGAAG mψGmψCmψGCmψGCACACAGGGCCCGmψmψACmψmψCmψGGGGmψAACCmψmψCCmψGGCAmψGAACAGGCCmψmψmψGGCAmψCCACmψGmψGAAmψG AmψAAGCmψGGAGCmψGCAAGAGmψGmψCmψGGAGCACGGCAGAAmψAGCCAAGmψmψCAGCAAAGmψGAGGACCAmψmψACCACCAGGmψCAAACmψ CmψAmψAAAGCAGGGCAAAGACCAGCAmψmψmψCCCCGmψCmψmψCAmψGAACGAGAAGGAGGACAmψCCmψGmψGGmψGCACmψGAAAmψGGAAAGGG mψGmψmψmψGGCmψmψCCCCGmψCCACmψACACAGACGmψGmψCCAACAmψGAGCCGCmψmψGGCGAGGCAGAGACmψGCmψGGGCCGGmψCGmψGGA GCGmψGCCGGmψCAmψCCGCCACCmψCmψmψCGCmψCCGCmψGAAGGAAmψAmψmψmψmψGCmψmψGmψGmψGmψCmψAGCGGCAAmψAGmψAACGCmψ AACAGCCGCGGGCCGAGCmψmψCAGCAGCGGCCmψGGmψGCCGmψmψAAGCmψmψGCGCGGCAGCCAmψAmψGGGCCCmψAmψGGAGAmψAmψACAAG ACAGmψGmψCmψGCAmψGGAAGAGACAGCCAGmψGCGGGmψACmψGAGCCmψCmψmψCAGAAACAmψCGACAAGGmψACmψAAAGAGmψmψmψGGGCmψ mψCmψmψGGAAAGCGGmψmψCmψGGmψmψCmψGGGGGAGGAACGCmψGAAGmψACGmψGGAAGAmψGmψCACAAAmψGmψCGmψGAGGAGGGACGmψGG AGAAAmψGGGGCCCCmψmψmψGACCmψGGmψGmψACGGCmψCGACGCAGCCCCmψAGGCAGCmψCmψmψGmψGAmψCGCmψGmψCCCGGCmψGGmψACA mψGmψmψCCAGmψmψCCACCGGAmψCCmψGCAGmψAmψGCGCmψGCCmψCGCCAGGAGAGmψCAGCGGCCCmψmψCmψmψCmψGGAmψAmψmψCAmψG GACAAmψCmψGCmψGCmψGACmψGAGGAmψGACCAAGAGACAACmψACCCGCmψmψCCmψmψCAGACAGAGGCmψGmψGACCCmψCCAGGAmψGmψCCG mψGGCAGAGACmψACCAGAAmψGCmψAmψGCGGGmψGmψGGAGCAACAmψmψCCAGGGCmψGAAGAGCAAGCAmψGCGCCCCmψGACCCCAAAGGAAG AAGAGmψAmψCmψGCAAGCCCAAGmψCAGAAGCAGGAGCAAGCmψGGACGCCCCGAAAGmψmψGACCmψCCmψGGmψGAAGAACmψGCCmψmψCmψCCC GCmψGAGAGAGmψACmψmψCAAGmψAmψmψmψmψmψCmψCAAAACmψCACmψmψCCmψCmψmψGGCGGmψmψCCGGCGGAGGAAmψGAACAAmψmψCC CAGGGAAGAGmψGACCmψmψCGAGGAmψGmψCACmψGmψGAACmψmψCACCCAGGGGGAGmψGGCAGCGGCmψGAAmψCCCGAACAGAGAAACmψmψGm ψACAGGGAmψGmψGAmψGCmψGGAGAAmψmψACAGCAACCmψmψGmψCmψCmψGmψGGGACAAGGGGAAACCACCAAACCCGAmψGmψGAmψCmψmψG AGGmψmψGGAACAAGGAAAGGAGCCAmψGGmψmψGGAGGAAGAGGAAGmψGCmψGGGAAGmψGGCCGmψGCAGAAAAAAAmψGGGGACAmψmψGGAGGG CAGAmψmψmψGGAAGCCAAAGGAmψGmψGAAAGAGAGmψCmψCGGAGGGCCGAGCmψCmψGGCGCACCCCCACCAAGmψGGAGGGmψCmψCCmψGCCG GGmψCCCCAACAmψCmψACmψGAAGAAGGCACCAGCGAAmψCCGCAACGCCCGAGmψCAGGCCCmψGGmψACCmψCCACAGAACCAmψCmψGAAGGmψA GmψGCGCCmψGGmψmψCCCCAGCmψGGAAGCCCmψACmψmψCCACCGAAGAAGGCACGmψCAACCGAACCAAGmψGAAGGAmψCmψGCCCCmψGGGACCAGCACmψGAACCAmψCmψGAGCAAGAGAmψCAAGAGAAmψCAACAAGAmψCAGAAGGAGACmψGGmψCAAGGACAGCAACACAAAGAAGGCCGGCAAG ACAGGCCCAmψGAAAACCCmψGCmψCGmψCAGAGmψGAmψGACCCmψGACCmψGAGAGAGCGGCmψGGAAAACCmψGAGAAAGAAGCCCGAGAACAmψCCCmψCAGCCmψAmψCAGCAACACCAGCAGGGCCAACCmψGAACAAGCmψGCmψGACCGACmψACACCGAGAmψGAAGAAAGCCAmψCCmψGCACGm ψGmψACmψGGGAAGAGmψmψCCAGAAAGACCCCGmψGGGCCmψGAmψGAGCAGAGmψmψGCmψCAGCCmψGCCAGCAAGAAGAmψCGACCAGAACAAGC mψGAAGCCCGAGAmψGGACGAGAAGGGCAAmψCmψGACCACAGCCGGCmψmψmψGCCmψGCmψCmψCAGmψGmψGGCCAGCCmψCmψGmψmψCGmψGmψ ACAAGCmψGGAACAGGmψGmψCCGAGAAAGGCAAGGCCmψACACCAACmψACmψmψCGGCAGAmψGmψAACGmψGGCCGAGCACGAGAAGCmψGAmψm ψCmψGCmψGGCCCAGCmψGAAACCmψGAGAAGGACmψCmψGAmψGAGGCCGmψGACCmψACAGCCmψGGGCAAGmψmψmψGGACAGAGAGCCCmψGGAC mψmψCmψACAGCAmψCCACGmψGACCAAAGAAAGCACACACCCGmψGAAGCCCCmψGGCmψCAGAmψCGCCGGCAAmψAGAmψACGCCmψCmψGGAC CmψGmψGGGCAAAGCCCmψGmψCCGAmψGCCmψGCAmψGGGAACAAmψCGCCAGCmψmψCCmψGAGCAAGmψACCAGGACAmψCAmψCAmψCGAGCACC AGAAGGmψGGmψCAAGGGCAACCAGAAGAGACmψGGAAAGCCmψGAGGGAGCmψGGCCGGCAAAGAGAACCmψGGAAmψACCCCAGCGmψGACCCmψG CCmψCCmψCAGCCmψCACACAAAAGAAGGCGmψGGACGCCmψACAACGAAGmψGAmψCGCCAGAGmψGAGAAmψGmψGGGmψCAACCmψGAACCmψGmψ GGCAGAAGCmψGAAACmψGmψCCAGGGACGACGCCAAGCCmψCmψGCmψGAGACmψGAAGGGCmψmψCCCmψAGCmψmψCCCmψCmψGGmψGGAAAGA CAGGCCAAmψGAAGmψGGAmψmψGGmψGGGACAmψGGmψCmψGCAACGmψGAAGAAGCmψGAmψCAACGAGAAGAAAGAGGAmψGGCAAGGmψmψmψmψ CmψGGCAGAACCmψGGCCGGCmψACAAGAGACAAGAAGCCCmψGAGGCCmψmψACCmψGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGmψmψCGCCAGAmψACCAGCmψGGGCGACCmψGCmψGCmψGCACCmψGGAAAAGAAGCACGGCGAGGACmψGGGGCAAAGmψGmψACGAmψGAGGCCmψGGGAGAG AAmψCGACAAGAAGGmψGGAAGGCCmψGAGCAAGCACAmψmψAAGCmψGGAAGAGGAAAGAAGGAGCGAGGACGCCCAAmψCmψAAAGCCGCmψCmψG ACCGamψmψGGCmψGAGAGCCAAGGCCAGCmψmψmψGmψGAmψCGAGGGCCmψGAAAGAGGCCGACAAGGACGAGmψmψCmψGCAGAmψGCGAGCmψGA AGCmψGCAGAAGmψGGmψACGGCGAmψCmψGAGAGGCAAGCCCmψmψCGCCAmψmψGAGGCCGAGAACAGCAmψCCmψGGACAmψCAGCGGCmψmψCA GCAAGCAGmψACAACmψGCGCCmψmψCAmψmψmψGGCAGAAAGACGGCGmψCAAGAAACmψGAACCmψGmψACCmψGAmψCAmψCAAmψmψACmψmψCA AAGGCGGCAAGCmψGCGGmψmψCAAGAAGAmψCAAACCCGAGGCCmψmψCGAGGCmψAACAGAmψmψCmψACACCGmψGAmψCAACAAAAAGmψCCGGC GAGAmψCGmψGCCCAmψGGAAGmψGAACmψmψCAACmψmψCGACGACCCCAACCmψGAmψmψAmψCCmψGCCmψCmψGGCCmψmψCGGCAAGAGACAGG GCAGAGAGmψmψCAmψCmψGGAACGAmψCmψGCmψGAGCCmψGGAAACCGGCmψCmψCmψGAAGCmψGGCCAAmψGGCAGAGmψGAmψCGAGAAAACC CmψGmψACAACAGGAGAACCAGACAGGACGAGCCmψGCmψCmψGmψmψmψGmψGGCCCmψGACCmψmψCGAGAGAAGAGAGGmψGCmψGGACAGCAGCA ACAmψCAAGCCCAmψGAACCmψGAmψCGGCGmψGGCCCGGGGCGAGAAmψAmψCCCmψGCmψGmψGAmψCGCCCmψGACAGACCCmψGAAGGAmψGCCCACmψGAGCAGAmψmψCAAGGACmψCCCmψGGGCAACCCmψACACACAmψCCmψGAGAAmψCGGCGAGAGCmψACAAAAGAGAAGCAGAGGACAAmψCCA GGCCAAGAAAGAGGmψGGAACAGAGAAGAGCCGGCGGAmψACmψCmψAGGAAGmψACGCCAGCAAGGCCAAGAAmψCmψGGCCGACGACAmψGGmψCC GAAACACCGCCAGAGAmψCmψGCmψGmψACmψACGCCGmψGACACAGGACGCCAmψGCmψGAmψCmψmψCGCGAAmψCmψGAGCAGAGGCmψmψCGGCC GGCAGGGCAAGAGAACCmψmψmψAmψGGCCGAGAGGCAGmψACACCAGAAmψGGAAGAmψmψGGCmψCACAGCmψAAACmψGGCCmψACGAGGGACmψ GAGCAAGACCmψACCmψGmψCCAAAACACmψGGCCCAGmψAmψACCmψCCAAGACCmψGCAGCAAmψmψGCGGCmψmψCACCAmψCACCAGCGCCGACm ψACGACAGAGmψGCmψGGAAAAGCmψCAAGAAAACCGCCACCGGCmψGGAmψGACCACCAmψCAACGGCAAAGAGCmψGAAGGmψmψGAGGGCCAGAm ψCACCmψACmψACAACAGGmψACAAGAGGCAGAACGmψCGmψGAAGGAmψCmψGAGCGmψGGAACmψGGACAGACmψGAGCGAAGAGAGCGmψGAACAA CGACAmψCAGCAGCmψGGACAAAGGGCAGAmψCAGGCGAGGCmψCmψGAGCCmψGCmψGAAGAAGAGGmψmψmψAGCCACAGACCmψGmψGCAAGAGA AGmψmψCGmψGmψGCCmψGAACmψGCGGCmψmψCGAGACACACGCCGCmψGAACAGGCmψGCCCmψGAACAmψmψGCCAGAAGCmψGGCmψGmψmψCCm ψGAGAAGCCAAGAGmψACAAGAAGmψACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCmψmψmψGmψGGAAACCmψGGCAGAGCmψmψC mψACAGAAAAAAGCmψGAAAGAAGmψCmψGGAAGCCCGCCGmψGCGAmψCGGGCGGmψmψCCGGCGGAGGmψmψCCACmψAGmψCCAAAAAAGAAGAGA AAGGmψAGAmψmψACAAAGAmψGACGAmψGACAAAGACmψACAAGGAmψGAmψGAmψGAmψAAGGGAmψCCGGCmψGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3100 Example 6 : CpG- depletion of DNA encoding the guide RNA scaffold improves CasX- mediated editing in vitro

病原體相關分子模式(PAMP),諸如未甲基化CpG模體,為微生物類別內保守的小分子模體。其藉由真核細胞中之鐸樣受體(toll-like receptor,TLR)及其他模式識別受體進行識別且通常誘導非特異性免疫活化。在基因療法之情形下,含有PAMP之治療劑通常不具有良好耐受性且在所觸發之強力免疫反應的情況下自患者快速清除,此最終導致治療功效降低。CpG模體為含有二核苷酸CG之短單股DNA序列。當此等CpG模體未甲基化時,其充當PAMP且因此刺激免疫反應。在此實例中,進行實驗以在編碼CasX變異體491、引導支架變異體235及靶向內源性B2M (β-2-微球蛋白)基因座之間隔子7.37的AAV構築體的情形下耗竭引導支架編碼序列中之CpG模體,且測試活體外引導支架中之CpG耗竭對B2M基因座之編輯的影響。 材料及方法: CpG耗竭之引導支架之設計: Pathogen-associated molecular patterns (PAMPs), such as unmethylated CpG motifs, are small molecule motifs that are conserved within microbial classes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors in eukaryotic cells and often induce nonspecific immune activation. In the case of gene therapy, therapeutic agents containing PAMPs are often not well tolerated and are rapidly cleared from patients under the circumstances of the potent immune response triggered, which ultimately leads to reduced efficacy of the treatment. CpG motifs are short single-stranded DNA sequences containing the dinucleotide CG. When these CpG motifs are unmethylated, they act as PAMPs and thus stimulate immune responses. In this example, experiments were performed to deplete CpG motifs in the guide scaffold coding sequence in the context of an AAV construct encoding CasX variant 491, guide scaffold variant 235, and spacer 7.37 targeting the endogenous B2M (beta-2-microglobulin) locus, and the effect of CpG depletion in the guide scaffold in vitro on editing of the B2M locus was tested. Materials and Methods: Design of CpG-depleted guide scaffold:

核苷酸取代係經合理設計以置換基礎gRNA支架變異體(gRNA支架235)內之天然CpG模體,意欲保持編輯活性同時降低支架免疫原性。咸信,應自支架編碼序列移除儘可能多的CpG-模體以便充分降低免疫原性。支架235含有總共八個CpG元件;預測其中六個進行鹼基配對且形成雙股二級結構之互補股(參見圖22)。因此,對形成三個對之六個鹼基配對CpG進行協同突變以維持重要二級結構。此將獨立的含CpG區域之數目減少至五個(三個對及兩個單一CpG)以獨立地考慮用於CpG移除。具體而言,在(1)假結莖、(2)支架莖、(3)延伸莖泡、(4)延伸步驟及(5)延伸莖環中設計突變,如圖23中所圖解說明且在下文詳細描述。Nucleotide substitutions were rationally designed to replace natural CpG motifs within the basic gRNA scaffold variant (gRNA scaffold 235), with the intention of maintaining editing activity while reducing scaffold immunogenicity. It is believed that as many CpG-motifs as possible should be removed from the scaffold coding sequence in order to sufficiently reduce immunogenicity. Scaffold 235 contains a total of eight CpG elements; six of which are predicted to perform base pairing and form complementary strands of the double-stranded secondary structure (see Figure 22). Therefore, the six base-paired CpGs that form three pairs were mutated in concert to maintain important secondary structure. This reduced the number of independent CpG-containing regions to five (three pairs and two single CpGs) to be considered independently for CpG removal. Specifically, mutations were designed in (1) the pseudostem, (2) the scaffold stem, (3) the extended stem vesicle, (4) the extension step, and (5) the extended stem loop, as illustrated in FIG. 23 and described in detail below.

在假結莖(區域1)中,CpG對翻轉為GpC以使基礎組合物及序列之改變降至最低。基於先前涉及置換個別鹼基對之實驗,預期此突變不可能損害引導RNA支架之結構及功能。In the pseudostem (region 1), the CpG pairs were flipped to GpC to minimize changes in base composition and sequence. Based on previous experiments involving substitutions of individual base pairs, it was expected that this mutation would not compromise the structure and function of the guide RNA scaffold.

類似地,在支架莖(區域2)中,CpG對翻轉為GpC以使基礎組合物及序列之變化減至最少。預期此突變可能損害引導RNA支架之結構及功能,因為在使個別鹼基或鹼基對突變之先前實驗中在此區域中發現強序列保守。此強序列保守可能係由於支架莖環在與CasX蛋白相互作用以及與假結區域形成三螺旋體結構元件方面起著重要作用。Similarly, in the scaffold stem (region 2), the CpG pair was flipped to GpC to minimize the variation in the base composition and sequence. It was expected that this mutation might impair the structure and function of the guide RNA scaffold, as strong sequence conservation was found in this region in previous experiments that mutated individual bases or base pairs. This strong sequence conservation may be due to the important role of the scaffold stem loop in interacting with the CasX protein and forming a triple helical structural element with the pseudoknot region.

在延伸莖泡(區域3)中,單一CpG係藉由三種策略之一移除。首先,藉由CG->C突變使泡缺失。其次,藉由CG->CT突變使泡消退以恢復理想的鹼基配對。再者,整個延伸莖環經置換為支架174之延伸莖環。應注意,延伸莖環經置換為支架174的延伸莖環本身就再現了支架316 (先前已被證明其能進行高效編輯)。支架174之延伸莖環中不存在CpG模體。因此,延伸莖環置換為支架174的延伸莖環亦移除延伸莖中之CpG模體(區域4)。基於先前實驗表明延伸莖對微小變化具有相對的穩固性,因此預期延伸莖泡突變可能會損害引導RNA支架之結構及功能。In the extension stem vesicle (Region 3), a single CpG is removed by one of three strategies. First, the vesicle is deleted by a CG->C mutation. Second, the vesicle is regressed by a CG->CT mutation to restore ideal base pairing. Third, the entire extension stem loop is replaced with the extension stem loop of scaffold 174. It should be noted that the replacement of the extension stem loop with the extension stem loop of scaffold 174 itself reproduces scaffold 316 (which has been previously shown to be able to perform efficient editing). There is no CpG motif in the extension stem loop of scaffold 174. Therefore, replacement of the extension stem loop with the extension stem loop of scaffold 174 also removes the CpG motif in the extension stem (Region 4). Based on previous experiments showing that the elongation stem is relatively robust to small changes, we expected that mutations in the elongation stem vesicle might impair the structure and function of the guide RNA scaffold.

在延伸莖(區域4)中,在不產生額外CpG模體下CpG對不能翻轉成GpC。因此,CpG變成GG及互補CC模體。類似於區域3,基於延伸莖對微小變化具有相對的穩固性,因此預期此突變不可能損害引導RNA支架之結構及功能。In the extension stem (region 4), the CpG pair cannot be flipped to GpC without generating an additional CpG motif. Therefore, the CpG becomes GG and a complementary CC motif. Similar to region 3, the extension stem is relatively robust to small changes, so it is expected that this mutation is unlikely to damage the structure and function of the guide RNA scaffold.

最後,延伸莖環(區域5)以基於檢查莖環穩定性之先前實驗設計的三種方式之一進行突變。詳言之,先前已展示莖環之若干變化形式具有類似的穩定性水平,且莖環之此等變化形式中的一些不含有CpG。基於此等發現,首先,該環經置換為具有CUUG序列之新環。其次,該環經置換為具有GAAA序列之新環。由於GAAA環置換將產生鄰近於環之新穎CpG,因此將其與互補股上的C->G鹼基對交換以及相應的G🡪C鹼基對交換相結合,最終形成CUUCGG->GGAAAC交換。再者,藉由插入A以中斷CpG模體,使環發生突變且從而將環之尺寸自4個鹼基增加至5個鹼基。預期延伸莖環發生隨機突變將可能對二級結構穩定性產生不利影響,且因此對編輯造成不利影響。然而,依賴於先前確認之序列被認為與置換相關之風險較低。Finally, the extended stem loop (region 5) is mutated in one of three ways based on a previous experimental design to examine the stability of the stem loop. In detail, several variations of the stem loop have been shown to have similar levels of stability, and some of these variations of the stem loop do not contain CpG. Based on these findings, first, the loop is replaced with a new loop with a CUUG sequence. Secondly, the loop is replaced with a new loop with a GAAA sequence. Since the GAAA loop replacement will produce a new CpG adjacent to the loop, it is combined with a C->G base pair exchange on the complementary strand and a corresponding G🡪C base pair exchange, ultimately forming a CUUCGG->GGAAAC exchange. Furthermore, the loop was mutated by inserting an A to interrupt the CpG motif and thereby increase the loop size from 4 to 5 bases. It is expected that random mutations in the extended stem loop will likely have a negative impact on secondary structural stability and therefore on editing. However, the risk associated with substitutions is considered low due to reliance on previously confirmed sequences.

為產生由DNA編碼之具有降低CpG水平的引導RNA支架,以各種組態組合上文所描述之突變。下表33概述所用突變之組合。在表33中,0指示無突變引入至指定區域,1、2或3指示該區域中引入突變,如圖23中所圖解說明,而n/a指示不適用。具體而言,對於區域1假結莖,1指示引入CG->GC突變。對於區域2支架莖,1指示引入CG->GC突變。對於區域3延伸莖泡,1指示藉由缺失形成泡之鹼基G及A來移除泡,2指示藉由CG->CU突變以允許鹼基A與U之間進行鹼基配對,使泡消退,且3指示延伸莖環經置換為來自引導支架174之延伸步驟環。對於區域4延伸莖,1指示引入CG->GC突變。對於區域5延伸莖環,1指示環係由UUCG->CUUG置換,2指示環與鄰近於環之鹼基對一起自CUUCGG->GGAAAC置換,且3指示在C與G之間插入A。 33 引導支架 235 中之 CpG 減少及耗竭的突變概述 支架ID 區域1 ( 假結莖) 區域2 ( 支架莖) 區域3 ( 延伸莖泡) 區域 4 ( 延伸莖 ) 區域5 ( 延伸莖環) 320 1 0 0 1 0 321 1 0 1 1 0 322 1 0 2 1 0 323 1 0 3 n/a 0 324 1 0 1 1 1 325 1 0 2 1 1 326 1 0 3 n/a 1 327 1 0 1 1 2 328 1 0 2 1 2 329 1 0 3 n/a 2 330 1 0 1 1 3 331 1 0 2 1 3 332 1 0 3 n/a 3 334 1 1 2 1 1 335 1 1 3 n/a 1 336 1 1 1 1 2 337 1 1 2 1 2 338 1 1 3 n/a 2 339 1 1 1 1 3 340 1 1 2 1 3 341 1 1 3 n/a 3 235 0 0 0 0 0 To generate a guide RNA scaffold with reduced CpG levels encoded by DNA, the mutations described above were combined in various configurations. Table 33 below summarizes the combination of mutations used. In Table 33, 0 indicates that no mutation is introduced into the specified region, 1, 2 or 3 indicate that a mutation is introduced in the region, as illustrated in Figure 23, and n/a indicates that it is not applicable. Specifically, for region 1 pseudostem, 1 indicates that a CG->GC mutation is introduced. For region 2 scaffold stems, 1 indicates that a CG->GC mutation is introduced. For region 3 extension stem vesicles, 1 indicates that the vesicle is removed by deleting the bases G and A that form the vesicle, 2 indicates that the vesicle is eliminated by CG->CU mutation to allow base pairing between bases A and U, and 3 indicates that the extension stem loop is replaced with the extension step loop from the guide scaffold 174. For the region 4 extended stem, 1 indicates the introduction of a CG->GC mutation. For the region 5 extended stem loop, 1 indicates the loop was replaced by UUCG->CUUG, 2 indicates the loop was replaced with a base pair adjacent to the loop from CUUCGG->GGAAAC, and 3 indicates the insertion of an A between C and G. Table 33 : Summary of mutations directing CpG reduction and depletion in scaffold 235 Bracket ID Zone 1 ( pseudostem) Zone 2 ( Stent Stem) Zone 3 ( Extended vesicles) Zone 4 ( Extended stems ) Zone 5 ( Extended stem ring) 320 1 0 0 1 0 321 1 0 1 1 0 322 1 0 2 1 0 323 1 0 3 n/a 0 324 1 0 1 1 1 325 1 0 2 1 1 326 1 0 3 n/a 1 327 1 0 1 1 2 328 1 0 2 1 2 329 1 0 3 n/a 2 330 1 0 1 1 3 331 1 0 2 1 3 332 1 0 3 n/a 3 334 1 1 2 1 1 335 1 1 3 n/a 1 336 1 1 1 1 2 337 1 1 2 1 2 338 1 1 3 n/a 2 339 1 1 1 1 3 340 1 1 2 1 3 341 1 1 3 n/a 3 235 0 0 0 0 0

下表34列出經設計之CpG減少或耗竭之引導支架的DNA序列。 34 編碼 CpG 減少或耗竭之引導 RNA 支架的 DNA 序列 支架ID DNA 序列 SEQ ID NO 320 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCGCTTAGGGACTTCGGTCCCTAAGAGGCATCAGAG 3210 321 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACTTCGGTCCCTAAGGGCATCAGAG 3211 322 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACTTCGGTCCCTAAGAGGCATCAGAG 3212 323 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCTTCGGAGGGAGCATCAGAG 3213 324 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACCTTGGTCCCTAAGGGCATCAGAG 3214 325 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACCTTGGTCCCTAAGAGGCATCAGAG 3215 326 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCCTTGGAGGGAGCATCAGAG 3216 327 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGAGGAAACTCCCTAAGGGCATCAGAG 3217 328 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGAGGAAACTCCCTAAGAGGCATCAGAG 3218 329 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTGGAAACAGGGAGCATCAGAG 3219 330 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACTTCAGGTCCCTAAGGGCATCAGAG 3220 331 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACTTCAGGTCCCTAAGAGGCATCAGAG 3221 332 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCTTCAGGAGGGAGCATCAGAG 3222 333 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGACCTTGGTCCCTAAGGGCATCAGAG 3223 334 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGACCTTGGTCCCTAAGAGGCATCAGAG 3224 335 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCTCCCTCCTTGGAGGGAGCATCAGAG 3225 336 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGAGGAAACTCCCTAAGGGCATCAGAG 3226 337 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGAGGAAACTCCCTAAGAGGCATCAGAG 3227 338 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCTCCCTGGAAACAGGGAGCATCAGAG 3228 339 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGACTTCAGGTCCCTAAGGGCATCAGAG 3229 340 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGACTTCAGGTCCCTAAGAGGCATCAGAG 3230 341 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCTCCCTCTTCAGGAGGGAGCATCAGAG 3231 CpG耗竭之AAV質體的產生: Table 34 below lists the DNA sequences of the designed CpG-reduced or -depleted guide scaffolds. Table 34 : DNA sequences encoding CpG- reduced or -depleted guide RNA scaffolds Bracket ID DNA Sequence SEQ ID NO 320 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCGCTTAGGGACTTCGGTCCCTAAGAGGCATCAGAG 3210 321 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACTTCGGTCCCTAAGGGCATCAGAG 3211 322 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACTTCGGTCCCTAAGAGGCATCAGAG 3212 323 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCTTCGGAGGGAGCATCAGAG 3213 324 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACCTTGGTCCCTAAGGGCATCAGAG 3214 325 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACCTTGGTCCCTAAGAGGCATCAGAG 3215 326 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCCTTGGAGGGAGCATCAGAG 3216 327 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGAGGAAACTCCCTAAGGGCATCAGAG 3217 328 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGAGGAAACTCCCTAAGAGGCATCAGAG 3218 329 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGTCCCCTGGAAACAGGGAGCATCAGAG 3219 330 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCCTTAGGGACTTCAGGTCCCTAAGGGCATCAGAG 3220 331 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCCTCTTAGGGACTTCAGGTCCCTAAGAGGCATCAGAG 3221 332 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGCGACTATGTCGTAGTGGGTAAAGCTCCCTCTTCAGGAGGGAGCATCAGAG 3222 333 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGACCTTGGTCCCTAAGGGCATCAGAG 3223 334 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGACCTTGGTCCCTAAGAGGCATCAGAG 3224 335 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCTCCCTCCTTGGAGGGAGCATCAGAG 3225 336 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGAGGAAACTCCCTAAGGGCATCAGAG 3226 337 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGAGGAAACTCCCTAAGAGGCATCAGAG 3227 338 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGTCCCCTGGAAACAGGGAGCATCAGAG 3228 339 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCCTTAGGGACTTCAGGTCCCTAAGGGCATCAGAG 3229 340 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCCTCTTAGGGACTTCAGGTCCCTAAGAGGCATCAGAG 3230 341 ACTGGGCCTTCTATCTGATTACTCTGAGGCCCATCACCAGGCACTATGTGCTAGTGGGTAAAGCTCCCTCTTCAGGAGGGAGCATCAGAG 3231 Generation of CpG-depleted AAV plasmids:

除AAV2 ITR之外,在另外CpG耗竭之AAV載體之情形下測試CpG減少或耗竭之gRNA支架。具體而言,基於以下元件來自相關物種之同源核苷酸序列,經由電腦設計用於置換AAV組分中之原生CpG模體的核苷酸取代:小鼠U1a snRNA (小核RNA)基因啟動子、bGHpA (牛生長激素聚腺苷酸化)序列及人類U6啟動子。CasX 491之編碼序列針對CpG耗竭經密碼子最佳化。所有得到之序列(表34及表35)係以為具有適用於選殖及等溫組裝之突出端的基因片段排序,以單獨地置換現有基礎AAV質體(構築體ID 183)之對應元件。將靶向內源性B2M基因的間隔子7.37 (GGCCGAGAUGUCUCGCUCCG;SEQ ID NO: 3137)用於此實例中論述之實驗。首次進行實驗(「N=1」)時,亦包括具有非靶向間隔子0.0之樣本作為對照(CGAGACGUAAUUACGUCUCG, SEQ ID NO: 3232;參見圖24)。In addition to AAV2 ITRs, CpG-reduced or -depleted gRNA scaffolds were tested in the context of additional CpG-depleted AAV vectors. Specifically, nucleotide substitutions to replace native CpG motifs in AAV components were designed in silico based on homologous nucleotide sequences from relevant species of the following elements: mouse U1a snRNA (small nuclear RNA) gene promoter, bGHpA (bovine growth hormone polyadenylation) sequence, and human U6 promoter. The coding sequence of CasX 491 was codon-optimized for CpG depletion. All resulting sequences (Tables 34 and 35) were ordered as gene fragments with overhangs suitable for cloning and isothermal assembly to replace the corresponding elements of the existing base AAV plasmid (construct ID 183) individually. The spacer 7.37 (GGCCGAGAUGUCUCGCUCCG; SEQ ID NO: 3137) targeting the endogenous B2M gene was used in the experiments described in this example. When the experiment was first performed ("N=1"), a sample with the non-targeted spacer 0.0 was also included as a control (CGAGACGUAAUUACGUCUCG, SEQ ID NO: 3232; see FIG. 24).

使用標準分子選殖技術產生所得AAV構築體。中間預處理經選殖及序列驗證之質體構築體,用於後續的核轉染及AAV載體產生。除編碼gRNA之序列(表33)以外,AAV構築體之額外組分之序列列於表35中。 35 AAV 元件之序列 (AAV 構築體中之 5'-3') 元件 DNA 序列 SEQ ID NO: AAV2 5' ITR CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT 3233 CpG耗竭之U1a啟動子 AATGGAGGTGGTACTATGTAGATGAGAATTCAGGAGCAAACTGGGAAAAGCAACTGCTTCCAAATATTTGTGATTTTTACAGTGTAGTTTTGGAAAAACTCTTAGCCTACCAATTCTTCTAAGTGTTTTAAAATGTGGGAGCCAGTACACATGAAGTTATAGAGTGTTTTAATGAGGCTTAAATATTTACTGTAACTATGAAATGCTACACATATCATGCTGTTCAGGCTCTGTGGCCATGCAACTCATACT 3234 CpG耗竭之cMycNLS-CasX491-cMycNLS ATGGCTCCAGCTGCCAAGAGAGTGAAGCTGGACTCTAGACAAGAGATCAAGAGGATCAACAAGATTAGAAGAAGGCTGGTCAAGGACAGCAACACCAAGAAGGCAGGCAAGACAGGCCCCATGAAGACCCTGCTTGTCAGAGTGATGACCCCTGACCTGAGAGAGAGACTGGAAAACCTGAGAAAGAAGCCTGAGAACATCCCTCAGCCTATCTCCAACACCAGCAGAGCCAACCTGAACAAGCTGCTGACAGACTACACAGAGATGAAGAAAGCCATCCTGCATGTGTACTGGGAAGAGTTCCAGAAAGACCCTGTGGGCCTGATGAGCAGAGTGGCCCAGCCTGCCAGCAAGAAGATTGACCAGAACAAACTGAAGCCAGAGATGGATGAGAAGGGCAACCTGACCACAGCTGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTTGTGTACAAGCTGGAACAAGTGTCTGAGAAAGGCAAGGCCTACACCAACTACTTTGGCAGATGCAATGTGGCTGAGCATGAGAAGCTGATCCTGCTGGCCCAGCTGAAGCCTGAAAAGGACTCTGATGAGGCTGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCATGTGACCAAAGAAAGCACACACCCTGTGAAGCCCCTGGCTCAGATTGCTGGCAACAGATATGCCTCTGGACCTGTGGGCAAAGCCCTGTCTGATGCCTGCATGGGAACCATTGCCAGCTTTCTGAGCAAGTACCAGGACATCATCATTGAGCACCAGAAAGTGGTCAAGGGGAACCAGAAGAGGCTGGAATCTCTGAGAGAGCTGGCTGGCAAAGAGAACCTGGAATACCCCTCTGTGACCCTGCCTCCTCAGCCTCACACCAAAGAGGGTGTTGATGCCTACAATGAAGTGATTGCCAGAGTCAGGATGTGGGTCAACCTGAATCTGTGGCAGAAGCTGAAGCTGAGCAGGGATGATGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCACTGGTGGAAAGGCAGGCTAATGAAGTGGATTGGTGGGACATGGTCTGCAATGTGAAGAAACTGATCAATGAGAAGAAAGAGGATGGCAAGGTTTTCTGGCAGAACCTGGCTGGCTACAAGAGGCAAGAAGCCCTGAGGCCTTACCTGTCCTCTGAGGAAGATAGGAAGAAGGGGAAGAAGTTTGCCAGATACCAGCTGGGAGATCTGCTGCTGCACCTGGAAAAGAAACATGGGGAAGATTGGGGCAAAGTGTATGATGAGGCCTGGGAGAGAATTGACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGATCTGAGGATGCCCAGAGCAAGGCTGCCCTGACTGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATTGAGGGCCTGAAAGAGGCTGACAAGGATGAGTTCTGTAGATGTGAACTGAAGCTGCAAAAGTGGTATGGGGACCTGAGGGGCAAGCCCTTTGCCATTGAGGCAGAGAACAGCATCCTGGACATCAGTGGCTTCAGCAAGCAGTACAACTGTGCCTTCATTTGGCAGAAGGATGGGGTTAAGAAGCTCAACCTGTACCTGATCATCAACTACTTCAAAGGTGGCAAGCTGAGGTTCAAGAAGATCAAGCCAGAGGCCTTTGAGGCCAACAGGTTCTACACAGTGATCAACAAAAAGTCTGGGGAGATTGTGCCCATGGAAGTGAACTTCAACTTTGATGATCCCAACCTCATCATCCTGCCACTGGCCTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAATGACCTGCTGAGCCTGGAAACAGGCAGCCTGAAACTGGCCAATGGCAGAGTGATTGAGAAAACCCTGTACAACAGAAGGACCAGACAGGATGAGCCTGCACTGTTTGTGGCCCTGACCTTTGAGAGAAGGGAAGTGCTGGATAGCAGCAACATCAAGCCCATGAACCTGATTGGAGTGGACAGAGGGGAGAATATCCCTGCTGTCATTGCCCTGACAGACCCTGAGGGCTGTCCCCTGAGCAGATTCAAGGACTCCCTGGGCAACCCCACACACATTCTGAGAATTGGGGAGAGCTACAAAGAGAAGCAGAGAACCATCCAGGCCAAGAAAGAAGTGGAACAGAGGAGAGCTGGAGGCTACTCTAGGAAGTATGCCAGCAAAGCCAAGAATCTGGCTGATGACATGGTCAGAAACACAGCCAGGGACCTGCTGTACTATGCTGTGACCCAGGATGCCATGCTGATCTTTGAGAATCTGAGCAGAGGATTTGGGAGACAAGGCAAGAGGACCTTCATGGCTGAAAGACAGTACACCAGGATGGAAGATTGGCTGACTGCCAAACTGGCCTATGAGGGACTGAGCAAGACCTACCTGTCCAAGACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGTGGCTTCACCATCACCTCTGCAGACTATGACAGAGTGCTGGAAAAGCTCAAGAAAACAGCCACAGGCTGGATGACCACCATCAATGGGAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGATACAAAAGGCAGAATGTGGTTAAGGACCTGTCTGTGGAACTGGACAGACTGTCTGAGGAATCTGTGAACAATGACATCAGCAGCTGGACCAAGGGCAGATCTGGGGAAGCTCTGAGCCTGCTGAAGAAGAGATTCAGCCACAGACCTGTGCAAGAGAAGTTTGTGTGTCTGAACTGTGGCTTTGAGACACATGCTGATGAACAGGCTGCTCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACAGGCAACACTGACAAGAGGGCCTTTGTGGAAACCTGGCAGAGCTTCTACAGAAAGAAACTCAAAGAAGTCTGGAAGCCTGCTGTGGGCAGCCCTGCAGCTAAAAGGGTCAAGCTGGACTGA 3235 CpG耗竭之bGH-聚腺苷酸序列 CTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCAGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCACATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCATGCTGGGGA 3236 CpG耗竭之U6啟動子 GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACAATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATATTTGATGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCATAACTTGAAAGTATTTCTATTTCTTGGCTTTATATATCTTGTGGAAAGGAC 3237 參見上文表34 中之sgRNA 序列。 AAV2 3' ITR AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG 3238 AAV產生: The resulting AAV constructs were generated using standard molecular cloning techniques. The cloned and sequence-verified plasmid constructs were pre-treated for subsequent nucleofection and AAV vector production. In addition to the sequence encoding the gRNA (Table 33), the sequences of the additional components of the AAV constructs are listed in Table 35. Table 35 : Sequences of AAV elements ( 5'-3' in AAV constructs ) element DNA Sequence SEQ ID NO: AAV2 5' ITR CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT 3233 CpG-depleted U1a promoter AATGGAGGTGGTACTATGTAGATGAGAATTCAGGAGCAAACTGGGAAAAGCAACTGCTTCCAAATATTTGTGATTTTTACAGTGTAGTTTTGGAAAAACTCTTAGCCTACCAATTCTTCTAAGTGTTTTAAAATGTGGGAGCCAGTACACATGAAGTTATAGAGTGTTTTAATGAGGCTTAAATATTTACTGTAACTATGAAATGCTACACATATCATGCTGTTCAGGCTCTGTGGCCATGCAACTCATACT 3234 CpG depletion of cMycNLS-CasX491-cMycNLS ATGGCTCCAGCTGCCAAGAGAGTGAAGCTGGACTCTAGACAAGAGATCAAGAGGATCAACAAGATTAGAAGAAGGCTGGTCAAGGACAGCAACACCAAGAAGGCAGGCAAGACAGGCCCCATGAAGACCCTGCTTGTCAGAGTGATGACCCCTGACCTGAGAGAGAGACTGGAAAACCTGAGAAAGA AGCCTGAGAACATCCCTCAGCCTATCTCCAACACCAGCAGAGCCAACCTGAACAAGCTGCTGACAGACTACACAGATGAAGAAAGCCATCCTGCATGTGTACTGGGAAGAGTTCCAGAAAGACCCTGTGGGCCTGATGAGCAGAGTGGCCCAGCCTGCCAGCAAGAAGATTGACCAGAACAAACTG AAGCCAGAGATGGATGAGAAGGGCAACCTGACCACAGCTGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTTGTGTACAAGCTGGAACAAGTGTCTGAGAAAGGCAAGGCCTACACCAACTACTTTGGCAGATGCAATGTGGCTGAGCATGAGAAGCTGATCCTGCTGGCCCAGCTGAAGCCTGA AAAGGACTCTGATGAGGCTGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCATGTGACCAAAGAAAGCACACACCCTGTGAAGCCCCTGGCTCAGATTGCTGGCAACAGATATGCCTCTGGACCTGTGGGCAAAGCCCTGTCTGATGCCTGCATGGGAACCATTG CCAGCTTTCTGAGCAAGTACCAGGACATCATCATTGAGCACCAGAAAGTGGTCAAGGGGAACCAGAAGAGGCTGGAATCTCTGAGAGAGCTGGCTGGCAAAGAGAACCTGGAATACCCCTCTGTGACCCTGCCTCCTCAGCCTCACACCAAAGAGGGTGTTGATGCCTACAATGAAGTGATTGCCAGA GTCAGGATGTGGGTCAACCTGAATCTGTGGCAGAAGCTGAAGCTGAGCAGGGATGATGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCACTGGTGGAAAGGCAGGCTAATGAAGTGGATTGGTGGGACATGGTCTGCAATGTGAAGAAACTGATCAATGAGAAGAAAGAGGATGGCAA GGTTTTCTGGCAGAACCTGGCTGGCTACAAGAGGCAAGAAGCCCTGAGGCCTTACCTGTCCTCTGAGGAAGATAGGAAGAAGGGGAAGAAGTTTGCCAGATACCAGCTGGGAGATCTGCTGCTGCACCTGGAAAAGAAACATGGGGAAGATTGGGGCAAAGTGTATGATGAGGCCTGGGAGAGAATTG ACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGATCTGAGGATGCCCAGAGCAAGGCTGCCCTGACTGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATTGAGGGCCTGAAAGAGGCTGACAAGGATGAGTTCTGTAGATGTGAACTGAAGCTGCAAAAGTGGTATGGG GACCTGAGGGGCAAGCCCTTTGCCATTGAGGCAGAGAACAGCATCCTGGACATCAGTGGCTTCAGCAAGCAGTACAACTGTGCCTTCATTTGGCAGAAGGATGGGGTTAAGAAGCTCAACCTGTACCTGATCATCAACTACTTCAAAGGTGGCAAGCTGAGGTTCAAGAAGATCAAGCCAGAGGCCT TTGAGGCCAACAGGTTCTACACAGTGATCAACAAAAAGTCTGGGGAGATTGTGCCCATGGAAGTGAACTTCAACTTTGATGATCCCAACCTCATCATCCTGCCACTGGCCTTTTGGCAAGAGACAGGGCAGAGAATTCATCTGGAATGACCTGCTGAGCCTGGAAACAGGCAGCCTGAAACTGGCCAAT GGCAGAGTGATTGAGAAAACCCTGTACAACAGAAGGACCAGACAGGATGAGCCTGCACTGTTTGTGGCCCTGACCTTTGAGAGAAGGGAAGTGCTGGATAGCAGCAACATCAAGCCCATGAACCTGATTGGAGTGGACAGAGGGGAGAATATCCCTGCTGTCATTGCCCTGACAGACCCTGAGGGCTG TCCCCTGAGCAGATTCAAGGACTCCCTGGGCAACCCCACACACATTCTGAGAATTGGGGAGAGCTACAAAGAGAAGCAGAGAACCATCCAGGCCAAGAAAGAAGTGGAACAGAGGAGAGCTGGAGGCTACTCTAGGAAGTATGCCAGCAAAGCCAAGAATCTGGCTGATGACATGGTCAGAAACACAG CCAGGGACCTGCTGTACTATGCTGTGACCCAGGATGCCATGCTGATCTTTGAGAATCTGAGCAGAGGATTTGGGAGACAAGGCAAGAGGACCTTCATGGCTGAAAGACAGTACACCAGGATGGAAGATTGGCTGACTGCCAAACTGGCCTATGAGGGACTGAGCAAGACCTACCTGTCCAAGACACTG GCCCAGTATACCTCCAAGACCTGCAGCAATTGTGGCTTCACCATCACCTCTGCAGACTATGACAGAGTGCTGGAAAAGCTCAAGAAAACAGCCACAGGCTGGATGACCACCATCAATGGGAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGATACAAAAGGCAGAATGTGGTTAAGGA CCTGTCTGTGGAACTGGACAGACTGTCTGAGGAATCTGTGAACAATGACATCAGCAGCTGGACCAAGGGCAGATCTGGGGAAGCTCTGAGCCTGCTGAAGAAGAGATTCAGCCACAGACCTGTGCAAGAGAAGTTTGTGTGTCTGAACTGTGGCTTTGAGACACATGCTGATGAACAGGCTGCTCTGA ACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACAGGCAACACTGACAAGAGGGCCTTTGTGGAAACCCTGGCAGAGCTTCTACAGAAAGAAACTCAAAGAAGTCTGGAAGCCTGCTGTGGGCAGCCCTGCAGCTAAAAGGGTCAAGCTGGACTGA 3235 CpG-depleted bGH-polyadenylation sequence CTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCAGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTCCTAATAAAATGAGGAAATTGCATCACATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCATGCTGGGGA 3236 CpG-depleted U6 promoter GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACAATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATATTTGATGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCATAACTTGAAAGTATTTCTATTTCTTGGCTTTATATATCTTGTGGAAAGGAC 3237 See sgRNA sequences in Table 34 above . AAV2 3' ITR AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG 3238 AAV production:

在轉染當天將保持在FreeStyle 293培養基中的懸浮液調適之HEK293T細胞以1.5E6個細胞/毫升接種於20-30 mL培養基中。在無血清Opti-MEM培養基中,使用PEI-Max (Polysciences)將具有由ITR重複序列側接之轉殖基因的無內毒素pAAV質體與提供用於複製的腺病毒輔助基因以及AAV rep/cap基因體的質體共轉染。三天後,將培養物離心以將上清液與細胞集結粒分離,且按照標準程序收集AAV粒子,濃縮且過濾。On the day of transfection, HEK293T cells maintained in suspension in FreeStyle 293 medium were seeded at 1.5E6 cells/mL in 20-30 mL of medium. Endotoxin-free pAAV plasmids with the transgene flanked by ITR repeats were co-transfected with plasmids providing adenoviral helper genes for replication and the AAV rep/cap genome using PEI-Max (Polysciences) in serum-free Opti-MEM medium. Three days later, the culture was centrifuged to separate the supernatant from the cell pellet, and the AAV particles were collected, concentrated, and filtered according to standard procedures.

為了確定病毒基因體(vg)力價,用DNA酶及ProtK消化1 µL粗溶胞物病毒,接著進行定量PCR。5 µL經消化病毒用於25 µL qPCR反應,該反應由IDT primetime主混合物、一組引子及6'FAM/Zen/IBFQ探針(IDT)構成,經設計以擴增位於AAV2-ITR中的62 bp-片段。AAV ITR質體用作參考標準以計算病毒樣本之力價(vg/mL)。 所誘導之神經元的活體外AAV轉導: To determine the viral genome (vg) titer, 1 µL of crude lysate virus was digested with DNase and ProtK, followed by quantitative PCR. 5 µL of digested virus was used in a 25 µL qPCR reaction consisting of IDT primetime master mix, a set of primers and 6'FAM/Zen/IBFQ probe (IDT), designed to amplify a 62 bp-fragment located in the AAV2-ITR. AAV ITR plasmid was used as a reference standard to calculate the titer (vg/mL) of the viral samples. In vitro AAV transduction of induced neurons:

在轉導之前24小時,將誘導神經元以每孔50,000個接種於塗佈有基質膠的96孔盤上。隨後在神經元塗鋪培養基中稀釋表現具有各種型式之引導支架之CasX:gRNA系統的AAV且添加至細胞中。首次進行實驗(「N=1」)時,細胞係以4e3個病毒基因體(vg)/細胞之感染倍率(MOI)進行轉導(參見圖24)。塗鋪後七天,將誘導神經元用在新鮮進料培養基中稀釋之病毒進行轉導。轉導後八天,使用溶解緩衝液提取細胞,根據實驗條件合併4孔重複,且收集基因體DNA (gDNA)且準備用於使用次世代定序(NGS)分析B2M基因座處之編輯。第二次進行實驗(「N=2」)時,細胞係以3e3個vg/細胞、1e3個vg/細胞或3e2個vg/細胞之MOI進行轉導(參見圖25、圖26及圖27)。塗鋪後七天,將誘導神經元用在新鮮進料培養基中稀釋之病毒進行轉導。轉導後七天,使用溶解緩衝液提取細胞,根據實驗條件合併2孔重複,且收集gDNA且準備用於使用NGS分析B2M基因座處之編輯。包括未經AAV轉導之樣本作為對照。 NGS處理及分析: 24 hours before transduction, induced neurons were seeded at 50,000 per well on a 96-well plate coated with Matrigel. AAV expressing the CasX:gRNA system with various types of guide scaffolds were then diluted in neuron plating medium and added to the cells. For the first experiment ("N=1"), cells were transduced at an infection multiplicity (MOI) of 4e3 viral genomes (vg)/cell (see Figure 24). Seven days after plating, induced neurons were transduced with virus diluted in fresh feed medium. Eight days after transduction, cells were extracted using lysis buffer, 4-well replicates were pooled according to the experimental conditions, and genomic DNA (gDNA) was collected and prepared for analysis of edits at the B2M locus using next-generation sequencing (NGS). For the second run ("N=2"), cells were transduced at an MOI of 3e3 vg/cell, 1e3 vg/cell, or 3e2 vg/cell (see Figures 25, 26, and 27). Seven days after plating, induced neurons were transduced with virus diluted in fresh feed medium. Seven days after transduction, cells were extracted using lysis buffer, 2-well replicates were pooled according to experimental conditions, and gDNA was collected and prepared for analysis of edits at the B2M locus using NGS. Samples without AAV transduction were included as controls. NGS processing and analysis:

按照製造商說明書使用Zymo Quick-DNA Miniprep Plus套組提取來自所收集細胞之基因體DNA (gDNA)。目標擴增子係藉由用一組對人類B2M基因座具有特異性之引子擴增來自200 ng所提取gDNA之所關注區域而形成。此等基因特異性引子在5'末端含有額外序列以引入Illumina銜接子及16核苷酸之獨特分子識別符。用Ampure XP DNA淨化套組來純化經擴增DNA產物。使用Fragment Analyzer DNA分析套組(Agilent,dsDNA 35-1500 bp)評定擴增子之品質及定量。根據製造商說明書在Illumina Miseq上定序擴增子。使用cutadapt v2.1、flash2 v2.2.00及CRISPResso2 v2.0.29對定序之原始fastq檔案進行品質控制及處理。在間隔子3'末端周圍的窗口(以間隔子3'末端-3 bp為中心的30 bp窗口)內,針對相對於參考序列含有插入或缺失(插入/缺失),對各序列進行定量。對於各樣本,CasX活性定量為此窗口內任何地方含有插入、取代及/或缺失之讀段的總百分比。 結果: Genomic DNA (gDNA) from collected cells was extracted using the Zymo Quick-DNA Miniprep Plus kit according to the manufacturer's instructions. Target amplicon was formed by amplifying the region of interest from 200 ng of extracted gDNA with a set of primers specific for the human B2M locus. These gene-specific primers contain additional sequences at the 5' end to introduce the Illumina adapter and a 16-nucleotide unique molecular identifier. The amplified DNA product was purified using the Ampure XP DNA purification kit. The quality and quantification of the amplicon was assessed using the Fragment Analyzer DNA analysis kit (Agilent, dsDNA 35-1500 bp). The amplicon was sequenced on the Illumina Miseq according to the manufacturer's instructions. The raw fastq files were quality controlled and processed using cutadapt v2.1, flash2 v2.2.00, and CRISPResso2 v2.0.29. Each sequence was quantified for insertions or deletions (indels) relative to the reference sequence within a window around the 3' end of the spacer (a 30 bp window centered at -3 bp from the 3' end of the spacer). For each sample, CasX activity was quantified as the total percentage of reads containing insertions, substitutions, and/or deletions anywhere within this window. Results:

將突變引入引導支架235中,以減少編碼引導支架之DNA序列的CpG含量。出人意料地,與支架235相比,CpG減少及CpG耗竭之支架變異體均產生經誘導神經元中之較高編輯水平。此為兩個獨立實驗重複(其中第一次實驗重複的結果顯示於圖24中,且第二次實驗重複的結果顯示於圖25至圖27中)以及多個MOI (參見圖26至圖27)的情況。增強的編輯水平係出人意料的,因為降低CpG含量之目的僅為在降低免疫原性的同時保持編輯活性。實際上,突變增強編輯活性,而非僅保持該編輯活性。Mutations were introduced into guide scaffold 235 to reduce the CpG content of the DNA sequence encoding the guide scaffold. Surprisingly, both CpG-reduced and CpG-depleted scaffold variants produced higher editing levels in induced neurons compared to scaffold 235. This was the case for two independent experimental repetitions (the results of the first experimental repetition are shown in Figure 24, and the results of the second experimental repetition are shown in Figures 25 to 27) and multiple MOIs (see Figures 26 to 27). The enhanced editing levels are unexpected because the purpose of reducing the CpG content is only to maintain editing activity while reducing immunogenicity. In fact, the mutation enhances editing activity, rather than just maintaining it.

值得注意的是,與支架235相比,支架320顯示效力顯著提高。支架320僅包括對支架之兩個區域的突變:假結莖及延伸莖(區域1及區域4)。此外,一些突變組合產生的編輯比支架320更差。不過,即使比支架320表現更差的CpG減少之支架,諸如支架331及334,其表現亦與支架235相似或更好。Notably, scaffold 320 showed a significant improvement in potency compared to scaffold 235. Scaffold 320 included mutations to only two regions of the scaffold: the pseudostem and the extension stem (regions 1 and 4). In addition, some combinations of mutations produced edits that were worse than scaffold 320. However, even CpG-reduced scaffolds that performed worse than scaffold 320, such as scaffolds 331 and 334, performed similarly or better than scaffold 235.

基於此等結果,不希望受理論束縛,咸信在許多CpG減少及CpG耗竭之支架中所見之效力增強可能由存在於所有CpG減少之支架(亦即區域1及/或4)中的一種突變引起。由於延伸莖環置換(亦即對區域3的第三種突變)之支架中不存在對區域4之突變,且此等支架顯示出與320類似的超過235的效力改良,因此認為有益的作用可能由區域1 (假結莖)的突變引起,該突變存在於所有測試的支架中。將進行其他實驗以分別測試假結莖(區域1)及延伸莖(區域4)中之個別突變的作用。Based on these results, without wishing to be bound by theory, it is believed that the potency enhancement seen in many CpG-reduced and CpG-depleted scaffolds may be caused by a mutation present in all CpG-reduced scaffolds (i.e., regions 1 and/or 4). Since mutations to region 4 are absent in scaffolds with extended stem loop substitutions (i.e., the third mutation to region 3), and these scaffolds show potency improvements over 235 similar to 320, it is believed that the beneficial effects may be caused by mutations in region 1 (pseudostem), which are present in all scaffolds tested. Additional experiments will be performed to test the effects of individual mutations in the pseudostem (region 1) and extended stem (region 4), respectively.

另外,如圖24中所呈現之N=1資料表明,區域2 (支架莖)中攜帶突變之所有新支架的編輯水平均略低於其沒有該突變的各別對應物。此表明使支架莖中之此位置突變可能對編輯效力具有較小不利影響。此將在額外實驗中檢驗。Additionally, the N=1 data presented in Figure 24 indicate that all new scaffolds carrying mutations in region 2 (scaffold stem) have slightly lower editing levels than their respective counterparts without the mutation. This suggests that mutating this position in the scaffold stem may have a small adverse effect on editing efficacy. This will be tested in additional experiments.

本文所描述之結果證明,引入降低編碼引導RNA支架之DNA的CpG含量的突變會相對於引導支架235改良基因編輯。 實例 7 證實包括來自 DNMT3A ADD 域增強了 LTRP 分子之活性及特異性 The results described herein demonstrate that introducing mutations that reduce the CpG content of the DNA encoding the guide RNA scaffold improves gene editing relative to guide scaffold 235. Example 7 : Demonstration that inclusion of an ADD domain from DNMT3A enhances the activity and specificity of LTRP molecules

除其C端甲基轉移酶域以外,DNMT3A亦含有調控其功能及對染色質之募集的兩個N端域:ADD域及PWWP域。據報導,PWWP域與甲基化組蛋白尾(包括H3K36me3)相互作用。已知ADD域具有兩個關鍵功能:1)其藉由充當甲基轉移酶自抑制域異位調控DNMT3A之催化活性,且2)其識別未甲基化H3K4 (H3K4me0)。ADD域與H3K4me0標記物之相互作用顯露DNMT3A之催化位點,從而向染色質募集活性DNMT3A以重新實施此等位點處之甲基化。In addition to its C-terminal methyltransferase domain, DNMT3A also contains two N-terminal domains that regulate its function and recruitment to chromatin: the ADD domain and the PWWP domain. The PWWP domain has been reported to interact with methylated histone tails, including H3K36me3. The ADD domain is known to have two key functions: 1) it regulates the catalytic activity of DNMT3A ectopically by acting as a methyltransferase autoinhibitory domain, and 2) it recognizes unmethylated H3K4 (H3K4me0). The interaction of the ADD domain with the H3K4me0 mark reveals the catalytic sites of DNMT3A, thereby recruiting active DNMT3A to chromatin to re-implement methylation at these sites.

鑒於ADD域之此等功能,進行實驗以評定將ADD域併入LTRP5構築體中(先前描述於實例1中)是否將使目標基因座之長期抑制改良及脫靶甲基化降低。亦評定併入PWWP域與ADD域對LTRP活性及特異性之影響。 材料及方法: LTRP構築體之產生及質體選殖: In light of these functions of the ADD domain, experiments were performed to assess whether incorporation of the ADD domain into the LTRP5 construct (previously described in Example 1) would result in improved long-term repression of the target locus and reduced off-target methylation. The effects of incorporation of the PWWP domain and the ADD domain on LTRP activity and specificity were also assessed. Materials and Methods: Generation of LTRP Constructs and Plasmid Cloning:

使用標準分子選殖技術構建質體構築體,其編碼具有ZIM3-KRAB域之LTRP5構築體之變異體(LTRP5.A;LTRP5組態參見圖28)。所得構築體包含編碼LTRP5-ZIM3之以下四個替代變異形式中之一者的序列,其中併入額外DNMT3A域:1) LTRP5-ZIM3 + ADD;2) LTRP5-ZIM3 + ADD + PWWP;3) LTRP5-ZIM3 + ADD,無DNMT3A催化域;及4) LTRP5-ZIM3 + ADD + PWWP,無DNMT3A催化域。LTRP5-ZIM3分子及其變異體內關鍵元件之序列列於表36中,其中各LTRP5-ZIM3及其變異體之全長蛋白質序列列於表37中。圖29為繪示在此實例中分析之各種LTRP5架構的示意圖。編碼LTRP分子之序列亦含有2×FLAG標誌。質體亦具有編碼具有靶向內源性 B2M基因座之間隔子或非靶向對照(表38中所列之間隔子序列)之gRNA支架變異體174的構築體。 36 用以產生圖 29 中所繪示之 LTRP5 變異體的 LTRP 組分 ( 例如與 dCasX 融合之額外域 ) 的序列 組分 蛋白質序列 SEQ ID NO ZIM3 KRAB域 MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESL 3240 DNMT3A催化域(CD) NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV 126 DNMT3L相互作用域 MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL 127 dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 4 連接子1 GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 連接子2 SSGNSNANSRGPSFSSGLVPLSLRGSH 122 連接子3A' GGSGGG 124 連接子3B GGSGGGS 120 連接子4 GSGSGGG 121 NLS A PKKKRKV 30 NLS B DNMT3A ADD域 ERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN 125 DNMT3A PWWP域 TKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEVLQVASSRAGKLFPACHDSDESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEV 3252 DNMT3A PWWP與ADD域之間的內源序列(endo) YTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTR 3253 37 在此實例中分析之 LTRP5 變異體之蛋白質序列 LTRP ID 蛋白質序列 SEQ ID NO LTRP5-ZIM3 MAPKKKRKVSRMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3131 LTRP5-ZIM3 + ADD MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3132 LTRP5-ZIM3 + ADD + PWWP MAPKKKRKVSRMTKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEVLQVASSRAGKLFPACHDSDESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEVYTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTRERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3254 LTRP5-ZIM3 + ADD - CD MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKVDYKDDDDKDYKDDDDK 3255 LTRP5-ZIM3 + ADD + PWWP - CD MAPKKKRKVSRMTKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEVLQVASSRAGKLFPACHDSDESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEVYTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTRERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3256 38 構築體中所用之間隔子之序列 間隔子ID 目標基因 序列 SEQ ID NO 0.0 非靶向 CGAGACGUAAUUACGUCUCG 3232 7.37 B2M GGCCGAGAUGUCUCGCUCCG 3137 7.160 B2M UAAACAUCACGAGACUCUAA 3113 7.165 B2M UCCCUAUGUCCUUGCUGUUU 3114 HEK293T細胞之轉染: Standard molecular cloning techniques were used to construct plastid constructs encoding variants of the LTRP5 construct with a ZIM3-KRAB domain (LTRP5.A; see Figure 28 for LTRP5 configuration). The resulting constructs contained sequences encoding one of the following four alternative variants of LTRP5-ZIM3, in which an additional DNMT3A domain was incorporated: 1) LTRP5-ZIM3 + ADD; 2) LTRP5-ZIM3 + ADD + PWWP; 3) LTRP5-ZIM3 + ADD, without the DNMT3A catalytic domain; and 4) LTRP5-ZIM3 + ADD + PWWP, without the DNMT3A catalytic domain. The sequences of key elements within the LTRP5-ZIM3 molecule and its variants are listed in Table 36, with the full-length protein sequences of each LTRP5-ZIM3 and its variants listed in Table 37. Figure 29 is a schematic diagram showing various LTRP5 constructs analyzed in this example. The sequence encoding the LTRP molecule also contains a 2×FLAG tag. The plasmid also has a construct encoding a gRNA scaffold variant 174 with a spacer targeting the endogenous B2M locus or a non-targeting control (spacer sequences listed in Table 38). Table 36 : Sequences of LTRP components ( e.g., additional domains fused to dCasX ) used to generate the LTRP5 variants shown in Figure 29 Components Protein sequence SEQ ID NO ZIM3 KRAB domain MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESL 3240 DNMT3A catalytic domain (CD) NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAM GVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV 126 DNMT3L interaction domain MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQ RPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL 127 dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 4 Connector 1 GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 Connector 2 SSGNSNANSRGPSFSSGLVPLSLRGSH 122 Connector 3A' GGSGGG 124 Connector 3B GGSGGGS 120 Connector 4 GSGSGGG 121 NLS A PKKKRKV 30 NLS B DNMT3A ADD domain ERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN 125 DNMT3A PWWP domain TKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEVLQVASSRAGKLFPACHDSDESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEV 3252 Endogenous sequence between DNMT3A PWWP and ADD domains (endo) YTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTR 3253 Table 37 : Protein sequences of LTRP5 variants analyzed in this example LTRP ID Protein sequence SEQ ID NO LTRP5-ZIM3 MAPKKKRKVSRMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGG SPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQ ECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGP SFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGTTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFH RILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLR EYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI WKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGF ACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMG TIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDW WDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAA LTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVIN KKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTR MEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTK GRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3131 LTRP5-ZIM3+ADD MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDP WNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQE WGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLE LQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLV PLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRP FFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQ GRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTST EEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPIS NTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEK DSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDA YNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKH GEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKL NLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREV LDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRG FGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVN NDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3132 LTRP5-ZIM3 + ADD + PWWP MAPKKKRKVSRMTKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEVLQVASSRAGKLFPACHDSD ESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEVYTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTRERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCF LECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVL KDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMI DAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYF ACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYA LPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRV TFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGT STEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEE FQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAG NRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWD MVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEF CRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLE TGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMV RNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDL SVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3254 LTRP5-ZIM3 + ADD - CD MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLF RNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGM NNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNT KKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDE KGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGN RYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGK VYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANG RVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNC GFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKVDYKDDDDKDYKDDDDK 3255 LTRP5-ZIM3 + ADD + PWWP - CD MAPKKKRKVSRMTKAADDEPEYEDGRGFGIGELVWGKLRGFSWWPGRIVSWWMTGRSRAAEGTRWVMWFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKQPMYRKAIYEV LQVASSRAGKLFPACHDSDESDSGKAVEVQNKQMIEWALGGFQPSGPKGLEPPEEEKNPYKEVYTDMWVEPEAAAYAPPPPAKKPRKSTTEKPKVKEIIDERTRERLVYEV RQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGL LRRREDWPSRLQMFFANSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGP FDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQA QVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEP WLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEP SEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQ NKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNR YASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFP SFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEE RRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFE ANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGE NIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAE RQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSW TKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3256 Table 38 : Sequences of spacers used in constructs Spacer ID Target gene sequence SEQ ID NO 0.0 Non-targeted CGAGACGUAAUUACGUCUCG 3232 7.37 B2M GGCCGAGAUGUCUCGCUCCG 3137 7.160 B2M UAAACAUCACGAGACUCUAA 3113 7.165 B2M UCCCUAUGUCCUUGCUGUUU 3114 Transfection of HEK293T cells:

用100 ng LTRP5變異體質體暫態轉染所接種HEK293T細胞,該等質體各自含有編碼LTRP5-ZIM3之LTRP:gRNA構築體或其替代變異形式中之一者(圖29;序列見表37),其中gRNA具有非靶向間隔子0.0或靶向 B2M之間隔子(間隔子序列見表38)。間隔子7.160及7.165已展示當與LTRP一起使用而非與由融合至ZIM3 KRAB域之dCasX製成之dXR一起使用時可抑制 B2M基因座(資料未示出)。重複三次測試各構築體。轉染後24小時,用1 μg/mL嘌呤黴素選擇細胞三天。在轉染後第5天、第12天、第21天及第51天收集細胞用於抑制分析。簡言之,如實例4中所描述,藉由經由HLA免疫染色,隨後進行流動式細胞測量術,來分析B2M蛋白表現來進行抑制分析。另外,在轉染後七天收集經LTRP5變異體質體及 B2M靶向gRNA或非靶向gRNA暫態轉染之HEK293T細胞,用於gDNA提取以進行亞硫酸氫鹽定序,以評定 VEGFA基因座處之脫靶甲基化,其係如實例5中所描述進行。 結果: The inoculated HEK293T cells were transiently transfected with 100 ng of LTRP5 variant plasmids, each of which contained a LTRP:gRNA construct encoding LTRP5-ZIM3 or one of its alternative variants (Figure 29; see Table 37 for sequences), wherein the gRNA had a non-targeting spacer 0.0 or a spacer targeting B2M (see Table 38 for spacer sequences). Spacers 7.160 and 7.165 have been shown to repress the B2M locus when used with LTRPs but not with dXRs made from dCasX fused to the ZIM3 KRAB domain (data not shown). Each construct was tested in triplicate. 24 hours after transfection, cells were selected for three days with 1 μg/mL puromycin. Cells were harvested for inhibition analysis on days 5, 12, 21, and 51 after transfection. Briefly, inhibition analysis was performed by analyzing B2M protein expression by HLA immunostaining followed by flow cytometry as described in Example 4. In addition, HEK293T cells transiently transfected with LTRP5 variant plasmids and B2M targeting gRNA or non-targeting gRNA were collected seven days after transfection for gDNA extraction for bisulfite sequencing to assess off-target methylation at the VEGFA locus, which was performed as described in Example 5. Results:

評定將ADD域伴隨或不伴隨PWWP域併入至LTRP5分子中對目標 B2M基因座之長期抑制增加及脫靶甲基化減少的影響。用 B2M靶向gRNA (具有間隔子7.37以及LTRP特異性間隔子7.160及7.165)或非靶向gRNA評估LTRP5-ZIM3分子之變異形式,且結果描繪於圖30至圖33中之圖表中。圖30顯示,當與LTRP5-ZIM3、LTRP5-ZIM3 + ADD及LTRP5-ZIM3 + ADD + PWWP配對時,使用間隔子7.37產生飽和水平之抑制活性,使得評定LTRP5變異體之間的活性差異更具有挑戰性。然而,當使用間隔子7.160及7.165時,LTRP5變異體之間的抑制活性差異更明顯(圖31及圖32)。資料表明,與用其他LTRP5-ZIM3分子達成之抑制水平相比,當與兩個LTRP特異性間隔子配對時,併入ADD域引起長期抑制之顯著增加。同時,併入ADD域及PWWP域兩者並不引起 B2M基因座之抑制改良,尤其與基線LTRP5-ZIM3分子相比。如所預期,無DNMT3A催化域之兩個LTRP5變異體展現不良長期抑制。此外,圖33中描繪之結果指示,相對於基線LTRP5-ZIM3分子,鑒於觀測到較低百分比之HLA陰性細胞,添加ADD域似乎會使特異性提高。 The effect of incorporating the ADD domain into the LTRP5 molecule with or without the PWWP domain on increased long-term repression and decreased off-target methylation of the target B2M locus was assessed. Variant forms of the LTRP5-ZIM3 molecule were assessed with B2M -targeting gRNA (with spacer 7.37 and LTRP-specific spacers 7.160 and 7.165) or non-targeting gRNA, and the results are depicted in the graphs in Figures 30 to 33. Figure 30 shows that the use of spacer 7.37 produced saturated levels of repressive activity when paired with LTRP5-ZIM3, LTRP5-ZIM3 + ADD, and LTRP5-ZIM3 + ADD + PWWP, making it more challenging to assess the activity differences between LTRP5 variants. However, when spacers 7.160 and 7.165 were used, the differences in inhibitory activity between LTRP5 variants were more pronounced (Figures 31 and 32). The data show that the incorporation of the ADD domain caused a significant increase in long-term inhibition when paired with two LTRP-specific spacers compared to the levels of inhibition achieved with other LTRP5-ZIM3 molecules. At the same time, the incorporation of both the ADD domain and the PWWP domain did not cause improved inhibition of the B2M locus, especially compared to the baseline LTRP5-ZIM3 molecule. As expected, the two LTRP5 variants without the DNMT3A catalytic domain exhibited poor long-term inhibition. In addition, the results depicted in Figure 33 indicate that the addition of the ADD domain appears to increase specificity, given that a lower percentage of HLA-negative cells were observed relative to the baseline LTRP5-ZIM3 molecule.

使用亞硫酸氫鹽定序評定可能由LTRP5變異體介導的 VEGFA基因座處之脫靶CpG甲基化。圖34描繪亞硫酸氫鹽定序之結果,其具體顯示 VEGFA基因座周圍之CpG甲基化之百分比。結果證實,對於所有 B2M靶向gRNA以及非靶向gRNA,將ADD域併入LTRP5-ZIM3分子中皆顯著降低 VEGFA基因座處之脫靶甲基化水平(圖34)。圖35為散佈圖,其繪製在此實例中研究之LTRP5-ZIM3變異體的活性-特異性概況,其中活性係以與間隔子7.160配對時在第21天之HLA陰性細胞之平均百分比形式量測,且特異性係由與間隔子7.160配對時在第7天定量的 VEGFA基因座處之脫靶CpG甲基化百分比表示。散佈圖清楚顯示,添加ADD域使LTRP5分子之活性相對於無ADD域之基線ELX5分子顯著提高(圖35)。 Bisulfite sequencing was used to assess off-target CpG methylation at the VEGFA locus that may be mediated by LTRP5 variants. FIG. 34 depicts the results of bisulfite sequencing, which specifically shows the percentage of CpG methylation around the VEGFA locus. The results confirmed that for all B2M -targeting gRNAs as well as non-targeting gRNAs, incorporation of the ADD domain into the LTRP5-ZIM3 molecule significantly reduced the level of off-target methylation at the VEGFA locus ( FIG. 34 ). Figure 35 is a scatter plot that plots the activity-specificity profile of the LTRP5-ZIM3 variants studied in this example, where activity is measured as the average percentage of HLA-negative cells at day 21 when paired with spacer 7.160, and specificity is represented by the percentage of off-target CpG methylation at the VEGFA locus quantified at day 7 when paired with spacer 7.160. The scatter plot clearly shows that the addition of the ADD domain significantly increases the activity of the LTRP5 molecule relative to the baseline ELX5 molecule without the ADD domain (Figure 35).

實驗證實,包括DNMT3A ADD域但不包括ADD域及PWWP域會改良LTRP分子之抑制活性及特異性。在多種gRNA之情況下觀測到活性及特異性之增強,證實將ADD域併入LTRP中的重要性。 實例 8 證實將來自 DNMT3A ADD 域包括於 LTRP 中會 增強中靶活性且減少脫靶甲基化 The experiments demonstrated that including the DNMT3A ADD domain but not the ADD domain and PWWP domain improved the inhibitory activity and specificity of the LTRP molecule. The enhancement of activity and specificity was observed with a variety of gRNAs, demonstrating the importance of incorporating the ADD domain into the LTRP. Example 8 : Demonstration that including the ADD domain from DNMT3A in the LTRP enhances on -target activity and reduces off-target methylation

進行實驗以評定將ADD域併入具有組態1、4及5之LTRP分子(圖1)中對目標基因座之長期抑制及脫靶甲基化的影響。 材料及方法: LTRP構築體之產生及質體選殖: Experiments were performed to assess the effects of incorporation of the ADD domain into LTRP molecules with configurations 1, 4, and 5 (Figure 1) on long-term repression and off-target methylation of target loci. Materials and Methods: Generation of LTRP constructs and plastid selection:

使用標準分子選殖技術構建編碼具有組態1、4及5、具有ZNF10-KRAB或ZIM3-KRAB域及DNMT3A ADD域的LTRP分子之質體構築體。所得LTRP分子之序列列於表39中,該表亦顯示特定LTRP分子之縮寫構築體名稱(例如LTRP1.A, 1.B)。圖36為繪示LTRP組態1、4及5的併入有ADD域之LTRP分子之通用架構的示意圖。編碼LTRP分子之序列亦含有2×FLAG標誌。質體亦具有編碼具有靶向內源性 B2M基因座之間隔子或非靶向對照(表38中所列之間隔子序列)之gRNA支架174的序列。 39 在此實例中分析之各種 LTRP1 4 5 變異體的蛋白質序列 LTRP # 蛋白質序列 SEQ ID NO LTRP1 ZNF10-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用 (LTRP1.D) MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPTSPKKKRKV 3257 ZIM3-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用(LTRP1.C) MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3258 ZNF10-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP1.B) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPTSPKKKRKV 3259 ZIM3-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP1.A) 參見表 14 中之序列 3066 LTRP4 ZNF10-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用 (LTRP4.D) MAPKKKRKVSRMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPGGSGGGSAMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3260 ZIM3-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用 (LTRP4.C) MAPKKKRKVSRMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGSGGGSAMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3261 ZNF10-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP4.B) MAPKKKRKVSRMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPGGSGGGSAMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3262 ZIM3-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP4.A) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3263 LTRP5 ZNF10-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用(LTRP5.D) MAPKKKRKVSRMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGSGGGSAMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3264 ZIM3-KRAB、 DNMT3A ADD、 DNMT3A CD、 DNMT3L相互作用 (LTRP5.C) 參見表 37 中之序列 3132 ZNF10-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP5.B) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSSQGSVTFRDVAIDFSQEEWKWLQPAQRDLYRRVMLENYGHLVSLGLSISKPDVVSLLEQGKEPWLGKRNVKRDLFSASESSTSPKKKRKV 3265 ZIM3-KRAB、 DNMT3A CD、 DNMT3L相互作用 (LTRP5.A) 參見表 37 中之序列 3131 HEK293T細胞之轉染: Standard molecular cloning techniques were used to construct plastid constructs encoding LTRP molecules with configurations 1, 4 and 5, with ZNF10-KRAB or ZIM3-KRAB domains and DNMT3A ADD domains. The sequences of the resulting LTRP molecules are listed in Table 39, which also shows the abbreviated construct names of specific LTRP molecules (e.g., LTRP1.A, 1.B). Figure 36 is a schematic diagram showing the general structure of LTRP molecules with ADD domains incorporated into LTRP configurations 1, 4 and 5. The sequence encoding the LTRP molecule also contains a 2×FLAG marker. The plastid also has a sequence encoding a gRNA scaffold 174 with a spacer targeting the endogenous B2M locus or a non-targeting control (spacer sequence listed in Table 38). Table 39 : Protein sequences of various LTRP1 , 4 and 5 variants analyzed in this example LTRP # domain Protein sequence SEQ ID NO LTRP1 ZNF10-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP1.D) MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKED PWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKH IQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTV NDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPS FSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYAL PRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGG PSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMK TLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVS EKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQK RLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQE ALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLR GKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETG SLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRK YASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTT INGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTD KRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPTSPKKKRKV 3257 ZIM3-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP1.C) MAPKKKRKVSRMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPW NCYMCGHKGTYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEW GPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLEL QECLEHGRIAKFSKVRTITTTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVP LSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPF FWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGPSSGAPPPSG GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLR ERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCN VAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEY PSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQAANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKK FARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFS KQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQ DEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYY AVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVV KDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRS GGSGGGSTSMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLTSPKKKRKV 3258 ZNF10-KRAB, DNMT3A CD, DNMT3L interaction (LTRP1.B) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQE WGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPL ASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV SSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGTTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSS CDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEG GSGGGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVA QPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHP VKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKL SRDDAKPLLRLKGFPSFPLVERQAANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWE RIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLY LIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALT FERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYY AVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYY NRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETW QSFYRKKLKEVWKPAVRSGGSGGGSTSMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPTSPKKKRKV 3259 ZIM3-KRAB, DNMT3A CD, DNMT3L interaction (LTRP1.A) See the sequence in Table 14 3066 LTRP4 ZNF10-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP4.D) MAPKKKRKVSRMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPGGSGGGSAMERLVYEVRQKCRNIEDICISCGS LNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFANNHD QEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGR LFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKD QHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVL SLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEA VTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGP GTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTD YTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLG KFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVR MWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKV YDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLII NYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSS NIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGR QGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNN DISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3260 ZIM3-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP4.C) MAPKKKRKVSRMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESLGGSGGG SAMERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKG TYGLLRRREDWPSRLQMFFANNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGG SPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRI AKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMG PMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLL LTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTS TEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPI SNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPE KDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVD AYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKK HGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKK LNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERRE VLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSR GFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESV NNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3261 ZNF10-KRAB, DNMT3A CD, DNMT3L interaction (LTRP4.B) MAPKKKRKVSRMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPGGSGGGSAMNHDQEFDPPKVYPP VPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFF EFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIY KTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIF MDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPLGPSSG APPPSGSGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYK LEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQD IIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKK LINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAK ASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEI VPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMED WLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGR SGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3262 ZIM3-KRAB, DNMT3A CD, DNMT3L interaction (LTRP4.A) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQE WGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRP LASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFAC VSSGNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGS SCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDA PKVDLLVKNCLLPLREYFKYFSQNSLPLGGSGGGMDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPG GPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPL FVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSK YQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCN VKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWL RAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSG EIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRME DWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKG RSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3263 LTRP5 ZNF10-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP5.D) MAPKKKRKVSRMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVK ESLGGSGGGSAMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGS PCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSSGNSNANSRGPS FSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFH RILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLRE YFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEQEIKRINKIRRRLVKDS NTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAG FACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACM GTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVD WWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKA ALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVI NKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVI ALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYT RMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTK GRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAVRSGGSGGGSTSPKKKRKV 3264 ZIM3-KRAB, DNMT3A ADD, DNMT3A CD, DNMT3L interaction (LTRP5.C) See the sequence in Table 37 3132 ZNF10-KRAB, DNMT3A CD, DNMT3L interaction (LTRP5.B) MAPKKKRKVSRVNGSGSGGGMNHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEW GPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLA STVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACVSS GNSNANSRGPSFSSGLVPLSLRGSHMGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCD RCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVD LLVKNCLLPLREYFKYFSQNSLPLGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGGSG GGSAQEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPAS KKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLA QIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAK PLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKV EGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFK GGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVL DSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAML IFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNV VKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKL KEVWKPAVRSGGSGGGSTSSQGSVTFRDVAIDFSQEEWKWLQPAQRDLYRRVMLENYGHLVSLGLSISKPDVVSLLEQGKEPWLGKRNVKRDLFSASESSTSPKKKRKV 3265 ZIM3-KRAB, DNMT3A CD, DNMT3L interaction (LTRP5.A) See the sequence in Table 37 3131 Transfection of HEK293T cells:

用100 ng LTRP變異體質體暫態轉染所接種HEK293T細胞,該等質體各自含有編碼LTRP分子(表39;圖36)之LTRP:gRNA構築體,其中gRNA具有非靶向間隔子0.0或靶向 B2M之間隔子(表38)。重複三次測試各構築體。轉染後24小時,用1 μg/mL嘌呤黴素選擇細胞3天。收集細胞以在轉染後第8天、第13天、第20天及第27天用於抑制分析。簡言之,如實例4中所描述,藉由經由HLA免疫染色,隨後進行流動式細胞測量術,來分析B2M蛋白表現來進行抑制分析。另外,亦在轉染後第5天收集細胞,用於gDNA提取以進行供亞硫酸氫鹽定序,以評定非目標 VEGFA基因座處之脫靶甲基化,其係使用與如實例5中所描述類似之方法進行。 結果: The inoculated HEK293T cells were transiently transfected with 100 ng of LTRP variant plasmids, each of which contained an LTRP:gRNA construct encoding an LTRP molecule (Table 39; Figure 36), wherein the gRNA had a non-targeting spacer 0.0 or a spacer targeting B2M (Table 38). Each construct was tested in triplicate. 24 hours after transfection, cells were selected with 1 μg/mL puromycin for 3 days. Cells were collected for inhibition analysis on days 8, 13, 20, and 27 after transfection. Briefly, inhibition analysis was performed by analyzing B2M protein expression by HLA immunostaining followed by flow cytometry as described in Example 4. In addition, cells were also collected on day 5 post-transfection for gDNA extraction for bisulfite sequencing to assess off-target methylation at the non-target VEGFA locus, which was performed using a method similar to that described in Example 5. Results:

評估將ADD域併入至具有組態1、4或5、具有ZNF10或ZIM-KRAB的LTRP分子中對 B2M基因座之長期抑制及脫靶甲基化的影響。用 B2M靶向gRNA或非靶向gRNA測試LTRP分子,且結果描繪於圖37至圖47中之圖表中。資料證實,當使用間隔子7.160時,將ADD域併入LTRP分子中明顯使得含有ZIM3-KRAB之所有LTRP組態在所有時間點之B2M抑制顯著增加(圖37),且在使用間隔子7.165及7.37時觀測到類似發現(資料未顯示)。圖38顯示當與具有間隔子7.160之gRNA配對時,使用含有ZNF10或ZIM3-KRAB之LTRP5後所得的B2M抑制;資料證實,包括ADD域總體上增加持久B2M抑制,其中LTRP5-ZIM3 + ADD具有比LTRP5-ZNF10 + ADD高之活性。針對LTRP1及LTRP4以及其他兩個間隔子,觀測到類似時程發現(資料未示出)。圖39顯示當與三種 B2M靶向gRNA中之任一者配對時,在使用含有ZIM3-KRAB之LTRP5後所得的B2M抑制,且資料證實,包括ADD域總體上引起較高之B2M抑制。針對LTRP1及LTRP4,亦觀測到類似時程發現(資料未示出)。 The effects of incorporating the ADD domain into LTRP molecules with configurations 1, 4, or 5, with ZNF10 or ZIM-KRAB on long-term repression and off-target methylation of the B2M locus were evaluated. LTRP molecules were tested with B2M targeting gRNA or non-targeting gRNA, and the results are depicted in the graphs in Figures 37 to 47. The data demonstrated that incorporation of the ADD domain into LTRP molecules significantly increased B2M repression at all time points for all LTRP configurations containing ZIM3-KRAB when spacer 7.160 was used (Figure 37), and similar findings were observed when spacers 7.165 and 7.37 were used (data not shown). Figure 38 shows the B2M inhibition obtained after using LTRP5 containing ZNF10 or ZIM3-KRAB when paired with gRNA with spacer 7.160; the data confirm that the inclusion of the ADD domain generally increases persistent B2M inhibition, with LTRP5-ZIM3 + ADD having higher activity than LTRP5-ZNF10 + ADD. Similar time course findings were observed for LTRP1 and LTRP4 and two other spacers (data not shown). Figure 39 shows the B2M inhibition obtained after using LTRP5 containing ZIM3-KRAB when paired with any of the three B2M targeting gRNAs, and the data confirm that the inclusion of the ADD domain generally causes higher B2M inhibition. Similar time course findings were also observed for LTRP1 and LTRP4 (data not shown).

圖40至圖42顯示所有LTRP組態及所測試gRNA在第27天時間點的所得B2M抑制。結果顯示與使用間隔子7.37相比,使用次佳間隔子7.160及7.165之B2M抑制的增加更加顯著。此外,使用在分子之N端含有DNMT3A及DNMT3L域的LTRP1及LTRP5使得B2M抑制在添加DNMT3A ADD域後增加最多(圖40至圖42)。使用在KRAB域之3'及dCasX之5'具有DNMT3A/3L域的LTRP4引起較少活性提高,其可歸因於ADD域與染色質適當相互作用之能力下降。Figures 40-42 show the resulting B2M inhibition at the 27 day time point for all LTRP configurations and gRNAs tested. The results show that the increase in B2M inhibition using the next best spacers 7.160 and 7.165 was more significant than using spacer 7.37. In addition, the use of LTRP1 and LTRP5, which contain DNMT3A and DNMT3L domains at the N-terminus of the molecule, resulted in the greatest increase in B2M inhibition after the addition of the DNMT3A ADD domain (Figures 40-42). The use of LTRP4, which has DNMT3A/3L domains 3' to the KRAB domain and 5' to dCasX, resulted in less activity enhancement, which can be attributed to the reduced ability of the ADD domain to properly interact with chromatin.

藉由使用亞硫酸氫鹽定序剖析 VEGFA基因(脫靶基因座)處之CpG甲基化水平來測定LTRP分子之特異性,且資料繪示於圖43至圖51中。資料證實,包括DNMT3A ADD域引起所有所測試條件的 VEGFA基因座之脫靶甲基化顯著減少(圖43至圖45)。值得注意的是,由包括ADD域介導的特異性提高對於LTRP1及LTRP5組態最為顯著,該等兩個組態在分子之N端末端具有DNMT3A/3L域。有趣的是,含有ZIM3-KRAB域之LTRP分子引起VEGFA基因座之更強脫靶甲基化。此外,即使在不存在ADD域之情況下,使用LTRP4及5組態產生之特異性比使用LTRP1組態高。與LTRP1-ZIM3及LTRP4-ZIM3組態相比,將ADD域包括於LTRP5-ZIM3中引起最低之脫靶甲基化。 The specificity of the LTRP molecules was determined by analyzing the CpG methylation levels at the VEGFA gene (off-target locus) using bisulfite sequencing, and the data are shown in Figures 43 to 51. The data confirmed that including the DNMT3A ADD domain caused a significant reduction in off-target methylation of the VEGFA locus for all conditions tested (Figures 43 to 45). It is worth noting that the increase in specificity mediated by including the ADD domain was most significant for the LTRP1 and LTRP5 configurations, both of which have the DNMT3A/3L domain at the N-terminal end of the molecule. Interestingly, LTRP molecules containing the ZIM3-KRAB domain caused stronger off-target methylation of the VEGFA locus. In addition, even in the absence of the ADD domain, the specificity generated using the LTRP4 and 5 configurations was higher than that using the LTRP1 configuration. Inclusion of the ADD domain in LTRP5-ZIM3 resulted in minimal off-target methylation compared to LTRP1-ZIM3 and LTRP4-ZIM3 configurations.

圖46至圖51為一系列散佈圖,其繪製各種LTRP分子之活性-特異性概況,其中活性係以第27天的HLA陰性細胞之平均百分比形式量測,且特異性係由第5天 VEGFA基因座處之脫靶CpG甲基化百分比測定。資料證實,在所測試之所有三個靶向 B2M之間隔子中,包括ADD域使得中靶B2M抑制增加且VEGFA基因座處之脫靶甲基化減少。具有組態1及5組態之LTRP分子在所測試之各間隔子處展現活性及特異性之最大增加。 Figures 46-51 are a series of scatter plots plotting the activity-specificity profiles of various LTRP molecules, where activity is measured as the average percentage of HLA-negative cells at day 27 and specificity is determined by the percentage of off-target CpG methylation at the VEGFA locus at day 5. The data demonstrate that in all three B2M -targeting spacers tested, inclusion of the ADD domain resulted in increased on-target B2M inhibition and decreased off-target methylation at the VEGFA locus. LTRP molecules with configurations 1 and 5 exhibited the greatest increase in activity and specificity at each spacer tested.

在此實例中論述之實驗結果支持實例7中之發現,亦即資料證實,包括DNMT3A ADD域會增強早期時間點之抑制強度及緘默化跨細胞分裂之可遺傳性,且減少由LTRP分子中之DNMT3A催化域引發的脫靶甲基化。資料亦確證,不同LTRP組態之特異性具有固有差異,其可因使用更強效抑制子域而加劇。此特異性降低可藉由包括DNMT3A ADD域而減輕,其亦可總體上引起更多中靶抑制。認為抑制活性之提高係由DNMT3A ADD域識別H3K4me0的功能及至染色質之後續募集介導。認為特異性提高係經由DNMT3A ADD域在不存在H3K4me0結合之情況下誘導DNMT3A之催化域之異位抑制的功能介導。結果亦突顯,將ADD域定位於不同所測試組態中對於實現LTRP分子之特異性及活性的最強提高十分重要。 實例 9 證實使用 DNMT1 抑制劑使由 LTRP 分子介導之目標基因座之緘默化可逆 The experimental results discussed in this example support the findings in Example 7, namely that the data demonstrate that including the DNMT3A ADD domain enhances the strength of repression at early time points and the heritability of silencing across cell divisions, and reduces off-target methylation induced by the DNMT3A catalytic domain in LTRP molecules. The data also confirm that there are inherent differences in the specificity of different LTRP configurations, which can be exacerbated by the use of more potent repressor subdomains. This reduction in specificity can be alleviated by including the DNMT3A ADD domain, which can also result in more on-target inhibition overall. The increase in repressive activity is believed to be mediated by the function of the DNMT3A ADD domain to recognize H3K4me0 and subsequent recruitment to chromatin. The increased specificity is believed to be mediated by the function of the DNMT3A ADD domain to induce ectopic inhibition of the catalytic domain of DNMT3A in the absence of H3K4me0 binding. The results also highlight that positioning the ADD domain in the different configurations tested is important to achieve the strongest increase in specificity and activity of LTRP molecules. Example 9 : Demonstration of reversibility of silencing of target loci mediated by LTRP molecules using DNMT1 inhibitors

進行實驗以證實由LTRP分子介導的目標基因座之持久抑制可逆,使得用DNMT1抑制劑處理將移除甲基標記物以再活化目標基因之表現。 材料及方法: LTRP構築體之產生及慢病毒質體選殖: Experiments were performed to demonstrate that persistent repression of the target locus mediated by LTRP molecules is reversible, such that treatment with a DNMT1 inhibitor will remove the methyl mark to reactivate expression of the target gene. Materials and Methods: Generation of LTRP constructs and lentiviral plasmid selection:

使用標準分子選殖技術建構編碼LTRP分子之慢病毒質體構築體。此等構築體包括編碼催化失效CasX蛋白491 (dCasX491)之序列、來自ZNF10或ZIM3之KRAB域以及分別來自DNMT3A (D3A)及DNMT3L (D3L)之催化域及相互作用域。簡言之,構築體呈寡核苷酸排序,且藉由重疊延伸PCR,然後等溫組裝進行組裝。所得質體含有以不同組態安置以產生LTRP分子之構築體。編碼LTRP分子之序列亦含有2×FLAG標誌。質體亦具有編碼具有靶向內源性B2M基因座之間隔子或非靶向對照之gRNA支架變異體174的序列。此等構築體均選殖於慢病毒質體上之P2A嘌呤黴素元件上游。中間預處理經選殖及序列驗證之構築體且進行品質評定,之後在HEK293T細胞中轉染。Lentiviral plasmid constructs encoding LTRP molecules were constructed using standard molecular cloning techniques. These constructs included sequences encoding the catalytically inactive CasX protein 491 (dCasX491), the KRAB domain from ZNF10 or ZIM3, and the catalytic and interaction domains from DNMT3A (D3A) and DNMT3L (D3L), respectively. Briefly, the constructs were oligonucleotide ordered and assembled by overlapping extension PCR followed by isothermal assembly. The resulting plasmids contained constructs arranged in different configurations to produce LTRP molecules. The sequences encoding the LTRP molecules also contained a 2×FLAG marker. The plasmids also had sequences encoding the gRNA scaffold variant 174 with a spacer targeting the endogenous B2M locus or a non-targeting control. These constructs were all cloned upstream of the P2A puromycin element on the lentiviral plasmid. The cloned and sequence-verified constructs were pre-processed and quality assessed prior to transfection in HEK293T cells.

在此實驗中使用含有ZIM3-KRAB域及CasX變異體491之LTRP5。此實驗中使用具有含有間隔子7.37 (SEQ ID NO: 3137)之支架174的 B2M靶向gRNA或含有間隔子0.0 (SEQ ID NO: 3232)的非靶向gRNA。 HEK293T細胞之轉染: LTRP5 containing the ZIM3-KRAB domain and CasX variant 491 was used in this experiment. B2M targeting gRNA with scaffold 174 containing spacer 7.37 (SEQ ID NO: 3137) or non-targeting gRNA containing spacer 0.0 (SEQ ID NO: 3232) was used in this experiment. Transfection of HEK293T cells:

用100 ng質體轉染HEK293T細胞且培養58天,該質體含有編碼CasX 491或含有ZIM3-KRAB域之LTRP5的具有 B2M靶向gRNA或非靶向gRNA的構築體。隨後,將此等經轉染之HEK293T細胞以約30,000個細胞再接種於96孔盤各孔中,且用濃度範圍在0 µM至20 µM內的DNMT1抑制劑5-氮雜-2'-去氧胞苷(5-azadC)處理。在用5-azadC處理後六天,收集細胞以在轉染後第5天、第12天及第21天用於B2M緘默化分析。簡言之,如實例4中所描述,藉由經由HLA免疫染色,隨後進行流動式細胞測量術,來分析B2M蛋白表現來進行抑制分析。重複三次進行各實驗條件的各劑量之5-azadC的處理。 結果: HEK293T cells were transfected with 100 ng of plasmids containing constructs encoding CasX 491 or LTRP5 containing the ZIM3-KRAB domain with B2M- targeting gRNA or non-targeting gRNA and cultured for 58 days. These transfected HEK293T cells were then seeded at approximately 30,000 cells per well in a 96-well plate and treated with the DNMT1 inhibitor 5-aza-2'-deoxycytidine (5-azadC) at concentrations ranging from 0 µM to 20 µM. Six days after treatment with 5-azadC, cells were harvested for B2M silencing analysis on days 5, 12, and 21 after transfection. Briefly, inhibition analysis was performed by analyzing B2M protein expression by HLA immunostaining followed by flow cytometry as described in Example 4. Treatment with each dose of 5-azadC was performed in triplicate for each experimental condition. Results:

圖52中之圖表顯示用指定濃度之表現B2M蛋白之5-azadC處理的經轉染HEK293T細胞之百分比。資料表明,經編碼LTRP5-ZIM3與 B2M靶向gRNA的質體轉染的細胞的5-azadC處理引起 B2M基因之再活化(圖52)。具體而言,與25%細胞在0 µM濃度下具有B2M表現相比,約75%經20 µM 5-azadC處理之細胞展現B2M表現(圖52)。此外,經編碼CasX 491與 B2M靶向gRNA的質體轉染的細胞之5-azadC處理並未展現 B2M基因之再活化。圖53為並列示出5-azadC處理後的B2M抑制活性與基因再活化的圖表。資料顯示,用CasX 491或LTRP5-ZIM3與 B2M靶向gRNA轉染後出現B2M抑制,在第58天引起約75%之B2M表現抑制;然而,B2M表現在5-azadC處理後增加(圖53)。如所預期,經CasX 491或LTRP5-ZIM3與非靶向gRNA轉染之細胞的5-azadC處理未展現抑制或再活化(圖52至圖53)。 The graph in Figure 52 shows the percentage of transfected HEK293T cells treated with 5-azadC expressing B2M protein at a specified concentration. The data show that 5-azadC treatment of cells transfected with plasmids encoding LTRP5-ZIM3 and B2M targeting gRNA causes reactivation of the B2M gene (Figure 52). Specifically, approximately 75% of cells treated with 20 µM 5-azadC exhibit B2M expression, compared to 25% of cells with B2M expression at 0 µM concentration (Figure 52). In addition, 5-azadC treatment of cells transfected with plasmids encoding CasX 491 and B2M targeting gRNA did not exhibit reactivation of the B2M gene. Figure 53 is a graph showing B2M inhibitory activity and gene reactivation after 5-azadC treatment side by side. The data showed that B2M inhibition occurred after transfection with CasX 491 or LTRP5-ZIM3 and B2M targeting gRNA, resulting in approximately 75% inhibition of B2M expression at day 58; however, B2M expression increased after 5-azadC treatment (Figure 53). As expected, 5-azadC treatment of cells transfected with CasX 491 or LTRP5-ZIM3 and non-targeting gRNA did not show inhibition or reactivation (Figures 52 to 53).

實驗證實LTRP介導的目標基因座抑制之可逆性。藉由使用DNMT1抑制劑移除LTRP分子形成之甲基標記物,再活化緘默化之目標基因以誘導目標蛋白之表現。 實例 10 LTRP 融合蛋白之例示性序列    The experiment confirmed the reversibility of LTRP-mediated repression of the target locus. By using a DNMT1 inhibitor to remove the methyl mark formed by the LTRP molecule, the silenced target gene was reactivated to induce the expression of the target protein. Example 10 : Exemplary sequences of LTRP fusion proteins  

表40提供呈組態1、4或5、具有ADD域(圖1),具有人類ZIM3或ZNF10 KRAB域或以下前九個最有效抑制子域之一的例示性全長LTRP融合蛋白中所用的組分序列:域_7694、域_10123、域_15507、域_17905、域_20505、域_26749、域_27604、域_29304及域_30173。在表40中,針對各別LTRP組態,組分係按N端至C端次序列出。 40 LTRP 融合蛋白之例示性蛋白質序列 LTRP # 組分 AA 序列 SEQ ID NO 具有ADD域之LTRP1 起始密碼子+ NLS + 緩衝序列   MAPKKKRKVSR 3269 起始密碼子+ DNMT3A ADD域   MERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN 3270 DNMT3A催化域   NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV 126 連接子(L2)   SSGNSNANSRGPSFSSGLVPLSLRGSH 122 DNMT3L相互作用域   MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL 127 連接子(L1)   GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 連接子(L3A) + 緩衝液   GGSGGGSA 3271 dCasX491   QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 4 緩衝液 + 連接子(L3B)   RSGGSGGGSTS 3272 抑制子域1 人類ZIM3 MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESL 3240 人類ZNF10 MDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEP 3239 原鴿( Columba livia)抑制子域(域_7694) QDVVTFKDVAIYFSPEEWVRLSAGQRELYQEVMLDNYELVTSLDRESKLLYKMDPEEESCEGVPYSSADSGAPDSSSTSAC 130 褐家鼠( Rattus norvegicus)抑制子域 ( 域_10123) ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE 131 巴拿馬卷尾猴( Cebus imitator)抑制子域 ( 域_15507) SKAPITFGDLAIYFSQEEWEWLSPIQKDLYEDVMLENYRNLVSLGLSFRRPNVITLLEKGKAPWMVEPARRRRGPDSGSKV 132 黑猩猩(Chimpanzee)抑制子域(域_17905) EMGLLTFRDIAIEFSLEEWQCLDCAQRNLYRDVMLENYRNLVSLGIAVSKPDLITCLEQNKESQNIKRNKMVAKHPVMHSH 133 綠猴( Chlorocebus sabaeus) 抑制子域 ( 域_20505) SQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLENYEAVAFVAVPPTSKPALVSHLEQGKESCFIRPPGVLSRSDWRAG 134 眼鏡王蛇( Ophiophagus hannah)抑制子域 ( 域_26749) STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD 135 大熊貓( Ailuropoda melanoleuca)抑制子域 ( 域_27604) LLTFEDVAVSFSEEEWELLDPPQKTLYNDVMQENYETVISLGLKLKNDTGNDQPISISALEMQASGSKVLRKARMKVAQKT 136 貝氏東部鹿鼠( Peromyscus maniculatus bairdii)抑制子域 ( 域_29304) VTYNDVHVDITQEEWALMDPSQRNLYKDVMVETYMNLTAIGYNWENLEVEEPCQNPLKHGRHERPHTGEKPYEYNQCGKAFAQP 137 矛吻蝠( Phyllostomus discolor)抑制子域 ( 域_30173) VAFRDVIVDFTQEEWQQLKPAQKDLYRDVMMEIYWNLVSLDLETEGDMNEPDPEKDSWEDRTSIVVVEGLMRNGAQGYACEKAGIQGCRV 138 緩衝液 + NLS   TSPKKKRKV 3273 具有ADD域之LTRP4 起始密碼子+ NLS + 緩衝序列 參見以上序列 3269 抑制子域1 人類ZIM3 參見以上序列 3240 人類ZNF10 參見以上序列 3239 原鴿抑制子域(域_7694) 參見以上序列 130 褐家鼠抑制子域 ( 域_10123) 參見以上序列 131 巴拿馬卷尾猴抑制子域 ( 域_15507) 參見以上序列 132 黑猩猩抑制子域(域_17905) 參見以上序列 133 綠猴抑制子域 ( 域_20505) 參見以上序列 134 眼鏡王蛇抑制子域 ( 域_26749) 參見以上序列 135 大熊貓抑制子域 ( 域_27604) 參見以上序列 136 貝氏東部鹿鼠抑制子域 ( 域_29304) 參見以上序列 137 矛吻蝠抑制子域 ( 域_30173) 參見以上序列 138 連接子(L3A) + 緩衝液   參見以上序列 3271 起始密碼子+ DNMT3A ADD域   參見以上序列 3270 DNMT3A催化域   參見以上序列 126 連接子(L2)   參見以上序列 122 DNMT3L相互作用域   參見以上序列 127 連接子(L1)   參見以上序列 123 dCasX491   參見以上序列 4 緩衝液 + 連接子(L3B)   參見以上序列 3272 NLS   參見以上序列 30 具有ADD域之LTRP5 起始密碼子+ NLS + 緩衝序列   參見以上序列 3269 起始密碼子+ DNMT3A ADD域   參見以上序列 3270 DNMT3A催化域   參見以上序列 126 連接子(L2)   參見以上序列 122 DNMT3L相互作用域   參見以上序列 127 連接子(L3A)   參見以上序列 124 抑制子域1 人類ZIM3 參見以上序列 3240 人類ZNF10 參見以上序列 3239 原鴿抑制子域(域_7694) 參見以上序列 130 褐家鼠抑制子域 ( 域_10123) 參見以上序列 131 巴拿馬卷尾猴抑制子域 ( 域_15507) 參見以上序列 132 黑猩猩抑制子域(域_17905) 參見以上序列 133 綠猴抑制子域 ( 域_20505) 參見以上序列 134 眼鏡王蛇抑制子域 ( 域_26749) 參見以上序列 135 大熊貓抑制子域 ( 域_27604) 參見以上序列 136 貝氏東部鹿鼠抑制子域 ( 域_29304) 參見以上序列 137 矛吻蝠抑制子域 ( 域_30173) 參見以上序列 138 連接子(L1)   參見以上序列 123 dCasX491   參見以上序列 4 緩衝液 + 連接子(L3B)   參見以上序列 3272 NLS   參見以上序列 30 Table 40 provides the sequences of components used in exemplary full-length LTRP fusion proteins in configuration 1, 4 or 5, with an ADD domain (Figure 1), with a human ZIM3 or ZNF10 KRAB domain or one of the following top nine most potent inhibitory subdomains: domain_7694, domain_10123, domain_15507, domain_17905, domain_20505, domain_26749, domain_27604, domain_29304 and domain_30173. In Table 40, for each LTRP configuration, the components are listed in order from N-terminus to C-terminus. Table 40 : Exemplary protein sequences of LTRP fusion proteins LTRP # Components domain AA sequence SEQ ID NO LTRP1 with ADD domain Start codon + NLS + buffer sequence MAPKKKRKVSR 3269 Start codon + DNMT3A ADD domain MERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN 3270 DNMT3A catalytic domain NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAM GVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV 126 Connector (L2) SSGNSNANSRGPSFSSGLVPLSLRGSH 122 DNMT3L interaction domain MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQ RPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL 127 Connector (L1) GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE 123 Connector (L3A) + Buffer GGSGGGSA 3271 dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 4 Buffer + Connector (L3B) RSGGSGGGSTS 3272 Suppressor subdomain 1 Human ZIM3 MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVKESL 3240 Human ZNF10 MDAKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEP 3239 Columba livia repressor subdomain (domain_7694) QDVVTFKDVAIYFSPEEWVRLSAGQRELYQEVMLDNYELVTSLDRESKLLYKMDPEEESCEGVPYSSADSGAPDSSSTSAC 130 Rattus norvegicus repressor subdomain ( domain_10123) ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE 131 Panamanian capuchin monkey ( Cebus imitator ) suppressor subdomain ( domain_15507) SKAPITFGDLAIYFSQEEWEWLSPIQKDLYEDVMLENYRNLVSLGLSFRRPNVITLLEKGKAPWMVEPARRRRGPDSGSKV 132 Chimpanzee repressor subdomain (domain_17905) EMGLTFRDIAIEFSLEEWQCLDCAQRNLYRDVMLENYRNLVSLGIAVSKPDLITCLEQNKESQNIKRNKMVAKHPVMHSH 133 Green monkey ( Chlorocebus sabaeus ) inhibitory subdomain ( domain_20505) SQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLENYEAVAFVAVPPTSKPALVSHLEQGKESCFIRPPGVLSRSDWRAG 134 Ophiophagus hannah inhibitory subdomain ( domain_26749) STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD 135 Giant panda ( Ailuropoda melanoleuca ) inhibitory subdomain ( domain_27604) LLTFEDVAVSFSEEEWELLDPPQKTLYNDVMQENYETVISLGLKLKNDTGNDQPISISALEMQASGSKVLRKARMKVAQKT 136 Peromyscus maniculatus bairdii suppressor subdomain ( domain_29304) VTYNDVHVDITQEEWALMDPSQRNLYKDVMVETYMNLTAIGYNWENLEVEEPCQNPLKHGRHERPHTGEKPYEYNQCGKAFAQP 137 Phyllostomus discolor suppressor subdomain ( domain_30173) VAFRDVIVDFTQEEWQQLKPAQKDLYRDVMMEIYWNLVSLDLETEGDMNEPDPEKDSWEDRTSIVVVEGLMRNGAQGYACEKAGIQGCRV 138 Buffer + NLS TSPKKKRKV 3273 LTRP4 with ADD domain Start codon + NLS + buffer sequence See above sequence 3269 Suppressor subdomain 1 Human ZIM3 See above sequence 3240 Human ZNF10 See above sequence 3239 Proto-pigeon repressor subdomain (domain_7694) See above sequence 130 Rattus norvegicus suppressor subdomain ( domain_10123) See above sequence 131 Panamanian capuchin suppressor subdomain ( domain_15507) See above sequence 132 Chimpanzee Suppressor Subdomain (domain_17905) See above sequence 133 Green Monkey Suppression Subdomain ( domain_20505) See above sequence 134 King Cobra Inhibitor Subdomain ( Domain_26749) See above sequence 135 Panda suppression subdomain ( domain_27604) See above sequence 136 Eastern deer mouse suppressor subdomain ( domain_29304) See above sequence 137 Lanceolus suppression subdomain ( domain_30173) See above sequence 138 Connector (L3A) + Buffer See above sequence 3271 Start codon + DNMT3A ADD domain See above sequence 3270 DNMT3A catalytic domain See above sequence 126 Connector (L2) See above sequence 122 DNMT3L interaction domain See above sequence 127 Connector (L1) See above sequence 123 dCasX491 See above sequence 4 Buffer + Connector (L3B) See above sequence 3272 NLS See above sequence 30 LTRP5 with ADD domain Start codon + NLS + buffer sequence See above sequence 3269 Start codon + DNMT3A ADD domain See above sequence 3270 DNMT3A catalytic domain See above sequence 126 Connector (L2) See above sequence 122 DNMT3L interaction domain See above sequence 127 Connector (L3A) See above sequence 124 Suppressor subdomain 1 Human ZIM3 See above sequence 3240 Human ZNF10 See above sequence 3239 Proto-pigeon repressor subdomain (domain_7694) See above sequence 130 Rattus norvegicus suppressor subdomain ( domain_10123) See above sequence 131 Panamanian capuchin suppressor subdomain ( domain_15507) See above sequence 132 Chimpanzee Suppressor Subdomain (domain_17905) See above sequence 133 Green Monkey Suppression Subdomain ( domain_20505) See above sequence 134 King Cobra Inhibitor Subdomain ( Domain_26749) See above sequence 135 Panda suppression subdomain ( domain_27604) See above sequence 136 Eastern deer mouse suppressor subdomain ( domain_29304) See above sequence 137 Lanceolus suppression subdomain ( domain_30173) See above sequence 138 Connector (L1) See above sequence 123 dCasX491 See above sequence 4 Buffer + Connector (L3B) See above sequence 3272 NLS See above sequence 30

表41提供LTRP構築體各組分之例示性胺基酸序列。在表41中,示出無起始甲硫胺酸之蛋白質域。 41 LTRP 構築體各組分之例示性蛋白質序列 組分 蛋白質序列SEQ ID NO DNMT3A催化域(CD) 126 DNMT3L相互作用域 127 dCasX491 4 連接子1 (L1) 123 連接子2 (L2) 122 連接子3A (L3A) 124 連接子3B (L3B) 120 NLS 30 DNMT3A ADD域 125 實例 11 證實包括第二抑制子域會增強 LTRP-ADD 分子之活性同時維持其特異性 Table 41 provides exemplary amino acid sequences of the components of the LTRP construct. In Table 41, the protein domain without the initiator methionine is shown. Table 41 : Exemplary protein sequences of the components of the LTRP construct Components Protein sequence SEQ ID NO DNMT3A catalytic domain (CD) 126 DNMT3L interaction domain 127 dCasX491 4 Connector 1 (L1) 123 Connector 2 (L2) 122 Connector 3A (L3A) 124 Connector 3B (L3B) 120 NLS 30 DNMT3A ADD domain 125 Example 11 : Demonstration that inclusion of a second inhibitory subdomain enhances the activity of LTRP-ADD molecules while maintaining their specificity

進行實驗以確定併入第二抑制子域是否會增強含有ADD域之LTRP分子的活性及特異性。此第二抑制子域定位於先前描述於實例7中之LTRP5-ADD分子之C端上,使得產生具有新組態之LTRP分子(下文描述為LTRP6分子)。圖54中之示意圖顯示具有組態6a或6b之LTRP6分子。具有組態#6a之分子相對於dCasX在N端及C端位置利用相同的抑制子域,而具有組態6b之分子在該兩個位置處使用兩個不同的抑制子域。Experiments were conducted to determine whether incorporation of a second inhibitory subdomain would enhance the activity and specificity of LTRP molecules containing an ADD domain. This second inhibitory subdomain was positioned at the C-terminus of the LTRP5-ADD molecule previously described in Example 7, resulting in an LTRP molecule with a new configuration (described below as an LTRP6 molecule). The schematic diagram in Figure 54 shows LTRP6 molecules with configuration 6a or 6b. Molecules with configuration #6a utilize the same inhibitory subdomain at the N-terminal and C-terminal positions relative to dCasX, while molecules with configuration 6b use two different inhibitory subdomains at the two positions.

在此實例中,進行實驗以評定在LTRP5-ADD-ZIM3分子之C末上併入第二抑制子域產生具有組態6b組態之LTRP6分子是否會誘導目標基因座之長期抑制。 材料及方法: LTRP6構築體之產生及質體選殖: In this example, experiments were performed to assess whether incorporation of a second repressor domain at the C-terminus of the LTRP5-ADD-ZIM3 molecule to generate a LTRP6 molecule with configuration 6b would induce long-term repression of the target locus. Materials and Methods: Generation of LTRP6 constructs and plastid selection:

使用所描述之標準分子選殖技術構建編碼使用ZIM3-KRAB域作為第一抑制子域之LTRP6分子的質體構築體。簡言之,將前95個抑制子域之代表性成員(表42)作為第二抑制子域選殖於如實例7中所述產生之LTRP5-ADD-ZIM3構築體之C端上(其中DNA及蛋白質序列提供於表37中)。LTRP5-ADD-ZIM3分子充當實驗對照。質體亦具有編碼gRNA支架變異體174之構築體,該gRNA支架變異體具有靶向內源性 B2M基因座之間隔子(間隔子7.165;UCCCUAUGUCCUUGCUGUUU;SEQ ID NO: 3114)或非靶向對照。此等構築體均選殖於慢病毒質體上之P2A嘌呤黴素元件上游。 HEK293T細胞之轉染: Plasmid constructs encoding LTRP6 molecules using the ZIM3-KRAB domain as the first inhibitory subdomain were constructed using standard molecular cloning techniques as described. Briefly, representative members of the top 95 inhibitory subdomains (Table 42) were cloned as the second inhibitory subdomain on the C-terminus of the LTRP5-ADD-ZIM3 construct generated as described in Example 7 (where the DNA and protein sequences are provided in Table 37). The LTRP5-ADD-ZIM3 molecule served as an experimental control. The plasmid also had a construct encoding the gRNA scaffold variant 174, which had a spacer targeting the endogenous B2M locus (spacer 7.165; UCCCUAUGUCCUUGCUGUUU; SEQ ID NO: 3114) or a non-targeting control. These constructs were all cloned upstream of the P2A puromycin element on the lentiviral plasmid. Transfection of HEK293T cells:

用100 ng LTRP質體暫態轉染所接種之HEK293T細胞,該等質體各自含有LTRP:gRNA構築體,該構築體編碼含有ZIM3-KRAB域作為第一抑制子域且增強之抑制子域作為第二抑制子域的LTRP6變異體,及具有非靶向間隔子或靶向 B2M之間隔子的gRNA。轉染後24小時,用1 μg/mL嘌呤黴素選擇細胞三天。在轉染後第4天、第8天及第13天收集細胞以用於抑制分析。簡言之,如實例4中所描述,藉由經由HLA免疫染色,隨後進行流動式細胞測量術,來分析B2M蛋白表現來進行抑制分析。 結果: The seeded HEK293T cells were transiently transfected with 100 ng of LTRP plasmids, each of which contained a LTRP:gRNA construct encoding a LTRP6 variant containing a ZIM3-KRAB domain as the first repressor domain and an enhanced repressor domain as the second repressor domain, and a gRNA with a non-targeting spacer or a spacer targeting B2M . 24 hours after transfection, cells were selected with 1 μg/mL puromycin for three days. Cells were collected on days 4, 8, and 13 after transfection for inhibition analysis. Briefly, inhibition analysis was performed by analyzing B2M protein expression by HLA immunostaining followed by flow cytometry as described in Example 4. Results:

評定將第二抑制子域併入LTRP5-ADD-ZIM3分子中由此產生LTRP6構築體對增加對目標 B2M基因座之長期抑制的影響。此時程實驗的結果描繪於表43至表45中,其顯示在轉染後4天、8天及13天在各條件下表徵為HLA陰性(指示B2M抑制)之細胞的平均百分比。對應於下表中之域ID的SEQ ID NO提供於表42中。 42 9 及前 95 個最有效抑制子域的清單 域ID 描述 SEQ ID NO 前9 個抑制子域 域_7694 原鴿抑制子域 130 域_10123 褐家鼠抑制子域 131 域_15507 巴拿馬卷尾猴抑制子域 132 域_17905 黑猩猩抑制子域 133 域_20505 綠猴抑制子域 134 域_26749 眼鏡王蛇抑制子域 135 域_27604 大熊貓抑制子域 136 域_29304 貝氏東部鹿鼠抑制子域 137 域_30173 矛吻蝠抑制子域 138 前95 個抑制子域中的剩餘抑制子域 域_737 倭黑猩猩(Bonobo)抑制子域 139 域_10331 安哥拉黑白疣猴(Colobus angolensis palliatus)抑制子域 140 域_10948 安哥拉黑白疣猴抑制子域 141 域_11029 黑面山魈(Mandrillus leucophaeus)抑制子域 142 域_17358 印度牛x 歐洲牛(Bos indicus x Bos Taurus)抑制子域 143 域_17759 家貓(Felis catus)抑制子域 144 域_18258 抹香鯨(Physeter microcephalus)抑制子域 145 域_19804 北方海狗(Callorhinus ursinus)抑制子域 146 域_221 倭黑猩猩抑制子域 147 域_881 倭黑猩猩抑制子域 148 域_2380 紅毛猩猩(Orangutan)抑制子域 149 域_2942 長臂猿(Gibbon)抑制子域 150 域_4687 狨(Marmoset)抑制子域 151 域_4806 狨抑制子域 152 域_4968 狨抑制子域 153 域_5066 狨抑制子域 154 域_5290 梟猴(Owl Monkey)抑制子域 155 域_5463 梟猴抑制子域 156 域_6248 玻利維亞松鼠猴(Saimiri boliviensis boliviensis)抑制子域 157 域_6445 中華短吻鱷(Alligator sinensis)抑制子域 158 域_6802 粟米蛇(Pantherophis guttatus)抑制子域 159 域_6807 非洲爪蟾(Xenopus laevis)抑制子域 160 域_7255 單色蚯蚓(Microcaecilia unicolor)抑制子域 161 域_8503 田鼷鼠(Mus caroli)抑制子域 162 域_8790 美洲旱獺(Marmota monax)抑制子域 163 域_8853 敍利亞倉鼠(Mesocricetus auratus)抑制子域 164 域_9114 貝氏東部鹿鼠抑制子域 165 域_9331 貝氏東部鹿鼠抑制子域 166 域_9538 小家鼠(Mus musculus)抑制子域 167 域_9960 八齒鼠(Octodon degus)抑制子域 168 域_10277 奧氏更格盧鼠(Dipodomys ordii)抑制子域 169 域_10577 安哥拉黑白疣猴抑制子域 170 域_11348 綠猴抑制子域 171 域_11386 家山羊(Capra hircus)抑制子域 172 域_11486 野犛牛(Bos mutus)抑制子域 173 域_11683 白頰長臂猿(Nomascus leucogenys)抑制子域 174 域_12292 野豬(Sus scrofa)抑制子域 175 域_12452 長江江豚(Neophocaena asiaeorientalis asiaeorientalis)抑制子域 176 域_12631 食蟹獼猴(Macaca fascicularis)抑制子域 177 域_13331 食蟹獼猴抑制子域 178 域_13468 無尾熊(Phascolarctos cinereus)抑制子域 179 域_13539 大猩猩(Gorilla)抑制子域 180 域_14659 獵豹(Acinonyx jubatus)抑制子域 181 域_14755 巴拿馬卷尾猴抑制子域 182 域_15126 普通狨(Callithrix jacchus)抑制子域 183 域_16444 獵豹抑制子域 184 域_16688 白鱀豚(Lipotes vexillifer)抑制子域 185 域_16806 卷尾猴(Sapajus apaella)抑制子域 186 域_17317 小耳大嬰猴(Otolemur garnettii)抑制子域 187 域_17432 小耳大嬰猴抑制子域 188 域_18137 灰色短尾負鼠(Monodelphis domestica)抑制子域 189 域_18216 抹香鯨抑制子域 190 域_18563 梟猴抑制子域 191 域_19229 阿拉斯加海獺(Enhydra lutris kenyoni)抑制子域 192 域_19460 灰色短尾負鼠抑制子域 193 域_19476 梟猴抑制子域 194 域_19821 川金絲猴(Rhinopithecus roxellana)抑制子域 195 域_19892 北極熊(Ursus maritimus)抑制子域 196 域_19896 綿羊(Ovis aries)抑制子域 197 域_19949 北方海狗抑制子域 198 域_21247 美洲水鼬(Neovison vison)抑制子域 199 域_21317 大狐蝠(Pteropus vampyrus)抑制子域 200 域_21336 家馬(Equus caballus)抑制子域 201 域_21603 白鱀豚抑制子域 202 域_21755 家馬抑制子域 203 域_22153 加州海獅(Zalophus californianus)抑制子域 204 域_22270 倭黑猩猩抑制子域 205 域_23394 小羊駝(Vicugna pacos)抑制子域 206 域_23723 眼鏡猴(Carlito syrichta)抑制子域 207 域_24125 玻利維亞松鼠猴抑制子域 208 域_24458 伊比利亞猞猁(Lynx pardinus)抑制子域 209 域_24663 伯氏鼠耳蝠(Myotis brandtii)抑制子域 210 域_25289 北極熊抑制子域 211 域_25379 卷尾猴抑制子域 212 域_25405 吸血蝠(Desmodus rotundus)抑制子域 213 域_26070 蚓螈(Geotrypetes seraphini)抑制子域 214 域_26322 蚓螈抑制子域 215 域_26732 野生火雞(Meleagris gallopavo)抑制子域 216 域_27060 沙漠地鼠龜(Gopherus agassizii)抑制子域 217 域_27385 八齒鼠抑制子域 218 域_27506 野犛牛抑制子域 219 域_27811 普通狨抑制子域 220 域_28640 山齒鶉(Colinus virginianus)抑制子域 221 域_28803 灰色短尾負鼠抑制子域 222 域_30661 抹香鯨抑制子域 223 域_31643 南美珊瑚蛇(Micrurus lemniscatus lemniscatus)抑制子域 224 43 在轉染後 4 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。顯示的各 LTRP6 構築體之域 ID 指示所使用及評定之第二抑制子域 抑制子構築體 間隔子 平均 HLA 陰性細胞 % 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 6.827 0.359 3 LTRP5-ADD-ZIM3 7.165 53.833 1.159 3 LTRP6_域_20505 7.165 69.333 0.493 3 LTRP6_域_30173 7.165 70.267 1.115 3 LTRP6_域_15507 7.165 71.800 0.436 3 LTRP6_域_18137 7.165 71.900 0.600 3 LTRP6_域_24458 7.165 73.333 0.961 3 LTRP6_域_6445 7.165 73.567 0.666 3 LTRP6_域_17432 7.165 74.667 0.603 3 LTRP6_域_9960 7.165 76.000 0.100 3 LTRP6_域_13468 7.165 76.167 0.493 3 LTRP6_域_8853 7.165 77.400 0.173 3 LTRP6_域_6802 7.165 77.700 0.361 3 LTRP6_域_7694 7.165 78.300 0.361 3 LTRP6_域_29304 7.165 78.933 0.814 3 LTRP6_域_25379 7.165 80.033 0.569 3 LTRP6_域_22153 7.165 80.200 1.493 3 LTRP6_域_7255 7.165 80.567 0.551 3 LTRP6_域_26749 7.165 81.467 0.503 3 LTRP6_域_10123 7.165 81.833 0.289 3 44 在轉染後 8 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。顯示的各 LTRP6 構築體之域 ID 指示所使用及評定之第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 2.100 0.311 2 LTRP5-ADD-ZIM3 7.165 55.000 0.300 3 LTRP6_域_20505 7.165 72.367 1.686 3 LTRP6_域_30173 7.165 72.733 1.069 3 LTRP6_域_15507 7.165 74.033 0.351 3 LTRP6_域_18137 7.165 75.100 1.253 3 LTRP6_域_24458 7.165 76.167 0.737 3 LTRP6_域_6445 7.165 77.600 1.249 3 LTRP6_域_17432 7.165 78.233 0.153 3 LTRP6_域_9960 7.165 77.600 0.346 3 LTRP6_域_13468 7.165 79.067 0.651 3 LTRP6_域_8853 7.165 79.333 1.150 3 LTRP6_域_6802 7.165 78.400 0.265 3 LTRP6_域_7694 7.165 81.433 0.416 3 LTRP6_域_29304 7.165 80.433 0.569 3 LTRP6_域_25379 7.165 82.167 0.351 3 LTRP6_域_22153 7.165 81.333 1.210 3 LTRP6_域_7255 7.165 80.933 0.404 3 LTRP6_域_26749 7.165 85.767 0.777 3 LTRP6_域_10123 7.165 83.000 0.625 3 45 在轉染後 13 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。顯示的各 LTRP6 構築體之域 ID 指示所使用及評定之第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 1.587 0.670 3 LTRP5-ADD-ZIM3 7.165 50.267 0.987 3 LTRP6_域_20505 7.165 70.133 0.945 3 LTRP6_域_30173 7.165 70.233 0.666 3 LTRP6_域_15507 7.165 72.067 0.252 3 LTRP6_域_18137 7.165 72.767 1.514 3 LTRP6_域_24458 7.165 73.967 0.404 3 LTRP6_域_6445 7.165 75.967 0.723 3 LTRP6_域_17432 7.165 75.667 0.351 3 LTRP6_域_9960 7.165 74.233 0.814 3 LTRP6_域_13468 7.165 76.767 0.764 3 LTRP6_域_8853 7.165 75.133 1.457 3 LTRP6_域_6802 7.165 74.700 1.136 3 LTRP6_域_7694 7.165 78.967 0.321 3 LTRP6_域_29304 7.165 78.233 1.332 3 LTRP6_域_25379 7.165 78.600 0.985 3 LTRP6_域_22153 7.165 77.533 0.839 3 LTRP6_域_7255 7.165 77.700 0.265 3 LTRP6_域_26749 7.165 83.800 1.127 3 LTRP6_域_10123 7.165 79.367 0.702 3 The effect of incorporating a second inhibitory subdomain into the LTRP5-ADD-ZIM3 molecule, thereby generating a LTRP6 construct, on increasing long-term inhibition of the target B2M locus was assessed. The results of this time course experiment are depicted in Tables 43 to 45, which show the average percentage of cells characterized as HLA negative (indicative of B2M inhibition) under each condition at 4 days, 8 days , and 13 days after transfection. The SEQ ID NOs corresponding to the domain IDs in the table below are provided in Table 42. Table 42 : List of the top 9 and top 95 most potent inhibitory subdomains Domain ID describe SEQ ID NO The first 9 inhibitory subdomains Domain_7694 Proto-pigeon repressor subdomain 130 Domain_10123 Rattus norvegicus repressor subdomain 131 Domain_15507 Panamanian capuchin monkey suppressor subdomain 132 Domain_17905 Chimpanzee repressor subdomain 133 Domain_20505 Green monkey inhibitory subdomain 134 Domain_26749 King cobra inhibitory subdomain 135 Domain_27604 Panda repressor domain 136 Domain_29304 Eastern deer mouse suppression subdomain 137 Domain_30173 Lanceolus repressor subdomain 138 The remaining inhibitory subdomains in the first 95 inhibitory subdomains Domain_737 Bonobo repressor domain 139 Domain_10331 Angolan black and white colobus monkey (Colobus angolensis palliatus) suppressor subdomain 140 Domain_10948 Angolan black-and-white colobus monkey suppressor subdomain 141 Domain_11029 Black-faced mandrill (Mandrillus leucophaeus) suppressor subdomain 142 Domain_17358 Bos indicus x Bos Taurus suppressor domain 143 Domain_17759 Felis catus repressor domain 144 Domain_18258 Sperm whale (Physeter microcephalus) repressor domain 145 Domain_19804 Northern fur seal (Callorhinus ursinus) suppression subdomain 146 Domain_221 Bonobos repress subdomain 147 Domain_881 Bonobos repress subdomain 148 Domain_2380 Orangutan repressor domain 149 Domain_2942 Gibbon repressor subdomain 150 Domain_4687 Marmoset suppression subdomain 151 Domain_4806 marmoset repressor subdomain 152 Domain_4968 marmoset repressor subdomain 153 Domain_5066 marmoset repressor subdomain 154 Domain_5290 Owl Monkey inhibitory subdomain 155 Domain_5463 Owl monkey inhibitory subdomain 156 Domain_6248 Bolivian squirrel monkey (Saimiri boliviensis boliviensis) suppressor domain 157 Domain_6445 Alligator sinensis inhibitory subdomain 158 Domain_6802 Pantherophis guttatus repressor domain 159 Domain_6807 Xenopus laevis repressor domain 160 Domain_7255 Microcaecilia unicolor inhibitory subdomain 161 Domain_8503 Mus caroli repressor domain 162 Domain_8790 Marmota monax repressor subdomain 163 Domain_8853 Syrian hamster (Mesocricetus auratus) inhibitory subdomain 164 Domain_9114 Eastern deer mouse suppression subdomain 165 Domain_9331 Bayesian deer mouse suppression subdomain 166 Domain_9538 Mus musculus inhibitory subdomain 167 Domain_9960 Octodon degus repressor domain 168 Domain_10277 Dipodomys ordii repressor domain 169 Domain_10577 Angolan black-and-white colobus monkey suppressor subdomain 170 Domain_11348 Green monkey inhibitory subdomain 171 Domain_11386 Capra hircus repressor domain 172 Domain_11486 Bos mutus repressor domain 173 Domain_11683 Nomascus leucogenys repressor domain 174 Domain_12292 Sus scrofa repressor domain 175 Domain_12452 Yangtze River Porpoise (Neophocaena asiaeorientalis asiaeorientalis) repressor domain 176 Domain_12631 Macaca fascicularis inhibitory subdomain 177 Domain_13331 Cynomolgus macaque inhibitory subdomain 178 Domain_13468 Koala (Phascolarctos cinereus) inhibitory subdomain 179 Domain_13539 Gorilla repressor subdomain 180 Domain_14659 Acinonyx jubatus repressor subdomain 181 Domain_14755 Panamanian capuchin monkey suppressor subdomain 182 Domain_15126 Common marmoset (Callithrix jacchus) suppressor subdomain 183 Domain_16444 Cheetah inhibitory subdomain 184 Domain_16688 Lipotes vexillifer repressor domain 185 Domain_16806 Capuchin monkey (Sapajus apaella) repressor domain 186 Domain_17317 Otolemur garnettii repressor domain 187 Domain_17432 Small-eared macaque inhibitory subdomain 188 Domain_18137 Gray short-tailed rat (Monodelphis domestica) suppression subdomain 189 Domain_18216 Sperm whale inhibitory subdomain 190 Domain_18563 Owl monkey inhibitory subdomain 191 Domain_19229 Alaskan sea otter (Enhydra lutris kenyoni) repressor domain 192 Domain_19460 Gray short-tailed rat inhibitory subdomain 193 Domain_19476 Owl monkey inhibitory subdomain 194 Domain_19821 Rhinopithecus roxellana inhibitory subdomain 195 Domain_19892 Polar bear (Ursus maritimus) suppression subdomain 196 Domain_19896 Ovis aries repressor subdomain 197 Domain_19949 Northern fur seal suppression subdomain 198 Domain_21247 Neovison vison repressor domain 199 Domain_21317 Pteropus vampyrus inhibitory subdomain 200 Domain_21336 Equus caballus inhibitory subdomain 201 Domain_21603 Baiji repressor domain 202 Domain_21755 Horse inhibitory subdomain 203 Domain_22153 California Sea Lion (Zalophus californianus) Suppression Subdomain 204 Domain_22270 Bonobos repress subdomain 205 Domain_23394 Vicugna pacos repressor domain 206 Domain_23723 Carlito syrichta inhibitory subdomain 207 Domain_24125 Bolivian squirrel monkey suppressor subdomain 208 Domain_24458 Iberian lynx (Lynx pardinus) repressor subdomain 209 Domain_24663 Myotis brandtii repressor domain 210 Domain_25289 Polar bear suppression subdomain 211 Domain_25379 Capuchin repressor subdomain 212 Domain_25405 Vampire bat (Desmodus rotundus) suppressor domain 213 Domain_26070 Geotrypetes seraphini repressor domain 214 Domain_26322 Caecilians 215 Domain_26732 Wild turkey (Meleagris gallopavo) repressor subdomain 216 Domain_27060 Gopherus agassizii repressor domain 217 Domain_27385 Octodon repressor domain 218 Domain_27506 yaks inhibitory subdomain 219 Domain_27811 Common marmoset suppressor domain 220 Domain_28640 Colinus virginianus repressor domain 221 Domain_28803 Gray short-tailed rat inhibitory subdomain 222 Domain_30661 Sperm whale inhibitory subdomain 223 Domain_31643 South American coral snake (Micrurus lemniscatus lemniscatus) suppressor domain 224 Table 43 : Levels of B2M inhibition mediated by LTRP constructs with various repressor domains quantified 4 days after transfection . The domain ID for each LTRP6 construct shown indicates the secondary repressor domain used and assessed Repressor construct Spacer Average HLA- negative cells % Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 6.827 0.359 3 LTRP5-ADD-ZIM3 7.165 53.833 1.159 3 LTRP6_domain_20505 7.165 69.333 0.493 3 LTRP6_domain_30173 7.165 70.267 1.115 3 LTRP6_domain_15507 7.165 71.800 0.436 3 LTRP6_domain_18137 7.165 71.900 0.600 3 LTRP6_domain_24458 7.165 73.333 0.961 3 LTRP6_domain_6445 7.165 73.567 0.666 3 LTRP6_domain_17432 7.165 74.667 0.603 3 LTRP6_domain_9960 7.165 76.000 0.100 3 LTRP6_domain_13468 7.165 76.167 0.493 3 LTRP6_domain_8853 7.165 77.400 0.173 3 LTRP6_domain_6802 7.165 77.700 0.361 3 LTRP6_domain_7694 7.165 78.300 0.361 3 LTRP6_domain_29304 7.165 78.933 0.814 3 LTRP6_domain_25379 7.165 80.033 0.569 3 LTRP6_domain_22153 7.165 80.200 1.493 3 LTRP6_domain_7255 7.165 80.567 0.551 3 LTRP6_domain_26749 7.165 81.467 0.503 3 LTRP6_domain_10123 7.165 81.833 0.289 3 Table 44 : Levels of B2M repression mediated by LTRP constructs with various repressor domains quantified 8 days after transfection . The domain ID for each LTRP6 construct shown indicates the secondary repressor domain used and assessed Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 2.100 0.311 2 LTRP5-ADD-ZIM3 7.165 55.000 0.300 3 LTRP6_domain_20505 7.165 72.367 1.686 3 LTRP6_domain_30173 7.165 72.733 1.069 3 LTRP6_domain_15507 7.165 74.033 0.351 3 LTRP6_domain_18137 7.165 75.100 1.253 3 LTRP6_domain_24458 7.165 76.167 0.737 3 LTRP6_domain_6445 7.165 77.600 1.249 3 LTRP6_domain_17432 7.165 78.233 0.153 3 LTRP6_domain_9960 7.165 77.600 0.346 3 LTRP6_domain_13468 7.165 79.067 0.651 3 LTRP6_domain_8853 7.165 79.333 1.150 3 LTRP6_domain_6802 7.165 78.400 0.265 3 LTRP6_domain_7694 7.165 81.433 0.416 3 LTRP6_domain_29304 7.165 80.433 0.569 3 LTRP6_domain_25379 7.165 82.167 0.351 3 LTRP6_domain_22153 7.165 81.333 1.210 3 LTRP6_domain_7255 7.165 80.933 0.404 3 LTRP6_domain_26749 7.165 85.767 0.777 3 LTRP6_domain_10123 7.165 83.000 0.625 3 Table 45 : Levels of B2M inhibition mediated by LTRP constructs with various repressor domains quantified 13 days after transfection . The domain ID for each LTRP6 construct shown indicates the secondary repressor domain used and assessed Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 1.587 0.670 3 LTRP5-ADD-ZIM3 7.165 50.267 0.987 3 LTRP6_domain_20505 7.165 70.133 0.945 3 LTRP6_domain_30173 7.165 70.233 0.666 3 LTRP6_domain_15507 7.165 72.067 0.252 3 LTRP6_domain_18137 7.165 72.767 1.514 3 LTRP6_domain_24458 7.165 73.967 0.404 3 LTRP6_domain_6445 7.165 75.967 0.723 3 LTRP6_domain_17432 7.165 75.667 0.351 3 LTRP6_domain_9960 7.165 74.233 0.814 3 LTRP6_domain_13468 7.165 76.767 0.764 3 LTRP6_domain_8853 7.165 75.133 1.457 3 LTRP6_domain_6802 7.165 74.700 1.136 3 LTRP6_domain_7694 7.165 78.967 0.321 3 LTRP6_domain_29304 7.165 78.233 1.332 3 LTRP6_domain_25379 7.165 78.600 0.985 3 LTRP6_domain_22153 7.165 77.533 0.839 3 LTRP6_domain_7255 7.165 77.700 0.265 3 LTRP6_domain_26749 7.165 83.800 1.127 3 LTRP6_domain_10123 7.165 79.367 0.702 3

表43至表45中之資料顯示,到轉染後至少13天,具有 B2M靶向gRNA的所有LTRP6構築體均能夠誘導更高的B2M抑制水平,且取決於用作第二抑制子域之抑制子域,抑制效力存在微小變化。值得注意的是,使用域_26749 (來自眼鏡王蛇)作為第二抑制子域引起約83.8%之B2M抑制,此為所評定之其他抑制子域中抑制水平最高的。相比之下,LTRP5-ADD-ZIM3構築體僅實現約50.3%之抑制水平,該抑制水平比由具有ZIM3及域_26749抑制子域之LTRP6構築體所實現之抑制水平低約40% (表43至表45)。自此等實驗觀測到的抑制改良可藉由使用更強效之抑制子域、ADD域之存在及LTRP6構築體組態中第二抑制子域之併入的協同效應解釋。以下實例12進一步研究使用兩個增強型抑制子域對LTRP6構築體之活性及特異性的影響。 The data in Tables 43 to 45 show that all LTRP6 constructs with B2M targeting gRNAs were able to induce higher levels of B2M inhibition by at least 13 days after transfection, and there were slight variations in the inhibitory potency depending on the inhibitory subdomain used as the second inhibitory subdomain. It is noteworthy that the use of domain_26749 (from King Cobra) as the second inhibitory subdomain caused about 83.8% B2M inhibition, which was the highest level of inhibition among the other inhibitory subdomains evaluated. In contrast, the LTRP5-ADD-ZIM3 construct only achieved an inhibition level of about 50.3%, which was about 40% lower than the inhibition level achieved by the LTRP6 construct with ZIM3 and domain_26749 inhibitory subdomains (Tables 43 to 45). The improvement in inhibition observed from these experiments can be explained by the synergistic effect of using a more potent inhibitory subdomain, the presence of the ADD domain, and the incorporation of a second inhibitory subdomain in the LTRP6 construct configuration. Example 12 below further investigates the effect of using two enhanced inhibitory subdomains on the activity and specificity of the LTRP6 construct.

此等實驗結果表明,併入第二抑制子域可增強含有ADD域之LTRP分子的活性。本文所描述之結果顯示,在LTRP5-ADD-ZIM3分子之C端上併入增強型抑制子域,產生LTRP6構築體,將改良在人類細胞中內源性基因座處之抑制活性。 實例 12 評定使用兩個抑制子域及其在 LTRP6 分子內之相對位置對活性及特異性之影響 These experimental results indicate that incorporation of a second repressor domain can enhance the activity of LTRP molecules containing an ADD domain. The results described herein show that incorporation of an enhancing repressor domain at the C-terminus of the LTRP5-ADD-ZIM3 molecule, generating the LTRP6 construct, improves repressor activity at the endogenous locus in human cells. Example 12 : Evaluation of the effects of the use of two repressor domains and their relative position within the LTRP6 molecule on activity and specificity

進行實驗以確定先前描述於實例11中之LTRP組態6 (LTRP6)分子之變化形式是否會引起目標基因座之長期抑制的改良及脫靶甲基化之減少。此處,對使用增強型抑制子域在LTRP6分子內作為第一抑制子域及第二抑制子域以及此等抑制子域之相對位置的影響進行評估。如圖61中所示,在此實例中測試LTRP6組態之兩種變化形式。具有組態6a之分子相對於dCasX在N端及C端位置利用相同的抑制子域,而具有組態6b之分子在該兩個位置處使用兩個不同的抑制子域。 材料及方法: LTRP6構築體之產生及質體選殖: Experiments were conducted to determine whether variations of the LTRP configuration 6 (LTRP6) molecule previously described in Example 11 would result in improved long-term repression of the target locus and reduced off-target methylation. Here, the effects of using an enhancing repressor domain as the first and second repressor domains within the LTRP6 molecule and the relative positions of these repressor domains were evaluated. As shown in Figure 61, two variations of the LTRP6 configuration were tested in this example. Molecules with configuration 6a utilized the same repressor domain at the N-terminal and C-terminal positions relative to dCasX, while molecules with configuration 6b used two different repressor domains at these two positions. Materials and Methods: Generation of LTRP6 constructs and plastid selection:

使用標準分子選殖技術構建質體構築體,其編碼具有圖61之示意圖中所示之組態6a或6b的LTRP6分子之變異體。在此實例中,使用以下四個抑制子域產生LTRP6分子之變異體:域_22153、域_7255、域_26749及域_10123。選擇此四個域係因為當其併入作為LTRP6組態中之第二抑制子域時,在轉染後4天誘導最高水平的B2M抑制,如實例11中所示(表43至表45)。相對於dCasX在N端及/或C端位置處以組合方式測試該四個抑制子域中之各者,產生總計16個評定組合。該16種LTRP6變異體之編碼序列示於表46中,其對應蛋白質序列示於表47中。質體亦具有編碼gRNA支架變異體174之構築體,該gRNA支架變異體具有靶向內源性 B2M基因座之間隔子(間隔子7.165;UCCCUAUGUCCUUGCUGUUU;SEQ ID NO: 3114)或非靶向對照。此等構築體均選殖於慢病毒質體上之P2A嘌呤黴素元件上游。 46 實例中 評定之 16 LTRP6 變異體的編碼序列 * 組分 域組合# DNA 序列 起始密碼子+ NLS + 緩衝序列     ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGA 起始密碼子+ DNMT3A ADD域     ATGGAGCGGCTGGTGTATGAGGTGCGCCAGAAGTGCAGAAACATCGAGGACATTTGTATCTCATGTGGGAGCCTCAATGTCACCCTGGAGCACCCACTCTTCATTGGAGGCATGTGCCAGAACTGTAAGAACTGCTTCTTGGAGTGTGCTTACCAGTATGACGACGATGGGTACCAGTCCTATTGCACCATCTGCTGTGGGGGGCGTGAAGTGCTCATGTGTGGGAACAACAACTGCTGCAGGTGCTTTTGTGTCGAGTGTGTGGATCTCTTGGTGGGGCCAGGAGCTGCTCAGGCAGCCATTAAGGAAGACCCCTGGAACTGCTACATGTGCGGGCATAAGGGCACCTATGGGCTGCTGCGAAGACGGGAAGACTGGCCTTCTCGACTCCAGATGTTCTTTGCCAAT DNMT3A催化域     AACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGAGGAAGCCCATCCGCGTGCTGTCTCTCTTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGGGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGTCAAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG 連接子2 (L2)     TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT DNMT3L相互作用域     ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGTCACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATTCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGCGGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAGAGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT 連接子3A (L3A)     GGCGGTTCCGGCGGAGGA N端抑制子域 組合1、5、9及13 域_22153 GTTCGTATGCCTGTTACTTTTGAAGATGTTGCTGTTACTTTTACTCAAGAAGAATGGGGGCAATTAGATCCTGCTCAACGTACTTTATATCAAGAAGTTATGTTAGAGACTTGTGGTTTATTAGTTTCTTTAGGTTGTCCTTTACCTAAACCTGAATTATTTTATCCTTTAGATCATTCTCCTGAATTACAAACTTTAAAACGTGGTTTATCTCCTAATTCTTGTCCTGGTGATTCTACTAAA 組合2、6、10及14 域_7255 ACTCAAGTTCCTGTTACCTTTGAAGATGTTGCTGTTTATTTTTGTGAAGGTGAATGGGAAACTTTAGCTGAATGGCAAAAAGAATTATATCGTGAAACTATGAAAGAGAATTATGAAACTTTAACTTCTTTAGGTTTTTCTTCTAAAAAACCTTCTTTAATTTCTAAAATAGAACGTGAAGAAGATCCTTGTGTGCGTGATAAACAAGATTCTCGTGATCGTCGTCGTTTACGTTCTTGTTGG 組合3、7、11及15 域_26749 TCTACTCCTGTTACTTTTGAAGATGTTGTTGTTTATTTTACTGCTGCTGAATGGGTTCATTTAACTAATTGGCAACGTGATTTTTATCAAGCTGTTATGATGGAAACTTATGAATTAGTTGCTTCTGTTGCTGGTGATGGTGTTCCTATGGCTGAAGATGAAGAAGGTGGTGTTGAACGTCCTGTTTGGCAATATATTCCTCGTGGTAAACGTCGTCGTAAAACTCCTCAACCTCGTGCTGAT 組合4、8、12及16 域_10123 GCTTTAGTTACTTTTGAAGATGTTGCTGTTCGTTTTACTCAAGAAGAATGGGCTTTATTAGATCCTTCTCAAAAAATTTTATATCGTGATGTTATGCGTGAGACTTATCGTAATTTAACTTCTGTTGGTATTAATTGGGAATGTTGGGATTTAGAAGCTTGTTTTCGTTCTTTAGGTCGTAATTTACGTGTTCAAGTCGTTAAACGTAAATGTGAATTAACTAATTCTGGTCCTTGTGCTGAA 連接子1 (L1)   GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG dCasX   dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACCAGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTGACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACCTACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTACCAGGACATCATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTCAACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGGCAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAGAAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCGATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGGCCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGCTGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAGACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGACATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAAGACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAGGTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTTCGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG 緩衝序列 + 連接子3B (L3B) + 緩衝序列     CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT C端抑制子域 組合1至4 域_7255 ACTCAAGTTCCTGTTACCTTTGAAGATGTTGCTGTTTATTTTTGTGAAGGTGAATGGGAAACTTTAGCTGAATGGCAAAAAGAATTATATCGTGAAACTATGAAAGAGAATTATGAAACTTTAACTTCTTTAGGTTTTTCTTCTAAAAAACCTTCTTTAATTTCTAAAATAGAACGTGAAGAAGATCCTTGTGTGCGTGATAAACAAGATTCTCGTGATCGTCGTCGTTTACGTTCTTGTTGG 組合5至8 域_22153 GTTCGTATGCCTGTTACTTTTGAAGATGTTGCTGTTACTTTTACTCAAGAAGAATGGGGGCAATTAGATCCTGCTCAACGTACTTTATATCAAGAAGTTATGTTAGAGACTTGTGGTTTATTAGTTTCTTTAGGTTGTCCTTTACCTAAACCTGAATTATTTTATCCTTTAGATCATTCTCCTGAATTACAAACTTTAAAACGTGGTTTATCTCCTAATTCTTGTCCTGGTGATTCTACTAAA 組合9至12 域_10123 GCTTTAGTTACTTTTGAAGATGTTGCTGTTCGTTTTACTCAAGAAGAATGGGCTTTATTAGATCCTTCTCAAAAAATTTTATATCGTGATGTTATGCGTGAGACTTATCGTAATTTAACTTCTGTTGGTATTAATTGGGAATGTTGGGATTTAGAAGCTTGTTTTCGTTCTTTAGGTCGTAATTTACGTGTTCAAGTCGTTAAACGTAAATGTGAATTAACTAATTCTGGTCCTTGTGCTGAA 組合13至16 域_26749 TCTACTCCTGTTACTTTTGAAGATGTTGTTGTTTATTTTACTGCTGCTGAATGGGTTCATTTAACTAATTGGCAACGTGATTTTTATCAAGCTGTTATGATGGAAACTTATGAATTAGTTGCTTCTGTTGCTGGTGATGGTGTTCCTATGGCTGAAGATGAAGAAGGTGGTGTTGAACGTCCTGTTTGGCAATATATTCCTCGTGGTAAACGTCGTCGTAAAACTCCTCAACCTCGTGCTGAT 連接子4v1 (L4v1)     GGAAGTGGGAGC NLS     CCCAAGAAAAAGAGAAAAGTG *各組分以在構築體內之5'至3'次序列出 47 此實例中評定之 16 LTRP6 變異體的全長蛋白質序列 組分 域組合# AA 序列 起始密碼子+ NLS + 緩衝序列     MAPKKKRKVSR 起始密碼子+ DNMT3A ADD域     MERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN DNMT3A催化域     NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV 連接子2 (L2)     SSGNSNANSRGPSFSSGLVPLSLRGSH DNMT3L相互作用域     MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQRPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL 連接子3A (L3A)     GGSGGG N端抑制子域 組合1、5、9及13 域_22153 VRMPVTFEDVAVTFTQEEWGQLDPAQRTLYQEVMLETCGLLVSLGCPLPKPELFYPLDHSPELQTLKRGLSPNSCPGDSTK 組合2、6、10及14 域_7255 TQVPVTFEDVAVYFCEGEWETLAEWQKELYRETMKENYETLTSLGFSSKKPSLISKIEREEDPCVRDKQDSRDRRRLRSCW 組合3、7、11及15 域_26749 STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD 組合4、8、12及16 域_10123 ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE 連接子1 (L1)     GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE dCasX   dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFWQNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLADDMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV 緩衝序列 + 連接子3B (L3B) + 緩衝序列     RSGGSGGGSTS C端抑制子域 組合1至4 域_7255 TQVPVTFEDVAVYFCEGEWETLAEWQKELYRETMKENYETLTSLGFSSKKPSLISKIEREEDPCVRDKQDSRDRRRLRSCW 組合5至8 域_22153 VRMPVTFEDVAVTFTQEEWGQLDPAQRTLYQEVMLETCGLLVSLGCPLPKPELFYPLDHSPELQTLKRGLSPNSCPGDSTK 組合9至12 域_10123 ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE 組合13至16 域_26749 STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD 連接子4v1 (L4v1)     GSGS NLS     PKKKRKV Standard molecular cloning techniques were used to construct plastid constructs encoding variants of LTRP6 molecules having configuration 6a or 6b as shown in the schematic diagram of Figure 61. In this example, variants of LTRP6 molecules were generated using the following four inhibitory subdomains: domain_22153, domain_7255, domain_26749, and domain_10123. These four domains were selected because when they were incorporated as the second inhibitory subdomain in the LTRP6 configuration, they induced the highest level of B2M inhibition 4 days after transfection, as shown in Example 11 (Tables 43 to 45). Each of the four inhibitory subdomains was tested in combination relative to dCasX at the N-terminal and/or C-terminal positions, resulting in a total of 16 evaluation combinations. The coding sequences of the 16 LTRP6 variants are shown in Table 46 and their corresponding protein sequences are shown in Table 47. The plasmid also had constructs encoding gRNA scaffold variant 174 with a spacer targeting the endogenous B2M locus (spacer 7.165; UCCCUAUGUCCUUGCUGUUU; SEQ ID NO: 3114) or a non-targeting control. These constructs were all cloned upstream of the P2A puromycin element on the lentiviral plasmid. Table 46 : Coding sequences of the 16 LTRP6 variants evaluated in this example * Components Domain Combinations# domain DNA Sequence Start codon + NLS + buffer sequence ATGGCCCCAAAGAAGAAGCGGAAGGTCTCTAGA Start codon + DNMT3A ADD domain ATGGAGCGGCTGGTGTATGAGGTGCGCCAGAAGTGCAGAAACATCGAGGACATTTGTATCTCATGTGGGAGCCTCAATGTCACCCTGGAGCACCCACTCTTCATTGGAGGCATGTGCCAGAACTGTAAGAACTGCTTCTTGGAGTGTGCTTACCAGTATGACGACGATGGGTACCAGTCCTATTGCACCATCTGCTGTGGGGGG CGTGAAGTGCTCATGTGTGGGAACAACAACTGCTGCAGGTGCTTTTGTGTCGAGTGTGTGGATCTCTTGGTGGGGCCAGGAGCTGCTCAGGCAGCCATTAAGGAAGACCCCTGGAACTGCTACATGTGCGGGCATAAGGGCACCTATGGGCTGCTGCGAAGACGGGAAGACTGGCCTTCTCGACTCCAGATGTTCTTTGCCAAT DNMT3A catalytic domain AACCATGACCAGGAATTTGACCCCCCAAAGGTTTACCCACCTGTGCCAGCTGAGAAGAGGAAGCCCATCCGCGTGCTGTCTCTCTTGATGGGATTGCTACAGGGCTCCTGGTGCTGAAGGACCTGGGCATCCAAGTGGACCGCTACATCGCCTCCGAGGTGTGAGGACTCCATCACGGTGGGCATGGTGCGGCACCAGGGAAAGATCATGTACGTCGGGGAC GTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGGCCCATTCGACCTGGTGATTGGAGGCAGTCCCTGCAACGACCTCTCCATTGTCAACCCTGCCCGCAAGGGACTTTATGAGGGTACTGGCCGCCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGG GCGTTAGTGACAAGAGGGACATCTCGCGATTTCTTGAGTCTAACCCCGTGATGATTGACGCCAAAGAAGTGTCTGCTGCACACAGGGCCCGTTACTTCTGGGGTAACCTTCCTGGCATGAACAGGCCTTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAAGAGTGTCTGGAGCACGGCAGAATAGCCAAGTTCAGCAAAGTGAGGACCATTACCACCAGGTC AAACTCTATAAAGCAGGGCAAAGACCAGCATTTCCCCGTCTTCATGAACGAAGGAGGACATCCTGTGGTGCACTGAAATGGAAAGGGTGTTTGGCTTCCCCGTCCACTACACAGACGTGTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCGTGGAGCGTGCCGGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAATATTTTGCTTGTGTG Connector 2 (L2) TCTAGCGGCAATAGTAACGCTAACAGCCGCGGGCCGAGCTTCAGCAGCGGCCTGGTGCCGTTAAGCTTGCGCGGCAGCCAT DNMT3L interaction domain ATGGGCCCTATGGAGATATACAAGACAGTGTCTGCATGGAAGAGACAGCCAGTGCGGGTACTGAGCCTCTTCAGAAACATCGACAAGGTACTAAAGAGTTTGGGCTTCTTGGAAAGCGGTTCTGGTTCTGGGGGAGGAACGCTGAAGTACGTGGAAGATGT CACAAATGTCGTGAGGAGGGACGTGGAGAAATGGGGCCCCTTTGACCTGGTGTACGGCTCGACGCAGCCCCTAGGCAGCTCTTGTGATCGCTGTCCCGGCTGGTACATGTTCCAGTTCCACCGGATTCTGCAGTATGCGCTGCCTCGCCAGGAGAGTCAGC GGCCCTTCTTCTGGATATTCATGGACAATCTGCTGCTGACTGAGGATGACCAAGAGACAACTACCCGCTTCCTTCAGACAGAGGCTGTGACCCTCCAGGATGTCCGTGGCAGAGACTACCAGAATGCTATGCGGGTGTGGAGCAACATTCCAGGGCTGAAG AGCAAGCATGCGCCCCTGACCCCAAAGGAAGAAGAGTATCTGCAAGCCCAAGTCAGAAGCAGGAGCAAGCTGGACGCCCCGAAAGTTGACCTCCTGGTGAAGAACTGCCTTCTCCCGCTGAGAGAGTACTTCAAGTATTTTTCTCAAAACTCACTTCCTCTT Connector 3A (L3A) GGCGGTTCCGGCGGAGGA N-terminal inhibitory subdomain Combination 1, 5, 9 and 13 Domain_22153 GTTCGTAGCCTGTTACTTTTGAAGATGTTGCTGTTACTTTTACTCAAGAAGAATGGGGGCAATTAGATCCTGCTCAACGTACTTTATATCAAGAAGTTATGTTAGAGACTTGTGGTTTATTAGTTTCTTTAGGTTGTCCTTTACCTAAACCTGAATTATTTTATCCTTTAGATCATTCTCCTGAATTACAAACTTTAAAACGTGGTTTATCTCCTAATTCTTGTCCTGGTGATTCTACTAAA Combination 2, 6, 10 and 14 Domain_7255 ACTCAAGTTCCTGTTACCTTTGAAGATGTTGCTGTTTATTTTTGTGAAGGTGAATGGGAAACTTTAGCTGAATGGCAAAAAGAATTATATCGTGAAACTATGAAAGAATTATGAAACTTTAACTTCTTTAGGTTTTTCTTCTAAAAAACCCTTCTTTAATTTCTAAAATAGAACGTGAAGAAGATCCTTGTGTGCGTGATAAACAAGATTCTCGTGATCGTCGTCGTTTACGTTCTTGTTGG Combination 3, 7, 11 and 15 Domain_26749 TCTACTCCTGTTACTTTTGAAGATGTTGTTGTTTATTTTACTGCTGCTGAATGGGTTCATTTAACTAATTGGCAACGTGATTTTTATCAAGCTGTTATGATGGAAACTTATGAATTAGTTGCTTCTGTTGCTGGTGATGGTGTTCCTATGGCTGAAGATGAAGAAGGTGGTGTTGAACGTCCTGTTTGGCAATATATTCCTCGTGGTAAACGTCGTCGTAAAACTCCTCAACCTCGTGCTGAT Combination 4, 8, 12 and 16 Domain_10123 GCTTTAGTTACTTTTGAAGATGTTGCTGTTCGTTTTACTCAAGAAGAATGGGCTTTATTAGATCCTTCTCAAAAAATTTTATATCGTGATGTTATGCGTGAGACTTATCGTAATTTAACTTCTGTTGGTATATTAATTGGGAATGTTGGGATTTAGAAGCTTGTTTTCGTTCTTTAGGTCGTAATTTACGTGTTCAAGTCGTTAAACGTAAATGTGAATTAACTAATTCTGGTCCTTGTGCTGAA Connector 1 (L1) GGAGGGCCGAGCTCTGGCGCACCCCCACCAAGTGGAGGGTCTCCTGCCGGGTCCCCCAACATCTACTGAAGAAGGCACCAGCGAATCCGCAACGCCCGAGTCAGGCCCTGGTACCTCCACAGAACCATCTGAAGGTAGTGCGCCTGGTTCCCCAGCTGGAAGCCCTACTTCCACCGAAGAAGGCACGTCAACCGAACCAAGTGAAGGATCTGCCCCTGGGACCAGCACTGAACCATCTGAG dX dCasX491 CAAGAGATCAAGAGAATCAACAAGATCAGAAGGAGACTGGTCAAGGACAGCAACACAAAGAAGGCCGGCAAGACAGGCCCCATGAAAACCCTGCTCGTCAGAGTGATGACCCCTGACCTGAGAGAGCGGCTGGAAAACCTGAGAAAGAAGCCCGAGAACATCCCTCAGCCTATCAGCAACACC AGCAGGGCCAACCTGAACAAGCTGCTGACCGACTACACCGAGATGAAGAAAGCCATCCTGCACGTGTACTGGGAAGAGTTCCAGAAAGACCCCGTGGGCCTGATGAGCAGAGTTGCTCAGCCTGCCAGCAAGAAGATCGACCAGAACAAGCTGAAGCCCGAGATGGACGAGAAGGGCAATCTG ACCACAGCCGGCTTTGCCTGCTCTCAGTGTGGCCAGCCTCTGTTCGTGTACAAGCTGGAACAGGTGTCCGAGAAAGGCAAGGCCTACACCAACTTCGGCAGATGTAACGTGGCCGAGCACGAGAAGCTGATTCTGCTGGCCCAGCTGAAACCTGAGAAGGACTCTGATGAGGCCGTGACC TACAGCCTGGGCAAGTTTGGACAGAGAGCCCTGGACTTCTACAGCATCCACGTGACCAAAGAAAGCACACACCCCGTGAAGCCCCTGGCTCAGATCGCCGGCAATAGATACGCCTCTGGACCTGTGGGCAAAGCCCTGTCCGATGCCTGCATGGGAACAATCGCCAGCTTCCTGAGCAAGTAC CAGGACATCATCGAGCACCAGAAGGTGGTCAAGGGCAACCAGAAGAGACTGGAAAGCCTGAGGGAGCTGGCCGGCAAAGAGAACCTGGAATACCCCAGCGTGACCCTGCCTCCTCAGCCTCACACAAAAGAAGGCGTGGACGCCTACAACGAAGTGATCGCCAGAGTGAGAATGTGGGTC AACCTGAACCTGTGGCAGAAGCTGAAACTGTCCAGGGACGACGCCAAGCCTCTGCTGAGACTGAAGGGCTTCCCTAGCTTCCCTCTGGTGGAAAGACAGGCCAATGAAGTGGATTGGTGGGACATGGTCTGCAACGTGAAGAAGCTGATCAACGAGAAGAAAGAGGATGGCAAGGTTTTCTGG CAGAACCTGGCCGGCTACAAGAGACAAGAAGCCCTGAGGCCTTACCTGAGCAGCGAAGAGGACCGGAAGAAGGGCAAGAAGTTCGCCAGATACCAGCTGGGCGACCTGCTGCTGCACCTGGAAAAGAAGCACGGCGAGGACTGGGGCAAAGTGTACGATGAGGCCTGGGAGAGAATCGACAAG AAGGTGGAAGGCCTGAGCAAGCACATTAAGCTGGAAGAGGAAAGAAGGAGCGAGGACGCCCAATCTAAAGCCGCTCTGACCGATTGGCTGAGAGCCAAGGCCAGCTTTGTGATCGAGGGCCTGAAAGAGGCCGACAAGGACGAGTTCTGCAGATGCGAGCTGAAGCTGCAGAAGTGGTACGGCG ATCTGAGAGGCAAGCCCTTCGCCATTGAGGCCGAGAACAGCATCCTGGACATCAGCGGCTTCAGCAAGCAGTACAACTGCGCCTTCATTTGGCAGAAAGACGGCGTCAAGAAACTGAACCTGTACCTGATCATCAATTACTTCAAAGGCGGCAAGCTGCGGTTCAAGAAGATCAAACCCGAGG CCTTCGAGGCTAACAGATTCTACACCGTGATCAACAAAAAGTCCGGCGAGATCGTGCCCATGGAAGTGAACTTCAACTTCGACGACCCCAACCTGATTATCCTGCCTCTGGCCTTCGGCAAGAGACAGGGCAGAGAGTTCATCTGGAACGATCTGCTGAGCCTGGAAACCGGCTCTCTGAAGC TGGCCAATGGCAGAGTGATCGAGAAAACCCTGTACAACAGGAGAACCAGACAGGACGAGCCTGCTCTGTTTGTGGCCCTGACCTTCGAGAGAAGAGAGGTGCTGGACAGCAGCAACATCAAGCCCATGAACCTGATCGGCGTGGCCCGGGGCGAGAATATCCCTGCTGTGATCGCCCTGACAG ACCCTGAAGGATGCCCACTGAGCAGATTCAAGGACTCCCTGGGCAACCCTACACACATCCTGAGAATCGGCGAGAGCTACAAAGAGAAGCAGAGGACAATCCAGGCCAAGAAAGAGGTGGAACAGAGAAGAGCCGGCGGATACTCTAGGAAGTACGCCAGCAAGGCCAAGAATCTGGCCGACGA CATGGTCCGAAACACCGCCAGAGATCTGCTGTACTACGCCGTGACACAGGACGCCATGCTGATCTTCGCGAATCTGAGCAGAGGCTTCGGCCGGCAGGGCAAGAGAACCTTTATGGCCGAGAGGCAGTACACCAGAATGGAAGATTGGCTCACAGCTAAACTGGCCTACGAGGGACTGAGCAA GACCTACCTGTCCAAAACACTGGCCCAGTATACCTCCAAGACCTGCAGCAATTGCGGCTTCACCATCACCAGCGCCGACTACGACAGAGTGCTGGAAAAGCTCAAGAAAACCGCCACCGGCTGGATGACCACCATCAACGGCAAAGAGCTGAAGGTTGAGGGCCAGATCACCTACTACAACAG GTACAAGAGGCAGAACGTCGTGAAGGATCTGAGCGTGGAACTGGACAGACTGAGCGAAGAGAGCGTGAACAACGACATCAGCAGCTGGACAAAGGGCAGATCAGGCGAGGCTCTGAGCCTGCTGAAGAAGAGGTTTAGCCACAGACCTGTGCAAGAGAAGTTCGTGTGCCTGAACTGCGGCTT CGAGACACACGCCGCTGAACAGGCTGCCCTGAACATTGCCAGAAGCTGGCTGTTCCTGAGAAGCCAAGAGTACAAGAAGTACCAGACCAACAAGACCACCGGCAACACCGACAAGAGGGCCTTTGTGGAAAACCTGGCAGAGCTTCTACAGAAAAAAGCTGAAAGAAGTCTGGAAGCCCGCCGTG Buffer sequence + Linker 3B (L3B) + Buffer sequence CGATCGGGCGGTTCCGGCGGAGGTTCCACTAGT C-terminal inhibitory domain Combination 1 to 4 Domain_7255 ACTCAAGTTCCTGTTACCTTTGAAGATGTTGCTGTTTATTTTTGTGAAGGTGAATGGGAAACTTTAGCTGAATGGCAAAAAGAATTATATCGTGAAACTATGAAAGAATTATGAAACTTTAACTTCTTTAGGTTTTTCTTCTAAAAAACCCTTCTTTAATTTCTAAAATAGAACGTGAAGAAGATCCTTGTGTGCGTGATAAACAAGATTCTCGTGATCGTCGTCGTTTACGTTCTTGTTGG Combination 5 to 8 Domain_22153 GTTCGTAGCCTGTTACTTTTGAAGATGTTGCTGTTACTTTTACTCAAGAAGAATGGGGGCAATTAGATCCTGCTCAACGTACTTTATATCAAGAAGTTATGTTAGAGACTTGTGGTTTATTAGTTTCTTTAGGTTGTCCTTTACCTAAACCTGAATTATTTTATCCTTTAGATCATTCTCCTGAATTACAAACTTTAAAACGTGGTTTATCTCCTAATTCTTGTCCTGGTGATTCTACTAAA Combination 9 to 12 Domain_10123 GCTTTAGTTACTTTTGAAGATGTTGCTGTTCGTTTTACTCAAGAAGAATGGGCTTTATTAGATCCTTCTCAAAAAATTTTATATCGTGATGTTATGCGTGAGACTTATCGTAATTTAACTTCTGTTGGTATATTAATTGGGAATGTTGGGATTTAGAAGCTTGTTTTCGTTCTTTAGGTCGTAATTTACGTGTTCAAGTCGTTAAACGTAAATGTGAATTAACTAATTCTGGTCCTTGTGCTGAA Combination 13 to 16 Domain_26749 TCTACTCCTGTTACTTTTGAAGATGTTGTTGTTTATTTTACTGCTGCTGAATGGGTTCATTTAACTAATTGGCAACGTGATTTTTATCAAGCTGTTATGATGGAAACTTATGAATTAGTTGCTTCTGTTGCTGGTGATGGTGTTCCTATGGCTGAAGATGAAGAAGGTGGTGTTGAACGTCCTGTTTGGCAATATATTCCTCGTGGTAAACGTCGTCGTAAAACTCCTCAACCTCGTGCTGAT Linker 4v1 (L4v1) GGAAGTGGGAGC NLS CCCAAGAAAAAGAGAAAAGTG * The components are listed in 5' to 3' order within the construct Table 47 : Full-length protein sequences of the 16 LTRP6 variants evaluated in this example Components Domain Combinations# domain AA sequence Start codon + NLS + buffer sequence MAPKKKRKVSR Start codon + DNMT3A ADD domain MERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFIGGMCQNCKNCFLECAYQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLRRREDWPSRLQMFFAN DNMT3A catalytic domain NHDQEFDPPKVYPPVPAEKRKPIRVLSLFDGIATGLLVLKDLGIQVDRYIASEVCEDSITVGMVRHQGKIMYVGDVRSVTQKHIQEWGPFDLVIGGSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRPFFWLFENVVAM GVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLPGMNRPLASTVNDKLELQECLEHGRIAKFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRHLFAPLKEYFACV Connector 2 (L2) SSGNSNANSRGPSFSSGLVPLSLRGSH DNMT3L interaction domain MGPMEIYKTVSAWKRQPVRVLSLFRNIDKVLKSLGFLESGSGSGGGTLKYVEDVTNVVRRDVEKWGPFDLVYGSTQPLGSSCDRCPGWYMFQFHRILQYALPRQESQ RPFFWIFMDNLLLTEDDQETTTRFLQTEAVTLQDVRGRDYQNAMRVWSNIPGLKSKHAPLTPKEEEYLQAQVRSRSKLDAPKVDLLVKNCLLPLREYFKYFSQNSLPL Connector 3A (L3A) GGSGGG N-terminal inhibitory subdomain Combination 1, 5, 9 and 13 Domain_22153 VRMPVTFEDVAVTFTQEEWGQLDPAQRTLYQEVMLETCGLLVSLGCPLPKPELFYPLDHSPELQTLKRGLSPNSSCPGDSTK Combination 2, 6, 10 and 14 Domain_7255 TQVPVTFEDVAVYFCEGEWETLAEWQKELYRETMKENYETLTSLGFSSKKPSLISKIEREEDPCVRDKQDSRDRRRLRSCW Combination 3, 7, 11 and 15 Domain_26749 STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD Combination 4, 8, 12 and 16 Domain_10123 ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE Connector 1 (L1) GGPSSGAPPPSGGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSE dX dCasX491 QEIKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPASKKIDQNKLKPEMDEKGNL TTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFLSKY QDIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGKVFW QNLAGYKRQEALRPYLSSEEDRKKGKKFARYQLGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYG DLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLSLETGSLK LANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGVARGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAKKEVEQRRAGGYSRKYASKAKNLAD DMVRNTARDLLYYAVTQDAMLIFANLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYN RYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHAAEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKPAV Buffer sequence + Linker 3B (L3B) + Buffer sequence RSGGSGGGSTS C-terminal inhibitory domain Combination 1 to 4 Domain_7255 TQVPVTFEDVAVYFCEGEWETLAEWQKELYRETMKENYETLTSLGFSSKKPSLISKIEREEDPCVRDKQDSRDRRRLRSCW Combination 5 to 8 Domain_22153 VRMPVTFEDVAVTFTQEEWGQLDPAQRTLYQEVMLETCGLLVSLGCPLPKPELFYPLDHSPELQTLKRGLSPNSSCPGDSTK Combination 9 to 12 Domain_10123 ALVTFEDVAVRFTQEEWALLDPSQKILYRDVMRETYRNLTSVGINWECWDLEACFRSLGRNLRVQVVKRKCELTNSGPCAE Combination 13 to 16 Domain_26749 STPVTFEDVVVYFTAAEWVHLTNWQRDFYQAVMMETYELVASVAGDGVPMAEDEEGGVERPVWQYIPRGKRRRKTPQPRAD Linker 4v1 (L4v1) GSGS NLS PKKKRKV

按照與實例11中所描述類似之方法進行HEK293T細胞之轉染。簡言之,用編碼LTRP6變異體(列於表46中)及具有靶向 B2M之間隔子之gRNA的質體暫態轉染HEK293T細胞。轉染後24小時,用嘌呤黴素選擇細胞五天。在轉染後8、12、20、27、44、59、74及104天,收集細胞以測定B2M抑制水平。LTRP5-ZIM3分子及LTRP5-ADD-ZIM3分子充當實驗對照。另外,比較,此實驗中亦包括使用ZIM3域作為第一及第二抑制子域之LTRP6變異體(亦稱為具有雙重ZIM3之LTRP6)以進行比較。 Transfection of HEK293T cells was performed in a manner similar to that described in Example 11. In brief, HEK293T cells were transiently transfected with plasmids encoding LTRP6 variants (listed in Table 46) and gRNAs with spacers targeting B2M . 24 hours after transfection, cells were selected for five days with puromycin. Cells were collected at 8, 12, 20, 27, 44, 59, 74, and 104 days after transfection to determine the level of B2M inhibition. LTRP5-ZIM3 molecules and LTRP5-ADD-ZIM3 molecules served as experimental controls. In addition, for comparison, this experiment also included LTRP6 variants (also referred to as LTRP6 with double ZIM3) using the ZIM3 domain as the first and second inhibitory subdomains for comparison.

亦進行亞硫酸氫鹽定序以評定在 VEGFA基因座處之脫靶甲基化,此係如實例5中所描述進行。簡言之,在轉染後五天,收集用具有 B2M靶向gRNA或非靶向gRNA的LTRP6變異體質體暫態轉染HEK293T細胞以提取gDNA用於亞硫酸氫鹽定序。亦包括以下對照:1)與B2M間隔子7.37 (GGCCGAGAUGUCUCGCUCCG; SEQ ID NO: 3137)配對之CasX 491;2)具有其對應的 B2M間隔子之dCas9-ZNF10-DNMT3A/3L;3)具有非靶向或 B2M間隔子7.165之LTRP1 (描述於圖28);4)具有 B2M間隔子7.165之LTRP5-ZIM5;及5)具有非靶向或 B2M間隔子7.165之LTRP5-ADD-ZIM3。 結果: Bisulfite sequencing was also performed to assess off-target methylation at the VEGFA locus, which was performed as described in Example 5. Briefly, five days after transfection, HEK293T cells transiently transfected with LTRP6 variant plasmids with B2M- targeting gRNA or non-targeting gRNA were collected to extract gDNA for bisulfite sequencing. The following controls were also included: 1) CasX 491 paired with B2M spacer 7.37 (GGCCGAGAUGUCUCGCUCCG; SEQ ID NO: 3137); 2) dCas9-ZNF10-DNMT3A/3L with its corresponding B2M spacer; 3) LTRP1 with non-targeting or B2M spacer 7.165 (described in Figure 28); 4) LTRP5-ZIM5 with B2M spacer 7.165; and 5) LTRP5-ADD-ZIM3 with non-targeting or B2M spacer 7.165. Results:

評定使用增強型抑制子域作為第一抑制子域及第二抑制子域以及其在LTRP6分子內之相對定位的影響。評估對目標 B2M基因座之長期抑制之影響的時程實驗的結果描繪於表48至表55中。總體而言,資料表明,將第二抑制子域併入LTRP5-ADD分子之C端(產生LTRP6組態)實質上改良持久B2M抑制,再現實例11中觀測到的發現。至少到轉染後59天,當與由LTRP5-ADD-ZIM3構築體實現之B2M抑制水平相比較時,將ZIM3域添加至LTRP5-ADD-ZIM3之C端產生LTRP6-雙重-ZIM3,使長期抑制增強,但此長期抑制之改良未持續到第104天(表48至表55)。藉由使用第二ZIM3域觀測到的增強之抑制進一步支持,所觀測到的LTRP6組態之活性改良係由於C端連接至dCasX之第二抑制子域的存在所致。與LTRP6-雙重-ZIM3相比較,大多數帶有兩個增強型抑制子域的其他LTRP6構築體進一步改良抑制活性,甚至持續至轉染後104天。值得注意的是,含有域_26749 (在N端及/或C端處)之LTRP6分子在誘導持久B2M抑制(>90%)直至第104天方面表現最佳的分子,其中LTRP6-雙重-26749 (組態6a)展示最高的抑制水平且LTRP6-10123-26749 (組態6b)展現第二高的抑制活性(表48至表55)。值得關注的是,在一些情況下,與定位於C端上相比較,抑制子域定位於dCasX之N端上亦影響分子之活性。舉例而言,域_7255定位於dCasX之N端上與域_22153定位於C端上的組合引起約58%抑制;然而,當域_22153位於N端上且域_7255位於C端上時,抑制水平增加至91% (表48至表55)。 48 在轉染後 8 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 8.437 2.483 3 LTRP5-ZIM3 7.165 61.133 2.003 3 LTRP5-ADD-ZIM3 7.165 74.967 1.443 3 LTRP6-雙重-ZIM3 7.165 89.833 0.416 3 LTRP6-22153-7255 7.165 92.200 0.361 3 LTRP6-雙重-7255 7.165 91.267 0.321 3 LTRP6-26749-7255 7.165 92.567 0.208 3 LTRP6-10123-7255 7.165 92.100 0.529 3 LTRP6-雙重-22153 7.165 88.700 0.600 3 LTRP6-7255-22153 7.165 91.500 0.100 3 LTRP6-26749-22153 7.165 93.033 0.737 3 LTRP6-10123-22153 7.165 91.967 0.702 3 LTRP6-22153-10123 7.165 91.767 1.405 3 LTRP6-7255-10123 7.165 90.800 2.128 3 LTRP6-26749-10123 7.165 94.000 1.082 3 LTRP6-雙重-10123 7.165 93.100 1.136 3 LTRP6-22153-26749 7.165 92.167 1.474 3 LTRP6-7255-26749 7.165 91.567 1.365 3 LTRP6-雙重-26749 7.165 92.100 1.044 3 LTRP6-10123-26749 7.165 92.367 0.802 3 49 在轉染後 12 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 1.970 0.442 3 LTRP5-ZIM3 7.165 50.433 1.250 3 LTRP5-ADD-ZIM3 7.165 75.300 1.997 3 LTRP6-雙重-ZIM3 7.165 90.067 0.404 3 LTRP6-22153-7255 7.165 93.567 0.493 3 LTRP6-雙重-7255 7.165 90.400 0.173 3 LTRP6-26749-7255 7.165 94.367 0.306 3 LTRP6-10123-7255 7.165 93.300 0.608 3 LTRP6-雙重-22153 7.165 89.067 0.924 3 LTRP6-7255-22153 7.165 90.733 0.058 3 LTRP6-26749-22153 7.165 95.267 0.709 3 LTRP6-10123-22153 7.165 94.500 0.608 3 LTRP6-22153-10123 7.165 93.400 0.100 3 LTRP6-7255-10123 7.165 89.667 1.210 3 LTRP6-26749-10123 7.165 95.700 0.200 3 LTRP6-雙重-10123 7.165 94.033 0.289 3 LTRP6-22153-26749 7.165 95.067 0.651 3 LTRP6-7255-26749 7.165 95.300 0.866 3 LTRP6-雙重-26749 7.165 95.567 0.404 3 LTRP6-10123-26749 7.165 95.400 0.608 3 50 在轉染後 20 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 6.060 3.841 3 LTRP5-ZIM3 7.165 45.233 3.958 3 LTRP5-ADD-ZIM3 7.165 71.700 2.107 3 LTRP6-雙重-ZIM3 7.165 89.767 1.124 3 LTRP6-22153-7255 7.165 92.433 0.987 3 LTRP6-雙重-7255 7.165 89.233 1.528 3 LTRP6-26749-7255 7.165 93.200 0.400 3 LTRP6-10123-7255 7.165 92.133 0.929 3 LTRP6-雙重-22153 7.165 87.700 0.872 3 LTRP6-7255-22153 7.165 88.633 0.814 3 LTRP6-26749-22153 7.165 94.767 0.850 3 LTRP6-10123-22153 7.165 93.400 0.794 3 LTRP6-22153-10123 7.165 91.967 1.274 3 LTRP6-7255-10123 7.165 87.233 1.960 3 LTRP6-26749-10123 7.165 94.767 0.208 3 LTRP6-雙重-10123 7.165 92.367 0.404 3 LTRP6-22153-26749 7.165 94.400 1.015 3 LTRP6-7255-26749 7.165 93.667 1.069 3 LTRP6-雙重-26749 7.165 95.367 0.681 3 LTRP6-10123-26749 7.165 94.867 0.907 3 51 在轉染後 27 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 2.600 1.006 3 LTRP5-ZIM3 7.165 36.733 2.608 3 LTRP5-ADD-ZIM3 7.165 69.100 1.900 3 LTRP6-雙重-ZIM3 7.165 87.200 1.300 3 LTRP6-22153-7255 7.165 91.300 1.179 3 LTRP6-雙重-7255 7.165 87.233 1.250 3 LTRP6-26749-7255 7.165 92.367 0.551 3 LTRP6-10123-7255 7.165 90.733 1.518 3 LTRP6-雙重-22153 7.165 85.567 1.007 3 LTRP6-7255-22153 7.165 86.433 1.290 3 LTRP6-26749-22153 7.165 94.067 0.681 3 LTRP6-10123-22153 7.165 92.467 1.002 3 LTRP6-22153-10123 7.165 90.900 1.646 3 LTRP6-7255-10123 7.165 85.200 1.411 3 LTRP6-26749-10123 7.165 93.567 0.643 3 LTRP6-雙重-10123 7.165 91.033 0.058 3 LTRP6-22153-26749 7.165 93.900 0.693 3 LTRP6-7255-26749 7.165 92.933 1.474 3 LTRP6-雙重-26749 7.165 95.300 0.557 3 LTRP6-10123-26749 7.165 94.133 1.528 3 52 在轉染後 44 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 1.307 0.070 3 LTRP5-ZIM3 7.165 26.533 3.232 3 LTRP5-ADD-ZIM3 7.165 63.700 1.345 3 LTRP6-雙重-ZIM3 7.165 82.600 1.929 3 LTRP6-22153-7255 7.165 88.933 4.110 3 LTRP6-雙重-7255 7.165 83.233 2.610 3 LTRP6-26749-7255 7.165 88.833 1.604 3 LTRP6-10123-7255 7.165 86.567 1.909 3 LTRP6-雙重-22153 7.165 79.867 0.153 3 LTRP6-7255-22153 7.165 80.033 3.807 3 LTRP6-26749-22153 7.165 91.933 2.159 3 LTRP6-10123-22153 7.165 89.567 0.929 3 LTRP6-22153-10123 7.165 86.900 3.119 3 LTRP6-7255-10123 7.165 77.433 2.031 3 LTRP6-26749-10123 7.165 91.133 0.611 3 LTRP6-雙重-10123 7.165 87.033 0.231 3 LTRP6-22153-26749 7.165 93.000 2.100 3 LTRP6-7255-26749 7.165 89.367 3.758 3 LTRP6-雙重-26749 7.165 96.167 0.737 3 LTRP6-10123-26749 7.165 94.050 0.919 2 53 在轉染後 59 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 0.947 0.012 3 LTRP5-ZIM3 7.165 19.667 2.627 3 LTRP5-ADD-ZIM3 7.165 60.533 1.801 3 LTRP6-雙重-ZIM3 7.165 76.567 4.274 3 LTRP6-22153-7255 7.165 87.933 6.385 3 LTRP6-雙重-7255 7.165 84.100 2.211 3 LTRP6-26749-7255 7.165 85.733 1.704 3 LTRP6-10123-7255 7.165 83.267 3.868 3 LTRP6-雙重-22153 7.165 74.500 0.608 3 LTRP6-7255-22153 7.165 74.133 5.463 3 LTRP6-26749-22153 7.165 89.833 3.691 3 LTRP6-10123-22153 7.165 89.200 1.825 3 LTRP6-22153-10123 7.165 84.733 3.581 3 LTRP6-7255-10123 7.165 71.667 5.980 3 LTRP6-26749-10123 7.165 90.567 0.808 3 LTRP6-雙重-10123 7.165 83.167 1.026 3 LTRP6-22153-26749 7.165 93.467 2.301 3 LTRP6-7255-26749 7.165 86.900 6.077 3 LTRP6-雙重-26749 7.165 96.833 0.874 3 LTRP6-10123-26749 7.165 93.450 1.202 2 54 在轉染後 74 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 2.407 1.086 3 LTRP5-ZIM3 7.165 21.033 9.890 3 LTRP5-ADD-ZIM3 7.165 61.167 5.807 3 LTRP6-雙重-ZIM3 7.165 68.133 7.305 3 LTRP6-22153-7255 7.165 90.033 6.144 3 LTRP6-雙重-7255 7.165 87.833 2.219 3 LTRP6-26749-7255 7.165 84.700 1.539 3 LTRP6-10123-7255 7.165 83.833 3.859 3 LTRP6-雙重-22153 7.165 73.000 0.721 3 LTRP6-7255-22153 7.165 71.267 7.343 3 LTRP6-26749-22153 7.165 92.533 3.062 3 LTRP6-10123-22153 7.165 92.133 2.542 3 LTRP6-22153-10123 7.165 87.533 1.069 3 LTRP6-7255-10123 7.165 69.533 5.265 3 LTRP6-26749-10123 7.165 92.667 0.833 3 LTRP6-雙重-10123 7.165 80.133 2.458 3 LTRP6-22153-26749 7.165 92.433 2.804 3 LTRP6-7255-26749 7.165 87.800 8.143 3 LTRP6-雙重-26749 7.165 97.133 0.643 3 LTRP6-10123-26749 7.165 94.067 1.686 3 55 在轉染後 104 天定量的由具有各種抑制子域之 LTRP 構築體介導之 B2M 抑制的水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域 抑制子構築體 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5-ADD-ZIM3 NT 0.610 0.314 3 LTRP5-ZIM3 7.165 14.270 12.499 3 LTRP5-ADD-ZIM3 7.165 57.533 7.419 3 LTRP6-雙重-ZIM3 7.165 43.467 9.843 3 LTRP6-22153-7255 7.165 90.900 1.929 3 LTRP6-雙重-7255 7.165 93.367 0.603 3 LTRP6-26749-7255 7.165 84.000 1.044 3 LTRP6-10123-7255 7.165 77.700 16.664 3 LTRP6-雙重-22153 7.165 69.567 6.336 3 LTRP6-7255-22153 7.165 57.567 12.667 3 LTRP6-26749-22153 7.165 87.867 4.277 3 LTRP6-10123-22153 7.165 88.600 7.134 3 LTRP6-22153-10123 7.165 84.600 0.624 3 LTRP6-7255-10123 7.165 78.033 4.922 3 LTRP6-26749-10123 7.165 94.400 1.375 3 LTRP6-雙重-10123 7.165 79.100 5.216 3 LTRP6-22153-26749 7.165 92.067 5.595 3 LTRP6-7255-26749 7.165 90.067 6.274 3 LTRP6-雙重-26749 7.165 98.267 0.929 3 LTRP6-10123-26749 7.165 94.633 1.779 3 The effects of using the enhancing repressor domain as the first and second repressor domains and their relative positioning within the LTRP6 molecule were assessed. The results of the time course experiments evaluating the effects on long-term repression of the target B2M locus are depicted in Tables 48 to 55. Overall, the data indicate that incorporation of the second repressor domain into the C-terminus of the LTRP5-ADD molecule (generating a LTRP6 configuration) substantially improves long-lasting B2M repression, reproducing the findings observed in Example 11. Addition of a ZIM3 domain to the C-terminus of LTRP5-ADD-ZIM3, resulting in LTRP6-bi-ZIM3, enhanced long-term inhibition when compared to the level of B2M inhibition achieved by the LTRP5-ADD-ZIM3 construct at least until 59 days post-transfection, but this improvement in long-term inhibition did not persist until day 104 (Tables 48-55). The enhanced inhibition observed with the second ZIM3 domain further supports that the observed improvement in activity of the LTRP6 configuration is due to the presence of the second inhibitory subdomain C-terminally linked to dCasX. Most of the other LTRP6 constructs with two enhanced inhibitory subdomains further improved inhibitory activity compared to LTRP6-bi-ZIM3, even until 104 days post-transfection. Notably, LTRP6 molecules containing domain-26749 (at the N-terminus and/or C-terminus) were the best performing molecules in inducing persistent B2M inhibition (>90%) until day 104, with LTRP6-double-26749 (Configuration 6a) showing the highest level of inhibition and LTRP6-10123-26749 (Configuration 6b) exhibiting the second highest inhibitory activity (Tables 48 to 55). It is worth noting that in some cases, localization of the inhibitory subdomain to the N-terminus of dCasX also affected the activity of the molecule compared to localization to the C-terminus. For example, the combination of domain_7255 located on the N-terminus of dCasX and domain_22153 located on the C-terminus caused about 58% inhibition; however, when domain_22153 was located on the N-terminus and domain_7255 was located on the C-terminus, the inhibition level increased to 91% (Tables 48 to 55). Table 48 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 8 days after transfection . The order of the domain IDs displayed for each LTRP6 construct specifies the first inhibitory subdomain and the second inhibitory subdomain at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 8.437 2.483 3 LTRP5-ZIM3 7.165 61.133 2.003 3 LTRP5-ADD-ZIM3 7.165 74.967 1.443 3 LTRP6-Double-ZIM3 7.165 89.833 0.416 3 LTRP6-22153-7255 7.165 92.200 0.361 3 LTRP6-Double-7255 7.165 91.267 0.321 3 LTRP6-26749-7255 7.165 92.567 0.208 3 LTRP6-10123-7255 7.165 92.100 0.529 3 LTRP6-Double-22153 7.165 88.700 0.600 3 LTRP6-7255-22153 7.165 91.500 0.100 3 LTRP6-26749-22153 7.165 93.033 0.737 3 LTRP6-10123-22153 7.165 91.967 0.702 3 LTRP6-22153-10123 7.165 91.767 1.405 3 LTRP6-7255-10123 7.165 90.800 2.128 3 LTRP6-26749-10123 7.165 94.000 1.082 3 LTRP6-Double-10123 7.165 93.100 1.136 3 LTRP6-22153-26749 7.165 92.167 1.474 3 LTRP6-7255-26749 7.165 91.567 1.365 3 LTRP6-Double-26749 7.165 92.100 1.044 3 LTRP6-10123-26749 7.165 92.367 0.802 3 Table 49 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 12 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 1.970 0.442 3 LTRP5-ZIM3 7.165 50.433 1.250 3 LTRP5-ADD-ZIM3 7.165 75.300 1.997 3 LTRP6-Double-ZIM3 7.165 90.067 0.404 3 LTRP6-22153-7255 7.165 93.567 0.493 3 LTRP6-Double-7255 7.165 90.400 0.173 3 LTRP6-26749-7255 7.165 94.367 0.306 3 LTRP6-10123-7255 7.165 93.300 0.608 3 LTRP6-Double-22153 7.165 89.067 0.924 3 LTRP6-7255-22153 7.165 90.733 0.058 3 LTRP6-26749-22153 7.165 95.267 0.709 3 LTRP6-10123-22153 7.165 94.500 0.608 3 LTRP6-22153-10123 7.165 93.400 0.100 3 LTRP6-7255-10123 7.165 89.667 1.210 3 LTRP6-26749-10123 7.165 95.700 0.200 3 LTRP6-Double-10123 7.165 94.033 0.289 3 LTRP6-22153-26749 7.165 95.067 0.651 3 LTRP6-7255-26749 7.165 95.300 0.866 3 LTRP6-Double-26749 7.165 95.567 0.404 3 LTRP6-10123-26749 7.165 95.400 0.608 3 Table 50 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 20 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 6.060 3.841 3 LTRP5-ZIM3 7.165 45.233 3.958 3 LTRP5-ADD-ZIM3 7.165 71.700 2.107 3 LTRP6-Double-ZIM3 7.165 89.767 1.124 3 LTRP6-22153-7255 7.165 92.433 0.987 3 LTRP6-Double-7255 7.165 89.233 1.528 3 LTRP6-26749-7255 7.165 93.200 0.400 3 LTRP6-10123-7255 7.165 92.133 0.929 3 LTRP6-Double-22153 7.165 87.700 0.872 3 LTRP6-7255-22153 7.165 88.633 0.814 3 LTRP6-26749-22153 7.165 94.767 0.850 3 LTRP6-10123-22153 7.165 93.400 0.794 3 LTRP6-22153-10123 7.165 91.967 1.274 3 LTRP6-7255-10123 7.165 87.233 1.960 3 LTRP6-26749-10123 7.165 94.767 0.208 3 LTRP6-Double-10123 7.165 92.367 0.404 3 LTRP6-22153-26749 7.165 94.400 1.015 3 LTRP6-7255-26749 7.165 93.667 1.069 3 LTRP6-Double-26749 7.165 95.367 0.681 3 LTRP6-10123-26749 7.165 94.867 0.907 3 Table 51 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 27 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 2.600 1.006 3 LTRP5-ZIM3 7.165 36.733 2.608 3 LTRP5-ADD-ZIM3 7.165 69.100 1.900 3 LTRP6-Double-ZIM3 7.165 87.200 1.300 3 LTRP6-22153-7255 7.165 91.300 1.179 3 LTRP6-Double-7255 7.165 87.233 1.250 3 LTRP6-26749-7255 7.165 92.367 0.551 3 LTRP6-10123-7255 7.165 90.733 1.518 3 LTRP6-Double-22153 7.165 85.567 1.007 3 LTRP6-7255-22153 7.165 86.433 1.290 3 LTRP6-26749-22153 7.165 94.067 0.681 3 LTRP6-10123-22153 7.165 92.467 1.002 3 LTRP6-22153-10123 7.165 90.900 1.646 3 LTRP6-7255-10123 7.165 85.200 1.411 3 LTRP6-26749-10123 7.165 93.567 0.643 3 LTRP6-Double-10123 7.165 91.033 0.058 3 LTRP6-22153-26749 7.165 93.900 0.693 3 LTRP6-7255-26749 7.165 92.933 1.474 3 LTRP6-Double-26749 7.165 95.300 0.557 3 LTRP6-10123-26749 7.165 94.133 1.528 3 Table 52 : Levels of B2M inhibition mediated by LTRP constructs with various repressor domains quantified 44 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second repressor domains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 1.307 0.070 3 LTRP5-ZIM3 7.165 26.533 3.232 3 LTRP5-ADD-ZIM3 7.165 63.700 1.345 3 LTRP6-Double-ZIM3 7.165 82.600 1.929 3 LTRP6-22153-7255 7.165 88.933 4.110 3 LTRP6-Double-7255 7.165 83.233 2.610 3 LTRP6-26749-7255 7.165 88.833 1.604 3 LTRP6-10123-7255 7.165 86.567 1.909 3 LTRP6-Double-22153 7.165 79.867 0.153 3 LTRP6-7255-22153 7.165 80.033 3.807 3 LTRP6-26749-22153 7.165 91.933 2.159 3 LTRP6-10123-22153 7.165 89.567 0.929 3 LTRP6-22153-10123 7.165 86.900 3.119 3 LTRP6-7255-10123 7.165 77.433 2.031 3 LTRP6-26749-10123 7.165 91.133 0.611 3 LTRP6-Double-10123 7.165 87.033 0.231 3 LTRP6-22153-26749 7.165 93.000 2.100 3 LTRP6-7255-26749 7.165 89.367 3.758 3 LTRP6-Double-26749 7.165 96.167 0.737 3 LTRP6-10123-26749 7.165 94.050 0.919 2 Table 53 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 59 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 0.947 0.012 3 LTRP5-ZIM3 7.165 19.667 2.627 3 LTRP5-ADD-ZIM3 7.165 60.533 1.801 3 LTRP6-Double-ZIM3 7.165 76.567 4.274 3 LTRP6-22153-7255 7.165 87.933 6.385 3 LTRP6-Double-7255 7.165 84.100 2.211 3 LTRP6-26749-7255 7.165 85.733 1.704 3 LTRP6-10123-7255 7.165 83.267 3.868 3 LTRP6-Double-22153 7.165 74.500 0.608 3 LTRP6-7255-22153 7.165 74.133 5.463 3 LTRP6-26749-22153 7.165 89.833 3.691 3 LTRP6-10123-22153 7.165 89.200 1.825 3 LTRP6-22153-10123 7.165 84.733 3.581 3 LTRP6-7255-10123 7.165 71.667 5.980 3 LTRP6-26749-10123 7.165 90.567 0.808 3 LTRP6-Double-10123 7.165 83.167 1.026 3 LTRP6-22153-26749 7.165 93.467 2.301 3 LTRP6-7255-26749 7.165 86.900 6.077 3 LTRP6-Double-26749 7.165 96.833 0.874 3 LTRP6-10123-26749 7.165 93.450 1.202 2 Table 54 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 74 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 2.407 1.086 3 LTRP5-ZIM3 7.165 21.033 9.890 3 LTRP5-ADD-ZIM3 7.165 61.167 5.807 3 LTRP6-Double-ZIM3 7.165 68.133 7.305 3 LTRP6-22153-7255 7.165 90.033 6.144 3 LTRP6-Double-7255 7.165 87.833 2.219 3 LTRP6-26749-7255 7.165 84.700 1.539 3 LTRP6-10123-7255 7.165 83.833 3.859 3 LTRP6-Double-22153 7.165 73.000 0.721 3 LTRP6-7255-22153 7.165 71.267 7.343 3 LTRP6-26749-22153 7.165 92.533 3.062 3 LTRP6-10123-22153 7.165 92.133 2.542 3 LTRP6-22153-10123 7.165 87.533 1.069 3 LTRP6-7255-10123 7.165 69.533 5.265 3 LTRP6-26749-10123 7.165 92.667 0.833 3 LTRP6-Double-10123 7.165 80.133 2.458 3 LTRP6-22153-26749 7.165 92.433 2.804 3 LTRP6-7255-26749 7.165 87.800 8.143 3 LTRP6-Double-26749 7.165 97.133 0.643 3 LTRP6-10123-26749 7.165 94.067 1.686 3 Table 55 : Levels of B2M inhibition mediated by LTRP constructs with various inhibitory subdomains quantified 104 days after transfection . The order of domain IDs shown for each LTRP6 construct specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively. Repressor construct Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5-ADD-ZIM3 NT 0.610 0.314 3 LTRP5-ZIM3 7.165 14.270 12.499 3 LTRP5-ADD-ZIM3 7.165 57.533 7.419 3 LTRP6-Double-ZIM3 7.165 43.467 9.843 3 LTRP6-22153-7255 7.165 90.900 1.929 3 LTRP6-Double-7255 7.165 93.367 0.603 3 LTRP6-26749-7255 7.165 84.000 1.044 3 LTRP6-10123-7255 7.165 77.700 16.664 3 LTRP6-Double-22153 7.165 69.567 6.336 3 LTRP6-7255-22153 7.165 57.567 12.667 3 LTRP6-26749-22153 7.165 87.867 4.277 3 LTRP6-10123-22153 7.165 88.600 7.134 3 LTRP6-22153-10123 7.165 84.600 0.624 3 LTRP6-7255-10123 7.165 78.033 4.922 3 LTRP6-26749-10123 7.165 94.400 1.375 3 LTRP6-Double-10123 7.165 79.100 5.216 3 LTRP6-22153-26749 7.165 92.067 5.595 3 LTRP6-7255-26749 7.165 90.067 6.274 3 LTRP6-Double-26749 7.165 98.267 0.929 3 LTRP6-10123-26749 7.165 94.633 1.779 3

在轉染後5天,進行亞硫酸氫鹽定序以評估由16個LTRP6分子介導的 VEGFA基因座處脫靶CpG甲基化之程度,且結果顯示於表56中。資料表明,大多數LTRP6構築體展示相對較低的脫靶甲基化水平,尤其當與利用編碼dCas9-ZNF10-DNMT3A/3L、LTRP1及LTRP5-ZIM3對照之構築體實現的水平相比較時。實際上,在任一個或兩個位置處含有域_26749(組態6a或6b)之LTRP6構築體展現出與LTRP5-ADD-ZIM3及LTRP6-雙-ZIM3分子類似的脫靶甲基化(表56)。LTRP6-雙26749及LTRP6-10123-26749分別展現最高及第二高的抑制活性(表48至表55),其分別誘導約5.15%及約3.84%之脫靶甲基化水平。 56 在轉染後第 5 天定量的由具有各種抑制子域之 LTRP6 構築體介導的 VEGFA 基因座處脫靶 CpG 甲基化之水平。所顯示的各 LTRP6 構築體之域 ID 的次序指定 分別在 N C 位置處之第一抑制子域及第二抑制子域。亦包括編碼 CasX dCas9-ZNF10-DNMT3A/3L LTRP1 LTRP5-ZIM3 LTRP5-ADD-ZIM3 構築體作為對照 抑制子構築體 間隔子 平均CpG 甲基化% 標準誤差 CasX 491 7.37 0.851 0.160 dCas9-ZNF10-DNMT3A/3L 7.148 34.220 2.356 LTRP1 NT 16.900 1.346 LTRP1 7.165 30.880 1.829 LTRP5-ADD-ZIM3 NT 6.887 0.403 LTRP5-ZIM5 7.165 14.690 1.338 LTRP5-ADD-ZIM3 7.165 4.841 0.508 LTRP6-雙重-ZIM3 7.165 5.782 0.565 LTRP6-7255-22153 7.165 3.988 0.479 LTRP6-雙重-7255 7.165 11.330 0.993 LTRP6-7255-26749 7.165 5.719 0.737 LTRP6-7255-10123 7.165 5.796 0.635 LTRP6-22153-26749 7.165 4.789 0.492 LTRP6-22153-10123 7.165 1.244 0.422 LTRP6-10123-22153 7.165 6.607 0.757 LTRP6-10123-7255 7.165 16.530 1.417 LTRP6-10123-26749 7.165 4.810 0.523 LTRP6-雙重-10123 7.165 5.729 0.699 LTRP6-26749-22153 7.165 5.401 0.565 LTRP6-26749-7255 7.165 4.608 0.582 LTRP6-雙重-22153 7.165 3.522 0.537 LTRP6-22153-7255 7.165 4.388 0.669 LTRP6-雙重-26749 7.165 5.153 0.457 LTRP6-26749-10123 7.165 3.836 0.482 Five days after transfection, bisulfite sequencing was performed to assess the extent of off-target CpG methylation at the VEGFA locus mediated by the 16 LTRP6 molecules, and the results are shown in Table 56. The data indicate that most LTRP6 constructs exhibit relatively low levels of off-target methylation, especially when compared to the levels achieved with constructs encoding dCas9-ZNF10-DNMT3A/3L, LTRP1, and LTRP5-ZIM3 controls. In fact, LTRP6 constructs containing domain_26749 (configuration 6a or 6b) at either or both positions exhibited off-target methylation similar to LTRP5-ADD-ZIM3 and LTRP6-bi-ZIM3 molecules (Table 56). LTRP6-bi-26749 and LTRP6-10123-26749 exhibited the highest and second highest inhibitory activities, respectively (Tables 48 to 55), inducing off-target methylation levels of approximately 5.15% and approximately 3.84%, respectively. Table 56 : Levels of off-target CpG methylation at the VEGFA locus mediated by LTRP6 constructs with various inhibitory subdomains quantified at day 5 after transfection . The order of the domain IDs of each LTRP6 construct displayed specifies the first and second inhibitory subdomains at the N- terminal and C- terminal positions, respectively . Constructs encoding CasX , dCas9-ZNF10-DNMT3A/3L , LTRP1 , LTRP5-ZIM3 , and LTRP5-ADD-ZIM3 were also included as controls Repressor construct Spacer Average CpG methylation % Standard error CasX 491 7.37 0.851 0.160 dCas9-ZNF10-DNMT3A/3L 7.148 34.220 2.356 LTRP1 NT 16.900 1.346 LTRP1 7.165 30.880 1.829 LTRP5-ADD-ZIM3 NT 6.887 0.403 LTRP5-ZIM5 7.165 14.690 1.338 LTRP5-ADD-ZIM3 7.165 4.841 0.508 LTRP6-Double-ZIM3 7.165 5.782 0.565 LTRP6-7255-22153 7.165 3.988 0.479 LTRP6-Double-7255 7.165 11.330 0.993 LTRP6-7255-26749 7.165 5.719 0.737 LTRP6-7255-10123 7.165 5.796 0.635 LTRP6-22153-26749 7.165 4.789 0.492 LTRP6-22153-10123 7.165 1.244 0.422 LTRP6-10123-22153 7.165 6.607 0.757 LTRP6-10123-7255 7.165 16.530 1.417 LTRP6-10123-26749 7.165 4.810 0.523 LTRP6-Double-10123 7.165 5.729 0.699 LTRP6-26749-22153 7.165 5.401 0.565 LTRP6-26749-7255 7.165 4.608 0.582 LTRP6-Double-22153 7.165 3.522 0.537 LTRP6-22153-7255 7.165 4.388 0.669 LTRP6-Double-26749 7.165 5.153 0.457 LTRP6-26749-10123 7.165 3.836 0.482

實驗結果表明,將第二抑制子域併入LTRP分子中產生LTRP6組態將改良持久抑制,且藉由相對於dCasX在N端及C端位置處使用增強型抑制子域進一步增強此改良。另外,資料表明,使用一些但非所有新抑制子域可誘導目標基因座的非常持久之抑制,且其在LTRP分子內之相對定位亦可影響活性。此等實驗之發現亦顯示,將第二抑制子域併入LTRP-ADD分子中將維持分子特異性,同時改良活性。 實例 13 最佳化連接子序列以增加總體 LTRP 活性 The experimental results show that incorporating a second repressor domain into the LTRP molecule to produce the LTRP6 configuration will improve persistent repression, and this improvement is further enhanced by using an enhancing repressor domain at the N-terminal and C-terminal positions relative to dCasX. In addition, the data show that the use of some but not all new repressor domains can induce very persistent repression of the target locus, and their relative positioning within the LTRP molecule can also affect activity. The findings from these experiments also show that incorporating a second repressor domain into the LTRP-ADD molecule will maintain molecular specificity while improving activity. Example 13 : Optimizing linker sequences to increase overall LTRP activity

進行實驗以展示藉由使以下兩個位置處之連接子序列最佳化可增加LTRP5構築體之抑制活性:1) DNMT3L相互作用域與抑制子域之間;及2)抑制子域與催化失效CasX之間。此等連接子位置分別對應於圖55關於LTRP5組態之示意圖中的「L3A」及「L1」。此處,進行實驗以篩選及鑑別會改良LTRP活性的新連接子組合。 材料及方法: Experiments were performed to show that the inhibitory activity of LTRP5 constructs can be increased by optimizing the linker sequences at two positions: 1) between the DNMT3L interaction domain and the inhibitory domain; and 2) between the inhibitory domain and the catalytically inactive CasX. These linker positions correspond to "L3A" and "L1" in the schematic diagram of LTRP5 configuration in Figure 55, respectively. Here, experiments were performed to screen and identify new linker combinations that would improve LTRP activity. Materials and Methods:

產生在DNMT3L相互作用域與抑制子域之間及抑制子域與呈LTRP5組態定向的催化失效CasX之間帶有限制酶位點的入門載體(entry vector) (圖55)。此外,52個連接子之清單係藉由編譯來自多個研究之連接子序列產生。合成連接子庫作為寡核苷酸池,隨後擴增且經由Golden Gate組裝方案將其隨機地選殖至入門載體中,產生涵蓋約2700個可能連接子集合的LTRP5變異體質體庫。隨機選擇含有該等連接子集合之約90個LTRP5變異體質體並進行陣列式篩選,由此將各LTRP5變異體質體與編碼gRNA之質體共轉染至96孔盤中所接種之HEK293T細胞中,該gRNA使用支架316及靶向間隔子(有關間隔子序列,參見表58)。轉染之後,用嘌呤黴素及潮黴素選擇細胞三天,且接著收集細胞,經由目標細胞表面標記物之免疫染色,隨後使用Attune TMNxT流式細胞儀進行流動式細胞測量術來評估目標基因座處之抑制。對於含有連接子集合1至28之變異體質體(有關連接子組合之序列,參見表57),評估三個不同目標基因座( B2M、目標1及目標2)之LTRP抑制活性。對於連接子集合1至11,在轉染後8天、15天及45天量測抑制。對於連接子集合12至28,在轉染後7天及17天量測抑制。對於含有連接子集合31至89以及連接子集合1、10及25 (表57)之質體,在轉染後6天、13天及24天評估 B2M基因座之LTRP抑制活性。使用編碼LTRP5分子(不含ADD域)及原始連接子集合(對於L1為SEQ ID NO:123;對於L3A為SEQ ID NO:124)之質體作為實驗對照。亦包括非靶向間隔子作為陰性對照。 57 在此實例中評估之約 90 種連接子集合之 AA 序列 連接子集合ID 集合內第一連接子之AA 序列( 位置L3A) 集合內第二連接子之AA 序列( 位置L1) SEQ ID NO. ( 位置L3A) SEQ ID NO. ( 位置L1) 集合1 ASAAAPAAASAAASAPSAAAA ASAAAPAAA 3281 3286 集合36 PPTPSPSPVPSTPPTNSSSTPPTPS GSGNSSGSGGS 3280 3285 集合43 GSGGSGGSGGSPVPSTPPTPSPSTPPTP AFPAAPAPA 3279 3284 集合66 AASPAAPSAPPAAASP PPTP 3282 3287 集合85 ASPAAPAPASPAAPAPSAPAA IRAHGD 3278 3283 集合2 LQPVPPQALKREQVSQQ HIGGINS 22745 22748 集合3 GGGSGGGS GGGSGGGS 22746 22746 集合4 AASPAAPSAPPAAASP SPAGSPTSTEEGTSESAT 3282 22773 集合5 PGTSTEPSEGSAPGSP PPTP 22747 3287 集合6 HIGGINS GGGS 22748 22763 集合7 AASPAAPSAPPAAASP PPTPSPSPVP 3282 22768 集合8 ASPAAPSP ILGELT 22749 22774 集合9 GSGNSSGSGG HIGGINS 22750 22748 集合10 PPTPSPSPVPSTPPTNSSSTPPTPS SGSETPGTSESATPES 3280 22754 集合11 HIGGINS PPTPSPSPVP 22748 22768 集合12 EAAKEAAK PPTP 22751 3287 集合13 PPTP SWRVRYMVA 3287 22775 集合14 LRTRYEADLA GSGNSSGSGGS 22752 3285 集合15 EAAKEAAKEAAKEAAK PPTP 22753 3287 集合17 SGSETPGTSESATPES GGGSGGGS 22754 22746 集合19 GSGNSSGSGGS STEEGTSTEPSEGSAP 3285 22756 集合20 PPTPSPSPVSSTPPTPPTPS EAAKEAAK 22755 22751 集合21 STEEGTSTEPSEGSAP PPTPSPSPVP 22756 22768 集合23 GGGSGGGS YGAHLM 22746 22776 集合24 STEEGTSTEPSEGSAP GSGNSSGSGGSGGSGNSSGSGGS 22756 22777 集合25 PPTPSPSPVPSTPPTPPTPS GGGSGGGSGGGS 22757 22762 集合26 GGGSGGGSGGGSEAAKEAAKEAAK VQQKYKVSDTAATVTG 22758 22765 集合27 ASAAAPAAA GSGNSSGSGGSGGSGNSSGSGGS 3286 22777 集合28 PPTP GGGSGGGS 3287 22746 集合31 SGSETPGTSESATPES STEEGTSTEPSEGSAP 22754 22756 集合32 GSGGSGGSGGSPVPSTPPTPSPSTPPTP SPAGSPTSTEEGTSESAT 3279 22773 集合33 PPTP GGGS 3287 22763 集合34 ASPAAPAPA GGGS 22759 22763 集合37 GGGSGGGS GGGS 22746 22763 集合38 GGGSGGGS SGSETPGTSESATPES 22746 22754 集合39 GGGSGGGSEAAKEAAK STEEGTSTEPSEGSAP 22760 22756 集合40 PPTPSPSPVPSTPPTPPTPS GGGSGGGSGGGS 22757 22762 集合41 GGGSGGGSGGGSGGGS SPAGSPTSTEEGTSESAT 22761 22773 集合42 GSGNSSGSGGS AYVVSADEREGG 3285 22778 集合44 SGSETPGTSESATPES GSGNSSGSGGS 22754 3285 集合45 GGGSGGGSGGGS PGTSTEPSEGSAPGSP 22762 22747 集合46 GGGSGGGSGGGSGGGS EAAKEAAK 22761 22751 集合47 GSGNSSGSGGS PPTPSPSPVPSTPPTPPTPS 3285 22757 集合48 GGGSGGGSEAAKEAAK EAAKEAAKGGGSGGGS 22760 22771 集合49 GGGS GGGSGGGS 22763 22746 集合50 EAAK GSGGSGGSGGSPVPSTPPTPSPSTPPTP 22764 3279 集合51 EAAKEAAK EAAKEAAK 22751 22751 集合52 SGSETPGTSESATPES PPTP 22754 3287 集合53 GGGSGGGS PPTP 22746 3287 集合55 GGGSGGGSGGGS MIGP 22762 22779 集合56 VQQKYKVSDTAATVTG SGSETPGTSESATPES 22765 22754 集合57 GGGSGGGSGGVS GSGGSGGSGGSPVPSTPPTPSPSTPPTP 22766 3279 集合58 EAAKEAAKEAAKEAAK STEEGTSTEPSEGSAP 22753 22756 集合59 GGGSGGGS EAAKEAVKGGGSGGGS 22746 22780 集合60 GGGSGGGSGGGSGGGS PPTP 22761 3287 集合61 EAAK EAAKEAAKGGGSGGGS 22764 22771 集合62 GGGS PPTPSPSPVP 22763 22768 集合63 EAAKEAVKEAAKEAAK HIGGINS 22767 22748 集合64 PPTPSPSPVPSTPPTPPTPS GGGSGGGS 22757 22746 集合65 PPTPSPSPVP PPTP 22768 3287 集合67 STEEGTSTEPSEGSAP PPTP 22756 3287 集合68 GGGSGGGSGGGS PPTPSPSPVPSTPPTNSSSTPPTPS 22762 3280 集合69 PPTPSPSPVP PGTSTEPSEGSAPGSP 22768 22747 集合70 ASPAAPAPA LMPYEL 22759 22781 集合71 PPTPSPSPVP PPTP 22768 3287 集合72 GGGSGGGSGGGS ASAAAPAAA 22762 3286 集合73 GGGSGGGS STEEGTSTEPSEGSAP 22746 22756 集合74 PPTPSPSPVP HIGGINS 22768 22748 集合75 EAAKEAAK HIGGINS 22751 22748 集合76 PPTPSPSPVPSTPPTPPTPS SPTP 22757 22782 集合77 EAAKEAAKEAAKEAAK GGGSGGGSGGGSGGGSGGGS 22753 22742 集合78 EAAKEAAK PPTPSPSPVPSTPPTPPTPS 22751 22757 集合79 PPTPSPSPVP GGGSGGGSGGGSGGGS 22768 22761 集合80 ITHKASSRMTFA GGGSGGGSGGGS 22769 22762 集合81 STEEGTSTEPSEGSAP GCGS 22756 22783 集合82 ASSAAPAPA GGGS 22770 22763 集合83 STEEGTSTEPSEGSAP GGGSGGGS 22756 22746 集合84 SGSETPGTSESATPES GGGSGGGSGGGSGGGSGGGS 22754 22742 集合86 EAAKEAAKGGGSGGGS EAAKEAAKGGGSGGGS 22771 22771 集合87 EAAKEAAKEAAKEAAK NKQNIWQA 22753 22784 集合88 GGGSGGGSGGGS ASAAAPAAA 22762 3286 集合89 AASPAAPSAPPASASP PPMPSPSPVP 22772 22785 58 靶向 B2M 基因座之間隔子的序列 間隔子ID 目標 靶向間隔子序列(RNA) SEQ ID NO 7.165 B2M UCCCUAUGUCCUUGCUGUUU 3114 結果: An entry vector with restriction enzyme sites between the DNMT3L interaction domain and the inhibitory domain and between the inhibitory domain and the catalytically inactive CasX oriented in the LTRP5 configuration was generated (Figure 55). In addition, a list of 52 linkers was generated by compiling linker sequences from multiple studies. The linker library was synthesized as an oligonucleotide pool, which was then expanded and randomly cloned into the entry vector via the Golden Gate assembly protocol, generating a plasmid library of LTRP5 variants covering a set of approximately 2700 possible linkers. Approximately 90 LTRP5 variant plasmids containing the linker sets were randomly selected and subjected to array screening, whereby each LTRP5 variant plasmid was co-transfected with a plasmid encoding a gRNA using scaffold 316 and a targeting spacer (see Table 58 for spacer sequences) into HEK293T cells seeded in a 96-well plate. Following transfection, cells were selected with puromycin and hygromycin for three days, and then cells were harvested and repression at the target locus was assessed by immunostaining of target cell surface markers followed by flow cytometry using an Attune NxT flow cytometer. For variant plasmids containing linker sets 1 to 28 (see Table 57 for sequences of linker combinations), LTRP inhibitory activity was evaluated for three different target loci ( B2M , Target 1, and Target 2). For linker sets 1 to 11, inhibition was measured 8, 15, and 45 days after transfection. For linker sets 12 to 28, inhibition was measured 7 and 17 days after transfection. For plasmids containing linker sets 31 to 89 and linker sets 1, 10, and 25 (Table 57), LTRP inhibitory activity was evaluated for the B2M locus 6, 13, and 24 days after transfection. Plasmids encoding LTRP5 molecules (without the ADD domain) and the original linker set (SEQ ID NO: 123 for L1; SEQ ID NO: 124 for L3A) were used as experimental controls. A non-targeting spacer was also included as a negative control. Table 57 : AA sequences of the approximately 90 linker sets evaluated in this example Connection sub-collection ID AA sequence of the first linker in the set ( position L3A) AA sequence of the second linker in the set ( position L1) SEQ ID NO. ( position L3A) SEQ ID NO. ( position L1) Collection 1 ASAAAPAAASAAASAPSAAAA ASAAAPAAA 3281 3286 Collection 36 PPTPSPSPVPSTPPTNSSSTPPTPS GSGNSSGSGGS 3280 3285 Collection 43 GSGGSGGSGGSPVPSTPPTPSPSTPPTP AFPAAPAPA 3279 3284 Collection 66 AASPAAPSAPPAAASP PPTP 3282 3287 Collection 85 ASPAAPAPASPAAPAPSAPAA IRAHGD 3278 3283 Collection 2 LQPVPPQALKREQVSQQ HIGGINS 22745 22748 Collection 3 GGGSGGGS GGGSGGGS 22746 22746 Collection 4 AASPAAPSAPPAAASP SPAGSPTSTEEGTSESAT 3282 22773 Collection 5 PGTSTEPSEGSAPGSP PPTP 22747 3287 Collection 6 HIGGINS GGGS 22748 22763 Collection 7 AASPAAPSAPPAAASP PPTPSPSPVP 3282 22768 Collection 8 ASPAAPSP ILGELT 22749 22774 Collection 9 GSGNSSGSGG HIGGINS 22750 22748 Collection 10 PPTPSPSPVPSTPPTNSSSTPPTPS SGSETPGTSESATPES 3280 22754 Collection 11 HIGGINS PPTPSPSPVP 22748 22768 Collection 12 EAAKEAAK PPTP 22751 3287 Collection 13 PPTP SWRVRYMVA 3287 22775 Collection 14 LRTRYEADLA GSGNSSGSGGS 22752 3285 Collection 15 EAAKEAAKEAAKEAAK PPTP 22753 3287 Collection 17 SGSETPGTSESATPES GGGSGGGS 22754 22746 Collection 19 GSGNSSGSGGS STEEGTSTEPSEGSAP 3285 22756 Collection 20 PPTPSPSPVSSTPPTPPTPS EAAKEAAK 22755 22751 Collection 21 STEEGTSTEPSEGSAP PPTPSPSPVP 22756 22768 Collection 23 GGGSGGGS YGAHLM 22746 22776 Collection 24 STEEGTSTEPSEGSAP GSGNSSGSGGSGGSGNSSGSGGS 22756 22777 Collection 25 PPTPSPSPVPSTPPTPPTPS GGGSGGGSGGGS 22757 22762 Collection 26 GGGSGGGSGGGSEAAKEAAKEAAK VQQKYKVSDTAATVTG 22758 22765 Collection 27 ASAAAPAAA GSGNSSGSGGSGGSGNSSGSGGS 3286 22777 Collection 28 PPTP GGGSGGGS 3287 22746 Collection 31 SGSETPGTSESATPES STEEGTSTEPSEGSAP 22754 22756 Collection 32 GSGGSGGSGGSPVPSTPPTPSPSTPPTP SPAGSPTSTEEGTSESAT 3279 22773 Collection 33 PPTP GGGS 3287 22763 Collection 34 ASPAAPAPA GGGS 22759 22763 Collection 37 GGGSGGGS GGGS 22746 22763 Collection 38 GGGSGGGS SGSETPGTSESATPES 22746 22754 Collection 39 GGGSGGGSEAAKEAAK STEEGTSTEPSEGSAP 22760 22756 Collection 40 PPTPSPSPVPSTPPTPPTPS GGGSGGGSGGGS 22757 22762 Collection 41 GGGSGGGSGGGSGGGS SPAGSPTSTEEGTSESAT 22761 22773 Collection 42 GSGNSSGSGGS AYVVSADEREGG 3285 22778 Collection 44 SGSETPGTSESATPES GSGNSSGSGGS 22754 3285 Collection 45 GGGSGGGSGGGS PGTSTEPSEGSAPGSP 22762 22747 Collection 46 GGGSGGGSGGGSGGGS EAAKEAAK 22761 22751 Collection 47 GSGNSSGSGGS PPTPSPSPVPSTPPTPPTPS 3285 22757 Collection 48 GGGSGGGSEAAKEAAK EAAKEAAKGGGSGGGS 22760 22771 Collection 49 GGGS GGGSGGGS 22763 22746 Collection 50 EAAK GSGGSGGSGGSPVPSTPPTPSPSTPPTP 22764 3279 Collection 51 EAAKEAAK EAAKEAAK 22751 22751 Collection 52 SGSETPGTSESATPES PPTP 22754 3287 Collection 53 GGGSGGGS PPTP 22746 3287 Collection 55 GGGSGGGSGGGS MIGP 22762 22779 Collection 56 VQQKYKVSDTAATVTG SGSETPGTSESATPES 22765 22754 Collection 57 GGGSGGGSGGVS GSGGSGGSGGSPVPSTPPTPSPSTPPTP 22766 3279 Collection 58 EAAKEAAKEAAKEAAK STEEGTSTEPSEGSAP 22753 22756 Collection 59 GGGSGGGS EAAKEAVKGGGSGGGS 22746 22780 Collection 60 GGGSGGGSGGGSGGGS PPTP 22761 3287 Collection 61 EAAK EAAKEAAKGGGSGGGS 22764 22771 Collection 62 GGGS PPTPSPSPVP 22763 22768 Collection 63 EAAKEAVKEAAKEAAK HIGGINS 22767 22748 Collection 64 PPTPSPSPVPSTPPTPPTPS GGGSGGGS 22757 22746 Collection 65 PPTPSPSPVP PPTP 22768 3287 Collection 67 STEEGTSTEPSEGSAP PPTP 22756 3287 Collection 68 GGGSGGGSGGGS PPTPSPSPVPSTPPTNSSSTPPTPS 22762 3280 Collection 69 PPTPSPSPVP PGTSTEPSEGSAPGSP 22768 22747 Collection 70 ASPAAPAPA LMPYEL 22759 22781 Collection 71 PPTPSPSPVP PPTP 22768 3287 Collection 72 GGGSGGGSGGGS ASAAAPAAA 22762 3286 Collection 73 GGGSGGGS STEEGTSTEPSEGSAP 22746 22756 Collection 74 PPTPSPSPVP HIGGINS 22768 22748 Collection 75 EAAKEAAK HIGGINS 22751 22748 Collection 76 PPTPSPSPVPSTPPTPPTPS SPTP 22757 22782 Collection 77 EAAKEAAKEAAKEAAK GGGSGGGSGGGSGGGSGGGS 22753 22742 Collection 78 EAAKEAAK PPTPSPSPVPSTPPTPPTPS 22751 22757 Collection 79 PPTPSPSPVP GGGSGGGSGGGSGGGS 22768 22761 Collection 80 ITHKASSRMTFA GGGSGGGSGGGS 22769 22762 Collection 81 STEEGTSTEPSEGSAP GCGS 22756 22783 Collection 82 ASSAAPAPA GGGS 22770 22763 Collection 83 STEEGTSTEPSEGSAP GGGSGGGS 22756 22746 Collection 84 SGSETPGTSESATPES GGGSGGGSGGGSGGGSGGGS 22754 22742 Collection 86 EAAKEAAKGGGSGGGS EAAKEAAKGGGSGGGS 22771 22771 Collection 87 EAAKEAAKEAAKEAAK NKQNIWQA 22753 22784 Collection 88 GGGSGGGSGGGS ASAAAPAAA 22762 3286 Collection 89 AASPAAPSAPPASASP PPMPSPSPVP 22772 22785 Table 58 : Sequences of spacers targeting the B2M locus Spacer ID Target Targeting spacer sequence (RNA) SEQ ID NO 7.165 B2M UCCCUAUGUCCUUGCUGUUU 3114 result:

進行陣列式篩選以評估用具有不同連接子組合之LTRP5變異體質體轉染之HEK293T細胞中內源性目標基因座處之抑制活性水平。在轉染後8天、15天及45天量測含有連接子集合1至11之LTRP5質體在 B2M、目標1及目標2基因座處之抑制,且結果繪示於圖56至圖58中。資料表明,表現最佳之連接子組合因特定目標而變化。在此實驗中所分析之11種連接子組合中,使用連接子集合1及10始終整體誘導 B2M及目標2基因座兩者處之最高抑制水準,其中連接子集合10展現目標1基因座處所測試之第二高連接子集合。隨後,在分析連接子集合12至28及連接子集合31至89的後續兩個實驗中使用連接子1作為基準。 An array screen was performed to evaluate the level of repression activity at endogenous target loci in HEK293T cells transfected with LTRP5 variant plasmids with different linker combinations. LTRP5 plasmids containing linker sets 1 to 11 were measured for repression at B2M , Target 1, and Target 2 loci at 8, 15, and 45 days post-transfection, and the results are shown in Figures 56 to 58. The data indicate that the best performing linker combination varies with the specific target. Of the 11 linker combinations analyzed in this experiment, the use of linker sets 1 and 10 consistently induced the highest levels of repression at both B2M and Target 2 loci overall, with linker set 10 showing the second highest linker set tested at the Target 1 locus. Subsequently, linker 1 was used as a benchmark in the next two experiments analyzing linker sets 12 to 28 and linker sets 31 to 89.

在轉染後7天及17天量測含有連接子集合12至28之LTRP5質體在 B2M、目標1及目標2基因座處之抑制,其中來自前一實驗之連接子集合1作為基準,且結果描繪於圖59至圖60中。資料顯示,與在前一實驗中觀測到的類似,表現最佳的連接子集合因目標而變化。在此第二實驗中分析之17種連接子組合中,使用連接子集合1及25在三個目標基因座中之兩個(對於集合1為 B2M及目標1;對於集合25為 B2M及目標2)中引起最高水平之抑制。 LTRP5 plasmids containing linker sets 12 to 28 were measured for repression at the B2M , Target 1, and Target 2 loci 7 and 17 days after transfection, with linker set 1 from the previous experiment serving as the benchmark, and the results are depicted in Figures 59 to 60. The data showed that, similar to what was observed in the previous experiment, the best performing linker set varied by target. Of the 17 linker combinations analyzed in this second experiment, the use of linker sets 1 and 25 elicited the highest levels of repression at two of the three target loci ( B2M and Target 1 for set 1; B2M and Target 2 for set 25).

在轉染後6天、13天及24天量測含有連接子集合31至89之LTRP5質體在 B2M基因座處之抑制,其中來自前兩個實驗之連接子集合1、10及25作為基準,且結果描繪於表59至表61中。資料顯示,在轉染後24天,當與 B2M間隔子配對時,使用連接子集合85、43、36、10、64、1、40、25、66、76及52引起抑制活性相對於LTRP5對照之活性水平增加至少50% (表59至表61)。接著,基於具有不同於其他最佳候選組合及連接子之原始連接子集合的序列(對於L1為SEQ ID NO:123;對於L3A為SEQ ID NO:124),選擇此等11個表現最佳之連接子集合中之五個用於將來的驗證。 59 在轉染後 6 定量的由具有連接子集合 1 10 25 31-39 LTRP5 構築體介導的 B2M 抑制水平 構築體 連接子集合 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5 原始/基線 NT 4.607 0.289 3 LTRP5 集合54 7.165 31.000 2.955 3 LTRP5 集合69 7.165 33.400 1.015 3 LTRP5 集合42 7.165 35.167 1.258 3 LTRP5 集合89 7.165 34.733 0.603 3 LTRP5 原始/基線 7.165 38.667 0.379 3 LTRP5 集合61 7.165 48.300 1.931 3 LTRP5 集合59 7.165 49.467 0.709 3 LTRP5 集合80 7.165 48.633 0.643 3 LTRP5 集合33 7.165 53.800 1.200 3 LTRP5 集合37 7.165 55.167 0.416 3 LTRP5 集合51 7.165 51.900 0.819 3 LTRP5 集合49 7.165 52.267 0.723 3 LTRP5 集合48 7.165 50.500 1.082 3 LTRP5 集合62 7.165 53.367 0.493 3 LTRP5 集合41 7.165 53.067 0.473 3 LTRP5 集合50 7.165 53.400 0.458 3 LTRP5 集合38 7.165 53.833 0.231 3 LTRP5 集合78 7.165 52.633 0.379 3 LTRP5 集合86 7.165 53.833 1.484 3 LTRP5 集合53 7.165 55.167 0.764 3 LTRP5 集合87 7.165 55.533 0.833 3 LTRP5 集合46 7.165 53.033 0.153 3 LTRP5 集合55 7.165 50.633 1.650 3 LTRP5 集合34 7.165 57.800 0.794 3 LTRP5 集合75 7.165 53.400 0.794 3 LTRP5 集合39 7.165 55.467 1.002 3 LTRP5 集合56 7.165 54.000 1.114 3 LTRP5 集合60 7.165 57.933 1.328 3 LTRP5 集合82 7.165 57.500 0.889 3 LTRP5 集合73 7.165 53.433 0.907 3 LTRP5 集合83 7.165 59.333 1.069 3 LTRP5 集合63 7.165 55.400 0.872 3 LTRP5 集合88 7.165 58.567 1.436 3 LTRP5 集合68 7.165 55.633 0.231 3 LTRP5 集合58 7.165 54.433 0.723 3 LTRP5 集合79 7.165 56.700 0.520 3 LTRP5 集合70 7.165 55.467 1.350 3 LTRP5 集合32 7.165 58.467 0.723 3 LTRP5 集合77 7.165 56.133 0.651 3 LTRP5 集合81 7.165 60.400 0.500 3 LTRP5 集合57 7.165 57.800 1.153 3 LTRP5 集合44 7.165 57.933 1.617 3 LTRP5 集合47 7.165 55.400 0.173 3 LTRP5 集合31 7.165 59.767 0.751 3 LTRP5 集合74 7.165 58.067 0.569 3 LTRP5 集合65 7.165 60.300 0.954 3 LTRP5 集合84 7.165 59.333 0.902 3 LTRP5 集合67 7.165 60.767 1.779 3 LTRP5 集合72 7.165 57.433 0.723 3 LTRP5 集合71 7.165 59.467 0.379 3 LTRP5 集合52 7.165 61.533 0.153 3 LTRP5 集合76 7.165 62.900 0.400 3 LTRP5 集合66 7.165 61.933 0.379 3 LTRP5 集合25 7.165 61.033 0.416 3 LTRP5 集合40 7.165 62.800 0.889 3 LTRP5 集合1 7.165 58.133 0.058 3 LTRP5 集合64 7.165 57.400 1.229 3 LTRP5 集合10 7.165 59.967 1.222 3 LTRP5 集合36 7.165 65.333 0.902 3 LTRP5 集合43 7.165 64.800 1.253 3 LTRP5 集合85 7.165 64.333 1.274 3 60 在轉染後 13 定量的由具有連接子集合 1 10 25 31 39 LTRP5 構築體介導的 B2M 抑制水平 構築體 連接子集合 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5 原始/基線 NT 1.877 0.315 3 LTRP5 集合54 7.165 2.670 0.866 3 LTRP5 集合69 7.165 1.200 0.190 3 LTRP5 集合42 7.165 24.000 0.794 3 LTRP5 集合89 7.165 25.500 0.755 3 LTRP5 原始/基線 7.165 30.800 0.917 3 LTRP5 集合61 7.165 31.600 0.700 3 LTRP5 集合59 7.165 32.267 0.473 3 LTRP5 集合80 7.165 32.767 0.231 3 LTRP5 集合33 7.165 36.833 1.137 3 LTRP5 集合37 7.165 35.900 1.179 3 LTRP5 集合51 7.165 34.767 0.723 3 LTRP5 集合49 7.165 36.167 0.929 3 LTRP5 集合48 7.165 36.267 1.274 3 LTRP5 集合62 7.165 34.433 0.551 3 LTRP5 集合41 7.165 35.067 1.484 3 LTRP5 集合50 7.165 38.067 0.874 3 LTRP5 集合38 7.165 36.567 0.351 3 LTRP5 集合78 7.165 35.000 0.700 3 LTRP5 集合86 7.165 34.933 1.747 3 LTRP5 集合53 7.165 35.833 1.234 3 LTRP5 集合87 7.165 35.800 1.015 3 LTRP5 集合46 7.165 36.200 0.361 3 LTRP5 集合55 7.165 36.033 1.950 3 LTRP5 集合34 7.165 40.733 1.168 3 LTRP5 集合75 7.165 36.033 1.604 3 LTRP5 集合39 7.165 38.867 1.266 3 LTRP5 集合56 7.165 37.467 0.764 3 LTRP5 集合60 7.165 40.467 1.750 3 LTRP5 集合82 7.165 38.567 1.069 3 LTRP5 集合73 7.165 35.433 1.845 3 LTRP5 集合83 7.165 39.100 0.889 3 LTRP5 集合63 7.165 37.433 1.002 3 LTRP5 集合88 7.165 39.033 1.930 3 LTRP5 集合68 7.165 37.833 0.493 3 LTRP5 集合58 7.165 38.700 0.866 3 LTRP5 集合79 7.165 39.367 0.153 3 LTRP5 集合70 7.165 37.467 1.701 3 LTRP5 集合32 7.165 42.833 0.289 3 LTRP5 集合77 7.165 38.767 0.907 3 LTRP5 集合81 7.165 39.300 1.039 3 LTRP5 集合57 7.165 41.233 1.779 3 LTRP5 集合44 7.165 40.667 0.814 3 LTRP5 集合47 7.165 39.667 0.850 3 LTRP5 集合31 7.165 43.433 1.650 3 LTRP5 集合74 7.165 40.467 0.802 3 LTRP5 集合65 7.165 42.000 0.608 3 LTRP5 集合84 7.165 41.700 0.200 3 LTRP5 集合67 7.165 41.600 1.277 3 LTRP5 集合72 7.165 39.400 0.781 3 LTRP5 集合71 7.165 42.533 0.153 3 LTRP5 集合52 7.165 44.333 0.635 3 LTRP5 集合76 7.165 45.033 1.721 3 LTRP5 集合66 7.165 43.233 0.833 3 LTRP5 集合25 7.165 49.233 0.231 3 LTRP5 集合40 7.165 47.767 1.002 3 LTRP5 集合1 7.165 48.100 0.917 3 LTRP5 集合64 7.165 44.133 1.097 3 LTRP5 集合10 7.165 48.733 1.069 3 LTRP5 集合36 7.165 48.833 1.358 3 LTRP5 集合43 7.165 49.267 1.222 3 LTRP5 集合85 7.165 46.933 2.312 3 61 在轉染後 24 定量的由具有連接子集合 1 10 25 31 39 LTRP5 構築體介導的 B2M 抑制水平 構築體 連接子集合 間隔子 平均HLA 陰性細胞% 標準偏差 樣本大小 LTRP5 原始/基線 NT 1.290 0.098 3 LTRP5 集合54 7.165 3.670 1.105 3 LTRP5 集合69 7.165 4.270 0.282 3 LTRP5 集合42 7.165 22.600 1.153 3 LTRP5 集合89 7.165 24.500 0.781 3 LTRP5 原始/基線 7.165 25.067 0.907 3 LTRP5 集合61 7.165 27.100 0.781 3 LTRP5 集合59 7.165 27.167 0.351 3 LTRP5 集合80 7.165 28.367 1.185 3 LTRP5 集合33 7.165 28.367 0.208 3 LTRP5 集合37 7.165 28.833 0.751 3 LTRP5 集合51 7.165 28.933 0.551 3 LTRP5 集合49 7.165 28.967 1.950 3 LTRP5 集合48 7.165 29.467 0.757 3 LTRP5 集合62 7.165 29.633 0.551 3 LTRP5 集合41 7.165 29.767 1.457 3 LTRP5 集合50 7.165 30.000 0.436 3 LTRP5 集合38 7.165 30.167 1.050 3 LTRP5 集合78 7.165 30.200 1.480 3 LTRP5 集合86 7.165 30.367 1.041 3 LTRP5 集合53 7.165 30.567 2.055 3 LTRP5 集合87 7.165 30.733 1.258 3 LTRP5 集合46 7.165 31.033 0.723 3 LTRP5 集合55 7.165 31.167 2.413 3 LTRP5 集合34 7.165 31.833 0.802 3 LTRP5 集合75 7.165 31.867 2.892 3 LTRP5 集合39 7.165 31.867 0.874 3 LTRP5 集合56 7.165 32.267 0.681 3 LTRP5 集合60 7.165 32.733 1.206 3 LTRP5 集合82 7.165 32.967 1.274 3 LTRP5 集合73 7.165 33.133 0.351 3 LTRP5 集合83 7.165 33.333 0.569 3 LTRP5 集合63 7.165 33.400 2.551 3 LTRP5 集合88 7.165 33.500 1.803 3 LTRP5 集合68 7.165 33.533 0.666 3 LTRP5 集合58 7.165 33.633 1.266 3 LTRP5 集合79 7.165 34.000 0.100 3 LTRP5 集合70 7.165 34.167 2.836 3 LTRP5 集合32 7.165 34.167 1.193 3 LTRP5 集合77 7.165 34.467 0.814 3 LTRP5 集合81 7.165 34.733 0.404 3 LTRP5 集合57 7.165 34.833 2.250 3 LTRP5 集合44 7.165 34.933 1.012 3 LTRP5 集合47 7.165 35.167 0.802 3 LTRP5 集合31 7.165 35.433 2.060 3 LTRP5 集合74 7.165 35.833 0.651 3 LTRP5 集合65 7.165 36.467 0.681 3 LTRP5 集合84 7.165 37.167 1.069 3 LTRP5 集合67 7.165 37.300 1.311 3 LTRP5 集合72 7.165 37.667 0.850 3 LTRP5 集合71 7.165 37.733 0.681 3 LTRP5 集合52 7.165 38.767 0.929 3 LTRP5 集合76 7.165 39.167 1.858 3 LTRP5 集合66 7.165 39.367 0.503 3 LTRP5 集合25 7.165 40.400 1.808 3 LTRP5 集合40 7.165 40.633 1.629 3 LTRP5 集合1 7.165 41.000 1.127 3 LTRP5 集合64 7.165 41.367 1.877 3 LTRP5 集合10 7.165 42.167 2.113 3 LTRP5 集合36 7.165 42.333 1.250 3 LTRP5 集合43 7.165 42.433 0.666 3 LTRP5 集合85 7.165 42.500 2.272 3 LTRP5 plasmids containing linker sets 31 to 89 were measured for repression at the B2M locus 6, 13, and 24 days after transfection, with linker sets 1, 10, and 25 from the first two experiments serving as a benchmark, and the results are depicted in Tables 59 to 61. The data showed that at 24 days after transfection, the use of linker sets 85, 43, 36, 10, 64, 1, 40, 25, 66, 76, and 52 resulted in at least a 50% increase in repressive activity relative to the activity level of the LTRP5 control when paired with the B2M spacer (Tables 59 to 61). Next, five of these 11 best performing linker sets were selected for future validation based on the original linker set sequences (SEQ ID NO: 123 for L1; SEQ ID NO: 124 for L3A) that were different from the other best candidate combinations and linkers. Table 59 : Levels of B2M inhibition mediated by LTRP5 constructs with linker sets 1 , 10 , 25 , and 31-39 quantified 6 days after transfection Structure Connect sub-collection Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5 Original/Baseline NT 4.607 0.289 3 LTRP5 Collection 54 7.165 31.000 2.955 3 LTRP5 Collection 69 7.165 33.400 1.015 3 LTRP5 Collection 42 7.165 35.167 1.258 3 LTRP5 Collection 89 7.165 34.733 0.603 3 LTRP5 Original/Baseline 7.165 38.667 0.379 3 LTRP5 Collection 61 7.165 48.300 1.931 3 LTRP5 Collection 59 7.165 49.467 0.709 3 LTRP5 Collection 80 7.165 48.633 0.643 3 LTRP5 Collection 33 7.165 53.800 1.200 3 LTRP5 Collection 37 7.165 55.167 0.416 3 LTRP5 Collection 51 7.165 51.900 0.819 3 LTRP5 Collection 49 7.165 52.267 0.723 3 LTRP5 Collection 48 7.165 50.500 1.082 3 LTRP5 Collection 62 7.165 53.367 0.493 3 LTRP5 Collection 41 7.165 53.067 0.473 3 LTRP5 Collection 50 7.165 53.400 0.458 3 LTRP5 Collection 38 7.165 53.833 0.231 3 LTRP5 Collection 78 7.165 52.633 0.379 3 LTRP5 Collection 86 7.165 53.833 1.484 3 LTRP5 Collection 53 7.165 55.167 0.764 3 LTRP5 Collection 87 7.165 55.533 0.833 3 LTRP5 Collection 46 7.165 53.033 0.153 3 LTRP5 Collection 55 7.165 50.633 1.650 3 LTRP5 Collection 34 7.165 57.800 0.794 3 LTRP5 Collection 75 7.165 53.400 0.794 3 LTRP5 Collection 39 7.165 55.467 1.002 3 LTRP5 Collection 56 7.165 54.000 1.114 3 LTRP5 Collection 60 7.165 57.933 1.328 3 LTRP5 Collection 82 7.165 57.500 0.889 3 LTRP5 Collection 73 7.165 53.433 0.907 3 LTRP5 Collection 83 7.165 59.333 1.069 3 LTRP5 Collection 63 7.165 55.400 0.872 3 LTRP5 Collection 88 7.165 58.567 1.436 3 LTRP5 Collection 68 7.165 55.633 0.231 3 LTRP5 Collection 58 7.165 54.433 0.723 3 LTRP5 Collection 79 7.165 56.700 0.520 3 LTRP5 Collection 70 7.165 55.467 1.350 3 LTRP5 Collection 32 7.165 58.467 0.723 3 LTRP5 Collection 77 7.165 56.133 0.651 3 LTRP5 Collection 81 7.165 60.400 0.500 3 LTRP5 Collection 57 7.165 57.800 1.153 3 LTRP5 Collection 44 7.165 57.933 1.617 3 LTRP5 Collection 47 7.165 55.400 0.173 3 LTRP5 Collection 31 7.165 59.767 0.751 3 LTRP5 Collection 74 7.165 58.067 0.569 3 LTRP5 Collection 65 7.165 60.300 0.954 3 LTRP5 Collection 84 7.165 59.333 0.902 3 LTRP5 Collection 67 7.165 60.767 1.779 3 LTRP5 Collection 72 7.165 57.433 0.723 3 LTRP5 Collection 71 7.165 59.467 0.379 3 LTRP5 Collection 52 7.165 61.533 0.153 3 LTRP5 Collection 76 7.165 62.900 0.400 3 LTRP5 Collection 66 7.165 61.933 0.379 3 LTRP5 Collection 25 7.165 61.033 0.416 3 LTRP5 Collection 40 7.165 62.800 0.889 3 LTRP5 Collection 1 7.165 58.133 0.058 3 LTRP5 Collection 64 7.165 57.400 1.229 3 LTRP5 Collection 10 7.165 59.967 1.222 3 LTRP5 Collection 36 7.165 65.333 0.902 3 LTRP5 Collection 43 7.165 64.800 1.253 3 LTRP5 Collection 85 7.165 64.333 1.274 3 Table 60 : B2M inhibition levels mediated by LTRP5 constructs with linker sets 1 , 10 , 25 , and 31 to 39 quantified 13 days after transfection Structure Connect sub-collection Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5 Original/Baseline NT 1.877 0.315 3 LTRP5 Collection 54 7.165 2.670 0.866 3 LTRP5 Collection 69 7.165 1.200 0.190 3 LTRP5 Collection 42 7.165 24.000 0.794 3 LTRP5 Collection 89 7.165 25.500 0.755 3 LTRP5 Original/Baseline 7.165 30.800 0.917 3 LTRP5 Collection 61 7.165 31.600 0.700 3 LTRP5 Collection 59 7.165 32.267 0.473 3 LTRP5 Collection 80 7.165 32.767 0.231 3 LTRP5 Collection 33 7.165 36.833 1.137 3 LTRP5 Collection 37 7.165 35.900 1.179 3 LTRP5 Collection 51 7.165 34.767 0.723 3 LTRP5 Collection 49 7.165 36.167 0.929 3 LTRP5 Collection 48 7.165 36.267 1.274 3 LTRP5 Collection 62 7.165 34.433 0.551 3 LTRP5 Collection 41 7.165 35.067 1.484 3 LTRP5 Collection 50 7.165 38.067 0.874 3 LTRP5 Collection 38 7.165 36.567 0.351 3 LTRP5 Collection 78 7.165 35.000 0.700 3 LTRP5 Collection 86 7.165 34.933 1.747 3 LTRP5 Collection 53 7.165 35.833 1.234 3 LTRP5 Collection 87 7.165 35.800 1.015 3 LTRP5 Collection 46 7.165 36.200 0.361 3 LTRP5 Collection 55 7.165 36.033 1.950 3 LTRP5 Collection 34 7.165 40.733 1.168 3 LTRP5 Collection 75 7.165 36.033 1.604 3 LTRP5 Collection 39 7.165 38.867 1.266 3 LTRP5 Collection 56 7.165 37.467 0.764 3 LTRP5 Collection 60 7.165 40.467 1.750 3 LTRP5 Collection 82 7.165 38.567 1.069 3 LTRP5 Collection 73 7.165 35.433 1.845 3 LTRP5 Collection 83 7.165 39.100 0.889 3 LTRP5 Collection 63 7.165 37.433 1.002 3 LTRP5 Collection 88 7.165 39.033 1.930 3 LTRP5 Collection 68 7.165 37.833 0.493 3 LTRP5 Collection 58 7.165 38.700 0.866 3 LTRP5 Collection 79 7.165 39.367 0.153 3 LTRP5 Collection 70 7.165 37.467 1.701 3 LTRP5 Collection 32 7.165 42.833 0.289 3 LTRP5 Collection 77 7.165 38.767 0.907 3 LTRP5 Collection 81 7.165 39.300 1.039 3 LTRP5 Collection 57 7.165 41.233 1.779 3 LTRP5 Collection 44 7.165 40.667 0.814 3 LTRP5 Collection 47 7.165 39.667 0.850 3 LTRP5 Collection 31 7.165 43.433 1.650 3 LTRP5 Collection 74 7.165 40.467 0.802 3 LTRP5 Collection 65 7.165 42.000 0.608 3 LTRP5 Collection 84 7.165 41.700 0.200 3 LTRP5 Collection 67 7.165 41.600 1.277 3 LTRP5 Collection 72 7.165 39.400 0.781 3 LTRP5 Collection 71 7.165 42.533 0.153 3 LTRP5 Collection 52 7.165 44.333 0.635 3 LTRP5 Collection 76 7.165 45.033 1.721 3 LTRP5 Collection 66 7.165 43.233 0.833 3 LTRP5 Collection 25 7.165 49.233 0.231 3 LTRP5 Collection 40 7.165 47.767 1.002 3 LTRP5 Collection 1 7.165 48.100 0.917 3 LTRP5 Collection 64 7.165 44.133 1.097 3 LTRP5 Collection 10 7.165 48.733 1.069 3 LTRP5 Collection 36 7.165 48.833 1.358 3 LTRP5 Collection 43 7.165 49.267 1.222 3 LTRP5 Collection 85 7.165 46.933 2.312 3 Table 61 : B2M inhibition levels mediated by LTRP5 constructs with linker sets 1 , 10 , 25 , and 31 to 39 quantified 24 days after transfection Structure Connect sub-collection Spacer Average HLA- negative cells% Standard Deviation Sample size LTRP5 Original/Baseline NT 1.290 0.098 3 LTRP5 Collection 54 7.165 3.670 1.105 3 LTRP5 Collection 69 7.165 4.270 0.282 3 LTRP5 Collection 42 7.165 22.600 1.153 3 LTRP5 Collection 89 7.165 24.500 0.781 3 LTRP5 Original/Baseline 7.165 25.067 0.907 3 LTRP5 Collection 61 7.165 27.100 0.781 3 LTRP5 Collection 59 7.165 27.167 0.351 3 LTRP5 Collection 80 7.165 28.367 1.185 3 LTRP5 Collection 33 7.165 28.367 0.208 3 LTRP5 Collection 37 7.165 28.833 0.751 3 LTRP5 Collection 51 7.165 28.933 0.551 3 LTRP5 Collection 49 7.165 28.967 1.950 3 LTRP5 Collection 48 7.165 29.467 0.757 3 LTRP5 Collection 62 7.165 29.633 0.551 3 LTRP5 Collection 41 7.165 29.767 1.457 3 LTRP5 Collection 50 7.165 30.000 0.436 3 LTRP5 Collection 38 7.165 30.167 1.050 3 LTRP5 Collection 78 7.165 30.200 1.480 3 LTRP5 Collection 86 7.165 30.367 1.041 3 LTRP5 Collection 53 7.165 30.567 2.055 3 LTRP5 Collection 87 7.165 30.733 1.258 3 LTRP5 Collection 46 7.165 31.033 0.723 3 LTRP5 Collection 55 7.165 31.167 2.413 3 LTRP5 Collection 34 7.165 31.833 0.802 3 LTRP5 Collection 75 7.165 31.867 2.892 3 LTRP5 Collection 39 7.165 31.867 0.874 3 LTRP5 Collection 56 7.165 32.267 0.681 3 LTRP5 Collection 60 7.165 32.733 1.206 3 LTRP5 Collection 82 7.165 32.967 1.274 3 LTRP5 Collection 73 7.165 33.133 0.351 3 LTRP5 Collection 83 7.165 33.333 0.569 3 LTRP5 Collection 63 7.165 33.400 2.551 3 LTRP5 Collection 88 7.165 33.500 1.803 3 LTRP5 Collection 68 7.165 33.533 0.666 3 LTRP5 Collection 58 7.165 33.633 1.266 3 LTRP5 Collection 79 7.165 34.000 0.100 3 LTRP5 Collection 70 7.165 34.167 2.836 3 LTRP5 Collection 32 7.165 34.167 1.193 3 LTRP5 Collection 77 7.165 34.467 0.814 3 LTRP5 Collection 81 7.165 34.733 0.404 3 LTRP5 Collection 57 7.165 34.833 2.250 3 LTRP5 Collection 44 7.165 34.933 1.012 3 LTRP5 Collection 47 7.165 35.167 0.802 3 LTRP5 Collection 31 7.165 35.433 2.060 3 LTRP5 Collection 74 7.165 35.833 0.651 3 LTRP5 Collection 65 7.165 36.467 0.681 3 LTRP5 Collection 84 7.165 37.167 1.069 3 LTRP5 Collection 67 7.165 37.300 1.311 3 LTRP5 Collection 72 7.165 37.667 0.850 3 LTRP5 Collection 71 7.165 37.733 0.681 3 LTRP5 Collection 52 7.165 38.767 0.929 3 LTRP5 Collection 76 7.165 39.167 1.858 3 LTRP5 Collection 66 7.165 39.367 0.503 3 LTRP5 Collection 25 7.165 40.400 1.808 3 LTRP5 Collection 40 7.165 40.633 1.629 3 LTRP5 Collection 1 7.165 41.000 1.127 3 LTRP5 Collection 64 7.165 41.367 1.877 3 LTRP5 Collection 10 7.165 42.167 2.113 3 LTRP5 Collection 36 7.165 42.333 1.250 3 LTRP5 Collection 43 7.165 42.433 0.666 3 LTRP5 Collection 85 7.165 42.500 2.272 3

實驗顯示,藉由改變定位於LTRP分子之關鍵域之間的連接子序列可進一步增強LTRP分子之抑制活性。此處,將兩個位置處,亦即DNMT3L相互作用域與抑制子域之間及抑制子域與催化失效CasX之間的連接子序列最佳化會引起LTRP分子之抑制活性的實質性改良。 實例 14 :在小鼠模型中評估 LTRP ADD 域的使用 The experiments show that the inhibitory activity of LTRP molecules can be further enhanced by changing the linker sequence located between key domains of the LTRP molecule. Here, optimizing the linker sequence at two locations, namely between the DNMT3L interaction domain and the inhibitory subdomain and between the inhibitory subdomain and the catalytically inactive CasX, resulted in substantial improvements in the inhibitory activity of the LTRP molecule. Example 14 : Evaluation of the use of the ADD domain in LTRP in a mouse model

進行實驗以評定當在小鼠模型中活體內遞送時用CasX:gRNA系統處理後甲基化之持久性。評估在ADD域存在及不存在下LTRP1取向分子之甲基化持久性、mPCSK9轉錄物減弱及mPCSK9蛋白產生。 材料及方法: LNP製備: Experiments were performed to assess the persistence of methylation following treatment with the CasX:gRNA system when delivered in vivo in a mouse model. Methylation persistence of LTRP1-targeted molecules, mPCSK9 transcript attenuation, and mPCSK9 protein production were assessed in the presence and absence of the ADD domain. Materials and Methods: LNP Preparation:

使用基於ALC-0315之脂質混合物,使用定製的T型混合器微型混合裝置,以20 mL/min之流動速率及3:1的水相與有機相混合比,將LTRP mRNA及gRNA囊封至LNP中。組成如下:50:10:38.5:1.5 mol%的可離子化脂質:DSPC:膽固醇:DMG-PEG2000。簡言之,為調配LNP,將相等質量比之LTRP mRNA及gRNA稀釋於25 mM乙酸鈉(pH 4.0)中。在無水乙醇中製備10 mM濃度之脂質混合物。使用預定N/P比產生mRNA/gRNA共同調配物。使用注射泵輸注器,使RNA及脂質以預定流動速率比穿過定製的T型混合器裝置。調配後,將LNP滲析至PBS (pH 7.4)中,以降低乙醇濃度且提高pH,由此提高粒子之穩定性。藉由在4℃下使用10k Slide-A-Lyzer™滲析卡匣(Thermo Scientific™)或12-14 kDa滲析管(Repligen)隔夜滲析至PBS (pH 7.4)中來達成mRNA/gRNA-LNP之緩衝液交換。滲析之後,將mRNA/gRNA-LNP使用30-100 kDa Amicon®-Ultra離心過濾器(Millipore)濃縮至>0.2 mg/mL,隨後使用Acrodisc PES膜過濾器進行滅菌過濾。於Malvern Zetasizer上分析所調配LNP以測定其直徑及多分散性指數(PDI)。藉由RiboGreen™分析,使用Invitrogen之Quant-iT™ RiboGreen™ RNA分析套組測定囊封效率及RNA濃度。在各個實驗中使用上述LNP以遞送LTRP mRNA及gRNA,從而在活體內遞送至目標組織。 活體內遞送囊封CasX mRNA及靶向gRNA之LNP: LTRP mRNA and gRNA were encapsulated into LNPs using a custom T-mixer micromixing device with a flow rate of 20 mL/min and a 3:1 aqueous to organic phase mixing ratio using an ALC-0315-based lipid mixture. The composition was as follows: 50:10:38.5:1.5 mol% ionizable lipid:DSPC:cholesterol:DMG-PEG2000. Briefly, to formulate LNPs, equal mass ratios of LTRP mRNA and gRNA were diluted in 25 mM sodium acetate (pH 4.0). A 10 mM concentration of lipid mixture was prepared in anhydrous ethanol. mRNA/gRNA co-formulations were generated using a predetermined N/P ratio. Using a syringe pump infusion device, RNA and lipids were passed through a custom T-mixer device at a predetermined flow rate ratio. After formulation, LNPs were dialyzed into PBS (pH 7.4) to reduce ethanol concentration and increase pH, thereby improving particle stability. Buffer exchange of mRNA/gRNA-LNPs was achieved by dialysis into PBS (pH 7.4) overnight at 4°C using a 10k Slide-A-Lyzer™ Dialysis Cassette (Thermo Scientific™) or 12-14 kDa Dialysis Tubes (Repligen). After dialysis, mRNA/gRNA-LNPs were concentrated to >0.2 mg/mL using a 30-100 kDa Amicon®-Ultra centrifugal filter (Millipore) and subsequently sterile filtered using an Acrodisc PES membrane filter. The formulated LNPs were analyzed on a Malvern Zetasizer to determine their diameter and polydispersity index (PDI). Encapsulation efficiency and RNA concentration were determined by RiboGreen™ analysis using Invitrogen's Quant-iT™ RiboGreen™ RNA Assay Kit. The above LNPs were used in various experiments to deliver LTRP mRNA and gRNA to target tissues in vivo. LNPs for in vivo delivery of encapsulated CasX mRNA and targeting gRNA:

為了評定在活體內使用LTRP1A及LTRP1B之作用,使用1:1的mRNA:gRNA質量比,將LTRP mRNA (參見表62)及使用支架316 v1與間隔子27.94的靶向 mPCSK9之gRNA (SEQ ID: 3330,表63)囊封於同一LNP內。將所調配LNP經緩衝液交換為PBS以用於活體內注射。簡言之,透過尾靜脈將3.0 mg/kg之LNP靜脈內投與4週齡之C57BL/6小鼠。在注射之後觀測小鼠五分鐘以確保其自麻醉恢復,隨後置放於飼養籠中。注射媒劑(PBS)之動物充當陰性實驗對照且注射編碼LTRP1及以上靶向mPCSK9之引導物的mRNA:gRNA之小鼠充當陽性對照。經由空腹抽血獲取基線。再每三週一次抽取血液。投與後七天、十四天及四十二天,對各條件下之3隻小鼠實施安樂死,收集血液及肝組織。收集血清進行mPCSK9 ELISA,將肝臟組織均質化,以按照製造商說明書,使用Zymo Research Quick DNA/RNA Miniprep套組進行mRNA提取及gDNA提取。 酶法甲基化定序(EM-seq): To assess the effects of using LTRP1A and LTRP1B in vivo, LTRP mRNA (see Table 62) and gRNA targeting mPCSK9 using scaffold 316 v1 and spacer 27.94 (SEQ ID: 3330, Table 63) were encapsulated in the same LNP using a 1:1 mRNA:gRNA mass ratio. The formulated LNPs were exchanged with PBS for intravenous injection. Briefly, 3.0 mg/kg of LNPs were administered intravenously to 4-week-old C57BL/6 mice via the tail vein. Mice were observed for five minutes after injection to ensure recovery from anesthesia and then placed in cages. Animals injected with vehicle (PBS) served as negative experimental controls and mice injected with mRNA:gRNA encoding LTRP1 and above targeting mPCSK9 served as positive controls. Baseline was obtained by fasting blood draw. Blood was drawn every three weeks. Seven, fourteen and forty-two days after administration, three mice under each condition were euthanized and blood and liver tissue were collected. Serum was collected for mPCSK9 ELISA, and liver tissue was homogenized for mRNA extraction and gDNA extraction using the Zymo Research Quick DNA/RNA Miniprep kit according to the manufacturer's instructions. Enzymatic methylation sequencing (EM-seq):

為了測定 PCSK9基因座處之中靶甲基化水平,按照製造商說明書,使用Zymo Quick-DNA Miniprep Plus套組自所收集之組織提取gDNA。接著,按照製造商之方案,使用酶法甲基序列轉化模組(NEB)將任何未甲基化之胞嘧啶轉化成尿嘧啶,對所提取之gDNA進行酶法甲基化轉化。隨後,使用次世代定序(NGS)對所得到的經處理DNA進行定序,以測定中靶甲基化之水平。 To determine the level of on-target methylation at the PCSK9 locus, gDNA was extracted from the collected tissue using the Zymo Quick-DNA Miniprep Plus kit according to the manufacturer's instructions. The extracted gDNA was then subjected to enzymatic methylation conversion using the Enzymatic Methyl-Seq Conversion Module (NEB) to convert any unmethylated cytosine to uracil according to the manufacturer's protocol. The resulting processed DNA was then sequenced using next-generation sequencing (NGS) to determine the level of on-target methylation.

NGS處理及分析:NGS processing and analysis:

利用一組對EM轉化之所關注目標位置(小鼠 PCSK9基因座)具有特異性之引子,經由PCR自50 ng經EM處理之DNA擴增目標擴增子。此等基因特異性引子在5′末端含有額外序列以引入Illumina TM銜接子。利用Cytiva Sera-Mag Select DNA淨化套組來純化經擴增DNA產物。使用Fragment Analyzer DNA分析套組(Agilent,dsDNA 35至1500 bp)評定擴增子之品質及定量。根據製造商說明書,在Illumina TMMiseq TM上對擴增子進行定序。使用Bismark亞硫酸氫鹽讀段定位程式及甲基化調用程式處理定序之原始fastq檔案。對經EM處理之DNA進行PCR擴增會將所有尿嘧啶核苷酸轉化成胸腺嘧啶,且對PCR產物定序將決定胞嘧啶轉化為胸腺嘧啶之速率,其係呈各LTRP分子介導的PCSK9基因座處中靶甲基化之水平的讀數形式。 關於mPCSK9 mRNA減弱之qPCR分析: The target amplicon was amplified by PCR from 50 ng of EM-treated DNA using a set of primers specific for the target location of interest for EM conversion (mouse PCSK9 locus). These gene-specific primers contain additional sequence at the 5′ end to introduce the Illumina adapter. The amplified DNA product was purified using the Cytiva Sera-Mag Select DNA Cleanup Kit. The quality and quantification of the amplicon were assessed using the Fragment Analyzer DNA Analysis Kit (Agilent, dsDNA 35 to 1500 bp). The amplicon was sequenced on an Illumina Miseq according to the manufacturer's instructions. The sequenced raw fastq files were processed using the Bismark bisulfite read mapping program and methylation call program. PCR amplification of EM-treated DNA will convert all uracil nucleotides to thymine, and sequencing of the PCR products will determine the rate of cytosine to thymine conversion, which is a readout of the level of target methylation at the PCSK9 locus mediated by each LTRP molecule. qPCR analysis of mPCSK9 mRNA attenuation:

在屍體剖檢之後,將肝塊快速冷凍。接著,將此等肝塊浸入過量體積的zymo DNA/RNA Shield試劑中且使用研磨珠套管(bullet blender儀器,其中在管中具有陶瓷珠或鋼珠)進行均質化。均質化之後,用蛋白酶k處理溶胞物。根據製造商說明書,使用zymo quick RNA miniprep 套組(目錄號r1055)提取經蛋白酶k處理之肝溶胞物中的mRNA,且按照製造商說明書,使用taqman基因表現分析,利用mPCSK9及真核18s探針進行分析。 ELISA方法: After necropsy, liver pieces were rapidly frozen. These liver pieces were then immersed in an excess volume of Zymo DNA/RNA Shield reagent and homogenized using a bullet blender (a device with ceramic or steel beads in the tube). After homogenization, the lysate was treated with proteinase K. mRNA from proteinase K-treated liver lysate was extracted using the Zymo Quick RNA Miniprep Kit (Catalog No. R1055) according to the manufacturer's instructions and analyzed using Taqman Gene Expression Assays using mPCSK9 and eukaryotic 18S probes according to the manufacturer's instructions. ELISA Method:

按照製造商說明書,使用legend max小鼠PCSK9 ELISA套組(biolegend目錄號443207)分析來自動物樣本之血清。 結果: Serum from animal samples was analyzed using the Legend Max Mouse PCSK9 ELISA Kit (BioLegend Catalog No. 443207) according to the manufacturer's instructions. Results:

為了評定當在小鼠模型中活體內遞送時用CasX:gRNA系統處理後甲基化之持久性,將編碼LTRP1 (SEQ ID NO. 3333)、LTRP1A (SEQ ID NO: 6528)或LTRP1B (SEQ ID NO: 9741)之mRNA及gRNA 316v1.27.94 (SEQ ID NO: 3330)囊封於LNP中且注射至C57BL/6小鼠中。所得PCSK9 mRNA減弱之定量示於表64中。資料表明,在7天及14天時,全部三個LTRP1取向分子具有類似的減弱水平,其中LTRP1及LTRP1A在第42天顯示較高的抑制水平。來自EM-seq的甲基化資料(圖62)顯示測試的全部三個LTRP1取向分子之高甲基化水平支持此結果,其中用LTRP1及LTRP1B處理之小鼠的總甲基化百分比在第14天及第42天略有降低。To assess the persistence of methylation following treatment with the CasX:gRNA system when delivered in vivo in a mouse model, mRNA encoding LTRP1 (SEQ ID NO. 3333), LTRP1A (SEQ ID NO: 6528), or LTRP1B (SEQ ID NO: 9741) and gRNA 316v1.27.94 (SEQ ID NO: 3330) were encapsulated in LNPs and injected into C57BL/6 mice. Quantification of the resulting PCSK9 mRNA attenuation is shown in Table 64. The data showed that at 7 and 14 days, all three LTRP1 targeting molecules had similar levels of attenuation, with LTRP1 and LTRP1A showing higher levels of inhibition at day 42. Methylation data from EM-seq (Figure 62) showed high methylation levels for all three LTRP1-directed molecules tested, supporting this result, with a slight decrease in the total methylation percentage at days 14 and 42 in mice treated with LTRP1 and LTRP1B.

PCSK9分泌定量顯示測試的全部LTRP分子在第7天(第1週,表65)具有類似的PCSK9抑制水平。與LTRP1相比較,LTRP1A在測試第6週顯示抑制持久性增加,而LTRP1B在第8週顯示抑制持久性增加。Quantification of PCSK9 secretion showed that all LTRP molecules tested had similar levels of PCSK9 inhibition at day 7 (week 1, Table 65). Compared to LTRP1, LTRP1A showed increased persistence of inhibition at week 6 of testing, while LTRP1B showed increased persistence of inhibition at week 8.

此等實驗證實,在ADD域存在及不存在下LTRP1取向分子以mRNA形式經由LNP遞送且能夠在活體內誘導有效緘默化。 62 此實例中測試之 LTRP 構築體的 mRNA 序列 LTRP SEQ ID NO. 組分 LTRP1 3333 LTRP1 ZIM3、80 聚腺苷酸、SV40、C端2xFLAG LTRP1A 6528 LTRP1 ZIM3、分裂聚腺苷酸、SV40 LTRP1B 9741 LTRP1 ZIM3、ADD、分裂聚腺苷酸、SV40 63 此實例中所用之 gRNA 及靶向序列 gRNA ID SEQ ID NO. 27.94 3071 316v1.27.94 3330 64 肝溶胞物 mRNA qPCR 給藥後天數 LTRP 7 14 42 平均值 std 平均值 std 平均值 std 媒劑(N=3) 7.14 49.81 5.24 42.63 1.00 17.10 LTRP1 (N=3) -96.55 1.77 -96.96 1.21 -93.65 2.60 LTRP1A (N=3) -99.04 0.66 -99.76 0.09 -93.19 4.73 LTRP1B (N=3) -96.13 1.47 -92.39 5.65 -80.55 5.79 65 藉由 ELISA 測定的 分泌 PCSK9 變化 相對於基線 標準化的藉由血清ELISA 測定之PCSK9 分泌百分比 研究 媒劑 LTRP1 LTRP1A LTRP1B 平均值 SEM 平均值 SEM 平均值 SEM 平均值 SEM 1 23.80 45.23 -94.45 0.45 -93.50 0.91 -94.30 0.60 2 -15.06 14.48 -92.20 1.96 -85.10 7.07 -93.69 0.44 5 4.98 10.38 -90.18 2.78 -95.80 0.78 -93.37 0.42 6 -11.92 27.13 -92.65 1.72 -95.81 0.79 -90.36 2.14 8 17.84 9.53 -80.96 6.72 NA NA -90.58 1.20 將分析的低於LOQ之值設定為LOQ (6.25 ng/mL),不收集LTRP1A第8週資料。 實例 15 具有 RD1 域之 LTRP 功效及持久性 These experiments demonstrate that LTRP1 targeting molecules delivered in mRNA form via LNPs in the presence and absence of the ADD domain are able to induce efficient silencing in vivo. Table 62 : mRNA sequences of LTRP constructs tested in this example LTRP SEQ ID NO. Components LTRP1 3333 LTRP1 ZIM3, 80 polyadenylation, SV40, C-terminal 2xFLAG LTRP1A 6528 LTRP1 ZIM3, split polyadenylation, SV40 LTRP1B 9741 LTRP1 ZIM3, ADD, split polyadenylation, SV40 Table 63 : gRNA and targeting sequences used in this example gRNA ID SEQ ID NO. 27.94 3071 316v1.27.94 3330 Table 64 : Liver lysate mRNA qPCR Days after medication LTRP 7 days 14 days 42 days average value std average value std average value std Medium (N=3) 7.14 49.81 5.24 42.63 1.00 17.10 LTRP1 (N=3) -96.55 1.77 -96.96 1.21 -93.65 2.60 LTRP1A (N=3) -99.04 0.66 -99.76 0.09 -93.19 4.73 LTRP1B (N=3) -96.13 1.47 -92.39 5.65 -80.55 5.79 Table 65 : Changes in secreted PCSK9 measured by ELISA Percent PCSK9 secretion determined by serum ELISA normalized to baseline Research Week Medium LTRP1 LTRP1A LTRP1B average value SEM average value SEM average value SEM average value SEM 1 23.80 45.23 -94.45 0.45 -93.50 0.91 -94.30 0.60 2 -15.06 14.48 -92.20 1.96 -85.10 7.07 -93.69 0.44 5 4.98 10.38 -90.18 2.78 -95.80 0.78 -93.37 0.42 6 -11.92 27.13 -92.65 1.72 -95.81 0.79 -90.36 2.14 8 17.84 9.53 -80.96 6.72 NA NA -90.58 1.20 The values below the LOQ of the assay were set as the LOQ (6.25 ng/mL) and the LTRP1A week 8 data were not collected. Example 15 : Efficacy and persistence of LTRPs with RD1 domains

進行實驗以評定在活體內用含有RD1域之LTRP1取向分子處理後小鼠模型中甲基化之持久性。 材料及方法: Experiments were performed to assess the persistence of methylation in a mouse model after in vivo treatment with LTRP1-targeted molecules containing the RD1 domain. Materials and Methods:

LNP係如實例14中所述製備。 LNPs were prepared as described in Example 14.

活體內實驗檢查含有眼鏡王蛇(King Cobra) RD1域(SEQ ID NO. 3339)之LTRP1取向分子的功效。藉由用LTRP1A及LTRP 1B中之ZIM3域取代RD1域來構建LTRP1A-眼鏡蛇及LTRP1B-眼鏡蛇(SEQ ID NO. 6530、SEQ ID NO. 9743)。將經調配的含有LTRP mRNA (表66)及靶向mPCSK9之gRNA (SEQ ID: 3330,表66)的LNP經緩衝液交換為PBS以進行活體內注射。簡言之,透過尾靜脈將LNP經靜脈內投與4週齡之C57BL/6小鼠。在注射之後觀測小鼠五分鐘以確保其自麻醉恢復,隨後置放於飼養籠中。注射媒劑(PBS)之動物充當陰性實驗對照且注射mRNA:gRNA之小鼠充當陽性對照,該mRNA:gRNA編碼LTRP1A (SEQ ID: 6528)以及使用支架316及間隔子27.94 (SEQ ID: 3330)的靶向 mPCSK9之gRNA。經由空腹抽血獲取基線。再每三週一次抽取血液。投與後七天及四十二天,對小鼠實施安樂死,收集血液及肝臟組織。收集血清進行mPCSK9 ELISA,將肝臟組織均質化,以按照製造商說明書,使用Zymo Research Quick DNA/RNA Miniprep套組進行mRNA提取及gDNA提取。 酶法甲基化定序(EM-seq): In vivo experiments examined the efficacy of LTRP1 targeting molecules containing the King Cobra RD1 domain (SEQ ID NO. 3339). LTRP1A-Cobra and LTRP1B-Cobra (SEQ ID NO. 6530, SEQ ID NO. 9743) were constructed by replacing the RD1 domain with the ZIM3 domain in LTRP1A and LTRP 1B. LNPs containing LTRP mRNA (Table 66) and gRNA targeting mPCSK9 (SEQ ID: 3330, Table 66) were formulated and exchanged with PBS for intravital injection. Briefly, LNPs were administered intravenously to 4-week-old C57BL/6 mice via the tail vein. Mice were observed for five minutes after injection to ensure recovery from anesthesia and then placed in cages. Animals injected with vehicle (PBS) served as negative experimental controls and mice injected with mRNA:gRNA encoding LTRP1A (SEQ ID: 6528) and gRNA targeting mPCSK9 using scaffold 316 and spacer 27.94 (SEQ ID: 3330) served as positive controls. Baseline was obtained by fasting blood draw. Blood was drawn once every three weeks. Seven and forty-two days after administration, mice were euthanized and blood and liver tissue were collected. Serum was collected for mPCSK9 ELISA, and liver tissue was homogenized for mRNA extraction and gDNA extraction using the Zymo Research Quick DNA/RNA Miniprep Kit according to the manufacturer's instructions. Enzymatic methylation sequencing (EM-seq):

為了測定 PCSK9基因座處之中靶甲基化水平,按照製造商說明書,使用Zymo Quick-DNA Miniprep Plus套組自所收集之組織提取gDNA。接著,按照製造商之方案,使用酶法甲基序列轉化模組(NEB)將任何未甲基化之胞嘧啶轉化成尿嘧啶,對所提取之gDNA進行酶法甲基化轉化。隨後,使用次世代定序(NGS)對所得到的經處理DNA進行定序,以測定中靶甲基化之水平。 NGS處理及分析: To determine the level of on-target methylation at the PCSK9 locus, gDNA was extracted from the collected tissue using the Zymo Quick-DNA Miniprep Plus Kit according to the manufacturer's instructions. The extracted gDNA was then subjected to enzymatic methylation conversion using the Enzymatic Methyl-Seq Conversion Module (NEB) to convert any unmethylated cytosine to uracil according to the manufacturer's protocol. The resulting processed DNA was then sequenced using next-generation sequencing (NGS) to determine the level of on-target methylation. NGS Processing and Analysis:

利用一組對EM轉化之所關注目標位置(小鼠 PCSK9基因座)具有特異性之引子,經由PCR自50 ng經EM處理之DNA擴增目標擴增子。此等基因特異性引子在5′末端含有額外序列以引入Illumina TM銜接子。利用Cytiva Sera-Mag Select DNA淨化套組來純化經擴增DNA產物。使用Fragment Analyzer DNA分析套組(Agilent,dsDNA 35至1500 bp)評定擴增子之品質及定量。根據製造商說明書,在Illumina TMMiseq TM上對擴增子進行定序。使用Bismark亞硫酸氫鹽讀段定位程式及甲基化調用程式處理定序之原始fastq檔案。對經EM處理之DNA進行PCR擴增會將所有尿嘧啶核苷酸轉化成胸腺嘧啶,且對PCR產物定序將決定胞嘧啶轉化為胸腺嘧啶之速率,其係呈各LTRP分子介導的PCSK9基因座處中靶甲基化之水平的讀數形式。 關於mPCSK9 mRNA減弱之qPCR分析: The target amplicon was amplified by PCR from 50 ng of EM-treated DNA using a set of primers specific for the target location of interest for EM conversion (mouse PCSK9 locus). These gene-specific primers contain additional sequence at the 5′ end to introduce the Illumina adapter. The amplified DNA product was purified using the Cytiva Sera-Mag Select DNA Cleanup Kit. The quality and quantification of the amplicon were assessed using the Fragment Analyzer DNA Analysis Kit (Agilent, dsDNA 35 to 1500 bp). The amplicon was sequenced on an Illumina Miseq according to the manufacturer's instructions. The sequenced raw fastq files were processed using the Bismark bisulfite read mapping program and methylation call program. PCR amplification of EM-treated DNA will convert all uracil nucleotides to thymine, and sequencing of the PCR products will determine the rate of cytosine to thymine conversion, which is a readout of the level of target methylation at the PCSK9 locus mediated by each LTRP molecule. qPCR analysis of mPCSK9 mRNA attenuation:

在屍體剖檢之後,將肝塊快速冷凍。接著,將此等肝塊浸入過量體積的Zymo DNA/RNA Shield試劑中且使用研磨珠套管(Bullet Blender儀器,其中在管中具有陶瓷珠或鋼珠)進行均質化。均質化之後,用蛋白酶K處理溶胞物。根據製造商說明書,使用Zymo Quick RNA Miniprep套組(目錄號R1055)提取經蛋白酶K處理之肝溶胞物中的mRNA,且按照製造商說明書,使用TaqMan基因表現分析,利用mPCSK9及真核18S探針進行分析。 ELISA方法: After necropsy, liver pieces were rapidly frozen. These liver pieces were then immersed in an excess volume of Zymo DNA/RNA Shield reagent and homogenized using a bead blender (Bullet Blender instrument with ceramic or steel beads in the tube). After homogenization, the lysate was treated with proteinase K. mRNA from proteinase K-treated liver lysate was extracted using the Zymo Quick RNA Miniprep Kit (Catalog No. R1055) according to the manufacturer's instructions and analyzed using TaqMan Gene Expression Assays with mPCSK9 and eukaryotic 18S probes according to the manufacturer's instructions. ELISA Method:

按照製造商說明書,使用LEGEND MAX小鼠PCSK9 ELISA套組(BioLegend目錄號443207)分析來自動物樣本之血清。 結果: Serum from animal samples was analyzed using the LEGEND MAX Mouse PCSK9 ELISA Kit (BioLegend Catalog No. 443207) according to the manufacturer's instructions. Results:

藉由擴增子酶法甲基化定序(EM-seq)自處理後第7天處死的N=3隻小鼠的均質化之肝提取之gDNA量測的轉錄起始位點(TSS)近端DNA甲基化水平展現所有構築體均具有類似的甲基化水平,其中在較高劑量下往往具有較高中值甲基化(圖63)。 TSS-proximal DNA methylation levels measured by expander enzymatic methylation sequencing (EM-seq) from gDNA extracted from homogenized livers of N=3 mice sacrificed on day 7 post-treatment showed similar methylation levels for all constructs, with higher doses tending to have higher median methylation (Figure 63).

表67定量血清PCSK9 ELISA結果,其表明所有LTRP1構築體均顯示類似的初始作用,且給予0.75 mpk或1.5 mpk之群組在給藥後42天血清PCSK9減弱約90%。 Table 67 Quantitative serum PCSK9 ELISA results, which show that all LTRP1 constructs showed similar initial effects, and the groups given 0.75 mpk or 1.5 mpk had serum PCSK9 attenuated by about 90% 42 days after dosing.

表68定量mPCSK9 mRNA qPCR分析結果,其表明全部3種LTRP1構築體在兩種劑量下維持超過80%減弱之穩健轉錄物減少。LTRP1A、LTRP1A-眼鏡蛇及LTRP1B-眼鏡蛇在mRNA轉錄物水平上呈現強效及持久作用,直至給藥後42天。在42天時,LTRP1A及LTRP1A-眼鏡蛇在較低劑量(0.75 mg/kg)下顯示mPCSK9表現略有上升,但尚不清楚此是否代表一個傾向。 Table 68 Results of quantitative mPCSK9 mRNA qPCR analysis showing that all three LTRP1 constructs maintained robust transcript reductions of more than 80% attenuation at both doses. LTRP1A, LTRP1A-cobra, and LTRP1B-cobra exhibited potent and sustained effects on mRNA transcript levels until 42 days post-dose. At 42 days, LTRP1A and LTRP1A-cobra showed a slight increase in mPCSK9 expression at a lower dose (0.75 mg/kg), but it is unclear whether this represents a trend.

此等實驗展示LTRP1取向分子可產生持久甲基化,導致小鼠模型中具有RD1域之PCSK9表現減少。 66 所評定之 mRNA gRNA 之序列 mRNA SEQ ID NO. gRNA 劑量 mg/kg LTRP1A 6528 316v1 27.94 (SEQ ID NO. 3330) 1.5 0.75 LTRP1A-眼鏡蛇 6530 1.5 0.75 LTRP1B-眼鏡蛇 9743 1.5 0.75 PBS (陰性對照) NA NA NA 67 在第 7 天、第 14 、第 35 及第 42 天進行的 血清 PCSK9 ELISA* 血清PCSK9 相對於 基線之變化% 媒劑(PBS) 媒劑(PBS) 平均值 SEM n 平均值 SEM n 0 0 0 9 N/A N/A N/A 7 50.87 79.48 3 N/A N/A N/A 14 89.78 86.04 6 N/A N/A N/A 35 -19.45 80.54 6 N/A N/A N/A 42 111.26 6.19 2 N/A N/A N/A LTRP1A- 眼鏡蛇(0.75 mpk) LTRP1A- 眼鏡蛇(1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 9 0 0 9 7 -90.42 3.47 3 -87.40 2.37 3 14 -87.51 9.17 6 -87.03 5.74 6 35 -83.73 12.37 6 -87.03 5.74 6 42 -91.31 2.87 2 -93.43 1.15 2 LTRP1B- 眼鏡蛇(0.75 mpk) LTRP1B- 眼鏡蛇(1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 9 0 0 9 7 -90.22 4.27 3 -87.99 4.45 3 14 -88.43 6.86 6 -91.63 2.61 6 35 -89.11 3.79 6 -91.63 2.61 6 42 -88.33 1.86 2 -90.18 2.72 2 LTRP1A (0.75 mpk) LTRP1A (1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 9 0 0 9 7 -91.57 1.12 3 -87.94 2.11 3 14 -88.21 4.21 6 -90.87 2.15 6 35 -86.95 4.41 6 -90.87 2.15 6 42 -70.89 21.14 2 -89.01 1.36 2 * 第7天的資料僅來自在該時間點取樣之動物。第7天及第35天的資料來自一直存活到第42天的不同個體。第42天的資料僅來自在該時間點取樣之動物。 68 經由 qPCR 測定的 在第 7 天及第 42 天的 mPCSK9 mRNA 抑制百分比 mPCSK9 轉錄物/18S 抑制百分比 媒劑 媒劑 平均值 SEM n 平均值 SEM n 0 0 0 3 N/A N/A N/A 7 19.65 49.23 3 N/A N/A N/A 42 9.38 44.25 2 N/A N/A N/A LTRP1A- 眼鏡蛇(0.75 mpk) LTRP1A- 眼鏡蛇(1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 3 0 0 3 7 -92.90 1.48 3 -96.68 2.01 3 42 -79.37 0.57 2 -87.63 6.35 2 LTRP1B- 眼鏡蛇(0.75 mpk) LTRP1B- 眼鏡蛇(1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 3 0 0 3 7 -91.54 4.95 3 -98.15 0.55 3 42 -90.86 0.57 2 -96.02 1.31 2 LTRP1A (0.75 mpk) LTRP1A (1.5 mpk) 平均值 SEM n 平均值 SEM n 0 0 0 3 0 0 3 7 -92.79 1.21 3 -95.36 1.81 3 42 -84.55 5.15 2 -91.95 4.47 2 實例 16 靶向人類 PCSK9 基因座之 CasX:gRNA 系統之功能評定 These experiments demonstrate that LTRP1-targeted molecules can produce persistent methylation, leading to reduced expression of PCSK9 with the RD1 domain in a mouse model. Table 66 : Sequences of mRNAs and gRNAs evaluated mRNA SEQ ID NO. gRNA Dosage mg/kg LTRP1A 6528 316v1 27.94 (SEQ ID NO. 3330) 1.5 0.75 LTRP1A-Cobra 6530 1.5 0.75 LTRP1B-Cobra 9743 1.5 0.75 PBS (negative control) NA NA NA Table 67 : Serum PCSK9 ELISA performed on Day 7 , Day 14 , Day 35 and Day 42 * Change in serum PCSK9 relative to baseline % Vehicle (PBS) Vehicle (PBS) sky average value SEM n average value SEM n 0 0 0 9 N/A N/A N/A 7 50.87 79.48 3 N/A N/A N/A 14 89.78 86.04 6 N/A N/A N/A 35 -19.45 80.54 6 N/A N/A N/A 42 111.26 6.19 2 N/A N/A N/A LTRP1A- Cobra (0.75 mpk) LTRP1A- Cobra (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 9 0 0 9 7 -90.42 3.47 3 -87.40 2.37 3 14 -87.51 9.17 6 -87.03 5.74 6 35 -83.73 12.37 6 -87.03 5.74 6 42 -91.31 2.87 2 -93.43 1.15 2 LTRP1B- Cobra (0.75 mpk) LTRP1B- Cobra (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 9 0 0 9 7 -90.22 4.27 3 -87.99 4.45 3 14 -88.43 6.86 6 -91.63 2.61 6 35 -89.11 3.79 6 -91.63 2.61 6 42 -88.33 1.86 2 -90.18 2.72 2 LTRP1A (0.75 mpk) LTRP1A (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 9 0 0 9 7 -91.57 1.12 3 -87.94 2.11 3 14 -88.21 4.21 6 -90.87 2.15 6 35 -86.95 4.41 6 -90.87 2.15 6 42 -70.89 21.14 2 -89.01 1.36 2 * Data for day 7 are from animals sampled at that time point only. Data for days 7 and 35 are from different individuals that survived until day 42. Data for day 42 are from animals sampled at that time point only. Table 68 : Percent inhibition of mPCSK9 mRNA at days 7 and 42 as determined by qPCR Percentage of mPCSK9 transcript/18S inhibition Medium Medium sky average value SEM n average value SEM n 0 0 0 3 N/A N/A N/A 7 19.65 49.23 3 N/A N/A N/A 42 9.38 44.25 2 N/A N/A N/A LTRP1A- Cobra (0.75 mpk) LTRP1A- Cobra (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 3 0 0 3 7 -92.90 1.48 3 -96.68 2.01 3 42 -79.37 0.57 2 -87.63 6.35 2 LTRP1B- Cobra (0.75 mpk) LTRP1B- Cobra (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 3 0 0 3 7 -91.54 4.95 3 -98.15 0.55 3 42 -90.86 0.57 2 -96.02 1.31 2 LTRP1A (0.75 mpk) LTRP1A (1.5 mpk) sky average value SEM n average value SEM n 0 0 0 3 0 0 3 7 -92.79 1.21 3 -95.36 1.81 3 42 -84.55 5.15 2 -91.95 4.47 2 Example 16 : Functional evaluation of the CasX:gRNA system targeting the human PCSK9 locus

進行實驗以證實遞送囊封LTRP6 mRNA及 PCSK9靶向gRNA的LNP誘導初代人類肝細胞(PHH)中內源性人類PCSK9基因座處之抑制且因此誘導分泌之PCSK9及PCSK9 mRNA減少。選擇四個LTRP分子(表69)及引導支架316v1 (EQ ID NO: 2968)於此實例中之評定。 材料及方法: Experiments were performed to demonstrate that LNPs delivering encapsulated LTRP6 mRNA and PCSK9 targeting gRNA induce repression at the endogenous human PCSK9 locus in primary human hepatocytes (PHH) and thus induce a decrease in secreted PCSK9 and PCSK9 mRNA. Four LTRP molecules (Table 69) and the guiding scaffold 316v1 (EQ ID NO: 2968) were selected for evaluation in this example. Materials and Methods:

初代人類肝細胞中的PCSK9減弱為前四個編輯靶向序列(表69)脂質體轉染至PHH細胞中以評定PCSK9分泌及mRNA減少提供實驗基礎。由兩批PHH細胞產生劑量反應曲線,其中每種條件以一式三份孔執行三輪。使用2400奈克/孔最高測試劑量的總囊封RNA,以經由RNA-seq量測經處理細胞與初始細胞之間的mRNA表現變化。 gRNA之合成: PCSK9 Attenuation in Primary Human Hepatocytes The first four edited targeting sequences (Table 69) were transfected into PHH cells by liposomal transfection to assess PCSK9 secretion and mRNA reduction. Dose response curves were generated from two batches of PHH cells, with each condition run for three rounds in triplicate wells. The highest tested dose of 2400 ng/well of total encapsulated RNA was used to measure changes in mRNA expression between treated and naive cells by RNA-seq. Synthesis of gRNA:

靶向人類 PCSK9基因座之gRNA係以化學方式合成為經化學修飾之v1型式以便遞送。靶向 PCSK9之序列列於表69中。 gRNA targeting the human PCSK9 locus was chemically synthesized as a chemically modified v1 version for delivery. The sequences targeting PCSK9 are listed in Table 69.

藉由IVT產生LTRP mRNA。簡言之,將編碼5'UTR區、密碼子最佳化之LTRP及3'UTR區之構築體選殖至含有T7啟動子及聚腺苷酸尾之質體中。將所得質體線性化,隨後用於IVT反應,該等反應係使用CleanCap® AG及N1-甲基-假尿苷進行。 脂質奈米粒子(LNP)之調配: Production of LTRP mRNA by IVT. Briefly, constructs encoding the 5'UTR region, the codon-optimized LTRP, and the 3'UTR region were cloned into plasmids containing the T7 promoter and a polyadenylation tail. The resulting plasmids were linearized and subsequently used in IVT reactions using CleanCap® AG and N1-methyl-pseudouridine. Formulation of lipid nanoparticles (LNPs):

使用內部訂製的T型混合器,以N/P 6將LTRP mRNA及靶向gRNA囊封於由可離子化脂質混合物製成之LNP中,該可離子化脂質混合物含有ALC0315可離子化脂質:18:0 PC DSPC):膽固醇:DMG-PEG2000。簡言之,為了調配LNP,在25 mM pH 4.0之乙酸鈉緩衝液中,對於共調配將分裂調配物(含有mRNA或僅含sgRNA)以固定比率稀釋,或對於分裂調配物分別稀釋。ALC315可離子化脂質使用無水乙醇以50:10:38.5:1.5%的莫耳比混合上述脂質。使RNA及脂質相以3:1之流動速率比及20 ml/min之流動速率穿過訂製的T型混合器。調配之後,將LNP轉移且使用10 KDa膜滲析盒(Thermo Scientific TM)進行滲析,並經緩衝液交換至1×PBS中以降低乙醇濃度且將pH增加至7.4,從而形成成熟且穩定的粒子。滲析後,將RNA-LNP經緩衝液交換至含300 mM蔗糖之PBS (pH 7.4)儲存緩衝液中並使用100 kDa Amicon®-Ultra離心過濾器(Millipore)濃縮至適當濃度,且無菌過濾。接著,使調配的LNP在-80℃下經歷一次冷凍-解凍循環,且在Stunner (Unchained Labs)上進行分析以測定其平均粒徑(d. nm.)及多分散性指數(PDI)。藉由RiboGreen™分析,使用Invitrogen之Quant-iT™ RiboGreen™ RNA分析套組測定囊封效率及RNA濃度。在本文所描述之各個實驗中,藉由混合1:1質量比之含有mRNA之LNP及含有gRNA之LNP,使用LNP將mRNA及gRNA遞送至目標細胞及組織。 將囊封CasX mRNA及靶向gRNA之LNP遞送至初代人類肝細胞中: LTRP mRNA and targeting gRNA were encapsulated in LNPs made from an ionizable lipid mixture containing ALC0315 ionizable lipid:18:0 PC DSPC):cholesterol:DMG-PEG2000 at N/P 6 using an in-house custom-made T-mixer. Briefly, to formulate LNPs, split formulations (containing mRNA or sgRNA only) were diluted at a fixed ratio for co-formulation or separately for split formulations in 25 mM sodium acetate buffer, pH 4.0. ALC315 ionizable lipids were mixed with the above lipids at a molar ratio of 50:10:38.5:1.5% using absolute ethanol. The RNA and lipid phases were passed through a custom-made T-type mixer at a flow rate ratio of 3:1 and a flow rate of 20 ml/min. After formulation, the LNPs were transferred and dialyzed using a 10 KDa membrane dialysis cartridge (Thermo Scientific ) and buffer exchanged into 1× PBS to reduce the ethanol concentration and increase the pH to 7.4, thereby forming mature and stable particles. After dialysis, the RNA-LNPs were buffer exchanged into PBS (pH 7.4) storage buffer containing 300 mM sucrose and concentrated to the appropriate concentration using a 100 kDa Amicon®-Ultra centrifugal filter (Millipore) and sterile filtered. The formulated LNPs were then subjected to one freeze-thaw cycle at -80°C and analyzed on a Stunner (Unchained Labs) to determine their mean particle size (d. nm.) and polydispersity index (PDI). Encapsulation efficiency and RNA concentration were determined by RiboGreen™ analysis using Invitrogen's Quant-iT™ RiboGreen™ RNA Assay Kit. In each of the experiments described herein, LNPs were used to deliver mRNA and gRNA to target cells and tissues by mixing a 1:1 mass ratio of LNPs containing mRNA and LNPs containing gRNA. Delivery of LNPs encapsulating CasX mRNA and targeting gRNA into primary human hepatocytes:

將兩批(批號271及批號31)初代人類肝細胞(Lonza Biologics)以65K個細胞/孔之密度鋪塗。二十四小時後,對於各條件,在一式三份孔中在指定劑量下,用指定總經囊封RNA劑量之單一調配物ALC-0315 LNP (1:1比率,與人類血清一起預培育隔夜)壓印各盤。各mRNA:gRNA對之測試劑量(表70)為每孔2400、800、270、90、30、10、0.1及0.01 ng總經囊封RNA。Two batches (lot 271 and lot 31) of primary human hepatocytes (Lonza Biologics) were plated at a density of 65K cells/well. Twenty-four hours later, each plate was stamped with a single formulation of ALC-0315 LNPs (1:1 ratio, pre-incubated overnight with human serum) at the indicated doses for each condition in triplicate wells. The tested doses for each mRNA:gRNA pair (Table 70) were 2400, 800, 270, 90, 30, 10, 0.1, and 0.01 ng total encapsulated RNA per well.

將細胞維持在Geltrex-夾心培養物中,且藉由HTRF ELISA,利用CISBio 人類PCSK9 HTRF ELISA套組(Revvity)分析在處理後第5天收集之培養基上清液中的PCSK9分泌。重複細胞培養實驗3輪。Cells were maintained in Geltrex-sandwich culture and PCSK9 secretion was analyzed by HTRF ELISA in culture supernatants collected on day 5 after treatment using the CISBio Human PCSK9 HTRF ELISA Kit (Revvity). The cell culture experiment was repeated for 3 rounds.

對於第1輪及第2輪,將細胞立即在100 μL DNA RNA shield TM中溶解且在第5天收集培養基之後儲存於-80℃。 For rounds 1 and 2, cells were immediately lysed in 100 μL DNA RNA shield TM and the media was collected on day 5 and stored at -80°C.

各盤上包括初始的具有靶向序列6.1的CasX 515及具有靶向序列27.94的LTRP5作為對照處理,以評定整個實驗中量測的穩定性。 關 PCSK9mRNA減弱之qPCR分析: The original CasX 515 with targeting sequence 6.1 and LTRP5 with targeting sequence 27.94 were included on each plate as control treatments to assess the stability of the measurements throughout the experiment. qPCR analysis of PCSK9 mRNA attenuation:

對提取之mRNA進行處理並藉由RT-qPCR分析。使用單步RT-qPCR方法量測PCSK9 mRNA表現。使用50 μL溶胞物,以使用Zymo 96 RNA提取套組提取總RNA。接著,使總RNA反轉錄成cDNA,且使用TaqMan探針,藉由定量PCR相對於GAPDH內源性對照定量PCSK9轉錄物。藉由與非靶向序列處理之樣本相比較來計算mRNA之百分比變化。 ELISA: Extracted mRNA was processed and analyzed by RT-qPCR. PCSK9 mRNA expression was measured using a single-step RT-qPCR method. 50 μL of lysate was used to extract total RNA using the Zymo 96 RNA extraction kit. Total RNA was then reverse transcribed into cDNA and PCSK9 transcripts were quantified by quantitative PCR relative to a GAPDH endogenous control using TaqMan probes. Percent change in mRNA was calculated compared to non-targeted sequence treated samples. ELISA:

按照製造商說明書,使用BioLegend® ELISA MAX TM套組分析培養基上清液中分泌的PCSK9水平。 RNA seq: The secreted PCSK9 levels in the culture supernatant were analyzed using the BioLegend® ELISA MAX Kit according to the manufacturer's instructions. RNA seq:

按照製造商說明書,使用Illumina之NEBNext Ultra II Directional RNA Library Prep套組(NEB #E7760)分析mRNA水平。使用雙端短讀RNA定序分析所有盤孔中用指定mRNA-gRNA對處理之最高劑量樣本(N=2至6個孔/條件)及初始孔(N=4)中的RNA。使用DEseq2,由讀段計數計算基因表現相對於初始細胞之變化。所用截止值係|log2(倍數變化)|>1且本傑明及霍赫貝格調整之p值(Benjamini and Hochberg-adjusted p value;padj)<0.05。 結果: mRNA levels were analyzed using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB #E7760) according to the manufacturer's instructions. RNA from the highest dose samples treated with the specified mRNA-gRNA pairs in all wells (N=2 to 6 wells/condition) and the initial wells (N=4) was analyzed using double-end short-read RNA sequencing. Changes in gene expression relative to the initial cells were calculated from read counts using DEseq2. The cutoff values used were |log2(fold change)|>1 and Benjamini and Hochberg-adjusted p value (padj)<0.05. Results:

評定包含支架316及靶向 PCSK9之序列之mRNA:gRNA對減少PCSK9分泌及減少PCSK9 mRNA的能力。下表71至表74提供利用每一個別mRNA:sgRNA對在初代人類肝細胞中之半數最大抑制濃度(IC 50)、90%最大抑制(IC 90)及最大反應(Emax),四捨五入至最接近的百分之一。表71及表72分別以ng經囊封RNA/孔及pM經囊封RNA為單位提供血清ELISA劑量反應測試中PCSK9分泌減少的結果。表73及表74分別以ng經囊封RNA/孔及pM經囊封RNA為單位提供qPCR劑量反應測試中PCSK9 mRNA減少的結果。 mRNA:gRNA pairs comprising scaffold 316 and a sequence targeting PCSK9 were evaluated for their ability to reduce PCSK9 secretion and reduce PCSK9 mRNA. Tables 71 to 74 below provide the half maximal inhibitory concentration (IC 50 ), 90% maximal inhibition (IC 90 ), and maximum response (Emax) in primary human hepatocytes using each individual mRNA:sgRNA pair, rounded to the nearest hundredth. Tables 71 and 72 provide the results of PCSK9 secretion reduction in serum ELISA dose response assays in ng encapsulated RNA/well and pM encapsulated RNA, respectively. Tables 73 and 74 provide the results of PCSK9 mRNA reduction in qPCR dose response assays in ng encapsulated RNA/well and pM encapsulated RNA, respectively.

LTRP5及LTRP6-大鼠-眼鏡蛇係在減少分泌蛋白方面最強效的分子,其分泌之PCSK9蛋白減少類似於陽性對照編輯物CasX 515及SpyCas9,6.154為最強效的LTRP間隔子(表71及表72)。LTRP5 and LTRP6-rat-cobra were the most potent molecules in reducing secreted proteins, and their reduction in secreted PCSK9 protein was similar to that of the positive control editors CasX 515 and SpyCas9, with 6.154 being the most potent LTRP spacer (Tables 71 and 72).

LTRP5及LTRP6-大鼠-眼鏡蛇係在減小PCSK9 mRNA水平方面最強效的分子,其減小類似於陽性對照編輯劑CasX 515及SpyCas9,6.154為最強效的LTRP間隔子(表73及表74)。LTRP5 and LTRP6-rat-cobra were the most potent molecules in reducing PCSK9 mRNA levels, with reductions similar to those of the positive control editors CasX 515 and SpyCas9, with 6.154 being the most potent LTRP spacer (Tables 73 and 74).

藉由mRNA表現變化所量測,LTRP構築體LTRP6-大鼠-眼鏡蛇、LTRP6-大鼠-眼鏡蛇-連接子集合3及LTRP6-2×眼鏡蛇與gRNA 316.6.154 (V1)配對顯示出最高特異性(表75)。經padj截止值<0.05量測,LTRP6-大鼠-眼鏡蛇-連接子集合3及LTRP6-2×眼鏡蛇無顯著脫靶效應。The LTRP constructs LTRP6-rat-cobra, LTRP6-rat-cobra-linker set 3, and LTRP6-2×cobra paired with gRNA 316.6.154 (V1) showed the highest specificity as measured by changes in mRNA expression (Table 75). LTRP6-rat-cobra-linker set 3 and LTRP6-2×cobra had no significant off-target effects as measured by a padj cutoff value of <0.05.

此等實驗結果表明,遞送囊封LTRP mRNA及 PCSK9靶向gRNA的LNP將誘導初代人類肝細胞中內源性人類 PCSK9基因座處之抑制,由此引起分泌之PCSK9及mRNA水平實質上降低。 69 mRNA gRNA 序列 mRNA SEQ ID NO. gRNA 目標 SEQ ID NO. LTRP5 22829 316.6.1 (V1) PCSK9 22789 LTRP6-2x眼鏡蛇 22830 316.6.154 (V1) PCSK9 22790 LTRP6-大鼠-眼鏡蛇 22831 316.6.157 (V1) PCSK9 22788 LTRP6-大鼠-眼鏡蛇-連接子集合3 22832 316.6.141 (V1) PCSK9 22835 CasX 515 22833 316.27.94 (V1) NT 3330 SpyCas9 22834 Spy.50.1 (vInt) PCSK9 22791 70 測試之 mRNA:gRNA 構築體 gRNA CasX 515 316.6.1 (V1) LTRP5 316.6.141 (V1) LTRP5 316.6.154 (V1) LTRP5 316.6.157 (V1) LTRP5 316.6.154 (V1), 316.6.157 (V1) LTRP5 316.27.94 (V1) LTRP6-2x眼鏡蛇 316.6.141 (V1) LTRP6-2x眼鏡蛇 316.6.154 (V1) LTRP6-2x眼鏡蛇 316.6.157 (V1) LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) SpyCas9 Spy.50.1 (vInt) 71 藉由總運載物質量測定的由具有各種抑制子域之 LTRP 構築體介導的 PCSK9 分泌蛋白抑制水平   PHH 批次271 IC50 (ng/ 孔) IC90* (ng/ 孔) Emax* (Δ%) mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM CasX 515 316.6.1 (V1) 27.7 5 190.1 84.2 -94.6 4 LTRP5 316.6.154 (V1) 40 4 119.9 27.1 -98.8 3.1 SpyCas9 Spy.50.1 (vInt) 39.5 3.8 226.6 50.9 -99.1 2.8 LTRP5 316.6.154 (V1), 316.6.157 (V1) 42.6 4.6 114.5 26.5 -97.8 3.6 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 57.4 5.4 217.5 43.6 -98.9 2.7 LTRP5 316.6.141 (V1) 79.9 6.3 289.7 52.8 -97.2 2.5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 81.8 9.2 286.6 74.6 -96.3 3.8 LTRP5 316.6.157 (V1) 96 10 491.6 122.3 -100.8 4 LTRP6-2x眼鏡蛇 316.6.141 (V1) 115.8 21.4 494.7 215.8 -99.5 7 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 131.5 14.8 552.5 146.2 -100.8 4.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 133.3 22.8 624 252.8 -98.3 5.9 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 177.6 38 1216.6 635 -99 8.6 LTRP6-2x眼鏡蛇 316.6.157 (V1) 173.3 37.7 1054.8 558.8 -91.5 8.5 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 247 56.6 933.6 530.2 -92.7 9.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 253.4 66.9 1195.8 780.8 -69.2 8.4 mRNA gRNA PHH 批次31 CasX 515 316.6.1 (V1) 23.2 5.4 180 107.8 -93.2 5.2 LTRP5 316.6.154 (V1) 13.7 1.9 73.4 25.5 -97.4 3.4 SpyCas9 Spy.50.1 (vInt) 24.8 5.1 244.2 134.2 -100.1 5.7 LTRP5 316.6.154 (V1), 316.6.157 (V1) 29.1 2.3 80.1 15.6 -97.2 2.7 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 24.4 4.1 153.9 63.4 -100.7 4.6 LTRP5 316.6.141 (V1) 49.6 7.2 364.6 126.9 -100.6 4.1 LTRP6-2x眼鏡蛇 316.6.154 (V1) 72 16.6 327.5 171.8 -100.5 8 LTRP5 316.6.157 (V1) 58 8.1 222.9 66.9 -96.2 4.9 LTRP6-2x眼鏡蛇 316.6.141 (V1) 98.6 12.7 310 98 -98.8 5.8 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 89.4 9.3 284.2 71.6 -98.5 4.2 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 88.8 18.6 406.6 199.3 -96.2 7.1 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 101.3 18.1 634 271.4 -98.5 7 LTRP6-2x眼鏡蛇 316.6.157 (V1) 181.6 36.2 718.8 335.1 -92.5 9.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 158.9 29.9 527 218 -89.1 7.8 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 261.2 77.3 997.8 738.1 -72.3 12.7 72 藉由 mRNA 莫耳濃度測定的由具有各種抑制子域之 LTRP 構築體介導的 PCSK9 分泌蛋白抑制水平   PHH 批次271 IC50 (pM) IC90* (pM) Emax (Δ%) mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM LTRP5 316.6.154 (V1) 110.4 11.2 330.7 74.9 -98.8 3.1 LTRP5 316.6.154 (V1), 316.6.157 (V1) 117.6 12.6 315.8 73 -97.8 3.6 SpyCas9 Spy.50.1 (vInt) 128.1 12.5 734.7 165.1 -99.1 2.8 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 153.8 14.4 582.4 116.8 -98.9 2.7 CasX 515 316.6.1 (V1) 138.1 25.1 947 419.5 -94.6 4 LTRP5 316.6.141 (V1) 220.4 17.5 798.8 145.5 -97.2 2.5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 219 24.6 767.7 199.8 -96.3 3.8 LTRP5 316.6.157 (V1) 264.6 27.6 1355.5 337.3 -100.8 4 LTRP6-2x眼鏡蛇 316.6.141 (V1) 310 57.3 1325.1 578 -99.5 7 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 352.1 39.7 1479.3 391.5 -100.8 4.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 365.9 62.5 1713.1 694 -98.3 5.9 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 475.6 101.7 3257.6 1700.3 -99 8.6 LTRP6-2x眼鏡蛇 316.6.157 (V1) 464.2 101 2825 1496.7 -91.5 8.5 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 678.1 155.5 2563 1455.4 -92.7 9.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 695.8 183.7 3282.8 2143.6 -69.2 8.4 mRNA gRNA PHH 批次31 LTRP5 316.6.154 (V1) 37.9 5.2 202.4 70.3 -97.4 3.4 LTRP5 316.6.154 (V1), 316.6.157 (V1) 80.2 6.4 221 42.9 -97.2 2.7 SpyCas9 Spy.50.1 (vInt) 80.5 16.6 791.8 435.2 -100.1 5.7 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 65.2 11.1 412.2 169.7 -100.7 4.6 CasX 515 316.6.1 (V1) 115.5 27.1 896.6 537 -93.2 5.2 LTRP5 316.6.141 (V1) 136.8 19.9 1005.3 350 -100.6 4.1 LTRP6-2x眼鏡蛇 316.6.154 (V1) 192.7 44.4 877.1 460.3 -100.5 8 LTRP5 316.6.157 (V1) 160.1 22.3 614.7 184.5 -96.2 4.9 LTRP6-2x眼鏡蛇 316.6.141 (V1) 264 34 830.3 262.5 -98.8 5.8 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 239.3 24.9 761 191.6 -98.5 4.2 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 243.9 51.1 1116.2 547.1 -96.2 7.1 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 271.3 48.5 1697.7 726.8 -98.5 7 LTRP6-2x眼鏡蛇 316.6.157 (V1) 486.2 97 1925.3 897.6 -92.5 9.4 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 436.2 82.1 1446.8 598.5 -89.1 7.8 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 717.1 212.2 2739.2 2026.2 -72.3 12.7 73 藉由總運載物質量測定的由具有各種抑制子域之 LTRP 構築體介導的 PCSK9 mRNA 抑制水平   PHH 批次271 IC50 (ng/ 孔) IC90* (ng/ 孔) Emax* (Δ%) mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM CasX 515 316.6.1 (V1) 29.6 5.7 103.3 45.2 -60.1 2.7 SpyCas9 Spy.50.1 (vInt) 50.3 8.2 161.2 53.9 -59.8 2.6 LTRP5 316.6.154 (V1) 38.2 7.8 211.2 101 -96.7 5.5 LTRP5 316.6.154 (V1), 316.6.157 (V1) 45.7 4.5 143.1 30.4 -95.1 2.9 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 92.9 13.7 357.9 124.5 -94.9 4.3 LTRP5 316.6.157 (V1) 101.3 14.5 504.4 173.5 -94.7 5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 123.7 19.8 528.3 199.1 -91.9 5 LTRP5 316.6.141 (V1) 112.8 13.8 354.6 104.1 -88.9 3.7 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 153.1 22.4 755 264.3 -92.9 4.5 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 168.6 36 793.8 405.5 -83.3 6.4 LTRP6-2x眼鏡蛇 316.6.141 (V1) 159.7 47.4 695.8 486.5 -92.7 8.7 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 182.7 35.7 957 453.1 -80.3 5.8 LTRP6-2x眼鏡蛇 316.6.157 (V1) 189.8 42.8 817.3 439.1 -70.7 6.2 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 135.1 37.9 470.1 300.4 -41.1 4.3 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 233.2 67.6 1054.7 750.9 -73.1 8.1   PHH 批次31 mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM CasX 515 316.6.1 (V1) 42.7 10.6 149.3 80.3 -54.4 3.3 SpyCas9 Spy.50.1 (vInt) 37.5 28.2 293.3 539.3 -44.4 9.4 LTRP5 316.6.154 (V1) 53.8 10.9 202.5 87.7 -97 4.6 LTRP5 316.6.154 (V1), 316.6.157 (V1) 59.7 9.2 194.2 61.6 -96.5 3.9 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 39.9 5.7 387 139.8 -96.1 3.6 LTRP5 316.6.157 (V1) 115.9 10.6 438.4 93.9 -93.4 2.5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 106.8 16.8 327.2 125.7 -89.6 5.2 LTRP5 316.6.141 (V1) 122 30.2 701.4 417.1 -92.1 7.3 LTRP6-大鼠-眼鏡蛇 316.6.141 (V1) 115 13.2 407.9 110.7 -88.6 3.6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 129.6 22.2 461.3 182.3 -83.1 5.2 LTRP6-2x眼鏡蛇 316.6.141 (V1) 148.6 18.7 377.4 93.9 -89.7 4.1 LTRP6-大鼠-眼鏡蛇 316.6.157 (V1) 172.1 42.4 1053.3 631.5 -87.3 8 LTRP6-2x眼鏡蛇 316.6.157 (V1) 196.7 35.5 659.9 271.6 -77.4 6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.157 (V1) 254.2 69.8 728.3 523.5 -55.4 7.6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.141 (V1) 228 37 536.7 210 -73.7 5.4 74 藉由 mRNA 莫耳濃度測定的由具有各種抑制子域之 LTRP 構築體介導的 PCSK9 mRNA 抑制水平   PHH 批次271 IC50 (pM) IC90* (pM) Emax* (Δ%) mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM LTRP5 316.6.154 (V1) 105.3 21.4 582.3 278.4 -96.7 5.5 SpyCas9 Spy.50.1 (vInt) 163.2 26.6 522.5 174.8 -59.8 2.6 LTRP5 316.6.154 (V1), 316.6.157 (V1) 126 12.5 394.7 83.8 -95.1 2.9 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 248.7 36.7 958.4 333.5 -94.9 4.3 CasX 515 316.6.1 (V1) 147.5 28.6 514.9 225 -60.1 2.7 LTRP5 316.6.154 (V1) 279.3 40 1390.8 478.5 -94.7 5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 331.4 53 1415.1 533.1 -91.9 5 LTRP5 316.6.154 (V1) 311 38.1 977.8 286.9 -88.9 3.7 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 409.9 60 2021.7 707.6 -92.9 4.5 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 462.8 99 2179.2 1113.3 -83.3 6.4 LTRP6-2x眼鏡蛇 316.6.154 (V1) 427.7 126.9 1863.5 1303 -92.7 8.7 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 489.3 95.5 2562.4 1213.2 -80.3 5.8 LTRP6-2x眼鏡蛇 316.6.154 (V1) 508.4 114.6 2188.9 1175.9 -70.7 6.2 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 370.8 103.9 1290.5 824.5 -41.1 4.3 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 640.1 185.5 2895.5 2061.3 -73.1 8.1   PHH 批次31 mRNA gRNA 平均值 SEM 平均值 SEM 平均值 SEM LTRP5 316.6.154 (V1) 148.3 30.1 558.3 241.9 -97 4.6 SpyCas9 Spy.50.1 (vInt) 121.5 91.3 950.9 1748.5 -44.4 9.4 LTRP5 316.6.154 (V1), 316.6.157 (V1) 164.6 25.3 535.5 169.9 -96.5 3.9 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 106.8 15.2 1036.2 374.3 -96.1 3.6 CasX 515 316.6.1 (V1) 212.8 52.8 743.7 399.9 -54.4 3.3 LTRP5 316.6.154 (V1) 319.5 29.1 1208.7 259 -93.4 2.5 LTRP6-2x眼鏡蛇 316.6.154 (V1) 286.1 44.9 876.3 336.5 -89.6 5.2 LTRP5 316.6.154 (V1) 336.3 83.3 1934.1 1150.2 -92.1 7.3 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 307.8 35.5 1092.1 296.5 -88.6 3.6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 355.7 61 1266.3 500.4 -83.1 5.2 LTRP6-2x眼鏡蛇 316.6.154 (V1) 398 50 1010.9 251.4 -89.7 4.1 LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 460.9 113.4 2820.4 1690.8 -87.3 8 LTRP6-2x眼鏡蛇 316.6.154 (V1) 526.9 95.2 1767.5 727.6 -77.4 6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 697.9 191.7 1999.3 1437.2 -55.4 7.6 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 625.9 101.5 1473.4 576.4 -73.7 5.4 75 藉由 RNA-seq 測定之 基因表現變化 mRNA gRNA 劑量(ng*) 基因 log2( 倍數變化) P CasX 515 316.6.1 (V1) 2400 TUBB3 -1.05 5.90E-08 MARCO -2.67 8.61E-07 ESAM -1.04 1.07E-06 SUSD2 -1.14 3.07E-06 C1QB -1.67 2.87E-05 KIF23 -1.19 5.82E-05 SpyCas9 Spy.50.1 (vInt) 2400 PLD4 -1.36 4.14E-07 SLC7A7 -1.03 8.09E-07 TSPAN15 -1.28 1.54E-06 ANXA8 -1.28 3.39E-06 RAC2 -1.08 4.94E-06 CYP7A1 1.45 1.09E-05 LTRP5 316.6.154 (V1), 316.6.157 (V1) 2400 PLD4 -1.36 4.14E-07 SLC7A7 -1.03 8.09E-07 TSPAN15 -1.28 1.54E-06 ANXA8 -1.28 3.39E-06 RAC2 -1.08 4.94E-06 CYP7A1 1.45 1.09E-05 LTRP5 316.6.154 (V1) 2400 PCSK9 -3.87 1.93E-64 C1QB -2.92 1.78E-08 GPNMB -1.96 3.06E-08 CD163 -1.49 3.89E-07 ITGAX -2.02 5.74E-07 LAPTM5 -1.60 1.33E-06 RNASE1 -2.12 2.05E-06 MSR1 -2.30 2.10E-06 RGCC -2.20 2.88E-06 PLEK -2.46 1.88E-05 MIR6501 1.04 0.00011389 HCK -2.84 0.00013665 LTRP5 316.6.157 (V1) 2400 PCSK9 -2.97 9.32E-41 TM4SF19 -2.59 1.26E-06 UCP2 -2.07 3.00E-05 MIR6501 1.09 8.01E-05 LTRP5 316.27.94 (V1) 2400 NA NA NA LTRP6-大鼠-眼鏡蛇 316.6.154 (V1) 2400 PCSK9 -3.34 5.86E-47 DNMT3A 1.83 1.55E-08 G6PD 1.01 4.75E-05 SDS 1.47 0.00012577 LTRP6-大鼠-眼鏡蛇-連接子集合3 316.6.154 (V1) 2400 PCSK9 -1.45 3.00E-12 LTRP6-2x眼鏡蛇 316.6.154 (V1) 2400 PCSK9 -2.34 2.85E-27 *劑量係以ng經囊封RNA/孔報導 These experimental results indicate that delivery of LNPs encapsulating LTRP mRNA and PCSK9 targeting gRNA induces inhibition at the endogenous human PCSK9 locus in primary human hepatocytes, thereby causing a substantial decrease in secreted PCSK9 and mRNA levels. Table 69 : Sequences of mRNA and gRNA mRNA SEQ ID NO. gRNA Target SEQ ID NO. LTRP5 22829 316.6.1 (V1) PCSK9 22789 LTRP6-2x Cobra 22830 316.6.154 (V1) PCSK9 22790 LTRP6-rat-cobra 22831 316.6.157 (V1) PCSK9 22788 LTRP6-rat-cobra-linker set 3 22832 316.6.141 (V1) PCSK9 22835 CasX 515 22833 316.27.94 (V1) NT 3330 SpyCas9 22834 Spy.50.1 (vInt) PCSK9 22791 Table 70 : mRNA:gRNA pairs tested Structure gRNA CasX 515 316.6.1 (V1) LTRP5 316.6.141 (V1) LTRP5 316.6.154 (V1) LTRP5 316.6.157 (V1) LTRP5 316.6.154 (V1), 316.6.157 (V1) LTRP5 316.27.94 (V1) LTRP6-2x Cobra 316.6.141 (V1) LTRP6-2x Cobra 316.6.154 (V1) LTRP6-2x Cobra 316.6.157 (V1) LTRP6-rat-cobra 316.6.141 (V1) LTRP6-rat-cobra 316.6.154 (V1) LTRP6-rat-cobra 316.6.157 (V1) LTRP6-rat-cobra-linker set 3 316.6.141 (V1) LTRP6-rat-cobra-linker set 3 316.6.154 (V1) LTRP6-rat-cobra-linker set 3 316.6.157 (V1) SpyCas9 Spy.50.1 (vInt) Table 71 : Levels of PCSK9 secretion inhibition mediated by LTRP constructs with various inhibitory subdomains as measured by total cargo mass PHH Batch 271 IC50 (ng/ well) IC90* (ng/ well) Emax* (Δ%) mRNA gRNA average value SEM average value SEM average value SEM CasX 515 316.6.1 (V1) 27.7 5 190.1 84.2 -94.6 4 LTRP5 316.6.154 (V1) 40 4 119.9 27.1 -98.8 3.1 SpyCas9 Spy.50.1 (vInt) 39.5 3.8 226.6 50.9 -99.1 2.8 LTRP5 316.6.154 (V1), 316.6.157 (V1) 42.6 4.6 114.5 26.5 -97.8 3.6 LTRP6-rat-cobra 316.6.154 (V1) 57.4 5.4 217.5 43.6 -98.9 2.7 LTRP5 316.6.141 (V1) 79.9 6.3 289.7 52.8 -97.2 2.5 LTRP6-2x Cobra 316.6.154 (V1) 81.8 9.2 286.6 74.6 -96.3 3.8 LTRP5 316.6.157 (V1) 96 10 491.6 122.3 -100.8 4 LTRP6-2x Cobra 316.6.141 (V1) 115.8 21.4 494.7 215.8 -99.5 7 LTRP6-rat-cobra 316.6.141 (V1) 131.5 14.8 552.5 146.2 -100.8 4.4 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 133.3 22.8 624 252.8 -98.3 5.9 LTRP6-rat-cobra 316.6.157 (V1) 177.6 38 1216.6 635 -99 8.6 LTRP6-2x Cobra 316.6.157 (V1) 173.3 37.7 1054.8 558.8 -91.5 8.5 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 247 56.6 933.6 530.2 -92.7 9.4 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 253.4 66.9 1195.8 780.8 -69.2 8.4 mRNA gRNA PHH Batch 31 CasX 515 316.6.1 (V1) 23.2 5.4 180 107.8 -93.2 5.2 LTRP5 316.6.154 (V1) 13.7 1.9 73.4 25.5 -97.4 3.4 SpyCas9 Spy.50.1 (vInt) 24.8 5.1 244.2 134.2 -100.1 5.7 LTRP5 316.6.154 (V1), 316.6.157 (V1) 29.1 2.3 80.1 15.6 -97.2 2.7 LTRP6-rat-cobra 316.6.154 (V1) 24.4 4.1 153.9 63.4 -100.7 4.6 LTRP5 316.6.141 (V1) 49.6 7.2 364.6 126.9 -100.6 4.1 LTRP6-2x Cobra 316.6.154 (V1) 72 16.6 327.5 171.8 -100.5 8 LTRP5 316.6.157 (V1) 58 8.1 222.9 66.9 -96.2 4.9 LTRP6-2x Cobra 316.6.141 (V1) 98.6 12.7 310 98 -98.8 5.8 LTRP6-rat-cobra 316.6.141 (V1) 89.4 9.3 284.2 71.6 -98.5 4.2 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 88.8 18.6 406.6 199.3 -96.2 7.1 LTRP6-rat-cobra 316.6.157 (V1) 101.3 18.1 634 271.4 -98.5 7 LTRP6-2x Cobra 316.6.157 (V1) 181.6 36.2 718.8 335.1 -92.5 9.4 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 158.9 29.9 527 218 -89.1 7.8 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 261.2 77.3 997.8 738.1 -72.3 12.7 Table 72 : PCSK9 secretion protein inhibition levels mediated by LTRP constructs with various inhibitory subdomains as measured by mRNA molar concentrations PHH Batch 271 IC50 (pM) IC90* (pM) Emax (Δ%) mRNA gRNA average value SEM average value SEM average value SEM LTRP5 316.6.154 (V1) 110.4 11.2 330.7 74.9 -98.8 3.1 LTRP5 316.6.154 (V1), 316.6.157 (V1) 117.6 12.6 315.8 73 -97.8 3.6 SpyCas9 Spy.50.1 (vInt) 128.1 12.5 734.7 165.1 -99.1 2.8 LTRP6-rat-cobra 316.6.154 (V1) 153.8 14.4 582.4 116.8 -98.9 2.7 CasX 515 316.6.1 (V1) 138.1 25.1 947 419.5 -94.6 4 LTRP5 316.6.141 (V1) 220.4 17.5 798.8 145.5 -97.2 2.5 LTRP6-2x Cobra 316.6.154 (V1) 219 24.6 767.7 199.8 -96.3 3.8 LTRP5 316.6.157 (V1) 264.6 27.6 1355.5 337.3 -100.8 4 LTRP6-2x Cobra 316.6.141 (V1) 310 57.3 1325.1 578 -99.5 7 LTRP6-rat-cobra 316.6.141 (V1) 352.1 39.7 1479.3 391.5 -100.8 4.4 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 365.9 62.5 1713.1 694 -98.3 5.9 LTRP6-rat-cobra 316.6.157 (V1) 475.6 101.7 3257.6 1700.3 -99 8.6 LTRP6-2x Cobra 316.6.157 (V1) 464.2 101 2825 1496.7 -91.5 8.5 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 678.1 155.5 2563 1455.4 -92.7 9.4 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 695.8 183.7 3282.8 2143.6 -69.2 8.4 mRNA gRNA PHH Batch 31 LTRP5 316.6.154 (V1) 37.9 5.2 202.4 70.3 -97.4 3.4 LTRP5 316.6.154 (V1), 316.6.157 (V1) 80.2 6.4 221 42.9 -97.2 2.7 SpyCas9 Spy.50.1 (vInt) 80.5 16.6 791.8 435.2 -100.1 5.7 LTRP6-rat-cobra 316.6.154 (V1) 65.2 11.1 412.2 169.7 -100.7 4.6 CasX 515 316.6.1 (V1) 115.5 27.1 896.6 537 -93.2 5.2 LTRP5 316.6.141 (V1) 136.8 19.9 1005.3 350 -100.6 4.1 LTRP6-2x Cobra 316.6.154 (V1) 192.7 44.4 877.1 460.3 -100.5 8 LTRP5 316.6.157 (V1) 160.1 22.3 614.7 184.5 -96.2 4.9 LTRP6-2x Cobra 316.6.141 (V1) 264 34 830.3 262.5 -98.8 5.8 LTRP6-rat-cobra 316.6.141 (V1) 239.3 24.9 761 191.6 -98.5 4.2 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 243.9 51.1 1116.2 547.1 -96.2 7.1 LTRP6-rat-cobra 316.6.157 (V1) 271.3 48.5 1697.7 726.8 -98.5 7 LTRP6-2x Cobra 316.6.157 (V1) 486.2 97 1925.3 897.6 -92.5 9.4 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 436.2 82.1 1446.8 598.5 -89.1 7.8 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 717.1 212.2 2739.2 2026.2 -72.3 12.7 Table 73 : PCSK9 mRNA inhibition levels mediated by LTRP constructs with various inhibitory subdomains as measured by total cargo PHH Batch 271 IC50 (ng/ well) IC90* (ng/ well) Emax* (Δ%) mRNA gRNA average value SEM average value SEM average value SEM CasX 515 316.6.1 (V1) 29.6 5.7 103.3 45.2 -60.1 2.7 SpyCas9 Spy.50.1 (vInt) 50.3 8.2 161.2 53.9 -59.8 2.6 LTRP5 316.6.154 (V1) 38.2 7.8 211.2 101 -96.7 5.5 LTRP5 316.6.154 (V1), 316.6.157 (V1) 45.7 4.5 143.1 30.4 -95.1 2.9 LTRP6-rat-cobra 316.6.154 (V1) 92.9 13.7 357.9 124.5 -94.9 4.3 LTRP5 316.6.157 (V1) 101.3 14.5 504.4 173.5 -94.7 5 LTRP6-2x Cobra 316.6.154 (V1) 123.7 19.8 528.3 199.1 -91.9 5 LTRP5 316.6.141 (V1) 112.8 13.8 354.6 104.1 -88.9 3.7 LTRP6-rat-cobra 316.6.141 (V1) 153.1 22.4 755 264.3 -92.9 4.5 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 168.6 36 793.8 405.5 -83.3 6.4 LTRP6-2x Cobra 316.6.141 (V1) 159.7 47.4 695.8 486.5 -92.7 8.7 LTRP6-rat-cobra 316.6.157 (V1) 182.7 35.7 957 453.1 -80.3 5.8 LTRP6-2x Cobra 316.6.157 (V1) 189.8 42.8 817.3 439.1 -70.7 6.2 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 135.1 37.9 470.1 300.4 -41.1 4.3 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 233.2 67.6 1054.7 750.9 -73.1 8.1 PHH Batch 31 mRNA gRNA average value SEM average value SEM average value SEM CasX 515 316.6.1 (V1) 42.7 10.6 149.3 80.3 -54.4 3.3 SpyCas9 Spy.50.1 (vInt) 37.5 28.2 293.3 539.3 -44.4 9.4 LTRP5 316.6.154 (V1) 53.8 10.9 202.5 87.7 -97 4.6 LTRP5 316.6.154 (V1), 316.6.157 (V1) 59.7 9.2 194.2 61.6 -96.5 3.9 LTRP6-rat-cobra 316.6.154 (V1) 39.9 5.7 387 139.8 -96.1 3.6 LTRP5 316.6.157 (V1) 115.9 10.6 438.4 93.9 -93.4 2.5 LTRP6-2x Cobra 316.6.154 (V1) 106.8 16.8 327.2 125.7 -89.6 5.2 LTRP5 316.6.141 (V1) 122 30.2 701.4 417.1 -92.1 7.3 LTRP6-rat-cobra 316.6.141 (V1) 115 13.2 407.9 110.7 -88.6 3.6 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 129.6 22.2 461.3 182.3 -83.1 5.2 LTRP6-2x Cobra 316.6.141 (V1) 148.6 18.7 377.4 93.9 -89.7 4.1 LTRP6-rat-cobra 316.6.157 (V1) 172.1 42.4 1053.3 631.5 -87.3 8 LTRP6-2x Cobra 316.6.157 (V1) 196.7 35.5 659.9 271.6 -77.4 6 LTRP6-rat-cobra-linker set 3 316.6.157 (V1) 254.2 69.8 728.3 523.5 -55.4 7.6 LTRP6-rat-cobra-linker set 3 316.6.141 (V1) 228 37 536.7 210 -73.7 5.4 Table 74 : PCSK9 mRNA inhibition levels mediated by LTRP constructs with various inhibitory subdomains as measured by mRNA molar concentration PHH Batch 271 IC50 (pM) IC90* (pM) Emax* (Δ%) mRNA gRNA average value SEM average value SEM average value SEM LTRP5 316.6.154 (V1) 105.3 21.4 582.3 278.4 -96.7 5.5 SpyCas9 Spy.50.1 (vInt) 163.2 26.6 522.5 174.8 -59.8 2.6 LTRP5 316.6.154 (V1), 316.6.157 (V1) 126 12.5 394.7 83.8 -95.1 2.9 LTRP6-rat-cobra 316.6.154 (V1) 248.7 36.7 958.4 333.5 -94.9 4.3 CasX 515 316.6.1 (V1) 147.5 28.6 514.9 225 -60.1 2.7 LTRP5 316.6.154 (V1) 279.3 40 1390.8 478.5 -94.7 5 LTRP6-2x Cobra 316.6.154 (V1) 331.4 53 1415.1 533.1 -91.9 5 LTRP5 316.6.154 (V1) 311 38.1 977.8 286.9 -88.9 3.7 LTRP6-rat-cobra 316.6.154 (V1) 409.9 60 2021.7 707.6 -92.9 4.5 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 462.8 99 2179.2 1113.3 -83.3 6.4 LTRP6-2x Cobra 316.6.154 (V1) 427.7 126.9 1863.5 1303 -92.7 8.7 LTRP6-rat-cobra 316.6.154 (V1) 489.3 95.5 2562.4 1213.2 -80.3 5.8 LTRP6-2x Cobra 316.6.154 (V1) 508.4 114.6 2188.9 1175.9 -70.7 6.2 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 370.8 103.9 1290.5 824.5 -41.1 4.3 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 640.1 185.5 2895.5 2061.3 -73.1 8.1 PHH Batch 31 mRNA gRNA average value SEM average value SEM average value SEM LTRP5 316.6.154 (V1) 148.3 30.1 558.3 241.9 -97 4.6 SpyCas9 Spy.50.1 (vInt) 121.5 91.3 950.9 1748.5 -44.4 9.4 LTRP5 316.6.154 (V1), 316.6.157 (V1) 164.6 25.3 535.5 169.9 -96.5 3.9 LTRP6-rat-cobra 316.6.154 (V1) 106.8 15.2 1036.2 374.3 -96.1 3.6 CasX 515 316.6.1 (V1) 212.8 52.8 743.7 399.9 -54.4 3.3 LTRP5 316.6.154 (V1) 319.5 29.1 1208.7 259 -93.4 2.5 LTRP6-2x Cobra 316.6.154 (V1) 286.1 44.9 876.3 336.5 -89.6 5.2 LTRP5 316.6.154 (V1) 336.3 83.3 1934.1 1150.2 -92.1 7.3 LTRP6-rat-cobra 316.6.154 (V1) 307.8 35.5 1092.1 296.5 -88.6 3.6 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 355.7 61 1266.3 500.4 -83.1 5.2 LTRP6-2x Cobra 316.6.154 (V1) 398 50 1010.9 251.4 -89.7 4.1 LTRP6-rat-cobra 316.6.154 (V1) 460.9 113.4 2820.4 1690.8 -87.3 8 LTRP6-2x Cobra 316.6.154 (V1) 526.9 95.2 1767.5 727.6 -77.4 6 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 697.9 191.7 1999.3 1437.2 -55.4 7.6 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 625.9 101.5 1473.4 576.4 -73.7 5.4 Table 75 : Gene expression changes determined by RNA-seq mRNA gRNA Dose(ng*) Gene log2( fold change) P- value CasX 515 316.6.1 (V1) 2400 TUBB3 -1.05 5.90E-08 MARCO -2.67 8.61E-07 ESAM -1.04 1.07E-06 SUSD2 -1.14 3.07E-06 Q1Q -1.67 2.87E-05 KIF23 -1.19 5.82E-05 SpyCas9 Spy.50.1 (vInt) 2400 PLD4 -1.36 4.14E-07 SLC7A7 -1.03 8.09E-07 TSPAN15 -1.28 1.54E-06 ANXA8 -1.28 3.39E-06 RAC2 -1.08 4.94E-06 CYP7A1 1.45 1.09E-05 LTRP5 316.6.154 (V1), 316.6.157 (V1) 2400 PLD4 -1.36 4.14E-07 SLC7A7 -1.03 8.09E-07 TSPAN15 -1.28 1.54E-06 ANXA8 -1.28 3.39E-06 RAC2 -1.08 4.94E-06 CYP7A1 1.45 1.09E-05 LTRP5 316.6.154 (V1) 2400 PCSK9 -3.87 1.93E-64 Q1Q -2.92 1.78E-08 GPNMB -1.96 3.06E-08 CD163 -1.49 3.89E-07 ITGAX -2.02 5.74E-07 LAPTM5 -1.60 1.33E-06 RNASE1 -2.12 2.05E-06 MSR1 -2.30 2.10E-06 RGCC -2.20 2.88E-06 PLEK -2.46 1.88E-05 MIR6501 1.04 0.00011389 HCK -2.84 0.00013665 LTRP5 316.6.157 (V1) 2400 PCSK9 -2.97 9.32E-41 TM4SF19 -2.59 1.26E-06 UCP2 -2.07 3.00E-05 MIR6501 1.09 8.01E-05 LTRP5 316.27.94 (V1) 2400 NA NA NA LTRP6-rat-cobra 316.6.154 (V1) 2400 PCSK9 -3.34 5.86E-47 DNMT3A 1.83 1.55E-08 G6PD 1.01 4.75E-05 SDS 1.47 0.00012577 LTRP6-rat-cobra-linker set 3 316.6.154 (V1) 2400 PCSK9 -1.45 3.00E-12 LTRP6-2x Cobra 316.6.154 (V1) 2400 PCSK9 -2.34 2.85E-27 *Dose is reported as ng encapsulated RNA/well

將參看以下諸圖促進對本揭示之特徵及優點的理解:The following figures will be referenced to facilitate understanding of the features and advantages of the present disclosure:

圖1示出併入有DNMT3A ADD域之抑制子融合蛋白之各種組態的示意圖。「D3A ADD」、「D3A CD」及「D3L ID」分別表示DNMT3A之ADD域、DNMT3A之催化域及DNMT3L之相互作用域。L1至L3為連接子。NLS為核定位信號。Figure 1 shows schematic diagrams of various configurations of inhibitor fusion proteins incorporating the DNMT3A ADD domain. "D3A ADD", "D3A CD" and "D3L ID" represent the ADD domain of DNMT3A, the catalytic domain of DNMT3A and the interaction domain of DNMT3L, respectively. L1 to L3 are linkers. NLS is a nuclear localization signal.

圖2為條形圖,其顯示經mRNA脂質體轉染之Huh7細胞中轉染後6天、18天及36天時的分泌PCSK9水平的定量,該mRNA編碼與指定靶向gRNA配對之CasX 676、dXR1或LTRP5-ADD-ZIM3,如實例1中所描述。將分泌之PCSK9水平以總細胞計數標準化。初始(naïve)、未經處理之細胞用作實驗對照。Figure 2 is a bar graph showing quantification of secreted PCSK9 levels at 6, 18, and 36 days post-transfection in Huh7 cells transfected with mRNA liposomes encoding CasX 676, dXR1, or LTRP5-ADD-ZIM3 paired with the indicated targeting gRNAs, as described in Example 1. Secreted PCSK9 levels were normalized to total cell counts. Naïve, untreated cells were used as experimental controls.

圖3為條形圖,其顯示在經mRNA脂質體轉染之HepG2細胞中轉染後第4天時的標準化分泌之PCSK9水平的定量,該mRNA編碼與指定靶向gRNA配對的CasX 676、dXR1或LTRP5-ADD-ZIM3,如實例2中所描述。將分泌之PCSK9水平以總細胞計數標準化。初始的未經處理之細胞用作實驗對照。Figure 3 is a bar graph showing quantification of normalized secreted PCSK9 levels at day 4 post-transfection in HepG2 cells transfected with mRNA liposomes encoding CasX 676, dXR1 or LTRP5-ADD-ZIM3 paired with a specified targeting gRNA, as described in Example 2. Secreted PCSK9 levels were normalized to total cell counts. Initial untreated cells were used as experimental controls.

圖4為條形圖,其顯示在經mRNA脂質體轉染之Huh7細胞中轉染後4天時的標準化分泌之PCSK9水平的定量,該mRNA編碼與指定靶向gRNA配對的CasX 676、dXR1或LTRP5-ADD-ZIM3,如實例2中所描述。將分泌之PCSK9水平以總細胞計數標準化。初始的未經處理之細胞用作實驗對照。Figure 4 is a bar graph showing quantification of normalized secreted PCSK9 levels 4 days after transfection in Huh7 cells transfected with mRNA liposomes encoding CasX 676, dXR1 or LTRP5-ADD-ZIM3 paired with the specified targeting gRNA, as described in Example 2. Secreted PCSK9 levels were normalized to total cell counts. Initial untreated cells were used as experimental controls.

圖5為條形圖,其顯示在經mRNA脂質體轉染之Hep3B細胞中轉染後4天時的標準化分泌之PCSK9水平的定量,該mRNA編碼與指定靶向gRNA配對的CasX 676、dXR1或LTRP5-ADD-ZIM3,如實例2中所描述。將分泌之PCSK9水平以總細胞計數標準化。初始的未經處理之細胞用作實驗對照。Figure 5 is a bar graph showing quantification of normalized secreted PCSK9 levels 4 days after transfection in Hep3B cells transfected with mRNA liposomes encoding CasX 676, dXR1 or LTRP5-ADD-ZIM3 paired with the specified targeting gRNA, as described in Example 2. Secreted PCSK9 levels were normalized to total cell counts. Initial untreated cells were used as experimental controls.

圖6為條形圖,其顯示在經mRNA脂質體轉染之Huh7細胞中轉染後4天、14天及27天時的分泌之PCSK9水平的定量,該mRNA編碼與指定靶向gRNA配對的CasX 676、dXR1或LTRP5-ADD-ZIM3,如實例2中所描述。分泌之PCSK9水平之定量係相對於在第4天時間點時在初始的未經處理之細胞中所偵測到的分泌水平顯示。Figure 6 is a bar graph showing quantification of secreted PCSK9 levels at 4, 14 and 27 days post-transfection in Huh7 cells transfected with mRNA liposomes encoding CasX 676, dXR1 or LTRP5-ADD-ZIM3 paired with the indicated targeting gRNAs, as described in Example 2. Quantification of secreted PCSK9 levels is shown relative to the secretion levels detected in the initial, untreated cells at the 4 day time point.

圖7係如實例3中所描述之gRNA支架變異體174 (SEQ ID NO: 1744)之示意圖。結構模體經突出顯示。Figure 7 is a schematic diagram of gRNA scaffold variant 174 (SEQ ID NO: 1744) as described in Example 3. The structural motif is highlighted.

圖8為如實例3中所描述之gRNA支架變異體235 (SEQ ID NO: 1745)之示意圖。突出顯示的結構模體與圖7中相同。變異體174與變異體235之間的差異在於延伸莖模體及若干單核苷酸變化(用星號指示)。變異體316維持來自變異體174之較短延伸莖,但具有在支架235中發現的四個取代。FIG8 is a schematic diagram of gRNA scaffold variant 235 (SEQ ID NO: 1745) as described in Example 3. The highlighted structural motifs are the same as in FIG7. The differences between variant 174 and variant 235 are in the extension stem motif and several single nucleotide changes (indicated by asterisks). Variant 316 maintains the shorter extension stem from variant 174, but has four substitutions found in scaffold 235.

圖9為如實例3中所描述之gRNA支架變異體316 (SEQ ID NO: 1746)之示意圖。突出顯示的結構模體與圖7中相同。變異體316維持來自變異體174之較短延伸莖(圖7),但具有在支架235中發現的四個取代(圖8)。Figure 9 is a schematic diagram of gRNA scaffold variant 316 (SEQ ID NO: 1746) as described in Example 3. The highlighted structural motifs are the same as in Figure 7. Variant 316 maintains the shorter extended stem from variant 174 (Figure 7), but has four substitutions found in scaffold 235 (Figure 8).

圖10係示出如實例3中所描述對gRNA支架變異體235進行的化學修飾之型式1至3的示意圖。結構模體經突出顯示。標準核糖核苷酸描繪為空心圓,且2'OMe-修飾之核糖核苷酸描繪為黑色圓。硫代磷酸酯鍵在鍵下方或鍵旁邊用*指示。對於v2概況,在相關圓圈中用「U」標註三個3'尿嘧啶(3'UUU)的添加。FIG. 10 is a schematic diagram showing versions 1 to 3 of chemical modifications to gRNA scaffold variant 235 as described in Example 3. The structural motifs are highlighted. Standard ribonucleotides are depicted as open circles and 2'OMe-modified ribonucleotides are depicted as black circles. Phosphorothioate bonds are indicated with an * below or next to the bond. For the v2 profile, the addition of three 3' uracils (3'UUU) is indicated with a "U" in the associated circle.

圖11係示出如實例3中所描述對gRNA支架變異體235進行的化學修飾之型式4至6的示意圖。結構模體經突出顯示。標準核糖核苷酸描繪為空心圓,且2'OMe-修飾之核糖核苷酸描繪為黑色圓。硫代磷酸酯鍵在鍵下方或鍵旁邊用*指示。FIG. 11 is a schematic diagram showing versions 4 to 6 of chemical modifications of gRNA scaffold variant 235 as described in Example 3. The structural motif is highlighted. Standard ribonucleotides are depicted as open circles and 2'OMe-modified ribonucleotides are depicted as black circles. Phosphorothioate bonds are indicated with * below or next to the bond.

圖12係示出如實例3中所描述對gRNA支架變異體316進行的化學修飾之型式7至9的示意圖。結構模體經突出顯示。標準核糖核苷酸描繪為空心圓,且2'OMe-修飾之核糖核苷酸描繪為黑色圓。硫代磷酸酯鍵在鍵下方或鍵旁邊用*指示。FIG. 12 is a schematic diagram showing versions 7 to 9 of chemical modifications of gRNA scaffold variant 316 as described in Example 3. The structural motif is highlighted. Standard ribonucleotides are depicted as open circles and 2'OMe-modified ribonucleotides are depicted as black circles. Phosphorothioate bonds are indicated with * below or next to the bond.

圖13係示出如實例3中所描述對gRNA支架變異體316進行的化學修飾之型式1至3的示意圖。結構模體經突出顯示。標準核糖核苷酸描繪為空心圓,且2'OMe-修飾之核糖核苷酸描繪為黑色圓。硫代磷酸酯鍵在鍵下方或鍵旁邊用*指示。FIG. 13 is a schematic diagram showing patterns 1 to 3 of chemical modifications to gRNA scaffold variant 316 as described in Example 3. The structural motif is highlighted. Standard ribonucleotides are depicted as open circles and 2'OMe-modified ribonucleotides are depicted as black circles. Phosphorothioate bonds are indicated with * below or next to the bond.

圖14係示出如實例3中所描述對gRNA支架變異體316進行的化學修飾之型式4至6的示意圖。結構模體經突出顯示。標準核糖核苷酸描繪為空心圓,且2'OMe-修飾之核糖核苷酸描繪為黑色圓。硫代磷酸酯鍵在鍵下方或鍵旁邊用*指示。FIG. 14 is a schematic diagram showing versions 4 to 6 of chemical modifications of gRNA scaffold variant 316 as described in Example 3. The structural motif is highlighted. Standard ribonucleotides are depicted as open circles and 2'OMe-modified ribonucleotides are depicted as black circles. Phosphorothioate bonds are indicated with * below or next to the bond.

圖15為顯示在HepG2細胞中藉由次世代定序(NGS)所量測之 PCSK9基因座之插入/缺失率(描繪為編輯部分) (x軸)與藉由酶聯免疫吸附分析(ELISA)偵測之分泌的PCSK9水平(ng/mL) (y軸)之間的相關性的圖,該等HepG2細胞經CasX 491 mRNA及含有指定支架變異體及間隔子組合的 PCSK9靶向gRNA進行脂質體轉染,如實例3中所描述。 15 is a graph showing the correlation between the insertion/deletion rate (depicted as edited portions) of the PCSK9 locus measured by next generation sequencing (NGS) (x-axis) and the secreted PCSK9 levels (ng/mL) detected by enzyme-linked immunosorbent assay (ELISA) (y-axis) in HepG2 cells transfected with CasX 491 mRNA and PCSK9 -targeting gRNA containing the specified scaffold variants and spacer combinations by liposomes, as described in Example 3.

圖16係示出HepG2細胞中 B2M基因剔除百分比之定量的圖,該等HepG2細胞係經100 ng CasX 491 mRNA及指示劑量之具有間隔子7.37的末端經修飾(v1)或未經修飾(v0)的 B2M靶向gRNA共轉染,如實例3中所描述。關於因在 B2M基因座處成功編輯而損失HLA複合物之表面呈現的細胞群體,藉由流動式細胞測量術測定編輯水平。 16 is a graph showing quantification of the percentage of B2M gene knockout in HepG2 cells co-transfected with 100 ng of CasX 491 mRNA and indicated amounts of B2M targeting gRNAs with ends modified (v1) or unmodified (v0) with spacer 7.37, as described in Example 3. For cell populations that lost surface presentation of the HLA complex due to successful editing at the B2M locus, editing levels were determined by flow cytometry.

圖17係描繪編輯分析之結果的圖,該等編輯分析結果經量測為在經指定劑量之LNP處理之HepG2細胞中人類 B2M基因座處藉由NGS偵測之插入/缺失率,該等LNP係用CasX 491 mRNA及指定的 B2M靶向gRNA調配,如實例3中所描述。 17 is a graph depicting the results of editing analysis measured as insertion/deletion rates detected by NGS at the human B2M locus in HepG2 cells treated with specified doses of LNPs formulated with CasX 491 mRNA and specified B2M- targeting gRNAs as described in Example 3.

圖18係示出用指定劑量之LNP處理之HepG2細胞中B2M基因剔除百分比之定量的圖,該等LNP係用CasX 491 mRNA及指定的 B2M靶向gRNA調配,如實例3中所描述。關於因在 B2M基因座處成功編輯而不具有HLA複合物之表面呈現的細胞群體,藉由流動式細胞測量術編輯水平。 Figure 18 is a graph showing the quantification of the percentage of B2M gene knockout in HepG2 cells treated with the indicated doses of LNPs formulated with CasX491 mRNA and the indicated B2M targeting gRNAs as described in Example 3. Editing levels were measured by flow cytometry for cell populations that did not have surface presentation of HLA complexes due to successful editing at the B2M locus.

圖19係描繪編輯分析之結果的圖,該等編輯分析結果經量測為在經指定劑量之LNP處理之Hepa1-6細胞中在小鼠 ROSA26基因座處藉由NGS偵測之插入/缺失率,該等LNP係用CasX 676 mRNA #2及具有v1或v5修飾概況之指定的 ROSA26靶向gRNA調配,如實例3中所描述。 Figure 19 is a graph depicting the results of editing analysis measured as insertion/deletion rates detected by NGS at the mouse ROSA26 locus in Hepa1-6 cells treated with the specified doses of LNPs formulated with CasX676 mRNA #2 and the specified ROSA26- targeting gRNAs with v1 or v5 modification profiles, as described in Example 3.

圖20係示出經量測為在用LNP處理之小鼠中在 ROSA26基因座處藉由NGS偵測之插入/缺失率的編輯百分比之定量的圖,該等LNP係用CasX 676 mRNA #2及指定的經化學修飾之 ROSA26靶向gRNA調配,如實例3中所描述。 FIG. 20 is a graph showing the quantification of percent editing measured as the indel rate detected by NGS at the ROSA26 locus in mice treated with LNPs formulated with CasX 676 mRNA #2 and the indicated chemically modified ROSA26 targeting gRNAs as described in Example 3.

圖21係顯示編輯分析之結果的條形圖,該等編輯分析結果經量測為在經LNP處理之小鼠中在小鼠 PCSK9基因座處藉由NGS偵測之插入/缺失率,該等LNP係用CasX 676 mRNA #1及所指示的經化學修飾之 PCSK9靶向gRNA調配,如實例3中所描述。未經處理之小鼠用作實驗對照。 Figure 21 is a bar graph showing the results of an edit analysis measured as the insertion/deletion rate detected by NGS at the mouse PCSK9 locus in mice treated with LNPs formulated with CasX676 mRNA #1 and the indicated chemically modified PCSK9 targeting gRNAs as described in Example 3. Untreated mice were used as experimental controls.

圖22係引導RNA支架235 (SEQ ID NO: 1745)之二級結構之圖,其指出具有CpG模體之區域,如實例6中所描述。(1)假結莖、(2)支架莖、(3)延伸莖泡、(4)延伸步驟及(5)延伸莖環中之CpG模體係在結構上標記。Figure 22 is a diagram of the secondary structure of guide RNA scaffold 235 (SEQ ID NO: 1745), indicating regions with CpG motifs, as described in Example 6. CpG motifs in (1) pseudostem, (2) scaffold stem, (3) extension stem vesicle, (4) extension step, and (5) extension stem loop are marked on the structure.

圖23為引入至引導RNA支架之編碼序列中的五個區域中之各者中的CpG減少突變之圖,如實例6中所描述。FIG. 23 is a diagram of CpG reduction mutations introduced into each of the five regions in the coding sequence of the guide RNA scaffold, as described in Example 6.

圖24提供編輯實驗之結果,其中具有各種CpG減少或CpG耗竭之引導RNA支架之AAV載體用於編輯誘導神經元中之 B2M基因座,如實例6中所描述。AAV載體係以4e3之感染倍率(multiplicity of infection;MOI)投與。條形柱顯示每個樣本兩個複本之平均值±SD。「No Tx」指示未經轉導之對照,且「NT」指示具有非靶向間隔子之對照。 FIG. 24 provides the results of an editing experiment in which AAV vectors with various CpG-reduced or CpG-depleted guide RNA scaffolds were used to edit the B2M locus in induced neurons, as described in Example 6. AAV vectors were administered at a multiplicity of infection (MOI) of 4e3. Bars show the mean ± SD of two replicates per sample. "No Tx" indicates a control that was not transduced, and "NT" indicates a control with a non-targeting spacer.

圖25提供編輯實驗之結果,其中具有各種CpG減少或CpG耗竭之引導RNA支架之AAV載體用於編輯誘導神經元中之 B2M基因座,如實例6中所描述。AAV載體係以3e3之MOI投與。條形柱顯示每個樣本兩個複本之平均值±SD。「未處理」指示未轉導之對照。 Figure 25 provides the results of an editing experiment in which AAV vectors with various CpG-reduced or CpG-depleted guide RNA scaffolds were used to edit the B2M locus in induced neurons, as described in Example 6. The AAV vectors were administered at an MOI of 3e3. The bars show the mean ± SD of two replicates per sample. "Untreated" indicates a non-transduced control.

圖26提供編輯實驗之結果,其中具有各種CpG減少或CpG耗竭之引導RNA支架之AAV載體用於編輯誘導神經元中之 B2M基因座,如實例6中所描述。AAV載體係以1e3之MOI投與。條形柱顯示每個樣本兩個複本之平均值±SD。「未處理」指示未轉導之對照。 Figure 26 provides the results of an editing experiment in which AAV vectors with various CpG-reduced or CpG-depleted guide RNA scaffolds were used to edit the B2M locus in induced neurons, as described in Example 6. The AAV vectors were administered at an MOI of 1e3. The bars show the mean ± SD of two replicates per sample. "Untreated" indicates a non-transduced control.

圖27提供編輯實驗之結果,其中具有各種CpG減少或CpG耗竭之引導RNA支架之AAV載體用於編輯誘導神經元中之 B2M基因座,如實例6中所描述。AAV載體係以MOI=3e2之MOI投與。條形柱顯示每個樣本兩個複本之平均值±SD。「未處理」指示未轉導之對照。 Figure 27 provides the results of an editing experiment in which AAV vectors with various CpG-reduced or CpG-depleted guide RNA scaffolds were used to edit the B2M locus in induced neurons, as described in Example 6. The AAV vectors were administered at an MOI of MOI = 3e2. The bars show the mean ± SD of two replicates per sample. "Untreated" indicates a non-transduced control.

圖28示出長期抑制子蛋白(LTRP,在本文中亦稱為「抑制子融合蛋白」)融合蛋白之五種組態之示意圖,其中抑制子分子連接至催化失效之CasX。D3A及D3L分別表示DNA甲基轉移酶3α (DNMT3A)及DNMT3A樣蛋白(DNMT3L)。L1至L4為連接子。NLS為核定位信號。Figure 28 shows schematic diagrams of five configurations of long-term repressor protein (LTRP, also referred to herein as "repressor fusion protein") fusion proteins, in which the repressor molecule is linked to a catalytically inactive CasX. D3A and D3L represent DNA methyltransferase 3α (DNMT3A) and DNMT3A-like protein (DNMT3L), respectively. L1 to L4 are linkers. NLS is a nuclear localization signal.

圖29示出各種LTRP #5架構之示意圖,其中併入額外DNMT3A域,如實例7中所描述。額外DNMT3A域為DNMT3A之ADD域(「D3A ADD」)及DNMT3A之PWWP域(Pro-Trp-Trp-Pro模體)(「D3A PWWP」)。「D3A endo」編碼DNMT3A PWWP與ADD域之間出現之內源序列。「D3A CD」及「D3L ID」分別表示DNMT3A之催化域及DNMT3L之相互作用域。「L1至L3」為連接子。「NLS」為核定位信號。LTRP序列參見表13。Figure 29 shows schematics of various LTRP #5 architectures in which additional DNMT3A domains are incorporated, as described in Example 7. The additional DNMT3A domains are the ADD domain of DNMT3A ("D3A ADD") and the PWWP domain (Pro-Trp-Trp-Pro motif) of DNMT3A ("D3A PWWP"). "D3A endo" encodes the endogenous sequence that occurs between the DNMT3A PWWP and ADD domains. "D3A CD" and "D3L ID" represent the catalytic domain of DNMT3A and the interaction domain of DNMT3L, respectively. "L1 to L3" is a linker. "NLS" is a nuclear localization signal. See Table 13 for LTRP sequences.

圖30呈現時程實驗之結果,該時程實驗對指定LTRP-ZIM3及其具有使用間隔子7.37之 B2M靶向gRNA的變異體的B2M抑制活性(表示為HLA陰性細胞之百分比)進行比較,如實例7中所描述。資料呈現為具有標準偏差之平均值,N=3。CD=DNMT3A之催化域。 Figure 30 presents the results of a time course experiment comparing the B2M inhibitory activity (expressed as the percentage of HLA-negative cells) of the indicated LTRP-ZIM3 and its variants with B2M -targeting gRNA using spacer 7.37, as described in Example 7. Data are presented as means with standard deviations, N = 3. CD = catalytic domain of DNMT3A.

圖31呈現圖30中所示之相同時程實驗之結果,但顯示具有使用間隔子7.160之 B2M靶向gRNA的指定LTRP-ZIM3變異體的B2M抑制活性,如實例7中所描述。資料呈現為具有標準偏差之平均值,N=3。 Figure 31 presents the results of the same time course experiment shown in Figure 30, but showing the B2M inhibitory activity of the indicated LTRP-ZIM3 variants with B2M targeting gRNA using spacer 7.160, as described in Example 7. Data are presented as means with standard deviations, N=3.

圖32呈現圖30中所示之相同時程實驗之結果,但顯示具有使用間隔子7.165之 B2M靶向gRNA的指定LTRP-ZIM3變異體的B2M抑制活性,如實例7中所描述。資料呈現為具有標準偏差之平均值,N=3。 Figure 32 presents the results of the same time course experiment shown in Figure 30, but showing the B2M inhibitory activity of the indicated LTRP-ZIM3 variants with B2M targeting gRNA using spacer 7.165, as described in Example 7. Data are presented as means with standard deviations, N=3.

圖33呈現圖30中所示之相同時程實驗之結果,但顯示具有非靶向gRNA之指定LTRP-ZIM3變異體的B2M抑制活性,如實例7中所描述。資料呈現為具有標準偏差之平均值,N=3。Figure 33 presents the results of the same time course experiment shown in Figure 30, but showing the B2M inhibitory activity of the indicated LTRP-ZIM3 variants with non-targeting gRNA, as described in Example 7. Data are presented as means with standard deviations, N=3.

圖34為針對三個 B2M靶向gRNA及非靶向gRNA,各指定LTRP-ZIM3變異體之 VEGFA基因座之轉錄起始位點下游的CpG位點之CpG甲基化百分比的小提琴圖,如實例7中所描述。 FIG. 34 is a violin plot of the CpG methylation percentage of the CpG sites downstream of the transcription start site of the VEGFA locus of each designated LTRP-ZIM3 variant for three B2M- targeting gRNAs and non-targeting gRNAs, as described in Example 7.

圖35係散佈圖,其顯示指定LTRP5-ZIM3變異體的相對活性(對於間隔子7.160,第21天之HLA陰性細胞之平均百分比)與特異性(對於間隔子7.160,第7天定量的 VEGFA基因座處之脫靶CpG甲基化百分比),如實例7中所描述。 Figure 35 is a scatter plot showing the relative activity (average percentage of HLA-negative cells on day 21 for spacer 7.160) and specificity (percent off-target CpG methylation at the VEGFA locus quantified on day 7 for spacer 7.160) of the indicated LTRP5-ZIM3 variants, as described in Example 7.

圖36示出實例8中所測試之LTRP組態#1、#4及#5的具有ADD域之LTRP分子之一般架構的示意圖。「D3A ADD」、「D3A CD」及「D3L ID」分別表示DNMT3A之ADD域、DNMT3A之催化域及DNMT3L之相互作用域,如實例8中所描述。「L1至L4」為連接子。「NLS」為核定位信號。LTRP序列參見表11。FIG36 is a schematic diagram showing the general architecture of LTRP molecules with ADD domains for LTRP configurations #1, #4, and #5 tested in Example 8. "D3A ADD", "D3A CD", and "D3L ID" represent the ADD domain of DNMT3A, the catalytic domain of DNMT3A, and the interaction domain of DNMT3L, respectively, as described in Example 8. "L1 to L4" is a linker. "NLS" is a nuclear localization signal. See Table 11 for LTRP sequences.

圖37呈現時程實驗之結果,該時程實驗對與具有間隔子7.160之 B2M靶向gRNA配對、具有ZIM3-KRAB域、具有組態#1、#4或#5、具有或沒有DNMT3A ADD域的LTRP之B2M抑制活性(表示為HLA陰性細胞之百分比)進行比較,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 37 presents the results of a time course experiment comparing the B2M inhibitory activity (expressed as the percentage of HLA-negative cells) of LTRPs with ZIM3-KRAB domain, with configuration #1, #4 or #5, with or without DNMT3A ADD domain, paired with B2M targeting gRNA with spacer 7.160, as described in Example 8. Data are presented as means with standard deviations, N = 3. "NT" is a gRNA with a non-targeting spacer.

圖38係圖表,其顯示圖37中所示之相同時程實驗之結果,但示出具有ZNF10或ZIM3-KRAB域、具有或沒有DNMT3A ADD域、與具有間隔子7.160之 B2M靶向gRNA配對的LTRP #5的B2M抑制活性,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 38 is a graph showing the results of the same time course experiments shown in Figure 37, but showing the B2M inhibitory activity of LTRP #5 with ZNF10 or ZIM3-KRAB domains, with or without DNMT3A ADD domain, paired with B2M targeting gRNA with spacer 7.160, as described in Example 8. Data are presented as means with standard deviations, N = 3. "NT" is gRNA with a non-targeting spacer.

圖39係圖表,其顯示圖37中所示之相同時程實驗之結果,但示出具有或沒有DNMT3A ADD域、與具有指定間隔子之 B2M靶向gRNA配對的LTRP5-ZIM3之B2M抑制活性,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 39 is a graph showing the results of the same time course experiment shown in Figure 37, but showing the B2M inhibitory activity of LTRP5-ZIM3 with or without the DNMT3A ADD domain, paired with a B2M targeting gRNA with the specified spacer, as described in Example 8. Data are presented as means with standard deviations, N = 3. "NT" is a gRNA with a non-targeting spacer.

圖40係圖表,其示出針對指定gRNA的LTRP在轉染後第27天的B2M抑制活性結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#1、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。Figure 40 is a graph showing the results of B2M inhibitory activity at day 27 post-transfection for LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #1, with or without DNMT3A ADD domains for the indicated gRNAs, as described in Example 8. Data are presented as means with standard deviations, N = 3. "NT" is a gRNA with a non-targeting spacer.

圖41係圖表,其示出針對指定gRNA,LTRP在轉染後第27天的B2M抑制活性結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#4、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。Figure 41 is a graph showing the results of B2M inhibitory activity of LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #4, with or without DNMT3A ADD domain at day 27 post-transfection for the indicated gRNAs, as described in Example 8. Data are presented as mean with standard deviation, N = 3. "NT" is a gRNA with a non-targeting spacer.

圖42係圖表,其示出針對指定gRNA, LTRP在轉染後第27天的B2M抑制活性結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#5、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為具有標準偏差之平均值,N=3。「NT」為具有非靶向間隔子之gRNA。Figure 42 is a graph showing the results of B2M inhibitory activity of LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #5, with or without DNMT3A ADD domain at day 27 post-transfection for the indicated gRNAs, as described in Example 8. Data are presented as mean with standard deviation, N = 3. "NT" is a gRNA with a non-targeting spacer.

圖43係圖表,其示出針對指定gRNA,LTRP在轉染後第5天用於確定 VEGFA基因座處之脫靶甲基化的亞硫酸氫鹽定序之結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#1、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為 VEGFA基因座附近之CpG部位之CpG甲基化的平均百分比;亦呈現平均值標準誤差;N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 43 is a graph showing the results of bisulfite sequencing of LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #1, with or without DNMT3A ADD domain, for the indicated gRNAs at day 5 post-transfection to determine off-target methylation at the VEGFA locus, as described in Example 8. Data are presented as the average percentage of CpG methylation at CpG sites near the VEGFA locus; standard error of the mean is also presented; N = 3. "NT" is a gRNA with a non-targeting spacer.

圖44係圖表,其示出針對指定gRNA,LTRP在轉染後第5天用於確定 VEGFA基因座處之脫靶甲基化的亞硫酸氫鹽定序之結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#4、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為 VEGFA基因座附近之CpG部位之CpG甲基化的平均百分比;亦呈現平均值標準誤差;N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 44 is a graph showing the results of bisulfite sequencing of LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #4, with or without DNMT3A ADD domain, for the indicated gRNAs at day 5 post-transfection to determine off-target methylation at the VEGFA locus, as described in Example 8. Data are presented as the average percentage of CpG methylation at CpG sites near the VEGFA locus; standard error of the mean is also presented; N = 3. "NT" is a gRNA with a non-targeting spacer.

圖45係圖表,其示出針對指定gRNA,LTRP在轉染後第5天用於確定 VEGFA基因座處之脫靶甲基化的亞硫酸氫鹽定序之結果,該等LTRP具有ZNF10或ZIM3-KRAB域、具有組態#5、具有或沒有DNMT3A ADD域,如實例8中所描述。資料呈現為 VEGFA基因座附近之CpG部位之CpG甲基化的平均百分比;亦呈現平均值標準誤差;N=3。「NT」為具有非靶向間隔子之gRNA。 Figure 45 is a graph showing the results of bisulfite sequencing of LTRPs with ZNF10 or ZIM3-KRAB domains, with configuration #5, with or without DNMT3A ADD domain, for the indicated gRNAs at day 5 post-transfection to determine off-target methylation at the VEGFA locus, as described in Example 8. Data are presented as the average percentage of CpG methylation at CpG sites near the VEGFA locus; standard error of the mean is also presented; N = 3. "NT" is a gRNA with a non-targeting spacer.

圖46為點圖,其顯示針對具有間隔子7.160之 B2M靶向gRNA,具有ZIM3-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 46 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZIM3-KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.160, as described in Example 8.

圖47為點圖,其顯示針對具有間隔子7.160之 B2M靶向gRNA,具有ZNF10-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 47 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZNF10- KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.160, as described in Example 8.

圖48為點圖,其顯示針對具有間隔子7.37之 B2M靶向gRNA,具有ZIM3-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 48 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZIM3-KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.37, as described in Example 8.

圖49為點圖,其顯示針對具有間隔子7.37之 B2M靶向gRNA,具有ZNF10-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 49 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZNF10- KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.37, as described in Example 8.

圖50為點圖,其顯示針對具有間隔子7.165之 B2M靶向gRNA,具有ZIM3-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 50 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZIM3-KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.165, as described in Example 8.

圖51為點圖,其顯示針對具有間隔子7.165之 B2M靶向gRNA,具有ZNF10-KRAB域、具有組態#1、#4及#5之LTRP分子的相對活性(第27天之HLA陰性細胞之平均百分比)與特異性(第5天定量的 VEGFA基因座處之脫靶CpG甲基化之百分比),如實例8中所描述。 Figure 51 is a dot plot showing the relative activity (average percentage of HLA-negative cells on day 27) and specificity (percentage of off-target CpG methylation at the VEGFA locus quantified on day 5) of LTRP molecules with ZNF10- KRAB domain, configurations #1, #4 and #5 for B2M targeting gRNA with spacer 7.165, as described in Example 8.

圖52係圖表,其示出經編碼指定CasX或LTRP:gRNA構築體之質體轉染、在用不同濃度之DNMT1抑制劑5-azadC處理後六天表現B2M的HEK293T細胞之百分比,如實例9中所描述。52 is a graph showing the percentage of HEK293T cells transfected with plasmids encoding the indicated CasX or LTRP:gRNA constructs expressing B2M six days after treatment with different concentrations of the DNMT1 inhibitor 5-azadC, as described in Example 9.

圖53係圖表,其並列示出經編碼指定CasX或LTRP:gRNA構築體之質體轉染且培養58天的HEK293T細胞之B2M抑制的定量,以及在用5-azadC處理經轉染細胞之後的B2M再活化之定量,如實例9中所描述。53 is a graph juxtaposing quantification of B2M inhibition in HEK293T cells transfected with plasmids encoding the indicated CasX or LTRP:gRNA constructs and cultured for 58 days, and quantification of B2M reactivation following treatment of the transfected cells with 5-azadC, as described in Example 9.

圖54示出如實例11中所描述的不含DNMT3A之ADD域之LTRP5分子的示意圖。「D3A CD」及「D3L ID」分別表示DNMT3A之催化域及DNMT3L之相互作用域。「L1」、「L2」、「L3A」及「L3B」係連接子。「NLS」為核定位信號。「RD1」表示抑制子域。Figure 54 shows a schematic diagram of an LTRP5 molecule without the ADD domain of DNMT3A as described in Example 11. "D3A CD" and "D3L ID" represent the catalytic domain of DNMT3A and the interaction domain of DNMT3L, respectively. "L1", "L2", "L3A" and "L3B" are linkers. "NLS" is a nuclear localization signal. "RD1" represents the inhibitory subdomain.

圖55係示出時程實驗之結果之條形圖,該時程實驗對經含有連接子集1-11之LTRP5變異體質體轉染的HEK293T細胞中B2M抑制水平(表示為HLA陰性細胞之平均百分比)進行比較,如實例13中所描述。將各時間點(第8天、第15天及第45天)之資料疊加且以平均值加標準偏差呈現,N=3。包括非靶向間隔子(NT)作為實驗對照。Figure 55 is a bar graph showing the results of a time course experiment comparing the level of B2M inhibition (expressed as the average percentage of HLA-negative cells) in HEK293T cells transfected with LTRP5 variant plasmids containing linker subsets 1-11, as described in Example 13. Data for each time point (Day 8, Day 15, and Day 45) are superimposed and presented as mean plus standard deviation, N = 3. A non-targeting spacer (NT) was included as an experimental control.

圖56係示出時程實驗之結果之條形圖,該時程實驗對在HEK293T中量測的含有連接子集合1-11之LTRP5變異體的目標1抑制之水平(表示為含目標1減弱之總細胞的百分比)進行比較,如實例13中所描述。將各時間點(第8天、第15天及第45天)之資料疊加且以平均值加標準偏差呈現,N=3。Figure 56 is a bar graph showing the results of a time course experiment comparing the levels of Target 1 inhibition (expressed as the percentage of total cells with Target 1 attenuation) of LTRP5 variants containing linker set 1-11 measured in HEK293T, as described in Example 13. Data for each time point (Day 8, Day 15, and Day 45) are overlaid and presented as mean plus standard deviation, N=3.

圖57係示出時程實驗之結果之條形圖,該時程實驗對HEK293T中量測的含有連接子集合1-11之LTRP5變異體的目標2抑制之水平(表示為含目標2減弱之總細胞的百分比)進行比較,如實例13中所描述。將各時間點(第8天、第15天及第45天)之資料疊加且以平均值加標準偏差呈現,N=3。包括非靶向間隔子(NT)作為實驗對照。Figure 57 is a bar graph showing the results of a time course experiment comparing the levels of Target 2 inhibition (expressed as a percentage of total cells with Target 2 attenuation) of LTRP5 variants containing linker set 1-11 measured in HEK293T, as described in Example 13. Data for each time point (Day 8, Day 15, and Day 45) are superimposed and presented as mean plus standard deviation, N = 3. A non-targeting spacer (NT) was included as an experimental control.

圖58係示出時程實驗之結果之條形圖,該時程實驗對經含有連接子集12-28之LTRP5變異體質體轉染的HEK293T細胞中B2M抑制水平(表示為HLA陰性細胞之平均百分比)進行比較,如實例13中所描述。將各時間點(第7天及第17天)之資料疊加且以平均值加標準偏差呈現,N=3。包括非靶向間隔子(NT)作為實驗對照。包括非靶向間隔子(NT)作為實驗對照。Figure 58 is a bar graph showing the results of a time course experiment comparing the levels of B2M inhibition (expressed as the average percentage of HLA-negative cells) in HEK293T cells transfected with LTRP5 variant plasmids containing linker subsets 12-28, as described in Example 13. Data for each time point (day 7 and day 17) are superimposed and presented as mean plus standard deviation, N = 3. A non-targeting spacer (NT) was included as an experimental control. A non-targeting spacer (NT) was included as an experimental control.

圖59係示出時程實驗之結果之條形圖,該時程實驗對HEK293T中量測的含有連接子集12-28之LTRP5變異體的目標1抑制之水平(表示為含目標1減弱之總細胞的百分比)進行比較,如實例13中所描述。將各時間點(第7天及第17天)之資料疊加且以平均值加標準偏差呈現,N=3。包括非靶向間隔子(NT)作為實驗對照。Figure 59 is a bar graph showing the results of a time course experiment comparing the levels of Target 1 inhibition (expressed as a percentage of total cells with Target 1 attenuation) of LTRP5 variants containing linker subsets 12-28 measured in HEK293T, as described in Example 13. Data for each time point (day 7 and day 17) are superimposed and presented as mean plus standard deviation, N = 3. A non-targeting spacer (NT) was included as an experimental control.

圖60係示出時程實驗之結果之條形圖,該時程實驗對HEK293T中量測的含有連接子集12-28之LTRP5變異體的目標2抑制之水平(表示為含目標2減弱之總細胞的百分比)進行比較,如實例13中所描述。將各時間點(第7天及第17天)之資料疊加且以平均值加標準偏差呈現,N=3。包括非靶向間隔子(NT)作為實驗對照。Figure 60 is a bar graph showing the results of a time course experiment comparing the levels of Target2 inhibition (expressed as a percentage of total cells with Target2 attenuation) of LTRP5 variants containing linker subsets 12-28 measured in HEK293T, as described in Example 13. Data for each time point (day 7 and day 17) are superimposed and presented as mean plus standard deviation, N = 3. A non-targeting spacer (NT) was included as an experimental control.

圖61示出具有DNMT3A ADD域之LTRP分子之各種組態的示意圖。「D3A ADD」、「D3A CD」及「D3L ID」分別表示DNMT3A之ADD域、DNMT3A之催化域及DNMT3L之相互作用域。「L1」、「L2」、「L3A」、「L3B」及「L4」係連接子。」 「NLS」為核定位信號。「RD1」表示抑制子域,且「RD1a」及「RD1b」表示抑制子域變異體。Figure 61 shows schematic diagrams of various configurations of LTRP molecules with DNMT3A ADD domains. "D3A ADD", "D3A CD" and "D3L ID" represent the ADD domain of DNMT3A, the catalytic domain of DNMT3A and the interaction domain of DNMT3L, respectively. "L1", "L2", "L3A", "L3B" and "L4" are linkers. "NLS" is a nuclear localization signal. "RD1" represents an inhibitory subdomain, and "RD1a" and "RD1b" represent inhibitory subdomain variants.

圖62係小提琴圖,其中每個點表示在個別CpG處之平均甲基化%。中值甲基化係由虛線指示,其中上四分位數及下四分位數以點線指示。轉錄起始位點(TSS)附近之DNA甲基化係自處理後第7天、第14天及第42天處死之N=3隻小鼠的肝提取之經均質化gDNA,藉由擴增子酶法甲基化定序(EM-seq)量測,如實例14中所描述。Figure 62 is a violin plot where each point represents the average methylation% at an individual CpG. The median methylation is indicated by a dashed line, with the upper and lower quartiles indicated by dotted lines. DNA methylation near the transcription start site (TSS) was measured by amplicon enzymatic methylation sequencing (EM-seq) from homogenized gDNA extracted from the liver of N=3 mice sacrificed on days 7, 14, and 42 after treatment, as described in Example 14.

圖63係小提琴圖,其中每個點表示在個別CpG處之平均甲基化%。中值甲基化係由虛線指示,其中上四分位數及下四分位數以點線指示。轉錄起始位點(TSS)附近之DNA甲基化係自處理後第7天處死之N=3隻小鼠的肝提取之經均質化gDNA,藉由擴增子酶法甲基化定序(EM-seq)量測,如實例14中所描述。Figure 63 is a violin plot where each point represents the average methylation% at an individual CpG. The median methylation is indicated by a dashed line, with the upper and lower quartiles indicated by dotted lines. DNA methylation near the transcription start site (TSS) was measured by amplicon enzymatic methylation sequencing (EM-seq) from homogenized gDNA extracted from the liver of N=3 mice sacrificed on day 7 post-treatment, as described in Example 14.

TW202444906A_113111756_SEQL.xmlTW202444906A_113111756_SEQL.xml

Claims (164)

一種用於轉錄抑制前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型(proprotein convertase subtilisin/kexin Type 9; PCSK9)基因之系統,該系統包含: (a)引導核糖核酸(gRNA),其包含與 PCSK9基因目標核酸序列互補之靶向序列,及 (b)編碼長期抑制子融合蛋白(LTRP)之mRNA,其中該LTRP包含: a.   催化失效(catalytically-dead) CasX (dCasX); b.  DNA甲基轉移酶(DNMT) 3A催化域(DNMT3A); c.   DNMT3樣相互作用域(DNMT3L);及 d.  第一抑制子域(RD1), 其中該LTRP能夠與該gRNA形成核糖核蛋白(RNP)。 A system for transcriptionally inhibiting the proprotein convertase subtilisin/kexin Type 9 ( PCSK9 ) gene, the system comprising: (a) a guide RNA (gRNA) comprising a targeting sequence complementary to the PCSK9 gene target nucleic acid sequence, and (b) an mRNA encoding a long-term suppressor fusion protein (LTRP), wherein the LTRP comprises: a. catalytically-dead CasX (dCasX); b. DNA methyltransferase (DNMT) 3A catalytic domain (DNMT3A); c. DNMT3-like interaction domain (DNMT3L); and d. a first suppressor domain (RD1), wherein the LTRP is capable of forming a ribonucleoprotein (RNP) with the gRNA. 如請求項1之系統,其中該LTRP自N端至C端包含: a.   該DNMT3A; b.  該DNMT3L; c.   該dCasX;及 d.  該RD1。 The system of claim 1, wherein the LTRP comprises from the N-terminus to the C-terminus: a.   The DNMT3A; b.   The DNMT3L; c.   The dCasX; and d.   The RD1. 如請求項1之系統,其中該LTRP自N端至C端包含: a.   該DNMT3A; b. 該DNMT3L; c.   該RD1;及 d.  該dCasX。 The system of claim 1, wherein the LTRP comprises from the N-terminus to the C-terminus: a.   The DNMT3A; b. The DNMT3L; c.   The RD1; and d.   The dCasX. 如請求項3之系統,其中該LTRP進一步包含另一RD1位於該dCasX之C端。 A system as claimed in claim 3, wherein the LTRP further comprises another RD1 located at the C-terminus of the dCasX. 如請求項4之系統,其中該等RD1序列係相同的。 A system as claimed in claim 4, wherein the RD1 sequences are identical. 如請求項4之系統,其中該等RD1序列係不同的。 A system as claimed in claim 4, wherein the RD1 sequences are different. 如請求項1至6中任一項之系統,其中該LTRP包含連接至該DNMT3A之N端的DNA DNMT3A ATRX-DNMT3-DNMT3L域(ADD)。 A system as claimed in any one of claims 1 to 6, wherein the LTRP comprises a DNA DNMT3A ATRX-DNMT3-DNMT3L domain (ADD) linked to the N-terminus of the DNMT3A. 如請求項1至7中任一項之系統,其中該LTRP包含一或多個連接子肽。 A system as claimed in any one of claims 1 to 7, wherein the LTRP comprises one or more linker peptides. 如請求項8之系統,其中該一或多個連接子肽中之至少一者包含獨立地選自由SEQ ID NO: 98至124及3278至3289組成之群的序列。 The system of claim 8, wherein at least one of the one or more linker peptides comprises a sequence independently selected from the group consisting of SEQ ID NOs: 98 to 124 and 3278 to 3289. 如請求項1至9中任一項之系統,其中該LTRP包含一或多個核定位信號(NLS)。 A system as claimed in any one of claims 1 to 9, wherein the LTRP comprises one or more nuclear localization signals (NLS). 如請求項10之系統,其中該一或多個NLS中之至少一者包含選自由SEQ ID NO: 30至97組成之群的序列。 The system of claim 10, wherein at least one of the one or more NLSs comprises a sequence selected from the group consisting of SEQ ID NOs: 30 to 97. 如請求項10或請求項11之系統,其中該一或多個NLS中之至少一者為猿猴病毒40 (SV40) NLS。 A system as claimed in claim 10 or claim 11, wherein at least one of the one or more NLSs is a Simian Virus 40 (SV40) NLS. 如請求項12之系統,其中該SV40 NLS包含SEQ ID NO: 30之序列。 The system of claim 12, wherein the SV40 NLS comprises the sequence of SEQ ID NO: 30. 如請求項10或請求項11之系統,其中該一或多個NLS中之至少一者為c-MYC NLS。 A system as claimed in claim 10 or claim 11, wherein at least one of the one or more NLSs is a c-MYC NLS. 如請求項14之系統,其中該c-MYC NLS包含SEQ ID NO: 32之序列。 The system of claim 14, wherein the c-MYC NLS comprises the sequence of SEQ ID NO: 32. 如請求項1至2或8至15中任一項之系統,其中該LTRP自N端至C端包含: a.   第一NLS; b.  該DNMT3A; c.   第一連接子肽; d.  該DNMT3L; e.   第二連接子肽; f.   第三連接子肽; g.  該dCasX; h.  第四連接子肽; i.   該RD1,及 j.   第二NLS。 A system as claimed in any one of claims 1 to 2 or 8 to 15, wherein the LTRP comprises from N-terminus to C-terminus: a.   The first NLS; b.   The DNMT3A; c.   The first linker peptide; d.   The DNMT3L; e.   The second linker peptide; f.   The third linker peptide; g.   The dCasX; h.   The fourth linker peptide; i.   The RD1, and j.   The second NLS. 如請求項16之系統,其中該LTRP包含選自由SEQ ID NO: 22836及SEQ ID NO: 22838至22846組成之群的序列。 The system of claim 16, wherein the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 22836 and SEQ ID NO: 22838 to 22846. 如請求項7至15中任一項之系統,其中該LTRP自N端至C端包含: a.   第一NLS; b.  該ADD; c.   該DNMT3A; d.  第一連接子肽; e.   該DNMT3L; f.   第二連接子肽; g.  第三連接子肽; h.  該dCasX; i.   第四連接子肽; j.   該RD1,及 k.  第二NLS。 A system as claimed in any one of claims 7 to 15, wherein the LTRP comprises from N-terminus to C-terminus: a.   The first NLS; b.   The ADD; c.   The DNMT3A; d.   The first linker peptide; e.   The DNMT3L; f.   The second linker peptide; g.   The third linker peptide; h.   The dCasX; i.   The fourth linker peptide; j.   The RD1, and k.   The second NLS. 如請求項18之系統,其中該LTRP包含選自由SEQ ID NO: 22837及SEQ ID NO: 22847至22855組成之群的序列。 The system of claim 18, wherein the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 22837 and SEQ ID NO: 22847 to 22855. 如請求項1、3或8至15中任一項之系統,其中該LTRP自N端至C端包含: a.   第一NLS; b.  該DNMT3A; c.   第一連接子肽; d.  該DNMT3L; e.   第三連接子肽; f.   該RD1; g.  第二連接子肽; h.  該dCasX; i.   第四連接子肽,及 j.   第二NLS。 A system as claimed in any one of claims 1, 3 or 8 to 15, wherein the LTRP comprises from N-terminus to C-terminus: a.   The first NLS; b.   The DNMT3A; c.   The first linker peptide; d.   The DNMT3L; e.   The third linker peptide; f.   The RD1; g.   The second linker peptide; h.   The dCasX; i.   The fourth linker peptide, and j.   The second NLS. 如請求項7至15中任一項之系統,其中該LTRP自N端至C端包含: a.   第一NLS; b.  該ADD; c.   該DNMT3A; d.  第一連接子肽; e.   該DNMT3L; f.   第二連接子肽; g.  該RD1 h.  第三連接子肽; i.   該dCasX; j.   第四連接子肽,及 k.  第二NLS。 A system as claimed in any one of claims 7 to 15, wherein the LTRP comprises from N-terminus to C-terminus: a.   The first NLS; b.   The ADD; c.   The DNMT3A; d.   The first linker peptide; e.   The DNMT3L; f.   The second linker peptide; g.   The RD1 h.   The third linker peptide; i.   The dCasX; j.   The fourth linker peptide, and k.   The second NLS. 如請求項7至15中任一項之系統,其中該LTRP自N端至C端包含: a.   第一NLS; b.  該ADD; c.   該DNMT3A; d.  第一連接子肽; e.   該DNMT3L; f.   第二連接子肽; g.  該RD1 h.  第三連接子肽; i.   該dCasX; j.   第四連接子肽; k.  另一RD1; l.   第五連接子,及 m.  第二NLS。 A system as claimed in any one of claims 7 to 15, wherein the LTRP comprises from N-terminus to C-terminus: a.   The first NLS; b.   The ADD; c.   The DNMT3A; d.   The first linker peptide; e.   The DNMT3L; f.   The second linker peptide; g.   The RD1 h.   The third linker peptide; i.   The dCasX; j.   The fourth linker peptide; k.   Another RD1; l.   The fifth linker, and m.   The second NLS. 如請求項22之系統,其中該RD1序列及該另一RD1序列係相同的。 A system as claimed in claim 22, wherein the RD1 sequence and the other RD1 sequence are identical. 如請求項22之系統,其中該RD1序列及該另一RD1序列係不同的。 A system as claimed in claim 22, wherein the RD1 sequence and the other RD1 sequence are different. 如請求項1至24中任一項之系統,其中該dCasX包含選自由SEQ ID NO: 4至29組成之群的序列,或與其具有至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 The system of any one of claims 1 to 24, wherein the dCasX comprises a sequence selected from the group consisting of SEQ ID NOs: 4 to 29, or a sequence having at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項25之系統,其中該dCasX包含SEQ ID NO: 4之序列,或與其具有至少約85%、至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 The system of claim 25, wherein the dCasX comprises the sequence of SEQ ID NO: 4, or a sequence having at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項26之系統,其中該dCasX由SEQ ID NO: 4之序列組成。 The system of claim 26, wherein the dCasX consists of the sequence of SEQ ID NO: 4. 如請求項1至27中任一項之系統,其中該RD1包含選自由SEQ ID NO: 128至1726組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 The system of any one of claims 1 to 27, wherein the RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 128 to 1726, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity therewith. 如請求項1至27中任一項之系統,其中該RD1包含選自由SEQ ID NO: 130至138組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 The system of any one of claims 1 to 27, wherein the RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 130 to 138, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity therewith. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 130之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 130, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 131之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 131, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 132之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 132, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 133之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 133, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 134之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 134, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 135之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 135, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 136之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 136, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 137之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 137, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至27中任一項之系統,其中該RD1包含SEQ ID NO: 138之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 27, wherein the RD1 comprises the sequence of SEQ ID NO: 138, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項7至15、18或19至38中任一項之系統,其中該ADD包含SEQ ID NO: 125之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 7 to 15, 18 or 19 to 38, wherein the ADD comprises a sequence of SEQ ID NO: 125, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至39中任一項之系統,其中該DNMT3A包含SEQ ID NO: 126之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 39, wherein the DNMT3A comprises the sequence of SEQ ID NO: 126, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至40中任一項之系統,其中該DNMT3L包含SEQ ID NO: 127之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 40, wherein the DNMT3L comprises the sequence of SEQ ID NO: 127, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至41中任一項之系統,其中編碼該dCasX之序列包含選自由SEQ ID NO: 3122及22727組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the dCasX comprises a sequence selected from the group consisting of SEQ ID NOs: 3122 and 22727, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3334至6527組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 3334 to 6527, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3334至3342及4931至4939組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NOs: 3334 to 3342 and 4931 to 4939, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3335及SEQ ID NO: 4932組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。The system of any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3335 and SEQ ID NO: 4932, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3339及SEQ ID NO: 4936組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3339 and SEQ ID NO: 4936, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3334及SEQ ID NO: 4931組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3334 and SEQ ID NO: 4931, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3336及SEQ ID NO: 4933組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3336 and SEQ ID NO: 4933, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3337及SEQ ID NO: 4934組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3337 and SEQ ID NO: 4934, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3338及SEQ ID NO: 4935組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3338 and SEQ ID NO: 4935, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3340及SEQ ID NO: 4937組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3340 and SEQ ID NO: 4937, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3341及SEQ ID NO: 4938組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3341 and SEQ ID NO: 4938, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至41中任一項之系統,其中編碼該RD1之序列包含選自由SEQ ID NO: 3342及SEQ ID NO: 4939組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 41, wherein the sequence encoding the RD1 comprises a sequence selected from the group consisting of SEQ ID NO: 3342 and SEQ ID NO: 4939, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至53中任一項之系統,其中編碼該DNMT3A之序列包含選自由SEQ ID NO: 3128及SEQ ID NO: 3331組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 53, wherein the sequence encoding the DNMT3A comprises a sequence selected from the group consisting of SEQ ID NO: 3128 and SEQ ID NO: 3331, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity therewith. 如請求項1至54中任一項之系統,其中編碼該DNMT3L之序列包含選自由SEQ ID NO: 3119及SEQ ID NO: 3332組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 54, wherein the sequence encoding the DNMT3L comprises a sequence selected from the group consisting of SEQ ID NO: 3119 and SEQ ID NO: 3332, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項7至15、18、19或21至55中任一項之系統,其中編碼該ADD之序列包含選自由SEQ ID NO: 3127、3296及22726組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 7 to 15, 18, 19 or 21 to 55, wherein the sequence encoding the ADD comprises a sequence selected from the group consisting of SEQ ID NOs: 3127, 3296 and 22726, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6529至8134及14628至16233組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 6529 to 8134 and 14628 to 16233, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6529至6537及14628至14636組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 6529 to 6537 and 14628 to 14636, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6529及SEQ ID NO: 14628組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6529 and SEQ ID NO: 14628, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6530及SEQ ID NO: 14629組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6530 and SEQ ID NO: 14629, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6531及SEQ ID NO: 14630組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6531 and SEQ ID NO: 14630, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6532及SEQ ID NO: 14631組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6532 and SEQ ID NO: 14631, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6533及SEQ ID NO: 14632組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6533 and SEQ ID NO: 14632, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6535及SEQ ID NO: 14632組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6535 and SEQ ID NO: 14632, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6534及SEQ ID NO: 14633組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6534 and SEQ ID NO: 14633, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6536及SEQ ID NO: 14635組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6536 and SEQ ID NO: 14635, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、8至17或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 6537及SEQ ID NO: 4636組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 8 to 17 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 6537 and SEQ ID NO: 4636, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9742至11347及17840至19446組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 9742 to 11347 and 17840 to 19446, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9742至9750及17841至17849組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 9742 to 9750 and 17841 to 17849, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9742及SEQ ID NO: 17841組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9742 and SEQ ID NO: 17841, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9743及SEQ ID NO: 17842組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9743 and SEQ ID NO: 17842, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9744及SEQ ID NO: 17843組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9744 and SEQ ID NO: 17843, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9745及SEQ ID NO: 17844組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9745 and SEQ ID NO: 17844, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9746及SEQ ID NO: 17845組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9746 and SEQ ID NO: 17845, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9747及SEQ ID NO: 17846組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9747 and SEQ ID NO: 17846, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9748及SEQ ID NO: 17847組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9748 and SEQ ID NO: 17847, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9749及SEQ ID NO: 17848組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9749 and SEQ ID NO: 17848, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、2、7至15、18、19或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 9750及SEQ ID NO: 17849組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 2, 7 to 15, 18, 19 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NO: 9750 and SEQ ID NO: 17849, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3、8至15、20或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 8135至9740及16234至17839組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3, 8 to 15, 20 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 8135 to 9740 and 16234 to 17839, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3、8至15、20或25至55中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 8135至8143及16234至16242組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3, 8 to 15, 20 or 25 to 55, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 8135 to 8143 and 16234 to 16242, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3、7至15、21或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 11348至12953及19447至21052組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3, 7 to 15, 21 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 11348 to 12953 and 19447 to 21052, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3、7至15、21或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 11348至11356及19447至19455組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3, 7 to 15, 21 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 11348 to 11356 and 19447 to 19455, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3至5、7至15、22、23或25至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 12954至14553及21053至22652組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3 to 5, 7 to 15, 22, 23 or 25 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 12954 to 14553 and 21053 to 22652, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1、3至4、6至15、22或24至56中任一項之系統,其中編碼該LTRP之mRNA包含選自由SEQ ID NO: 14554至14626及22653至22725組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as claimed in any one of claims 1, 3 to 4, 6 to 15, 22 or 24 to 56, wherein the mRNA encoding the LTRP comprises a sequence selected from the group consisting of SEQ ID NOs: 14554 to 14626 and 22653 to 22725, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity thereto. 如請求項1至84中任一項之系統,其中該mRNA經密碼子最佳化。 A system as claimed in any one of claims 1 to 84, wherein the mRNA is codon-optimized. 如請求項85之系統,其中該mRNA經密碼子最佳化以表現於人類細胞中。 A system as claimed in claim 85, wherein the mRNA is codon-optimized for expression in human cells. 如請求項1至86中任一項之系統,其中該mRNA經化學修飾,視情況其中該mRNA之一或多個或所有尿苷殘基經1-甲基-假尿苷置換。 A system as claimed in any one of claims 1 to 86, wherein the mRNA is chemically modified, optionally wherein one or more or all uridine residues in the mRNA are replaced by 1-methyl-pseudouridine. 如請求項1至87中任一項之系統,其中該mRNA包含5'非轉譯區(UTR)、3' UTR、聚腺苷酸(poly(A))序列,及/或5'帽。The system of any one of claims 1 to 87, wherein the mRNA comprises a 5' untranslated region (UTR), a 3' UTR, a poly(A) sequence, and/or a 5' cap. 如請求項88之系統,其中該5' UTR包含SEQ ID NO: 3300之序列。 The system of claim 88, wherein the 5'UTR comprises the sequence of SEQ ID NO: 3300. 如請求項88或請求項89之系統,其中該3' UTR包含SEQ ID NO: 3310之序列。 The system of claim 88 or claim 89, wherein the 3'UTR comprises the sequence of SEQ ID NO: 3310. 如請求項88至90中任一項之系統,其中該聚腺苷酸包含SEQ ID NO: 3057之序列。 A system as claimed in any one of claims 88 to 90, wherein the polyadenylation comprises the sequence of SEQ ID NO: 3057. 如請求項88至91中任一項之系統,其中該5'帽連接至該mRNA之5'。 A system as claimed in any one of claims 88 to 91, wherein the 5' cap is linked to the 5' of the mRNA. 如請求項87至92中任一項之系統,其中該mRNA包含選自由SEQ ID NO: 14628至16233、16234至17839、17841至19446、19447至21052、21053至22652及22653至22725組成之群的序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 The system of any one of claims 87 to 92, wherein the mRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 14628 to 16233, 16234 to 17839, 17841 to 19446, 19447 to 21052, 21053 to 22652, and 22653 to 22725, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14628至14635或14636之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。The system of any one of claims 87 to 92, wherein the mRNA comprises a sequence of SEQ ID NO: 14628 to 14635 or 14636, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14628之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14628, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14629之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14629, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14630之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14630, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14631之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14631, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含序列SEQ ID NO: 14632,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence SEQ ID NO: 14632, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14633之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14633, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14634之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14634, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14635之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14635, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項87至92中任一項之系統,其中該mRNA包含SEQ ID NO: 14636之序列,或與其具有至少約70%、至少約80%、至少約85%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%或至少約99%序列一致性之序列。 A system as in any one of claims 87 to 92, wherein the mRNA comprises the sequence of SEQ ID NO: 14636, or a sequence having at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity thereto. 如請求項1至103中任一項之系統,其中該 PCSK9基因目標核酸序列係於該基因之轉錄起始位點(TSS)的1.5 kb以內。 The system of any one of claims 1 to 103, wherein the PCSK9 gene target nucleic acid sequence is within 1.5 kb of the transcription start site (TSS) of the gene. 如請求項1至103中任一項之系統,其中該 PCSK9基因目標核酸序列係於該基因之TSS上游500 bp至下游500 bp以內。 The system of any one of claims 1 to 103, wherein the PCSK9 gene target nucleic acid sequence is within 500 bp upstream to 500 bp downstream of the TSS of the gene. 如請求項1至103中任一項之系統,其中該 PCSK9基因目標核酸序列係於該基因之TSS上游300 bp至下游300 bp以內,或係於該基因之TSS上游100 bp至下游100 bp以內。 The system of any one of claims 1 to 103, wherein the PCSK9 gene target nucleic acid sequence is within 300 bp upstream to 300 bp downstream of the TSS of the gene, or within 100 bp upstream to 100 bp downstream of the TSS of the gene. 如請求項1至103中任一項之系統,其中該 PCSK9基因目標核酸序列係於該基因之TSS上游100 bp至下游100 bp以內。 The system of any one of claims 1 to 103, wherein the PCSK9 gene target nucleic acid sequence is within 100 bp upstream to 100 bp downstream of the TSS of the gene. 如請求項1至107中任一項之系統,其中該 PCSK9基因目標核酸序列係於該基因之強化子的1 kb以內。 The system of any one of claims 1 to 107, wherein the PCSK9 gene target nucleic acid sequence is within 1 kb of an enhancer of the gene. 如請求項1至107中任一項之系統,其中該 PCSK9基因目標核酸序列係於該 PCSK9基因之3'非轉譯區內。 The system of any one of claims 1 to 107, wherein the PCSK9 gene target nucleic acid sequence is within the 3' non-translated region of the PCSK9 gene. 如請求項1至109中任一項之系統,其中該gRNA之靶向序列包含選自由以下組成之群的序列:SEQ ID NO: 1824至1881、1883至1897、1899至1934、1937至1991、1993至1999、2001至2026、2029至2057、2059至2106、2108至2114、2116至2122、2124至2139、2141至2209、2211至2212、2214至2233、2235至2252、2254至2269、2271至2281、2283至2284、2286至2320、2322至2334、2236至2346、2348至2362、2364至2375、2377至2395、2397至2428、2430至2438、2440至2463、2465至2509、2511至2544、 2672、2675、2694及2714。 The system of any one of claims 1 to 109, wherein the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 1824 to 1881, 1883 to 1897, 1899 to 1934, 1937 to 1991, 1993 to 1999, 2001 to 2026, 2029 to 2057, 2059 to 2106, 2108 to 2114, 2116 to 2122, 2124 to 2139, 2141 to 2209, 2211 to 2212, 2214 to 2233, 2235 to 2243 2252, 2254 to 2269, 2271 to 2281, 2283 to 2284, 2286 to 2320, 2322 to 2334, 2236 to 2346, 2348 to 2362, 2364 to 2375, 2377 to 2395, 2397 to 2428, 2430 to 2438, 2440 to 2463, 2465 to 2509, 2511 to 2544, 2672, 2675, 2694 and 2714. 如請求項1至109中任一項之系統,其中該gRNA之靶向序列包含選自由以下組成之群的序列:SEQ ID NO: 1824至1880、1883、1884、1888、1889、2672、2675、2694及2714。 A system as claimed in any one of claims 1 to 109, wherein the targeting sequence of the gRNA comprises a sequence selected from the group consisting of: SEQ ID NO: 1824 to 1880, 1883, 1884, 1888, 1889, 2672, 2675, 2694 and 2714. 如請求項1至109中任一項之系統,其中該gRNA之靶向序列包含選自由以下組成之群的序列:SEQ ID NO: 1834、1849、1853、1855至1858、1860、1862、1863、1867、1869、1870、1872、1874及1875。 A system as claimed in any one of claims 1 to 109, wherein the targeting sequence of the gRNA comprises a sequence selected from the group consisting of: SEQ ID NO: 1834, 1849, 1853, 1855 to 1858, 1860, 1862, 1863, 1867, 1869, 1870, 1872, 1874 and 1875. 如請求項1至109中任一項之系統,其中該gRNA之靶向序列包含選自由SEQ ID NO: 1855、1867及1869組成之群的序列。 A system as claimed in any one of claims 1 to 109, wherein the targeting sequence of the gRNA comprises a sequence selected from the group consisting of SEQ ID NO: 1855, 1867 and 1869. 如請求項110至113中任一項之系統,其中該gRNA之靶向序列包含其中1、2、3、4或5個核苷酸自序列之3'端移除之序列。 A system as claimed in any one of claims 110 to 113, wherein the targeting sequence of the gRNA comprises a sequence in which 1, 2, 3, 4 or 5 nucleotides are removed from the 3' end of the sequence. 如請求項1至114中任一項之系統,其中該gRNA為單分子gRNA (sgRNA)。 A system as claimed in any one of claims 1 to 114, wherein the gRNA is a single-molecule gRNA (sgRNA). 如請求項1至115中任一項之系統,其中該gRNA包含支架莖環,該支架莖環包含CCAGCGACUAUGUCGUAGUGG (SEQ ID NO: 1822)之序列或其具有1、2、3、4或5個錯配之序列。 A system as claimed in any one of claims 1 to 115, wherein the gRNA comprises a scaffold stem loop comprising a sequence of CCAGCGACUAUGUCGUAGUGG (SEQ ID NO: 1822) or a sequence thereof having 1, 2, 3, 4 or 5 mismatches. 如請求項1至116中任一項之系統,其中該gRNA包含支架,該支架包含選自由SEQ ID NO: 1744至1746組成之群的序列,或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%序列一致性之序列。 The system of any one of claims 1 to 116, wherein the gRNA comprises a scaffold comprising a sequence selected from the group consisting of SEQ ID NOs: 1744 to 1746, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity thereto. 如請求項1至116中任一項之系統,其中該gRNA包含支架,該支架包含SEQ ID NO: 1746之序列,或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 116, wherein the gRNA comprises a scaffold comprising the sequence of SEQ ID NO: 1746, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity thereto. 如請求項1至118中任一項之系統,其中該gRNA包含選自由SEQ ID NO: 3074至3081、3145至3147、3150至3153及3158至3176組成之群的序列,或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%序列一致性之序列。 A system as claimed in any one of claims 1 to 118, wherein the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 3074 to 3081, 3145 to 3147, 3150 to 3153 and 3158 to 3176, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity therewith. 如請求項1至119中任一項之系統,其中該gRNA經化學修飾。 A system as claimed in any one of claims 1 to 119, wherein the gRNA is chemically modified. 如請求項120之系統,其中對該gRNA之化學修飾包含向該gRNA之一或多個核苷酸添加2'O-甲基。 A system as claimed in claim 120, wherein the chemical modification of the gRNA comprises adding a 2'O-methyl group to one or more nucleotides of the gRNA. 如請求項121之系統,其中位於該gRNA之5'末端、3'末端或兩個末端之1、2、3或4個核苷酸的一或多個核苷酸係藉由添加2'O-甲基修飾。 A system as claimed in claim 121, wherein one or more of the 1, 2, 3 or 4 nucleotides at the 5' end, 3' end or both ends of the gRNA are modified by adding a 2'O-methyl group. 如請求項120至122中任一項之系統,其中對該gRNA之化學修飾包含該gRNA之兩個或更多個核苷酸之間的硫代磷酸酯鍵的取代。 A system as in any one of claims 120 to 122, wherein the chemical modification of the gRNA comprises substitution of a phosphorothioate bond between two or more nucleotides of the gRNA. 如請求項123之系統,其中該化學修飾包含位於該gRNA之5'末端、3'末端或兩個末端之1、2、3或4個核苷酸的兩個或更多個核苷酸之間的硫代磷酸酯鍵的取代。 The system of claim 123, wherein the chemical modification comprises substitution of a phosphorothioate bond between two or more nucleotides located at 1, 2, 3 or 4 nucleotides at the 5' end, 3' end or both ends of the gRNA. 如請求項104至124中任一項之系統,其中該gRNA包含選自由SEQ ID NO: 3074至3081、3147、3151、3153、3159至3164、3166至3171、3173至3176及22788至22803組成之群的序列,或與其具有至少約50%、至少約60%、至少約70%、至少約80%、至少約90%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%序列一致性之序列。 A system as claimed in any one of claims 104 to 124, wherein the gRNA comprises a sequence selected from the group consisting of SEQ ID NOs: 3074 to 3081, 3147, 3151, 3153, 3159 to 3164, 3166 to 3171, 3173 to 3176 and 22788 to 22803, or a sequence having at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity therewith. 如請求項104至124中任一項之系統,其中該gRNA包含選自由SEQ ID NO: 22788至22803組成之群的序列。 A system as in any one of claims 104 to 124, wherein the gRNA comprises a sequence selected from the group consisting of SEQ ID NO: 22788 to 22803. 如請求項104至124中任一項之系統,其中該gRNA包含選自由SEQ ID NO: 22788至22790組成之群的序列。 A system as in any one of claims 104 to 124, wherein the gRNA comprises a sequence selected from the group consisting of SEQ ID NO: 22788 to 22790. 一種脂質奈米粒子,其包含如請求項1至127中任一項之系統。 A lipid nanoparticle comprising a system as described in any one of claims 1 to 127. 一種脂質奈米粒子(LNP),其包含如請求項87至103中任一項之mRNA及如請求項120至127中任一項之gRNA。 A lipid nanoparticle (LNP) comprising an mRNA as described in any one of claims 87 to 103 and a gRNA as described in any one of claims 120 to 127. 如請求項128或129之LNP,其中該LNP包含一或多種選自由以下組成之群的組分:可離子化脂質、一或多種輔助磷脂、一或多種經聚乙二醇(PEG)修飾之脂質,及膽固醇或其衍生物。 The LNP of claim 128 or 129, wherein the LNP comprises one or more components selected from the group consisting of: ionizable lipids, one or more auxiliary phospholipids, one or more lipids modified with polyethylene glycol (PEG), and cholesterol or its derivatives. 如請求項128至130中任一項之LNP,其中該LNP包含可離子化脂質、輔助磷脂、經聚乙二醇(PEG)修飾之脂質,及膽固醇或其衍生物。 The LNP of any one of claims 128 to 130, wherein the LNP comprises an ionizable lipid, a co-phospholipid, a lipid modified with polyethylene glycol (PEG), and cholesterol or a derivative thereof. 如請求項128至131中任一項之LNP,其包含含有5至8之pKa的陽離子型脂質。 The LNP of any one of claims 128 to 131, comprising a cationic lipid having a pKa of 5 to 8. 一種醫藥組合物,其包含: a.   如請求項1至127中任一項之系統;或 b. 如請求項128至132中任一項之LNP, 及一或多種醫藥學上適合之賦形劑。 A pharmaceutical composition comprising: a.   The system of any one of claims 1 to 127; or b. The LNP of any one of claims 128 to 132, and one or more pharmaceutically suitable excipients. 一種醫藥組合物,其包含複數個如請求項128至132中任一項之脂質奈米粒子,及醫藥學上可接受之載劑或稀釋劑。A pharmaceutical composition comprising a plurality of lipid nanoparticles according to any one of claims 128 to 132, and a pharmaceutically acceptable carrier or diluent. 如請求項134之醫藥組合物,其中該複數個脂質奈米粒子之平均直徑在約20 nm與約200 nm之間。 The pharmaceutical composition of claim 134, wherein the average diameter of the plurality of lipid nanoparticles is between about 20 nm and about 200 nm. 如請求項134或請求項135之醫藥組合物,其中該醫藥組合物經調配用於選自由以下組成之群的投與途徑:靜脈內、動脈內、門靜脈內注射、腹膜內、肌肉內、腦室內、腦池內、鞘內、顱內、腰椎內(intralumbar)、眼內、皮下及經口途徑。 The pharmaceutical composition of claim 134 or claim 135, wherein the pharmaceutical composition is formulated for administration selected from the group consisting of intravenous, intraarterial, intraportal injection, intraperitoneal, intramuscular, intraventricular, intracisternal, intrathecal, intracranial, intralumbar, intraocular, subcutaneous and oral routes. 一種抑制細胞群體中 PCSK9基因之轉錄的方法,該方法包含向該群體之細胞中引入: a.   如請求項1至127中任一項之系統; b.  如請求項128至132中任一項之LNP; c.   如請求項133至136中任一項之醫藥組合物;或 d.  (a)至(c)中之兩者或更多者之組合, 由此抑制該細胞群體中該 PCSK9基因之轉錄。 A method for inhibiting the transcription of the PCSK9 gene in a cell population, the method comprising introducing into the cells of the population: a. a system as described in any one of claims 1 to 127; b. an LNP as described in any one of claims 128 to 132; c. a pharmaceutical composition as described in any one of claims 133 to 136; or d. a combination of two or more of (a) to (c), thereby inhibiting the transcription of the PCSK9 gene in the cell population. 如請求項137之方法,其中該 PCSK9基因之轉錄抑制在該群體之至少約1%、至少約2%、至少約3%、至少約4%、至少約5%、至少約6%、至少約7%、至少約8%、至少約9%、或至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、至少約80%或更多的細胞中。 The method of claim 137, wherein transcription of the PCSK9 gene is inhibited in at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, or at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80% or more of the cells in the population. 如請求項137或請求項138之方法,其中與未經處理之細胞相比,該群體之細胞中該 PCSK9基因之轉錄減少至少約10%、至少約20%、至少約30%、至少約40%、至少約50%、至少約60%、至少約70%、至少約80%或至少約90%。 The method of claim 137 or claim 138, wherein transcription of the PCSK9 gene in the cells of the population is reduced by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% compared to untreated cells. 如請求項137至139中任一項之方法,其中該群體之細胞為真核細胞。 A method as claimed in any one of claims 137 to 139, wherein the cells of the population are eukaryotic cells. 如請求項140之方法,其中該等真核細胞選自由以下組成之群:嚙齒動物細胞、小鼠細胞、大鼠細胞,及非人類靈長類動物細胞。 The method of claim 140, wherein the eukaryotic cells are selected from the group consisting of rodent cells, mouse cells, rat cells, and non-human primate cells. 如請求項140之方法,其中該等真核細胞為人類細胞。 The method of claim 140, wherein the eukaryotic cells are human cells. 如請求項140至142中任一項之方法,其中該等真核細胞選自由以下組成之群:肝細胞、腸細胞、腎細胞、中樞神經系統細胞、平滑肌細胞、巨噬細胞,及動脈壁細胞。 The method of any one of claims 140 to 142, wherein the eukaryotic cells are selected from the group consisting of hepatocytes, intestinal cells, kidney cells, central nervous system cells, smooth muscle cells, macrophages, and arterial wall cells. 如請求項137至143中任一項之方法,其中該細胞群體之 PCSK9基因之抑制係在活體外或離體發生。 The method of any one of claims 137 to 143, wherein the inhibition of the PCSK9 gene in the cell population occurs in vitro or ex vivo. 如請求項137至143中任一項之方法,其中該細胞群體之 PCSK9基因之抑制係在個體活體內發生。 The method of any one of claims 137 to 143, wherein the inhibition of the PCSK9 gene in the cell population occurs in vivo in an individual. 如請求項145之方法,其中該個體選自由以下組成之群:嚙齒動物、小鼠、大鼠,及非人類靈長類動物。 The method of claim 145, wherein the individual is selected from the group consisting of rodents, mice, rats, and non-human primates. 如請求項145之方法,其中該個體為人類。 The method of claim 145, wherein the individual is a human. 如請求項137至147中任一項之方法,其中該轉錄抑制經由一或多次細胞分裂而穩定。 A method as claimed in any one of claims 137 to 147, wherein the transcriptional inhibition is stabilized through one or more cell divisions. 如請求項137至148中任一項之方法,其中該轉錄抑制係可遺傳的。 A method as claimed in any one of claims 137 to 148, wherein the transcriptional inhibition is heritable. 如請求項137至149中任一項之方法,其中該抑制係可逆的。 A method as claimed in any one of claims 137 to 149, wherein the inhibition is reversible. 如請求項150之方法,其中該抑制可藉由使用DNMT抑制劑而逆轉。 The method of claim 150, wherein the inhibition can be reversed by using a DNMT inhibitor. 如請求項151之方法,其中該DNMT之抑制劑為胞苷類似物。 The method of claim 151, wherein the DNMT inhibitor is a cytidine analog. 如請求項151或請求項152之方法,其中該DNMT之抑制劑選自由以下組成之群:阿紮胞苷(azacytidine)、地西他濱(decitabine)、氯法拉濱(clofarabine),及澤布拉林(zebularine)。 The method of claim 151 or claim 152, wherein the DNMT inhibitor is selected from the group consisting of azacytidine, decitabine, clofarabine, and zebularine. 一種治療有需要個體之 PCSK9相關疾病的方法,其包含投與治療有效劑量之: a.   如請求項1至127中任一項之系統; b.  如請求項128至132中任一項之LNP;或 c.   如請求項133至136中任一項之醫藥組合物, 由此治療該PCSK9相關疾病。 A method for treating a PCSK9- related disease in an individual in need thereof, comprising administering a therapeutically effective amount of: a. a system as described in any one of claims 1 to 127; b. an LNP as described in any one of claims 128 to 132; or c. a pharmaceutical composition as described in any one of claims 133 to 136, thereby treating the PCSK9-related disease. 如請求項154之方法,其中該個體係用治療有效劑量之該LNP治療。The method of claim 154, wherein the subject is treated with a therapeutically effective amount of the LNP. 如請求項154或請求項155之方法,其中投與該LNP係藉由選自由以下組成之群的投與途徑:靜脈內、動脈內、門靜脈內注射、腹膜內、肌肉內、腦室內、腦池內、鞘內、顱內、腰椎內、眼內、皮下及經口途徑。 The method of claim 154 or claim 155, wherein the LNP is administered by a route selected from the group consisting of intravenous, intraarterial, intraportal injection, intraperitoneal, intramuscular, intraventricular, intracisternal, intrathecal, intracranial, intralumbar, intraocular, subcutaneous, and oral routes. 如請求項154至156中任一項之方法,其中該 PCSK9相關疾病選自由以下組成之群:體染色體顯性高膽固醇血症(autosomal dominant hypercholesterolemia;ADH)、高膽固醇血症(hypercholesterolemia)、總膽固醇水平升高、高血脂症(hyperlipidemia)、低密度脂蛋白(low-density lipoprotein;LDL)水平升高、LDL-膽固醇水平升高、高密度脂蛋白水平降低、肝臟脂肪變性、冠心病、缺血、中風、周邊血管疾病、血栓形成、2型糖尿病、高血壓、動脈粥樣硬化、肥胖症、主動脈狹窄、PCSK9水平升高,或其組合。 A method as in any one of claims 154 to 156, wherein the PCSK9- related disease is selected from the group consisting of: autosomal dominant hypercholesterolemia (ADH), hypercholesterolemia, elevated total cholesterol levels, hyperlipidemia, elevated low-density lipoprotein (LDL) levels, elevated LDL-cholesterol levels, decreased high-density lipoprotein levels, hepatic steatosis, coronary heart disease, ischemia, stroke, peripheral vascular disease, thrombosis, type 2 diabetes, hypertension, atherosclerosis, obesity, aortic stenosis, elevated PCSK9 levels, or a combination thereof. 如請求項154至157中任一項之方法,其中該方法使得至少一個選自由以下組成之群的臨床相關終點改善:LDL-膽固醇相對於基線之變化、斑塊動脈粥瘤體積減小、冠狀動脈斑塊減少、動脈粥樣硬化性心血管疾病(atherosclerotic cardiovascular disease;ASCVD)減少、心臟血管死亡、非致命心肌梗塞、缺血性中風、非致命中風、冠狀動脈血管再形成、不穩定型心絞痛,及視力。 The method of any of claims 154 to 157, wherein the method results in improvement in at least one clinically relevant endpoint selected from the group consisting of: change from baseline in LDL-cholesterol, reduction in plaque atheroma volume, reduction in coronary plaque, reduction in atherosclerotic cardiovascular disease (ASCVD), cardiovascular death, non-fatal myocardial infarction, ischemic stroke, non-fatal stroke, coronary revascularization, unstable angina, and vision. 如請求項154至158中任一項之方法,其中該方法使得至少兩個選自由以下組成之群的臨床相關終點改善:LDL-膽固醇相對於基線之變化、斑塊動脈粥瘤體積減小、冠狀動脈斑塊減少、動脈粥樣硬化性心血管疾病(ASCVD)減少、心臟血管死亡、非致命性心肌梗塞、缺血性中風、非致命性中風、冠狀動脈血管再形成、不穩定型心絞痛,及視力。 The method of any of claims 154 to 158, wherein the method results in improvement in at least two clinically relevant endpoints selected from the group consisting of: change from baseline in LDL-cholesterol, reduction in plaque atheroma volume, reduction in coronary plaque, reduction in atherosclerotic cardiovascular disease (ASCVD), cardiovascular death, non-fatal myocardial infarction, ischemic stroke, non-fatal stroke, coronary revascularization, unstable angina, and vision. 一種套組,其包含如請求項1至127中任一項之系統、如請求項128至132中任一項之LNP、如請求項133至136中任一項之醫藥組合物,或其組合,及合適的容器。 A kit comprising a system as in any one of claims 1 to 127, an LNP as in any one of claims 128 to 132, a pharmaceutical composition as in any one of claims 133 to 136, or a combination thereof, and a suitable container. 如請求項160之套組,其包含緩衝劑、賦形劑、核酸酶抑制劑、蛋白酶抑制劑、脂質體、治療劑、標記、標記顯現試劑、使用說明書,或前述之任何組合。 The kit of claim 160, comprising a buffer, a filler, a nuclease inhibitor, a protease inhibitor, a liposome, a therapeutic agent, a label, a label-displaying reagent, instructions for use, or any combination thereof. 一種組合物,其包含: a.   如請求項1至127中任一項之系統; b.  如請求項128至132中任一項之LNP;或 c.   如請求項133至136中任一項之醫藥組合物。 A composition comprising: a.   The system of any one of claims 1 to 127; b.   The LNP of any one of claims 128 to 132; or c.   The pharmaceutical composition of any one of claims 133 to 136. 如請求項162之組合物,其係用於製造治療有需要個體之 PCSK9相關疾病的藥劑。 The composition of claim 162 is used for the manufacture of a medicament for treating a PCSK9- related disease in an individual in need thereof. 如請求項162之組合物,其係用於治療有需要個體之 PCSK9相關疾病。 The composition of claim 162, which is used to treat a PCSK9- related disease in an individual in need thereof.
TW113111756A 2023-03-29 2024-03-28 Compositions and methods for the targeting of pcsk9 TW202444906A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202363492978P 2023-03-29 2023-03-29
US63/492,978 2023-03-29
US202363505888P 2023-06-02 2023-06-02
US63/505,888 2023-06-02

Publications (1)

Publication Number Publication Date
TW202444906A true TW202444906A (en) 2024-11-16

Family

ID=90828959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113111756A TW202444906A (en) 2023-03-29 2024-03-28 Compositions and methods for the targeting of pcsk9

Country Status (2)

Country Link
TW (1) TW202444906A (en)
WO (1) WO2024206555A1 (en)

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208036A (en) 1985-01-07 1993-05-04 Syntex (U.S.A.) Inc. N-(ω, (ω-1)-dialkyloxy)- and N-(ω, (ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5283185A (en) 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5753613A (en) 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
US5785992A (en) 1994-09-30 1998-07-28 Inex Pharmaceuticals Corp. Compositions for the introduction of polyanionic materials into cells
US5695937A (en) 1995-09-12 1997-12-09 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression
ATE537263T1 (en) 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc CATIONIC LIPIDS AND METHODS OF USE
EP1922300A2 (en) 2005-02-14 2008-05-21 Sirna Therapeutics Inc. Cationic lipids and formulated molecular compositions containing them
LT2578685T (en) 2005-08-23 2019-06-10 The Trustees Of The University Of Pennsylvania Rna containing modified nucleosides and methods of use thereof
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009127060A1 (en) 2008-04-15 2009-10-22 Protiva Biotherapeutics, Inc. Novel lipid formulations for nucleic acid delivery
US20110071208A1 (en) 2009-06-05 2011-03-24 Protiva Biotherapeutics, Inc. Lipid encapsulated dicer-substrate interfering rna
WO2011000107A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
EA022786B1 (en) 2009-07-31 2016-03-31 Этрис Гмбх Rna with a combination of unmodified and modified nucleotides for protein expression
US9738593B2 (en) 2014-06-25 2017-08-22 Acuitas Therapeutics Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
EP3247328A1 (en) 2015-01-21 2017-11-29 PhaseRx, Inc. Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells
MX2017016289A (en) 2015-06-18 2018-08-15 Broad Inst Inc Crispr enzyme mutations reducing off-target effects.
LT3313829T (en) 2015-06-29 2024-08-12 Acuitas Therapeutics Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
DK4140491T5 (en) 2015-09-21 2024-07-22 Trilink Biotechnologies Llc Method for synthesizing 5'-capped RNAs
ES2938557T3 (en) 2015-10-28 2023-04-12 Acuitas Therapeutics Inc Novel lipids and lipid nanoparticle formulations for nucleic acid delivery
US20190381180A1 (en) 2016-06-09 2019-12-19 Curevac Ag Hybrid carriers for nucleic acid cargo
US20190336608A1 (en) 2016-06-09 2019-11-07 Curevac Ag Cationic carriers for nucleic acid delivery
CA3035534A1 (en) 2016-09-07 2018-03-15 Sangamo Therapeutics, Inc. Modulation of liver genes
KR20210003819A (en) * 2018-04-19 2021-01-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Compositions and methods for gene editing
WO2020247883A2 (en) 2019-06-07 2020-12-10 Scribe Therapeutics Inc. Deep mutational evolution of biomolecules
GB2600274B (en) 2019-06-07 2024-11-27 Scribe Therapeutics Inc Engineered CasX systems
AU2020398658A1 (en) 2019-12-06 2022-07-07 Scribe Therapeutics Inc. Particle delivery systems
CN115427570A (en) 2020-01-10 2022-12-02 斯克里贝治疗公司 Compositions and methods for targeting PCSK9
EP4196505A4 (en) * 2020-08-14 2024-11-20 The Governing Council of the University of Toronto KRAB FUSION REPRESSORS AND METHODS AND COMPOSITIONS FOR REPRESSION OF GENE EXPRESSION
EP4256054A1 (en) 2020-12-03 2023-10-11 Scribe Therapeutics Inc. Engineered class 2 type v crispr systems
CA3201392A1 (en) 2020-12-09 2022-06-16 Scribe Therapeutics Inc. Aav vectors for gene editing
EP4284932A1 (en) * 2021-02-01 2023-12-06 Epsilen Bio S.r.l. Gene silencing
WO2022261149A2 (en) 2021-06-09 2022-12-15 Scribe Therapeutics Inc. Particle delivery systems
GB2625500A (en) 2021-09-21 2024-06-19 Scribe Therapeutics Inc Engineered CasX repressor systems
KR20240099176A (en) 2021-09-23 2024-06-28 스크라이브 테라퓨틱스 인크. Self-inactivation vectors for gene editing
WO2023235818A2 (en) 2022-06-02 2023-12-07 Scribe Therapeutics Inc. Engineered class 2 type v crispr systems
IL317529A (en) * 2022-06-07 2025-02-01 Scribe Therapeutics Inc Compositions and methods for the targeting of pcsk9
WO2023240162A1 (en) 2022-06-08 2023-12-14 Scribe Therapeutics Inc. Aav vectors for gene editing

Also Published As

Publication number Publication date
WO2024206555A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
JP7581405B2 (en) Lipid Nanoparticle Formulations for CRISPR/CAS Components
US20240254466A1 (en) Engineered class 2, type v repressor systems
US20240123089A1 (en) Compositions and methods for the targeting of pcsk9
CN118530993A (en) Compositions and methods for TTR gene editing and treatment of ATTR amyloidosis
US20190142972A1 (en) Compositions and Methods for Treatment of Diseases Associated with Trinucleotide Repeats in Transcription Factor Four
CA2847664A1 (en) Antisense oligonucleotides for the treatment of leber congenital amaurosis
TW202411426A (en) Engineered class 2 type v crispr systems
CN113195721A (en) Compositions and methods for treating alpha-1 antitrypsin deficiency
WO2023039440A9 (en) Hbb-modulating compositions and methods
US20240175012A1 (en) Guide rnas and compositions for editing huntingtin gene, and methods related thereto
KR20240040112A (en) method
TW202413643A (en) Compositions and methods for the targeting of pcsk9
TW202444906A (en) Compositions and methods for the targeting of pcsk9
CN118556124A (en) Engineered CASX repressor systems
TW202444914A (en) Repressor fusion protein systems
TW202444921A (en) Compositions and methods for the targeting of lpa
TW202444910A (en) Messenger rna encoding casx
US20240408235A1 (en) Gene editing methods for treating alpha-1 antitrypsin (aat) deficiency
JP7631215B2 (en) Compositions and methods comprising TTR guide RNA and a polynucleotide encoding an RNA-guided DNA binder