TW202428985A - Polygonal cylindrical structure, method for designing polygonal cylindrical structure, and foundation structure for ocean wind power generation facility using polygonal cylindrical structure - Google Patents
Polygonal cylindrical structure, method for designing polygonal cylindrical structure, and foundation structure for ocean wind power generation facility using polygonal cylindrical structure Download PDFInfo
- Publication number
- TW202428985A TW202428985A TW112148747A TW112148747A TW202428985A TW 202428985 A TW202428985 A TW 202428985A TW 112148747 A TW112148747 A TW 112148747A TW 112148747 A TW112148747 A TW 112148747A TW 202428985 A TW202428985 A TW 202428985A
- Authority
- TW
- Taiwan
- Prior art keywords
- polygonal
- cylindrical structure
- cross
- polygonal cylindrical
- section
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000010248 power generation Methods 0.000 title claims description 15
- 238000003466 welding Methods 0.000 claims abstract description 35
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 238000005452 bending Methods 0.000 description 36
- 238000004458 analytical method Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 241000543067 Adenia spinosa Species 0.000 description 1
- 235000006146 Dioscorea elephantipes Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
- E04H12/08—Structures made of specified materials of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Energy (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Sustainable Development (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Rod-Shaped Construction Members (AREA)
- Wind Motors (AREA)
Abstract
Description
本發明是有關於一種多角形筒形構造、多角形筒形構造的設計方法、及使用多角形筒形構造之海上風力發電設備用的基礎構造物。 本案是依據已於2022年12月14日於日本提出申請的特願2022-199328號來主張優先權,並在此援引其內容。 The present invention relates to a polygonal cylindrical structure, a design method of a polygonal cylindrical structure, and a foundation structure for offshore wind power generation equipment using a polygonal cylindrical structure. This case claims priority based on Special Application No. 2022-199328 filed in Japan on December 14, 2022, and its contents are cited here.
以往,為了海上風力的發電量之確保,風車及支撐風車的塔架或基礎的大型化正在進展中。一般而言,在塔架或基礎經常會使用由圓柱管所構成的圓形構造,今後預計會採用例如外徑超過10m的大口徑的圓柱管來作為基礎的圓柱管。必須伴隨於設備的大型化來提高強度及剛性,外徑或壁厚也必須加大。一般而言,例如如專利文獻1所示,在圓周方向上將已彎曲加工鋼板而彎曲的板熔接,藉此來製作短管,並進一步在柱軸方向上熔接短管彼此,藉此來建構塔架或基礎。在此情況下,彎曲加工設備的能力會有極限,除了無法對應於厚壁化或大徑化之外,也會有成本增大的問題。In the past, in order to ensure the amount of offshore wind power generated, the size of windmills and the towers or foundations supporting them has been increasing. Generally speaking, a circular structure composed of cylindrical tubes is often used in towers or foundations, and in the future, it is expected that large-diameter cylindrical tubes with an outer diameter of more than 10m will be used as cylindrical tubes for the foundation. As the equipment becomes larger, the strength and rigidity must be improved, and the outer diameter or wall thickness must also be increased. Generally speaking, as shown in
相對於此,作為不進行彎曲加工的構造,已知有以下構造:在構成浮體式海上風力發電設施的柱狀型浮體中,在圓周方向上藉由熔接來連結複數個平鋼板,藉此建構多角形剖面(參照例如專利文獻2)。 先前技術文獻 專利文獻 In contrast, as a structure that does not require bending, the following structure is known: In a columnar floating body constituting a floating offshore wind power generation facility, a plurality of flat steel plates are connected in the circumferential direction by welding to construct a polygonal cross-section (see, for example, Patent Document 2). Prior Art Document Patent Document
專利文獻1:日本專利特許第4708365號公報 專利文獻2:日本專利特開2022-1474號公報 Patent document 1: Japanese Patent No. 4708365 Patent document 2: Japanese Patent No. 2022-1474
發明欲解決之課題Invention Problems to be Solved
然而,在上述多角形剖面的構造體中有如以下的問題。
亦即,在專利文獻2中,雖然是藉由熔接在圓周方向上連結平鋼板來建構多角形,但由於角數會過度地增加,因此會有成本增大的疑慮。
此外,要在相同剖面積的條件下使多角形構造發揮和圓形同等的彎曲性能,雖然一般可考慮加大外徑來加大剖面二次力矩,但會因周長變長而導致板厚相對地變小,使板的局部屈曲耐力降低。
又,因從圓形設為多角形而決定極限狀態的屈曲的形態,會從在圓形構件產生的象腳屈曲變化為板的局部屈曲,因此必須增加多角形的角數並縮小1邊的寬厚比,藉此提升局部屈曲耐力。然而,若角數增加,則熔接線長及組裝工序數會增加,會有成本增大的問題,在該點仍有改善的餘地。
However, the above-mentioned polygonal cross-section structure has the following problems.
That is, in
本發明是有鑒於上述問題點而完成的發明,目的在於提供一種多角形筒形構造、多角形筒形構造的設計方法、及使用多角形筒形構造之海上風力發電設備用的基礎構造物,能夠平衡地兼顧發揮和圓形同等的彎曲性能、及藉由彎曲加工步驟的省略及使熔接步驟減少來謀求成本的減少。 用以解決課題之手段 The present invention is completed in view of the above-mentioned problems, and its purpose is to provide a polygonal cylindrical structure, a design method of a polygonal cylindrical structure, and a foundation structure for offshore wind power generation equipment using a polygonal cylindrical structure, which can balance the bending performance equivalent to that of a circular structure, and reduce costs by omitting the bending processing step and reducing the welding step. Means for solving the problem
<1>本發明之多角形筒形構造的態樣1是水平方向的剖面形狀藉由相同的角數來形成的多角形筒形構造,其特徵在於:在圓周方向及柱軸方向上藉由熔接來連結鋼製的平板構件而構成,前述剖面形狀是形成6角形以上且24角形以下的多角形剖面,前述平板構件的板厚為40mm以上且250mm以下,前述多角形剖面是外徑與板厚的比(外徑/板厚)為200以下。
<2>本發明之多角形筒形構造的設計方法的態樣1是水平方向的剖面形狀藉由相同的角數來形成的多角形筒形構造的設計方法,其特徵在於設計成:在圓周方向及柱軸方向上藉由熔接來連結鋼製的平板構件而構成,前述剖面形狀是形成6角形以上且24角形以下的多角形剖面,前述平板構件的板厚為40mm以上且250mm以下,前述多角形剖面是外徑與板厚的比(外徑/板厚)為200以下。
<1>
在本發明中,在多角形筒形構造中的多角形剖面的水平方向的剖面形狀為6角形以上且24角形以下的多角形剖面中,將平板構件的板厚設為40mm以上且250mm以下,將外徑與板厚的比(外徑/板厚)設為200以下,藉此即可以抑制局部屈曲,可以選定和圓形同等的剖面積且可以發揮和圓形同等的彎曲性能的角數之規格,可以用能夠縮短熔接線長的多角形筒形構造來製造。 如此,在本發明中,可以僅以幾何上的調整來建構平板構件的配置,可以省略彎曲加工步驟,並且可以減少耗費成本的組裝熔接步驟。因此,在本發明中,可以平衡地兼顧以成為和圓形同等之方式來提升彎曲性能、及抑制成本的增大之情形。此外,在本發明中,由於變得不需要肋部等補強構件,因此可以提供低成本的多角形筒形構造。 In the present invention, in a polygonal cross section whose horizontal cross section shape is a polygonal cross section of a polygonal cylindrical structure of at least 6-sided and at most 24-sided, the plate thickness of the flat plate member is set to at least 40 mm and at most 250 mm, and the ratio of the outer diameter to the plate thickness (outer diameter/plate thickness) is set to at most 200, thereby suppressing local buckling, selecting the specification of the number of angles that can achieve the same cross-sectional area as a circle and the same bending performance as a circle, and manufacturing with a polygonal cylindrical structure that can shorten the weld line length. In this way, in the present invention, the configuration of the flat plate member can be constructed only by geometric adjustment, the bending processing step can be omitted, and the cost-consuming assembly welding step can be reduced. Therefore, in the present invention, it is possible to balance the improvement of bending performance by making it equal to a circular shape and the suppression of cost increase. In addition, in the present invention, since reinforcing members such as ribs are not required, a low-cost polygonal cylindrical structure can be provided.
<3>從屬於本發明的多角形筒形構造的態樣1之態樣2較理想的是前述多角形剖面的角數n滿足式(1)或式(2)。
<4>從屬於本發明的多角形筒形構造的設計方法的態樣1之態樣2較理想的是前述多角形剖面的角數n滿足式(1)或式(2)。
<3> In the
n≧6 {當D/t≦80時} …(1) n≧(D/t)/20+2 {當D/t>80時} …(2) 在此,D:外徑(mm),t:板厚(mm),n:角數(自然數)。 n≧6 {When D/t≦80} …(1) n≧(D/t)/20+2 {When D/t>80} …(2) Here, D: outer diameter (mm), t: plate thickness (mm), n: angle (natural number).
在此情況下,可以藉由式(1)或式(2)因應於徑厚比D/t來規定和圓形同等的剖面積且成為同等的彎曲性能之最小的角數n,用最小的熔接線長來製造多角形筒形構造。In this case, the minimum number of angles n that can achieve the same cross-sectional area as a circle and the same bending performance can be determined according to the diameter-to-thickness ratio D/t using equation (1) or equation (2), and a polygonal cylindrical structure can be manufactured with the minimum weld line length.
<5>從屬於本發明的多角形筒形構造的態樣1或態樣2之態樣3,較理想的是前述多角形剖面為正多角形。
<6>從屬於本發明的多角形筒形構造的設計方法的態樣1或態樣2之態樣3,較理想的是前述多角形剖面為正多角形。
<5> In the
在此情況下,由於剖面形狀接近圓形,因此能夠以更佳的精確度來製造設定為下述規格的多角形筒形構造:如上述地發揮和圓形同等的彎曲性能之最小的角數(亦即,最小的熔接線長)的規格。In this case, since the cross-sectional shape is close to a circle, a polygonal cylindrical structure set to the following specifications can be manufactured with better accuracy: as described above, the specification of the minimum angle (that is, the minimum weld line length) that exhibits bending performance equivalent to that of a circle can be manufactured.
<7>本發明之海上風力發電設備用的基礎構造物的態樣1,其特徵在於:具備態樣1至3中任一態樣所記載之多角形筒形構造,前述多角形筒形構造成為海上風力發電設備的基礎。
發明效果
<7>
根據本發明的多角形筒形構造、多角形筒形構造的設計方法、及使用多角形筒形構造之海上風力發電設備用的基礎構造物,能夠平衡地兼顧發揮和圓形同等的彎曲性能、及藉由彎曲加工步驟的省略及使熔接步驟減少來謀求成本的減少。According to the polygonal cylindrical structure, the design method of the polygonal cylindrical structure, and the foundation structure for offshore wind power generation equipment using the polygonal cylindrical structure of the present invention, it is possible to achieve a balanced bending performance equivalent to that of a circular shape, and to reduce costs by omitting the bending processing step and reducing the welding step.
用以實施發明之形態The form used to implement the invention
以下,依據圖式來說明本發明的實施形態之多角形筒形構造。The following is a description of the polygonal cylindrical structure of an embodiment of the present invention according to the drawings.
如圖1所示,本實施形態之多角形筒形構造例如是以塔架(省略圖示)或風力發電設備的基礎構造物(以下稱為多角形柱狀體1)作為一例,前述塔架是固定葉片所構成的轉子等,前述基礎構造物是從下方支撐該塔架。As shown in FIG. 1 , the polygonal cylindrical structure of the present embodiment is, for example, a tower (not shown) or a foundation structure of a wind power generation device (hereinafter referred to as a polygonal columnar body 1) as an example, wherein the tower is a rotor composed of fixed blades, etc., and the foundation structure supports the tower from below.
在此,在多角形柱狀體1中,將平行於中心軸O的方向稱為柱軸方向,將環繞中心軸O的方向稱為圓周方向,將正交於中心軸O的方向稱為徑方向。又,將在徑方向上朝向中心軸O的方向稱為內側,將遠離中心軸O的方向稱為外側。Here, in the polygonal
如圖1及圖2所示,多角形柱狀體1是水平方向的剖面形狀藉由相同的角數(在此為8角形)來形成的多角形筒形構造。多角形柱狀體1是在圓周方向及柱軸方向上藉由熔接來連結鋼製的平板構件10而構成。多角形柱狀體1之正交於柱軸方向的水平方向的剖面形狀是形成正8角形的正多角形剖面。另外,平板構件10亦可為1片鋼板,亦可為在圓周方向或柱軸方向上熔接複數個板而構成的鋼板。As shown in Fig. 1 and Fig. 2, the
另外,多角形柱狀體1的剖面形狀只要是6角形以上且24角形以下的多角形剖面即可。又,也不限定於全部邊長相等的正多角形,亦可採用各邊長的一部分或全部不同的多角形。又,也不限定於在柱軸方向上板厚相等的多角形或正多角形的筒形構造,也可以採用在柱軸方向上不同的板厚的多角形或正多角形。例如,亦可從柱軸方向中的預定的高度位置朝向上(筒形構造的上部),使平板構件10的板厚變薄。前述預定的高度位置亦可為例如多角形柱狀體1中比下端更上方的任意位置。在像這樣板厚變化的部分中,相較於某個平板構件10的板厚,相鄰於上側的其他平板構件10會是板厚較薄。又,也不限定於柱軸方向的平板構件10的長度全部相等的多角形或正多角形的筒形構造,也可以採用各環形體10A的柱軸方向的長度不同的多角形或正多角形。例如,亦可設為從柱軸方向上的預定的高度位置朝向上(筒形構造的上部),使平板構件10的柱軸方向的長度變長。在像這樣長度變化的部分中,相較於某個平板構件10的柱軸方向的長度,相鄰於上側的其他平板構件10會是柱軸方向的長度較長。此外,亦可設為在柱軸方向上朝向上(筒形構造的上部)使平板構件10的板厚變薄,且使柱軸方向的長度變長。例如,不需要在柱軸方向上朝向上(筒形構造的上部),使平板構件10的板厚或長度逐漸地變化,亦可從柱軸方向上的任意高度位置變化。在此情況下,和某個平板構件10的板厚及柱軸方向的長度相較之下,相鄰於上側的其他平板構件10會是板厚較薄,且柱軸方向的長度較長。In addition, the cross-sectional shape of the
在此,在本發明中是將如下的情況作為正多角形來處理。
在平板構件10的圓周方向的尺寸中,全部的平板構件10的尺寸落在平均值的±2%的情況。
和相鄰的平板構件10的角度落在(在正多角形的內角中,全部的內角為(180×(n-2))/n的±2%的情況。
Here, in the present invention, the following situations are treated as regular polygons.
Among the dimensions of the
多角形柱狀體1是將柱軸方向朝向平行於上下方向而設置的長條體,並且形成內部為中空的筒狀。亦可在多角形柱狀體1的中空部分,設置不對構造性能作出貢獻的裝置等。又,多角形柱狀體1是設為僅有上方的一部分、或隨著朝向上方而剖面形狀逐漸地縮小的錐台形狀(錐形形狀)。亦即,柱軸方向的任一個高度中的剖面形狀為相似形狀。多角形狀體1亦可在柱軸方向上不是錐形形狀。The
構成多角形柱狀體1的平板構件10是未形成有彎曲部或彎折部的厚板構件。平板構件10的板厚t為40mm以上且250mm以下。具有和圓形同等的彎曲性能的多角形柱狀體1的多角形剖面,較理想的是將外徑D(mm)與板厚t(mm)的比(外徑D/板厚t)設定為200以下,因為在超過440的情況下,即使是24角形的多角形剖面,仍然難以發揮和圓形同等的彎曲性能。
圖10顯示周長和多角形柱狀體1的剖面的周長相同的圓筒100。多角形柱狀體1的外徑D相當於:在剖面上周長相同的圓筒100的平板構件110的中心線之直徑D100。
The
多角形柱狀體1中的多角形剖面的角數n(自然數)滿足式(1)或式(2)。The number of angles n (natural number) of the polygonal cross section in the polygonal
n≧6 {當D/t≦80時} …(1) n≧(D/t)/20+2 {當D/t>80時} …(2) 在此,D:外徑(mm),t:板厚(mm),n:角數(自然數)。 另外,當外徑D的單位為公尺(m)時,在計算D/t時會將單位統一為毫米(mm)來計算。 n≧6 {When D/t≦80} …(1) n≧(D/t)/20+2 {When D/t>80} …(2) Here, D: outer diameter (mm), t: plate thickness (mm), n: angle (natural number). In addition, when the unit of outer diameter D is meter (m), the unit will be unified into millimeter (mm) when calculating D/t.
在圓周方向及柱軸方向上連結的平板構件10彼此是藉由熔接接合而連結形成。圖1的符號W顯示熔接位置處(熔接部)。熔接部W具有沿著圓周方向延伸的橫熔接部W1、以及沿著柱軸方向延伸的縱熔接部W2。在本實施形態中,在圓周方向上連結8片相同形狀的平板構件10,藉此多角形柱狀體1的剖面形狀會成為正8角形。The
本實施形態的多角形柱狀體1是將在圓周方向上連結8片平板構件10的環形體,在柱軸方向上連結1層或複數層(在圖1中記載為6層)而形成。又,在柱軸方向上連結的各環形體10A各自的縱熔接部W2彼此是在柱軸方向上連續。各環形體10A各自的橫熔接部W1彼此亦可在圓周方向上連續。
又,當在圓周方向上相鄰的平板構件10的柱軸方向上的配置高度不同,即所謂的交錯配置的情況下,雖然橫熔接部W1是在圓周方向上不連續,但縱熔接部W2是在柱軸方向上連續。
The polygonal
接著,說明圖1及圖2所示的多角形柱狀體1的製造方法。
首先,從母材的大型鋼板切出預定大小的板片(平板構件10)。在此,預定大小的板片(平板構件10)例如是當建構多角形柱狀體時,對應於圓周方向的長度為1.0m以上且5.0m以下,且對應於柱軸方向的長度為2.0m以上且15.0m以下的板片。在此切斷步驟中,會切出構成多角形柱狀體1所需要的片數的平板構件10。但是,亦可不經過切斷步驟,而是直接將母材的大型鋼板作為平板構件10來利用。另外,平板構件10亦可為已切斷的板片或不切斷來使用的1片鋼板,亦可為在圓周方向或柱軸方向上將已切斷的板片或不切斷來使用的鋼板熔接而構成的鋼板。像這樣,當平板構件10是在圓周方向或柱軸方向上將複數個板片熔接而構成的情況下,只要圓周方向上相鄰的板片彼此所形成的角度為1.0°以內,則可以視為相同的平板構件10。
Next, the manufacturing method of the
之後,例如在未圖示的架台上配置平板構件10。此時,在圓周方向上相鄰的2個平板構件10是以預定的交叉角對接配置。在此,預定的交叉角是指藉由複數個平板構件10完成目的之多角形柱狀體1的剖面形狀(多角形)之角度(亦即多角形的內角),若是圖1所示的正8角形,則相對於相鄰的2個平板構件10的各邊成為直角的交叉角為135°。在此配置步驟中,是在不像以往技術地對平板構件10進行彎曲加工的情形下,將平板構件10照原樣配置。另外,配置在架台上的平板構件10較理想的是將要熔接之側朝向上方來配置,以熔接槍向下的狀態來熔接。
另一方面,也會有以確保預定內角的狀態來直接縱向配置複數個平板構件10,並且以熔接槍橫向或向下的狀態來熔接的情況。此時,亦可不使用架台。
After that, for example, the
另外,當將平板構件10配置於架台上時,例如使用具備設定為上述預定交叉角的抵接面之配置用治具(省略圖示),使平板構件10抵接此配置用治具的抵接面來配置,藉此即可以容易地進行相鄰的平板構件10彼此的定位。In addition, when the
接著,由於在已配置的相鄰的平板構件10彼此的對接部分形成有開槽形狀,因此對該開槽部分進行熔接接合,透過熔接部W將平板構件10彼此連結。平板構件10是組裝成例如上述環形體10A、或將環形體10A剖面分割而成的部分剖面環形體。並且,在多角形柱狀體1的預定設置位置上在柱軸方向上於上側依序一面熔接一面連結環形體10A或部分剖面環形體,藉此來建構多角形柱狀體1。另外,如圖2所示,已配置的相鄰的平板構件10彼此的對接部分亦可為自然開槽或V形開槽,亦可從剖面的外側進行熔接接合來形成熔接部W,並不限定於從單側(內側或外側)的熔接,亦可從兩側形成熔接部W。又,如圖3所示,亦可在圓周方向上相鄰的平板構件10的各端部事先設置X形開槽10c、10d,並且從剖面的外側及內側的兩面來對X形開槽10c、10d彼此對接的部分進行熔接接合來形成熔接部W,並不限定於從單側(內側或外側)的熔接,亦可從兩側形成熔接部W。Next, since grooves are formed in the butting portions of the adjacent
另外,製造經分割的狀態的環形體10A等的作業亦可是在多角形柱狀體1的設置位置附近的工廠或場地等,亦可在遠離多角形柱狀體1的設置位置之加工工廠等製造之後,以卡車或船舶等輸送到多角形柱狀體1的設置位置。In addition, the operation of manufacturing the
根據以上說明的多角形筒形構造即多角形柱狀體1,水平方向的剖面形狀是由相同的角數形成。多角形柱狀體1是在圓周方向及柱軸方向上藉由熔接來連結鋼製的平板構件10而構成。多角形柱狀體1是剖面形狀形成6角形以上且24角形以下的多角形剖面,平板構件10的板厚為40mm以上且250mm以下。多角形剖面是外徑D與板厚t的比(外徑D/板厚t)為200以下。According to the polygonal cylindrical structure described above, i.e., the polygonal
藉由設為像這樣的構成,在多角形柱狀體1中的多角形剖面的水平方向的剖面形狀為6角形以上且24角形以下的多角形剖面中成為相同剖面積之條件下,將平板構件10的板厚t設為40mm以上且250mm以下,將外徑D與板厚t的比(外徑D/板厚t)設為200以下,藉此即可以抑制局部屈曲,可以選定和圓形同等的剖面積且可以發揮和圓形同等的彎曲性能之最小角數之規格,藉此可以用最小的熔接線長來製造多角形柱狀體1。另外,上述「同等」是定義為例如多角形剖面相對於圓形剖面的最大耐力比0.9(90%)以上的情況。
因此,在本實施形態中,可以僅以幾何上的調整來建構平板構件10的配置,可以省略彎曲加工步驟,並且將耗費成本的組裝熔接步驟最小化,藉此可以抑制成本的增大。此外,在本實施形態中,由於變得不需要肋部等補強構件,因此可以提供低成本的多角形柱狀體1。
By setting such a structure, under the condition that the cross-sectional shape of the polygonal cross section in the horizontal direction of the polygonal
又,在本實施形態中,多角形剖面的角數n滿足上述式(1)或式(2)。
在此情況下,可以藉由式(1)或式(2)因應於徑厚比D/t來規定和圓形同等的剖面積且成為同等的彎曲性能之最小的角數n,用最小的熔接線長來製造多角形柱狀體1。
Furthermore, in this embodiment, the number of angles n of the polygonal cross section satisfies the above formula (1) or formula (2). In this case, the minimum number of angles n that has the same cross-sectional area as a circle and the same bending performance can be determined by formula (1) or formula (2) according to the diameter-thickness ratio D/t, and the polygonal
多角形柱狀體1中的多角形剖面的角數n(自然數)亦可滿足式(3)或式(4)。The number of angles n (natural number) of the polygonal cross section in the polygonal
n≧8 {當D/t≦80時} …(3) n≧(D/t)/20+4 {當D/t>80時} …(4) n≧8 {When D/t≦80} …(3) n≧(D/t)/20+4 {When D/t>80} …(4)
當多角形剖面的角數n滿足式(3)或式(4)時,最大耐力比為0.95(95%)以上。When the number of angles n of the polygonal cross section satisfies equation (3) or equation (4), the maximum endurance ratio is greater than 0.95 (95%).
多角形柱狀體1中的多角形剖面的角數n(自然數)亦可滿足式(5)或式(6)。The number of angles n (natural number) of the polygonal cross section in the polygonal
n≧10 {當D/t≦80時} …(5) n≧(D/t)/20+6 {當D/t>80時} …(6) n≧10 {When D/t≦80} …(5) n≧(D/t)/20+6 {When D/t>80} …(6)
當多角形剖面的角數n滿足式(5)或式(6)時,最大耐力比為0.99(99%)以上。When the number of angles n of the polygonal cross section satisfies equation (5) or equation (6), the maximum endurance ratio is greater than 0.99 (99%).
多角形柱狀體1中的多角形剖面的角數n(自然數)亦可滿足式(7)或式(8)。The number of angles n (natural number) of the polygonal cross section in the polygonal
6≦n≦10 {當D/t≦80時} …(7) (D/t)/20+2≦n≦(D/t)/20+6 {當D/t>80時} …(8) 6≦n≦10 {When D/t≦80} …(7) (D/t)/20+2≦n≦(D/t)/20+6 {When D/t>80} …(8)
當多角形剖面的角數n滿足式(7)或式(8)時,最大耐力比為0.90(90%)以上。When the number of angles n of the polygonal cross section satisfies equation (7) or equation (8), the maximum endurance ratio is greater than 0.90 (90%).
多角形柱狀體1中的多角形剖面的角數n(自然數)亦可滿足式(9)或式(10)。The number of angles n (natural number) of the polygonal cross section in the polygonal
8≦n≦12 {當D/t≦80時} …(9) (D/t)/20+4≦n≦(D/t)/20+8 {當D/t>80時} …(10) 8≦n≦12 {When D/t≦80} …(9) (D/t)/20+4≦n≦(D/t)/20+8 {When D/t>80} …(10)
當多角形剖面的角數n滿足式(9)或式(10)時,最大耐力比為0.95(95%)以上。When the number of angles n of the polygonal cross section satisfies equation (9) or equation (10), the maximum endurance ratio is greater than 0.95 (95%).
多角形柱狀體1中的多角形剖面的角數n(自然數)亦可滿足式(11)或式(12)。The number of angles n (natural number) of the polygonal cross section in the polygonal
10≦n≦14 {當D/t≦80時} …(11) (D/t)/20+6≦n≦(D/t)/20+10 {當D/t>80時} …(12) 10≦n≦14 {When D/t≦80} …(11) (D/t)/20+6≦n≦(D/t)/20+10 {When D/t>80} …(12)
當多角形剖面的角數n滿足式(11)或式(12)時,最大耐力比為0.99(99%)以上。When the number of angles n of the polygonal cross section satisfies equation (11) or equation (12), the maximum endurance ratio is greater than 0.99 (99%).
在本實施形態之多角形筒形構造的設計方法中是設計上述多角形筒形構造。例如,在多角形筒形構造的設計方法中,多角形剖面也是設計成外徑D與板厚t的比(外徑/板厚)為200以下。又,多角形剖面的角數n是設計成滿足式(1)或式(2)。設計成多角形剖面是正多角形。In the design method of the polygonal cylindrical structure of the present embodiment, the above-mentioned polygonal cylindrical structure is designed. For example, in the design method of the polygonal cylindrical structure, the polygonal cross section is also designed so that the ratio of the outer diameter D to the plate thickness t (outer diameter/plate thickness) is less than 200. In addition, the number of angles n of the polygonal cross section is designed to satisfy the formula (1) or the formula (2). The polygonal cross section is designed to be a regular polygon.
又,在本實施形態中,由於多角形剖面為正多角形,且和邊長不同的多角形相較之下,剖面形狀較接近於圓形,因此能夠以更佳的精確度來製造如上述地設定為發揮和圓形同等的彎曲性能之最小的角數(亦即,最小的熔接線長)的規格之多角形柱狀體1。亦即,當考慮到製造時產生的邊長誤差時,和連結邊長不同的平板構件彼此相較之下,連結相同邊長的平板構件彼此的作法能夠以更佳的精確度來製造多角形筒形構造。Furthermore, in the present embodiment, since the cross section of the polygon is a regular polygon and the cross section shape is closer to a circle than a polygon with different side lengths, the polygonal
如上述,在本實施形態之風力發電設備的多角形柱狀體1、多角形筒形構造的設計方法、及使用多角形筒形構造之海上風力發電設備用的基礎構造物中,能夠平衡地兼顧發揮和圓形同等的彎曲性能、及藉由彎曲加工步驟的省略及使熔接步驟減少來謀求成本的減少。As described above, in the polygonal
圖1所示的多角形柱狀體1是剖面形狀隨著朝向上方而逐漸縮小的錐台形狀(錐形形狀)。構成圖1所示的多角形柱狀體1的各平板構件10是在正面視角下朝向上方縮小的梯形。如圖8所示,多角形柱狀體1'亦可為圓筒形狀。亦即,多角形柱狀體1'的剖面的外徑亦可在高度方向上大致相同。構成圖8所示的多角形柱狀體1'的各平板構件10'是在正面視角下為矩形狀。藉由將多角形柱狀體1'設為圓筒形狀,即不需要將平板構件10切出成梯形之步驟。有關於圖8所示的多角形柱狀體1'的熔接部W',和圖1所示的多角形柱狀體1的熔接部W同樣地,在柱軸方向上連結的各環形體10A'各自的縱熔接部W2'彼此是在柱軸方向上連續,各環形體10A'各自的橫熔接部W1'彼此亦可在圓周方向上連續,亦可形成為交錯。
在由圖8所示的多角形柱狀體1'所形成的多角形筒形構造中,也可以得到和由圖1所示的多角形柱狀體1所形成的多角形筒形構造同樣的效果。
又,如圖9所示,多角形柱狀體1B'亦可是僅有上方的端部的一部分為錐台形狀,比其更下方則為圓筒形狀。在圖9中,上方的2層環形體10B'是形成為錐台形狀。此時的熔接部W'(W1'、W2')是和上述的熔接部W同樣。
The
當多角形狀體1為錐形形狀的情況下,所期望的是在容易屈曲的最底的部分滿足式(1)或式(2),更期望的是,在任意的柱軸高度上只要滿足式(1)或式(2),則在柱軸方向上外徑D或板厚t亦可變化。When the
接著,以下說明為了印證上述實施形態之多角形筒形構造的效果而進行的實施例。Next, the following describes an embodiment carried out to verify the effect of the polygonal cylindrical structure of the above-mentioned embodiment.
(實施例)
在實施例中是使用數值模擬解析(有限元素解析),對已將圖4所示的多角形筒形構造模型化的懸臂樑模型2的頂點(上部)賦與水平荷重F,針對多角形筒形構造的耐力進行評價。
(Example)
In the example, numerical simulation analysis (finite element analysis) is used to apply a horizontal load F to the vertex (upper part) of the
如表1所示,在實施例中,分別在5個解析案例(案例1、案例2、案例3、案例4、案例5)中製作如圖4所示的懸臂樑模型2,按每個解析案例1~5,改變多角形狀的徑厚比(D/t)來進行了數值模擬解析。各解析案例1~5的具體的條件如表1所示。解析案例中的徑厚比(D/t)是案例1為40,案例2為80,案例3為120,案例4為160,案例5為200。
表1中的「外徑」是在剖面中周長為相同基準之圓筒的中心線的平板構件10之板厚中心間的距離。「周長」是在剖面下周長為相同基準之圓筒的外徑(m)×圓周率,亦即板寬×角數。「面積」是以板厚(mm)×周長(m)來算出,亦即周長×板厚(板寬×角數×板厚)。
As shown in Table 1, in the embodiment, a
[表1] [Table 1]
又,在表2中顯示解析案例1~5中的7個型樣的每個角數n(多角形狀的角數n為4、6、8、10、12、16、24)的寬度B(m)與板厚t(mm)、及寬厚比(B/t)。
另外,作為本實施例中的多角形筒形構造的比較例,製作圓形剖面的圓形筒形構造的模型,進行了同樣的解析。圓形筒形構造的解析條件是在解析案例1~5中將正256角形,亦即邊寬0.123m的多角形筒形構造視為和圓筒同等來實施解析。
表2中的「邊寬」是周長/角數n的值。
Table 2 shows the width B (m) and plate thickness t (mm), and the width-to-thickness ratio (B/t) of each angle number n (the angle number n of the polygon is 4, 6, 8, 10, 12, 16, and 24) of the 7 types in
[表2] [Table 2]
在本實施例中,在解析案例1~5中按7種型樣的每個角數n,藉由解析來求出對各個多角形筒形構造賦與水平荷重(彎曲荷重)時所作用的最大應力(等效塑性應變、最大耐力)。又,同樣地,藉由解析來求出對比較例的圓形筒形構造賦與水平荷重時所作用的最大應力(耐力)。In this embodiment, the maximum stress (equivalent plastic strain, maximum bearing capacity) acting on each polygonal cylindrical structure when a horizontal load (bending load) is applied is obtained by analysis for each angle number n of the seven types of patterns in
圖5(a)~(d)分別是在紙面左側顯示筒形構造的剖面形狀,在紙面右側將解析結果之彎曲荷重最大時的等效塑性應變的分布顯示為等高線圖的一例。圖5(a)是角數4的4角形的案例的一例。圖5(b)是角數8的8角形的案例的一例。圖5(c)是角數12的12角形的案例的一例。圖5(d)是比較例且圓形剖面的案例的一例。圖5(a)~(d)所示的符號K是顯示在各等高線中產生等效塑性應變的部位(高應力部)。Figures 5(a) to (d) show the cross-sectional shape of the cylindrical structure on the left side of the paper, and the distribution of the equivalent plastic strain when the bending load of the analysis result is the maximum on the right side of the paper as an example of a contour map. Figure 5(a) is an example of a case of a quadrangle with an angle of 4. Figure 5(b) is an example of a case of an octagon with an angle of 8. Figure 5(c) is an example of a case of a dodecagon with an angle of 12. Figure 5(d) is an example of a comparative example and a case of a circular cross-section. The symbol K shown in Figures 5(a) to (d) shows the location (high stress area) where the equivalent plastic strain is generated in each contour.
可得知圖5(a)~(d)都是在筒形構造的設置部(基端部)中作用有較大的應力。又,從等高線的狀態,可以確認到圖5(b)的角數8及圖5(c)的角數12是和圖5(d)的比較例的圓形剖面同等的應力分布、應力的大小。另一方面,當圖5(a)的角數4的情況下,和圖5(d)的比較例的圓形剖面相較之下,應力分布的範圍(面積)擴展,特別是在上下方向(柱軸方向)上應力範圍大幅擴大,因此可得知耐力不足。It can be seen that in Figures 5(a) to (d), a relatively large stress acts in the setting part (base end) of the cylindrical structure. In addition, from the state of the contour lines, it can be confirmed that the angle number 8 in Figure 5(b) and the angle number 12 in Figure 5(c) are the same stress distribution and stress magnitude as the circular cross-section of the comparative example in Figure 5(d). On the other hand, when the angle number is 4 in Figure 5(a), compared with the circular cross-section of the comparative example in Figure 5(d), the range (area) of stress distribution is expanded, especially in the vertical direction (column axis direction), the stress range is greatly expanded, so it can be seen that the endurance is insufficient.
圖6及圖7顯示解析結果。 圖6顯示角數n與多角形筒形構造的彎曲性能的關係,並且顯示徑厚比D/t為80的案例(案例2)。另外,在本實施例中雖然僅代表性地將徑厚比D/t為80的案例顯示於圖6,但在徑厚比D/t為40(案例1)、120(案例3)、160(案例4)、200(案例5)的案例中,在圖形上也是大致同樣的傾向。在圖6中,橫軸為角數n,縱軸是多角形筒形構造(多角形)的最大耐力與圓形筒形構造(圓筒)的最大耐力的比(最大耐力比)。在此,作為最大耐力比的評價基準,當多角形筒形構造是和圓形筒形構造同等的剖面積,且最大耐力為90%以上的情況下,則定義為同等的耐力(彎曲性能)。 Figures 6 and 7 show the analysis results. Figure 6 shows the relationship between the angle number n and the bending performance of the polygonal cylindrical structure, and shows a case where the diameter-thickness ratio D/t is 80 (Case 2). In addition, although only the case where the diameter-thickness ratio D/t is 80 is shown in Figure 6 as a representative example in this embodiment, the cases where the diameter-thickness ratio D/t is 40 (Case 1), 120 (Case 3), 160 (Case 4), and 200 (Case 5) have roughly the same inclination in the graph. In Figure 6, the horizontal axis is the angle number n, and the vertical axis is the ratio (maximum endurance ratio) of the maximum endurance of the polygonal cylindrical structure (polygon) to the maximum endurance of the circular cylindrical structure (cylinder). Here, as the evaluation standard of the maximum endurance ratio, when the polygonal cylindrical structure has the same cross-sectional area as the circular cylindrical structure and the maximum endurance is more than 90%, it is defined as the same endurance (bending performance).
如圖6所示,可得知最大耐力比為90%以上的角數n為6以上。具體而言,可以確認到以下情形:角數6(6角形)以上則最大耐力比為90%以上,角數8(8角形)以上則最大耐力比為95%以上,角數10(10角形)以上則最大耐力比為99%以上。由此可知,用於獲得和圓形剖面同等的90%以上的最大耐力比的最小角數n為6(6角形)。在此,例如,以外徑D為8~12m的圓形筒形構造作為對象。若考慮多角形筒形構造可以發揮和圓形筒形構造同等(90%)以上的彎曲性能的徑厚比D/t為80~200的範圍,則當外徑D為8~12m的情況下,所需要的板厚t為40mm以上。又,板厚t亦可為50mm以上、60mm以上、65mm以上、70mm以上、75mm以上、80mm以上。由於板材的重量增加會造成組裝成本的增加,因此將板厚的上限設為250mm。另外,作為板厚的上限值較理想的是200mm,更理想的是150mm。As shown in FIG6 , it can be seen that the angle number n for which the maximum endurance ratio is 90% or more is 6 or more. Specifically, the following situations can be confirmed: the maximum endurance ratio is 90% or more when the angle number is 6 (hexagon) or more, the maximum endurance ratio is 95% or more when the angle number is 8 (octagon) or more, and the maximum endurance ratio is 99% or more when the angle number is 10 (decagon) or more. It can be seen that the minimum angle number n for obtaining a maximum endurance ratio of 90% or more, which is equivalent to a circular section, is 6 (hexagon). Here, for example, a circular cylindrical structure with an outer diameter D of 8 to 12 m is used as the object. If we consider that the polygonal cylindrical structure can exert the same (90%) or more bending performance as the circular cylindrical structure, the diameter-to-thickness ratio D/t is in the range of 80~200, then when the outer diameter D is 8~12m, the required plate thickness t is 40mm or more. In addition, the plate thickness t can also be 50mm or more, 60mm or more, 65mm or more, 70mm or more, 75mm or more, or 80mm or more. Since the increase in the weight of the plate will increase the assembly cost, the upper limit of the plate thickness is set to 250mm. In addition, the upper limit of the plate thickness is preferably 200mm, and more preferably 150mm.
圖7顯示和圓形筒形構造同等(90%)以上的彎曲性能之角數n與徑厚比D/t的關係。在圖7中,橫軸為角數n,縱軸為徑厚比D/t。此外,在圖7中,分別繪製在某個徑厚比D/t中當使角數n增加時角數n為最大耐力比的90%以上、95%以上、99%以上的點。這些顯示可以實現和圓形筒形構造同等(90%)以上的彎曲性能的區域(圓形同等區域R1)、以及小於最大耐力比90%的區域當中屈曲強度不足區域R2及剖面性能不足區域R3。屈曲強度不足區域R2是角數n越小則邊寬B越長,且是伴隨於板厚t變薄,板的局部屈曲所造成的彎曲耐力降低顯著的區域。剖面性能不足區域R3是在角數n較小的情況下,相對於彎曲荷重之剖面二次力矩變小,而無法獲得剖面性能的區域。Figure 7 shows the relationship between the angle n and the diameter-thickness ratio D/t for bending performance equivalent to or greater than (90%) that of a circular cylindrical structure. In Figure 7, the horizontal axis is the angle n and the vertical axis is the diameter-thickness ratio D/t. In addition, in Figure 7, the points where the angle n is greater than 90%, greater than 95%, and greater than 99% of the maximum endurance ratio are plotted when the angle n is increased at a certain diameter-thickness ratio D/t. These show the area (circular equivalent area R1) where bending performance equivalent to or greater than (90%) that of a circular cylindrical structure can be achieved, as well as the area R2 with insufficient buckling strength and the area R3 with insufficient section performance in the area less than 90% of the maximum endurance ratio. The buckling strength insufficient region R2 is a region where the side width B becomes longer as the angle n decreases, and the bending resistance caused by local buckling of the plate decreases significantly as the plate thickness t decreases. The section performance insufficient region R3 is a region where the section secondary moment relative to the bending load becomes smaller when the angle n is smaller, and the section performance cannot be obtained.
如圖7所示,可得知由於角數6(6角形)中徑厚比D/t為80以下時最大耐力比為90%以上,而成為圓形同等區域R1,因此可得到圓形同等性能。另一方面,可得知角數6(6角形)中徑厚比D/t為120的情況(超過80的情況)下,由於最大耐力比小於90%,而成為屈曲強度不足區域R2,因此板的局部屈曲所造成的耐力降低較為顯著。在角數8(8角形)及角數10(10角形)的情況下,和角數6(6角形)的情況相較之下,即使徑厚比D/t變大至120,仍可確保最大耐力比90%以上。As shown in FIG7, it can be seen that when the diameter-to-thickness ratio D/t of the angle number 6 (hexagon) is 80 or less, the maximum endurance ratio is 90% or more, and it becomes the circle equivalent area R1, so the circle equivalent performance can be obtained. On the other hand, when the diameter-to-thickness ratio D/t of the angle number 6 (hexagon) is 120 (more than 80), the maximum endurance ratio is less than 90%, and it becomes the buckling strength insufficient area R2, so the endurance reduction caused by the local buckling of the plate is more significant. In the case of the angle number 8 (octagon) and the angle number 10 (decagon), compared with the case of the angle number 6 (hexagon), even if the diameter-to-thickness ratio D/t is increased to 120, the maximum endurance ratio of 90% or more can be ensured.
又,在角數12(12角形)以上的情況下,無論是哪一個徑厚比D/t,最大耐力比都是90%以上,而成為圓形同等區域R1,進而相對於徑厚比D/t之最大耐力比也較大。特別是,可得知在角數16(16角形)以上的情況下,無論是哪一個徑厚比D/t,最大耐力比都是99%以上,可得到和圓形剖面幾乎相同的彎曲性能。 此外,在角數4(4角形)的情況下,無論是哪一個徑厚比D/t,最大耐力比都小於90%,而成為剖面性能不足區域R3。亦即,可得知當僅有角數n較小的情況下,由於相對於彎曲荷重之剖面二次力矩會變小,因此無法獲得剖面性能。 Furthermore, when the number of angles is 12 or more (12-sided), the maximum endurance ratio is more than 90% regardless of the diameter-thickness ratio D/t, and it becomes the circular equivalent area R1, and the maximum endurance ratio relative to the diameter-thickness ratio D/t is also larger. In particular, it can be seen that when the number of angles is 16 or more (16-sided), the maximum endurance ratio is more than 99% regardless of the diameter-thickness ratio D/t, and the bending performance almost the same as that of the circular section can be obtained. In addition, when the number of angles is 4 (4-sided), the maximum endurance ratio is less than 90% regardless of the diameter-thickness ratio D/t, and it becomes the section performance insufficient area R3. In other words, it can be seen that when the angle number n is small, the cross-sectional secondary moment relative to the bending load will become small, so the cross-sectional performance cannot be obtained.
根據本實施例的解析結果,當徑厚比D/t為80以下的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的90%以上的條件是角數n為6以上。當徑厚比D/t為80以下的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的95%以上的條件是角數n為8以上。當徑厚比D/t為80以下的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的99%以上的條件是角數n為10以上。 又,當徑厚比D/t為120的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的90%以上的條件是角數n為8以上。又,當徑厚比D/t為120的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的95%以上的條件是角數n為10以上。當徑厚比D/t為120的情況下,多角形筒形構造要確保圓形筒形構造的圓形性能(最大耐力比)的99%以上的條件是角數n為12以上。角數n亦可為偶數。 整理這些之後,可以求出上述式(1)或式(2)。 According to the analysis results of this embodiment, when the diameter-thickness ratio D/t is less than 80, the polygonal cylindrical structure must ensure more than 90% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is greater than 6. When the diameter-thickness ratio D/t is less than 80, the polygonal cylindrical structure must ensure more than 95% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is greater than 8. When the diameter-thickness ratio D/t is less than 80, the polygonal cylindrical structure must ensure more than 99% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is greater than 10. Furthermore, when the diameter-to-thickness ratio D/t is 120, the polygonal cylindrical structure must ensure more than 90% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is 8 or more. Furthermore, when the diameter-to-thickness ratio D/t is 120, the polygonal cylindrical structure must ensure more than 95% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is 10 or more. When the diameter-to-thickness ratio D/t is 120, the polygonal cylindrical structure must ensure more than 99% of the circular performance (maximum endurance ratio) of the circular cylindrical structure when the angle number n is 12 or more. The angle number n can also be an even number. After sorting these out, the above formula (1) or formula (2) can be obtained.
以上,雖然說明了本發明之多角形筒形構造的實施形態,但本發明並不限定於上述實施形態,可以在不脫離其主旨的範圍內適當變更。Although the embodiments of the polygonal cylindrical structure of the present invention have been described above, the present invention is not limited to the above embodiments and can be appropriately modified within the scope of the gist thereof.
例如,在上述實施形態中,雖然例示風力發電設備的基礎構造物來作為多角形柱狀體1(多角形筒形構造),但其他實施形態是使用了上述多角形柱狀體1(多角形筒形構造)的海上風力發電設備用的基礎構造物。在此情況下,多角形柱狀體1例如會成為海上風力發電設備的基礎。具體而言,亦可使用於海上風力用的接地式單樁型、重力式、或夾套型的基礎構造物、或浮體式的TLP(Tension Leg Platform,張力腿部平台)型或半潛(Semi-submersible)型的基礎構造物,也可以將其他用途的構造物設為多角形筒形構造。For example, in the above-mentioned embodiment, although the foundation structure of the wind power generation equipment is exemplified as a polygonal column 1 (polygonal cylindrical structure), other embodiments are foundation structures for offshore wind power generation equipment using the above-mentioned polygonal column 1 (polygonal cylindrical structure). In this case, the
又,在本實施形態中,雖然採用了在柱軸方向上朝向上方剖面形狀縮小的錐形形狀的多角形柱狀體1,但亦可為在柱軸方向的任一高度上為相同剖面形狀及相同剖面尺寸的多角形筒形構造,亦即整體不縮小直徑的形狀之多角形筒形構造。Furthermore, in the present embodiment, although a polygonal
又,在本實施形態中,雖然也有構成為多角形柱狀體1的多角形剖面的角數n滿足上述式(1)或式(2)之形態,但並不限制為滿足這些式(1)或式(2)的角數n。Furthermore, in the present embodiment, although there is a configuration in which the number of angles n of the polygonal cross section constituting the polygonal
又,在不脫離本發明的主旨之範圍內,可以適當地將上述實施形態中的構成要素置換為周知的構成要素。 產業上之可利用性 Furthermore, the components in the above-mentioned embodiments may be appropriately replaced with known components without departing from the scope of the present invention. Industrial Applicability
根據本發明,能夠平衡地兼顧發揮和圓形同等的彎曲性能、及藉由彎曲加工步驟的省略及使熔接步驟減少來謀求成本的減少。According to the present invention, it is possible to achieve a balanced bending performance equivalent to that of a circular shape, and to reduce costs by omitting the bending process step and reducing the welding step.
1,1',1B':多角形柱狀體(多角形筒形構造)
2:懸臂樑模型
10,10',110:平板構件
10A,10A',10B':環形體
10c,10d:X形開槽
100:圓筒
B:寬度(邊寬)
D:外徑
D100:直徑
F:水平荷重
K:高應力部
n:角數
R1:圓形同等區域
R2:屈曲強度不足區域
R3:剖面性能不足區域
t:板厚
W,W':熔接部
W1,W1':橫熔接部
W2,W2':縱熔接部
O:中心軸
1,1',1B': Polygonal column (polygonal cylindrical structure)
2:
圖1是顯示本發明的一實施形態之多角形柱狀體的立體圖。 圖2是圖1所示的多角形柱狀體的高度方向的一部分的水平剖面圖。 圖3是顯示在圓周方向上相鄰的平板構件彼此的熔接狀態的水平剖面圖。 圖4是顯示實施例之解析模型的圖。 圖5之(a)~(d)是顯示實施例的解析結果之彎曲荷重最大時的等效塑性應變的分布的等高線之一例的圖。 圖6是顯示實施例之角數與多角形筒形構造的彎曲性能的關係的圖。 圖7是顯示實施例之和圓形同等性能的角數與徑厚比的關係的圖。 圖8是顯示本發明的一實施形態之多角形柱狀體的立體圖。 圖9是顯示本發明的一實施形態之多角形柱狀體的立體圖。 圖10是用於說明構造的圓筒的立體圖。 FIG. 1 is a three-dimensional view of a polygonal columnar body showing an embodiment of the present invention. FIG. 2 is a horizontal cross-sectional view of a portion of the polygonal columnar body shown in FIG. 1 in the height direction. FIG. 3 is a horizontal cross-sectional view showing the welding state of adjacent flat plate members in the circumferential direction. FIG. 4 is a diagram showing an analytical model of an embodiment. FIG. 5 (a) to (d) are diagrams showing an example of contour lines of the distribution of equivalent plastic strain when the bending load is maximum in the analytical results of the embodiment. FIG. 6 is a diagram showing the relationship between the angle number and the bending performance of the polygonal cylindrical structure of the embodiment. FIG. 7 is a diagram showing the relationship between the angle number and the diameter-thickness ratio of the embodiment with the same performance as the circle. FIG. 8 is a three-dimensional view of a polygonal columnar body showing an embodiment of the present invention. FIG. 9 is a three-dimensional diagram of a polygonal columnar body showing an embodiment of the present invention. FIG. 10 is a three-dimensional diagram of a cylinder for illustrating the structure.
1:多角形柱狀體(多角形筒形構造) 1: Polygonal column (polygonal cylindrical structure)
10:平板構件 10: Flat plate components
10A:環形體 10A: Ring
W:熔接部 W: Welding section
W1:橫熔接部 W1: horizontal welding section
W2:縱熔接部 W2: Longitudinal welding section
O:中心軸 O: Center axis
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022199328 | 2022-12-14 | ||
JP2022-199328 | 2022-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202428985A true TW202428985A (en) | 2024-07-16 |
Family
ID=91485876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112148747A TW202428985A (en) | 2022-12-14 | 2023-12-14 | Polygonal cylindrical structure, method for designing polygonal cylindrical structure, and foundation structure for ocean wind power generation facility using polygonal cylindrical structure |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428985A (en) |
WO (1) | WO2024128273A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014055458A (en) * | 2012-09-13 | 2014-03-27 | Nippon Steel & Sumitomo Metal | Towering structure |
JP7447695B2 (en) * | 2020-06-22 | 2024-03-12 | 東京電力ホールディングス株式会社 | Column-shaped floating body and method for manufacturing column-shaped floating body |
-
2023
- 2023-12-14 TW TW112148747A patent/TW202428985A/en unknown
- 2023-12-14 WO PCT/JP2023/044779 patent/WO2024128273A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024128273A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101536959B1 (en) | Steel pipe column structure and method of manufacturing the same | |
EP2877642B1 (en) | Node structures for lattice frames | |
US9415842B2 (en) | Floating support for an offshore structure, in particular such as a wind turbine | |
US9765547B2 (en) | Node structures for lattice frames | |
JP6041906B2 (en) | Floating wind power generator assembly method and floating wind power generator | |
US20070245680A1 (en) | Methods and apparatus for assembling wind turbine towers | |
ES2933267T3 (en) | Additively manufactured tower structure and manufacturing process | |
JP2013534590A (en) | Tower structure | |
EP2574772B1 (en) | Wind turbine tower | |
EP2525021B1 (en) | Wind turbine tower supporting structure | |
CN108268685A (en) | L type flange and design method thereof | |
JP2017043387A (en) | Leg earthquake-proof reinforcing structure composed of circular cylinder brace and tie-rod brace of spherical tank | |
TW202428985A (en) | Polygonal cylindrical structure, method for designing polygonal cylindrical structure, and foundation structure for ocean wind power generation facility using polygonal cylindrical structure | |
JP5164012B2 (en) | Seismic reinforcement structure for spherical tank legs | |
JP2024085022A (en) | Polygonal cylindrical structure | |
JP7256895B2 (en) | How to build tower segments and towers | |
US10352060B2 (en) | Connection element and method for producing same | |
JP6407603B2 (en) | Joint structure between foundation pile and ground structure | |
WO2023219138A1 (en) | Method for constructing multi-shell tank | |
US20240052665A1 (en) | Exhaust stack lattice tower | |
CN114197462B (en) | Tubular pile vibration-resistant connector and tubular pile cage structure | |
CN112761891B (en) | Wind turbine generator tower and processing method thereof | |
JP2006046024A (en) | Pile head reinforcing structure and pile head reinforcing member | |
JP2024102575A (en) | Offshore wind power system | |
CN115749133A (en) | Can splice confined concrete combination post of outer covering pipe |