Nothing Special   »   [go: up one dir, main page]

TW202326680A - Display driving circuit and method of brightness compensation thereof - Google Patents

Display driving circuit and method of brightness compensation thereof Download PDF

Info

Publication number
TW202326680A
TW202326680A TW110147974A TW110147974A TW202326680A TW 202326680 A TW202326680 A TW 202326680A TW 110147974 A TW110147974 A TW 110147974A TW 110147974 A TW110147974 A TW 110147974A TW 202326680 A TW202326680 A TW 202326680A
Authority
TW
Taiwan
Prior art keywords
load
pixel
load current
slope
pixel circuits
Prior art date
Application number
TW110147974A
Other languages
Chinese (zh)
Other versions
TWI800172B (en
Inventor
彭俊傑
趙健富
簡民峯
楊智翔
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW110147974A priority Critical patent/TWI800172B/en
Priority to CN202210505756.6A priority patent/CN114758614B/en
Application granted granted Critical
Publication of TWI800172B publication Critical patent/TWI800172B/en
Publication of TW202326680A publication Critical patent/TW202326680A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

A display driving circuit configured to control a display panel is provided, which includes a memory and a processor. The display panel includes multiple pixel circuits forming multiple blocks. Each of the multiple blocks includes a part of pixel circuits of the multiple pixel circuits. The memory is configured to store multiple compensation data of the multiple blocks. The processor is configured to read the multiple compensation data to compensate the brightness of the multiple blocks, respectively. The processor is also configured to calculate a global loading according to grayscale values of the multiple pixel circuits; calculate a local loading according to grayscale values of the part of the pixel circuits in a first block of the multiple blocks; and adjust an original slope of a control signal received by the first block to an adjusted slope according to the local loading and the global loading to control the light-emitting time length of the first block.

Description

顯示驅動電路和其補償亮度的方法Display driving circuit and its method of compensating brightness

本揭示文件有關顯示裝置的亮度控制技術,尤指一種能避免亮度錯誤補償的顯示驅動電路和其補償亮度的方法。This disclosed document relates to brightness control technology of a display device, especially a display driving circuit capable of avoiding brightness error compensation and a method for compensating brightness thereof.

次毫米發光二極體(Mini Light-Emitting Diode)指晶粒尺寸約在100微米的發光二極體,而微發光二極體(Micro Light-Emitting Diode)是晶粒尺寸在50微米以下的發光二極體。次毫米發光二極體和微發光二極體應用於顯示器時,因其發光時驅動電流較大,導致系統阻抗產生的電壓降(IR drop)較大,使得驅動電流在不同的畫素之間會有差異進而使得顯示器的發光亮度不均勻。Sub-millimeter light-emitting diodes (Mini Light-Emitting Diode) refer to light-emitting diodes with a grain size of about 100 microns, while Micro Light-Emitting Diodes (Micro Light-Emitting Diode) are light-emitting diodes with a grain size of less than 50 microns. diode. When submillimeter light-emitting diodes and micro light-emitting diodes are applied to displays, because of the large driving current when emitting light, the voltage drop (IR drop) generated by the system impedance is relatively large, making the driving current between different pixels There will be differences and thus make the luminous brightness of the display uneven.

傳統的顯示面板出廠前的亮度測試和校正過程會將補償資料寫入記憶體,以補償顯示面板因電壓降而可能出現的亮度不均勻現象。然而,隨著顯示面板發光時整體所抽取的電流大小不同,不同區塊的電壓降也會隨之變化。因此,出廠時已固定的補償資料可能會造成過補償或補償不足的現象,亦即顯示面板某些區塊亮度過亮或某些區塊過暗。The brightness test and calibration process of the traditional display panel before leaving the factory will write the compensation data into the memory to compensate for the uneven brightness of the display panel that may occur due to voltage drop. However, as the overall current drawn by the display panel is different when the display panel emits light, the voltage drop of different blocks will also change accordingly. Therefore, the fixed compensation data at the factory may cause over-compensation or under-compensation, that is, some areas of the display panel are too bright or some areas are too dark.

本揭示文件提供一種顯示驅動電路,其用於控制顯示面板。顯示面板包含形成多個分區的多個畫素電路。每個分區包含多個畫素電路一部分畫素電路。顯示驅動電路包含記憶體和處理器。記憶體用於儲存多個分區的多個補償資料。處理器用於讀取多個補償資料以分別補償多個分區的亮度,且不同補償資料代表的電壓修正量正相關於不同分區的電壓降。其中處理器還用於依據多個畫素電路的灰階值計算全域負載;依據多個分區中的第一分區的部分畫素電路的灰階值計算局部負載;依據全域負載和局部負載,將第一分區接收的控制訊號的原始斜率調整為調整後的斜率,以控制第一分區的發光時間長度。The disclosed document provides a display driving circuit for controlling a display panel. The display panel includes a plurality of pixel circuits forming a plurality of partitions. Each partition includes a plurality of pixel circuits and a part of the pixel circuits. The display driver circuit includes memory and processor. The memory is used to store multiple compensation data of multiple partitions. The processor is used to read a plurality of compensation data to respectively compensate the brightness of a plurality of partitions, and the voltage correction amounts represented by different compensation data are positively related to the voltage drop of different partitions. The processor is also used to calculate the global load based on the grayscale values of multiple pixel circuits; calculate the local load based on the grayscale values of some pixel circuits in the first partition of the multiple partitions; and calculate the local load according to the global load and the local load. The original slope of the control signal received by the first subregion is adjusted to the adjusted slope, so as to control the lighting time length of the first subregion.

本揭示文件提供一種補償亮度的方法,其適用於顯示驅動電路。其中顯示驅動電路用於控制顯示面板。顯示面板包含形成多個分區的多個畫素電路。每個分區包含多個畫素電路的一部分畫素電路。顯示驅動電路還用於存取多個補償資料以分別補償多個分區的亮度。不同補償資料代表的電壓修正量正相關於不同分區的電壓降,該方法包含依據多個畫素的灰階值計算全域負載;依據多個分區中的第一分區的部分畫素電路的灰階值計算局部負載;依據全域負載和局部負載自查找表獲取第一分區的現在負載電流和最重負載電流;依據現在負載電流和最重負載電流計算負載電流差值;依據負載電流差值,將第一分區接收的控制訊號的原始斜率調整為調整後的斜率,以控制第一分區的發光時間長度。This disclosure provides a method for compensating brightness, which is suitable for display driving circuits. The display driving circuit is used to control the display panel. The display panel includes a plurality of pixel circuits forming a plurality of partitions. Each partition includes a part of pixel circuits of the plurality of pixel circuits. The display driving circuit is also used for accessing a plurality of compensation data to respectively compensate the brightness of a plurality of partitions. The voltage correction amount represented by different compensation data is directly related to the voltage drop of different partitions. The method includes calculating the global load based on the gray scale values of multiple pixels; according to the gray scale of some pixel circuits in the first partition of the multiple partitions Calculate the partial load; obtain the current load current and the heaviest load current of the first partition from the lookup table according to the global load and partial load; calculate the load current difference based on the current load current and the heaviest load current; The original slope of the control signal received by the first subregion is adjusted to the adjusted slope, so as to control the lighting time length of the first subregion.

本揭示文件提供一種補償亮度的方法,其適用於顯示驅動電路。其中顯示驅動電路用於控制顯示面板。顯示面板包含形成多個分區的多個畫素電路。每個分區包含多個畫素電路的一部分畫素電路。顯示驅動電路還用於存取多個補償資料以分別補償多個分區的亮度。不同補償資料代表的電壓修正量正相關於不同分區的電壓降,該方法包含依據多個畫素的灰階值計算全域負載;依據多個分區中的第一分區的部分畫素電路的灰階值計算局部負載;依據全域負載和局部負載自查找表獲取第一分區的現在負載電流和最重負載電流;依據現在負載電流和最重負載電流計算負載電流差值;依據負載電流差值,將第一分區接收的控制訊號的原始頻率調整為調整後的頻率,以控制第一分區的發光時間長度。This disclosure provides a method for compensating brightness, which is suitable for display driving circuits. The display driving circuit is used to control the display panel. The display panel includes a plurality of pixel circuits forming a plurality of partitions. Each partition includes a part of pixel circuits of the plurality of pixel circuits. The display driving circuit is also used for accessing a plurality of compensation data to respectively compensate the brightness of a plurality of partitions. The voltage correction amount represented by different compensation data is directly related to the voltage drop of different partitions. The method includes calculating the global load based on the gray scale values of multiple pixels; according to the gray scale of some pixel circuits in the first partition of the multiple partitions Calculate the partial load; obtain the current load current and the heaviest load current of the first partition from the lookup table according to the global load and partial load; calculate the load current difference based on the current load current and the heaviest load current; The original frequency of the control signal received by the first subregion is adjusted to the adjusted frequency, so as to control the light-emitting time length of the first subregion.

以下將配合相關圖式來說明本揭示文件的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。Embodiments of the disclosed document will be described below in conjunction with related figures. In the drawings, the same reference numerals indicate the same or similar elements or method flows.

第1A圖為依據本揭示文件一實施例的顯示面板100簡化後的功能方塊圖。顯示面板100包含形成多個分區140的多個畫素電路150,亦即每個分區140包含該多個畫素電路150的一部分畫素電路150。顯示面板100還包含顯示驅動電路110、源極驅動器120和閘極驅動器130。顯示驅動電路110用於依據影像資料Data_v提供顯示資料Data_d至源極驅動器120、提供控制時脈訊號GS至閘極驅動器130以及提供控制訊號S11~Sij至多個分區140。在一些實施例中,影像資料Data_v可以來自於圖形處理器(GPU)或中央處理器(CPU)。顯示資料Data_d用於指定多個畫素電路150的灰階值。源極驅動器120用於依據顯示資料Data_d提供多個資料電壓V data(為簡潔起見只繪示其中一者為代表)至多個畫素電路150。閘極驅動器130用於提供多個掃描訊號V scan (為簡潔起見只繪示其中一者為代表)至多個畫素電路150,以驅動多個畫素電路150接收資料電壓V dataFIG. 1A is a simplified functional block diagram of a display panel 100 according to an embodiment of the disclosure. The display panel 100 includes a plurality of pixel circuits 150 forming a plurality of partitions 140 , that is, each partition 140 includes a part of the pixel circuits 150 of the plurality of pixel circuits 150 . The display panel 100 further includes a display driving circuit 110 , a source driver 120 and a gate driver 130 . The display driving circuit 110 is used for providing display data Data_d to the source driver 120 according to the image data Data_v, providing a control clock signal GS to the gate driver 130 , and providing control signals S11˜Sij to a plurality of partitions 140 . In some embodiments, the image data Data_v may come from a graphics processing unit (GPU) or a central processing unit (CPU). The display data Data_d is used to designate the grayscale values of the plurality of pixel circuits 150 . The source driver 120 is used for providing a plurality of data voltages V data (only one of them is shown for brevity) to the plurality of pixel circuits 150 according to the display data Data_d. The gate driver 130 is used to provide multiple scanning signals V scan (For the sake of brevity, only one of them is shown as a representative) to a plurality of pixel circuits 150 to drive the plurality of pixel circuits 150 to receive the data voltage V data .

在一實施例中,顯示驅動電路110可以由顯示器驅動晶片(Display Driver IC,簡稱DDIC)來實現。在一實施例中,顯示驅動電路110可以由時序控制器(timing controller,簡稱TCON)、現場可程式化邏輯閘陣列(field programmable gate array,簡稱FPGA)或特定應用積體電路(application specific integrated circuit,簡稱ASIC)來實現。其中時序控制器可用於控制顯示面板100的時序動作,例如調整時脈訊號GS的頻率以控制顯示面板100的更新率以實現省電功能;時序控制器還可處理影像資料Data_v,例如解碼影像資料Data_v、改變影像資料Data_v的解析度(Scaling)以及在影像資料Data_v為類比形式時對影像資料Data_v進行類比至數位轉換等等。In an embodiment, the display driving circuit 110 may be implemented by a display driver IC (DDIC for short). In one embodiment, the display driving circuit 110 may be composed of a timing controller (timing controller, TCON for short), a field programmable gate array (field programmable gate array, FPGA for short), or an application specific integrated circuit (application specific integrated circuit). , referred to as ASIC) to achieve. The timing controller can be used to control the timing actions of the display panel 100, such as adjusting the frequency of the clock signal GS to control the update rate of the display panel 100 to achieve power saving; the timing controller can also process the image data Data_v, such as decoding image data Data_v, change the resolution (Scaling) of the image data Data_v, perform analog to digital conversion on the image data Data_v when the image data Data_v is in analog form, and so on.

多個分區140排列為具有i橫列和j直行的矩陣,亦即總共有i*j個分區140,其中i和j為正整數。控制訊號S11~Sij分別傳送至前述i*j個分區140,控制訊號S11~Sij每一者標號中的索引代表與其對應的分區140。例如,控制訊號S11會傳送至位於第1A圖左上角的分區140中所有畫素電路150;控制訊號Sij會傳送至位於第1A圖右下角的分區140中所有畫素電路150,依此類推。The multiple partitions 140 are arranged as a matrix with i rows and j columns, that is, there are i*j partitions 140 in total, where i and j are positive integers. The control signals S11˜Sij are sent to the aforementioned i*j partitions 140 respectively, and the index in each label of the control signals S11˜Sij represents the corresponding partition 140 . For example, the control signal S11 is sent to all the pixel circuits 150 in the partition 140 located in the upper left corner of FIG. 1A ; the control signal Sij is sent to all the pixel circuits 150 in the partition 140 located in the lower right corner of FIG. 1A , and so on.

第1B圖為依據本揭示文件一實施例的畫素電路150簡化後的電路示意圖。第1B圖繪示的是接收控制訊號Sij的分區140中的畫素電路150,可以理解的是,不同分區140中的畫素電路150可具有相同的電路結構但接收不同的控制訊號。畫素電路150包含電晶體151、152和153、脈衝寬度調變(PWM)訊號產生器154和發光元件155。電晶體151的控制端用於接收掃描訊號V scan,第一端用於接收資料電壓V data,第二端耦接於PWM訊號產生器154。電晶體152的控制端接收發光訊號V EM,第一端用於接收第一工作電壓V DD,第二端耦接於電晶體153的第一端,其中發光訊號V EM可由閘極驅動電路130或額外的閘極驅動電路所產生。電晶體153的控制端接收由PWM訊號產生器154輸出的輸出訊號V out,第一端耦接於電晶體152的第二端,第二端耦接於發光元件155的第一端。 FIG. 1B is a simplified schematic diagram of a pixel circuit 150 according to an embodiment of the disclosure. FIG. 1B shows the pixel circuits 150 in the partition 140 receiving the control signal Sij. It can be understood that the pixel circuits 150 in different partitions 140 may have the same circuit structure but receive different control signals. The pixel circuit 150 includes transistors 151 , 152 and 153 , a pulse width modulation (PWM) signal generator 154 and a light emitting element 155 . The control terminal of the transistor 151 is used for receiving the scan signal V scan , the first terminal is used for receiving the data voltage V data , and the second terminal is coupled to the PWM signal generator 154 . The control end of the transistor 152 receives the light emitting signal V EM , the first end is used to receive the first working voltage V DD , and the second end is coupled to the first end of the transistor 153 , wherein the light emitting signal V EM can be controlled by the gate drive circuit 130 or generated by additional gate drive circuitry. The control terminal of the transistor 153 receives the output signal V out output by the PWM signal generator 154 , the first terminal is coupled to the second terminal of the transistor 152 , and the second terminal is coupled to the first terminal of the light emitting element 155 .

在本實施例中,控制訊號S11~Sij為斜坡訊號。PWM訊號產生器154用於接收控制訊號Sij,並用於依據控制訊號Sij的斜率和資料電壓V data決定輸出訊號V out的脈波寬度,其中輸出訊號V out用於導通電晶體T153。因此,畫素電路150的發光時間長度相關於控制訊號Sij的斜率、資料電壓V data的大小以及輸出訊號V out的脈波寬度。 In this embodiment, the control signals S11˜Sij are ramp signals. The PWM signal generator 154 is used for receiving the control signal Sij, and is used for determining the pulse width of the output signal V out according to the slope of the control signal Sij and the data voltage V data , wherein the output signal V out is used to turn on the transistor T153. Therefore, the light-emitting time length of the pixel circuit 150 is related to the slope of the control signal Sij, the magnitude of the data voltage V data , and the pulse width of the output signal V out .

第2圖為依據本揭示文件一實施例的顯示驅動電路110的簡化後的功能方塊圖。顯示驅動電路110包含記憶體210和處理器220。記憶體210用於儲存多個分區140的多個補償資料Cm_11~Cm_ij,補償資料Cm_11~Cm_ij每一者標號中的索引代表與其對應的分區140。處理器220用於讀取多個補償資料Cm_11~Cm_ij以分別補償多個分區140的亮度。例如,處理器220可以依據補償資料Cm_11調整顯示資料Data_d,使得提供至第1A圖左上角分區140的多個資料電壓V data具有一共同的電壓修正量。又例如,處理器220可以依據補償資料Cm_ij調整顯示資料Data_d,使得提供至第1A圖右下角分區140的多個資料電壓V data具有另一共同的電壓修正量。 FIG. 2 is a simplified functional block diagram of the display driving circuit 110 according to an embodiment of the disclosure. The display driving circuit 110 includes a memory 210 and a processor 220 . The memory 210 is used to store a plurality of compensation data Cm_11 ˜ Cm_ij of a plurality of partitions 140 , and the index in each label of the compensation data Cm_11 ˜ Cm_ij represents the corresponding partition 140 . The processor 220 is used for reading a plurality of compensation data Cm_11˜Cm_ij to compensate brightness of the plurality of partitions 140 respectively. For example, the processor 220 can adjust the display data Data_d according to the compensation data Cm_11, so that the multiple data voltages V data provided to the upper left corner region 140 in FIG. 1A have a common voltage correction value. For another example, the processor 220 may adjust the display data Data_d according to the compensation data Cm_ij, so that the plurality of data voltages V data provided to the lower right corner region 140 in FIG. 1A have another common voltage correction value.

不同補償資料代表的電壓修正量正相關於不同分區140的電壓降(IR drop)。電壓降指的是第一工作電壓V DD(或第二工作電壓V SS)在電源線上傳遞時,因電源線的阻抗而產生的電壓下降量(或上升量)。在一些實施例中,位於第1A圖中越下方的分區140具有越大的電壓降。例如,補償資料Cm_ij對應的分區140的電壓降大於補償資料Cm_1j對應的分區140的電壓降,因而補償資料Cm_ij代表的電壓修正量大於補償資料Cm_1j代表的電壓修正量,依此類推,藉此能消除顯示面板100的亮度不均勻(mura)現象。然而,本揭示文件不以此為限,各個分區140的電壓降會因為實際上電源線的布置方式而有所不同。 The voltage correction amounts represented by different compensation data are directly related to the voltage drop (IR drop) of different partitions 140 . The voltage drop refers to the voltage drop (or rise) caused by the impedance of the power line when the first working voltage V DD (or the second working voltage V SS ) is transmitted on the power line. In some embodiments, the lower section 140 in FIG. 1A has a larger voltage drop. For example, the voltage drop of the subregion 140 corresponding to the compensation data Cm_ij is greater than the voltage drop of the subregion 140 corresponding to the compensation data Cm_1j, so the voltage correction amount represented by the compensation data Cm_ij is greater than the voltage correction amount represented by the compensation data Cm_1j, and so on. The brightness unevenness (mura) phenomenon of the display panel 100 is eliminated. However, the disclosed document is not limited thereto, and the voltage drop of each partition 140 will be different due to the actual layout of the power lines.

在一些實施例中,顯示面板100出廠前的亮度測試與校正過程會將補償資料Cm_11~Cm_ij寫入記憶體210。然而,隨著顯示面板100發光時整體所抽取的電流大小不同,區塊140的電壓降也會隨之變化。因此,出廠時已固定的補償資料Cm_11~Cm_ij可能會造成過補償或補償不足的現象,亦即有區塊140亮度過亮或過暗。因此,本揭示文件提供兩種補償亮度的方法400和600改善此問題,補償亮度的方法400和600將於後續段落配合第4圖和第6圖進行說明。為便於理解亮度補償方法400,以下先配合第3圖說明顯示面板100提供至第2圖的畫素電路150的控制訊號,以及第2圖的畫素電路150的運作。In some embodiments, the compensation data Cm_11˜Cm_ij are written into the memory 210 during the brightness test and calibration process before the display panel 100 leaves the factory. However, as the overall current drawn by the display panel 100 is different, the voltage drop of the block 140 will also change accordingly. Therefore, the fixed compensation data Cm_11˜Cm_ij may cause over-compensation or under-compensation, that is, the brightness of some blocks 140 is too bright or too dark. Therefore, this disclosure provides two brightness compensation methods 400 and 600 to improve this problem. The brightness compensation methods 400 and 600 will be described in the following paragraphs with reference to FIG. 4 and FIG. 6 . In order to facilitate the understanding of the brightness compensation method 400 , the control signal provided by the display panel 100 to the pixel circuit 150 in FIG. 2 and the operation of the pixel circuit 150 in FIG. 2 will be described below with reference to FIG. 3 .

第3圖為輸入第2圖的畫素電路150的訊號簡化後的波形示意圖。在第3圖的實施例中,電晶體151、152和153是P型電晶體。畫素電路150於一幀中的運作可區分成三個階段,分別為重置階段、掃描階段和發光階段T EM_Stage。第3圖中控制訊號Sij以虛線表示的波形為控制訊號Sij的預設波形,而以實線標示的波形為經過補償亮度的方法400調整後的波形,實際上輸出至畫素電路150的控制訊號Sij會具有以虛線標示的波形。 FIG. 3 is a simplified waveform diagram of the signal input to the pixel circuit 150 in FIG. 2 . In the embodiment of FIG. 3, transistors 151, 152 and 153 are P-type transistors. The operation of the pixel circuit 150 in one frame can be divided into three stages, which are the reset stage, the scan stage and the light emitting stage TEM_Stage . In FIG. 3, the waveform of the control signal Sij shown by the dotted line is the default waveform of the control signal Sij, and the waveform marked by the solid line is the waveform adjusted by the brightness compensation method 400, which is actually output to the control of the pixel circuit 150. The signal Sij will have a waveform marked with a dotted line.

請同時參考第2圖和第3圖,在重置階段,已加上電壓修正量的資料訊號V data會輸入PWM訊號產生器154。 Please refer to FIG. 2 and FIG. 3 at the same time. In the reset phase, the data signal V data with added voltage correction is input to the PWM signal generator 154 .

在掃描階段,畫素電路150可以偵測並補償電晶體153的臨界電壓變異,以使電晶體153產生的驅動電流I LED大小不受電晶體153的臨界電壓影響。補償臨界電壓變異之方法為所屬技術領域中具有通常知識者所熟知,故在此省略相關說明。 In the scanning phase, the pixel circuit 150 can detect and compensate the variation of the threshold voltage of the transistor 153 , so that the driving current I LED generated by the transistor 153 is not affected by the threshold voltage of the transistor 153 . The method of compensating the variation of the threshold voltage is well known to those skilled in the art, so the related description is omitted here.

在發光階段,控制訊號Sij會從初始電壓值V original開始下降,而當控制訊號Sij降低到小於資料電壓V data時,PWM訊號產生器154會使輸出訊號V out具有脈波以導通電晶體153而產生驅動電流I LED。由第3圖可知,控制訊號Sij調整後的波形會使輸出訊號V out的脈波寬度減少時間差Δt,亦即會使畫素電路150的發光時間長度縮短一個時間差Δt。藉由調整控制訊號Sij的斜率而控制時間差Δt,前述過補償或補償不足的問題便可獲得改善。以下將以第4圖詳細說明亮度補償的方法400調整控制訊號Sij的斜率之步驟。 In the light-emitting stage, the control signal Sij will start to drop from the initial voltage value V original , and when the control signal Sij drops below the data voltage V data , the PWM signal generator 154 will make the output signal V out have a pulse wave to turn on the transistor 153 And a driving current I LED is generated. It can be seen from FIG. 3 that the adjusted waveform of the control signal Sij will reduce the pulse width of the output signal V out by a time difference Δt, that is, the light emitting time of the pixel circuit 150 will be shortened by a time difference Δt. By controlling the time difference Δt by adjusting the slope of the control signal Sij, the aforementioned problems of over-compensation or under-compensation can be improved. The steps of adjusting the slope of the control signal Sij in the brightness compensation method 400 will be described in detail below with reference to FIG. 4 .

第4圖為依據本揭示文件一實施例的補償亮度的方法400的流程圖。以下將配合第2~4圖說明方法400。方法400透過調整一控制訊號(例如以下舉例的控制訊號Sij)的斜率,以避免與該控制訊號相對應的區塊140發生亮度過補償或補償不足的現象。然而,方法400可以被多次執行以調整所有控制訊號S11~Sij的斜率。方法400的特徵的任意組合或在此描述的其他方法可由儲存於非暫態電腦可讀取媒體或前述記憶體210中的多個指令來實現。當執行這些指令時,這些指令會使處理器220執行前述方法中任意者的部分或全部。應理解的是,在此描述的任何方法可包含相較於流程圖所示較多或較少的步驟,且方法中的步驟可以任何合適的順序執行。FIG. 4 is a flowchart of a method 400 for compensating brightness according to an embodiment of the disclosure. The method 400 will be described below with reference to FIGS. 2 to 4 . The method 400 adjusts the slope of a control signal (such as the control signal Sij exemplified below) to avoid brightness overcompensation or undercompensation of the block 140 corresponding to the control signal. However, the method 400 can be executed multiple times to adjust the slopes of all the control signals S11˜Sij. Any combination of features of method 400 or other methods described herein may be implemented by a plurality of instructions stored on a non-transitory computer readable medium or in memory 210 as described above. These instructions, when executed, cause the processor 220 to perform part or all of any of the aforementioned methods. It should be understood that any method described herein may contain more or fewer steps than shown in the flowcharts, and that steps in the method may be performed in any suitable order.

步驟S410為依據顯示面板100中所有畫素電路150的灰階值計算全域負載(可理解為顯示面板100中所有畫素電路150的平均灰階值),其中全域負載L g計算如《公式1》: 《公式1》 Step S410 is to calculate the global load based on the grayscale values of all pixel circuits 150 in the display panel 100 (which can be understood as the average grayscale value of all pixel circuits 150 in the display panel 100), wherein the global load L g is calculated as in <Formula 1 ": "Formula 1"

在《公式1》中,n pixel代表多個畫素電路150的數量,g i代表每個畫素電路150的灰階值,g max代表顯示面板100的最大灰階值,i為正整數。 In "Formula 1", n pixel represents the number of multiple pixel circuits 150, g i represents the grayscale value of each pixel circuit 150, g max represents the maximum grayscale value of the display panel 100, and i is a positive integer.

在一實施例中,顯示面板100的解析度為800x600,(亦即畫素數量為480000),灰階值範圍為0~255。每個畫素電路150的灰階值若為100,則全域負載L g為39.2%。 In one embodiment, the resolution of the display panel 100 is 800x600 (that is, the number of pixels is 480,000), and the gray scale value ranges from 0 to 255. If the grayscale value of each pixel circuit 150 is 100, the global load L g is 39.2%.

步驟S420為依據一個分區140的所有畫素電路150的灰階值計算局部負載L l(可理解該分區140中所有畫素電路150的平均灰階值),其中局部負載L l計算如《公式2》: 《公式2》 Step S420 is to calculate the local load L1 according to the grayscale values of all pixel circuits 150 in a subregion 140 (the average grayscale value of all pixel circuits 150 in the subregion 140 can be understood), wherein the local load L1 is calculated as "formula 2": "Formula 2"

在《公式2》中,n part_pixel代表該分區140中的畫素電路150數量,j為正整數。 In "Formula 2", n part_pixel represents the number of pixel circuits 150 in the partition 140, and j is a positive integer.

在一實施例中,一個分區140的畫素電路150數量為1000,顯示面板100的灰階值範圍為0~255,該分區140中每個畫素電路150的灰階值若為150,則局部負載L l為58.8%。 In one embodiment, the number of pixel circuits 150 in a partition 140 is 1000, and the grayscale value range of the display panel 100 is 0~255. If the grayscale value of each pixel circuit 150 in the partition 140 is 150, then The local load L l is 58.8%.

步驟S430為依據全域負載L g和一個分區140的局部負載L l自查找表獲取該分區140的現在負載電流I present和最重負載電流I max。在一實施例中,查找表可儲存於第2圖的記憶體210。現在負載電流I present可以理解為該分區140現在所有畫素電路150的驅動電流I LED的平均值。最重負載電流I max可以理解為顯示裝置100中所有畫素電路150顯示最高灰階時,該分區140的畫素電路150的驅動電流I LEDStep S430 is to obtain the current load current I present and the heaviest load current I max of a subregion 140 from the lookup table according to the global load L g and the local load L l of the subregion 140 . In one embodiment, the look-up table can be stored in the memory 210 of FIG. 2 . The current load current I present can be understood as the average value of the current driving current I LED of all the pixel circuits 150 in the partition 140 . The heaviest load current I max can be understood as the driving current I LED of the pixel circuits 150 in the subregion 140 when all the pixel circuits 150 in the display device 100 display the highest gray scale.

步驟S440為依據現在負載電流L l和最重負載電流I max計算負載電流差值ΔI,如《公式3》所示: 《公式3》 Step S440 is to calculate the load current difference ΔI based on the current load current L l and the heaviest load current I max , as shown in "Formula 3": "Formula 3"

步驟S450為依據負載電流差值ΔI調整控制訊號Sij的斜率,以下將透過公式推導來說明控制訊號Sij的斜率於調整前後之關係。Step S450 is to adjust the slope of the control signal Sij according to the load current difference ΔI. The relationship between the slope of the control signal Sij before and after adjustment will be described through formula derivation below.

首先,在考量該分區140的電壓降後,該分區140的一代表性之資料電壓V data可由《公式4》表示,其中初始電壓V original代表控制訊號Sij在發光階段開始時之電壓值: 《公式4》 First, after considering the voltage drop of the subregion 140, a representative data voltage V data of the subregion 140 can be expressed by "Equation 4", wherein the initial voltage V original represents the voltage value of the control signal Sij at the beginning of the light-emitting phase: "Formula 4"

請再參考第3圖,當控制訊號Sij下降至小於資料電壓V data時,畫素電路150便會開始發光。因此,藉由相似三角形關係,當控制訊號Sij的斜率未受調整時,畫素電路150的原始發光時間長度可由《公式5》表示: Please refer to FIG. 3 again, when the control signal Sij drops below the data voltage Vdata , the pixel circuit 150 will start to emit light. Therefore, by virtue of the similar triangle relationship, when the slope of the control signal Sij is not adjusted, the original light-emitting time length of the pixel circuit 150 can be expressed by <Formula 5>:

在上述公式中,T EM_original_on代表畫素電路150的原始發光時間長度,T EM_stage代表發光階段的總時間長度, In the above formula, T EM_original_on represents the original light-emitting time length of the pixel circuit 150, and T EM_stage represents the total time length of the light-emitting stage,

如前所述,控制訊號Sij的斜率調整會造成畫素電路150的發光時間長度縮短一個時間差Δt,此時間差Δt可以藉由現在負載電流I present和最重負載電流I max表示,如《公式6》所示: As mentioned above, the adjustment of the slope of the control signal Sij will cause the light-emitting time of the pixel circuit 150 to be shortened by a time difference Δt. This time difference Δt can be represented by the current load current I present and the heaviest load current I max , as shown in "Formula 6 "shown:

接著,當控制訊號Sij的斜率受調整後,該分區140中所有畫素電路150的一代表性發光時間長度可由《公式7》表示: Then, after the slope of the control signal Sij is adjusted, a representative light-emitting time length of all pixel circuits 150 in the partition 140 can be expressed by "Formula 7":

因此,控制訊號Sij調整前的斜率可表示為《公式8》,其中slope original表示控制訊號Sij調整前的斜率: Therefore, the slope of the control signal Sij before adjustment can be expressed as "Formula 8", where slope original represents the slope of the control signal Sij before adjustment:

控制訊號S_ij調整後的斜率可表示為《公式9》,其中slopeafter表示控制訊號Sij調整後的斜率: The adjusted slope of the control signal S_ij can be expressed as "Formula 9", where slopeafter represents the adjusted slope of the control signal Sij:

在全域負載L g較小時,整體面板的電壓降較小,使得流過畫素電路150的驅動電流I LED上升而可能發生過補償現象。不過,由《公式9》可知,上升的驅動電流I LED會使負載電流差值ΔI上升,使得控制訊號Sij的斜率上升(因控制訊號Sij的斜率為負值),進而使得畫素電路150的發光時間縮短以減少其亮度,因而能避免過補償現象。另一方面,在全域負載L g較大時,整體面板的電壓降較大,使得流過畫素電路150的驅動電流I LED較低,此時負載電流差值ΔI會下降而使得控制訊號Sij的斜率被適度下降,進而避免補償不足的現象。亦即,負載電流差值ΔI和控制訊號Sij的斜率呈正相關。 When the global load L g is small, the voltage drop of the entire panel is small, so that the driving current I LED flowing through the pixel circuit 150 increases, and an overcompensation phenomenon may occur. However, it can be known from "Equation 9" that the rising driving current I LED will increase the load current difference ΔI, which will increase the slope of the control signal Sij (because the slope of the control signal Sij is negative), thereby making the pixel circuit 150 The light emitting time is shortened to reduce its brightness, thus avoiding overcompensation phenomenon. On the other hand, when the global load L g is large, the voltage drop across the entire panel is large, so that the driving current I LED flowing through the pixel circuit 150 is low, and the load current difference ΔI will decrease at this time, so that the control signal Sij The slope of is reduced moderately, thereby avoiding the phenomenon of undercompensation. That is, the load current difference ΔI is positively correlated with the slope of the control signal Sij.

第5圖為第2圖中畫素電路150的控制訊號簡化後的波形示意圖。在第5圖的實施例中,電晶體151、152和153是P型電晶體,且控制訊號S11~Sij為時脈訊號。畫素電路150的運作區分成三個階段,分別為重置階段、掃描階段和發光階段 T EM_Stage。第5圖中控制訊號Sij以一點虛線表示的波形為控制訊號Sij的預設波形,而以實線標示的波形為經過補償亮度的方法600調整後的波形,實際上輸出至畫素電路150的控制訊號Sij會具有以實線標示的波形。第5圖的重置階段和掃描階段之運作內容皆與第3圖所述相同,在此不重複贅述。 FIG. 5 is a simplified waveform diagram of the control signal of the pixel circuit 150 in FIG. 2 . In the embodiment of FIG. 5 , the transistors 151 , 152 and 153 are P-type transistors, and the control signals S11˜Sij are clock signals. The operation area of the pixel circuit 150 is divided into three stages, which are respectively a reset stage, a scan stage and a light emitting stage TEM_Stage . The waveform of the control signal Sij shown by a dotted line in FIG. 5 is the default waveform of the control signal Sij, and the waveform marked by a solid line is the waveform adjusted by the brightness compensation method 600, which is actually output to the pixel circuit 150. The control signal Sij will have a waveform marked with a solid line. The operation contents of the reset stage and the scan stage in Fig. 5 are the same as those described in Fig. 3, and will not be repeated here.

在發光階段,當控制訊號Sij具有連續脈波時,PWM訊號產生器154會令輸出訊號V out具有脈波而導通電晶體153以產生驅動電流I LED。由第5圖可知,控制訊號Sij於發光階段中具有預定數量(例如4個)的脈波,且控制訊號Sij調整後的波形之頻率較高,因而會使輸出訊號V out的脈波寬度減少時間差Δt,亦即會使畫素電路150的發光時間長度縮短一個時間差Δt。 In the lighting phase, when the control signal Sij has continuous pulses, the PWM signal generator 154 will make the output signal V out have pulses and turn on the transistor 153 to generate the driving current I LED . It can be seen from FIG. 5 that the control signal Sij has a predetermined number (for example, 4) of pulses in the light-emitting phase, and the frequency of the adjusted waveform of the control signal Sij is relatively high, thus reducing the pulse width of the output signal V out The time difference Δt, that is, shortens the light emitting time of the pixel circuit 150 by a time difference Δt.

換言之,若控制訊號Sij的頻率變高代表畫素電路150的發光時間長度會縮短,而若控制訊號Sij的頻率變低代表畫素電路150的發光時間長度會延長。藉由調整控制訊號Sij的頻率而控制時間差Δt,前述過補償或補償不足的問題便可獲得改善。以下將以第6圖詳細說明亮度補償的方法600調整控制訊號Sij的頻率之步驟。In other words, if the frequency of the control signal Sij becomes higher, the light-emitting time of the pixel circuit 150 will be shortened, and if the frequency of the control signal Sij is lower, the light-emitting time of the pixel circuit 150 will be extended. By adjusting the frequency of the control signal Sij to control the time difference Δt, the aforementioned problems of over-compensation or under-compensation can be improved. The steps of adjusting the frequency of the control signal Sij in the brightness compensation method 600 will be described in detail below with reference to FIG. 6 .

第6圖為依據本揭示文件一實施例的補償亮度的方法600的流程圖。其中方法600透過調整控制訊號Sij的頻率,以改善亮度過補償或補償不足的現象。然而,方法600可以被多次執行以調整所有控制訊號S11~Sij的斜率。方法600的特徵的任意組合或在此描述的其他方法可由儲存於非暫態電腦可讀取媒體或前述記憶體210中的多個指令來實現。當執行這些指令時,這些指令會使處理器220執行前述方法中任意者的部分或全部。應理解的是,在此描述的任何方法可包含相較於流程圖所示較多或較少的步驟,且方法中的步驟可以任何合適的順序執行。FIG. 6 is a flowchart of a method 600 for compensating brightness according to an embodiment of the disclosure. The method 600 adjusts the frequency of the control signal Sij to improve the brightness over-compensation or under-compensation phenomenon. However, the method 600 can be executed multiple times to adjust the slopes of all the control signals S11˜Sij. Any combination of features of method 600 or other methods described herein may be implemented by a plurality of instructions stored on a non-transitory computer readable medium or in memory 210 as described above. These instructions, when executed, cause the processor 220 to perform part or all of any of the aforementioned methods. It should be understood that any method described herein may contain more or fewer steps than shown in the flowcharts, and that steps in the method may be performed in any suitable order.

步驟S610為依據顯示面板100中所有畫素電路150的灰階值計算全域負載L g,其中計算全域負載的方式如同步驟S410,在此不重複贅述。 Step S610 is to calculate the global load L g according to the gray scale values of all the pixel circuits 150 in the display panel 100 , wherein the calculation method of the global load is the same as step S410 , and will not be repeated here.

步驟S620為依據一個分區140的所有畫素電路150的灰階值計算局部負載,其中計算局部負載的方式如同步驟S420,在此不重複贅述。Step S620 is to calculate the local load according to the grayscale values of all the pixel circuits 150 in a partition 140 , wherein the calculation method of the local load is the same as that of step S420 , and will not be repeated here.

步驟S630為依據全域負載和局部負載自查找表獲取一個分區140的現在負載電流I present和最重負載電流I maxStep S630 is to obtain the present load current I present and the heaviest load current I max of a partition 140 from the lookup table according to the global load and the local load.

步驟S640為依據現在負載電流I present和最重負載電流I max計算負載電流差值ΔI,其中負載電流差值ΔI的計算方式如同步驟S440,在此不重複贅述。 Step S640 is to calculate the load current difference ΔI according to the current load current I present and the heaviest load current I max , wherein the calculation method of the load current difference ΔI is the same as step S440 , and will not be repeated here.

步驟S650為依據負載電流差值ΔI調整控制訊號Sij的頻率,以下將透過公式推導來說明控制訊號Sij的頻率於調整前後之關係。Step S650 is to adjust the frequency of the control signal Sij according to the load current difference ΔI. The relationship between the frequency of the control signal Sij before and after adjustment will be described through formula derivation below.

畫素電路150調整後的發光時間長度可以藉由現在負載電流I present和最重負載電流I max計算,如《公式10》所示: 《公式10》 The adjusted light-emitting time length of the pixel circuit 150 can be calculated by the current load current I present and the heaviest load current I max , as shown in "Formula 10": "Formula 10"

控制訊號Sij的頻率與發光時間長度成反比,如《公式11》所示: 《公式11》 The frequency of the control signal Sij is inversely proportional to the length of the light emitting time, as shown in "Formula 11": "Formula 11"

在《公式11》中,freq original代表控制訊號Sij調整前的頻率,而freq after代表控制訊號Sij調整後的頻率。 In "Formula 11", freq original represents the frequency of the control signal Sij before adjustment, and freq after represents the frequency of the control signal Sij after adjustment.

由《公式11》可知,上升的驅動電流I LED會使負載電流差值ΔI上升,使得控制訊號Sij的頻率上升,進而使得畫素電路150的發光時間縮短以減少其亮度,因而能避免過補償現象。另一方面,在全域負載L g較大時,整體面板的電壓降較大,使得流過畫素電路150的驅動電流I LED較低,此時負載電流差值ΔI會下降而使得控制訊號Sij的頻率被適度降低,進而避免補償不足的現象。亦即,負載電流差值ΔI和控制訊號Sij的頻率呈正相關。 It can be seen from "Formula 11" that the rising driving current I LED will increase the load current difference ΔI, which will increase the frequency of the control signal Sij, thereby shortening the light-emitting time of the pixel circuit 150 to reduce its brightness, thereby avoiding overcompensation Phenomenon. On the other hand, when the global load L g is large, the voltage drop across the entire panel is large, so that the driving current I LED flowing through the pixel circuit 150 is low, and the load current difference ΔI will decrease at this time, so that the control signal Sij The frequency is reduced moderately, thereby avoiding the phenomenon of undercompensation. That is, the load current difference ΔI is positively correlated with the frequency of the control signal Sij.

第7圖為輸入畫素電路150的訊號簡化後的波形示意圖。第7圖的訊號波形適用於畫素電路150的電晶體151、152和153以N型電晶體實現的實施例。因此,資料電壓V data、控制訊號Sij、掃描訊號V scan和發光訊號V EM具有與第4圖中的對應訊號反向的波形。 FIG. 7 is a schematic diagram of simplified waveforms of signals input to the pixel circuit 150 . The signal waveform in FIG. 7 is applicable to the embodiment in which the transistors 151 , 152 and 153 of the pixel circuit 150 are realized by N-type transistors. Therefore, the data voltage V data , the control signal Sij, the scan signal V scan and the light emitting signal V EM have waveforms opposite to those of the corresponding signals in FIG. 4 .

在第7圖的實施例中,控制訊號Sij以實線表示的波形為控制訊號Sij的預設波形,而以虛線標示的波形為經過前述方法400調整後的波形,實際上輸出至畫素電路150的控制訊號Sij會具有以虛線標示的波形。由第7圖可知,若電流差值ΔI上升,則控制訊號Sij的斜率應下降(控制訊號Sij的斜率為正值)以減少畫素電路150的發光時間,而若電流差值ΔI下降,則控制訊號Sij的斜率應上升。亦即,當方法400應用於以N型電晶體製作的畫素電路150時,方法400可適應性地修正,以使電流差值ΔI與控制訊號Sij的斜率兩者呈負相關。In the embodiment of FIG. 7, the waveform indicated by the solid line of the control signal Sij is the default waveform of the control signal Sij, and the waveform indicated by the dotted line is the waveform adjusted by the aforementioned method 400, which is actually output to the pixel circuit. The control signal Sij of 150 will have a waveform marked with a dotted line. It can be seen from FIG. 7 that if the current difference ΔI increases, the slope of the control signal Sij should decrease (the slope of the control signal Sij is positive) to reduce the lighting time of the pixel circuit 150, and if the current difference ΔI decreases, then The slope of the control signal Sij should increase. That is, when the method 400 is applied to the pixel circuit 150 made of N-type transistors, the method 400 can be adaptively modified so that the current difference ΔI and the slope of the control signal Sij are negatively correlated.

另一方面,當方法600應用於以N型電晶體製作的畫素電路150時,其電流差值ΔI與控制訊號Sij的頻率兩者之間的關係仍可保持正相關,故不重複贅述。On the other hand, when the method 600 is applied to the pixel circuit 150 made of N-type transistors, the relationship between the current difference ΔI and the frequency of the control signal Sij can still maintain a positive correlation, so details will not be repeated.

在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。Certain terms are used in the specification and claims to refer to particular elements. However, those skilled in the art should understand that the same element may be called by different terms. The description and the scope of the patent application do not use the difference in the name as the way to distinguish the components, but the difference in the function of the components as the basis for the distinction. The term "comprising" mentioned in the specification and scope of patent application is an open term, so it should be interpreted as "including but not limited to". In addition, "coupling" here includes any direct and indirect connection means. Therefore, if it is described that the first element is coupled to the second element, it means that the first element can be directly connected to the second element through electrical connection or signal connection means such as wireless transmission or optical transmission, or through other elements or connections. The means are indirectly electrically or signally connected to the second element.

在此所使用的「及/或」的描述方式,包含所列舉的其中之一或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的涵義。The description of "and/or" used herein includes any combination of one or more of the listed items. In addition, unless otherwise specified in the specification, any singular term also includes plural meanings.

以上僅為本揭示文件的較佳實施例,凡依本揭示文件請求項所做的均等變化與修飾,皆應屬本揭示文件的涵蓋範圍。The above are only preferred embodiments of this disclosure document, and all equivalent changes and modifications made according to the requirements of this disclosure document shall fall within the scope of this disclosure document.

Data_v:影像資料 Data_d:顯示資料 100:顯示面板 110:顯示驅動電路 120:源極驅動器 130:閘極驅動器 140:分區 150:畫素電路 GS:控制時脈訊號 V data:資料電壓 V scan:掃描訊號 V EM:發光訊號 S11~Sij:控制訊號 151,152,153:電晶體 154:脈衝寬度調變訊號產生器 155:發光元件 V DD:第一工作電壓 V SS:第二工作電壓 I LED:驅動電流 210:記憶體 220:處理器 Cm_11~Cm_ij:補償資料 V out:輸出訊號 V original:初始電壓值 400,600:方法 S410,S420,S430,S440,S450,S610,S620,S630,S640,S650:步驟 Δt:時間差 T EM_stage:發光階段的總時間長度 T EM_original_on:畫素電路原始發光時間長度 T EM_after_on:發光時間長度 Data_v: image data Data_d: display data 100: display panel 110: display drive circuit 120: source driver 130: gate driver 140: partition 150: pixel circuit GS: control clock signal V data : data voltage V scan : scan Signal V EM : light emitting signal S11~Sij: control signal 151, 152, 153: transistor 154: pulse width modulation signal generator 155: light emitting element V DD : first operating voltage V SS : second operating voltage I LED : driving current 210: Memory 220: processors Cm_11~Cm_ij: compensation data V out : output signal V original : initial voltage value 400,600: method S410, S420, S430, S440, S450, S610, S620, S630, S640, S650: step Δt: time difference T EM_stage : the total time length of the light-emitting stage T EM_original_on : the original light-emitting time length of the pixel circuit T EM_after_on : the light-emitting time length

第1A圖為依據本揭示文件一實施例的顯示面板簡化後的功能方塊圖。 第1B圖為依據本揭示文件一實施例的畫素電路簡化後的電路示意圖。 第2圖為依據本揭示文件一實施例的顯示驅動電路的簡化後的功能方塊圖。 第3圖為輸入第2圖的畫素電路的訊號簡化後的波形示意圖。 第4圖為依據本揭示文件一實施例的補償亮度的方法的流程圖。 第5圖為第2圖中畫素電路的控制訊號簡化後的波形示意圖。 第6圖為依據本揭示文件一實施例的補償亮度的方法的流程圖。 第7圖為輸入畫素電路的訊號簡化後的波形示意圖。 FIG. 1A is a simplified functional block diagram of a display panel according to an embodiment of the disclosure. FIG. 1B is a simplified schematic diagram of a pixel circuit according to an embodiment of the disclosure. FIG. 2 is a simplified functional block diagram of a display driving circuit according to an embodiment of the disclosure. FIG. 3 is a simplified waveform diagram of a signal input to the pixel circuit in FIG. 2 . FIG. 4 is a flowchart of a method for compensating brightness according to an embodiment of the disclosure. FIG. 5 is a simplified waveform diagram of the control signal of the pixel circuit in FIG. 2 . FIG. 6 is a flowchart of a method for compensating brightness according to an embodiment of the disclosure. FIG. 7 is a schematic diagram of simplified waveforms of signals input to the pixel circuit.

Data_v:影像資料 Data_v: image data

Data_d:顯示資料 Data_d: display data

100:顯示面板 100: display panel

110:顯示驅動電路 110: Display drive circuit

120:源極驅動器 120: source driver

130:閘極驅動器 130: Gate driver

140:分區 140: partition

150:畫素電路 150: Pixel circuit

Vdata:資料電壓 V data : data voltage

Vscan:掃描訊號 V scan : scan signal

S11~Sij:控制訊號 S11~Sij: control signal

Claims (10)

一種顯示驅動電路,用於控制一顯示面板,其中該顯示面板包含形成多個分區的多個畫素電路,每個分區包含該多個畫素電路的一部分畫素電路,該顯示驅動電路包含: 一記憶體,用於儲存該多個分區的多個補償資料;以及 一處理器,用於讀取多個補償資料以分別補償該多個分區的亮度,且不同補償資料代表的電壓修正量正相關於不同分區的電壓降; 其中,該處理器還用於: 依據該多個畫素電路的灰階值計算一全域負載; 依據該多個分區中的一第一分區的該部分畫素電路的灰階值計算一局部負載;以及 依據該全域負載和該局部負載,將該第一分區接收的一控制訊號的一原始斜率調整為一調整後的斜率,以控制該第一分區的一發光時間長度。 A display driving circuit for controlling a display panel, wherein the display panel includes a plurality of pixel circuits forming a plurality of partitions, each partition includes a part of the pixel circuits of the plurality of pixel circuits, and the display driving circuit includes: a memory for storing multiple compensation data of the multiple partitions; and A processor for reading a plurality of compensation data to respectively compensate the brightness of the plurality of subregions, and the voltage correction amounts represented by different compensation data are positively related to the voltage drop of different subregions; Among other things, the processor is also used for: calculating a global load according to the grayscale values of the plurality of pixel circuits; calculating a local load according to the gray scale value of the part of the pixel circuit in a first partition of the plurality of partitions; and According to the global load and the local load, an original slope of a control signal received by the first subregion is adjusted to an adjusted slope, so as to control a light-emitting time length of the first subregion. 如請求項1所述之顯示驅動電路,其中,該全域負載由以下方程式得到: 其中L g代表該全域負載,n pixel代表該多個畫素電路的數量,g i代表該顯示面板中每個畫素電路的灰階值,g max代表該顯示面板的最大灰階值,i為正整數;以及 其中該局部負載由以下方程式得到: 其中L l代表該局部負載,n part_pixel代表該部分畫素電路的數量,g j代表該第一分區中每個畫素電路的灰階值,j為正整數。 The display driving circuit as described in Claim 1, wherein the global load is obtained by the following equation: Where L g represents the global load, n pixel represents the number of the multiple pixel circuits, g i represents the gray scale value of each pixel circuit in the display panel, g max represents the maximum gray scale value of the display panel, i is a positive integer; and where the partial load is obtained by the following equation: Where L l represents the partial load, n part_pixel represents the number of pixel circuits in this part, g j represents the grayscale value of each pixel circuit in the first partition, and j is a positive integer. 如請求項1所述之顯示驅動電路,其中,該處理器還用於: 依據該全域負載和該局部負載從一查找表獲得該第一分區的一現在負載電流和一最重負載電流,並依據該現在負載電流和該最重負載電流計算一負載電流差值,且依據該負載電流差值調整該控制訊號的斜率。 The display driving circuit as described in claim 1, wherein the processor is also used for: Obtaining a current load current and a heaviest load current of the first partition from a lookup table according to the global load and the local load, and calculating a load current difference according to the current load current and the heaviest load current, and according to The load current difference adjusts the slope of the control signal. 如請求項3所述之顯示驅動電路,其中,該控制訊號的該調整後的斜率由以下方程式得到: 其中slope original代表該原始斜率,slope after代表該調整後的斜率,ΔI代表該負載電流差值,I present代表該現在負載電流,L g代表該全域負載,L l代表該局部負載。 The display driving circuit as described in claim 3, wherein the adjusted slope of the control signal is obtained by the following equation: Among them, slope original represents the original slope, slope after represents the adjusted slope, ΔI represents the load current difference, I present represents the current load current, L g represents the global load, and L l represents the local load. 一種補償亮度的方法,適用於一顯示驅動電路,其中該顯示驅動電路用於控制一顯示面板,該顯示面板包含形成多個分區的多個畫素電路,每個分區包含該多個畫素電路的一部分畫素電路,該顯示驅動電路還用於存取多個補償資料以分別補償該多個分區的亮度,不同補償資料代表的電壓修正量正相關於不同分區的電壓降,該方法包含: 依據該多個畫素的灰階值計算一全域負載; 依據該多個分區中的一第一分區的該部分畫素電路的灰階值計算一局部負載; 依據該全域負載和該局部負載自一查找表獲取該第一分區的一現在負載電流和一最重負載電流; 依據該現在負載電流和該最重負載電流計算一負載電流差值;以及 依據該負載電流差值,將該第一分區接收的一控制訊號的一原始斜率調整為一調整後的斜率,以控制該第一分區的一發光時間長度。 A method for compensating brightness, suitable for a display driving circuit, wherein the display driving circuit is used to control a display panel, the display panel includes a plurality of pixel circuits forming a plurality of partitions, each partition includes the plurality of pixel circuits A part of the pixel circuit, the display driving circuit is also used to access a plurality of compensation data to respectively compensate the brightness of the plurality of partitions, the voltage correction amount represented by different compensation data is positively related to the voltage drop of different partitions, the method includes: calculating a global load according to the grayscale values of the plurality of pixels; calculating a local load according to the gray scale value of the part of the pixel circuit in a first partition of the plurality of partitions; Obtain a current load current and a heaviest load current of the first partition from a lookup table according to the global load and the local load; calculating a load current difference according to the current load current and the heaviest load current; and According to the load current difference, an original slope of a control signal received by the first subregion is adjusted to an adjusted slope, so as to control a light-emitting time length of the first subregion. 如請求項5所述之方法,其中,該全域負載由以下方程式得到: 其中L g代表該全域負載,n pixel代表該多個畫素電路的數量, g i代表該顯示面板中每個畫素電路的灰階值,g max代表該顯示面板的最大灰階值,i為正整數;以及 其中該局部負載由以下方程式得到: 其中L l代表該局部負載,n part_pixel代表該部分畫素電路的數量,g j代表該第一分區中每個畫素電路的灰階值,j為正整數。 The method as described in claim item 5, wherein the global load is obtained by the following equation: Wherein L g represents the global load, n pixel represents the number of the plurality of pixel circuits, g i represents the gray scale value of each pixel circuit in the display panel, g max represents the maximum gray scale value of the display panel, i is a positive integer; and where the partial load is obtained by the following equation: Where L l represents the partial load, n part_pixel represents the number of pixel circuits in this part, g j represents the grayscale value of each pixel circuit in the first partition, and j is a positive integer. 如請求項5所述之方法,其中,該控制訊號的該調整後斜率由以下方程式得到: 其中slope original代表該原始斜率,slope after代表該調整後的斜率,ΔI代表該負載電流差值,I present代表該現在負載電流,L g代表該全域負載,L l代表該局部負載。 The method as described in claim 5, wherein the adjusted slope of the control signal is obtained by the following equation: Among them, slope original represents the original slope, slope after represents the adjusted slope, ΔI represents the load current difference, I present represents the current load current, L g represents the global load, and L l represents the local load. 一種補償亮度的方法,適用於一顯示驅動電路,該顯示驅動電路用於控制一顯示面板,該顯示面板包含形成多個分區的多個畫素電路,每個分區包含該多個畫素電路的一部分畫素電路,該顯示驅動電路還用於存取多個補償資料以分別補償該多個分區的亮度,且不同補償資料代表的電壓修正量正相關於不同分區的電壓降,該方法包含: 依據該多個畫素電路的灰階值計算一全域負載; 依據該多個分區中的一第一分區的該部分畫素電路的灰階值計算一局部負載; 依據該全域負載和該局部負載自一查找表獲取該第一分區的一現在負載電流和一最重負載電流; 依據該現在負載電流和該最重負載電流計算一負載電流差值;以及 依據該負載電流差值,將該第一分區接收的一控制訊號的一原始頻率調整為一調整後的頻率,以控制該第一分區的一發光時間長度。 A method for compensating brightness, suitable for a display driving circuit, the display driving circuit is used to control a display panel, the display panel includes a plurality of pixel circuits forming a plurality of partitions, each partition includes a plurality of pixel circuits A part of the pixel circuit, the display driving circuit is also used to access a plurality of compensation data to respectively compensate the brightness of the plurality of partitions, and the voltage correction amount represented by different compensation data is positively related to the voltage drop of different partitions, the method includes: calculating a global load according to the grayscale values of the plurality of pixel circuits; calculating a local load according to the gray scale value of the part of the pixel circuit in a first partition of the plurality of partitions; Obtain a current load current and a heaviest load current of the first partition from a lookup table according to the global load and the local load; calculating a load current difference according to the current load current and the heaviest load current; and According to the load current difference, an original frequency of a control signal received by the first subregion is adjusted to an adjusted frequency, so as to control a light-emitting time length of the first subregion. 如請求項8所述之方法,其中,該全域負載由以下方程式得到: 其中L g代表該全域負載,n pixel代表該多個畫素電路的數量,g i代表該顯示面板中每個畫素電路的灰階值,g max代表該顯示面板的最大灰階值,i為正整數;以及 其中該局部負載由以下方程式得到: 其中L l代表該局部負載,n part_pixel代表該部分畫素電路的數量,g j代表該第一分區中每個畫素電路的灰階值,j為正整數。 The method as described in claim item 8, wherein the global load is obtained by the following equation: Where L g represents the global load, n pixel represents the number of the multiple pixel circuits, g i represents the gray scale value of each pixel circuit in the display panel, g max represents the maximum gray scale value of the display panel, i is a positive integer; and where the partial load is obtained by the following equation: Where L l represents the partial load, n part_pixel represents the number of pixel circuits in this part, g j represents the grayscale value of each pixel circuit in the first partition, and j is a positive integer. 如請求項8所述之方法,其中,該控制訊號的該調整後的頻率由下方程式得到: 其中ΔI代表該負載電流差值,I present代表該現在負載電流,freq original代表該原始頻率,freq after代表該調整後的頻率。 The method as claimed in claim 8, wherein the adjusted frequency of the control signal is obtained by the following equation: Among them, ΔI represents the load current difference, I present represents the current load current, freq original represents the original frequency, and freq after represents the adjusted frequency.
TW110147974A 2021-12-21 2021-12-21 Display driving circuit and method of brightness compensation thereof TWI800172B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110147974A TWI800172B (en) 2021-12-21 2021-12-21 Display driving circuit and method of brightness compensation thereof
CN202210505756.6A CN114758614B (en) 2021-12-21 2022-05-10 Display driving circuit and brightness compensation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110147974A TWI800172B (en) 2021-12-21 2021-12-21 Display driving circuit and method of brightness compensation thereof

Publications (2)

Publication Number Publication Date
TWI800172B TWI800172B (en) 2023-04-21
TW202326680A true TW202326680A (en) 2023-07-01

Family

ID=82335651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110147974A TWI800172B (en) 2021-12-21 2021-12-21 Display driving circuit and method of brightness compensation thereof

Country Status (2)

Country Link
CN (1) CN114758614B (en)
TW (1) TWI800172B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590102B1 (en) * 2004-06-21 2006-06-14 삼성에스디아이 주식회사 Plasma display device and drving method thereof
KR101769120B1 (en) * 2010-08-10 2017-08-18 삼성디스플레이 주식회사 Display device and driving method thereof
TWI471657B (en) * 2012-03-28 2015-02-01 Innocom Tech Shenzhen Co Ltd Liquid crystal display device
KR102110584B1 (en) * 2013-10-15 2020-05-14 삼성디스플레이 주식회사 Organic light emitting display device
CN104464626B (en) * 2014-12-12 2016-10-05 京东方科技集团股份有限公司 Organic electroluminescence display device and method of manufacturing same and method
KR20180058266A (en) * 2016-11-23 2018-06-01 삼성디스플레이 주식회사 Display device and method of compensating luminance of the same
CN108281110B (en) * 2018-01-12 2020-03-10 深圳市华星光电半导体显示技术有限公司 Brightness compensation method and related product
KR102654549B1 (en) * 2019-09-02 2024-04-04 주식회사 엘엑스세미콘 Data Driving Device For Determining Faulty Bonding And Display Device Including The Same
KR102654419B1 (en) * 2019-12-19 2024-04-05 주식회사 엘엑스세미콘 Image data processing apparatus and display device for implementing local dimming
KR20210085301A (en) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 Display device and driving method of the same
WO2021227051A1 (en) * 2020-05-15 2021-11-18 华为技术有限公司 Pixel compensation method and apparatus, and electronic device
TWI740705B (en) * 2020-11-05 2021-09-21 友達光電股份有限公司 Display device
TWI739658B (en) * 2020-11-10 2021-09-11 聯詠科技股份有限公司 Image processing method

Also Published As

Publication number Publication date
TWI800172B (en) 2023-04-21
CN114758614B (en) 2024-02-27
CN114758614A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
KR101517035B1 (en) Organic light emitting diode display device and method of driving the same
US20150103105A1 (en) Display apparatus, method of driving the same, and portable terminal including the same
KR102544572B1 (en) Display apparatus
US11600217B2 (en) Optical compensation system and optical compensation method of display device
US11386855B2 (en) Voltage control circuit and power supply voltage control method, and display device
KR20210007455A (en) Display driving circuit, display device comprising thereof and operating method of display driving circuit
KR20180014406A (en) Method of driving display panel and display apparatus for performing the same
KR20190128017A (en) Driving voltage setting device, method of setting driving voltage for display device, and display device
US11244617B1 (en) Display device and driving method of the same
US11961457B2 (en) Display device
US8289253B2 (en) Method of driving display device to control over-current, circuit of driving display device using the method and display device having the same
KR20170081123A (en) Organic Light Emitting Display Device and Method of Driving the same
CN112289254A (en) Display device
CN114694579B (en) Display panel and display device
KR20190064200A (en) Display device
CN113838407A (en) Apparatus and method for controlling display panel
US12033595B2 (en) Data processing device for compensating for data and display device
TW202326680A (en) Display driving circuit and method of brightness compensation thereof
KR20220026661A (en) Display device and method of driving the same
TWI828319B (en) Display driving integrated circuit and driving parameter adjustment method thereof
CN115831049A (en) Luminance degradation compensation method, luminance degradation compensation device and display device
TW202345132A (en) Display device
KR20220115714A (en) Display device
US11823608B2 (en) Display device and driving method thereof
US10909932B2 (en) Display apparatus and method of driving display panel using the same