Nothing Special   »   [go: up one dir, main page]

TW202316470A - 帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法 - Google Patents

帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法 Download PDF

Info

Publication number
TW202316470A
TW202316470A TW111123143A TW111123143A TW202316470A TW 202316470 A TW202316470 A TW 202316470A TW 111123143 A TW111123143 A TW 111123143A TW 111123143 A TW111123143 A TW 111123143A TW 202316470 A TW202316470 A TW 202316470A
Authority
TW
Taiwan
Prior art keywords
sample
alignment
beamlets
charged particle
array
Prior art date
Application number
TW111123143A
Other languages
English (en)
Inventor
歐文 史羅特
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202316470A publication Critical patent/TW202316470A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1471Arrangements for directing or deflecting the discharge along a desired path for centering, aligning or positioning of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1501Beam alignment means or procedures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20292Means for position and/or orientation registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本文中揭示一種在一帶電粒子評估系統中對準一樣品之方法。該系統包含用於支撐一樣品之一支撐件,且經組態以沿著一多射束路徑將一多射束中之帶電粒子投射朝向一樣品,該多射束包含一小射束配置,且回應於該多射束之一對應小射束而偵測自該樣品發射之信號粒子。該方法包含:將該帶電粒子多射束沿著該多射束路徑引導朝向該樣品之一對準特徵,使得該帶電粒子多射束之視野囊括該對準特徵;偵測自該樣品發射之該等信號粒子;基於對該等信號粒子之該偵測而產生表示該對準特徵之一資料集;及使用該資料集判定該樣品相對於該多射束路徑的一全域對準。

Description

帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法
本文中所提供之實施例大體而言係關於一種帶電粒子評估系統及一種在一帶電粒子評估系統中對準一樣品之方法。
在製造半導體積體電路(IC)晶片時,在製作程序期間,由於例如光學效應及入射粒子,在基板(亦即晶圓)或遮罩上不可避免地出現非所要圖案缺陷,從而降低良率。因此,監測非所要圖案缺陷的程度為IC晶片製造中之重要程序。更一般而言,基板或其他物件/材料之表面的檢測及/或量測係其製造期間及/或之後的重要程序。
諸如具有帶電粒子射束之圖案檢測工具的評估工具已用於檢測物件,例如偵測圖案缺陷。一些此類工具通常使用電子顯微鏡技術,諸如掃描電子顯微鏡(SEM)。在SEM中,藉助最終減速步驟以處於相對高能量的初級電子射束為目標,以便以相對低著陸能量著陸在樣品上。電子射束經聚焦為樣品上之探測位點。探測位點處之材料結構與來自電子射束之著陸電子之間的交互作用致使自表面發射電子,諸如次級電子、反向散射電子或歐傑電子。可自樣品之材料結構發射所產生次級電子。藉由掃描在樣品表面上方作為探測位點之初級電子射束,可橫跨樣品之表面發射次級電子。藉由自樣品表面收集此等發射次級電子,圖案檢測工具可獲得表示樣品之表面之材料結構的特性的影像。
為了執行評估,諸如樣品的檢測,樣品相對於至少一個電子射束路徑對準。樣品對準包含兩個步驟。在第一步驟(全域對準或粗對準)中,相對於電子射束中之一或多者之路徑對準樣品,即驗證樣品置放精度。(注意,多射束之每一小射束可具有一路徑,並且多射束本身可被認為具有一路徑,其中多射束之小射束在聚焦於樣品上時在樣品表面上方具有所要的空間關係)。樣品在樣品支撐件上之樣品定位以500微米或更小的精度實現。在全域對準中,可更準確地判定樣品在樣品支撐件上的定位,例如約一百奈米。在第二步驟(精細對準或局域對準)中,相對於電子射束中之一或多者之路徑對準樣品之表面的特徵。可以例如約一奈米的精度實現精細對準。在實現精細對準之後,樣品相對於一或多個電子射束之路徑的相對位置對於評估而言係足夠準確的,諸如開始檢測樣品。
判定樣品相對於電子射束路徑的全域對準。可使用光學感測器或光學顯微鏡執行對SEM中之樣品的全域對準。藉助此方法,將光學感測器/顯微鏡置放儘可能靠近於SEM。因此,光學感測器/顯微鏡在檢測工具中佔據有限的空間。需要校準SEM與光學感測器/顯微鏡之間的位置,此會影響樣品產出量及對準精度。此類校準之精度可隨時間而變化及漂移。期望快速、準確且成本高效地執行樣品與SEM的全域對準。
本揭示內容之一目的係提供支援改良判定樣品與帶電粒子評估系統之多射束路徑的全域對準的實施例。
根據本發明之第一態樣,提供一種在帶電粒子評估系統中對準樣品之方法,該帶電粒子評估系統包含用於支撐樣品之支撐件,該評估系統經組態以沿著多射束路徑將多射束中之帶電粒子投射朝向樣品,多射束包含小射束配置,並且經組態以回應於多射束之對應小射束而偵測自樣品發射之信號粒子,該方法包含:將帶電粒子多射束沿著多射束路徑引導朝向樣品之對準特徵,使得帶電粒子多射束之視野囊括對準特徵;偵測自樣品發射之信號粒子;基於對信號粒子之偵測而產生表示對準特徵之資料集;及使用資料集來判定樣品相對於多射束路徑的全域對準。
根據本發明之第二態樣,提供一種帶電粒子評估系統,其經組態以將帶電粒子多射束投射朝向包含對準特徵之樣品,多射束包含沿著多射束路徑引導之小射束配置,該系統包含:支撐件,其用於支撐樣品;光學系統,其用於將帶電粒子多射束投射朝向樣品,該光學系統包含:物鏡陣列,其經組態以將呈小射束配置之帶電粒子多射束引導朝向樣品,及偵測器陣列,其與物鏡陣列相關聯且經組態以回應於多射束之對應小射束而偵測自樣品發射之信號粒子;控制系統,其經組態以控制光學系統以將帶電粒子多射束引導朝向囊括對準特徵之視野中之對準特徵;及處理系統,其經組態以基於偵測信號粒子而產生表示對準特徵之資料集及根據表示對準特徵之資料集判定樣品相對於至少一個電子光學柱的全域對準。
自以下結合附圖的描述中,本發明之優點將變得顯而易見,其中藉由說明及實例闡述了本發明之某些實施例。
現在將詳細地參考例示性實施例,該等實施例之實例在隨附圖式中說明。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同數字表示相同或相似的元件。在例示性實施例的以下描述中闡述的實施方案並不表示與本發明一致的所有實施方案。替代地,其僅為與如所附申請專利範圍中之與本發明相關的態樣一致的設備及方法的實例。
電子裝置之計算能力的增強,減少了裝置的物理大小,此可藉由顯著地增加IC晶片上之諸如電晶體、電容器、二極體等電路組件之封裝密度來實現。此係藉由提高的解析度實現的,從而使得能夠製造較小的結構。舉例而言,拇指甲大小且在2019年或更早可獲得的智慧型手機之IC晶片可包括超過20億個電晶體,每一電晶體之大小不到人類頭髮的1/1000。因此,半導體IC製造係複雜且耗時的程序(具有數百個單獨的步驟)就不足為奇。甚至在一個步驟中之誤差有可能劇烈地影響最終產品的功能。僅一個「致命缺陷」即可導致裝置故障。製造程序之目標係改良程序之整體良率。舉例而言,欲獲得50步程序之75%的良率(其中步驟可指示在晶圓上形成的層的數目),每一個別步驟必須具有大於99.4%的良率。若每一個別步驟具有95%的良率,則整個程序良率將低至7%。
雖然IC晶片製造設施中期望高程序良率,但維持高基板(亦即,晶圓)產出量(定義為每小時處理的基板的數目)亦為很重要。缺陷的存在可影響高程序良率及高基板產出量。若需要操作員介入來再檢測缺陷,則上述情形尤其為真。因此,藉由檢測工具(諸如掃描電子顯微鏡(「SEM」))對微米及奈米級缺陷的高產出量偵測及識別對於維持高良率及低成本係很重要的。
SEM包含掃描裝置及偵測器設備。掃描裝置包含照明設備,該照明設備包含用於產生初級電子之電子源,及用於用初級電子之一或多個聚焦射束掃描諸如基板之樣品的投射設備。至少照明設備或照明系統及投射設備或投射系統可一起被稱為電子光學系統或設備。初級電子與樣品交互作用並產生次級電子。當掃描樣品時,偵測設備自樣品捕獲次級電子,以使得SEM可創建樣品之掃描區之影像。對於高產出量檢測,檢測裝置中之一些使用初級電子之多個聚焦射束,亦即多射束。多射束之組件射束可被稱為子射束或小射束。多射束可同時掃描樣品之不同部分。多射束檢測設備因此可以比單射束檢測設備高得多的產出量或短得多的時間檢測樣品。即使個別射束的掃描可具有比單個射束較緩慢的速度,多射束(亦即,被認為單個掃描裝置)之淨掃描速度仍較快。
下文描述已知多射束檢測設備之實施方案。
諸圖為示意性的。因此為了清楚起見放大圖式中之組件的相對尺寸。在以下圖式描述中,相同或相似的參考編號係指相同或相似的組件或實體,且僅描述相對於個別實施例的不同之處。雖然描述及圖式針對電子光學設備,但應瞭解,實施例並不用於將本揭示內容限制於特定帶電粒子。因此,貫穿本文件的對電子的引用可更一般而言被認為係對帶電粒子的引用,其中帶電粒子不一定係電子。
現在參考 1,其為說明例示性帶電粒子射束檢測設備100的示意圖。 1之帶電粒子射束檢測設備100包括主腔室10、裝載鎖定腔室20、電子射束工具40、設備前端模組(EFEM)30及控制器50。電子射束工具40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。舉例而言,第一裝載埠30a及第二裝載埠30b可接收欲被檢測的含有基板(例如,半導體基板或由其他材料製成的基板)或樣品(基板、晶圓及樣品在下文中統稱為「樣品」)的基板前開式晶圓傳送盒(front opening unified pod,FOUP)。EFEM 30中之一或多個機器人臂(未示出)將樣品輸送至裝載鎖定腔室20。
裝載鎖定腔室20用於移除樣品周圍的氣體。此會產生真空,該真空係低於周圍環境壓力之局域氣壓。裝載鎖定腔室20可連接至裝載鎖定真空泵系統(未示出),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(未示出)將樣品自裝載鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(未示出)。主腔室真空泵系統移除主腔室10中之氣體粒子,以使得樣品周圍中之壓力達到低於第一壓力之第二壓力。在達到第二壓力之後,樣品輸送至電子射束工具,藉由該電子射束工具可對樣品進行檢測。諸如定位臂之機器人臂可將樣品置放於樣品架上。電子射束工具40可包含多射束電子光學設備。
控制器50電子連接至電子射束工具40。控制器50可為經組態以控制帶電粒子射束檢測設備100的處理器(諸如電腦)。控制器50亦可包括經組態以執行各種信號及影像處理功能的處理電路系統。雖然控制器50在 1中經示出為在包括主腔室10、裝載鎖定腔室20及EFEM 30的結構外部,但應瞭解控制器50可為該結構之一部分。控制器50可位於帶電粒子射束檢測設備之組件元件中之一者中,或其可分佈在組件元件中之至少兩者上方。雖然本揭示內容提供容納電子射束檢測工具之主腔室10之實例,但應注意,本揭示內容之各態樣在其最廣泛的意義上並不限於容納電子射束檢測工具之腔室。相反,應瞭解,前述原理亦可應用於在第二壓力下操作的其他工具及其他設備配置。
現在參考 2,其為說明例示性電子射束工具40的示意圖,該例示性電子射束工具包括作為 1之例示性帶電粒子射束檢測設備100之一部分的多射束檢測工具。多射束電子射束工具40 (在本文中亦被稱為設備40)包含電子源201、投射設備230、電動載物台209及樣品架207 (或樣品支撐件)。電子源201及投射設備230可一起被稱為照明設備。樣品架207由電動載物台209支撐,以便固持樣品208 (例如,基板或遮罩)以進行檢測。多射束電子射束工具40進一步包含偵測器陣列240 (例如電子偵測裝置)。
電子源201可包含陰極(未示出)及擷取器或陽極(未示出)。在操作期間,電子源201經組態以自陰極發射電子作為初級電子。初級電子由擷取器及/或陽極提取或加速以形成初級電子射束202。
投射設備230經組態以將初級電子射束202轉換成複數個子射束211、212、213並將每一子射束引導至樣品208上。儘管為了簡單起見說明三個子射束,但可存在數十、數百或數千或數萬個子射束。子射束可被稱為小射束。此類大量子射束可產生在樣品上具有較大視野的子射束之多射束配置,尤其數百子射束及更多子射束之多射束配置。
控制器50可連接至 1之帶電粒子射束檢測設備100之各種部分,諸如電子源201、偵測器陣列240、投射設備230及電動載物台209。控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制信號來主控帶電粒子射束檢測設備之操作,包括帶電粒子多射束設備。
投射設備230可經組態以將子射束211、212及213聚焦至樣品208上以進行檢測並且可在樣品208之表面上形成三個探測位點221、222及223。投射設備230可經組態以偏轉初級子射束211、212及213以橫跨樣品208之表面之區段中之個別掃描區掃描探測位點221、222及223。回應於初級子射束211、212及213入射於樣品208上之探測位點221、222及223上,自樣品208產生電子,該等電子包括次級電子及反向散射電子。次級電子通常具有≤ 50 eV之電子能量,且反向散射電子通常具有在50 eV與初級子射束211、212及213之著陸能量之間之電子能量。
偵測器陣列240經組態以偵測次級電子及/或反向散射電子並產生對應信號,該等信號被發送至信號處理系統280,例如以構建樣品208之對應掃描區之影像。偵測器陣列240可併入至投射設備230中。替代地,如在 7中所示,偵測器陣列240可與投射設備230分離,其中提供次級光學柱以將次級電子及/或反向散射電子引導至電子偵測裝置。
信號處理系統280可包含經組態以處理來自偵測器陣列240的信號以便形成影像的電路。信號處理系統280可與投射設備230分離,如在 2中所示,或可併入在投射設備230中。信號處理系統280可併入至柱之組件中,諸如偵測器陣列240。替代地,信號處理系統280可併入至控制器50中。影像處理系統280可包括影像獲取器(未示出)及儲存裝置(未示出)。舉例而言,影像處理系統可包含處理器、電腦、伺服器、大型主機、終端機、個人電腦、任何種類的行動計算裝置及其類似物,或其組合。影像獲取器可包含控制器之處理功能之至少一部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可以通信方式耦合至准許信號通信之偵測器陣列240,諸如導電體、光纖纜線、可攜式儲存媒體、IR、藍芽、網際網路、無線網路、無線電及其他,或其組合。影像獲取器可自偵測器陣列240接收信號,可處理信號中所包含的資料並且可由此構建影像。影像獲取器因此可獲取樣品208之影像。影像獲取器亦可執行各種後處理功能,諸如產生輪廓,在所獲取影像上疊加指示符,及其類似物。影像獲取器可經組態以對所獲取影像執行亮度及對比度等的調整。儲存器可為諸如硬碟、隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似物的儲存媒體。儲存器可與影像獲取器耦合,並且可用於將經掃描原始影像資料保存為原始影像及經後處理影像。
影像獲取器可基於自偵測器陣列240接收之成像信號獲取樣品之一或多個影像。成像信號可對應於用於進行帶電粒子成像的掃描操作。所獲取影像可為包含複數個成像區之單個影像。單個影像可儲存在儲存器中。單個影像可為可被劃分成複數個區域的原始影像。區域中之每一者可包含一個成像區,該成像區含有樣品208之特徵。每一成像區可對應於由各別子射束211至213產生之次級電子。所獲取影像可包含在一時間段內多次採樣的樣品208之單個成像區之多個影像。多個影像可儲存在儲存器中。影像處理系統可經組態以對樣品208之相同位置之多個影像執行影像處理步驟。
影像處理系統可包括量測電路系統(例如,類比轉數位轉換器)以獲得所偵測到次級電子的分佈。在偵測時間窗口期間收集之電子分佈資料可與入射在樣品表面上之初級子射束211、212及213中之每一者之對應掃描路徑資料組合使用,以重建經檢測之樣品結構之影像。所重建影像可用於揭示樣品208之內部或外部結構的各種特徵。從而,所重建影像可用於揭示樣品中可存在的任何缺陷。
控制器50可控制電動載物台209以在樣品208之檢測期間移動樣品208。控制器50可使得電動載物台209能夠至少在樣品檢測期間沿一方向較佳地連續地(例如以恆定速度)移動樣品208。控制器50可控制電動載物台209之移動,以使得其取決於各種參數改變樣品208之移動的速度。舉例而言,控制器50可取決於掃描程序之檢測步驟之特性來控制載物台速度(包括其方向)。
評估工具可為對樣品進行定性評估(例如通過/失敗)的工具、對樣品進行定量量測(例如特徵之大小)的工具或產生樣品之映圖之影像的工具。評估工具之實例係檢測工具(例如,用於識別缺陷)、審查工具(例如,用於分類缺陷)及計量工具,或能夠執行與檢測工具、審查工具或計量工具(例如,計量-檢測工具)相關聯的評估功能性之任一組合的工具。電子射束設備40可為評估系統之組件;諸如檢測工具或計量-檢測工具,或電子射束微影工具之一部分。本文中對工具的任何引用旨在涵蓋裝置、設備或系統,該工具包含各種組件,該等組件可搭配或可不搭配,且其甚至可位於單獨的空間中,尤其係例如用於資料處理元件。
3為包括電子射束工具40之評估工具的示意圖。電子源201將電子引導朝向形成投射系統230之一部分的聚光透鏡231陣列。期望地,電子源201係在亮度與總發射電流之間具有良好折衷的高亮度熱場發射器。可存在數十個、數百個或數千個或數萬個聚光透鏡231。聚光透鏡231可包含多電極透鏡並且具有基於EP1602121A1的構造,特定而言該文件特此以引用的方式併入至將電子射束分裂成複數個子射束的透鏡陣列的揭示內容,其中陣列為每一子射束提供透鏡。聚光透鏡231陣列可採取至少兩個板的形式,充當電極,其中每一板中之孔徑彼此對準並且對應於子射束之位置。板中之至少兩者在操作期間維持處於不同的電位以實現所要的透鏡效應。電壓源經組態以向各別電極施加電位。又一電壓源可連接至樣品208以施加電位。可相對於樣品208及/或源201定義電位。
在一配置中,聚光透鏡231陣列由三個板陣列形成,其中帶電粒子在其進入及離開每一透鏡時具有相同能量,該配置可被稱為單透鏡(Einzel lens)。因此,色散僅發生在單透鏡本身內(在透鏡之入口電極與出口電極之間),藉此限制了離軸色差。當聚光透鏡之厚度較小時,例如數mm,此類像差具有較小或可忽略不計的效應。
陣列中之每一聚光透鏡231將電子引導至各別子射束211、212、213中,該子射束聚焦在各別中間焦點處。子射束相對於彼此發散。子射束路徑在聚光透鏡231下游發散。在一實施例中,偏轉器235設置在中間焦點處。偏轉器235定位在小射束路徑中在對應中間焦點233或聚焦點(亦即聚焦之點)之位置處或至少在該位置周圍。偏轉器定位於相關聯子射束之中間影像平面處的小射束路徑中或靠近於其。偏轉器235經組態以對各別子射束211、212、213進行操作。偏轉器235經組態以使各別小射束211、212、213彎曲一定量,該量有效地確保主光線(其亦可被稱為射束軸線)大體上法向地(亦即,以與樣品之標稱表面成大體上90°)入射於樣品208上。偏轉器235亦可被稱為準直器或準直器偏轉器。偏轉器235實際上使小射束之路徑準直,以使得在偏轉器之前,小射束路徑相對於彼此發散。在偏轉器之下游,小射束路徑相對於彼此大體上平行,亦即大體上準直。合適的準直器係在2020年2月7日提交的EP申請案20156253.5中所揭示的偏轉器,該EP申請案特此關於將偏轉器應用於多射束陣列的以引用的方式併入本文中。
在偏轉器235下面(亦即,在源201下游或遠離該源),存在控制透鏡陣列250,該控制透鏡陣列包含用於每一子射束211、212、213之控制透鏡。控制透鏡陣列250可包含連接至各別電位源之三個板電極陣列。控制透鏡陣列250之功能係相對於射束縮小率最佳化射束張角及/或控制遞送至物鏡234之射束能量,物鏡中之每一者將各別子射束211、212、213引導至樣品208上。
為了便於說明,透鏡陣列在本文中由橢圓形陣列示意性地描繪。每一橢圓形表示透鏡陣列中之透鏡中之一者。橢圓形通常用於表示透鏡,類似於光學透鏡中經常採用的雙凸面形式。然而,在諸如本文中所論述之帶電粒子配置的上下文中,將理解透鏡陣列通常將以靜電方式操作,且因此可不需要採用雙凸面形狀之任何物理元件。透鏡陣列可替代地包含多個具有孔徑之板。
視情況,掃描偏轉器陣列260設置在控制透鏡陣列250與物鏡234陣列之間。掃描偏轉器陣列260包含用於每一子射束211、212、213之掃描偏轉器。每一掃描偏轉器經組態以在一個或兩個方向上偏轉各別子射束211、212、213,以便在一個或兩個方向上橫跨樣品208掃描子射束。
偵測器陣列240經設置以偵測自樣品208發射之次級及/或反向散射電子。在一實施例中,偵測器陣列240在物鏡234與樣品208之間。然而,舉例而言,偵測器陣列240之其他位置亦為可能的,諸如在物鏡陣列中(參見例如2020年7月6日提交的EP申請案20184160.8,至少就透鏡內偵測器而言,其通過引用併入本文中),在如 5中所示之透鏡上面且在與如 7中所示之初級柱分開設定的次級柱中。本文中描述偵測器陣列240之例示性構造。
物鏡陣列241可經組態以將電子射束縮小到小於1/10,期望地在1/100至1/50的範圍內或更小。物鏡陣列241可包含中間電極、下部電極及上部電極。電極中之每一者設置有對應於每一子射束的孔徑,各別子射束穿過該孔徑傳播。下部電極之電位可類似於樣品208之電位。因此,對於三個電極,物鏡陣列可為單透鏡陣列。物鏡陣列可以減速透鏡為特徵,其可適用於偵測次級信號粒子。物鏡陣列之另一配置可具有加速透鏡,此可適合於偵測反向散射信號粒子。可省略電極中之一者。在物鏡陣列之雙電極配置中,物鏡陣列包含下部電極及上部電極。僅具有兩個電極的物鏡陣列240可具有比具有更多電極之物鏡陣列240更低的像差。三電極物鏡可在電極之間具有更大的電位差,且因此實現更強透鏡。額外電極(亦即多於兩個電極)為控制電子軌跡提供額外的自由度,例如聚焦次級電子以及入射射束。有利地,此兩電極透鏡陣列上之電位差使得其能夠用作減速或加速透鏡陣列。在一實施例中,物鏡陣列241中之每一元件為微透鏡,其操作多射束中之不同小射束或小射束群組。物鏡陣列241具有至少兩個板,每一板具有複數個孔或孔徑。板中之每一孔之位置對應於另一板中之對應孔之位置。對應孔在使用中對多射束中之相同小射束或小射束群組進行操作。用於陣列中之每一元件的透鏡類型的合適實例為雙電極減速透鏡。
在一些實施例中,物鏡陣列總成之偵測器陣列240位於物鏡陣列241之至少一個電極下游。在一實施例中,偵測器(例如偵測器模組)之至少一部分與物鏡陣列241毗鄰及/或與物鏡陣列241整合。舉例而言,偵測器陣列可藉由將CMOS晶片偵測器整合至物鏡陣列之底部電極中來實施。將偵測器陣列整合至物鏡陣列241或初級柱之其他組件中更換次級柱。CMOS晶片較佳地定向為面向樣品(因為晶圓與電子光學系統之底部之間的小距離(例如200 μm或更小、100 μm或更小或50 μm或更小))。
在一實施例中,偵測器陣列240包含基板404,該基板提供複數個偵測器元件,每一偵測器元件環繞射束孔徑。每一偵測器元件對應於多射束配置之子射束。每一偵測器元件可包含以例如圍繞各別射束孔徑之扇區及/或同心環孔為特徵的圖案配置之子部分。射束孔徑及偵測器元件配置成對應於多射束配置的陣列,該陣列可為矩形陣列、六角形陣列或任何合適的圖案及其變化形式。偵測器元件可包含面向下游之表面。偵測器元件可形成偵測器陣列240之最底部(亦即最靠近於樣品208)表面。在偵測器元件與基板之主體之間設置邏輯層。影像處理系統之至少一部分可併入至邏輯層407中。影像處理系統之整合部分可執行影像處理系統之功能之至少一部分。邏輯層可包含體現影像處理系統之至少一部分的電路60之至少一部分。邏輯層可包括放大器,例如跨阻抗放大器(TIA)、類比至數位轉換器及讀出邏輯。佈線層408設置在基板404之背面上或其內,並藉由穿基板通孔409連接至邏輯層407。佈線層408可包括控制線、資料線及電力線。印刷電路板及/或其他半導體晶片可設置在偵測器陣列240之至少一部分上,例如其背面。偵測器陣列240之元件可使用CMOS工藝製造,其中偵測器元件405形成最終金屬化層。整合至物鏡中之偵測器模組之更多細節及替代配置可在歐洲申請案第20184160.8號中找到,至少就整合至諸如物鏡的電子光學組件中之偵測器陣列及元件而言,該文件以引用的方式併入至本文中。
在一些實施例中,帶電粒子評估工具進一步包含減少子射束中之一或多個像差之一或多個像差校正器。在一實施例中,至少一子組像差校正器中之每一者定位於中間焦點中之各別者中或直接毗鄰於中間焦點中之各別者(例如,在中間影像平面中或毗鄰於中間影像平面)。子射束在諸如中間平面之焦平面中或在該焦平面附近具有最小剖面面積。與在別處(亦即,中間平面之上游或下游)可用相比(或與將在不具有中間影像平面之替代配置中可用相比),上述情形為像差校正器提供更多空間。
在一實施例中,定位於中間焦點(或中間影像平面)中或直接毗鄰於中間焦點(或中間影像平面)之像差校正器包含偏轉器,以校正對於不同射束似乎處於不同位置處之源201。可使用校正器來校正由源導致的巨觀像差,該等巨觀像差會妨礙每一子射束與對應物鏡之間的良好對準。
像差校正器可校正妨礙恰當柱對準之像差。此類像差亦可導致子射束與校正器之間的對準偏差(misalignment)。出於此原因,可期望另外或替代地將像差校正器定位於聚光透鏡231處或其附近(例如,其中每一此類像差校正器與聚光透鏡231中之一或多者整合,或直接毗鄰於該等聚光透鏡中之一或多者)。上述情形係期望的,此係因為在聚光透鏡231處或其附近,像差將不會導致對應子射束之移位,此係因為聚光透鏡豎直地靠近射束孔徑或與射束孔徑重合。然而,將校正器定位於聚光透鏡處或其附近的挑戰在於,相對於更遠下游之位置,子射束在此位置處各自具有相對較大的剖面面積及相對較小的節距。像差校正器可為如EP2702595A1中所揭示之基於CMOS的個別可程式化偏轉器或如EP2715768A2中所揭示之多極偏轉器陣列,其中兩個文件中對小射束操縱器的描述特此以引用的方式併入本文中。
在一些實施例中,至少一子組像差校正器中之每一者與物鏡234中之一或多者整合,或直接毗鄰於該等物鏡中之一或多者。在一實施例中,此等像差校正器減少以下各項中之一或多者:場曲率;對焦誤差;及像散。另外或替代地,一或多個掃描偏轉器(未示出)可與物鏡234中之一或多者整合或直接毗鄰於該等物鏡中之一或多者,以在樣品208上方掃描子射束211、212、213。在一實施例中,可使用US 2010/0276606中所描述之掃描偏轉器,該文件以全文引用的方式併入本文中。
物鏡陣列總成可進一步包含控制透鏡陣列250。控制透鏡陣列250包含複數個控制透鏡。每一控制透鏡包含連接至各別電位源之至少兩個電極(例如,兩個或三個或多於三個電極)。控制透鏡陣列250可包含連接至各別電位源之兩個或多於兩個(例如三個)板電極陣列。控制透鏡陣列250與物鏡陣列241相關聯(例如,兩個陣列彼此靠近定位及/或彼此機械連接及/或作為一個單元一起控制)。控制透鏡陣列250定位於物鏡陣列241之上游。控制透鏡預聚焦子射束(例如,在子射束到達物鏡陣列241之前對子射束施加聚焦動作)。預聚焦可減少子射束之發散度或增加子射束之收斂速率。控制透鏡陣列250及物鏡陣列241一起操作以提供組合焦距。無中間焦點之組合操作可減少像差的風險。
在一實施例中,包含物鏡陣列總成之電子光學系統經組態以控制物鏡總成(例如,藉由控制施加至控制透鏡陣列250之電極的電位)使得控制透鏡之焦距大於控制透鏡陣列250與物鏡陣列241之間的分離。控制透鏡陣列250與物鏡陣列241因此可相對靠近地定位在一起,其中來自控制透鏡陣列250之聚焦作用太弱而不能在控制透鏡陣列250與物鏡陣列241之間形成中間焦點。在其他實施例中,物鏡陣列總成可經組態以在控制透鏡陣列250與物鏡陣列241之間形成中間焦點。
在一實施例中,控制透鏡陣列係可互換模組,可單獨使用或與諸如物鏡陣列及/或偵測器陣列的其他元件組合。可互換模組經組態以在電子光學工具40內係可更換的。在一實施例中,可互換模組經組態為可現場更換。可現場更換旨在意指模組可被移除並更換為相同或不同的模組,同時維持電子光學工具40所位於的真空。在一實施例中,多個可互換模組包含在工具內並且可在可操作位置與不可操作位置之間交換而無需打開工具。
用於可互換模組的電子光學工具40的部分係可隔離的,亦即電子光學工具40之部分由可互換模組之閥上游及閥下游界定。可操作閥以將閥之間的環境分別與閥之上游及下游真空隔離,從而使得可互換模組能夠自電子光學工具40移除,同時在與可互換模組相關聯之柱之部分之上游及下游維持真空。
在一實施例中,可互換模組包含電子光學組件,該電子光學組件位於允許致動以定位組件的載物台上。在一實施例中,可互換模組包含載物台。在一配置中,載物台及可互換模組可為電子光學工具40之整體部分。在一配置中,可互換模組僅限於載物台及其所支撐之電子光學裝置。在一配置中,載物台係可移除的。在替代設計中,包含載物台之可互換模組係可移除的。該載物台經組態以相對於射束路徑支撐電子光學裝置。在一實施例中,模組包含一或多個致動器。致動器與載物台相關聯。致動器經組態以相對於射束路徑移動電子光學裝置。此類致動可用於使電子光學裝置及射束路徑相對於彼此對準。
控制透鏡陣列250可與物鏡陣列241在相同的模組中,亦即形成物鏡陣列總成或物鏡配置,或其可在單獨模組中。
可提供電源以將各別電位施加至控制透鏡陣列250之控制透鏡及物鏡陣列241之物鏡的電極。
除了物鏡陣列241之外,提供控制透鏡陣列250為控制子射束之性質提供額外的自由度。即使當控制透鏡陣列250及物鏡陣列241相對靠近地設置在一起時亦提供額外的自由度,例如使得在控制透鏡陣列250與物鏡陣列241之間不形成中間焦點。控制透鏡陣列250可用於相對於射束之縮小最佳化射束張角及/或控制遞送至物鏡陣列241之射束能量。控制透鏡可包含2個或3個或更多個電極。若存在兩個電極,則縮小率及著陸能量一起控制。若存在三個或更多電極,則可獨立控制縮小率與著陸能量。控制透鏡因此可經組態以調整各別子射束的縮小率及/或射束張角(例如,使用電源將合適的各別電位施加至控制透鏡及物鏡的電極)。此最佳化可在對物鏡的數目具有過度負面影響的情況下且在不會過度惡化物鏡之像差(例如,不增加物鏡之強度)的情況下實現。
4為具有物鏡陣列總成之例示性電子光學系統41的示意圖。物鏡陣列總成包含物鏡陣列241。物鏡陣列241包含複數個物鏡。為了簡明起見,上文已描述之電子光學系統41及物鏡陣列241之特徵,例如參考如關於 3所描述且在圖3中所示的電子光學系統40 ,在此可不再重複。
4之實施例中,電子光學系統包含源201。源201提供帶電粒子(例如,電子)射束。聚焦在樣品208上之多射束係自由源201提供之射束導出。子射束可源自射束,例如,使用界定射束限制孔徑陣列之射束限制器。期望地,源201係在亮度與總發射電流之間具有良好折衷的高亮度熱場發射器。在所示之實例中,準直器設置在物鏡陣列總成之上游。準直器可包含大型準直器270。在射束被分裂成多射束之前,大型準直器270作用於來自源201之射束。大型準直器270使射束之各別部分彎曲一定量,該量有效地確保自射束導出之子射束中之每一者的射束軸大體上法向地(亦即與樣品208之標稱表面成大體上90°)入射於樣品208上。大型準直器270將大型準直應用於射束。大型準直器270因此可作用於所有射束,而非包含一準直器元件陣列,每一準直器元件經組態以作用於射束之不同個別部分。大型準直器270可包含一磁性透鏡或磁性透鏡配置,該磁性透鏡配置包含複數個磁性透鏡子單元(例如,形成一多極配置之複數個電磁體)。替代或另外地,大型準直器可至少部分地以靜電方式實施。大型準直器可包含靜電透鏡或包含複數個靜電透鏡子單元的靜電透鏡配置。大型準直器270可使用磁性及靜電透鏡的組合。在另一配置(未示出)中,大型準直器可部分地或全部地被在上游限制器之下游的準直器元件陣列更換。每一準直器元件準直各別子射束。準直器元件陣列可為源201之下游之射束路徑中之第一偏轉或聚焦電子光學陣列元件。準直器元件陣列可位於控制透鏡陣列250之上游。
4之實施例中,提供大型掃描偏轉器265以致使子射束掃描在樣品208上。大型掃描偏轉器265偏轉射束之各別部分以致使子射束掃描在樣品208上。在一實施例中,大型掃描偏轉器265包含一大型多極偏轉器,例如具有八個或更多極。偏轉諸如致使在一個方向(例如平行於單個軸,諸如X軸)上或在兩個方向(例如相對於兩個不平行的軸,諸如X及Y軸)上橫跨樣品208掃描自射束導出之子射束。大型掃描偏轉器265大體地作用於所有射束。大型掃描偏轉器265設置在大型準直器270與控制透鏡陣列250之間。在另一配置中,掃描偏轉器陣列與物鏡陣列相關聯。掃描偏轉器陣列可位於物鏡陣列241之上游。掃描偏轉器陣列可位於控制透鏡陣列250之下游。每一掃描偏轉器對多射束配置的相關聯子射束進行操作。
本文中所描述之物鏡陣列總成中之任一者可進一步包含一偵測器陣列240。偵測器陣列240偵測自樣品208發射的帶電粒子。偵測到的帶電粒子可包括由SEM偵測到的帶電粒子中之任一者,包括自樣品208發射之次級及/或反向散射電子。
5示意性地描繪根據實施例之電子射束工具40。與上文所描述之彼等特徵相同的特徵被賦予相同的參考編號。為了簡明起見,此等特徵不參考 5詳細描述。舉例而言,源201、聚光透鏡231、大型準直器270、物鏡陣列241及樣品208可如上文所描述。
如上文所描述,在一實施例中,偵測器陣列240位於物鏡陣列241與樣品208之間。偵測器陣列240可面向樣品208。在不同的實施例中,如在 5中所示,在一實施例中,包含複數個物鏡的物鏡陣列241位於偵測器陣列240與樣品208之間。
在一實施例中,偏轉器陣列95位於偵測器陣列240與物鏡陣列241之間。在一實施例中,偏轉器陣列95包含韋恩濾光器,以使得偏轉器陣列可被稱為射束分離器。偏轉器陣列95經組態以提供磁場以將投射至樣品208之帶電粒子與來自樣品208之次級電子分開。韋恩濾光器可為呈陣列的形式,以使得韋恩濾光器在橫跨多射束配置之一或多個小射束線上單獨操作。亦即,在一實施例中,韋恩濾光器可為大型韋恩濾光器,在多射束配置之所有小射束之路徑周圍具有孔徑。在另一配置中,韋恩濾光器可具有兩個或多於兩個孔徑,每一孔徑環繞多射束配置之小射束之一或多個路徑線。
在一實施例中,偵測器陣列240經組態以參考帶電粒子的能量(亦即取決於帶隙)來偵測帶電粒子。此類偵測器可被稱為間接電流偵測器。自樣品208發射之次級電子自電極之間的場獲得能量。次級電極一旦其到達偵測器陣列240就具有足夠的能量。
6 5中所示的電子射束工具40之一部分的近視圖。在一實施例中,偵測器陣列240包含電子至光子轉換器陣列91。電子至光子轉換器陣列91包含複數個螢光條92。每一螢光條92位於電子至光子轉換器陣列91的平面中。至少一個螢光條92配置在兩個毗鄰的向樣品208投射的帶電粒子射束之間。
在一實施例中,螢光條92大體上沿水平方向延伸。替代地,電子至光子轉換器陣列91可包含具有用於投射的帶電粒子射束之開口93的螢光材料板。
投射的帶電粒子射束,在 6中用虛線指示,投射穿過電子至光子轉換器陣列91之平面,經由螢光條92之間的開口93,朝向偏轉器陣列95。
在一實施例中,例如韋恩濾光器的偏轉器陣列95包含磁性偏轉器96及靜電偏轉器97。在磁偏轉器96及靜電偏轉器97中之每一者係複數個孔徑,每一孔徑環繞橫跨多射束配置之至少一個小射束路徑線的路徑。靜電偏轉器97經組態以抵消磁性偏轉器96的偏轉,以使投射的帶電粒子射束傳輸朝向樣品208。因此,投射的帶電粒子射束可在水平面中小範圍地移位。在偏轉器陣列95之下游之射束大體上平行於在偏轉器陣列95之上游之射束。
在一實施例中,物鏡陣列241包含用於將在樣品208中產生的次級電子導引朝向偏轉器陣列95的複數個板。對於相對於所投射帶電粒子射束以相反方向行進的次級電子,靜電偏轉器97不抵消磁偏轉器96的偏轉。相反,靜電偏轉器97及磁偏轉器96對次級電子的偏轉相加。因此,次級電子被偏轉以相對於光軸以一定角度行進,以便將次級電子傳輸至偵測器陣列240之螢光條92上。靜電及磁性偏轉器陣列因此用作韋恩濾光器,以使得帶電粒子之射束路徑在一個方向(例如朝向樣品之主要方向)上大體上不受干擾。帶電粒子之射束路徑在例如信號粒子之遠離樣品之另一方向上大體上偏離電子光軸。偏轉的信號粒子可由偵測器陣列(例如螢光條92)偵測。
在螢光條92處,在次級電子之入射時產生光子。在一實施例中,光子經由光子輸送單元自螢光條92輸送至光電偵測器(未示出)。在一實施例中,光子輸送單元包含光纖陣列98。每一光纖98包含配置為毗鄰於或附接至螢光條92中之一者以將來自螢光條92之光子耦合至光纖98中之一端,以及經配置以將來自光纖98之光子投射至光偵測器上的另一端。
7示意性地描繪根據一實施例的電子射束工具40。如上文所描述,在一實施例中,偵測器陣列240與電子射束工具40之主電子光軸對準。替代地,偵測器陣列240可與不同的軸對準,如在 7中所示。
與上文所描述之彼等特徵相同的特徵被賦予相同的參考編號。為簡潔起見,此類特徵不參考 7詳細描述。舉例而言,源201、初級電子射束202、子射束211、212及213、投射設備230、聚光透鏡231、探測位點221、222、223、控制器50、樣品208、樣品架207、電動載物台209及偵測器陣列240可如上文所描述。
電子源201、槍孔徑板271、聚光透鏡210及源轉換單元220為由電子射束工具40構成之照明設備的組件。在操作中,槍孔徑板271經組態以阻擋初級電子射束202之周邊電子以減少庫侖效應。槍孔徑板271可被稱為庫侖孔徑陣列。庫侖效應可擴大初級子射束211、212、213之探測位點221、222及223中之每一者的大小,且因此降低檢測解析度。槍孔徑板271亦可包括多個開口,用於甚至在源轉換單元220之前產生初級子射束(未示出)並且可被稱為庫侖孔徑陣列。
聚光透鏡210經組態以聚焦(或準直)初級電子射束202。在源轉換單元220之一實施例中,源轉換單元220可包含影像形成元件陣列、像差補償器陣列、射束限制孔徑陣列及預彎曲微偏轉器陣列。舉例而言,預彎曲微偏轉器陣列可為可選的並且可存在於其中聚光透鏡不確保源自庫侖孔徑陣列之子射束大體上垂直入射至例如射束限制孔徑陣列、影像形成元件陣列及/或像差補償器陣列上的實施例中。
電子射束工具40可包含與偵測器陣列240相關聯的次級投射設備255。初級投射設備230可包含可為磁性的聚光透鏡231的陣列,其可用作物鏡。射束分離器233及偏轉掃描單元232可位於初級投射設備230內部。射束分離器233可包含韋恩濾光器。偵測器陣列240可包含複數個偵測器元件405。
用於產生初級射束之組件可與電子射束工具40之初級電子光軸204對準。此等組件可包含:電子源201、槍孔徑板271、聚光透鏡210、源轉換單元220、射束分離器233、偏轉掃描單元232及初級投射設備230。次級投射設備255及其相關聯的偵測器陣列240可與電子射束工具40之次級電子光軸251對準。
在當前例示性實施例中,次級電子在三個次級電子射束261、262及263中傳播。次級投射設備255隨後將次級電子射束261、262及263之路徑聚焦至偵測器陣列240之複數個偵測器元件405上。
偵測器元件405可偵測次級電子射束261、262及263。在用偵測器元件405入射次級電子射束時,元件可產生對應的強度信號輸出(未示出)。在一實施例中,偵測器元件可為捕獲電極。輸出可引導至影像處理系統。
可期望帶電粒子評估系統,包括本文中所描述之任何系統,能夠選擇性地關閉子射束中之一或多者(或全部)。此可為所要的,例如在互換樣品208期間、在對準程序期間或在樣品208長時間移動期間。不期望藉由關閉帶電粒子源來關閉子射束,例如藉由使源中之陽極電位等於陰極電位,或藉由降低源之溫度。此類動作可導致源不穩定,其中源尖端形狀係提取場及溫度兩者的函數,以及在恢復至操作條件之後等待源重新穩定源之操作的不必要停機時間。
替代或額外方法為偏轉子射束,以使得射束在其到達樣品之前停止;(即射束被偏轉,以使得其不會通過源之下游的孔徑)。界定孔徑之結構阻擋子射束,例如藉由將射束偏轉至射束停止器從而停止射束,因此充當遮沒器。偏轉的子射束可致使在提供遮沒功能性(諸如射束停止器)的結構中引起局域表面電位改變(其可被稱為曝光指紋特徵)。局域表面電位改變可足夠顯著(例如,大約1 V)並且足夠靠近於孔徑以藉由使用及時間累積,從而導致指向樣品(亦即未停止)之子射束中之像差及失真。另外,當系統重新打開時,此類像差可影響此類射束路徑。
另外或替代地,子射束可藉由(例如,經由控制器50)向橫跨多射束配置之透鏡陣列中之一或多個透鏡的透鏡電極施加阻擋電位來遮沒,例如控制透鏡陣列。阻擋電位使得朝向樣品208進入一或多個控制透鏡的帶電粒子被靜電反射遠離樣品208。(注意:選擇透鏡陣列中之透鏡中之一者或一些,透鏡電極中之至少一者為板上之複數個電極,其中電極中之一者可對陣列中之透鏡中之一或多者操作)。阻擋電位關閉對應於施加阻擋電位的每一控制透鏡的子射束。若將阻擋電位施加至所有控制透鏡(亦即,施加至整個控制透鏡陣列),則所有多射束可關閉或遮沒。此方法允許子射束以較低或可忽略的曝光指紋特徵效應風險快速且輕鬆地關閉。此係因為子射束不會偏轉至孔徑附近的結構中,當其重新打開時,子射束將穿過該等孔徑傳播,此可導致射束中之像差風險。藉由使用此類阻擋電位,可在無額外的像差源的情況下使射束中之一或多者遮沒。
在控制透鏡陣列250包含與每一子射束的子射束路徑對準的三個或多於三個控制電極501至503的配置中,系統可將阻擋電位施加至三個控制電極501至503中之至少中間電極502 。遠離樣品208之控制電極501可不太合適,此係因為施加至此電極之電位可由源模組遞送之射束能量判定。在控制透鏡陣列250包含與每一子射束之子射束路徑對準的兩個控制電極的配置中,系統可將阻擋電位施加至最靠近於樣品208之控制電極。應注意,控制電極可各自被認為物鏡陣列之每一透鏡提供額外的自由度。因此,替代將電極稱為控制透鏡,在一配置中,物鏡陣列可被認為具有一或多個額外電極,該等額外電極除了提供透鏡效應的最靠近於樣品的多個電極之外,還提供額外自由度。舉例而言,包含物鏡陣列之配置可具有位於提供物鏡陣列之電極之上游的三個額外電極。
阻擋功能導致電子自樣品反射遠離,且其中一些此等電子可通過穿過射束限制孔徑陣列朝向源。然而,來自源之電子被反射回至源的比例將相對較低,例如由於射束限制孔徑在兩個方向上的過濾效應,並且預計對源的任何影響可忽略不計。
可提供帶電粒子評估系統以檢測及/或量測樣品之表面。樣品可具有兩個相對的主要表面(亦即頂部正面及背面)以及周緣。帶電粒子評估系統可包含帶電粒子射束檢測設備100,如上文所述且在 1中所示。樣品被支撐在支撐件上,諸如可包含在載物台中之樣品支撐件。樣品之主表面可置放在支撐件上。樣品可例如使用定位臂在例如定位臂之一或多個銷的幫助下定位在支撐件(例如樣品支撐件)上。可藉由操作樣品之主要表面中之一者的夾具(諸如靜電夾具),將樣品維持在樣品上之適當位置中。樣品可在樣品之周緣中具有一或多個凹口。每一凹口可與例如定位臂之對應銷接合,以輔助置放樣品。在檢測樣品上所關注區之前,判定樣品相對於帶電粒子評估系統之多射束路徑的對準。對準通常分兩個階段完成:全域對準及局域對準(或精細對準)。
定位臂與樣品之一側中或周緣上的凹口接合,例如使用一或多個銷與凹口接合。此類凹口之此類尺寸可由工業標準定義,諸如例如200 mm樣品或300 mm樣品之SEMI標準。樣品可相對於多射束配置的路徑以已知的準確度定位在樣品支撐件上以用於全域對準。此係因為:多射束配置之路徑之位置及其視野相對於樣品支撐件為已知的。當將樣品置放在樣品支撐件上時,臂將銷以及因此樣品之凹口定位在樣品支撐件上在已知位置處。由於多射束配置之視野為尺寸至少與凹口一樣大的區(或與凹口大小相似的另一特徵),因此樣品在樣品支撐件上之定位(使用凹口及銷)將凹口置放在樣品支撐件上之已知位置中,該位置可置放在多射束配置之視野內。因此,凹口以已知精度置放在樣品支撐件上,以實現全域對準。若與凹口不同的特徵用於全域對準,則此特徵相對於凹口的位置可自樣品表面之預先存在的映圖獲知。樣品表面之映圖指示樣品表面之特徵的佈局,例如至少樣品表面及凹口上的不同特徵。考慮到凹口在樣品表面上的定位精度,此晶圓映圖對於用於全域對準的不同特徵具有足夠的精度。
全域對準(或粗對準)的目的係確保樣品相對於帶電粒子多射束的路徑對準,例如足以進行精細對準。全域對準的目的可包括驗證及判定樣品相對於帶電粒子多射束之路徑的置放的精度,例如,因此使其足夠準確地置放以進行精細對準。更精確地進行精細對準,以使得樣品相對於多射束裝置之射束中之一或多者(若非全部)對準,可進行對樣品之至少一部分(諸如目標部分)的評估,例如可判定精細對準。在全域對準中,相對於帶電粒子多射束之路徑以至少三個自由度判定樣品之對準位置。在一實施例中,三個自由度係與帶電粒子多射束之路徑正交的平面中之正交軸(例如,晶圓之平面中X及Y軸中之位置位移)及大體上圍繞帶電粒子多射束之路徑旋轉軸(例如,Rz晶圓圍繞正交於其主平面或主表面的軸的旋轉位移)。
在全域對準階段,周緣及/或樣品之主表面中之至少一者上之對準特徵用於判定樣品相對於多射束路徑的全域對準。樣品之全域對準的位置位移較佳地判定在相對於多射束路徑的100 nm內或至少在100 nm至1000 nm的範圍內。較佳使用安置在樣品之至少三個不同位置的對準特徵,以便判定樣品相對於多射束路徑的全域對準。在預先存在的配置中,光學感測器或光學顯微鏡用於全域對準。使用具有大視野的帶電粒子的多射束配置的全域對準避免使用光學感測器或光學顯微鏡。此類多射束配置在樣品上具有較佳地至少1 mm,更較佳地至少2 mm,亦更較佳地至少3 mm,例如至少4 mm的視野。光學感測器或光學顯微鏡具有類似的視野。因此,樣品之周緣上之典型凹口可位於多射束配置或光學感測器(或顯微鏡)之視野中。在檢測過程中將使用相同的多射束路徑,且因此樣品與多射束路徑的全域對準對於執行樣品的檢測係有用的。此外,可判定樣品之全域對準被判定在可接受範圍之外,例如,樣品未恰當地安置在支撐件中並且需要在可進行檢測之前重新定位。
帶電粒子評估系統包含用於支撐樣品之支撐件。支撐件可包含在致動載物台209中。評估系統經組態以沿著多射束路徑朝向樣品投射多射束中之帶電粒子。多射束包含相對於彼此配置的複數個小射束。帶電粒子評估系統經組態以回應於多射束之對應小射束而偵測自樣品發射之信號粒子。帶電粒子評估系統可用於執行全域對準方法。
如在 8中所說明,全域對準方法包含複數個步驟。此等步驟可包含步驟S10、步驟S20、步驟S30及步驟S40。步驟S10係關於帶電粒子評估系統的通常操作。帶電粒子評估系統的通常操作包括例如將帶電粒子多射束指向樣品。在帶電粒子系統的通常操作中,帶電粒子多射束沿著多射束路徑引導朝向樣品之對準特徵。帶電粒子多射束之視野囊括對準特徵。多射束的引導包含控制支撐件例如以相對於帶電粒子多射束的路徑移動,以便移動樣品。該支撐件包含可移動載物台208。支撐件的控制可包含移動支撐件並因此移動支撐的樣品。支撐件的此類移動可移動對準特徵,因此使其處於多射束路徑中。因此,對準特徵可移動穿過多射束路徑之視野,以使多射束在樣品表面上方進行掃描及被掃描。
在該方法的步驟S20中,偵測自樣品發射之信號粒子。在偵測信號粒子時,產生可為電信號的信號,該電信號可被稱為偵測信號。步驟S20可被認為「偵測步驟」。偵測步驟S20視情況包括自所偵測到的信號粒子產生信號。
在步驟S30中,基於對信號粒子的偵測,產生表示對準特徵之資料集。產生資料集可包含處理自偵測到的信號粒子產生的信號。資料集可呈現為影像。該資料集可用於產生對準特徵之影像。對準特徵之影像可用於判定樣品之全域對準。該影像可為二維影像。
在步驟S40中,判定樣品之全域對準。樣品之全域對準係相對於帶電粒子多射束的路徑。使用資料集判定全域對準。判定步驟S40視情況包括判定樣品在多射束之視野中的形貌。判定樣品表面的形貌,例如在視野中,可基於信號的強度。
多射束配置的每一小射束可與自所偵測到的信號粒子產生的對應信號相關聯。回應於每一小射束而產生之信號例如由像素表示。可使用複數個像素來形成樣品之一部分(例如包括對準特徵的一部分)的影像。信號的強度可對應於樣品表面的形貌。當對應的小射束經引導在樣品處時,信號的強度可比當對應小射束經引導至遠離樣品的位置例如至支撐件(亦即樣品支撐件)時更高。可基於某些信號的強度差異來判定使用諸如凹口的周緣特徵(亦即周緣特徵)的全域對準。此類信號可在對應於引導朝向樣品的小射束及經引導朝向與樣品毗鄰的支撐件的小射束的信號之間。因此,樣品之周緣的特徵可很容易地識別並用於全域對準。類似地,信號的強度可用於產生對準特徵之影像。舉例而言,影像之區域或像素的相對亮度或暗度等相對對比度可指示對應信號的強度。舉例而言,多射束之視野中對應於較低強度信號的區域在影像中由較暗的陰影表示,且對應於較高強度信號的區域由較亮的陰影表示。注意參考相對對比度來指示信號強度係選擇問題,以使得在不同的實施例中,較低強度的區域可表示為比較高強度的區域更亮的對比度。
習用模型匹配、影像辨識技術或其類似物可用於識別及/或辨識所產生影像中之特徵。樣品相對於多射束路徑的全域對準較佳地判定在1000 nm內,更較佳地在100 nm內。
帶電粒子評估系統包含用於將多射束(在本文中亦被稱為帶電粒子多射束)投射朝向樣品208的帶電粒子光學系統。樣品被支撐在支撐件上,該支撐件可為可移動載物台209。帶電粒子評估系統進一步包含控制系統及處理系統。
帶電粒子光學系統可包含 2之投射設備230及/或 3 至圖 7之對應投射設備。帶電粒子光學系統包含物鏡陣列。物鏡陣列經組態以將呈小射束配置之帶電粒子多射束引導朝向樣品。物鏡陣列可靠近於或甚至接近樣品。帶電粒子光學系統可包含偵測器陣列。偵測器陣列之每一偵測器可與多射束之小射束相關聯。偵測器陣列與物鏡陣列相關聯。每一偵測器可與物鏡陣列之對應物鏡相關聯。偵測器陣列經組態以回應於多射束之對應小射束而偵測自樣品發射之信號粒子。物鏡陣列可對應於 3之物鏡234、 4 至圖 6之物鏡陣列241或 7之聚光透鏡231。偵測器陣列可對應於 2 至圖 7之偵測器陣列240。
控制系統經組態以控制帶電粒子光學系統以將帶電粒子多射束引導朝向對準特徵。多射束可具有囊括對準特徵之視野。控制系統可經組態以控制帶電粒子光學系統以將多射束之複數個小射束同時引導朝向對準特徵。控制系統可包含 1 、圖 2 及圖 7之控制器50。因此,控制系統可整合在評估系統100中,可單獨安置,或可具有整合在評估系統中的元件及單獨安置的其他元件。
處理系統經組態以基於信號粒子的偵測而產生表示對準特徵之資料集。處理系統進一步經組態以根據表示對準特徵之資料集判定樣品相對於帶電粒子多射束之路徑的全域對準。處理系統可為如上文關於 2所描述之處理系統280。因此,處理系統可整合在投射設備230中及/或可單獨安置。
對準特徵可包含樣品之周緣之一部分。對準特徵可為界定在樣品之周緣中或周緣上的特徵。該特徵可包含樣品之兩個主要表面的周邊,例如在周緣中或周緣上之特徵之位置處。該特徵可為樣品之幾何形狀或特性,例如周緣之最後一部分。例如,如在 9A中所示,對準特徵可包含樣品之周緣中之凹口。凹口可為樣品之主表面中之任一者之周邊的凹痕。對準特徵可為樣品之周緣之一部分,其不包含(例如界定)凹口。樣品之特徵之幾何形狀(例如樣品之周緣之形狀)可用於判定樣品之全域對準。舉例而言,在樣品具有相似的形狀及大小的情況下,樣品間的尺寸變化,諸如主表面之直徑(例如高達200微米)可導致相對於樣品支撐件之座標系統的兩個邊緣/周緣位置變化。作為另一實例,當樣品具有相似的形狀及大小時,圖案位置的樣品間變化。特定而言,樣品之主表面上之圖案相對於樣品之周緣的位置可變化(例如高達200微米)。
對準特徵可包含樣品之主表面的特徵。例如,對準特徵可包含樣品之主表面上之對準標記。每一對準標記在沿著樣品之主表面之方向上可具有例如10至50微米的長度。對準標記可為擴展主標記(XPA),例如如在 10A中所示。使用此類對準標記,由於XPA標記11的線的正交配置,可判定X及Y座標的對準。 10A之XPA標記11包括四個配置成正方形形狀的線群組,包括沿Y方向配置之兩個線群組及沿X方向配置之兩個線群組,分別實現沿X及Y方向的全域對準。替代地或另外,可使用樣品之表面上或樣品中之不同類型的對準標記,諸如切割道主標記(SPM),例如如在 10B中所示。SPM為晶粒之間切割道中之標記,其可用於對準程序。SPM標記12包含一對標記13、14。該對標記包括在X方向13配置的一線群組及在Y方向14上配置的一線群組。標記可彼此間隔開,例如在不同的切割道中及/或在樣品上之晶粒或場周圍。該對標記13、14可用於分別沿X及Y方向實現全域對準。可使用樣品之主表面上之已知圖案或特徵來代替對準標記,前提為樣品上之圖案/特徵的尺寸及相對位置係已知的。使用此類對準標記可提供比使用基板邊緣或周緣的幾何特徵(諸如凹口)更高的精度。此類標記可由帶電粒子多射束配置之有限數目的射束使用,例如單個射束。鑒於樣品間的尺寸變化(例如,直徑高達200微米),對準標記位置相對於樣品支撐件之座標系統可存在位置變化。
樣品周緣中或上或周緣之幾何形狀的對準特徵通常大於樣品之主表面中或上的特徵,其可遠離主表面之周邊,諸如對準標記。此意味著可使用更多的小射束及/或更寬的多射束視野來判定全域對準。較大大小之對準特徵因此可提供更準確的全域對準。樣品之主表面上之對準特徵,諸如對準標記,可用於判定更精確的(若不夠精確)全域對準。
多射束具有視野。多射束之視野為多射束之小射束803的組合視野。在通常的操作中,多射束在樣品之一部分上之視野通常經定尺寸大於樣品上之對準特徵的尺寸。舉例而言,如在 9A 及圖 9B中所示,樣品208之周緣中之凹口801的對準特徵被囊括在多射束之視野內。因此,多射束之視野在樣品上之尺寸802大於凹口804之寬度。
因此,對準特徵將在多射束之視野內被整體掃描。應注意,此在上文的步驟S10中進行了描述。多射束沿著多射束路徑定向,使得多射束之視野囊括對準特徵。此引導步驟的結果如在 9A 及圖 9B中所示並在本文中別處描述。樣品上之多射束之視野較佳地為至少1 mm,更較佳地至少2 mm,更較佳地至少3 mm,例如至少4 mm。
當多射束引導朝向樣品時,多射束之視野足夠寬以囊括樣品之至少一個對準特徵。亦即,樣品之對準特徵適合在多射束之視野內。
當多射束引導朝向樣品時,多射束之視野可同時囊括樣品之兩個或多於兩個(例如三個)對準特徵。此類配置隨著不同對準特徵之間的位移增加而提高精度。因此,此配置對於具有更大視野的多射束配置更為有利。在此配置的情況下,可快速判定樣品之全域對準,因為不需要將多射束依次單獨引導至每一對準特徵。然而,依靠在多射束之視野中具有至少三個對準特徵可對精度具有影響。例如,用於旋轉的典型精確對準使用相距大約在10至50 mm範圍內的對準標記,例如30 mm。對於小於此範圍最大值之視野,例如10 mm,較佳地單獨掃描標記。因此,在視野中使用更靠近在一起的標記可影響精度。此類對準特徵可包含凹口,例如大體上整個凹口或凹口之至少一部分,諸如超過一半的凹口,以及如此可適合在視野內之樣品表面上之對準特徵(例如,在靠近樣品周邊的切割道中之對準標記)。
用於判定全域對準之資料集可包含對應於與電荷粒子評估系統經組態以投射的所有小射束相關聯的信號粒子的資料。替代地,來自小射束選集之資料集可足以判定全域對準,只要多射束配置中之小射束選集的組合視野可囊括對準特徵。如所述,多射束配置可包含自大約十至數萬或更多的小射束的任何配置。在至少一百個小射束之多射束配置中,小射束選集可包含至少50至100個小射束,並且較佳地包含至少60個小射束。小射束選集可彼此鄰接並且界定多射束配置之一部分。替代地,小射束選集可安置或分佈遍及多射束配置,較佳地以規則圖案安置或分佈在多射束配置中。
在準備全域對準時,選擇多射束中之小射束選集。舉例而言,在步驟S10中,引導多射束包含自多射束之射束配置選擇小射束選集。控制系統可經組態以控制帶電粒子光學系統以自射束配置選擇小射束選集。對小射束的選擇可包含遮沒多射束配置中除包括在小射束選集中之小射束以外的小射束。遮沒可包含操作偏轉器以對射束進行操作以將其轉向至射束停止器或控制控制透鏡以便對其施加阻擋電位以便反射並因此遮沒射束。
另外或替代地,可選擇偵測器元件以選擇小射束,或更確切地選擇與選定小射束相關聯的偵測器元件。多射束配置中之所有小射束操作。然而,回應於小射束與樣品的交互作用,僅選定的偵測器元件操作來偵測信號電子。因此,步驟S10可以以下操作為特徵:偵測包含選擇偵測器陣列之偵測器元件以偵測自樣品發射之信號粒子。亦即,選定偵測器元件為與選定小射束相關聯的彼等偵測器元件。對選定偵測器元件的選擇可選擇性地啟動選定偵測器元件。
另外或替代地,可選擇與選定小射束相關聯的偵測器信號。在一實施例中,所有小射束皆衝擊樣品。所有對應偵測器元件偵測由樣品回應於小射束而發射的信號電子。然後可自所有產生的偵測器信號選擇偵測信號選集。偵測信號選集可經處理以判定可用於判定樣品相對於多射束路徑的全域對準的影像。因此,步驟S30的產生可包含自偵測(亦即偵測步驟)選擇偵測器信號用於產生資料集。在一配置中,控制系統可經組態以選擇(例如接受、處理或接收)偵測信號選集。控制系統可經組態以在偵測器與其中將資料信號作為資料集儲存的記憶體之間選擇選定偵測信號。替代地或另外,控制系統可經組態以選擇性地啟動對偵測器元件的選擇。選定的偵測器信號可對應於選定偵測器元件。偵測器元件選集可對應於小射束選集。選定的偵測器信號可對應於選定小射束。
另外或替代地,可自對應於選定小射束之資料集選擇資料。在一實施例中,所有偵測器元件產生偵測信號,該等偵測信號對應於對多射束配置之對應小射束的衝擊時產生的信號粒子的偵測。在此類實施例中,儘管選擇小射束,但產生用於多射束配置之所有小射束之資料集,並且例如被接收並儲存在記憶體中。自資料集選擇資料以判定全域對準。在一配置中,步驟S40中之判定可包含自對應於偵測器陣列的選定偵測器元件及/或多射束的選定小射束的偵測之資料集選擇資料。處理系統可經組態以選擇性地處理來自偵測器元件選集的資料。偵測器元件選集可對應於小射束選集。然而,接收到的資料集中之資料可包含對應於多射束配置之小射束中之其他(若非全部)小射束的資料。
因此,可能根據包含對應於與小射束選集相關聯的信號粒子的資料的精簡資料集判定樣品的全域對準。上述情況的完成可藉由僅將小射束選集引導朝向樣品及/或藉由僅自對來自偵測器陣列的偵測器元件選集進行偵測及/或藉由選擇由偵測器元件產生的偵測信號選集及/或藉由基於來自僅與小射束選集相關聯的信號粒子的資料產生資料集。因此,可有效地執行資料處理。資料選集可經調適以適應評估系統中存在的資料路徑架構的需要。
使用具有大視野的帶電粒子的多射束配置的全域對準避免使用光學感測器或光學顯微鏡。(在預先存在的配置中,使用光學感測器或光學顯微鏡,此係因為在評估工具之已知多射束配置中可用的射束的數目有限,並且提供此類有限數目射束的小視野。若此類有限視野下使用此類多射束配置,則全域對準將比光學量測花費更長的時間)。此意指體現本發明之多射束帶電粒子裝置不具有諸如光學感測器或光學顯微鏡的光學偵測配置的特徵。多射束帶電粒子裝置之商品成本可藉由不存在光學偵測配置而降低。由光學偵測配置佔據的空間可用於其他特徵。防止了光學偵測配置阻塞、阻礙或以其他方式干擾帶電粒子裝置的最佳效能的風險。不再需要校準多射束路徑與光學偵測配置之間的位置,從而提高產出量。移除精度變化與漂移的風險來源。本發明提供帶電粒子光學系統,其具有與光學感測器或顯微鏡的規格重疊、超過或充分等效的規格,諸如視野。因此無需使用光學感測器或顯微鏡進行全域對準。因此,本發明能夠更快速、準確且成本有效地執行樣品與多射束之路徑的全域對準。
在實現全域對準之後,例如在100 nm至微米範圍內,精細對準的過程實現多射束之路徑與樣品之間的的精細對準。此類精細對準在奈米範圍內,且預計此類精細對準在未來將在奈米範圍內。可使用樣品之場或晶粒內的對準特徵來實現精細或局域對準。可藉由使用全域對準藉由至少控制光學系統來判定樣品相對於多射束的精細對準。精細對準遵循並取決於全域對準。樣品佈局,例如樣品表面上之特徵位置可使用全域對準來校準,以使得樣品佈局上之特徵的大致位置可在由樣品支撐件支撐的樣品表面上判定;在知道樣品表面上的此類特徵相對於樣品支撐件的大致位置,可判定樣品相對於多射束配置的一或多個射束的精細對準。
藉由將帶電粒子多射束沿著多射束路徑引導朝向樣品之精細對準特徵並且回應而偵測自樣品發射之信號粒子,可產生偵測信號。偵測信號包含對應於精細對準特徵之資料集。帶電粒子多射束之視野囊括精細對準特徵。因此產生的資料集係表示精細對準特徵的精細對準資料集。精細對準資料集基於對信號粒子的偵測。精細對準資料集可用於判定樣品相對於多射束路徑的精細對準,期望地取決於全域對準。此類精細對準的過程在US10901391中揭示,例如,關於諸如基板之凹口之一部分的特徵,該揭示內容就精細對準而言以引用的方式併入本文中。然而,US10901391的精細對準的揭示內容遵循與光子及光學感測器或顯微鏡的全域光學對準,而非使用帶電粒子多射束在樣品表面或特徵之較大表面部分上方掃描,諸如基板之此類凹口或至少大體上凹口或凹口之至少一部分(諸如凹口的一半),例如諸如正交於樣品半徑的尺寸。
用於精細對準的特徵(或樣品表面)可為如在全域對準中使用的相同表面部分或特徵(或特徵陣列,例如圖案)之一部分,或樣品表面之不同特徵。預先判定用於精細對準的樣品表面上不同特徵的大致位置;例如,不同的特徵可包含在與樣品一起供應的樣品佈局或映圖中。通常,此類不同的特徵存在,例如曝露在欲處理的特徵的相同層中,諸如評估,例如檢測或量測。精細對準資料集可表示影像,例如其可期望地由處理器呈現為影像。該影像可為二維影像。
注意在精細對準期間,可選擇多射束中之射束選集(例如單個射束)來判定精細對準,例如藉由將多射束之視野減小至樣品表面之包含精細對準特徵的一或多個部分。如所述,精細對準特徵在同一層中,期望地接近樣品之一部分以進行處理,例如評估,諸如檢測。舉例而言,可例如藉由遮沒自多射束配置選擇單個射束。一個射束的使用可足以用於相對於單個射束對準的精細對準,此係因為精細對準(例如精細對準校正)可在樣品平面之座標軸(例如x軸及y軸)中判定。然而,可根據需要使用儘可能多的射束及特徵。精細對準特徵的位置可藉助樣品佈局來判定,諸如與樣品一起供應的映圖,該映圖判定樣品上之精細對準特徵例如相對於諸如凹口之全域對準特徵及/或用於全域對準特徵的不同特徵的相對位置。
在自多射束配置選擇用於精細對準的射束時,多射束之視野可經選擇為精細對準所需之視野的一或多個部分。帶電粒子可經選擇為對應於與樣品表面上精細對準特徵的位置相對應的多射束配置(例如網格)的部分;未選定的帶電粒子射束可被遮沒。因此,當精細對準特徵彼此間隔開時,僅多射束配置之部分中之射束掃描樣品表面。可以與本文中上文所描述的全域對準類似的方式在電子光學上進行選擇用於精細對準的帶電粒子射束的此類選擇。
為了獲得對應於多射束視野中之樣品表面之一部分的資料集,相對於彼此掃描小射束及樣品表面。在步驟S10中,偵測可包含相對於例如至少在對準特徵上方掃描多射束。因此,在包含對準特徵的樣品表面之一部分上方掃描多射束。在對準特徵上方掃描多射束可在視野內。因此,所得資料集包括關於樣品表面之形貌的更多資訊。
支撐件可為可移動載物台209。可至少部分地藉由移動支撐件以相對於多射束路徑移動樣品來執行在對準特徵上方掃描多射束。控制系統可經組態以控制支撐件以使樣品相對於帶電粒子光學系統移動,使得多射束配置之小射束在對準特徵上方進行掃描。
在對準特徵上方掃描多射束可包含使多射束靜電偏轉,使得多射束在對準特徵上方進行掃描。
載物台移動藉此使樣品相對於帶電粒子多射束之路徑位移,抑或路徑的靜電偏轉可用於在對準特徵上方掃描多射束,抑或掃描可藉由移動載物台及靜電偏轉的組合來執行。
在對準特徵上方對多射束的掃描在大於或等於小射束節距的距離範圍內。小射束節距可界定為樣品表面上之多射束配置中之每一小射束產生的位點節距,例如在樣品表面上之多射束配置之視野內。在樣品表面上,每一小射束經指派相似大小及形狀的節距區。每一小射束可在其節距區中具有相似的參考位置,該參考位置可為對應節距區的中心。參考位置可被稱為一網格位置。網格位置的配置可界定多射束配置的幾何形狀(例如:直線、六角形或稜形)。小射束節距可被認為係毗鄰小射束的節距區內的相似位置之間或毗鄰節距區中之相似位置之間的最短距離。節距可在多射束配置之幾何形狀的不同軸之間不同或相同。因此,小射束節距為毗鄰小射束與樣品相交的點之間的最短距離,例如在掃描期間。
在對準特徵上方掃描多射束時,可在大於或等於樣品表面之平面中的尺寸之距離上掃描多射束配置。在一實施例中,尺寸對應於選定小射束之視野。掃描可在大於或等於指派至多射束之小射束之視野的距離範圍內進行。在一配置中,指派至此類小射束之視野在樣品上的範圍為50至500 μm,例如50至300微米,例如50至100 μm,更較佳地60至70 μm。因此,小射束的掃描距離較大,例如20至550 μm、20至120 μm,且更較佳地50至90 μm。
在一配置中,掃描可為兩個不同正交掃描方向的組合。在一個方向上,可對小射束進行靜電掃描。在掃描偏轉器靠近於樣品的情況下,例如與物鏡陣列相關聯或整合至物鏡陣列中,靜電掃描偏轉為大約一微米,例如高達5、3或1微米。在與靜電掃描方向正交的另一方向上,支撐件相對於小射束路徑進行掃描。支撐件及小射束的相對掃描在大於或等於指派至小射束之視野的距離上方。
注意在一配置中,掃描偏轉器可經定位離樣品更遠。在此類配置中,掃描偏轉可為更大。若掃描偏轉器經定位離樣品表面足夠遠,則靜電掃描範圍可足以超過指派至對應小射束之最大視野。
參考 11之示意圖示出可用於掃描樣品的實例掃描方法。此方法有時被稱為跳躍及掃描。此類掃描方法及配置在2021年5月3日提出申請的EP申請案21171877.0中進行描述,該申請案就包含有時被稱為跳躍及掃描的方法的掃描方法特此以引用的方式併入本文中。網格位置702描繪由帶電粒子評估系統引導至樣品208上的多射束的實例幾何形狀。網格位置702示出多射束中之小射束的位置。網格位置702的節距等於多射束中小射束之樣品表面處的節距。在對應於小射束的節距區704上方在不同方向(例如X及Y方向)上靜電掃描每一小射束。標記兩個例示性節距區704。主掃描區域標記為704A。可另外提供邊界區域704B以允許小射束節距不均勻。
在最左邊的實例節距區704中示出虛線703以示意性地表示沿著X方向的掃描線。掃描線可一個接一個地依次處理,其中在每一掃描線之間沿Y方向有一步長。對X及Y的引用僅僅為了證明掃描在兩個不同的方向上發生,該等方向彼此成角度,並且可相互正交的。亦即,在一實施例中,所描繪之掃描線為兩個不同正交掃描方向的組合,例如如本文中所描述,其中靜電掃描為大約1微米量級並且樣品相對於小射束的機械掃描在大於或等於指派至小射束之視野的距離範圍內。連續的掃描線可一個接一個地跟隨,亦即曲折,或所有的掃描線可自節距區的一側開始。掃描過程繼續,直至每一小射束已處理所有其節距區域704。節距區域704由各別小射束並行處理。亦即,小射束同時掃描其各別節距區704。
當小射束已完成對節距區704的處理時,樣品移動至不同的位置(此可被稱為跳躍,因為所涉及距離相對較大)。然後重複該過程(例如掃描)以在樣品之此新位置處處理節距區704。跳躍可移動樣品,因此樣品表面之不同部分對應於多射束的佔用面積。
新位置可諸如使得掃描樣品上與在樣品之先前位置處掃描的區域毗鄰的區域或部分,以便掃描大的連續區域;亦即,該等區域可為連續的。(樣品表面之此類連續區域可被稱為掃描區域。)替代地或另外,新位置可諸如致使掃描樣品上與在樣品之先前位置處掃描的區域分離的區域。該兩個區域可間隔開。當與多個對準特徵對準時,可在全域對準期間使用處理此類間隔開的區域,其中至少兩個對準特徵可與樣品表面的間隔開的部分中。
在每一新位置處,每一節距區域的掃描(例如,在X上掃描小射束並在Y上使小射束步進)涉及在大體上等於多射束中小射束之節距的距離範圍內使小射束靜電偏轉(例如,在X上掃描及在Y上步進)。
應注意,多射束配置中之小射束經配置在至少兩個軸的網格中。在選擇偵測信號及其類似物進行處理時,對應的選定偵測器元件及小射束可在網格上形成圖案。選定的小射束可在一或多個軸上等距間隔開。
帶電粒子評估系統可包含單個源201,如在 2 至圖 5中所示,或可包含用於產生帶電粒子以朝向樣品投射的複數個源。每一源可對應於單個小射束或可對應於複數個小射束,諸如如在 2 、圖 3 及圖 7中所示的子射束211至213。每一源可對應於單個帶電粒子柱,諸如 2 至圖 5之電子射束工具40,或可對應於複數個帶電粒子柱。
若帶電粒子評估系統包含複數個源,則每一源發射帶電粒子射束。自由源發射之每一各別帶電粒子射束產生多射束小射束。與複數個源相關聯的多射束的集合可被稱為多射束。因此,帶電粒子評估系統的操作方法可包含自複數個源發射帶電粒子射束並且自來自各別源的每一射束產生沿著多射束路徑例如朝向樣品的各別多射束小射束。全域對準方法可進一步包含帶電粒子評估系統的操作之方法。
較佳地,帶電粒子評估系統至少包含第一及第二帶電粒子光學柱(或第一及第二柱)。第一及第二柱對應於例如將多射束配置之至少一第一部分及第二部分投射為第一組件多射束及第二組件多射束。第一及第二柱可具有用於各別第一及第二組件多射束的各別第一及第二多射束路徑。第一多射束路徑可相對於第二多射束路徑進行校準。在此組態中,帶電粒子光學系統可包含多射束系統之第一及第二部分。帶電粒子光學系統之第一部分可對應於第一帶電粒子光學柱,並且帶電粒子光學系統之第二部分可對應於第二帶電粒子光學系統。多射束配置之第一及第二部分可獨立控制,例如藉由對應的第一及第二帶電粒子光學柱,例如在經引導朝向樣品時。(多射束配置之第一及第二部分在樣品上的定位可藉由控制台來控制)。多射束配置之第一及第二部分係例示性的,並且多射束配置可根據需要包含儘可能多個部分,亦即帶電粒子光學系統或柱,例如在任何大小或形狀的直線配置中,例如九個,一百個、四百個等,或任何大小或形狀的六角形配置,例如三十六個、三百六十一個、兩千一百六十六個等。舉例而言,多射束配置可包含三個部分,亦即三個帶電粒子光學系統或柱。每一部分,或部分的選集可存在一對準特徵。舉例而言,第一部分及第二部分各自具有對應的對準特徵,例如第一及第二對準特徵。
視情況,在引導多射束時,第一柱將多射束配置之第一部分朝向第一對準特徵投射為第一組件多射束,並且第二柱將多射束配置之第二部分朝向第二對準特徵投射為第二組件多射束。第一及第二組件多射束可同時且分別朝向第一對準特徵及第二對準特徵投射。
控制系統可經組態以控制第一柱以在囊括第一對準特徵之視野中將第一組件多射束引導朝向對準特徵。控制系統可經組態以控制第二柱以在囊括第二對準特徵之視野中將第二組件多射束引導朝向第二對準特徵。控制系統可經組態以控制第一及第二柱以同時將各別第一及第二組件多射束投射朝向樣品。以此方式,可同時獲得第一及第二對準特徵的兩個資料集。例如,當第一及第二對準特徵位於樣品表面的彼此相距太遠而無法在一個多射束配置(例如其為多帶電粒子柱評估工具之一部分)之視野中獲得的部分中時,可期望同時獲得此兩個資料集。因此,以此方式可同時收集複數個對準特徵。資料集可用於判定樣品之全域對準。因此,同時掃描多個對準特徵的能力同時提高了對準的速度,且因此可在樣品的全域對準過程中增加樣品的產出量。此在提供及時且因此具有成本效益的樣品檢測方面可為有利的。
在全域對準之方法中,可對第二對準特徵執行 8之步驟S10至S40。第二對準特徵可為如上文所描述之樣品之周緣或主要表面特徵的特徵,諸如對準標記或幾何特性,諸如樣品之表面之一部分的形狀。第二對準特徵安置在樣品上與第一對準特徵不同的位置處。
多射束配置的引導可包含將第二組件多射束引導朝向第二對準特徵。替代地或另外,多射束配置的引導可包含將第一組件多射束引導朝向第二對準特徵。此類控制可包含控制載物台以相對於第一及/或第二柱定位樣品。控制系統可經組態以控制第一柱以在囊括第二對準特徵之視野中將多射束配置引導朝向第二對準特徵。例如,第一組件多射束經控制移動,使得第一組件多射束之視野囊括第二對準特徵。
可基於對信號粒子的偵測產生表示第二對準特徵之資料集。處理系統可經組態以基於信號粒子的偵測產生表示第二對準特徵之資料集。處理系統可進一步經組態以根據表示第二對準特徵之資料集及/或表示第一對準特徵之資料集判定樣品相對於各別多射束組件的多射束路徑的全域對準。因此,可基於為第一對準特徵及/或第二特徵收集之資料集來判定樣品相對於各別多射束組件之多射束路徑的全域對準。由於第一柱及第二柱,以及此第一多射束路徑及第二多射束路徑係相對於彼此校準,因此可判定全域對準。
與含有或使用粒子捕集器的實施例有關的上部及下部、上及下、上面及下面等的引用應理解為指代衝擊於樣品208之電子射束或多射束之平行於(通常但非始終豎直)上游及下游方向之方向。因此,對上游及下游的引用意指指代與任何當前重力場無關的關於射束路徑的方向。
在本文中所描述之實施例可採取沿著射束或多射束路徑配置成陣列的一系列孔徑陣列或電子光學元件的形式。此類電子光學元件可為靜電的。在一實施例中,所有電子光學元件(例如自射束限制孔徑陣列至樣品之前的子射束路徑中之最後一電子光學元件)可為靜電的及/或可為呈孔徑陣列或板陣列形式。在一些配置中,電子光學元件中之一或多者經製造為微機電系統(MEMS) (亦即,使用MEMS製造技術)。電子光學元件可具有磁性元件及靜電元件。舉例而言,複合陣列透鏡的特徵可為囊括多射束路徑的大型磁透鏡,在磁透鏡內具有上極板及下極板並且沿著多射束路徑配置。在極板中可為用於多射束之小射束路徑的孔徑陣列。電極可存在於極板上面、下面或之間,以控制及最佳化複合透鏡陣列的電磁場。
在提供可設定為相對於彼此不同的電位的電極或其他元件的情況下,將理解此類電極/元件將彼此電隔離。若電極/元件彼此機械連接,則可提供電絕緣連接器。例如,在電極/元件經設置為一系列導電板(各自界定孔徑陣列)的情況下,例如以形成物鏡陣列或控制透鏡陣列,電絕緣板可設置在導電板之間。絕緣板可連接至導電板,且從而充當絕緣連接器。導電板可藉由絕緣板沿著子射束路徑彼此分離。
對可控制以某一方式操縱帶電粒子射束的組件或組件或元件之系統的引用包括組態控制器或控制系統或控制單元以控制組件以所描述之方式操縱帶電粒子射束,以及視情況使用其他控制器或裝置(例如電壓供應)來控制組件以此方式操縱帶電粒子射束。舉例而言,在控制器或控制系統或控制單元的控制下,電壓供應可電連接至一或多個組件以將電位施加至組件,諸如中控制透鏡陣列250及物鏡陣列241之電極。諸如載物台之可致動組件可為可控的,以使用一或多個控制器、控制系統或控制單元來致動並因此相對於諸如射束路徑的另一組件移動以控制組件的致動。
術語「子射束」及「小射束」在本文中可互換使用且皆理解為涵蓋藉由分開或分裂父層輻射射束而自父層輻射射束導出的任何輻射射束。術語「操縱器」用於涵蓋影響子射束或小射束路徑的任何元件,諸如透鏡或偏轉器。對沿著射束路徑或子射束路徑對準的元件的引用被理解為意指各別元件沿著射束路徑或子射束路徑定位。對光學器件的引用被理解為意指電子光學器件。
本發明之實施例在以下編號條項中闡述。
條項1:一種在一帶電粒子評估系統中對準一樣品之方法,該帶電粒子評估系統包含用於支撐一樣品之一支撐件,該評估系統經組態以沿著一多射束路徑將一多射束中之帶電粒子投射朝向一樣品,該多射束包含一小射束配置,且經組態以回應於該多射束之一對應小射束而偵測自該樣品發射之信號粒子,該方法包含:將該帶電粒子多射束沿著該多射束路徑引導朝向該樣品之一對準特徵,使得該帶電粒子多射束之視野囊括該對準特徵;偵測自該樣品發射之該等信號粒子;基於對該等信號粒子之該偵測而產生表示該對準特徵之一資料集;及使用該資料集判定該樣品相對於該多射束路徑的一全域對準,期望地該資料集表示,例如可呈現為諸如一二維影像之一影像。
條項2:如條項1之方法,其中將該複數個小射束同時引導朝向該對準特徵。
條項3:如條項1或2之方法,其中該多射束配置中之一小射束選集的組合視野囊括該對準特徵。
條項4:如條項3中任一項之方法,其中該選集包含至少50至100個小射束,較佳地至少60個小射束。
條項5:如條項3或4之方法,其中引導該多射束包含自該多射束配置選擇該小射束選集,彼此鄰接的該小射束選集界定該多射束配置之一部分,或該小射束選集安置遍及該多射束配置,較佳地以規則圖案安置在該多射束配置中。
條項6:如條項5之方法,其中該選擇包含遮沒該多射束配置中未包括在該小射束選集中之該等小射束;或其中多射束配置包含該小射束選集及未選定小射束,其中該選擇包含遮沒該等未選定小射束。
條項7:如條項1至6中任一項之方法,其中該帶電粒子多射束在該樣品上之該視野為至少3 mm。
條項8:如條項1至7中任一項之方法,其中引導該多射束包含在該對準特徵上方掃描該帶電粒子多射束。
條項9:如條項8之方法,其中在該對準特徵上方掃描該多射束包含移動該支撐件以使該樣品相對於該多射束路徑移動及/或靜電偏轉該多射束使得該帶電粒子多射束在該對準功能上方掃描。
條項10:如條項8及9中任一項之方法,其中該在該對準特徵上方掃描該帶電粒子多射束係在大於或等於小射束節距的一距離範圍內。
條項11:如條項8至10中任一項之方法,其中該在該對準特徵上方掃描該帶電粒子多射束在大於或等於射束配置之部分之樣品表面之平面中之一尺寸的一距離及/或指派至該多射束中之一小射束之該視野範圍內,該距離較佳地在50至200微米的範圍內,例如50至100微米,更較佳地60或70微米。
條項12:如條項8至11中任一項之方法,其中該帶電粒子多射束在該對準特徵上方的該掃描在該視野內。
條項13:如條項1至12中任一項之方法,其中該將該帶電粒子多射束沿著該多射束路徑引導朝向該樣品之一對準特徵包含控制該支撐件之移動及/或定位,以使得該對準特徵在帶電粒子之該多射束路徑中。
條項14:如條項1至13中任一項之方法,其中該帶電粒子評估系統包含複數個源,該方法進一步包含自該複數個源發射帶電粒子射束並自該複數個源之該等帶電粒子射束沿著該多射束路徑產生該小射束多射束。
條項15:如條項14之方法,其中該複數個源包含一帶電粒子柱,較佳地,該帶電粒子評估系統包含對應於該多射束配置之至少一第一及第二部分的至少一第一電子光學柱及一第二電子光學柱。
條項16:如條項1至15中任一項之方法,其中該多射束配置包含至少一第一及第二部分,其中在該多射束之該引導中,該第一及第二部分獨立地引導。
條項17:如條項1至16中任一項之方法,其中:該引導該多射束包含將該多射束引導朝向在該多射束之該視野中之一額外對準特徵,基於對該信號粒子之該偵測而產生表示該額外對準特徵之一資料集;及該判定該樣品之該全域對準係相對於該多射束路徑;其中該額外對準特徵在該樣品上與該對準特徵不同的一位置處,期望地該資料集係表示,例如可呈現,為諸如一二維影像之一影像。
條項18:如條項17之方法,其中在該引導該多射束或該多射束配置時,該多射束配置之該第一部分將帶電粒子投射朝向該對準特徵,且該多射束配置之該第二部分將帶電粒子投射朝向該額外對準特徵。
條項19:如條項18之方法,其中該多射束配置之該等第一及第二部分同時將該等帶電粒子投射朝向該對準特徵及該等額外對準特徵。
條項20:如條項1至19中任一項之方法,其中該偵測包含選擇一偵測器陣列之偵測器元件進行偵測。
條項21:如條項1至20中任一項之方法,其中該產生包含自該偵測選擇偵測器信號以用於產生該資料集
條項22:如條項1至21中任一項之方法,其中該判定包含自對應於一偵測器陣列之選定偵測器元件的偵測之該資料集選擇資料。
條項23:如條項1至22中任一項之方法,其中該判定包含基於該信號之該強度而判定該多射束之該視野中之樣品表面之形貌。
條項24:如條項1至23中任一項之方法,其中該對準特徵包含界定在該樣品之周緣中或其上之一特徵。
條項25:如條項24之方法,其中該對準特徵包含在該樣品之該周緣中之一凹口。
條項26:如條項1至24中任一項之方法,其中該對準特徵包含該樣品之一主表面之一特徵。
條項27:如條項26之方法,其中該對準特徵包含一對準標記。
條項28:如條項1至27中任一項之方法,其中該對準特徵具有小於該樣品上之該視野的一尺寸。
條項29:如條項1至28中任一項之方法,其中該樣品相對於該多射束路徑的該全域對準位置經判定在100 nm內。
條項30:如條項1至29中任一項之方法,判定該樣品相對於該等射束之該配置的一精細對準,例如藉由控制至少該光學系統,例如藉由使用該全域對準來判定該精細對準;期望地藉由將該等小射束之該配置沿著該多射束路徑引導朝向該樣品之一精細對準特徵,使得該帶電粒子多射束之該視野囊括該精細對準特徵;期望地偵測自該樣品發射之該等信號粒子;期望地基於對該等信號粒子的該偵測而產生表示該對準特徵之一精細對準資料集,期望地以便期望地取決於該全域對準而判定該樣品相對於該多射束路徑的該精細對準。
條項31:一種帶電粒子評估系統,其經組態以將一帶電粒子多射束投射朝向包含一對準特徵的一樣品,該多射束包含沿著一多射束路徑引導的一小射束配置,該系統包含:一支撐件,其用於支撐一樣品;一光學系統,其用於將一帶電粒子多射束投射朝向該樣品,該光學系統包含:一物鏡陣列,其經組態以將呈一小射束配置之一帶電粒子多射束引導朝向該樣品,及一偵測器陣列,其與該物鏡陣列相關聯且經組態以回應於該多射束之一對應小射束而偵測自該樣品發射之信號粒子;一控制系統,其經組態以控制該光學系統以將該帶電粒子多射束引導朝向囊括該對準特徵之一視野中之該對準特徵;及一處理系統,其經組態以基於對該等信號粒子的該偵測而產生表示該對準特徵之一資料集,並根據表示該對準特徵之該資料集而判定該樣品相對於該多射束路徑的一全域對準,且期望地該控制系統經組態以使用該全域對準來使該樣品相對於該多射束路徑進行精細對準。
條項32:如條項31之帶電粒子評估系統,其中該資料集為該對準特徵之一影像,期望地該影像為一二維影像。
條項33:如條項31及32中任一項之帶電粒子評估系統,其中該光學系統包含一或多個光學柱,每一柱可包含該多射束配置之一或多個小射束,視情況該多射束配置之所有該等小射束。
條項34:如條項31至33中任一項之帶電粒子評估系統,其進一步包含一或多個源,每一源對應於一或多個小射束及一或多個柱。
條項35:如條項31至34中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統以將該多射束之該複數個小射束同時引導朝向該對準特徵。
條項36:如條項31至35中任一項之帶電粒子評估系統,其中該多射束配置中之一小射束選集的組合視野囊括該對準特徵。
條項37:如條項36之帶電粒子評估系統,其中該選擇包含至少50至100個小射束,較佳地至少60個小射束。
條項38:如條項31至37中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統以自該多射束之該射束配置選擇一小射束選集以引導朝向該對準特徵,該小射束集合彼此鄰接界定該射束配置之一部分或該小射束選集安置遍及該多射束配置中,較佳地以規則圖案安置在該多射束配置中。
條項39:如條項38之帶電粒子評估系統,其中該光學系統經組態以遮沒未包括在該小射束選集中之該多射束配置之該等小射束。
條項40:如條項31至39中任一項之帶電粒子評估系統,其中該帶電粒子多射束在該樣品上之該視野為至少3 mm。
條項41:如條項31至40中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統及/或該支撐件的移動,使得該帶電粒子多射束在該對準特徵上方掃描。
條項42:如條項41之帶電粒子評估系統,其中該控制系統經組態以控制該支撐件以相對於該光學系統移動樣品及/或向該多射束配置施加一靜電偏轉,使得該多射束在該對準特徵上方掃描。
條項43:如條項41及42中任一項之帶電粒子評估系統,其中控制系統經組態以控制該光學系統及/或該支撐件,使得該帶電粒子多射束在該對準特徵上方掃描達大於或等於小射束節距的一距離。
條項44:如條項41至43中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統及/或該支撐件,使得在該對準特徵上方掃描該帶電粒子多射束達大於或等於在射束配置之部分之樣品表面之平面中之一尺寸的一距離及/或指派至該多射束之一小射束之該視野,該距離較佳地在50至200微米的範圍中,例如50至100微米,更較佳地60至70微米。
條項45:如條項41至44中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統及/或該支撐件,使得該等帶電粒子多射束在該視野內的該對準特徵上方掃描。
條項46:如條項31至45中任一項之帶電粒子評估系統,其中該控制系統經組態以控制該光學系統以將該帶電粒子多射束引導朝向囊括該額外對準特徵之一視野中之一額外對準特徵,其中該額外對準特徵在該樣品上與該對準特徵不同的一位置處;且該處理系統經組態以基於該等信號粒子的該偵測而產生表示該對準特徵之一資料集,並根據表示該額外對準特徵之該資料集判定該樣品相對於該多射束路徑的一全域對準,期望地,該資料集表示,例如可呈現,為諸如一二維影像之一影像。
條項47:如條項31至46中任一項之帶電粒子評估系統,其中該光學系統包含對應於該多射束配置之一第一部分的一第一部分及對應於該多射束配置之一第二部分的一第二部分,其中該控制系統經組態以控制該第一部分以將該帶電粒子多射束引導朝向在囊括該對準特徵之一視野中之該對準特徵並且控制該第二部分以將該帶電粒子多射束引導朝向在囊括該額外對準特徵之一視野中之該額外對準特徵。
條項48:如條項47之帶電粒子評估系統,其中該控制系統經組態以控制該多射束配置之該等第一及第二部分以將該帶電粒子多射束同時引導朝向該對準特徵及該額外對準特徵。
條項49:如條項47及48中任一項之帶電粒子評估系統,其中該光學系統之該第一部分對應於一第一電子光學柱且該系統之該第二部分對應於一第二光學系統。
條項50:如條項31至49中任一項之帶電粒子評估系統,其中該處理系統經組態以將該樣品相對於該帶電粒子射束路徑的該全域對準位置判定在100 nm內。
條項51:一種帶電粒子評估系統,其經組態以將一帶電粒子多射束投射朝向包含一對準特徵之一樣品,該多射束包含沿著一多射束路徑引導的一子束配置,該系統包含:一支撐件,其用於支撐一樣品;一光學系統,其用於將一帶電粒子多射束投射朝向該樣品,該光學系統包含:一物鏡陣列,其經組態以將呈一小射束配置之一帶電粒子多射束引導朝向該樣品,及一偵測器陣列,其與該物鏡陣列相關聯且經組態以回應於該多射束之一對應小射束而偵測自該樣品發射之信號粒子;且其中該帶電粒子評估系統經組態以控制該光學系統以將該帶電粒子多射束引導朝向囊括該對準特徵之一視野中之該對準特徵;基於對該等信號粒子的該偵測而產生表示該對準特徵之一資料集,及根據該資料集基於該對準特徵之該影像而判定該樣品相對於該至少一個電子光學柱的一全域對準,期望地該資料集表示,例如可呈現,為諸如一二維影像之一影像;且期望地該控制系統經組態以至少控制該光學系統以期望地取決於該全域對準而判定該樣品相對於該多射束路徑的精細對準。
雖然已結合各種實施例描述本發明,但彼等熟習此項技術者在考慮本說明書及實踐本文所揭示本發明後可明瞭本發明之其他實施例。本說明書及各實例意欲僅考慮實例性,且本發明之真實範疇及精神系由隨附申請專利範圍來指示。
上述描述意欲為說明性,而非限制性。因此,對熟習此項技術者將顯而易見,可如所描述進行修改,而不會脫離下文所闡明之申請專利範圍之範疇。
10:主腔室 11:擴展主標記(XPA)標記 12:SPM標記 13:標記 14:標記 20:裝載鎖定腔室 30:設備前端模組(EFEM) 30a:第一裝載埠 30b:第二裝載埠 40:電子射束工具 41:電子光學系統 50:控制器 91:光子轉換器陣列 92:螢光條 93:開口 95:偏轉器陣列 96:磁偏轉器 97:靜電偏轉器 98:光纖 100:帶電粒子射束檢測設備 201:電子源 202:初級電子射束 204:初級電子光軸 207:樣品架 208:樣品 209:電動載物台 210:聚光透鏡 211:子射束 212:子射束 213:子射束 220:源轉換單元 221:探測點 222:探測點 223:探測點 230:投射設備 231:聚光透鏡 232:偏轉掃描單元 233:射束分離器 234:物鏡 235:偏轉器 240:偵測器陣列 241:物鏡陣列 250:控制透鏡陣列 251:次級電子光軸 255:次級投射設備 260:掃描偏轉器陣列 261:次級電子射束 262:次級電子射束 263:次級電子射束 265:大型掃描偏轉器 270:大型準直器 271:槍孔徑板 280:影像處理系統 405:偵測器元件 702:網格位置 703:虛線/掃描線 704:節距區 704A:主掃描區域 704B:邊界區域 801:凹口 802:尺寸 803:小射束 804:凹口 S10:步驟 S20:步驟 S30:步驟 S40:步驟
自結合附圖進行的對例示性實施例的描述,本揭示內容之上述及其他態樣將變得較顯而易見。
1為說明例示性帶電粒子射束檢測設備的示意圖。
2為說明作為 1之例示性帶電粒子射束檢測設備之一部分的例示性多射束設備的示意圖。
3為根據實施例之例示性多射束設備的示意圖。
4為包含大型準直器及大型掃描偏轉器的例示性電子光學系統的示意圖。
5為根據實施例之例示性多射束設備的示意圖。
6 5之多射束設備之一部分的示意圖。
7為根據實施例之例示性多射束設備的示意圖。
8為說明全域對準方法之概述的流程圖。
9A為樣品之周緣上之凹口的示意圖,且 9B為囊括凹口之多射束之視野的示意圖。
10A為擴展主要對準標記的示意圖,且 10B為一對切割道主要對準標記的示意圖。
11示意性地示出用於在樣品上方掃描子射束的跳躍及掃描方法。
802:尺寸
803:小射束

Claims (15)

  1. 一種在一帶電粒子評估系統中對準一樣品之方法,該帶電粒子評估系統包含用於支撐一樣品之一支撐件,該評估系統經組態以沿著一多射束路徑將一多射束中之帶電粒子投射朝向一樣品,該多射束包含一小射束配置,且經組態以回應於該多射束之一對應小射束而偵測自該樣品發射之信號粒子,該方法包含: 將該帶電粒子多射束沿著該多射束路徑引導朝向該樣品之一對準特徵,使得該帶電粒子多射束之視野囊括該對準特徵; 偵測自該樣品發射之該等信號粒子; 基於對該等信號粒子之該偵測而產生表示該對準特徵之一資料集;及 使用該資料集判定該樣品相對於該多射束路徑的一全域對準。
  2. 如請求項1之方法,其中將該複數個小射束同時引導朝向該對準特徵。
  3. 如請求項1或2之方法,其中該多射束配置中之一小射束選集的組合視野囊括該對準特徵,且較佳地其中該選集包含至少50至100個小射束。
  4. 如請求項3之方法,其中引導該多射束包含自該多射束配置選擇該小射束選集,彼此鄰接的該小射束選集界定該多射束配置之一部分,或該小射束選集安置遍及該多射束配置,較佳地以一規則圖案安置在該多射束配置中。
  5. 如請求項4之方法,其中多射束配置包含該小射束選集及未選定小射束,其中該選擇包含遮沒該等未選定小射束。
  6. 如請求項1或2之方法,其中引導該多射束包含在該對準特徵上掃描該帶電粒子多射束。
  7. 如請求項6之方法,其中該在該對準特徵上掃描該帶電粒子多射束係在大於或等於小射束節距的一距離範圍內。
  8. 如請求項6之方法,其中該在該對準特徵上掃描該帶電粒子多射束在大於或等於射束配置之部分之樣品表面之平面中之一尺寸的一距離及/或指派至該多射束中之一小射束之該視野範圍內。
  9. 如請求項6之方法,其中該帶電粒子多射束在該對準特徵上的該掃描在該視野內。
  10. 如請求項1或2之方法,其中該偵測包含選擇一偵測器陣列之偵測器元件進行偵測。
  11. 如請求項1或2之方法,其中該產生包含自該偵測選擇偵測器信號以用於產生該資料集。
  12. 如請求項1或2之方法,其中該判定包含自對應於一偵測器陣列之選定偵測器元件的偵測的該資料集選擇資料。
  13. 如請求項1或2之方法,其中該判定包含基於該信號之該強度而判定該多射束之該視野中之樣品表面之形貌。
  14. 如請求項1或2之方法,其中該對準特徵包含界定在該樣品之周緣中或其上之一特徵及/或該樣品之一主表面之一特徵。
  15. 如請求項1或2之方法,其進一步包含使用該全域對準判定該樣品相對於該多射束的一精細對準。
TW111123143A 2021-06-29 2022-06-22 帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法 TW202316470A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21182521.1A EP4113570A1 (en) 2021-06-29 2021-06-29 Charged particle assessment system and method of aligning a sample in a charged particle assessment system
EP21182521.1 2021-06-29

Publications (1)

Publication Number Publication Date
TW202316470A true TW202316470A (zh) 2023-04-16

Family

ID=76708114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123143A TW202316470A (zh) 2021-06-29 2022-06-22 帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法

Country Status (6)

Country Link
US (1) US20240128045A1 (zh)
EP (1) EP4113570A1 (zh)
KR (1) KR20240027718A (zh)
CN (1) CN117716464A (zh)
TW (1) TW202316470A (zh)
WO (1) WO2023274652A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4117017A1 (en) * 2021-07-05 2023-01-11 ASML Netherlands B.V. Charged particle detector
EP4418302A1 (en) * 2023-02-16 2024-08-21 ASML Netherlands B.V. Charged particle-optical element, charged particle-optical module, assessment apparatus, chip assembly, method of manufacturing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503587A3 (en) 2003-03-10 2017-08-23 Mapper Lithography Ip B.V. Apparatus for generating a plurality of beamlets
TWI497557B (zh) 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP6649130B2 (ja) * 2016-03-08 2020-02-19 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
KR102378925B1 (ko) * 2017-09-19 2022-03-25 에이에스엠엘 네델란즈 비.브이. 하전 입자 빔 장치, 및 상기 장치의 작동 시스템 및 방법
WO2020135996A1 (en) * 2018-12-28 2020-07-02 Asml Netherlands B.V. Improved scanning efficiency by individual beam steering of multi-beam apparatus
US10901391B1 (en) * 2019-09-09 2021-01-26 Carl Zeiss Smt Gmbh Multi-scanning electron microscopy for wafer alignment

Also Published As

Publication number Publication date
EP4113570A1 (en) 2023-01-04
CN117716464A (zh) 2024-03-15
KR20240027718A (ko) 2024-03-04
US20240128045A1 (en) 2024-04-18
WO2023274652A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN108885187B (zh) 多个带电粒子束的装置
US11984295B2 (en) Charged particle assessment tool, inspection method
KR20220083798A (ko) 시편을 검사하기 위한 방법 및 하전 입자 빔 디바이스
US20240128045A1 (en) Charged particle assessment system and method of aligning a sample in a charged particle assessment system
US20200381212A1 (en) Multiple charged-particle beam apparatus and methods of operating the same
US20230326715A1 (en) Charged particle system, method of processing a sample using a multi-beam of charged particles
US20230324318A1 (en) Charged particle tool, calibration method, inspection method
TW202307899A (zh) 帶電粒子評估系統及方法
JP7457820B2 (ja) 荷電粒子検査ツール、検査方法
TW202407739A (zh) 帶電粒子評估工具及檢測方法
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
TWI842250B (zh) 產生樣本圖的方法、電腦程式產品、帶電粒子檢測系統、用於處理樣本的方法、評估方法
EP4376046A1 (en) Electron-optical element and method of assessing an electron-optical element
TW202411639A (zh) 評估設備及方法
TW202312215A (zh) 評估系統、評估方法
TW202307901A (zh) 帶電粒子設備及方法
EP3975222A1 (en) Charged particle assessment tool, inspection method
TW202303658A (zh) 補償電極變形之影響的方法、評估系統
TW202410108A (zh) 帶電粒子光學設備
TW202420366A (zh) 獲得關於樣本表面之形貌資訊的電子光學設備及方法
TW202341217A (zh) 對準判定方法及電腦程式
KR20220143941A (ko) 스택 정렬 기법
TW202328812A (zh) 帶電粒子裝置及方法