TW202217801A - Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications - Google Patents
Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications Download PDFInfo
- Publication number
- TW202217801A TW202217801A TW109136460A TW109136460A TW202217801A TW 202217801 A TW202217801 A TW 202217801A TW 109136460 A TW109136460 A TW 109136460A TW 109136460 A TW109136460 A TW 109136460A TW 202217801 A TW202217801 A TW 202217801A
- Authority
- TW
- Taiwan
- Prior art keywords
- sub
- filter bank
- analysis filter
- subband
- band
- Prior art date
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Image Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
本發明有關於聲學波信號處理與基頻信號處理領域,特別有關於一種分析濾波器組及其方法、基於分析濾波器組之即時信號處理系統及其施行方法。 The present invention relates to the field of acoustic wave signal processing and fundamental frequency signal processing, in particular to an analysis filter bank and its method, a real-time signal processing system based on the analysis filter bank and its implementation method.
一個濾波器組由多個平行的濾波器構成。該等平行濾波器分別相應多個相異頻段,其可含蓋一時域濾波器組輸入信號之全頻段或者部份頻段。該等頻段每一頻段稱為一個子帶(sub-band),所有子帶的集合稱為子帶組。該等平行濾波器稱為子帶濾波器,濾波器組相應各子帶的輸出信號(通常亦為子帶濾波器的輸出信號)則稱為子帶信號。濾波器組之設計具有高度彈性~每個子帶的頻寬,子帶濾波器響應形狀都可獨立調整,且中心頻率相鄰之二子帶濾波器其頻率響應可部份重疊。若一濾波器組中各子帶濾波器的輸入信號皆為同一輸入信號,則稱此濾波器組為一個分析濾波器組(analysis filter bank)。
關於濾波器組之設計可參照參考文獻1至參考文獻3。
A filter bank consists of multiple parallel filters. The parallel filters correspond to a plurality of different frequency bands respectively, which can cover the whole frequency band or part of the frequency band of the input signal of a time domain filter bank. Each of these frequency bands is called a sub-band, and the set of all the sub-bands is called a sub-band group. These parallel filters are called sub-band filters, and the output signals of the corresponding sub-bands of the filter bank (usually also the output signals of the sub-band filters) are called sub-band signals. The design of the filter bank is highly flexible ~ the bandwidth of each sub-band, the shape of the sub-band filter response can be adjusted independently, and the frequency responses of two sub-band filters adjacent to the center frequency can partially overlap. If the input signals of the subband filters in a filter bank are all the same input signal, the filter bank is called an analysis filter bank.
For the design of the filter bank, please refer to
一般信號處理系統在應用濾波器組時,可能採用如圖1之一個習知之基於濾波器組的信號處理系統架構100。該信號處理系統架構100包括:一個分析濾波器組101,其將一時域輸入信號作濾波分頻(即作多個中心頻率相異之濾波處理以分離相異頻率之成份)以得到多個子帶信號;一個抽取器(decimator;以捨棄部份取樣點方式降低信號取樣頻率)102,其抽取該等子帶信號以得到多個相應各子帶的被抽取子帶信號;一個核心數位信號處理單元103,其針對該等被抽取信號執行指定的信號處理以得到多個相應各子帶的被修改子帶信號(即完成該信號處理的信號);一個補零單元104,其將多個零值取樣點插入該等被修改子帶信號以將該等被修改子帶信號之取樣頻率還原至與該輸入信號相同;以及一個合成濾波器組105,其對該等還原取樣頻率之被修改子帶信號實施抗混疊(anti-aliasing)後合併為一輸出信號。基於濾波器組的信號處理系統架構適合實施基於取樣點(sample-based)的信號處理,其較利於低處理延時的設計。若該信號處理系統100為實數型輸出信號如聲學波(acoustic wave),合成該輸出信號通常將只針對該等被修改子帶信號的實部進行。又,考量該信號處理系統100實施的算法可能需參考到相位資訊,如基頻(baseband)信號處理,或部份音頻信號算法如:移頻(frequency
lowering),相位聲碼器(phase vocoder)算法等等,需要處理複數型(即具有相位資訊)的子帶信號,故以下討論的分析濾波器組輸出之該等子帶信號均為複數型態。
When applying a filter bank in a general signal processing system, a conventional filter bank-based signal processing system architecture 100 as shown in FIG. 1 may be used. The signal processing system architecture 100 includes: an
在即時信號處理系統的架構選取方面,除基於濾波器組的信號處理系統架構(以下簡稱為濾波器組式系統架構)外,基於分析-修改-合成框架(analysis-modification-synthesis framework,or AMS framework)實作的頻域信號處理系統架構(以下簡稱為AMS系統架構)也廣見於即時信號處理的應用。該架構其中分析運算與合成運算原則上是一對可逆運算,例如套用時-頻轉換例如短時傅利葉轉換(short-time Fourier transform,or STFT)及其逆轉換,或是離散餘弦轉換(discrete cosine transform,or DCT)及其逆轉換等。波形分析及合成運算之細節描述可參照參考文獻4、5。因頻域信號處理為基於幀的運算,其幀長的選擇直接影響頻譜之頻率解析度。若該即時信號處理系統有極低信號處理延時需求,可能就不適合用AMS系統架構實施。選取一個適當的系統架構,其方式不外乎依系統需求,將數個考慮面向排序後比較後決定。信號處理系統架構選取常見的考慮面向如:分頻(將時域波形詳細分解成不同頻率的信號成份)能力的優劣,算法延時(假設運算時間為零所得之處理延時,亦即理論上之最低處理延時),運算量需求的高低,相位變化特性(例如是否為接近線性相
位響應),設計彈性(例如是否造成其它設計上或參數設定的限制),數值穩定性(是否有特殊的精確度需求,例如只適用浮點運算)等等。按一般認知而言,若考量相同的分頻能力(即可得到相同解析度的頻譜),則用濾波器組執行分頻及波形合成,其運算量需求往往明顯高於用STFT轉換/逆轉換執行分頻及波形合成的運算量需求,但其好處則是擁有明顯較低的算法延時以及極高的設計彈性(例如可調整成任意的子帶個數,可獨立調整子帶頻寬與頻率響應形狀,同時適用於點處理或幀處理的系統設計...等等)。故尋求適用於信號處理但低運算量的濾波器組設計是濾波器組式系統架構適用於即時信號處理軟體實作或極低功率信號處理裝置的關鍵。
In terms of architecture selection of real-time signal processing systems, in addition to filter bank-based signal processing system architecture (hereinafter referred to as filter bank system architecture), analysis-modification-synthesis framework (or AMS) The frequency domain signal processing system architecture (hereinafter referred to as the AMS system architecture) implemented by the framework) is also widely used in real-time signal processing applications. In this architecture, the analysis operation and the synthesis operation are in principle a pair of reversible operations, such as applying time-frequency transforms such as short-time Fourier transform (or STFT) and its inverse transform, or discrete cosine transform (discrete cosine transform) transform, or DCT) and its inverse transformation, etc. Details of waveform analysis and synthesis operations can be found in
參考文獻references
參考文獻1:Wei, Ying, and Yong Lian. "A 16-band nonuniform FIR digital filterbank for hearing aid." 2006 IEEE Biomedical Circuits and Systems Conference. IEEE, 2006. Reference 1: Wei, Ying, and Yong Lian. "A 16-band nonuniform FIR digital filterbank for hearing aid." 2006 IEEE Biomedical Circuits and Systems Conference. IEEE, 2006.
參考文獻2:Subbulakshmi, N., and R. Manimegalai. "A survey of filter bank algorithms for biomedical applications." 2014 International Conference on Computer Communication and Informatics. IEEE, 2014. Reference 2: Subbulakshmi, N., and R. Manimegalai. "A survey of filter bank algorithms for biomedical applications." 2014 International Conference on Computer Communication and Informatics. IEEE, 2014.
參考文獻3:Necciari, Thibaud, et al. "A perceptually motivated filter bank with perfect reconstruction for audio signal processing." arXiv preprint arXiv:1601.06652 (2016). Reference 3: Necciari, Thibaud, et al. "A perceptually motivated filter bank with perfect reconstruction for audio signal processing." arXiv preprint arXiv:1601.06652 (2016).
參考文獻4:Dutoit, Thierry, and Ferran Marques. Applied Signal Processing: A MATLAB TM -based proof of concept. Springer Science & Business Media, 2010. Reference 4: Dutoit, Thierry, and Ferran Marques. Applied Signal Processing: A MATLAB TM -based proof of concept. Springer Science & Business Media, 2010.
參考文獻5:Loizou, Philipos C. Speech enhancement: theory and practice. CRC press, 2013. Reference 5: Loizou, Philipos C. Speech enhancement: theory and practice. CRC press, 2013.
鑑於上述不同系統/算法架構的相對優勢與限制,本發明之目的在於提供一種適用於即時信號處理的分析濾波器組與相應之分析濾波器組運算程序,並提出基於該分析濾波器組之二信號處理系統與相應基於該分析濾波器組運算程序之二信號處理程序。該分析濾波器組以平行之一階無限衝激響應(infinite impulse response,or IIR)濾波運算為基礎,搭配子帶響應預補償與二項式組合與旋轉器構成該分析濾波器組的子帶信號輸出。該分析濾波器組及相應之分析濾波器組運算程序兼顧低運算量,低延時與低失真。其相當適合應用於極低功率裝置之濾波器組系統實作或即時信號處理程序之實作。 In view of the relative advantages and limitations of the above-mentioned different system/algorithm architectures, the purpose of the present invention is to provide an analysis filter bank suitable for real-time signal processing and a corresponding analysis filter bank operation program, and propose a second analysis filter bank based on the analysis filter bank. A signal processing system and a corresponding signal processing program based on the analysis filter bank operation program. The analysis filter bank is based on a parallel first-order infinite impulse response (or IIR) filtering operation, with sub-band response pre-compensation and binomial combination and rotator forming the sub-bands of the analysis filter bank signal output. The analysis filter bank and the corresponding analysis filter bank operation program take into account low computational complexity, low delay and low distortion. It is quite suitable for filter bank system implementation or real-time signal processing program implementation for very low power devices.
本發明之第一態樣提供一種相應多個子帶之分析濾波器組,其將一輸入信號依該等子帶作濾波分頻以產生多個子帶信號,該分析濾波器組包括: A first aspect of the present invention provides an analysis filter bank corresponding to a plurality of subbands, which filters and frequency-divides an input signal according to the subbands to generate a plurality of subband signals, and the analysis filter bank includes:
一子帶響應預補償器,其將該輸入信號作一線性濾波處理以產生一響應預補償信號; a subband response precompensator, which performs a linear filtering process on the input signal to generate a response precompensation signal;
中心頻率相異之多個子濾波器,其分別將該響應預補償信號作一複數型一階無限衝激響應濾波處理以產生多個子濾波信號;以及 a plurality of sub-filters with different center frequencies, which respectively perform a complex first-order infinite impulse response filtering process on the response pre-compensation signal to generate a plurality of sub-filtered signals; and
基於一組二項式權重之多個二項式組合與旋轉器,其每一者將至少二子濾波信號以該組二項式權重作一加權和運算,並將該加權和運算結果隨相應子帶之中心頻率旋轉一相位以產生該等子帶信號之一子帶信號,其中該至少二子濾波信號由該等子濾波器之至少二中心頻率相鄰之子濾波器產生。 A plurality of binomial combinations and rotators based on a set of binomial weights, each of which performs a weighted sum operation on at least two sub-filtered signals with the set of binomial weights, and applies the result of the weighted sum operation to the corresponding sub-filter The center frequency of the band is rotated by a phase to generate a sub-band signal of the sub-band signals, wherein the at least two sub-filtered signals are generated by at least two sub-filters of the sub-filters having adjacent center frequencies.
本發明之第二態樣提供一種兩段式分析濾波器組,其包括相應一低子帶組之一個如第一態樣之低分析濾波器組以及相應一高子帶組之一個如第一態樣之高分析濾波器組,該二分析濾波器組分別將一輸入信號作濾波分頻處理以產生子帶信號,該低分析濾波器組之該子帶響應預補償器之該線性濾波處理為一低通濾波處理,該高分析濾波器組之該子帶響應預補償器之該線性濾波處理為一高通濾波處理。 A second aspect of the present invention provides a two-stage analysis filter bank, which includes a corresponding one of a low subband group, such as the low analysis filter bank of the first aspect, and a corresponding one of a high subband group, such as the first one. A high analysis filter bank of this aspect, the two analysis filter banks respectively perform filtering and frequency division processing on an input signal to generate a subband signal, and the subband of the low analysis filter bank responds to the linear filtering process of the precompensator Being a low-pass filtering process, the linear filtering process of the sub-band response precompensator of the high analysis filter bank is a high-pass filtering process.
本發明之第三態樣提供一種三段式分析濾波器組,其包括相應一低子帶組之一個如第一態樣之低分析濾波器組,相應一中子帶組之一個如第一態樣之中分析濾波器組,以及相應一高子帶組之一個如第一態樣之高分析濾波器組,該三分析濾波器組分別將一輸入信號作濾波分頻處理以產生多個子帶信號,該低分析濾波器組之該子帶響 應預補償器之該線性濾波處理為一低通濾波處理,該中分析濾波器組之該子帶響應預補償器之該線性濾波處理為一帶通濾波處理,且該高分析濾波器組之該子帶響應預補償器之該線性濾波處理為一高通濾波處理。 A third aspect of the present invention provides a three-stage analysis filter bank, which includes one corresponding to a low subband group such as the low analysis filter bank of the first aspect, and one corresponding to a middle subband group such as the first The analysis filter bank in the aspect, and one of the corresponding high subband groups is the high analysis filter bank of the first aspect, and the three analysis filter banks respectively perform filtering and frequency division processing on an input signal to generate a plurality of subbands band signal, the subband of the low analysis filter bank The linear filtering process of the pre-compensator should be a low-pass filtering process, the linear filtering process of the sub-band response pre-compensator of the mid-analysis filter bank is a band-pass filtering process, and the high-analysis filter bank The linear filtering process of the subband response precompensator is a high-pass filtering process.
本發明之第四態樣提供一種濾波器組式系統,其包括: A fourth aspect of the present invention provides a filter bank system comprising:
一個如第一態樣之分析濾波器組,其將一輸入信號作分頻濾波處理以產生多個子帶信號; an analysis filter bank as in the first aspect, which divides and filters an input signal to generate a plurality of subband signals;
一個抽取器,其以一抽取倍率抽取該等子帶信號或其振幅以產生一輸入頻譜; a decimator that decimates the subband signals or their amplitudes at a decimation factor to generate an input spectrum;
一個核心數位信號處理單元,其將該輸入頻譜執行指定的數位信號處理以決定每一時間該等子帶信號相應之多個子帶權重;以及 a core digital signal processing unit that performs specified digital signal processing on the input spectrum to determine a plurality of subband weights corresponding to the subband signals at each time; and
一個子帶組合器,其對該等子帶信號或其之實部以相應之該等子帶權重作一加權和運算以產生一輸出信號。 A subband combiner that performs a weighted sum operation on the subband signals or their real parts with the corresponding subband weights to generate an output signal.
本發明之第五態樣提供一種混合式信號處理系統,其包括: A fifth aspect of the present invention provides a hybrid signal processing system, which includes:
一個成幀與時-頻轉換器,其將一輸入信號依時間劃分成等長且等間距之多個信號幀,並將該等信號幀分別作一時-頻轉換以產生多個帶信號; a framing and time-frequency converter, which divides an input signal into a plurality of signal frames of equal length and interval according to time, and performs a time-frequency conversion on the signal frames respectively to generate a plurality of band signals;
多個如第一態樣之分析濾波器組,其分別將該等帶信號作濾波分頻以產生多個子帶信號; a plurality of analysis filter banks according to the first aspect, which respectively filter and frequency-divide the equal-band signals to generate a plurality of sub-band signals;
一個抽取器,其以一抽取倍率抽取該等子帶信號或其振幅以產生一輸入頻譜; a decimator that decimates the subband signals or their amplitudes at a decimation factor to generate an input spectrum;
一個核心數位信號處理單元,其對該輸入頻譜執行指定的信號處理以決定該等帶信號之每一者相應之多個子帶信號之多個子帶權重; a core digital signal processing unit that performs specified signal processing on the input spectrum to determine a plurality of subband weights for a plurality of subband signals corresponding to each of the plurality of band signals;
多個子帶組合器,其每一者將該等帶信號之一帶信號相應之該等子帶信號以其相應該等子帶權重進行一加權和運算以產生多個被修改帶信號之一被修改帶信號;以及 a plurality of sub-band combiners, each of which performs a weighted sum operation on the corresponding sub-band signals of the one of the band signals with their corresponding sub-band weights to generate one of a plurality of modified band signals modified with signal; and
一個頻-時轉換器,其對該等被修改帶信號相應同一時間之多個取樣點作一頻-時轉換以產生一輸出信號。 A frequency-to-time converter that performs a frequency-to-time conversion of the modified band signals corresponding to a plurality of sampling points at the same time to generate an output signal.
本發明之第六態樣提供一種相應多個子帶之濾波器組運算程序,其包括下列步驟: A sixth aspect of the present invention provides a filter bank operation program corresponding to a plurality of subbands, which includes the following steps:
對一輸入信號之至少一取樣點進行一線性濾波運算以得到一響應預補償信號之至少一取樣點; performing a linear filtering operation on at least one sampling point of an input signal to obtain at least one sampling point corresponding to the pre-compensated signal;
將該響應預補償信號之該至少一取樣點進行中心頻率相異之多個複數型一階無限衝激響應濾波運算以得到多個子濾波信號,其每一子濾波信號包含至少一取樣點;以及 performing a plurality of complex first-order infinite impulse response filtering operations with different center frequencies on the at least one sampling point of the response pre-compensated signal to obtain a plurality of sub-filtered signals, each of which includes at least one sampling point; and
從該等子濾波信號中選擇相應該等子帶之多個子集,其每一者包含相同個數、由中心頻率相鄰之至少二濾波運算得到之至少二子濾波信號,將該等子集之每一子集相應同一時間之至少二子濾波信號取樣點以一組二項式權重進行一加權和運算,並將該加權和運算結果隨相應子帶之中心頻率旋轉一相位以得到多個子帶信號之一子帶信號,其包括至少一取樣點。 A plurality of subsets corresponding to the subbands are selected from the subfiltered signals, each of which includes the same number of at least two subfiltered signals obtained by at least two filtering operations with adjacent center frequencies, and the subsets Each of the subsets corresponds to at least two sub-filtered signal sampling points at the same time to perform a weighted sum operation with a set of binomial weights, and rotate the result of the weighted sum operation by a phase with the center frequency of the corresponding sub-band to obtain a plurality of sub-bands A subband signal of the signal, which includes at least one sample point.
本發明之第七態樣提供一種濾波器組式信號處理程序,其包括下列步驟: A seventh aspect of the present invention provides a filter bank type signal processing program, which includes the following steps:
對一輸入信號之至少一取樣點執行一個如第六態樣之濾波器組運算程序以得到多個子帶信號,其每一者包括至少一取樣點; performing a filter bank operation procedure as in the sixth aspect on at least one sampling point of an input signal to obtain a plurality of subband signals, each of which includes at least one sampling point;
若一抽取周期結束,則抽取該等子帶信號或其振幅以得到一輸入頻譜,對該輸入頻譜執行一核心信號處理程序以決定該等子帶信號相應之多個子帶權重,並開始算一個新的抽取周期;以及 If a decimation period ends, extract the sub-band signals or their amplitudes to obtain an input spectrum, execute a core signal processing procedure on the input spectrum to determine a plurality of sub-band weights corresponding to the sub-band signals, and start to calculate a a new draw cycle; and
對該等子帶信號相應同一時間之多個取樣點或其之實部以該等子帶權重進行一加權和運算以得到一輸出信號之至少一取樣點。 A weighted sum operation is performed on the sub-band signals corresponding to a plurality of sampling points at the same time or their real parts with the sub-band weights to obtain at least one sampling point of an output signal.
本發明之第八態樣提供一種混合式信號處理程序,其包括下列步驟: An eighth aspect of the present invention provides a mixed signal processing program, which includes the following steps:
對一輸入信號之至少一信號幀分別進行一時-頻轉換運算以得到多個帶信號,其每一者包括相應同一頻帶之至少一頻譜取樣點; performing a time-frequency conversion operation on at least one signal frame of an input signal to obtain a plurality of band signals, each of which includes at least one spectral sampling point corresponding to the same frequency band;
對該等帶信號分別執行一如第六態樣之濾波器組運算程序以得到多個子帶信號,其每一者包括至少一取樣點; respectively performing a filter bank operation procedure as in the sixth aspect on the band signals to obtain a plurality of subband signals, each of which includes at least one sampling point;
若一抽取周期結束,則抽取該等子帶信號或其振幅以得到一輸入頻譜,對該輸入頻譜執行一核心信號處理程序以決定該等帶信號之每一者相應之多個子帶信號之多個子帶權重,並開始算一個新的抽取周期; After a decimation period ends, the subband signals or their amplitudes are extracted to obtain an input spectrum, and a core signal processing procedure is performed on the input spectrum to determine the number of subband signals corresponding to each of the subband signals subband weights, and start to calculate a new extraction cycle;
將該等帶信號之每一者相應之該等子帶信號以其相應該等子帶權重進行一加權和運算以得到多個被修改帶信號之一被修改帶信號,其包括至少一取樣點;以及 performing a weighted sum operation on the subband signals corresponding to each of the band signals and the corresponding subband weights to obtain one modified band signal of a plurality of modified band signals, which includes at least one sampling point ;as well as
對該等被修改帶信號相應同一時間之多個取樣點進行一頻-時轉換運算以產生一輸出信號之多個取樣點。 A frequency-to-time conversion operation is performed on a plurality of sample points corresponding to the same time of the modified band signals to generate a plurality of sample points of an output signal.
100:基於濾波器組的信號處理系統架構 100: Filter Bank-Based Signal Processing System Architecture
101:分析濾波器組 101: Analysis Filter Banks
102:抽取器 102: Extractor
103:核心數位信號處理單元 103: Core digital signal processing unit
104:補零單元 104: Zero filling unit
105:合成濾波器組 105: Synthesis Filter Banks
101:分析濾波器組 101: Analysis Filter Banks
201:子帶響應預補償器 201: Subband response precompensator
202:多個一階IIR子濾波器 202: Multiple first-order IIR subfilters
203:多個二項式組合與旋轉器 203: Multiple Binomial Combinations with Spinners
700:兩段式分析濾波器組 700: Two-stage analysis filter bank
701:低分析濾波器組 701: Low Analysis Filter Bank
702:高分析濾波器組 702: High Analysis Filter Bank
703:子帶響應預補償器 703: Subband response precompensator
704:多個一階IIR子濾波器 704: Multiple first-order IIR subfilters
705:多個二項式組合與旋轉器 705: Multiple Binomial Combinations with Spinners
706:子帶響應預補償器 706: Subband response precompensator
707:多個一階IIR子濾波器 707: Multiple first-order IIR subfilters
708:多個二項式組合與旋轉器 708: Multiple Binomial Combinations with Spinners
800:三段式分析濾波器組 800: Three-stage analysis filter bank
801:低分析濾波器組 801: Low Analysis Filter Bank
802:中分析濾波器組 802: Medium Analysis Filter Bank
803:高分析濾波器組 803: High Analysis Filter Bank
804:子帶響應預補償器 804: Subband response precompensator
805:多個一階IIR子濾波器 805: Multiple first-order IIR subfilters
806:多個二項式組合與旋轉器 806: Multiple Binomial Combinations with Spinners
807:子帶響應預補償器 807: Subband response precompensator
808:多個一階IIR子濾波器 808: Multiple first-order IIR subfilters
809:多個二項式組合與旋轉器 809: Multiple Binomial Combinations with Spinners
810:子帶響應預補償器 810: Subband response precompensator
811:多個一階IIR子濾波器 811: Multiple first-order IIR subfilters
812:多個二項式組合與旋轉器 812: Multiple binomial combinations with spinners
1200:濾波器組式信號處理系統 1200: Filter Bank Signal Processing System
1201:分析濾波器組 1201: Analysis Filter Banks
1202:抽取器 1202: Extractor
1203:核心數位信號處理單元 1203: Core digital signal processing unit
1204:子帶組合器 1204: Subband Combiner
1400:混合式信號處理系統 1400: Mixed Signal Processing System
1401:成幀與時-頻轉換器 1401: Framing and Time-Frequency Converters
1402:多個分析濾波器組 1402: Multiple Analysis Filter Banks
1403:抽取器 1403: Extractor
1404:核心數位信號處理單元 1404: Core Digital Signal Processing Unit
1405:多個子帶組合器 1405: Multiple Subband Combiners
1406:頻-時轉換器 1406: Frequency-Time Converter
〔圖1〕係習知之基於濾波器組的信號處理系統架構。 [FIG. 1] is a conventional filter bank-based signal processing system architecture.
〔圖2〕係本發明之第一實施例之分析濾波器組方塊圖。 [FIG. 2] is a block diagram of an analysis filter bank according to the first embodiment of the present invention.
〔圖3〕係本發明之以不同階二項式權重加權組合子濾波器輸出所得之子帶等效濾波器頻率響應圖。 [FIG. 3] is the frequency response diagram of the sub-band equivalent filter obtained by combining the outputs of the sub-filters with different order binomial weights according to the present invention.
〔圖4〕係採一階二項式組合與旋轉器的分析濾波器組範例之響應圖。 [Fig. 4] is a response diagram of an example analysis filter bank using a first-order binomial combination and a rotator.
〔圖5〕係採二階二項式組合與旋轉器的分析濾波器組範例之響應圖。 [Fig. 5] is a response diagram of an example analysis filter bank using a second-order binomial combination and a rotator.
〔圖6〕係本發明之第二實施例之濾波器組運算程序之流程圖。 [FIG. 6] is a flow chart of the filter bank operation procedure of the second embodiment of the present invention.
〔圖7〕係本發明之第三實施例之兩段式分析濾波器組方塊圖。 [FIG. 7] is a block diagram of a two-stage analysis filter bank according to the third embodiment of the present invention.
〔圖8〕係本發明之第四實施例之三段式分析濾波器組方塊圖。 [FIG. 8] is a block diagram of a three-stage analysis filter bank according to the fourth embodiment of the present invention.
〔圖9〕係採用一階二項式組合與旋轉器之一個兩段式分析濾波器組範例之響應圖。 [Fig. 9] is a response plot of an example of a two-stage analysis filter bank using a first-order binomial combination and a rotator.
〔圖10〕係採用一階二項式組合與旋轉器之一個兩段式分析濾波器組範例之響應圖。 [Fig. 10] is a response plot of an example of a two-stage analysis filter bank using a first-order binomial combination and a rotator.
〔圖11〕係採用一階二項式組合與旋轉器之一個三段式分析濾波器組範例之響應圖。 [Fig. 11] is a response plot of an example of a three-stage analytical filter bank using a first-order binomial combination and a rotator.
〔圖12〕係本發明之第五實施例之濾波器組式系統架構圖。 [FIG. 12] is a structural diagram of a filter bank type system according to the fifth embodiment of the present invention.
〔圖13〕係本發明之第六實施例之濾波器組式信號處理程序之流程圖。 [FIG. 13] is a flow chart of the filter bank type signal processing procedure of the sixth embodiment of the present invention.
〔圖14〕係本發明之第七實施例之混合式信號處理系統方塊圖。 [FIG. 14] is a block diagram of a mixed signal processing system according to a seventh embodiment of the present invention.
〔圖15〕係本發明之第八實施例之混合式信號處理程序之流程圖。 [FIG. 15] is a flow chart of the mixed signal processing procedure of the eighth embodiment of the present invention.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳 細說明本發明的構成內容及所欲達成之功效。 In order to enable those of ordinary skill in the technical field to which the present invention pertains to further understand the present invention, preferred embodiments of the present invention are listed below, together with the accompanying drawings. The constituent content and desired effect of the present invention will be described in detail.
圖2為本發明之第一實施例之一分析濾波器組方塊圖。該分析濾波器組101相應依中心頻率由低至高編號的S個子帶。該分析濾波器組101包括K個平行之一階IIR子濾波器202、S個平行之基於一組M階二項式權重的組合器與旋轉器(以下稱為M階二項式組合與旋轉器)203、以及一個可選的子帶響應預補償器(sub-band response pre-compensator)201。此結構下每一子帶信號係由一相應的M階二項式組合與旋轉器將該等IIR濾波器之多個輸出信號(以下簡稱為子濾波信號)的子集以該組M階二項式權重作一加權和運算與一相位旋轉運算所產生的信號。其可等效於將一輸入信號通過多個獨立濾波器(以下稱為子帶等效濾波器)後所產生的信號。
FIG. 2 is a block diagram of an analysis filter bank according to the first embodiment of the present invention. The
該子帶響應預補償器201作用為改變該分析濾波器組101之該等子帶等效濾波器的頻率響應,其係將該分析濾波器組101的輸入信號作一線性濾波處理產生一響應預補償信號。該濾波器為一具少許非零固定係數的線性濾波器,以少量的運算補償該分析濾波器組隨不同組態設定(如各子帶頻寬的設定,相鄰子帶間共用子濾波信號的比例等)造成之該等子帶等效濾波器頻率響應的共同缺陷,例如止帶衰減(stopband attenuation)不足,或較明顯之通帶增益與群延時(group delay)的波動(ripples)等等。因需隨組態設定調整其係數,
故於後段介紹該分析濾波器組101的實施例時再一併說明該子帶響應預補償器201之濾波器公式。
The
該等平行的一階IIR子濾波器202具相異之中心頻率,且依中心頻率由低至高編號。該等IIR子濾波器202分別將該響應預補償信號作複數型一階IIR之濾波處理以產生多個子濾波信號。該濾波處理可用以下運算表示:
The parallel first-
註:該等IIR子濾波器202之每一者其頻寬由相應之至少一子帶頻寬決定。例如在每一子帶等寬之設計中,該等IIR子濾波器202具有相同頻寬。在子帶頻寬隨子帶中心頻率上升之設計中,該等IIR子濾波器202每一者之頻寬也隨濾波器中心頻率上升。 Note: The bandwidth of each of the IIR sub-filters 202 is determined by the corresponding at least one sub-band bandwidth. For example, in a design of equal width for each subband, the IIR subfilters 202 have the same bandwidth. In designs where the subband bandwidth increases with the subband center frequency, the bandwidth of each of the IIR subfilters 202 also increases with the filter center frequency.
該等M階(M 1)二項式組合與旋轉器203之每一者將該等子濾波信號之M+1個子濾波信號以該組M階二項式權重作一加權和運算,並將該加權和運算結果隨相應子帶之中心頻率旋轉一相位以產生該等子帶信號之一子帶信號(該等子帶依中心頻率由低至高編號,故該相位可設為正比於子帶編號s)。該M+1個子濾波信號由該等IIR子濾波器202之M+1個中心頻率相鄰(即編號連續)之IIR子濾波器產生。該組M階二項式權重的編號m權重,即為(1-x) M 展開成多項式的第m次項係數,其可表示為:
These M -orders ( M 1) Each of the binomial combination and
公式(5)隨子帶編號旋轉相位之作用在於調整該分析濾波器組101的總響應,使各子帶信號大致同調(加總時不相互抵消),並縮小該分析濾波器組101輸出信號的延時。相鄰子帶相位差值θ原則上沒有限制,但若能從-π/2的整數倍角中選值,其使該分析濾波器組101之總響應之群延時夠低且增益響應與群延時響應波動皆不至於太嚴重,則可同時改善總響應又避免增加複數型乘法運算。本發明於以下各設計範例中均採用θ=-π/2的設定,因此相位旋轉僅需要數值之實部/虛部對調抑或變號之運算。
The function of formula (5) rotating the phase with the subband number is to adjust the overall response of the
又,以以上所述如該等IIR濾波運算,基於二項式權重之加權和運算,或相位旋轉運算等均屬於線性運算,因此該等運算可自由合併或前後對調順序,甚至移至該分析濾波器之前級/後級。圖2及相應公式(1)(5)僅表示一種可行的運算順序。 Also, as mentioned above, the IIR filtering operations, weighted sum operations based on binomial weights, or phase rotation operations are all linear operations, so these operations can be freely combined or reversed in order, or even moved to this analysis. Filter pre/post. Figure 2 and the corresponding formulas (1) and (5) only represent a possible operation sequence.
以下討論組合與旋轉器共用子濾波信號的方式。若該等M階二項式組合與旋轉器203之任兩編號相鄰者共用P個子濾波信號(P=0即每一子濾波信號只被一組合與旋轉器使用,不被多個組合與旋轉器共用),則k s 可表示為:
The manner in which the sub-filtered signal is combined and shared with the rotator is discussed below. If these M -order binomial combinations and any two adjacent numbers of the
採用高階二項式組合與旋轉器(M 1),其作用在於強化該等子帶等效濾波器之頻率響應的止帶衰減量與過渡帶衰減斜率。圖3顯示以不同階二項式權重加權組合多個編號相鄰之子濾波信號所得之子帶等效濾波器頻率響應。由其可見一階IIR濾波響應之止帶衰減量僅在20~30dB間。經二項式權重之加權組合,相應一子帶的子帶等效濾波器頻率響應的止帶衰減量與過渡帶衰減斜率可得到一倍數(2)提升。惟其代價是該子帶等效濾波器頻率響應與該分析濾波器組總響應的群延時也倍數提升。故其適用與否需與系統應用合併考量。實務上採一或二階二項式權重加權組合子濾波信號時,已可得到堪用的子帶等效濾波器頻率響應特性。 Using higher-order binomial combinations and rotators ( M 1), whose function is to strengthen the stopband attenuation and transition band attenuation slope of the frequency response of these subband equivalent filters. FIG. 3 shows the frequency response of the sub-band equivalent filter obtained by combining a plurality of adjacently numbered sub-filtered signals with different order binomial weights. It can be seen that the stopband attenuation of the first-order IIR filter response is only between 20 and 30 dB. Through the weighted combination of the binomial weights, the stopband attenuation and the transition band attenuation slope of the subband equivalent filter frequency response of the corresponding subband can be doubled ( 2) Lift. The tradeoff is that the group delay of the subband equivalent filter frequency response and the overall response of the analysis filter bank is also multiplied. Therefore, its applicability needs to be considered in combination with the system application. In practice, when the first or second-order binomial weights are used to combine the sub-filtered signals, the frequency response characteristics of the sub-band equivalent filter can be obtained.
接下來討論相應等寬子帶的分析濾波器組設計。因其子帶等寬,該分析濾波器組101的每一IIR子濾波器具相等頻寬設定,且濾波器中心頻率在頻率軸上等距分佈。該分析濾波器組101產生的效果是:該等子帶等效濾波器響應(包含增益與群延時響應)在通帶附近的形狀彼此高度相似,且該分析濾波器組101總響應隨頻率呈現週
期波動。為提高該等子帶等效濾波器響應與該分析濾波器組101總響應之平坦度,該子帶響應預補償器之該線性濾波運算為:
Next, the design of the analysis filter bank for the corresponding equal-width subbands is discussed. Since the sub-bands are of equal width, each IIR sub-filter of the
圖4顯示採用一階二項式組合與旋轉器之一分析濾波器組設計範例之響應(圖中實線為其子帶等效濾波器響應,虛線為該分析濾波器組的總響應,點線為提高其高頻側子帶信號權值得到的總響應)。該分析濾波器組輸入信號的取樣頻率是12kHz,從零頻(DC)至Nyquist頻率(取樣頻率的一半,亦為該數位音訊之最高頻率)切分成18個等寬子帶,故每個子帶頻寬為333Hz。該分析濾波器組101需19個一階IIR子濾波器,每一子帶信號由二個子濾波信號組成,且該
二同頻寬且同中心頻率之IIR子濾波器的中心頻率位於該子帶與相鄰二子帶交界。
Figure 4 shows the response of an analytical filterbank design example using a first-order binomial combination and a rotator (the solid line in the figure is the subband equivalent filter response, the dashed line is the overall response of the analytical filterbank, the dots line is the total response obtained by increasing the weight of the subband signal on its high frequency side). The sampling frequency of the input signal of the analysis filter bank is 12kHz, which is divided into 18 equal-width subbands from zero frequency (DC) to the Nyquist frequency (half the sampling frequency, which is also the highest frequency of the digital audio), so each subband The bandwidth is 333Hz. The
圖5顯示採用二階二項式組合與旋轉器之一分析濾波器組設計範例之響應(圖中實線為其子帶等效濾波器響應,虛線為該分析濾波器組的總響應,點線為提高其高頻側子帶信號權值得到的總響應)。該分析濾波器組輸入信號的取樣頻率與子帶定義(子帶個數,子帶頻率範圍/頻寬)都與上例相同。該分析濾波器組需37個一階IIR子濾波器,每一子帶信號由三個子濾波信號組成,其中二個IIR子濾波器的中心頻率位於該子帶與相鄰二子帶交界,另一IIR子濾波器的中心頻率位於該子帶中心。為使圖示清晰,此二範例採較少子帶之濾波器組設定。實際應用之濾波器組子帶個數將更多。 Figure 5 shows the response of an analytical filterbank design example using a second-order binomial combination and a rotator (the solid line is the subband equivalent filter response, the dashed line is the overall response of the analytical filterbank, the dotted line total response to increase the weight of its high-frequency side subband signal). The sampling frequency and sub-band definition (number of sub-bands, frequency range/bandwidth of sub-bands) of the input signal of the analysis filter bank are the same as in the previous example. The analysis filter bank requires 37 first-order IIR sub-filters, and each sub-band signal is composed of three sub-filtered signals. The center frequency of the IIR subfilter is at the center of this subband. For clarity of illustration, these two examples use filter bank settings with fewer subbands. The number of filter bank subbands in practical application will be more.
從圖示可見,此二範例中採二階二項式組合與旋轉器的分析濾波器組之該等子帶等效濾波器,其增益響應過渡帶較採一階二項式組合與旋轉器的分析濾波器組的版本更陡峭,其響應通帶則略寬/平坦。但得到該較佳響應特性的代價是複數乘法數量提升約兩倍,濾波器群延時也提升約兩倍。另外,不論採一或二階二項式組合與旋轉器的範例,該二分析濾波器組的總響應(包含增益響應與群延時響應)皆大致平坦,保有接近線性相位的特性(註)。該二分析濾波器組所有子帶衝激響應的加總(即整體衝激響應)是幾乎無線性失真的衝 激函數,即是說在不提供額外增益於各子帶信號的前提下,子帶信號的加總像是延遲一小段時間的輸入波形。但採越高階二項式組合之濾波器組系統響應對子帶權值的調整越敏感,總響應(包含增益與群延時)之波動也越明顯。 As can be seen from the figure, the subband equivalent filters of the analysis filter bank using the second-order binomial combination and the rotator in these two examples have a gain response transition band compared with the first-order binomial combination and the rotator. The version of the analysis filter bank is steeper and has a slightly wider/flater response passband. However, the cost of obtaining this better response characteristic is about twice the number of complex multiplications and about twice the filter group delay. In addition, regardless of the first- or second-order binomial combination and rotator example, the overall response (including gain response and group delay response) of the two-analytical filter bank is generally flat, maintaining a near-linear phase characteristic (Note). The sum of the impulse responses of all subbands of the two-analysis filter bank (ie, the overall impulse response) is an impulse with almost no linear distortion. Exciter function, that is, without providing additional gain to each sub-band signal, the sum of the sub-band signals is like the input waveform delayed for a small period of time. However, the higher-order binomial combination filter bank system response is more sensitive to the adjustment of subband weights, and the fluctuation of the total response (including gain and group delay) is also more obvious.
註:但個別子帶等效濾波器頻率響應並非平坦,其不具線性相位特性,其群延時亦可能高於該分析濾波器組之總響應的群延時。 Note: However, the frequency response of the equivalent filter of individual subbands is not flat, it does not have linear phase characteristics, and its group delay may also be higher than the group delay of the total response of the analysis filter bank.
實務上採用一或二階二項式組合與旋轉器的分析濾波器組,其子帶等效濾波器已可得到良好的止帶衰減與過渡帶衰減斜率。採越高階二項式組合與旋轉器的優點是:讓子帶等效濾波器得到越高的止帶衰減量與過渡帶衰減斜率(每增加一階,大約可多獲得20dB至30dB止帶衰減),並且使子帶等效濾波器有較為平坦的通帶響應。但代價是:1)該等子濾波信號被多個組合器共用的比例下降,整體運算量也隨二項式組合與旋轉器的階數上升,2)該等子帶等效濾波器與該分析濾波器組總響應之群延時也隨組合器的階數增加,以及3)信號處理算法對子帶的加權將使該總響應產生更明顯的群延時響應波動。因此除非對止帶衰減需求極高,建議優先採用一或二階二項式組合與旋轉器來設計該分析濾波器組。 In practice, the analysis filter bank of first or second order binomial combination and rotator is used, and its sub-band equivalent filter can already obtain good stop-band attenuation and transition-band attenuation slope. The advantage of using a higher-order binomial combination and rotator is that the sub-band equivalent filter can obtain a higher stop-band attenuation and transition-band attenuation slope (each increase of one order, about 20dB to 30dB more stopband attenuation can be obtained ), and make the subband equivalent filter have a relatively flat passband response. But the cost is: 1) the ratio of these sub-filtered signals shared by multiple combiners decreases, and the overall computation amount also increases with the binomial combination and the order of the rotator; 2) these sub-band equivalent filters are the same as the The group delay of the overall response of the analysis filter bank also increases with the order of the combiner, and 3) the weighting of the subbands by the signal processing algorithm will result in more pronounced group delay response fluctuations in the overall response. Therefore, unless the need for stopband attenuation is extremely high, it is recommended to use first or second order binomial combinations and rotators in preference to designing this analysis filter bank.
該分析濾波器組101可調整為相應非等寬子帶的組態,其常應用於音訊處理。簡言之,人耳聽覺有濾波分頻的結構,一般稱其
為聽覺濾波器。正常之聽覺濾波器對越高頻信號其相應的濾波處理有越寬頻的表現,而對較低頻信號其相應的濾波處理頻寬約略維持不變。該濾波頻寬通常被稱為臨界帶(critical band)寬。因此,文獻中音訊處理系統之濾波器組常被設計成近似於聽覺濾波器之組態,即在低頻(如500Hz或以下)配置等頻寬之窄頻子帶濾波器,越高頻處則配置越寬頻寬之子帶濾波器。前述濾波器組設計公式(1)~(6)於非等寬子帶的組態下仍適用。在設計時需要注意的是:
The
-在等寬子帶的組態中,該等IIR子濾波器202可設計為具相等頻寬且其中心頻率在頻率軸上等距分佈,如此濾波公式可化簡(因b k 值皆相等,可移出濾波器公式(1)~如該輸入信號先乘上b k 再進入該分析濾波器組101)。但採用相應非等寬子帶的分析濾波器組時不能依相同方式化簡。 - In the configuration of equal-width sub-bands, the IIR sub-filters 202 can be designed to have equal bandwidths and their center frequencies are equally spaced on the frequency axis, so that the filtering formula can be simplified (because the values of b and k are all equal) , can be removed from the filter formula (1) ~ if the input signal is first multiplied by b k before entering the analysis filter bank 101). However, it cannot be simplified in the same way when using an analysis filter bank of corresponding unequal width subbands.
-在不等寬子帶的組態中,該子帶響應預補償器201不能有效補償響應,此時可停止該子帶響應預補償器201作用(例如令C CMP =0,或以輸入信號作為該等IIR子濾波器202輸入)並改由提高該等IIR子濾波器頻寬以壓低該分析濾波器組101之總響應(包含增益響應與群延時響應)的波動,其代價是小幅增加該等子帶等效濾波器頻率響應之過渡帶寬度。
- In the configuration of unequal width sub-bands, the
除以一實體裝置實施外,該分析濾波器組101之功能亦可
用執行於至少一處理器之一等效程序實施。圖6為本發明之第二實施例之一濾波器組運算程序之流程圖。該濾波器組運算程序相應多個子帶,其依中心頻率由低至高編號。該等流程步驟著重在對於一連續輸入音訊之一片段的處理方法,此因在即時音訊處理應用中,各步驟均將信號作分段運算處理;後面步驟可採用前面步驟運算得到之一輸出信號片段作為輸入並隨即進行運算,無需等待前步驟得到完整輸出信號。以下在說明該濾波器組運算程序之流程步驟時參考公式(1)~(7)及其相應說明文字。
In addition to being implemented in a physical device, the function of the
在圖6中,對一輸入信號之至少一取樣點進行一線性濾波運算以得到一響應預補償信號之至少一取樣點(步驟S101)。參考段落[0017]及[0024]之說明,該線性濾波運算相應公式(7)之運算,其作用在於使子帶等效濾波器之頻率響應更平坦,並抵消總響應之增益與群延時波動。 In FIG. 6, a linear filtering operation is performed on at least one sampling point of an input signal to obtain at least one sampling point corresponding to the pre-compensated signal (step S101). Referring to the descriptions of paragraphs [0017] and [0024], the linear filtering operation corresponds to the operation of formula (7), and its function is to make the frequency response of the sub-band equivalent filter flatter, and to offset the gain and group delay fluctuations of the total response .
對該響應預補償信號之該至少一取樣點進行中心頻率相異之多個複數型一階IIR濾波運算以得到多個子濾波信號(步驟S102)。參考段落[0018]之說明,該等複數型一階IIR濾波運算相應公式(1)~(3)之運算。該等子濾波信號其每一者包括之至少一取樣點。 A plurality of complex first-order IIR filtering operations with different center frequencies are performed on the at least one sampling point of the response pre-compensated signal to obtain a plurality of sub-filtered signals (step S102). Referring to the description in paragraph [0018], these complex first-order IIR filtering operations correspond to the operations of formulas (1) to (3). Each of the sub-filtered signals includes at least one sample point.
從該等子濾波信號中選擇相應該等子帶之多個子集,其每一者包含相同個數、由中心頻率相鄰之至少二濾波運算得到之至少二 子濾波信號,將該等子集之每一子集相應同一時間之至少二個子濾波信號取樣點以一組二項式權重進行一加權和運算,並將該加權和運算結果隨相應子帶之中心頻率旋轉一相位以得到多個子帶信號之一子帶信號(步驟S103),其包括至少一取樣點。參考段落[0019]之說明,該二項式權重相應公式(4),該加權和運算以及該旋轉運算相應公式(5)之運算。參考段落[0020]之說明,相鄰子帶相位差值θ採用-π/2的整數倍角,因此對相應兩頻率相鄰子帶之二子濾波信號子集在進行該旋轉運算時,其相應之該二旋轉相位差異為-π/2弧之整數倍。另外參考段落[0022]之說明,編號相鄰之二組合與旋轉器可共用子濾波信號,因此相應兩頻率相鄰子帶之二子濾波信號子集有相同之子濾波信號。 A plurality of subsets corresponding to the subbands are selected from the subfiltered signals, each of which includes the same number of at least two subfiltered signals obtained by at least two filtering operations with adjacent center frequencies, and the subsets Each of the subsets corresponds to at least two sub-filtered signal sampling points at the same time to perform a weighted sum operation with a set of binomial weights, and rotate the result of the weighted sum operation by a phase with the center frequency of the corresponding subband to obtain a plurality of subbands. A sub-band signal of the band signal (step S103), which includes at least one sampling point. Referring to the description of paragraph [0019], the binomial weight corresponds to the formula (4), the weighted sum operation and the rotation operation correspond to the operation of the formula (5). With reference to the description of paragraph [0020], the adjacent subband phase difference value θ adopts an integer multiple of -π /2, so when the rotation operation is performed for the two sub-filtered signal subsets of the adjacent sub-bands of the corresponding two frequencies, the corresponding The difference between the two rotational phases is an integer multiple of -π /2 arcs. In addition, referring to the description in paragraph [0022], two adjacent combinations and rotators can share sub-filtered signals, so the two sub-filtered signal subsets corresponding to two adjacent frequency subbands have the same sub-filtered signals.
該分析濾波器組101調整為相應非等寬子帶之組態時有一個弱點:在音訊處理應用中,高頻子帶通常較低頻子帶頻寬相對寬很多。若搭配較低階二項式組合與旋轉器,該分析濾波器組101之中心頻率較高的子帶等效濾波器可能有過渡帶太寬/止帶抑制不足(如低於40dB)等問題,如此可能影響部份信號處理算法的表現。
The
為解決此問題,本發明之第三實施例提出一個兩段式分析濾波器組700,其由平行之二個前述之分析濾波器組組合而成,圖7為其方塊圖。該二分析濾波器組為一個低分析濾波器組701與一個高
分析濾波器組702。與該二分析濾波器組701、702分別相應的一低子帶組與一高子帶組,其含蓋頻段範圍以一交界頻率f BND 分隔。該低子帶組有S L 個子帶,其中心頻率皆低於f BND 。該高子帶組有S H 個子帶,其中心頻率皆不低於f BND (註)。該二子帶組之每一者均可分別設定為非等寬,等寬,或部份等寬的子帶組。該二分析濾波器組701、702分別將一輸入信號作濾波分頻處理以產生多個子帶信號。
To solve this problem, a third embodiment of the present invention proposes a two-stage
註:設定該交界頻率f BND 應使該高子帶組包含頻寬過寬使子帶等效濾波器響應低頻側之止帶抑制能力不足的高頻子帶,以及預期因補償聽損可能被大幅提升子帶信號增益的中至高頻子帶 Note: The boundary frequency f BND should be set so that the high sub-band group contains the high-frequency sub-band whose bandwidth is too wide to make the sub-band equivalent filter respond to the low-frequency side of the stop-band suppression ability, and it is expected that the compensation for hearing loss may be affected by the high frequency sub-band. Mid-to-high frequency subbands with substantially increased subband signal gain
為使該兩段式分析濾波器組700的總響應(包含增益與群延時響應)在該交界頻率處平滑無斷點,加入以下設計限制: To make the overall response of the two-stage analysis filter bank 700 (including gain and group delay responses) smooth without breakpoints at the crossover frequency, the following design constraints are added:
-該二分析濾波器組701、702之每一者之該等組合器皆為M階二項式組合與旋轉器,且任兩編號相鄰之二組合器共用P個子濾波信號。 - the combiners of each of the two analysis filter banks 701, 702 are M -order binomial combiners and rotators, and any two adjacent combiners with numbers share P sub-filtered signals.
-該二子帶響應預補償器703、706之二頻率響應於各頻率之相位差為π/2的整數倍之固定值(欲達成此效果,該二子帶響應預補償器可採用具相同群延時線性相位濾波器)。如此可自由設定該交界頻率f BND ,且不增加該等組合器705、708的相位旋轉運算量。
- The phase difference of the two subband response precompensators 703 and 706 in response to each frequency is a fixed value that is an integer multiple of π /2 (to achieve this effect, the two subband response precompensators can use the same group delay linear phase filter). In this way, the boundary frequency f BND can be freely set without increasing the phase rotation computation amount of the
-該低分析濾波器組701的最高中心頻率IIR子濾波器與該高分析濾波器組702的最低中心頻率IIR子濾波器具相同中心頻率與頻寬,亦即: - the highest center frequency IIR sub-filter of the low analysis filter bank 701 and the lowest center frequency IIR sub filter of the high analysis filter bank 702 have the same center frequency and bandwidth, that is:
在該低分析濾波器組701中,該子帶響應預補償器703之該線性濾波運算為一低通濾波運算以增加該低分析濾波器組701之各子帶等效濾波器的帶外高頻抑制,該低通濾波運算可表示為:
In the low analysis filter bank 701 , the linear filtering operation of the
在該高分析濾波器組702中,該子帶響應預補償器706之該線性濾波運算為一高通濾波運算以增加該高分析濾波器組702之各子帶等效濾波器的帶外低頻抑制。該高通濾波運算可表示為: In the high analysis filter bank 702 , the linear filtering operation of the subband response precompensator 706 is a high pass filtering operation to increase the out-of-band low frequency rejection of the subband equivalent filters of the high analysis filter bank 702 . The high-pass filtering operation can be expressed as:
除以一實體裝置實施外,該兩段式分析濾波器組700之功能亦可用執行於至少一處理器之一兩段式濾波器組運算程序實施。該兩段式濾波器組運算程序對一輸入信號之至少一取樣點分別執行相應二子帶組之二濾波器組運算程序以得到多個子帶信號。該二子帶組之定義參考段落[0035]之說明。該二濾波器組運算程序參考段落[0030]~[0033]之說明,並搭配該兩段式分析濾波器組之設定與計算公式(參考段落[0036]~[0038]之說明)。該等子帶信號之每一者包括至少一取樣點。
In addition to being implemented by a physical device, the functions of the two-stage
在上述兩段式分析濾波器組700設計中,該二分析濾波器組701、702均只加強各子帶等效濾波器之單側之止帶抑制能力。若考量子帶數量較少,各子帶普遍擁有較寬頻寬的狀況,則相應中段頻率的子帶等效濾波器其頻率響應高/低頻兩側止帶仍可能同時面臨抑制量不足的問題。故本發明之第四實施例提出一個三段式分析濾波器組800,其由平行之三個前述之分析濾波器組組合而成。
In the above-mentioned design of the two-stage
圖8為該三分析濾波器組之方塊圖,其包括一個低分析濾 波器組801、一個中分析濾波器組802、及一個高分析濾波器組803。與該三分析濾波器組分別相應的一低子帶組、一中子帶組、與一高子帶組,其含蓋頻段範圍以一低交界頻率f BNDL 及一高交界頻率f BNDH 分隔。該低子帶組有S L 個子帶,其中心頻率皆低於該低交界頻率f BNDL ,該中子帶組有S M 個子帶,其中心頻率皆介於該低交界頻率f BNDL 至該高交界頻率f BNDH 間,該高子帶組有S H 個子帶,其中心頻率皆高於該高交界頻率f BNDH 。該三子帶組之每一者均可設定為非等寬、等寬、或部份等寬的子帶組。該三分析濾波器組801、802、803分別將一輸入信號作濾波分頻處理以產生多個子帶信號。 FIG. 8 is a block diagram of the three analysis filter banks, which include a low analysis filter bank 801 , a medium analysis filter bank 802 , and a high analysis filter bank 803 . A low subband group, a neutron subband group, and a high subband group corresponding to the three analysis filter groups respectively, and their covered frequency bands are separated by a low boundary frequency f BNDL and a high boundary frequency f BNDH . The low subband group has SL subbands whose center frequencies are all lower than the low boundary frequency f BNDL , and the neutron subband group has SM subbands whose center frequencies are all between the low boundary frequency f BNDL to the high Between the junction frequencies f BNDH , the high sub-band group has SH sub-bands, and the center frequencies of which are all higher than the high junction frequency f BNDH . Each of the three subband groups can be configured as a non-equal width, equal width, or partial equal width subband group. The three analysis filter banks 801 , 802 and 803 respectively perform filtering and frequency division processing on an input signal to generate a plurality of subband signals.
為使該三段式分析濾波器組800之總響應(包含增益與群延時響應)在該二交界頻率處平滑無斷點,加入以下設計限制: In order to make the overall response of the three-stage analysis filter bank 800 (including gain and group delay response) smooth without breakpoints at the two boundary frequencies, the following design constraints are added:
-該三分析濾波器組801、802、803之每一者之該等組合器皆為M階二項式組合與旋轉器,且任兩編號相鄰之二組合器共用P個子濾波信號。 - The combiners of each of the three analysis filter banks 801, 802, 803 are M -order binomial combiners and rotators, and any two adjacent combiners with numbers share P sub-filtered signals.
-該二子帶響應預補償器804、807之二頻率響應於各頻率之相位差異為π/2的整數倍之固定值,且該二子帶響應預補償器807、810之二頻率響應於各頻率之相位差異也為π/2的整數倍之固定值(欲達成此效果,該三子帶響應預補償器可採用具相同群延時線性相位濾波器)。如此則可自由設定該二交界頻率f BNDL 與
f BNDH ,且不增加該等組合器806、809、812的相位旋轉運算量。
- The two
-該低分析濾波器組801中的最高中心頻率IIR子濾波器與該中分析濾波器組802中的最低中心頻率IIR子濾波器具相同中心頻率與頻寬,且該中分析濾波器組802中的最高中心頻率IIR子濾波器與高分析濾波器組803中的最低中心頻率IIR子濾波器具相同中心頻率與頻寬,亦即: - the highest center frequency IIR subfilter in the low analysis filter bank 801 and the lowest center frequency IIR subfilter in the middle analysis filter bank 802 have the same center frequency and bandwidth, and the middle analysis filter bank 802 has the same center frequency and bandwidth The highest center frequency IIR sub-filter of and the lowest center frequency IIR sub-filter in the high analysis filter bank 803 have the same center frequency and bandwidth, that is:
該低分析濾波器組801的子帶響應預補償器之該線性濾波運算為一低通濾波運算以增加該低分析濾波器組801之各子帶等效濾波器的帶外高頻抑制。該中分析濾波器組802的子帶響應預補償 器之該線性濾波運算為一帶通濾波運算以同時增加該中分析濾波器組802之各子帶等效濾波器的帶外低頻與高頻抑制。該高分析濾波器組803的子帶響應預補償器之該線性濾波運算為一高通濾波運算以增加該高分析濾波器組803之各子帶等效濾波器的帶外低頻抑制。該三子帶響應預補償器之濾波運算可分別表示為: The linear filtering operation of the subband response precompensator of the low analysis filter bank 801 is a low pass filtering operation to increase the out-of-band high frequency rejection of the subband equivalent filters of the low analysis filter bank 801 . The sub-band response pre-compensation of the analysis filter bank 802 The linear filtering operation of the filter is a bandpass filtering operation to simultaneously increase the out-of-band low frequency and high frequency rejection of each sub-band equivalent filter of the mid-analysis filter bank 802 . The linear filtering operation of the subband response precompensator of the high analysis filter bank 803 is a high pass filtering operation to increase the out-of-band low frequency rejection of the subband equivalent filters of the high analysis filter bank 803 . The filtering operations of the three-subband response precompensator can be expressed as:
在該低分析濾波器組801中,為搭配公式(17)該子帶響應預補償器804之運算,該等IIR子濾波器805的b k 設定改為:
In the low analysis filter bank 801, in order to match the operation of the
在該中分析濾波器組802中,為搭配公式(18)該子帶響應預補償器807之運算,該等IIR子濾波器808的b k 設定改為:
In the middle analysis filter bank 802, in order to match the operation of the
在該高分析濾波器組803中,為搭配公式(19)該子帶響應預補償器810之運算,該等IIR子濾波器811的b k 設定改為: In the high analysis filter bank 803, in order to match the operation of the subband response precompensator 810 in formula (19), the b k settings of the IIR subfilters 811 are changed to:
φ H,s =-π+θ‧(S L +S M +s) (25) φ H , s =- π + θ ‧( S L + S M + s ) (25)
注意在該二段式分析濾波器組700及該三段式分析濾波器組800設計中,該等IIR子濾波器之前饋係數並非如同公式(3)之僅依IIR子濾波器頻寬決定,而是改成同時隨IIR子濾波器頻寬及IIR子濾波器中心頻率變化。因此即便其中任一分析濾波器組改採用等寬子帶,該等IIR子濾波器運算之前饋項在計算上亦不能如前設計般共
用前饋項化簡。
Note that in the design of the two-stage
除以一實體裝置實施外,該三段式分析濾波器組800之功能亦可用執行於至少一處理器之一三段式濾波器組運算程序實施。該三段式濾波器組運算程序對一輸入信號之至少一取樣點分別執行相應三子帶組之三濾波器組運算程序以得到多個子帶信號。該三子帶組之定義參考段落[0041]之說明。該三濾波器組運算程序參考段落[0030]~[0033]之說明,並搭配該三段式分析濾波器組之設定與計算公式(參考段落[0042]~[0047]之說明)。該等子帶信號之每一者包括至少一取樣點。
In addition to being implemented by a physical device, the functions of the three-stage
圖9為採用非等寬子帶之一兩段式分析濾波器組設計範例(圖中實線為其子帶等效濾波器響應,虛線為該兩段式分析濾波器組的總響應),其採用上述兩段式分析濾波器組設計,並使用一階二項式組合與旋轉器。該分析濾波器組輸入信號的取樣頻率設為12kHz。該分析濾波器組高頻側兩倍頻間切分7個子帶,低頻側為等寬子帶(低於1kHz有3個等寬子帶),如此DC至Nyquist頻率總共分成17個子帶。值得注意的是,此系統整體衝激響應失真狀況明顯可見,與前述等寬子帶的分析濾波器組接近理想的整體衝激響應完全不同。此因為子帶頻寬的差異大,造成各子帶群延時的差異大所導致。 Figure 9 is a design example of a two-stage analysis filter bank using a subband of unequal width (the solid line in the figure is the sub-band equivalent filter response, and the dotted line is the total response of the two-stage analysis filter bank), It adopts the two-stage analytical filter bank design described above, and uses a first-order binomial combination and rotator. The sampling frequency of the input signal to the analysis filter bank is set to 12kHz. The high-frequency side of the analysis filter bank is divided into 7 sub-bands between double frequencies, and the low-frequency side is equal-width sub-bands (3 equal-width sub-bands below 1 kHz), so the DC to Nyquist frequencies are divided into 17 sub-bands in total. It is worth noting that the overall impulse response distortion of this system is clearly visible, which is completely different from the nearly ideal overall impulse response of the aforementioned equal-width subband analysis filter bank. This is caused by the large difference in subband bandwidths, resulting in large differences in the group delays of each subband.
圖10同為一兩段式分析濾波器組之設計範例,其與圖9 範例高頻側同為兩倍頻間切分7個子帶,而1kHz以下有6個等寬子帶。低頻側頻率解析度將近加倍,但子帶總數(23個)僅較圖9範例增加6個。因此,設計者可針對應用的需求,在維持頻譜或聲譜(spectrogram,即頻譜對時間的作圖)低頻部份的頻率解析度的前提下,利用非等寬子帶之配置有效降低分析濾波器組所需子帶個數。 Figure 10 is also a design example of a two-stage analysis filter bank, which is similar to that of Figure 9 The high-frequency side of the example is also divided into 7 subbands between double frequencies, and there are 6 equal-width subbands below 1kHz. The frequency resolution on the low-frequency side is nearly doubled, but the total number of subbands (23) is only 6 more than the example in Figure 9. Therefore, according to the requirements of the application, the designer can effectively reduce the analysis filtering by using the configuration of the unequal width sub-bands on the premise of maintaining the frequency resolution of the low-frequency part of the spectrum or the spectrogram (that is, the plot of the spectrum versus time). The number of subbands required by the device group.
圖11為一三段式分析濾波器組設計範例,其與圖10範例之非等寬子帶配置方式相同。該例之三段式分析濾波器組中的子帶預補償器對相應中頻子帶至高頻子帶之子帶等效濾波器提供更佳的止帶衰減,但僅微幅增加運算量與總響應群延時(約增加一個取樣時間,0.083ms)。 FIG. 11 is a design example of a three-stage analysis filter bank, which is configured in the same manner as the non-equal-width subbands in the example of FIG. 10 . The sub-band pre-compensator in the three-stage analysis filter bank of this example provides better stop-band attenuation for the sub-band equivalent filter from the corresponding intermediate frequency sub-band to the high-frequency sub-band, but only slightly increases the computational complexity and Total response group delay (approximately add one sample time, 0.083ms).
圖12為本發明之第五實施例之濾波器組式系統架構圖。該濾波器組式信號處理系統1200包括一個分析濾波器組1201、一個抽取器1202、一個核心數位信號處理單元1203、以及一個子帶組合器1204。該分析濾波器組1201將一輸入信號(註)依相應之多個子帶作分頻濾波處理以產生多個子帶信號。該分析濾波器組1201的實施方式可採用前述之該分析濾波器組(參考段落[0016]~[0024]之說明)、該二段式分析濾波器組(參考段落[0035]~[0038]之說明)、或者該三段式分析濾波器組(參考段落[0041]~[0046]之說明)。
FIG. 12 is a structural diagram of a filter bank system according to a fifth embodiment of the present invention. The filter bank
註:在聲學應用中,該輸入信號通常為一數位化之波形,其可能來自
一個類比-數位轉換器輸出或來自一個信號儲存裝置,或者再經降取樣器降低取樣頻率至僅保留聆聽者之可聽頻率範圍後輸入該濾波器組式信號處理系統1200。降取樣可避免運算浪費在處理聽者感知不到的高頻聲。此外也可避免聽者感知不到的高頻聲的波形佔用有限的數值運算動態範圍。在基頻信號處理應用中,該輸入信號可能來自一個類比-數位轉換器輸出,或者再經降取樣處理再輸入以保留帶內信號(in-band signal),排除帶外信號,並優化數值運算動態範圍。
Note: In acoustic applications, the input signal is usually a digitized waveform, which may come from
An analog-to-digital converter output is either from a signal storage device, or is input to the filter bank
該抽取器1202以一倍率N抽取該等子帶信號,即每隔一抽取週期之時間(N個子帶信號取樣時間)將相應同一時間之該等子帶信號依頻率排列以產生多個輸入頻譜之一輸入頻譜。設y FB,s 為該分析濾波器組之編號s子帶信號,則該輸入頻譜可表示為:Y h ={y FB,1[hN],y FB,2[hN],..y FB,S [hN]},其中h為該輸入頻譜的時間足標。若該核心數位信號處理單元1203不使用相位資訊,則可僅抽取該等子帶信號之振幅(絕對值),即將相應同一時間之該等子帶信號之振幅依頻率排列產生多個輸入頻譜之一輸入頻譜,其可表示為:Y h ={|y FB,1[hN]|,|y FB,2[hN]|,..|y FB,S [hN]|}。又,為滿足Nyquist定理,並降低該抽取處理後頻譜中被折疊成份的能量,經該抽取處理後輸入頻譜之幀率f SAM /N須高於最寬子帶頻寬。
The
該核心數位信號處理單元1203對該等輸入頻譜之每一者
執行指定之數位信號處理以決定每一時間該等子帶相應之多個子帶權重。該指定之數位信號處理可能包括多種類型之頻域信號處理,例如基頻信號處理或聲學處理之等化(equalization),或者聲學處理之動態範圍壓縮(dynamic range compression)、降噪(noise reduction)、去殘響(dereverberation)、音源分離(source separation)、回授抑制或嘯音抑制(feedback reduction or howling reduction)...等。上述每一種信號處理功能皆可等效於將一頻譜之各頻率成份以一權重調整其強度或相位以得到一輸出之頻譜。該多種信號處理之合併功能亦等效於將該輸入頻譜之每一者各頻率成份以一權重調整其強度或相位以得到相應之一修改頻譜。因此可計算每一子帶中心頻率附近之該修改頻譜譜值與該輸入頻譜譜值之比值,以其決定相應子帶一之子帶權重。
The core digital
該子帶組合器1204將該等子帶信號以相應之該等子帶權重作一加權和運算以產生一輸出信號,該運算可表示為:
The
在聲學應用中,系統輸入信號與輸出信號皆為實數型態。若核心信號處理單元1203提供的各子帶相應權重也為實數型態(不含相位資訊),則運算可化簡為分別將該等子帶信號取出實部,乘上核心信號處理單元1203提供的相應權重後加總:
In acoustic applications, the input and output signals of the system are both real numbers. If the corresponding weights of the sub-bands provided by the core
除以一實體裝置實施外,該濾波器組式信號處理系統1200之功能亦可用執行於至少一處理器之一等效程序實施。圖13為本發明之第六實施例之濾波器組式信號處理程序之流程圖。因在即時信號處理應用需儘量縮短處理延時,該流程步驟將一連續輸入信號作重覆之分段處理;前面步驟得到之一輸出信號片段隨即供後面步驟進行運算,無需等待前面步驟得到完整輸出信號。以下在說明該濾波器組式信號處理程序之流程步驟時一併參考段落[0052]~[0055]之說明
文字。
In addition to being implemented by a physical device, the functions of the filter bank
在圖13中,準備一輸入信號之至少一取樣點(步驟S200)。 In FIG. 13, at least one sampling point of an input signal is prepared (step S200).
對該輸入信號之該至少一取樣點執行一濾波器組運算程序以得到多個子帶信號(步驟S201)。該濾波器組運算程序的實施方式可採用前述之該濾波器組運算程序(參考段落[0030]~[0033]之說明)、該二段式濾波器組運算程序(參考段落[0039]之說明)、或者該三段式濾波器組運算程序(參考段落[0048]之說明)。該等子帶信號之每一者包括至少一取樣點。 A filter bank operation procedure is performed on the at least one sampling point of the input signal to obtain a plurality of subband signals (step S201 ). The implementation of the filter bank operation program can use the aforementioned filter bank operation program (refer to the description of paragraphs [0030]~[0033]), the two-stage filter bank operation program (refer to the description of paragraph [0039]) ), or the three-stage filter bank operation program (refer to the description of paragraph [0048]). Each of the subband signals includes at least one sample point.
檢查一抽取周期是否結束(步驟S202)。若結束則開始算一個新的抽取周期,並從步驟S203繼續執行,否則從步驟S205繼續執行。 It is checked whether a decimation period has ended (step S202). If it ends, start to count a new extraction cycle, and continue to execute from step S203; otherwise, continue to execute from step S205.
抽取該等子帶信號或其振幅以得到一輸入頻譜(步驟S203)。參考段落[0053]之說明,此即將相應同一時間之該等子帶信號或其振幅排列成為該輸入頻譜。 The subband signals or their amplitudes are extracted to obtain an input spectrum (step S203). Referring to the description in paragraph [0053], this means arranging the subband signals or their amplitudes corresponding to the same time into the input spectrum.
對該輸入頻譜執行一核心信號處理程序以決定該等子帶相應之多個子帶權重(步驟S204)。參考段落[0054]之說明,該核心信號處理程序相應第五實施例之該核心信號處理單元1203之功能,其將該輸入頻譜通過指定之頻域信號處理得到一修改頻譜。因此可計算每一子帶中心頻率附近之該修改頻譜譜值與該輸入頻譜譜值之比值,
以其決定該子帶相應之子帶權重。
Execute a core signal processing procedure on the input spectrum to determine a plurality of subband weights corresponding to the subbands (step S204). Referring to the description in paragraph [0054], the core signal processing program corresponds to the function of the core
對該等子帶信號相應同一時間之多個取樣點或其之實部以該等子帶權重進行一加權和運算以得到一輸出信號之至少一取樣點(步驟S205)。其後,回到步驟S200。參考段落[0055]之說明,該加權和運算採用相應公式(27)之運算。若該輸出信號為實數型態,則該加權和運算可化簡為相應公式(29)之運算。若該核心信號處理程序決定之該等子帶權重為實數型態,則該加權和運算可採用相應公式(28)之運算。 A weighted sum operation is performed on the sub-band signals corresponding to a plurality of sampling points at the same time or their real parts with the sub-band weights to obtain at least one sampling point of an output signal (step S205 ). Then, it returns to step S200. Referring to the description of paragraph [0055], the weighted sum operation adopts the operation of the corresponding formula (27). If the output signal is of real type, the weighted sum operation can be simplified to the operation of the corresponding formula (29). If the sub-band weights determined by the core signal processing program are in the form of real numbers, the weighted sum operation can use the operation of the corresponding formula (28).
因採用階數最低IIR濾波器,子帶間共用濾波器,並搭配無需複數乘法之相位旋轉,本發明提出之分析濾波器組之運算量需求相較於其它種類分析濾波器組之運算需求為低。以相應總共S個子帶的濾波器組系統為例,若該分析濾波器組採用一階二項式組合與旋轉器,則輸出信號每一取樣點對應僅需S+1個複數型乘法於該IIR子濾波器運算之反饋項,1至S+1個實數型乘法於該IIR子濾波器運算之前饋項,一實數型乘法於該子帶響應預補償器,及S個實數型乘法於該子帶組合器(以上排除核心數位信號處理單元的運算需求),也就是說該濾波器組式系統架構平均一個子帶僅需一個複數型乘法及一至二個實數型乘法。但若設定的子帶個數多或是該二項式階數提高,該濾波器組式系統架構的運算量仍將明顯高於以快速傅利葉轉換/逆 轉換實施的AMS系統架構,故仍有改善空間。 Because the IIR filter with the lowest order is adopted, the filter is shared among subbands, and the phase rotation without complex multiplication is used, the computational requirement of the analysis filter bank proposed by the present invention is compared with that of other types of analysis filter banks. Low. Taking the filter bank system corresponding to a total of S subbands as an example, if the analysis filter bank adopts a first-order binomial combination and rotator, then each sampling point of the output signal only needs S + 1 complex multiplications in the Feedback term of the IIR subfilter operation, 1 to S +1 real multiplications in the feedforward term of the IIR subfilter operation, one real multiplication in the subband response precompensator, and S real multiplications in the Subband combiner (the above excludes the operation requirement of the core digital signal processing unit), that is to say, the filter bank system architecture only needs one complex multiplication and one to two real multiplications per subband. However, if the number of sub-bands set is large or the order of the binomial is increased, the calculation amount of the filter bank system architecture will still be significantly higher than that of the AMS system architecture implemented by fast Fourier transform/inverse transform, so there are still room for improvement.
圖14為本發明之第七實施例之混合式信號處理系統方塊圖。該混合式信號處理系統1400包括一個成幀與時-頻轉換器1401、多個分析濾波器組1402、一個抽取器1403、一個核心數位信號處理單元1404、多個子帶組合器1405、以及一個頻-時轉換器1406。相較於第五實施例之該濾波器組式信號處理系統1200,該混合式音訊處理系統1400搭配時頻轉換以再降低運算需求。以下說明該混合式音訊處理系統1400各部件實施方法。
FIG. 14 is a block diagram of a mixed signal processing system according to a seventh embodiment of the present invention. The hybrid
該成幀與時-頻轉換器1401將一輸入信號依時間劃分成幀長為R個取樣點,幀間距為N個取樣點之多個信號幀(N R/2),並將其每一信號幀作一R點之時-頻轉換(例如短時傅利葉轉換,離散傅利葉轉換..等)以產生多個頻譜之一頻譜。該R點之時-頻轉換相當於將全頻段(DC至該輸入信號取樣頻率f SAM )切分為R個等頻寬頻帶並作一倍率N之抽取。該等頻譜相應同一頻帶的多個頻譜取樣點則為R個帶信號之一帶信號,其取樣頻率降為f SAM /N。若採用一R點之短時傅利葉轉換,其可表示為:
The framing and time-
該等分析濾波器組1402分別將編號0至R-1帶信號作濾波分頻以產生多個子帶信號,其中每一分析濾波器組相應一帶信號所在之一頻帶再分切之多個子帶。該等分析濾波器組1402之每一者的實施方式可採用前述之該分析濾波器組(參考段落[0016]~[0024]之說明)、該二段式分析濾波器組(參考段落[0035]~[0038]之說明)、或者該三段式分析濾波器組(參考段落[0041]~[0046]之說明)。若輸入為實數型態(如聲學波),則該等分析濾波器組1402僅需將相應單側頻譜之編號0至R/2帶信號作濾波分頻以產生多個子帶信號。該抽取器1403以一倍率M抽取該等子帶信號或其振幅以產生多個輸入頻譜之一輸入頻譜。經抽取後該等輸入頻譜之幀率降為f SAM /(MN),其必須仍高於該等子帶之最寬子帶之頻寬以滿足Nyquist定理。
The
該核心數位信號處理單元1404對該等輸入頻譜之每一者執行指定的頻域信號處理以決定該等帶信號之每一者相應之多個子帶信號之多個子帶權重(此功能同第五實施例之核心數位信號處理
單元1203)。
The core digital
該等子帶組合器1405之每一者將該等帶信號之一帶信號相應之該等子帶信號以其相應該等子帶權重作一加權和運算以產生多個被修改帶信號之一被修改帶信號。此運算可表示為:
Each of the
最後,該頻-時轉換器1406提取每一時間之該等被修改帶信號之R個取樣點作一R點之頻-時轉換(其為該R點之短時傅利葉轉換之一種逆轉換方法)以產生一輸出信號。若該輸出信號為實數型態如聲學波,則以該等被修改帶信號之共軛複數作為頻譜對稱側之多個被修改帶信號,其可表示為:
Finally, the frequency-
此系統實施例藉由時-頻轉換降低各分析濾波器組之取樣頻率,如此在子帶總數相同之狀況下,其各子帶的運算量可大幅降低。然而此系統之信號處理延時為該等分析濾波器組群延時加上該時-頻轉換/逆轉換的延時(其約為一幀的時間長度)。提升時-頻轉換之幀長與幀間距代價仍是提升延時,故該幀長選擇仍有賴設計者在系統層面對運算量與信號處理延時之取捨(選恰當的幀長,使系統運算量降至接近以短時傅利葉轉換/逆轉換實施的AMS系統架構,但改善信號處理延時至可接受程度)。 In this embodiment of the system, the sampling frequency of each analysis filter bank is reduced by time-frequency conversion, so that under the condition that the total number of subbands is the same, the computation amount of each subband can be greatly reduced. However, the signal processing delay of this system is the analysis filter bank delay plus the delay of the time-frequency conversion/inverse conversion (which is about the length of one frame). The cost of increasing the frame length and frame spacing of time-frequency conversion is still increasing the delay, so the choice of the frame length still depends on the designer's trade-off between the amount of computation and the delay of signal processing at the system level (selecting an appropriate frame length will increase the amount of system computation. down to AMS system architectures implemented with short-time Fourier transform/inverse transform, but with improved signal processing latency to an acceptable level).
本發明提出之基於該分析濾波器組之系統架構已知的應用限制與建議處理方式如下: The known application limitations and suggested processing methods of the system architecture based on the analysis filter bank proposed by the present invention are as follows:
-該分析濾波器組其各子帶等效濾波器之頻率響應彼此高度重疊。 考量相鄰二組合器共用子濾波信號為固定數量(P)的狀況,若採用越低階二項式組合與旋轉器設計該分析濾波器組,則其頻率響應的重疊度越高。若考量固定階數項式組合器設計時,則是P值越大其頻率響應的重疊度越高。頻率響應的重疊度高時,系統在實施如圖形等化器(graphic equalizer,即可任意指定多處頻率相應增益值之等化器)時可能產生響應誤差。以採用一階二項式組合與旋轉器設計該分析濾波器組為例,若於子帶組合時移除單一子帶信號,其造成相應頻率的頻譜衰減量將低於10dB。故若系統中的信號處理算法欲執行陷波(notching)運算,亦即希望對特定頻點附近提供高量的衰減,則需同時降低多個相鄰子帶的增益才有足夠效果。 - The frequency responses of the sub-band equivalent filters of the analysis filter bank are highly overlapping each other. Considering the situation that the number of sub-filtered signals shared by adjacent two combiners is a fixed number ( P ), if the lower-order binomial combination and rotator are used to design the analysis filter bank, the overlap of its frequency responses will be higher. When considering the design of the fixed-order term combiner, the larger the P value, the higher the overlap of the frequency response. When the overlap of the frequency responses is high, a response error may occur when the system implements a graphic equalizer (ie, an equalizer that can arbitrarily specify multiple frequency-corresponding gain values). Taking the first-order binomial combination and rotator to design the analysis filter bank as an example, if a single subband signal is removed during subband combination, the spectral attenuation of the corresponding frequency will be lower than 10dB. Therefore, if the signal processing algorithm in the system wants to perform a notching operation, that is, it wants to provide a high amount of attenuation near a specific frequency point, it is necessary to reduce the gain of multiple adjacent subbands at the same time to have sufficient effect.
-該分析濾波器組中各子帶等效濾波器的頻率選擇性限制(頻率範圍不算窄的過渡帶與衰減量有限的止帶)。再加上各子帶等效濾波器響應普遍具有非線性相位,系統在實施如圖形等化器功能時可能產生響應誤差。考慮信號處理算法對某些子帶的信號增益設定遠大於其鄰近子帶的信號增益(例如超過20dB)時,分析濾波器組的總響應在該等高增益子帶鄰近之子帶可能與預期增益不同。故若有大幅調高增益之需求,如寬動態範圍壓縮之類的信號處理算法在提高子帶權重時,建議應以漸近方式調整子帶權 重,即降低相鄰近子帶的權重差距,並可視需求增加分析濾波器組子帶的個數~例如補償較嚴重高頻聽損時,可增加高頻子帶的個數以降低鄰近子帶的權重差距。 - Limitation of frequency selectivity of the equivalent filters of each subband in the analysis filter bank (transition bands where the frequency range is not narrow and stopbands with limited attenuation). In addition, the response of the equivalent filter of each subband generally has a nonlinear phase, and the system may produce response errors when implementing functions such as graphic equalizers. Considering that the signal gain of the signal processing algorithm for some subbands is much larger than that of the adjacent subbands (for example, more than 20dB), the overall response of the analysis filter bank may be different from the expected gain in the adjacent subbands of these high gain subbands. different. Therefore, if there is a need to greatly increase the gain, it is recommended that the subband weight should be adjusted asymptotically when the signal processing algorithm such as wide dynamic range compression increases the subband weight. Heavy, that is, reduce the weight difference between adjacent sub-bands, and increase the number of sub-bands of the analysis filter group as needed. For example, when compensating for severe high-frequency hearing loss, the number of high-frequency sub-bands can be increased to reduce the number of adjacent sub-bands. weight gap.
-因前述之濾波器組式系統架構中缺乏合成濾波器組,不存在如圖1之該合成濾波器組提供的抗混疊功能,該核心數位信號處理單元於調整其提供各子帶權重時,需調慢權重隨時間變化的速度。 -Due to the lack of a synthesis filter bank in the aforementioned filter bank system architecture, there is no anti-aliasing function provided by the synthesis filter bank as shown in FIG. , it is necessary to slow down the speed of weight change over time.
除以一實體裝置實施外,該混合式信號處理系統1400之功能亦可用執行於至少一處理器之一等效程序實施。圖15為本發明之第八實施例之混合式信號處理程序之流程圖。以下在說明該混合式信號處理程序之流程步驟時一併參考段落[0065]~[0069]之說明文字。
In addition to being implemented by a physical device, the functions of the mixed-
在圖15中,準備一輸入音訊之至少一音訊幀(步驟S300)。 In FIG. 15, at least one audio frame of an input audio is prepared (step S300).
對該輸入音訊之該至少一音訊幀分別進行一時-頻轉換運算以得到多個帶信號(步驟S301)。該時-頻轉換運算採用相應公式(30)之運算,其可參考段落[0065]之說明。該等帶信號之每一者包括相應同一頻帶之至少一頻譜取樣點。 A time-frequency conversion operation is performed on the at least one audio frame of the input audio to obtain a plurality of band signals (step S301 ). The time-frequency conversion operation adopts the operation of the corresponding formula (30), which can refer to the description of paragraph [0065]. Each of the band signals includes at least one spectral sample point corresponding to the same frequency band.
對該等帶信號分別執行一濾波器組運算程序以得到多個子帶信號(步驟S302)。參考段落[0066]之說明,該濾波器組運算程序 相應一帶信號所在之一頻帶再分切之多個子帶。該濾波器組運算程序的實施方式可採用前述之該濾波器組運算程序(參考段落[0030]~[0033]之說明)、該二段式濾波器組運算程序(參考段落[0039]之說明)、或者該三段式濾波器組運算程序(參考段落[0048]之說明)。該等子帶信號之每一者包括至少一取樣點。 A filter bank operation procedure is respectively performed on the equal-band signals to obtain a plurality of sub-band signals (step S302). Referring to the description of paragraph [0066], the filter bank operation program A plurality of sub-bands sub-segmented in a frequency band corresponding to a band of signals. The implementation of the filter bank operation program can use the aforementioned filter bank operation program (refer to the description of paragraphs [0030]~[0033]), the two-stage filter bank operation program (refer to the description of paragraph [0039]) ), or the three-stage filter bank operation program (refer to the description of paragraph [0048]). Each of the subband signals includes at least one sample point.
檢查檢查一抽取周期是否結束(步驟S303)。若結束則開始算一個新的抽取周期,並從步驟S304繼續執行,否則從步驟S306繼續執行。 It is checked to see if a decimation period has ended (step S303). If it ends, start to count a new extraction cycle, and continue to execute from step S304; otherwise, continue to execute from step S306.
抽取該等子帶信號或其振幅以得到一輸入頻譜(步驟S304)。如第六實施例之步驟S203,此步驟即將相應同一時間之該等子帶信號或其振幅依頻率排列成為該輸入頻譜。 The subband signals or their amplitudes are extracted to obtain an input spectrum (step S304). As in step S203 of the sixth embodiment, this step is to arrange the subband signals or their amplitudes corresponding to the same time according to frequency into the input spectrum.
對該輸入頻譜執行一核心信號處理程序以決定該等帶信號之每一者相應之多個子帶信號之多個子帶權重(步驟S305)。此程序功能同於第六實施例之該核心信號處理程序。 A core signal processing procedure is performed on the input spectrum to determine a plurality of subband weights of a plurality of subband signals corresponding to each of the band signals (step S305). The function of this program is the same as that of the core signal processing program of the sixth embodiment.
將該等帶信號之每一者相應之該等子帶信號以其相應該等子帶權重進行一加權和運算以得到多個被修改帶信號之一被修改帶信號(步驟S306),其包括至少一取樣點。該加權和運算採用相應公式(31)之運算。 Performing a weighted sum operation on the subband signals corresponding to each of the band signals and the corresponding subband weights to obtain one modified band signal of a plurality of modified band signals (step S306 ), which includes at least one sampling point. The weighted sum operation adopts the operation of the corresponding formula (31).
對該等被修改帶信號相應同一時間之多個取樣點進行一 頻-時轉換運算以得到一輸出信號之多個取樣點(步驟S307)。其後,回到步驟S300。該頻-時轉換運算採用相應公式(32)~(35)之運算,並參考段落[0069]之說明。 A multiple sampling point corresponding to the same time of the modified band signals is subjected to a A frequency-time conversion operation is performed to obtain a plurality of sampling points of an output signal (step S307). Then, it returns to step S300. The frequency-time conversion operation adopts the operation of the corresponding formulas (32) to (35), and refer to the description of paragraph [0069].
雖然本發明已參照較佳具體例及舉例性附圖敘述如上,惟其應不被視為係限制性者。熟悉本技藝者對其形態及具體例之內容做各種修改、省略及變化,均不離開本發明之請求項之所主張範圍。 While the present invention has been described above with reference to preferred embodiments and illustrative drawings, it should not be construed as limiting. Those skilled in the art can make various modifications, omissions and changes to the form and the content of the specific examples, all without departing from the claimed scope of the claims of the present invention.
101:分析濾波器組 101: Analysis Filter Banks
201:子帶響應預補償器 201: Subband response precompensator
202:多個一階無限衝激響應(IIR)子濾波器 202: Multiple first-order infinite impulse response (IIR) subfilters
203:多個二項式組合與旋轉器 203: Multiple Binomial Combinations with Spinners
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109136460A TWI772930B (en) | 2020-10-21 | 2020-10-21 | Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109136460A TWI772930B (en) | 2020-10-21 | 2020-10-21 | Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202217801A true TW202217801A (en) | 2022-05-01 |
TWI772930B TWI772930B (en) | 2022-08-01 |
Family
ID=82558559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109136460A TWI772930B (en) | 2020-10-21 | 2020-10-21 | Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI772930B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086139A1 (en) * | 2004-03-01 | 2005-09-15 | Dolby Laboratories Licensing Corporation | Multichannel audio coding |
SE0402652D0 (en) * | 2004-11-02 | 2004-11-02 | Coding Tech Ab | Methods for improved performance of prediction based multi-channel reconstruction |
CA2985019C (en) * | 2016-02-17 | 2022-05-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Post-processor, pre-processor, audio encoder, audio decoder and related methods for enhancing transient processing |
US10575116B2 (en) * | 2018-06-20 | 2020-02-25 | Lg Display Co., Ltd. | Spectral defect compensation for crosstalk processing of spatial audio signals |
-
2020
- 2020-10-21 TW TW109136460A patent/TWI772930B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI772930B (en) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8150065B2 (en) | System and method for processing an audio signal | |
US9754597B2 (en) | Alias-free subband processing | |
EP2530840B1 (en) | Efficient sub-band adaptive FIR-filtering | |
KR101422368B1 (en) | A method and an apparatus for processing an audio signal | |
US7818079B2 (en) | Equalization based on digital signal processing in downsampled domains | |
EP3353785B2 (en) | Audio signal processing | |
JP2004533155A (en) | Aliasing reduction using complex exponential modulation filterbank | |
EP2200180B1 (en) | Subband signal processing | |
JP2007011341A (en) | Frequency extension of harmonic signal | |
US8948424B2 (en) | Hearing device and method for operating a hearing device with two-stage transformation | |
Wei et al. | A design of digital FIR filter banks with adjustable subband distribution for hearing aids | |
CN105279350B (en) | The design method of approximate Perfect Reconstruction Vertical Nonuniform Cosine modulated filter group | |
US11568884B2 (en) | Analysis filter bank and computing procedure thereof, audio frequency shifting system, and audio frequency shifting procedure | |
CN104486711A (en) | Low-complexity adjustable filter group used for digital hearing aid and working method of Low-complexity adjustable filter group | |
TWI772930B (en) | Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications | |
Sebastian et al. | A low complex 10-band non-uniform FIR digital filter bank using frequency response masking technique for hearing aid | |
Schafer et al. | FIR digital filter banks for speech analysis | |
US12087267B2 (en) | Method and system for implementing a modal processor | |
TWI421858B (en) | System and method for processing an audio signal | |
US11837244B2 (en) | Analysis filter bank and computing procedure thereof, analysis filter bank based signal processing system and procedure suitable for real-time applications | |
TWI755901B (en) | Real-time audio processing system with frequency shifting feature and real-time audio processing procedure with frequency shifting function | |
US10825443B2 (en) | Method and system for implementing a modal processor | |
Amir et al. | Reconfigurable low complexity hearing aid system using adjustable filter bank | |
TWI772929B (en) | Analysis filter bank and computing procedure thereof, audio frequency shifting system, and audio frequency shifting procedure | |
Alfsmann et al. | Filter banks for hearing aids applying subband amplification: A comparison of different specification and design approaches |