Nothing Special   »   [go: up one dir, main page]

TW202126088A - 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告 - Google Patents

針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告 Download PDF

Info

Publication number
TW202126088A
TW202126088A TW109139692A TW109139692A TW202126088A TW 202126088 A TW202126088 A TW 202126088A TW 109139692 A TW109139692 A TW 109139692A TW 109139692 A TW109139692 A TW 109139692A TW 202126088 A TW202126088 A TW 202126088A
Authority
TW
Taiwan
Prior art keywords
path loss
loss reference
reference signals
maximum number
capability information
Prior art date
Application number
TW109139692A
Other languages
English (en)
Inventor
周嚴
哈米德 佩哲席克
濤 駱
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202126088A publication Critical patent/TW202126088A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

使用者設備(UE)向基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的最大數及/或啟用的路徑損耗參考信號的最大數。隨後,基地站基於該UE能力資訊來配置UE用於一數量的配置的路徑損耗參考信號及/或啟用一數量的路徑損耗參考信號,該等配置的路徑損耗參考信號的數量小於或等於配置的路徑損耗參考信號的最大數,該等啟用的路徑損耗參考信號的數量小於或等於啟用的路徑損耗參考信號的最大數。

Description

針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的UE能力報告
本專利申請案主張於2019年11月20日提出申請的、名稱為「UE Capability Reporting for Configured and Activated Pathloss Reference Signals」編號為62/938,131的美國臨時申請案以及於2020年11月12日提出申請的、名稱為「UE CAPABILITY REPORTING FOR CONFIGURED AND ACTIVATED PATHLOSS REFERENCE SIGNALS」編號為17/096,844的美國專利申請案的利益,其全部內容以引用方式明確併入本文中。
本案內容大體而言係關於通訊系統,以及更具體地,係關於包括路徑損耗參考信號的無線通訊。
無線通訊系統廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞和廣播的各種電信服務。典型的無線通訊系統可以採用多工存取技術,該等多工存取技術能夠經由共享可用的系統資源來支援與多個使用者的通訊。此種多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及分時同步分碼多工存取(TD-SCDMA)系統。
該等多工存取技術已經被各種電信標準採納,以提供使得不同的無線設備能夠在市級、國家級、地區級甚至全球級內通訊的通用協定。示例性電信標準是5G新無線電(NR)。5G NR是由第三代合作夥伴計畫(3GPP)頒佈的持續行動寬頻進化的一部分,以滿足與延時、可靠性、安全性、可擴展性(例如,與物聯網路(IoT))和其他要求相關聯的新要求。5G NR包括與增強行動寬頻(eMBB)、海量機器類型通訊(mMTC)以及超高可靠低延時通訊(URLLC)相關聯的服務。5G NR的一些態樣可以是基於4G長期進化(LTE)標準。存在針對在5G NR技術中的進一步改良的需要。該等改良亦可以適用於採用該等技術的其他多工存取技術和電信標準。
下文提供了對一或多個態樣的簡要總結,以便提供對此種態樣的基本理解。該總結不是對所有預期的態樣的廣泛概述,以及不意欲辨識所有態樣的關鍵的或決定性的元素,也不意欲圖示任何態樣或所有態樣的範疇。其唯一目的是以簡要的形式提供一或多個態樣的一些概念作為稍後提供的更詳細的描述的前奏。
路徑損耗參考信號的集合可以被配置用於使用者設備(UE)。隨後,來自配置的路徑損耗參考信號的集合的路徑損耗參考信號可以被啟用以供UE用於執行功率控制。UE可以執行每啟用的路徑損耗參考信號的層3(L3)濾波,以決定針對上行鏈路功率控制的更穩定的路徑損耗值。本案內容的各態樣經由UE報告其針對配置路徑損耗參考信號的最大數及/或啟用的路徑損耗參考信號的最大數的能力,來改良對路徑損耗參考信號的配置和啟用。
在本案內容的一態樣中,提供一種用於在UE處進行的無線通訊的方法、電腦可讀取媒體和裝置。該裝置向基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者。隨後,UE從基地站接收基於該UE能力資訊的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的配置。
在本案內容的一態樣中,提供一種用於在基地站處進行的無線通訊的方法、電腦可讀取媒體和裝置。該裝置從UE接收針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者的UE能力資訊。隨後,基地站基於該UE能力資訊來配置UE用於第三數量的配置的路徑損耗參考信號或第四數量的啟用的路徑損耗參考信號中的至少一者。
為了實現上述目的和相關目的,一或多個態樣包括下文充分描述的以及在請求項中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些說明性特徵。然而,該等特徵表示在其中可以採用各個態樣的原理的各種方法中的一些方法,以及本描述意欲包括所有此種態樣以及其等效態樣。
下文結合附圖闡述的具體實施方式意欲作為對各種配置的描述,以及不意欲代表在其中可以實踐本文中描述的概念的僅有的配置。出於提供對各種概念的透徹理解的目的,具體實施方式包括具體細節。然而,對於熟習此項技術者而言將顯然的是,在沒有該等具體細節的情況下也可以實踐該等概念。在一些例子中,眾所周知的結構和元件是以方塊圖形式來圖示的,以便避免使此種概念含糊。
路徑損耗參考信號的集合可以是針對使用者設備(UE)來配置的。隨後,來自所配置的路徑損耗參考信號的集合的路徑損耗參考信號可以是針對UE來啟用的,用於執行功率控制。UE可以每啟用的路徑損耗參考信號來執行層3(L3)濾波,以決定用於上行鏈路功率控制的更穩定的路徑損耗值。本案內容的各態樣經由UE報告其針對配置的路徑損耗參考信號的最大數及/或啟用的路徑損耗參考信號的最大數的能力,來改良對路徑損耗參考信號的配置和啟用。
現在將參照各種裝置和方法提供電信系統的若干態樣。該等裝置和方法將是在下文的具體實施方式中描述的,以及是在附圖中經由各種方塊、元件、電路、過程、演算法等(統稱為「元素」)來圖示的。此種元素可以是使用電子硬體、電腦軟體或其任意組合來實現的。此種元素是實現為硬體還是軟體取決於對整體系統施加的特定應用和設計約束。
舉例而言,元素,或者元素的任何部分,或者元素的任意組合可以實現為包括一或多個處理器的「處理系統」。處理器的實例包括微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位信號處理器(DSP)、精簡指令集計算(RISC)處理器、晶片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路和被配置為執行貫穿本案內容描述的各種功能的其他合適的硬體。在處理系統中的一或多個處理器可以執行軟體。不管是稱為軟體、韌體、中間軟體、微代碼、硬體描述語言或其他,軟體應當廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體元件、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行檔案、執行執行緒、程序、函數等。
因此,在一或多個示例性實施例中,所描述的功能可以在硬體、軟體或兩者的組合中實現。若在軟體中實現,則該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體中或者經由其進行編碼。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是電腦可以存取的任何可用的媒體。經由舉例而非限制性的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁儲存設備、上述類型的電腦可讀取媒體的組合,或可以用於儲存以指令或資料結構的形式的、可以由電腦存取的電腦可執行代碼的任何其他媒體。
圖1是圖示無線通訊系統和存取網路100的實例的示意圖。無線通訊系統(亦稱為無線廣域網路(WWAN))包括基地站102、UE 104、進化封包核心(EPC)160以及另一核心網路190(例如,5G核心(5GC))。基地站102可以包括巨集細胞(高功率蜂巢基地站)及/或小型細胞(低功率蜂巢基地站)。巨集細胞包括基地站。小型細胞包括毫微微細胞、微微細胞和微細胞。
針對4G LTE配置的基地站102(統稱為進化通用行動電信系統(UMTS)陸地無線電存取網路(E-UTRAN))可以經由第一回載鏈路132(例如,S1介面)與EPC 160相連接。針對5G NR(統稱為下一代RAN(NG-RAN))配置的基地站102可以經由第二回載鏈路184與核心網路190相連接。除了其他功能之外,基地站102可以執行以下功能中的一或多個功能:對使用者資料的傳送、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交遞、雙連接)、細胞間干擾協調、連接建立和釋放、負載均衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、無線電存取網路(RAN)共享、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位和對警告訊息的遞送。基地站102可以經由第三回載鏈路134(例如,X2介面)直接地或者間接地(例如,經由EPC 160或核心網路190)互相通訊。第一回載鏈路132、第二回載鏈路184和第三回載鏈路134可以為有線的或無線的。
基地站102可以與UE 104無線地進行通訊。基地站102之每一者基地站可以為各自的地理覆蓋區域110提供通訊覆蓋。可能存在重疊的地理覆蓋區域110。例如,小型細胞102'可以具有覆蓋區域110',該覆蓋區域110'與一或多個巨集基地站102的覆蓋區域110重疊。包括小型細胞和巨集細胞兩者的網路可以稱為異質網路。異質網路亦可以包括歸屬進化節點B(eNB)(HeNB),該HeNB可以向稱為封閉用戶群組(CSG)的受限制的群組提供服務。在基地站102與UE 104之間的通訊鏈路120可以包括從UE 104到基地站102的上行鏈路(UL)(亦稱為反向鏈路)傳輸及/或從基地站102到UE 104的下行鏈路(DL)(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用多輸入多輸出(MIMO)天線技術,包括空間多工、波束成形及/或傳輸分集。通訊鏈路可以經由一或多個載波。基地站102/UE 104可以使用在每個方向上用於傳輸的多達總共Yx MHz(x 個分量載波)的載波聚合中分配的每載波多達Y MHz(例如,5、10、15、20、100、400 MHz等)頻寬的頻譜。載波可以彼此鄰近或可以不彼此相鄰。對載波的分配可以是相對於DL和UL不對稱的(例如,可以為DL分配比為UL分配的更多或更少的載波)。分量載波可以包括主分量載波和一或多個次分量載波。主分量載波可以稱為主細胞(PCell),以及次分量載波可以稱為次細胞(SCell)。
某些UE 104可以使用設備到設備(D2D)通訊鏈路158互相通訊。D2D通訊鏈路158可以使用DL/UL WWAN頻譜。D2D通訊鏈路158可以使用一或多個側行鏈路通道,諸如實體側行鏈路廣播通道(PSBCH)、實體側行鏈路探索通道(PSDCH)、實體側行鏈路共享通道(PSSCH)和實體側行鏈路控制通道(PSCCH)。D2D通訊可以經由各種無線D2D通訊系統,諸如例如無線多媒體、藍芽、紫蜂、基於電氣和電子工程師協會(IEEE)802.11標準的Wi-Fi、LTE或NR。
無線通訊系統可以進一步包括Wi-Fi存取點(AP)150與Wi-Fi站(STA)152經由通訊鏈路154相通訊,例如在5 GHz未授權的頻譜中等。當在未授權的頻譜中通訊時,STA 152/AP 150可以在通訊之前執行閒置通道評估(CCA),以便決定通道是否可用。
小型細胞102'可以在經授權的及/或未授權的頻譜中操作。當在未授權的頻譜中操作時,小型細胞102'可以採用NR以及使用與由Wi-Fi AP 150使用的相同的未授權的頻譜(例如,5 GHz等)。在未授權的頻譜中採用NR的小型細胞102'可以提高對存取網路的覆蓋及/或增強存取網路的能力。
電磁頻譜是通常基於頻率/波長來細分為各種類別、頻帶、通道等。在5G NR中,兩個初始操作頻帶已經辨識為頻率範圍名稱FR1(410 MHz–7.125 GHz)和FR2(24.25 GHz–52.6 GHz)。在FR1與FR2之間的頻率通常稱為中頻帶頻率。儘管FR1的一部分比6 GHz要大,但是FR1在各種文件和文章中通常(可互換地)稱為「低於6 GHz(sub-6 GHz)」頻帶。關於FR2有時會出現類似的命名問題,儘管與由國際電信聯盟(ITU)辨識為「毫米波」頻帶的極高頻(EHF)頻帶(30 GHz–300 GHz)不同,FR2在文件和文章中通常(可互換地)稱為「毫米波」頻帶。
考慮到上述態樣,除非另有特別說明,否則應當理解的是,術語「低於6 GHz」等若在本文中使用的話可以廣泛地表示可以小於6 GHz的、可以在FR1範圍內的或者可以包括中頻帶頻率的頻率。進一步地,除非另有特別說明,否則應當理解的是,術語「毫米波」等若在本文中使用的話可以廣泛地表示可以包括中頻頻帶的、可以在FR2範圍內的或者可以在EHF頻帶內的頻率。
無論是小型細胞102'還是大型細胞(例如,巨集基地站),基地站102可以包括及/或稱為eNB、g節點B(gNodeB,gNB)或另一種類型的基地站。一些基地站(諸如gNB 180)可以在傳統的低於6 GHz的頻譜中、在毫米波頻率中及/或在與UE 104相通訊的毫米波頻率附近操作。當gNB 180在毫米波中或在毫米波頻率附近操作時,gNB 180可以稱為毫米波基地站。毫米波基地站180可以利用與UE 104的波束成形182以補償路徑損耗和短範圍。基地站180和UE 104可以各自包括複數個天線,諸如天線單元、天線面板及/或天線陣列以促進波束成形。
基地站180可以在一或多個傳輸方向182'上向UE 104傳輸經波束成形的信號。UE 104可以在一或多個接收方向182''上接收來自基地站180的經波束成形的信號。UE 104亦可以在一或多個傳輸方向上向基地站180傳輸經波束成形的信號。基地站180可以在一或多個接收方向上接收來自UE 104的經波束成形的信號。基地站180/UE 104可以執行波束訓練,以決定針對基地站180/UE 104之每一者基地站180/UE 104的最佳接收方向和傳輸方向。針對基地站180的傳輸方向和接收方向可以相同,或者可以不同。針對UE 104的傳輸方向和接收方向可以相同,或者可以不同。
EPC 160可以包括行動性管理實體(MME)162、其他MME164、服務閘道166、多媒體廣播多播服務(MBMS)閘道168、廣播多播服務中心(BM-SC)170和封包資料網路(PDN)閘道172。MME 162可以與歸屬用戶伺服器(HSS)174相通訊。MME 162是處理在UE 104與EPC 160之間的信號傳遞的控制節點。一般而言,MME 162提供承載和連接管理。所有使用者網際網路協定(IP)封包是經由服務閘道166來傳送的,該服務閘道166本身連接到PDN閘道172。PDN閘道172提供UE IP位址分配以及其他功能。PDN閘道172和BM-SC 170連接到IP服務176。IP服務176可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS串流服務及/或其他IP服務。BM-SC 170可以提供用於MBMS使用者服務供應和遞送的功能。BM-SC 170可以充當針對內容提供者MBMS傳輸的入口點、可以用於授權和啟動在公用陸地行動網路(PLMN)內的MBMS承載服務,以及可以用於排程MBMS傳輸。MBMS閘道168可以用於將MBMS訊務分發給屬於廣播特定服務的多播廣播單頻網路(MBSFN)區域的基地站102,以及可以負責通信期管理(開始/停止)和收集eMBMS相關的收費資訊。
核心網路190可以包括存取和行動性管理功能(AMF)192、其他AMF 193、通信期管理功能(SMF)194以及使用者平面功能(UPF)195。AMF 192可以與統一資料管理(UDM)196相通訊。AMF 192是處理在UE 104與核心網路190之間的信號傳遞的控制節點。一般而言,AMF 192提供QoS流程和通信期管理。所有使用者網際網路協定(IP)封包是經由UPF 195來傳送的。UPF 195提供UE IP位址分配以及其他功能。UPF 195連接到IP服務197。IP服務197可以包括網際網路、網內網路、IP多媒體子系統(IMS)、封包交換(PS)串流(PSS)服務及/或其他IP服務。
基地站可以包括及/或稱為gNB、節點B、eNB、存取點、基地站收發機、無線電基地站、無線電收發機、收發機功能、基本服務集(BSS)、擴展服務集(ESS)、傳輸接收點(TRP)或另一些合適的術語。基地站102為UE 104提供到EPC 160或核心網路190的存取點。UE 104的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、筆記型電腦、個人數位助理(PDA)、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、照相機、遊戲主控台、平板電腦、智慧設備、可穿戴設備,車輛、電錶、氣泵、大型或小型廚房電器、醫療設備、植入物、感測器/致動器、顯示器或任何其他類似功能的設備。UE 104中的一些UE可以稱為IoT設備(例如,停車計時器、氣泵、烤麵包機、車輛、心臟監護儀等)。UE 104亦可以稱為站、行動站、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、行動用戶站、存取終端、行動終端、無線終端、遠端終端機、手機、使用者代理、行動服務客戶端、客戶端或另一些合適的術語。
再次參考圖1,在某些態樣,UE 104可以包括路徑損耗參考信號能力元件198,該路徑損耗參考信號能力元件198被配置為向基地站102/180傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的最大數及/或啟用的路徑損耗參考信號最大數。基地站102/180可以包括路徑損耗參考信號配置元件199,該路徑損耗參考信號配置元件199被配置為接收來自UE 104的UE能力資訊以及基於UE能力來配置UE 104用於一數量的配置的路徑損耗參考信號及/或一數量的啟用的路徑損耗參考信號。儘管下文的描述可以聚焦於5G NR,但是本文所描述的概念可能可適用於其他類似的領域,諸如LTE、LTE-A、CDMA、GSM和其他無線技術。
圖2A是圖示在5G NR訊框結構內的第一子訊框的實例的示意圖200。圖2B是圖示在5G NR子訊框內的DL通道的實例的示意圖230。圖2C是圖示在5G NR訊框結構內的第二子訊框的實例的示意圖250。圖2D是圖示在5G NR子訊框內的UL通道的實例的示意圖280。5G NR訊框結構可以是分頻雙工(FDD),在其中針對特定的次載波集合(載波系統頻寬),在次載波集合內的子訊框專用於DL或UL;或者可以是分時雙工(TDD),在其中針對特定的次載波集合(載波系統頻寬),在次載波集合內的子訊框專用於DL和UL兩者。在經由圖2A、圖2C提供的實例中,假定5G NR訊框結構是TDD,其中子訊框4是利用時槽格式28來配置的(主要在DL的情況下),以及子訊框3是利用時槽格式1(在全部UL的情況下)來配置的,其中D是DL,U是UL,以及F是靈活的用於在DL/UL之間使用。儘管子訊框3、子訊框4分別圖示為具有時槽格式1、時槽格式28,但是任何特定的子訊框可以被配置具有各種可用的時槽格式0-61中的任何時槽格式。時槽格式0、時槽格式1分別是全部DL、UL。其他時槽格式2-61包括DL、UL和靈活符號的混合。UE被配置為經由接收到的時槽格式指示符(SFI)來具有時槽格式(經由DL控制資訊(DCI)動態地,或經由無線電資源控制(RRC)信號傳遞半靜態地/靜態地)。要注意的是,下文的描述也適用於是TDD的5G NR訊框結構。
其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。訊框(10 ms)可以分成10個大小相等的子訊框(1 ms)。每個子訊框可以包括一或多個時槽。子訊框亦可以包括微時槽,該等微時槽可以包括7、4或2個符號。取決於時槽配置,每個時槽可以包括7或14個符號。針對時槽配置0,每個時槽可以包括14個符號,以及針對時槽配置1,每個時槽可以包括7個符號。在DL上的符號可以是循環字首(CP)正交分頻多工(OFDM)(CP-OFDM)符號。在UL上的符號可以是CP-OFDM符號(用於高輸送量場景)或離散傅立葉變換(DFT)擴展OFDM(DFT-s-OFDM)符號(亦稱為單載波分頻多工存取(SC-FDMA)符號)(針對功率受限場景;受限於單串流傳輸)。在子訊框內的時槽的數量是基於時槽配置和數值方案(numerology)。針對時槽配置0,不同的數值方案µ 0至4考慮到每子訊框分別的1、2、4、8和16個時槽。針對時槽配置1,不同的數值方案0至2考慮到每子訊框分別的2、4和8個時槽。因此,對於時槽配置0和數值方案µ,有14個符號/時槽和2µ 時槽/子訊框。次載波間隔和符號長度/持續時間是數值方案的函數。次載波間隔可以等於
Figure 02_image001
,其中µ 是數值方案0至4。照此,數值方案µ=0具有15 kHz的次載波間隔,以及數值方案µ=4具有240 kHz的次載波間隔。符號長度/持續時間與次載波間隔是逆相關的。圖2A-圖2D提供每時槽具有14個符號的時槽配置0以及每子訊框具有4個時槽的數值方案µ=2的實例。時槽持續時間是0.25 ms,次載波間隔為60 kHz,以及符號持續時間大約是16.67 µs。在一組訊框內,可能存在分頻多工的一或多個不同的部分頻寬(BWP)(參見圖2B)。每個BWP可以有特定的數值方案。
可以使用資源網格表示訊框結構。每個時槽包括擴展12個連續次載波的資源區塊(RB)(亦稱為實體RB(PRB))。資源網格分為多個資源元素(RE)。由每個RE攜帶的位元的數量取決於調制方案。
如圖2A所示,RE中的一些RE攜帶針對UE的參考(引導頻)信號(RS)。RS可以包括解調RS(DM-RS)(對於一個特定配置指示為R,但是其他DM-RS配置是可能的)和用於在UE處進行的通道估計的通道狀態資訊參考信號(CSI-RS)。RS亦可以包括波束量測RS(BRS)、波束細化RS(BRRS)和相位追蹤RS(PT-RS)。
圖2B圖示在訊框的子訊框內的各種DL通道的實例。實體下行鏈路控制通道(PDCCH)在一或多個控制通道元素(CCE)(例如,1、2、4、8或16個CCE)內攜帶DCI,每個CCE包括6個RE群組(REG),每個REG包括在RB的OFDM符號中的12個連續RE。在一個BWP內的PDCCH可以稱為控制資源集(CORESET)。UE被配置為在CORESET上的PDCCH監測時機期間監測在PDCCH搜尋空間(例如,共用搜尋空間、UE特定的搜尋空間)中的PDCCH候選,其中該等PDCCH候選具有不同的DCI格式和不同的聚合等級。另外的BWP可以位於跨越通道頻寬的較高的及/或較低的頻率處。主要同步信號(PSS)可以在訊框的特定子訊框的符號2內。UE 104使用PSS來決定子訊框/符號時序和實體層辨識。次要同步信號(SSS)可以在訊框的特定子訊框的符號4內。UE使用SSS來決定實體層細胞辨識群組號和無線電訊框時序。基於實體層辨識和實體層細胞辨識群組號,UE可以決定實體細胞辨識符(PCI)。基於PCI,UE可以決定上述DM-RS的位置。攜帶主資訊區塊(MIB)的實體廣播通道(PBCH)可以與PSS和SSS邏輯分類,以形成同步信號(SS)/PBCH區塊(亦稱為SS區塊(SSB))。MIB提供在系統頻寬中的多個RB和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜帶使用者資料、未經由PBCH傳輸的廣播系統資訊,諸如系統資訊區塊(SIB)和傳呼訊息。
如圖2C所示, RE中的一些RE攜帶用於在基地站處進行的通道估計的DM-RS(對於一個特定配置指示為R,但是其他DM-RS配置是可能的)。UE可以傳輸針對實體上行鏈路控制通道(PUCCH)的DM-RS和針對實體上行鏈路共享通道(PUSCH)的DM-RS。PUSCH DM-RS可以是在PUSCH的前一個或兩個符號中傳輸的。PUCCH DM-RS可以是在不同的配置中傳輸的,此情形取決於傳輸的是短PUCCH還是長PUCCH,以及取決於所使用的特定的PUCCH格式。UE可以傳輸探測參考信號(SRS)。SRS可以是在子訊框的最後一個符號中傳輸的。SRS可以具有梳狀結構,以及UE可以在梳中的一個梳上傳輸SRS。SRS可以由基地站用於通道品質估計,以實現在UL上取決於頻率的排程。
圖2D圖示在訊框的子訊框內的各種UL通道的實例。PUCCH可以位於如在一種配置中所示的。PUCCH攜帶上行鏈路控制資訊(UCI),諸如排程請求、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)以及混合自動重傳請求(HARQ)認可(ACK)(HARQ-ACK)資訊(ACK/否定ACK(NACK))回饋。PUSCH攜帶資料,以及可以另外用於攜帶緩衝區狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。
圖3是在存取網路中基地站310與UE 350相通訊的方塊圖。在DL中,來自EPC 160的IP封包可以提供給控制器/處理器375。控制器/處理器375實現層3和層2功能。層3包括無線電資源控制(RRC)層,以及層2包括服務資料調適協定(SDAP)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層。控制器/處理器375提供:與對系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改和RRC連接釋放)、無線電存取技術(RAT)間行動性和針對UE量測報告的量測配置相關聯的RRC層功能;與標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)和交遞支援功能相關聯的PDCP層功能;與對上層封包資料單元(PDU)的傳送、經由ARQ進行糾錯、對RLC服務資料單元(SDU)的串聯、分段和重組、對RLC資料PDU的重新分段,以及對RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、對MAC SDU到傳輸塊(TB)上的多工、從TB中對MAC SDU的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理和邏輯通道優先化相關聯的MAC層功能。
傳輸(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。包括實體(PHY)層的層1可以包括傳輸通道上的錯誤偵測、對傳輸通道的前向糾錯(FEC)編碼/解碼、交錯、速率匹配、到實體通道上的映射、對實體通道的調制/解調以及MIMO天線處理。TX處理器316基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M移相鍵控(M-PSK)、M正交幅度調制(M-QAM))來處理到信號群集的映射。經編碼的和經調制的符號可以接著分離成並行串流。每個串流可以接著映射到OFDM次載波,在時域及/或頻域中與參考信號(例如,引導頻)多工,以及接著使用快速傅立葉逆變換(IFFT)組合在一起以產生攜帶時域OFDM符號串流的實體通道。OFDM串流是在空間上預編碼的,以產生多個空間串流。來自通道估計器374的通道估計可以用於決定編碼和調制方案,以及用於空間處理。通道估計可以是根據由UE 350傳輸的參考信號及/或通道狀態回饋來匯出的。每個空間串流可以接著經由單獨的傳輸器318 TX提供給不同的天線320。每個傳輸器318 TX可以利用各自的空間串流來調制RF載波以用於傳輸。
在UE 350處,每個接收器354 RX經由其各自的天線352接收信號。每個接收器354 RX將調制後的資訊恢復到RF載波上,以及將資訊提供給接收(RX)處理器356。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以對資訊執行空間處理,以恢復去往UE 350的任何空間串流。若多個空間串流去往UE 350,則RX處理器356可以將該多個空間串流與單個OFDM符號串流組合。RX處理器356接著使用快速傅立葉變換(FFT)將OFDM符號串流從時域轉換到頻域。頻域信號包括針對OFDM信號的每個次載波的單獨的OFDM符號串流。每個次載波上的符號和參考信號是經由決定由基地站310傳輸的最可能的信號群集點來恢復和解調的。該等軟判決可以基於由通道估計器358計算的通道估計。接著對軟判決進行解碼和解交錯,以恢復最初由基地站310在實體通道上傳輸的資料和控制信號。資料和控制信號接著提供給實現層3和層2功能的控制器/處理器359。
控制器/處理器359可以與儲存程式碼和資料的記憶體360相關聯。記憶體360可以稱為電腦可讀取媒體。在UL中,控制器/處理器359提供在傳輸通道與邏輯通道之間的解多工、封包重組、解密、標頭解壓縮和控制信號處理,以恢復來自EPC 160的IP封包。控制器/處理器359亦負責使用ACK及/或NACK協定進行錯誤偵測,以支援HARQ操作。
類似於結合由基地站310進行的DL傳輸所描述的功能,控制器/處理器359提供與系統資訊(例如,MIB、SIB)獲取、RRC連接和量測報告相關聯的RRC層功能;與標頭壓縮/解壓縮和安全性(加密、解密、完整性保護、完整性驗證)相關聯的PDCP層功能;與對上層PDU的傳送、經由ARQ的糾錯、對RLC SDU的級聯、分段和重組、對RLC資料PDU的重新分段和對RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、對MAC SDU到TB的多工、從TB中對MAC SDU的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理以及邏輯通道優先化相關聯的MAC層功能。
由通道估計器358根據由基地站310傳輸的參考信號或回饋匯出的通道估計可以由TX處理器368用於選擇適當的編碼和調制方案,以及促進空間處理。由TX處理器368產生的空間串流可以是經由單獨的傳輸器354 TX提供給不同的天線352的。每個傳輸器354 TX可以利用各自的空間串流來調制RF載波以用於傳輸。
UL傳輸是在基地站310處以類似於結合在UE 350處的接收器功能所描述的方式來處理的。每個接收器318 RX經由其各自的天線320接收信號。每個接收器318 RX恢復調制到RF載波上的資訊,以及將該資訊提供給RX處理器370。
控制器/處理器375可以與儲存程式碼和資料的記憶體376相關聯。記憶體376可以稱為電腦可讀取媒體。在UL中,控制器/處理器375提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復來自UE 350的IP封包。來自控制器/處理器375的IP封包可以提供給EPC 160。控制器/處理器375亦負責使用ACK及/或NACK協定進行錯誤偵測以支援HARQ操作。
TX處理器368、RX處理器356和控制器/處理器359中的至少一者可以被配置為執行與圖1中的198有關的各態樣。
TX處理器316、RX處理器370和控制器/處理器375中的至少一者可以被配置為執行與圖1中的199有關的各態樣。
在基地站與UE之間的通訊可能需要適應無線通道的變化。一種適應可以包括功率控制。例如,UE可以基於通道品質來調整傳輸功率。功率控制可由基地站應用於下行鏈路傳輸,以及由UE應用於上行鏈路傳輸。舉例而言,若具有良好的通道品質,則UE可以使用較低的傳輸功率,此舉可以減少由上行鏈路傳輸引起的干擾以及減少UE功率消耗。UE可以應用功率控制以決定傳輸功率,該傳輸功率可以幫助避免干擾以及減少功率消耗,同時也有助於確保基地站可以精確地接收上行鏈路傳輸。UE可以增加上行鏈路傳輸功率以補償路徑損耗增加。UE可以對UE從基地站處接收的參考信號(諸如路徑損耗參考信號)進行量測。UE可以使用該量測以及其他因數來決定用於來自UE的上行鏈路傳輸的傳輸功率。
基地站可以配置針對UE的路徑損耗參考信號,以用於與UE的上行鏈路信號、UE的上行鏈路通道等相關聯的功率控制。例如,路徑損耗參考信號可以被配置為供UE在針對探測參考信號(SRS)、PUSCH及/或PUCCH的功率控制時使用。
基地站可以更新每SRS資源集(例如,在媒體存取控制-控制元素(MAC-CE)中)的路徑損耗參考信號。例如,基地站可以使用RRC信號傳遞來配置在UE處針對SRS的路徑損耗參考信號的集合。隨後,基地站可以啟用每SRS資源集(例如,在MAC-CE中)的路徑損耗參考信號,每個啟用的路徑損耗參考信號來自配置的路徑損耗參考信號的集合。因此,更新路徑損耗參考信號可以指對配置的路徑損耗參考信號的集合中的一或多個路徑損耗參考信號的啟用。配置的路徑損耗參考信號的集合可以稱為配置的路徑損耗參考信號池。
UE可以執行每啟用的路徑損耗參考信號的L3濾波。L3濾波可以幫助UE決定針對SRS功率控制的更穩定的路徑損耗值。舉例而言,L3濾波可以包括對啟用的路徑損耗參考信號的量測並且在使用用於決定針對上行鏈路傳輸的傳輸功率的量測之前執行濾波功能。作為一個非限制性實例,UE可以將公式F n =(1–a )*F n-1 +a *M n 應用於對路徑損耗參考信號量測的L3濾波。在示例性公式中,Mn 是最新的從實體層接收的量測結果,Fn 是更新後的濾波量測結果,該F n 用於對報告標準的評估或用於量測報告。Fn-1 是較舊的濾波量測結果,其中當接收到來自實體層的第一量測結果時,F0 設置為M1 ;及對於量測物件(例如,MeasObjectNR ),a =1/2(ki /4) ,其中ki 是針對在quantityConfigNR-List (數量配置NR-列表)中的第i個QuantityConfigNR 的相應的量測數量的濾波係數(例如,filterCoefficiect ),以及i 是經由MeasObjectNR 中的quantityConfigIndex (數量配置索引)來指示的;對於其他量測,a =1/2(k /4) ,其中k 是針對經由quantityConfig (數量配置)接收到的相應的量測數量的濾波係數;對於UTRA-FDD,a =1/2(k /4) ,其中k 是針對經由配置的數量接收的相應的量測數量的濾波係數(例如,在QuantityConfig 中的quantityConfigUTRA-FDD )。UE可以使濾波器適應,使得在不同的輸入速率下保持濾波器的時間特性,例如,觀測到濾波係數k 假設取樣速率等於X ms。X的值可以等效於一個頻率內L1量測週期。該值可以是如所定義的定義值,例如,假定非DRX操作,以及可以取決於頻率範圍。
SRS可以包括非週期SRS(AP-SRS)及/或半持久性SRS(SP-SRS)。基地站可以傳輸更新針對UE的AP-SRS/SP-SRS的路徑損耗參考信號的MAC-CE。
UE可以經由來自基地站的RRC信號傳遞來被配置具有多個路徑損耗參考信號,以及配置的路徑損耗參考信號中的一個路徑損耗參考信號可以經由MAC-CE針對特定SRS資源集來啟用/更新。
基地站可以使用MAC-CE來更新與PUSCH傳輸相關聯的每SRS資源指示符(SRI)的路徑損耗參考信號。例如,基地站可以使用RRC信號傳遞來配置針對UE的路徑損耗參考信號的集合。隨後,基地站可以啟用每SRI的路徑損耗參考信號,每個啟用的路徑損耗參考信號來自配置的路徑損耗參考信號的集合。UE可以執行每啟用的路徑損耗參考信號的L3濾波。L3濾波可以幫助UE決定用於PUSCH功率控制的更穩定的路徑損耗值。因此,來自基地站的MAC-CE訊息可以啟用/更新PUSCH路徑損耗參考信號辨識符(ID)的值(該值可以稱為例如,經由諸如「PUSCH-PathlossReferenceRS-Id(PUSCH-路徑損耗參考RS-Id)」的參數)。PUSCH路徑損耗參考信號ID可以對應於SRI PUSCH功率控制ID(其可以稱為例如,經由諸如「sri-PUSCH-powercontrolId(sri-PUSCH-功率控制Id)」的參數)。映射可以是經由SRI PUSCH功率控制來提供的,該SRI PUSCH功率控制具有在SRI PUSCH功率控制ID與PUSCH路徑損耗參考信號ID之間的聯絡。
更高層濾波參考信號接收功率(RSRP)可以用於路徑損耗量測。跟隨MAC-CE的定時可以提供給UE以執行路徑損耗量測。例如,針對先前的路徑損耗參考信號的濾波RSRP值可以使用到特定的時間(其可以稱為應用時間)為止。例如,應用時間可以是在第五次量測取樣之後的下一個時槽,其中第一量測取樣對應於路徑損耗參考信號的第一例子。路徑損耗參考信號的第一例子可以是例如在UE回應於接收對路徑損耗參考信號進行啟用的MAC-CE而發送ACK之後的3 ms。
經由MAC-CE對配置的路徑損耗參考信號的啟用可能可適用於支援超過四個RRC可配置的路徑損耗參考信號的UE,以及當經由MAC-CE啟用的路徑損耗參考信號未由UE來追蹤時可能是可適用的。在一些實例中,若在來自基地站的RRC信號傳遞中配置了超過四個路徑損耗參考信號,則UE可以追蹤啟用的路徑損耗參考信號。UE可以例如在回應於對新路徑損耗參考信號進行啟用的MAC-CE而發送ACK之後的3 ms,決定是否更新針對先前的路徑損耗參考信號的濾波RSRP值。
UE可能需要記憶體,以便在UE處儲存配置的路徑損耗參考信號。此外,UE可能需要硬體及/或軟體資源來執行每啟用的路徑損耗參考信號的L3濾波。為了供給對在UE的能力內的路徑損耗參考信號的配置/啟用,本案內容的各態樣包括UE向基地站報告的能力資訊,該能力資訊指示由UE支援的配置的路徑損耗參考信號的最大數及/或由UE支援的啟用的路徑損耗參考信號的最大數。
圖4圖示在UE 402與基地站404之間的示例性通訊流程400。在401處,UE 402向基地站404報告或以其他方式指示關於UE能力的資訊,該UE能力資訊包括由UE 402支援的配置的路徑損耗參考信號的最大數及/或由UE 402支援的啟用的路徑損耗參考信號的最大數。UE 402可以經由PUCCH指示能力資訊。啟用的路徑損耗參考信號的最大數可以等於或小於配置的路徑損耗參考信號的最大數。例如,配置的路徑損耗參考信號的最大數可以具有2、4、8、16、32、…、64、128等的候選值。啟用的路徑損耗參考信號的最大數可以具有2、4、8、16等的候選值,以及可以不超過報告的由UE支援的配置的路徑損耗參考信號的最大數。UE可以提供關於UE能力的資訊,該UE能力是基於在UE 402處的記憶體、硬體及/或軟體。例如,UE能力可以基於用於儲存針對配置的路徑損耗參考信號的配置資訊的記憶體的數量。UE可以提供關於UE能力的資訊,該UE能力是基於用於執行對啟用的路徑損耗參考信號的L3濾波的硬體或軟體。關於UE能力的資訊可以用於對一或多個上行鏈路信號或上行鏈路通道(諸如PUSCH、PUCCH及/或SRS)的功率控制。例如,發送給BS的UE能力資訊可以對應於特定類型的上行鏈路傳輸或一類型的上行鏈路通道。例如,UE能力可以用於對單個上行鏈路信號或單個上行鏈路通道的功率控制。或者,關於UE能力的資訊可以應用於針對來自UE 402的每個上行鏈路信號或者針對來自UE 402的每個上行鏈路通道的功率控制。因此,UE可以提供關於應用於來自UE的每個上行鏈路信號/通道的UE能力的資訊(例如,以進行針對每個上行鏈路通道/信號的功率控制),而不是UE提供關於針對特定的上行鏈路信號或特定的上行鏈路通道的UE能力的資訊。
在403處,基地站404可以配置UE 402用於基於接收到的關於UE能力的資訊的多個配置的路徑損耗參考信號,例如,可以限制為不超過由UE指示的配置的路徑損耗參考信號的最大數。因此,基地站404可以配置在UE 402的能力內的多個路徑損耗參考信號。路徑損耗參考信號可以是經由來自基地站404的RRC信號傳遞來配置的。
在405處,基地站404可以基於關於UE能力的資訊來啟用多個路徑損耗參考信號。基地站可以將啟用的路徑損耗參考信號的數量限制為不超過來自UE能力的啟用的路徑損耗參考信號的第二最大數。因此,基地站404可以啟用在UE 402的能力內的多個路徑損耗參考信號。路徑損耗參考信號可以是經由來自基地站404的MAC-CE來啟用的。
如在407處所示,基地站404可以傳輸與啟用的路徑損耗參考信號相對應的一或多個路徑損耗參考信號。UE 402可以量測接收到的路徑損耗參考信號,如在409處所示。UE可以基於量測來決定路徑損耗。在409處的量測及/或對路徑損耗的決定可以包括對每啟用的路徑損耗參考信號的L3濾波。在411處,UE可以基於根據路徑損耗參考信號407決定的路徑損耗來決定用於上行鏈路傳輸的傳輸功率。
隨後,在413處,UE 402可以使用在411處基於來自啟用的路徑損耗參考信號407的路徑損耗決定的傳輸功率,來傳輸諸如PUSCH、PUCCH及/或SRS的上行鏈路傳輸。
因此,對於支援MAC-CE動態地更新用於上行鏈路功率控制的路徑損耗參考信號的UE,UE可以報告其關於路徑損耗參考信號的能力。基地站可以使用對UE能力的報告來配置/啟用在UE的能力內的一數量的路徑損耗參考信號。
圖5是無線通訊的方法的流程圖500。該方法可由UE或UE的元件來執行(例如,UE 104、350、402;裝置602/702;蜂巢基頻處理器704,該蜂巢基頻處理器704可以包括記憶體360以及可以是整個UE 350或UE 350的元件,諸如TX處理器368、RX處理器356及/或控制器/處理器359)。該方法可以經由為對在UE的能力內的路徑損耗參考信號的配置/啟用做準備來輔助UE。
在502處,UE向基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數及/或啟用的路徑損耗參考信號的第二最大數。該傳輸可以例如由圖6中的裝置602的能力元件608來執行。啟用的路徑損耗參考信號的最大數可以等於或小於配置的路徑損耗參考信號的最大數。UE能力資訊可以是基於在UE處的記憶體、硬體及/或軟體。例如,UE能力資訊可以是基於用於儲存針對配置的路徑損耗參考信號的配置資訊的記憶體的數量。UE能力資訊可以是基於用於執行對啟用的路徑損耗參考信號的L3濾波的硬體或軟體。針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊,可以對應於UE用於對一或多個上行鏈路信號或上行鏈路通道(諸如PUSCH、PUCCH及/或SRS)的功率控制的路徑損耗參考信號。例如,如結合806、808和810所描述的,UE可以量測啟用的路徑損耗參考信號的路徑損耗,以及可以基於所量測的路徑損耗來決定用於一或多個上行鏈路信號或上行鏈路通道的傳輸功率。例如,UE能力資訊可以用於特定類型的上行鏈路傳輸或一類型的上行鏈路通道。UE能力資訊可以用於對單個上行鏈路信號或單個上行鏈路通道的功率控制。或者,UE能力資訊可以應用於針對來自UE的每個上行鏈路信號或針對來自UE的每個上行鏈路通道的功率控制。
在504處,UE從基地站接收基於UE能力資訊的、針對配置的路徑損耗參考信號及/或啟用的路徑損耗參考信號中的至少一者的配置。接收可以例如由圖6中的裝置602的路徑損耗參考信號元件610來執行。對路徑損耗參考信號的配置可以是經由來自基地站的RRC信號傳遞來接收的。對路徑損耗參考信號的啟用可以是在來自基地站的MAC-CE中接收的。
如在506處所示,UE可以量測基於UE能力來配置的啟用的路徑損耗參考信號的路徑損耗。例如,在502處提供的針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊,可以對應於UE用於對單個上行鏈路信號或單個上行鏈路通道的功率控制的路徑損耗參考信號,以及在508處,UE可以基於啟用的路徑損耗參考信號的路徑損耗來決定用於單個上行鏈路信號或單個上行鏈路通道的傳輸功率,該等啟用的路徑損耗參考信號是基於UE能力來配置的。量測可以例如由裝置602或702的量測元件612來執行。例如,單個上行鏈路通道可以是PUCCH、PUSCH或SRS。在另一實例中,針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊,可以對應於UE用於針對來自UE的每個上行鏈路信號或針對來自UE的每個上行鏈路通道的功率控制的路徑損耗參考信號,以及在508處,UE可以基於啟用的路徑損耗參考信號的路徑損耗來決定針對每個上行鏈路信號或每個上行鏈路通道的傳輸功率,該等啟用的路徑損耗參考信號是基於UE能力來配置的。
如在508處所示,UE可以基於路徑損耗來決定用於一或多個上行鏈路信號或上行鏈路通道的傳輸功率。該決定可以是例如由裝置602或702的功率控制元件614基於來自量測元件612的路徑損耗量測來執行的。隨後,在510處,UE可以使用在508處決定的傳輸功率來傳輸上行鏈路傳輸。該傳輸可以是例如由裝置602或702的傳輸元件606基於從功率控制元件614接收的傳輸功率來執行的。
圖6是圖示在示例性裝置602中不同構件/元件之間的資料流程的概念性資料流程示意圖600。該裝置可以是UE或UE的元件。裝置602包括接收元件604和傳輸元件606,該接收元件604被配置為從基地站650接收下行鏈路通訊的,該傳輸元件606被配置為向基地站650傳輸上行鏈路通訊。裝置602包括能力元件608,該能力元件608被配置為向基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者,例如,如結合圖5中的502所描述的。該裝置包括路徑損耗參考信號元件610,該路徑損耗參考信號元件610被配置為從基地站650接收基於UE能力資訊的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的配置,例如,如結合圖5中的504所描述的。該裝置可以包括量測元件612,該量測元件612被配置為執行對啟用的路徑損耗參考信號的量測,例如,以便決定在UE與基地站之間的路徑損耗。該裝置可以包括功率控制元件614,該功率控制元件614被配置為基於路徑損耗來執行針對上行鏈路傳輸的功率控制。
該裝置可以包括執行圖5的上述流程圖中的演算法的方塊之每一者方塊的另外的元件。照此,圖5的上述流程圖之每一者方塊可以由元件執行,以及該裝置可以包括該等元件中的一或多個元件。元件可以是特別地被配置為執行所述過程/演算法的、由被配置為執行所述過程/演算法的處理器實現的、儲存在電腦可讀取媒體內用於由處理器實現的或其某種組合的一或多個硬體元件。
圖7是圖示針對裝置702的硬體實現方式的實例的示意圖700。裝置702是UE以及包括耦合到蜂巢RF收發機722的蜂巢基頻處理器704(亦稱為數據機)和一或多個用戶辨識模組(SIM)卡720、耦合到安全數位(SD)卡708的應用處理器706和螢幕710、藍芽模組712、無線區域網路(WLAN)模組714、全球定位系統(GPS)模組716和電源718。蜂巢基頻處理器704經由蜂巢RF收發機722與UE 104及/或BS 102/180通訊。蜂巢基頻處理器704可以包括電腦可讀取媒體/記憶體。電腦可讀取媒體/記憶體可以是非暫時性的。蜂巢基頻處理器704負責通常的處理,包括對儲存在電腦可讀取媒體/記憶體上的軟體的執行。軟體當由蜂巢基頻處理器704執行時,使得蜂巢基頻處理器704執行上文所描述的各種功能。電腦可讀取媒體/記憶體亦可以用於儲存當執行軟體時由蜂巢基頻處理器704操縱的資料。蜂巢基頻處理器704進一步包括接收元件730、通訊管理器732以及傳輸元件734。通訊管理器732包括一或多個圖示的元件。在通訊管理器732內的元件可以儲存在電腦可讀取媒體/記憶體中及/或被配置作為在蜂巢基頻處理器704內的硬體。蜂巢基頻處理器704可以是UE 350的元件,以及可以包括記憶體360及/或TX處理器368、RX處理器356和控制器/處理器359中的至少一者。在一種配置中,裝置702可以是數據機晶片以及僅包括基頻處理器704,以及在另一配置中,裝置702可以是整個UE(例如,參見圖3的350),以及包括裝置702的另外的模組。
通訊管理器732包括能力元件608,該能力元件608被配置為向基地站傳輸針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者的UE能力,例如,如結合圖5中的502所描述的。通訊管理器732進一步包括路徑損耗參考信號元件610,該路徑損耗參考信號元件610被配置為從基地站650接收基於UE能力的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的配置,例如,如結合圖5中的504所描述的。通訊管理器732進一步包括量測元件612,該量測元件612被配置為執行對啟用的路徑損耗參考信號的量測,例如,以便決定在UE與基地站之間的路徑損耗。通訊管理器732進一步包括功率控制元件614,該功率控制元件614被配置為基於路徑損耗來執行針對上行鏈路傳輸的功率控制。
該裝置可以包括執行圖5的上述流程圖中的演算法的方塊之每一者方塊的另外的元件。照此,圖5的上述流程圖之每一者方塊可以由元件執行,以及該裝置可以包括該等元件中的一或多個元件。元件可以是特別地被配置為執行所述過程/演算法的、由被配置為執行所述過程/演算法的處理器實現的、儲存在電腦可讀取媒體內用於由處理器實現的或其某種組合的一或多個硬體元件。
在一種配置中,裝置602/702,以及特別是蜂巢基頻處理器704包括用於向基地站傳輸針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者的UE能力的構件。該裝置包括用於從基地站接收基於UE能力的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的配置的構件。該裝置可以進一步包括用於基於路徑損耗參考信號來執行針對上行鏈路傳輸的功率控制的構件。該裝置可以進一步包括用於量測啟用的路徑損耗參考信號的構件。該裝置可以進一步包括用於使用基於根據路徑損耗參考信號決定的路徑損耗的傳輸功率來傳輸上行鏈路傳輸的構件。上述構件可以是被配置為執行經由上述構件所記載的功能的裝置702的上述元件中的一或多個元件。如上文所描述的,裝置702可以包括TX處理器368、RX處理器356以及控制器/處理器359。照此,在一種配置中,上述構件可以是被配置為執行經由上述構件所記載的功能的TX處理器368、RX處理器356以及控制器/處理器359。
圖8是無線通訊的方法的流程圖800。該方法可以由基地站或基地站的元件執行(例如,基地站102、180、310、404;裝置902/1002;基頻單元1004,該基頻單元1004可以包括記憶體376以及可以是整個基地站310或基地站310的元件,諸如TX處理器316、RX處理器370,及/或控制器/處理器375)。該方法可以幫助基地站配置UE用於路徑損耗參考信號及/或啟用針對UE的在UE的能力內的路徑損耗參考信號。
在802處,基地站從UE接收針對配置的路徑損耗參考信號的第一最大數及/或啟用的路徑損耗參考信號的第二最大數的UE能力資訊。該接收可以例如由圖9中的裝置902的能力元件908執行。啟用的路徑損耗參考信號的第二最大數可以等於或小於配置的路徑損耗參考信號的第一最大數。針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊,可以對應於UE用於對一或多個上行鏈路信號或上行鏈路通道(諸如PUSCH、PUCCH及/或SRS)的功率控制的路徑損耗參考信號。
例如,UE能力資訊可以針對特定類型的上行鏈路傳輸或者一類型的上行鏈路通道。UE能力資訊可以針對UE用於執行對單個上行鏈路信號或單個上行鏈路通道的功率控制的路徑損耗參考信號。或者,UE能力資訊可以應用於針對來自UE的每個上行鏈路信號或針對來自UE的每個上行鏈路通道的功率控制。
在804處,基地站基於UE能力資訊來配置UE用於第三數量的配置的路徑損耗參考信號及/或第四數量的啟用的路徑損耗參考信號中的至少一者。該配置可以例如由圖9中的裝置902的配置元件910執行。例如,針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊,可以對應於UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,以及,在804處,基地站可以基於UE能力來向UE提供包括配置的路徑損耗參考信號的第三數量或啟用的路徑損耗參考信號的第四數量中的至少一者的功率控制配置。作為另一實例,針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊可以對應於UE用於對單個上行鏈路信號或單個上行鏈路通道的功率控制的路徑損耗參考信號,以及,在804處,基地站可以基於UE能力資訊來向UE提供針對單個上行鏈路信號或單個上行鏈路通道的、包括配置的路徑損耗參考信號的第三數量或啟用的路徑損耗參考信號的第四數量中的至少一者的功率控制配置。例如,單個上行鏈路通道可以是PUSCH、PUCCH或SRS。
UE能力資訊可以包括配置的路徑損耗參考信號的第一最大數,以及基地站可以將配置的路徑損耗參考信號的第三數量限制不超過來自UE能力的配置的路徑損耗參考信號的第一最大數。UE能力資訊可以包括啟用的路徑損耗參考信號的第二最大數,以及基地站可以將啟用的路徑損耗參考信號的第四數量限制為不超過來自UE能力資訊的啟用的路徑損耗參考信號的第二最大數。路徑損耗參考信號可以是經由來自基地站的RRC信號傳遞來配置的。路徑損耗參考信號可以是經由來自基地站的MAC-CE來啟用的。
圖9是圖示示例性裝置902中不同構件/元件之間的資料流程的概念性資料流程示意圖900。該裝置可以是基地站或基地站的元件。該裝置包括接收元件904和傳輸元件906,該接收元件904被配置為從UE 950接收上行鏈路通訊,該傳輸元件906被配置為向UE 950傳輸下行鏈路通訊。該裝置包括能力元件908,該能力元件908被配置為從UE接收UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數及/或啟用的路徑損耗參考信號的第二最大數量,例如,如結合圖8中的802所描述的。該裝置包括配置元件910,該配置元件910被配置為基於UE能力資訊來配置UE用於第三數量的配置的路徑損耗參考信號及/或第四數量的啟用的路徑損耗參考信號中的至少一者,例如,如結合圖8中的804所描述的。
該裝置可以包括執行圖8的上述流程圖中的演算法的方塊之每一者方塊的另外的元件。照此,圖8的上述流程圖之每一者方塊可以由元件執行,以及該裝置可以包括該等元件中的一或多個元件。元件可以是特別地被配置為執行所述過程/演算法的、由被配置為執行所述過程/演算法的處理器實現的、儲存在電腦可讀取媒體內用於由處理器實現的或其某種組合的一或多個硬體元件。
圖10是圖示針對裝置1002的硬體實現方式的實例的示意圖1000。裝置1002是BS以及包括基頻單元1004。基頻單元1004可以經由蜂巢RF收發機1022與UE 104通訊。基頻單元1004可以包括電腦可讀取媒體/記憶體。基頻單元1004負責通常的處理,包括對儲存在電腦可讀取媒體/記憶體上的軟體的執行。該軟體當由基頻單元1004執行時使得基頻單元1004執行上文所描述的各種功能。電腦可讀取媒體/記憶體亦可以用於儲存當執行軟體時由基頻單元1004操縱的資料。基頻單元1004進一步包括接收元件1030、通訊管理器1032和傳輸元件1034。通訊管理器1032包括一或多個圖示的元件。在通訊管理器1032內的元件可以是儲存在電腦可讀取媒體/記憶體中的及/或被配置作為在基頻單元1004內的硬體。基頻單元1004可以是BS 310的元件,以及可以包括記憶體376及/或TX處理器316、RX處理器370和控制器/處理器375中的至少一者。
通訊管理器1032包括能力元件908,該能力元件908被配置為從UE處接收針對配置的路徑損耗參考信號的第一最大數及/或啟用的路徑損耗參考信號的第二最大數的UE能力,例如,如結合圖8中的802所描述的。通訊管理器1032進一步包括配置元件910,該配置元件910被配置為基於UE能力來配置UE用於第三數量的配置的路徑損耗參考信號及/或第四數量的啟用的路徑損耗參考信號中的至少一者,例如,如結合圖8中的804所描述的。
該裝置可以包括執行圖8的上述流程圖中的演算法的方塊之每一者方塊的另外的元件。照此,圖8的上述流程圖之每一者方塊可以由元件執行,以及該裝置可以包括該等元件中的一或多個元件。元件可以是特別地被配置為執行所述過程/演算法的、由被配置為執行所述過程/演算法的處理器實現的、儲存在電腦可讀取媒體內用於由處理器實現的或其某種組合的一或多個硬體元件。
在一種配置中,裝置902/1002,特別是基頻單元1004包括用於接收的構件從UE接收針對配置的路徑損耗參考信號的第一最大數及/或啟用的路徑損耗參考信號的第二最大數的UE能力。該裝置可以包括用於基於UE能力來配置UE用於第三數量的配置的路徑損耗參考信號及/或第四數量的啟用的路徑損耗參考信號中的至少一者的構件。上述構件可以是被配置為執行經由上述構件所記載的功能的裝置1002的上述元件中的一或多個元件。如前述,裝置1002可以包括TX處理器316、RX處理器370和控制器/處理器375。照此,在一種配置中,上述構件可以是被配置為執行經由上述構件所記載的功能的TX處理器316、RX處理器370以及控制器/處理器375。
應當理解的是,所揭示的過程/流程圖中的方塊的特定次序或層次是對示例性方式的說明。基於設計偏好,應當理解的是,過程/流程圖中的方塊的特定次序或層次可以重新排列。進一步地,一些方塊可以組合或者省略。所附的方法請求項以取樣次序提供了各個方塊的元素,以及不意味著受限於所提供的特定次序或層次。
提供前面的描述以使熟習此項技術者能夠實施本文所描述的各個態樣。對該等態樣的各種修改對於熟習此項技術者而言將是顯而易見的,以及本文所定義的一般原理可以應用到其他態樣。因此,本申請專利範圍不意欲受限於本文所展示的各態樣,而是符合與申請專利範圍所表達的內容相一致的全部範疇,其中除非明確地聲明如此,否則提及單數形式的元素不意欲意指「一個和僅僅一個」,而是「一或多個」。詞語「示例性的」在本文中用於意指「用作示例、實例或說明」。本文中描述為「示例性」的任何態樣不必解釋為較佳於其他態樣或者比其他態樣有優勢。除非以其他方式明確地聲明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」,「A、B或C中的一或多個」,「A、B和C中的至少一個」,「A、B和C中的一或多個」以及「A、B、C或其任意組合」的組合包括A、B及/或C的任意組合,以及可以包括倍數的A、倍數的B或倍數的C。特別地,諸如「A、B或C中的至少一個」,「A、B或C中的一或多個」,「A、B和C中的至少一個」,「A、B和C中的一或多個」以及「A、B、C或其任意組合」的組合可以是僅A,僅B,僅C,A和B,A和C,B和C,或者A和B和C,其中任何此種組合可以包含A、B或C中的一或多個成員。遍及本案內容描述的各個態樣的元素的、對於一般技術者而言已知或者稍後將知的全部結構和功能的均等物以引用方式明確地併入本文中,以及意欲由申請專利範圍來包含。此外,本文中所揭示的內容中沒有內容是意欲奉獻給公眾的,不管此種揭示內容是否明確記載在申請專利範圍中。詞語「模組」、「機制」、「元素」、「設備」等可能不是對詞語「構件」的替代。照此,沒有請求項元素將要解釋功能構件,除非該元素是使用短語「用於……構件」來明確記載的。
以下各態樣僅是說明性的,以及可以不受限制地與本文所描述的其他態樣或教示相結合。
態樣1是在使用者設備(UE)處進行無線通訊的方法,包括以下步驟:向基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者;及從基地站接收基於UE能力的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的配置。
在態樣2中,態樣1的方法亦包括以下步驟:UE能力資訊包括配置的路徑損耗參考信號的第一最大數。
在態樣3中,態樣1的方法亦包括以下步驟:UE能力資訊包括啟用的路徑損耗參考信號的第二最大數。
在態樣4中,態樣1的方法亦包括以下步驟:UE能力包括配置的路徑損耗參考信號的第一最大數和啟用的路徑損耗參考信號的第二最大數。
在態樣5中,態樣1-4中的任何態樣的方法亦包括以下步驟:啟用的路徑損耗參考信號的第二最大數等於或小於配置的路徑損耗參考信號的第一最大數。
在態樣6中,態樣1-5中的任何態樣的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,該方法亦包括以下步驟:量測基於UE能力來配置的啟用的路徑損耗參考信號的路徑損耗;及基於該路徑損耗來決定用於一或多個上行鏈路信號或上行鏈路通道的傳輸功率。
在態樣7中,態樣6的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於對單個上行鏈路信號或單個上行鏈路通道的功率控制的路徑損耗參考信號,並且其中UE基於啟用的路徑損耗參考信號的路徑損耗來決定針對單個上行鏈路信號或單個上行鏈路通道的傳輸功率,該等啟用的路徑損耗參考信號是基於UE能力來配置的。
在態樣8中,態樣7的方法亦包括以下步驟:單個上行鏈路通道包括PUSCH、PUCCH或SRS中的一者。
在態樣9中,態樣6的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於針對來自UE的每個上行鏈路信號或針對來自UE的每個上行鏈路通道的功率控制的路徑損耗參考信號,並且其中UE基於啟用的路徑損耗參考信號的路徑損耗來決定用於每個上行鏈路信號或每個上行鏈路通道的傳輸功率,該等啟用的路徑損耗參考信號是基於UE能力來配置的。
態樣10是用於無線通訊的裝置,其包括至少一個處理器,該至少一個處理器耦合到記憶體以及被配置為實現如態樣1至9中的任何態樣中的方法。
態樣11是用於無線通訊的裝置,其包括用於實現如態樣1至9中的任何態樣中的方法的構件。
態樣12是儲存電腦可執行代碼的非暫時性電腦可讀取媒體,其中該代碼當由處理器執行時使得處理器實現如態樣1至9中的任何態樣中的方法。
態樣13是在基地站處進行的無線通訊的方法,包括以下步驟:從UE接收UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數中的至少一者;及基於UE能力來配置UE用於第三數量的配置的路徑損耗參考信號或第四數量的啟用的路徑損耗參考信號中的至少一者。
在態樣14中,態樣13的方法亦包括以下步驟:UE能力資訊包括配置的路徑損耗參考信號的第一最大數,並且其中基地站將配置的路徑損耗參考信號的第三數量限制為不超過來自UE能力的配置的路徑損耗參考信號的第一最大數。
在態樣15中,態樣13的方法亦包括以下步驟:UE能力資訊包括啟用的路徑損耗參考信號的第二最大數,並且其中基地站將啟用的路徑損耗參考信號的第四數量限制為不超過來自UE能力的啟用的路徑損耗參考信號的第二最大數。
在態樣16中,態樣13的方法亦包括以下步驟:UE能力資訊包括配置的路徑損耗參考信號的第一最大數和啟用的路徑損耗參考信號的第二最大數,其中基地站將配置的路徑損耗參考信號的第三數量限制為不超過來自UE能力的配置的路徑損耗參考信號的第一最大數,並且其中基地站將啟用的路徑損耗參考信號的第四數量限制為不超過來自UE能力的啟用的路徑損耗參考信號的第二最大數。
在態樣17中,態樣13-16中任何態樣的方法亦包括以下步驟:啟用的路徑損耗參考信號的第二最大數等於或小於配置的路徑損耗參考信號的第一最大數。
在態樣18,態樣13-17中任何態樣的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,並且其中基地站基於UE能力來向UE提供包括配置的路徑損耗參考信號的第三數量或啟用的路徑損耗參考信號的第四數量中的至少一者的功率控制配置。
在態樣19,態樣18的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於對單個上行鏈路信號或單個上行鏈路通道的功率控制的路徑損耗參考信號,並且其中基地站基於UE能力來向UE提供針對單個上行鏈路信號或單個上行鏈路通道的、包括配置的路徑損耗參考信號的第三數量或啟用的路徑損耗參考信號的第四數量中的至少一者的功率控制配置。
在態樣20,態樣19的方法亦包括以下步驟:單個上行鏈路通道是PUSCH、PUCCH或SRS中的一者。
在態樣21,態樣18的方法亦包括以下步驟:針對配置的路徑損耗參考信號的第一最大數或啟用的路徑損耗參考信號的第二最大數的UE能力資訊對應於UE用於針對來自UE的每個上行鏈路信號或每個上行鏈路通道的功率控制的路徑損耗參考信號,並且其中基地站基於UE能力來向UE提供針對每個上行鏈路信號或每個上行鏈路通道的、包括配置的路徑損耗參考信號的第三數量或啟用的路徑損耗參考信號的第四數量中的至少一者的功率控制配置。
態樣22是用於無線通訊的裝置,其包括至少一個處理器,該至少一個處理器耦合到記憶體以及被配置為實現如態樣13至21中的任何態樣中的方法。
態樣23是用於無線通訊的裝置,其包括用於實現如在態樣13至21中的任何態樣中的方法的構件。
態樣24是儲存電腦可執行代碼的電腦可讀取媒體,其中該代碼當由處理器執行時使得處理器實現如態樣13至21中的任何態樣中的方法。
100:存取網路 102:基地站 102':小型細胞 104:UE 110:覆蓋區域 110':覆蓋區域 120:通訊鏈路 132:第一回載鏈路 134:第三回載鏈路 150:Wi-Fi存取點(AP) 152:Wi-Fi站(STA) 154:通訊鏈路 158:D2D通訊鏈路 160:EPC 162:行動性管理實體(MME) 164:其他MME 166:服務閘道 168:多媒體廣播多播服務(MBMS)閘道 170:廣播多播服務中心(BM-SC) 172:封包資料網路(PDN)閘道 174:歸屬用戶伺服器(HSS) 176:IP服務 180:基地站 182:波束成形 182':傳輸方向 182":接收方向 184:第二回載鏈路 190:核心網路 192:存取和行動性管理功能(AMF) 193:其他AMF 194:通信期管理功能(SMF) 195:使用者平面功能(UPF) 196:統一資料管理(UDM) 197:IP服務 198:路徑損耗參考信號能力元件 199:路徑損耗參考信號配置元件 200:示意圖 230:示意圖 250:示意圖 280:示意圖 310:基地站 316:傳輸(TX)處理器 318:傳輸器/接收器 320:天線 350:UE 352:天線 354:接收器/傳輸器 356:RX處理器 358:通道估計器 359:控制器/處理器 360:記憶體 368:TX處理器 370:RX處理器 374:通道估計器 375:控制器/處理器 376:記憶體 400:通訊流程 401:元件符號 402:UE 403:元件符號 404:基地站 405:元件符號 407:元件符號 409:元件符號 411:元件符號 413:元件符號 500:流程圖 502:步驟 504:步驟 506:步驟 508:步驟 510:步驟 600:概念性資料流程示意圖 602:裝置 604:接收元件 606:傳輸元件 608:能力元件 610:路徑損耗參考信號元件 612:量測元件 614:功率控制元件 650:基地站 700:示意圖 702:裝置 704:蜂巢基頻處理器 706:應用處理器 708:安全數位(SD)卡 710:螢幕 712:藍芽模組 714:無線區域網路(WLAN)模組 716:全球定位系統(GPS)模組 718:電源 720:SIM卡 722:蜂巢RF收發機 730:接收元件 732:通訊管理器 734:傳輸元件 800:流程圖 802:步驟 804:步驟 900:概念性資料流程示意圖 902:裝置 904:接收元件 906:傳輸元件 908:能力元件 910:配置元件 950:UE 1000:示意圖 1002:裝置 1004:基頻單元 1022:蜂巢RF收發機 1030:接收元件 1032:通訊管理器 1034:傳輸元件
圖1是圖示無線通訊系統和存取網路的實例的示意圖。
圖2A是圖示根據本案內容的各個態樣的第一訊框的實例的示意圖。
圖2B是圖示根據本案內容的各個態樣在子訊框內的DL通道的實例的示意圖。
圖2C是圖示根據本案內容的各個態樣的第二訊框的實例的示意圖。
圖2D是圖示根據本案內容的各個態樣在子訊框內的UL通道的實例的示意圖。
圖3是圖示在存取網路中基地站和使用者設備(UE)的實例的示意圖。
圖4圖示在UE與基地站之間的包括關於路徑損耗參考信號的UE能力信號傳遞的示例性通訊流程。
圖5是無線通訊的方法的流程圖。
圖6是圖示在示例性裝置中在不同構件/元件之間的資料流程的概念性資料流程示意圖。
圖7是圖示針對示例性裝置的硬體實現方式的實例的示意圖。
圖8是無線通訊的方法的流程圖。
圖9是圖示在示例性裝置中在不同構件/元件之間的資料流程的概念性資料流程示意圖。
圖10是圖示針對示例性裝置中硬體實現方式的實例的示意圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
400:通訊流程
401:元件符號
402:UE
403:元件符號
404:基地站
405:元件符號
407:元件符號
409:元件符號
411:元件符號
413:元件符號

Claims (30)

  1. 一種在一使用者設備(UE)處進行的無線通訊的方法,包括以下步驟: 向一基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的一第一最大數或啟用的路徑損耗參考信號的一第二最大數中的至少一者;及 從該基地站接收基於該UE能力資訊的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的一配置。
  2. 根據請求項1之方法,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數。
  3. 根據請求項1之方法,其中該UE能力資訊包括啟用的路徑損耗參考信號的該第二最大數。
  4. 根據請求項1之方法,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數和啟用的路徑損耗參考信號的該第二最大數。
  5. 根據請求項4之方法,其中啟用的路徑損耗參考信號的該第二最大數等於或小於配置的路徑損耗參考信號的該第一最大數。
  6. 根據請求項1之方法,其中針對配置的路徑損耗參考信號的該第一最大數或啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,該方法亦包括以下步驟: 量測基於該UE能力資訊來配置的該等啟用的路徑損耗參考信號的一路徑損耗;及 基於該路徑損耗來決定用於該一或多個上行鏈路信號或上行鏈路通道的一傳輸功率。
  7. 根據請求項6之方法,其中針對配置的路徑損耗參考信號的該第一最大數或者啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一單個上行鏈路信號或一單個上行鏈路通道的該功率控制的該等路徑損耗參考信號,並且 其中該UE基於該等啟用的路徑損耗參考信號的該路徑損耗來決定用於該單個上行鏈路信號或該單個上行鏈路通道的該傳輸功率,該等啟用的路徑損耗參考信號是基於該UE能力資訊來配置的。
  8. 根據請求項7之方法,其中該單個上行鏈路通道包括一實體上行鏈路共享通道(PUSCH)、一實體上行鏈路控制通道(PUCCH),或者一探測參考信號(SRS)中的一者。
  9. 根據請求項6之方法,其中針對配置的路徑損耗參考信號的該第一最大數或啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於針對來自該UE的每個上行鏈路信號或針對來自該UE的每個上行鏈路通道的該功率控制的該等路徑損耗參考信號,並且 其中該UE基於該等啟用的路徑損耗參考信號的該路徑損耗來決定用於每個上行鏈路信號或每個上行鏈路通道的該傳輸功率,該等啟用的路徑損耗參考信號是基於該UE能力資訊來配置的。
  10. 一種在一基地站處進行的無線通訊的方法,包括以下步驟: 從一使用者設備(UE)接收UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的一第一最大數或啟用的路徑損耗參考信號的一第二最大數中的至少一者;及 基於該UE能力資訊來配置該UE用於一第三數量的配置的路徑損耗參考信號或一第四數量的啟用的路徑損耗參考信號中的至少一者。
  11. 根據請求項10之方法,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數,並且其中該基地站將配置的路徑損耗參考信號的該第三數量限制為不超過來自該UE能力資訊的配置的路徑損耗參考信號的該第一最大數。
  12. 根據請求項10之方法,其中該UE能力資訊包括啟用的路徑損耗參考信號的該第二最大數,並且其中該基地站將啟用的路徑損耗參考信號的該第四數量限制為不超過來自該UE能力資訊的啟用的路徑損耗參考信號的該第二最大數。
  13. 根據請求項10之方法,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數和啟用的路徑損耗參考信號的該第二最大數, 其中該基地站將配置的路徑損耗參考信號的該第三數量限制為不超過來自該UE能力資訊的配置的路徑損耗參考信號的該第一最大數,並且 其中該基地站將啟用的路徑損耗參考信號的該第四數量限制為不超過來自該UE能力資訊的啟用的路徑損耗參考信號的該第二最大數。
  14. 根據請求項13之方法,其中啟用的路徑損耗參考信號的該第二最大數等於或小於配置的路徑損耗參考信號的該第一最大數。
  15. 根據請求項10之方法,其中針對配置的路徑損耗參考信號的該第一最大數或啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,並且 其中該基地站基於該UE能力資訊來向該UE提供包括配置的路徑損耗參考信號的該第三數量或啟用的路徑損耗參考信號的該第四數量中的至少一者的一功率控制配置。
  16. 根據請求項15之方法,其中針對配置的路徑損耗參考信號的該第一最大數或者啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一單個上行鏈路信號或一單個上行鏈路通道的該功率控制的該等路徑損耗參考信號,並且 其中該基地站基於該UE能力資訊來向該UE提供針對該單個上行鏈路信號或該單個上行鏈路通道的、包括配置的路徑損耗參考信號的該第三數量或啟用的路徑損耗參考信號的該第四數量中的至少一者的該功率控制配置。
  17. 根據請求項16之方法,其中該單個上行鏈路通道是一實體上行鏈路共享通道(PUSCH)、一實體上行鏈路控制通道(PUCCH),或者一探測參考信號(SRS)中的一者。
  18. 根據請求項15之方法,其中針對配置的路徑損耗參考信號的該第一最大數或者啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於針對來自該UE的每個上行鏈路信號或每個上行鏈路通道的該功率控制的該等路徑損耗參考信號,並且 其中該基地站基於該UE能力資訊來向該UE提供針對每個上行鏈路信號或每個上行鏈路通道的、包括配置的路徑損耗參考信號的該第三數量或啟用的路徑損耗參考信號的該第四數量中的至少一者的該功率控制配置。
  19. 一種用於在一使用者設備(UE)處進行的無線通訊的裝置,包括: 一記憶體;及 至少一個處理器,其耦合到該記憶體以及被配置為: 向一基地站傳輸UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的一第一最大數或啟用的路徑損耗參考信號的一第二最大數中的至少一者;及 從該基地站接收基於該UE能力資訊的、針對配置的路徑損耗參考信號或啟用的路徑損耗參考信號中的至少一者的一配置。
  20. 根據請求項19之裝置,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數。
  21. 根據請求項19之裝置,其中該UE能力資訊包括啟用的路徑損耗參考信號的該第二最大數。
  22. 根據請求項19之裝置,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數和啟用的路徑損耗參考信號的該第二最大數。
  23. 根據請求項22之裝置,其中啟用的路徑損耗參考信號的該第二最大數等於或小於配置的路徑損耗參考信號的該第一最大數。
  24. 根據請求項19之裝置,其中針對配置的路徑損耗參考信號的該第一最大數或啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一或多個上行鏈路信號或上行鏈路通道的功率控制的路徑損耗參考信號,該至少一個處理器亦被配置為: 量測基於該UE能力資訊來配置的該等啟用的路徑損耗參考信號的一路徑損耗;及 基於該路徑損耗來決定用於該一或多個上行鏈路信號或上行鏈路通道的一傳輸功率。
  25. 根據請求項24之裝置,其中針對配置的路徑損耗參考信號的該第一最大數或啟用的路徑損耗參考信號的該第二最大數的該UE能力資訊對應於該UE用於對一單個上行鏈路信號或一單個上行鏈路通道的該功率控制的該等路徑損耗參考信號,並且 其中該裝置基於該等啟用的路徑損耗參考信號的該路徑損耗來決定用於該單個上行鏈路信號或該單個上行鏈路通道的該傳輸功率,該等啟用的路徑損耗參考信號是基於該UE能力資訊來配置的。
  26. 根據請求項25之裝置,其中該單個上行鏈路通道包括一實體上行鏈路共享通道(PUSCH)、一實體上行鏈路控制通道(PUCCH),或者一探測參考信號(SRS)中的至少一者。
  27. 一種用於在一基地站處進行的無線通訊的裝置,包括: 一記憶體;及 至少一個處理器,其耦合到該記憶體以及被配置為: 從一使用者設備(UE)接收UE能力資訊,該UE能力資訊對應於配置的路徑損耗參考信號的一第一最大數或啟用的路徑損耗參考信號的一第二最大數中的至少一者;及 基於該UE能力資訊來配置該UE用於一第三數量的配置的路徑損耗參考信號或一第四數量的啟用的路徑損耗參考信號中的至少一者。
  28. 根據請求項27之裝置,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數。
  29. 根據請求項27之裝置,其中該UE能力資訊包括啟用的路徑損耗參考信號的該第二最大數。
  30. 根據請求項27之裝置,其中該UE能力資訊包括配置的路徑損耗參考信號的該第一最大數和啟用的路徑損耗參考信號的該第二最大數, 其中該裝置將配置的路徑損耗參考信號的該第三數量限制為不超過來自該UE能力資訊的配置的路徑損耗參考信號的該第一最大數,並且 其中該裝置將啟用的路徑損耗參考信號的該第四數量限制為不超過來自該UE能力資訊的啟用的路徑損耗參考信號的該第二最大數。
TW109139692A 2019-11-20 2020-11-13 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告 TW202126088A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962938131P 2019-11-20 2019-11-20
US62/938,131 2019-11-20
US17/096,844 US11611870B2 (en) 2019-11-20 2020-11-12 UE capability reporting for configured and activated pathloss reference signals
US17/096,844 2020-11-12

Publications (1)

Publication Number Publication Date
TW202126088A true TW202126088A (zh) 2021-07-01

Family

ID=75909464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139692A TW202126088A (zh) 2019-11-20 2020-11-13 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告

Country Status (7)

Country Link
US (1) US11611870B2 (zh)
EP (1) EP4062682B1 (zh)
KR (1) KR20220103107A (zh)
CN (1) CN114762397A (zh)
BR (1) BR112022009117A2 (zh)
TW (1) TW202126088A (zh)
WO (1) WO2021101817A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563611B1 (en) * 2020-09-21 2023-01-24 Sprint Spectrum Lp Adjusting reference signal reporting based on uplink channel conditions
WO2023209666A1 (en) * 2022-04-29 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) SRS FOR RECIPROCITY-BASED JOINT DL TRANSMISSION FROM MULTIPLE TRPs

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587697B2 (en) * 2001-05-14 2003-07-01 Interdigital Technology Corporation Common control channel uplink power control for adaptive modulation and coding techniques
US10693586B2 (en) 2016-12-28 2020-06-23 Lg Electronics Inc. Method for receiving reference signal resources in a wireless communication system and apparatus
JP6938642B2 (ja) * 2016-12-30 2021-09-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 経路損失推定方法およびデバイス
CN116981038A (zh) 2017-05-04 2023-10-31 三星电子株式会社 无线通信系统中确定前导码发射功率的方法及其无线装置
US10568050B2 (en) * 2017-05-04 2020-02-18 Ofinno, Llc RACH power adjustment
US10686573B2 (en) * 2017-09-11 2020-06-16 Lenovo (Singapore) Pte Ltd Reference signals for radio link monitoring
HUE058109T2 (hu) 2017-11-09 2022-07-28 Beijing Xiaomi Mobile Software Co Ltd Eljárás és berendezés vezeték nélküli eszközök képességein alapuló kommunikációhoz
EP4040863A1 (en) 2018-01-10 2022-08-10 Comcast Cable Communications LLC Power control for channel state information
ES2828080T3 (es) * 2018-05-10 2021-05-25 Asustek Comp Inc Procedimiento y aparato para activar el informe de margen de potencia para referencia de pérdida de trayectoria múltiple en un sistema inalámbrico de comunicación
US10887843B2 (en) 2018-05-11 2021-01-05 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
CN110474730A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 信道配置、功控方法和装置、用户设备、基站及存储介质
EP3771258A1 (en) * 2019-07-22 2021-01-27 Comcast Cable Communications, LLC Power control for wireless communications
US11191031B2 (en) * 2019-09-15 2021-11-30 Qualcomm Incorporated Path-loss estimation using path-loss reference signal activation and deactivation
WO2021057362A1 (en) * 2019-09-27 2021-04-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Reference signal determination method and device, and ue
KR20240136459A (ko) * 2019-09-29 2024-09-13 애플 인크. 업링크 공간 관계 표시 및 전력 제어
WO2021087828A1 (zh) * 2019-11-06 2021-05-14 Oppo广东移动通信有限公司 激活或者更新srs的路损rs的方法和设备
CN113692041B (zh) * 2019-11-06 2023-03-24 Oppo广东移动通信有限公司 激活或者更新pusch路损rs的方法和设备
WO2021091088A1 (en) * 2019-11-07 2021-05-14 Samsung Electronics Co., Ltd. Method and apparatus for dynamically configuring channel loss measurement in next-generation mobile communication system

Also Published As

Publication number Publication date
CN114762397A (zh) 2022-07-15
KR20220103107A (ko) 2022-07-21
EP4062682C0 (en) 2024-04-03
EP4062682B1 (en) 2024-04-03
US11611870B2 (en) 2023-03-21
EP4062682A1 (en) 2022-09-28
WO2021101817A1 (en) 2021-05-27
US20210153003A1 (en) 2021-05-20
BR112022009117A2 (pt) 2022-07-26

Similar Documents

Publication Publication Date Title
TWI824086B (zh) 用於具有不同頻寬能力的ue的控制資源集合
TWI719274B (zh) 用於選擇或發送針對相位追蹤參考信號的頻域模式的系統和方法
CN113196838B (zh) 针对功率节省配置的ue辅助信息
JP7389804B2 (ja) Coresetのサブセットに基づくデフォルトビーム選択
JP7574233B2 (ja) Rrc状態の間でのue支援型高速遷移
WO2022021335A1 (en) Inter-cell mobility across serving and non-serving cells
KR20230113297A (ko) 셀룰러 네트워크들에서 협력 머신 러닝을 위한 모델 발견 및 선택
TW202127939A (zh) 針對srs/pucch的預設空間關係
JP7528126B2 (ja) アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置
WO2021133575A1 (en) Signaling for uplink beam activation
CN114830585B (zh) 用于激活上行链路触发状态的信令
TWI837208B (zh) 對ne-dc中的潛在nr ul傳輸的指示
US11671995B2 (en) Time domain resource allocation-based HARQ-ACK feedback generation
US11611870B2 (en) UE capability reporting for configured and activated pathloss reference signals
TW202127943A (zh) 用於配置用於補充上行鏈路載波的上行鏈路取消指示的方法
CN114303344A (zh) 网络编码设计
WO2022027279A1 (en) Port-selection codebook with frequency selective precoded csi-rs
TW202218467A (zh) 在不同載波上的上行鏈路傳輸和srs傳輸的管理
WO2022052028A1 (en) Methods and apparatus for mmtc network reliability enhancements
TW202333476A (zh) 基於ue回饋的快速bwp切換
JP2024161387A (ja) アップリンク制御チャネルおよびサウンディング基準信号に対する空間関係表示を容易にするための方法および装置
CN116711244A (zh) 用于高频段无线通信的调制和译码方案能力
TW202135560A (zh) 偵測系統級不穩定性或針對負載平衡的需求
CN116762289A (zh) Pucc/pusch dmrs绑定持续时间