TW202033819A - Methods of operating a spatial deposition tool - Google Patents
Methods of operating a spatial deposition tool Download PDFInfo
- Publication number
- TW202033819A TW202033819A TW108138999A TW108138999A TW202033819A TW 202033819 A TW202033819 A TW 202033819A TW 108138999 A TW108138999 A TW 108138999A TW 108138999 A TW108138999 A TW 108138999A TW 202033819 A TW202033819 A TW 202033819A
- Authority
- TW
- Taiwan
- Prior art keywords
- processing
- substrate support
- wafer
- specific embodiments
- substrate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 230000008021 deposition Effects 0.000 title abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 437
- 239000000758 substrate Substances 0.000 claims abstract description 254
- 239000010409 thin film Substances 0.000 claims description 28
- 238000011068 loading method Methods 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 abstract description 229
- 239000007789 gas Substances 0.000 abstract description 97
- 230000008569 process Effects 0.000 abstract description 16
- 239000010408 film Substances 0.000 description 33
- 238000000231 atomic layer deposition Methods 0.000 description 27
- 238000007789 sealing Methods 0.000 description 23
- 238000010926 purge Methods 0.000 description 21
- 238000000746 purification Methods 0.000 description 20
- 238000012546 transfer Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 13
- 239000012530 fluid Substances 0.000 description 12
- 238000000151 deposition Methods 0.000 description 11
- 230000015654 memory Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4409—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45519—Inert gas curtains
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45548—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
- C23C16/45551—Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/4557—Heated nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68771—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical Vapour Deposition (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
- Physical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本揭示內容總體上涉及用於沉積薄膜的設備以及用於處理晶圓的方法。特定而言,本揭示內容涉及複數個可移動的加熱晶圓支座和在空間上分離的處理站,以及具有在空間上分離的隔離的處理站的處理腔室。The present disclosure generally relates to equipment for depositing thin films and methods for processing wafers. In particular, the present disclosure relates to a plurality of movable heated wafer supports and spatially separated processing stations, and processing chambers with spatially separated and isolated processing stations.
當前的原子層沉積(ALD)處理具有許多潛在的問題和困難。許多ALD化學物質(例如前驅物和反應物)是「不相容的」,這意味著化學物質不能混合在一起。如果不相容的化學物質混合在一起,則可能會發生化學氣相沉積(CVD)處理,而不是ALD處理。CVD處理通常比ALD處理具有更少的厚度控制和/或可導致產生氣相顆粒,這可導致所得裝置中的缺陷。對於一次使一種反應性氣體流入處理腔室的傳統時域ALD處理,會出現較長的淨化/抽氣時間,使得化學物質不會在氣相中混合。相較於時域ALD腔室可抽氣/淨化的速度,空間性ALD腔室可以更快地將一個或多個晶圓從一個環境移動到第二環境,從而獲得更高的產量。The current atomic layer deposition (ALD) processing has many potential problems and difficulties. Many ALD chemicals (such as precursors and reactants) are "incompatible", which means that the chemicals cannot be mixed together. If incompatible chemicals are mixed together, chemical vapor deposition (CVD) processing may occur instead of ALD processing. CVD processing generally has less thickness control than ALD processing and/or can lead to the production of gas phase particles, which can lead to defects in the resulting device. For the traditional time-domain ALD process in which one reactive gas is flowed into the processing chamber at a time, a longer purging/pumping time will occur so that the chemicals will not mix in the gas phase. Compared with the pumping/purification speed of the time domain ALD chamber, the spatial ALD chamber can move one or more wafers from one environment to the second environment faster, thereby obtaining higher yields.
半導體工業需要可以在較低溫度(例如低於350°C)下沉積的高品質薄膜。為了在低於僅通過熱法沉積薄膜的溫度下沉積高品質的薄膜,需要替代能源。可使用電漿方案,以離子和自由基的形式向ALD薄膜提供額外的能量。困難點在於在垂直側壁ALD薄膜上獲得足夠的能量。離子通常在垂直於晶圓表面的方向上通過晶圓表面上方的鞘被加速。因此,離子向水平的ALD薄膜表面提供能量,但是向垂直表面提供的能量不足,因為離子平行於垂直表面移動。The semiconductor industry needs high-quality films that can be deposited at lower temperatures (for example, below 350°C). In order to deposit a high-quality film at a temperature lower than the temperature at which the film is deposited only by the thermal method, alternative energy sources are required. Plasma solutions can be used to provide additional energy to the ALD film in the form of ions and free radicals. The difficulty lies in obtaining sufficient energy on the vertical sidewall ALD film. Ions are generally accelerated through the sheath above the wafer surface in a direction perpendicular to the wafer surface. Therefore, ions provide energy to the horizontal ALD film surface, but insufficient energy to the vertical surface because the ions move parallel to the vertical surface.
一些處理腔室包含電容耦合電漿(CCP)。在頂部電極和晶圓之間會產生CCP,這通常稱為CCP平行板電漿。CCP平行板電漿在兩個工作片之間產生很高的離子能量,因此,在垂直側壁表面上的效果很差。藉由將晶圓空間性地移動到為產生高自由基通量和離子通量而優化的環境,此環境具有較低的能量和相對於晶圓表面的較寬角度分佈,可以實現更好的垂直ALD膜性質。這樣的電漿源包括微波、感應耦合電漿(ICP)或帶有第三電極的更高頻率的CCP解決方案(亦即,電漿是在晶圓上方的兩個電極之間產生的,而不是將晶圓用作主要電極)。Some processing chambers contain capacitively coupled plasma (CCP). CCP is generated between the top electrode and the wafer, which is usually called CCP parallel plate plasma. The CCP parallel plate plasma generates high ion energy between the two working plates, so the effect on the vertical sidewall surface is poor. By moving the wafer spatially to an environment optimized for generating high radical flux and ion flux, this environment has lower energy and a wider angular distribution relative to the wafer surface, which can achieve better Vertical ALD film properties. Such plasma sources include microwaves, inductively coupled plasma (ICP) or higher frequency CCP solutions with a third electrode (that is, plasma is generated between two electrodes above the wafer, and Instead of using the wafer as the main electrode).
當前的空間性ALD處理腔室以恆定的速度在加熱的圓形平臺上旋轉複數個晶圓,這將晶圓從一個處理環境移動到相鄰環境。不同的處理環境會造成不相容氣體的分離。然而,當前的空間性ALD處理腔室不能使電漿環境針對電漿暴露被優化,從而導致不均勻、電漿損傷和/或處理靈活性問題。The current spatial ALD processing chamber rotates multiple wafers on a heated circular platform at a constant speed, which moves the wafers from one processing environment to an adjacent environment. Different processing environments can cause separation of incompatible gases. However, current spatial ALD processing chambers cannot allow the plasma environment to be optimized for plasma exposure, resulting in non-uniformity, plasma damage, and/or processing flexibility issues.
例如,處理氣體流過晶圓表面。因為晶圓繞著偏移軸旋轉,所以晶圓的前緣和後緣具有不同的流線。另外,由於內邊緣處的速度較慢而外邊緣處的速度較快,在晶圓的內徑邊緣與外徑邊緣之間也存在流動差異。這些流動不均勻性可以優化但不能消除。將晶圓暴露於不均勻的電漿中會造成電漿損傷。這些空間處理腔室的恆定速度旋轉,要求晶圓移入和移出電漿,因此一些晶圓暴露於電漿,而其他區域在電漿之外。此外,由於恆定的旋轉速率,可能難以改變空間處理腔室中的曝光時間。例如,一個過程使用0.5秒的氣體A暴露時間,然後進行1.5秒的電漿處理。因為工具以恆定的轉速運行,所以唯一的方法是使電漿環境比氣體A的劑量環境大3倍。如果要在氣體A和電漿時間相等的情況下執行其他處理,則需要更改硬體。當前的空間ALD腔室只能減慢或加快旋轉速度,而不能在不改變較小或較大區域的腔室硬體的情況下針對步驟之間的時間差進行調整。For example, the process gas flows across the surface of the wafer. Because the wafer rotates around the offset axis, the leading and trailing edges of the wafer have different streamlines. In addition, since the speed at the inner edge is slower and the speed at the outer edge is faster, there is also a flow difference between the inner diameter edge and the outer diameter edge of the wafer. These flow inhomogeneities can be optimized but not eliminated. Exposing the wafer to uneven plasma can cause plasma damage. The constant speed rotation of these spatial processing chambers requires wafers to move in and out of the plasma, so some wafers are exposed to the plasma, while other areas are outside of the plasma. In addition, due to the constant rotation rate, it may be difficult to change the exposure time in the spatial processing chamber. For example, a process uses a gas A exposure time of 0.5 seconds, followed by a plasma treatment for 1.5 seconds. Because the tool runs at a constant speed, the only way is to make the plasma environment 3 times larger than the gas A dose environment. If you want to perform other processing when the gas A and plasma time are equal, you need to change the hardware. The current spatial ALD chamber can only slow down or speed up the rotation speed, and cannot adjust the time difference between steps without changing the chamber hardware in a smaller or larger area.
在當前的空間ALD沉積工具(或其他空間處理腔室)中,當晶圓在模擬單個晶圓腔室的處理站中靜止時發生主要沉積步驟,操作方法通常涉及使晶圓移動至多個類型的處理站,由於晶圓的不同部分被暴露在不同的環境中,導致晶圓產生前緣和後緣差異。因此,在本領域中需要改進的沉積設備和方法。In current spatial ALD deposition tools (or other spatial processing chambers), the main deposition step occurs when the wafer is stationary in a processing station that simulates a single wafer chamber. The operating method usually involves moving the wafer to multiple types In the processing station, because different parts of the wafer are exposed to different environments, the leading edge and trailing edge of the wafer are different. Therefore, there is a need for improved deposition equipment and methods in the art.
揭示內容的一個或多個具體實施例涉及一種操作處理腔室的方法。在一或更多個具體實施例中,一種方法,包含:提供處理腔室,處理腔室包含x個空間上分離的隔離的處理站,處理腔室具有處理腔室溫度,且每一處理站獨立地具有處理站溫度,處理腔室溫度不同於處理站溫度;旋轉基板支撐組件(rx-1)次,基板支撐組件具有複數個基板支撐表面,複數個基板支撐表面與該x個空間上分離的隔離的處理站對齊,使得每個基板支撐表面在第一方向中旋轉(360/x)度至鄰接基板支撐表面,r為大於或等於1的一整數;以及將基板支撐組件旋轉(rx-1)次,使得每個基板支撐表面在第二方向中旋轉(360/x)度至鄰接基板支撐表面。One or more specific embodiments of the disclosure relate to a method of operating a processing chamber. In one or more specific embodiments, a method includes: providing a processing chamber, the processing chamber includes x spatially separated and isolated processing stations, the processing chamber has a processing chamber temperature, and each processing station Independently have the processing station temperature, the processing chamber temperature is different from the processing station temperature; rotate the substrate support assembly (rx-1) times, the substrate support assembly has a plurality of substrate support surfaces, and the plurality of substrate support surfaces are spatially separated from the x The isolated processing stations are aligned so that each substrate support surface is rotated (360/x) degrees in the first direction to abut the substrate support surface, r is an integer greater than or equal to 1, and the substrate support assembly is rotated (rx- 1) times, so that each substrate support surface is rotated (360/x) degrees in the second direction to abut the substrate support surface.
在一或更多個具體實施例中,一種方法包含:提供具有至少兩個不同處理站的處理腔室、包含第一基板支撐表面、第二基板支撐表面、第三基板支撐表面與第四基板支撐表面的基板支撐組件,每個基板支撐表面在與處理站對齊的初始位置中;使第一基板支撐表面上的第一晶圓暴露至第一處理條件;將基板支撐組件在第一方向中旋轉,以將第一晶圓移動至第二基板支撐表面的初始位置;使第一晶圓暴露至第二處理條件;將基板支撐表面在第一方向中旋轉以將第一晶圓移動至第三基板支撐表面的初始位置;使該第一晶圓暴露至第三處理條件;將基板支撐組件在第一方向中旋轉,以將第一晶圓移動至第四基板支撐表面的初始位置;使第一晶圓暴露至第四處理條件;將基板支撐組件在第二方向中旋轉以將第一晶圓移動至第三基板支撐表面的初始位置;使第一晶圓暴露至第三處理條件;將基板支撐組件在第二方向中旋轉以將第一晶圓移動至第二基板支撐表面的初始位置;使第一晶圓暴露至第二處理條件;將基板支撐組件在第二方向中旋轉以將第一晶圓移動至第一基板支撐表面的初始位置;以及使第一晶圓暴露至第一處理條件。In one or more specific embodiments, a method includes: providing a processing chamber having at least two different processing stations, including a first substrate supporting surface, a second substrate supporting surface, a third substrate supporting surface, and a fourth substrate The substrate support assembly of the supporting surface, each substrate support surface is in the initial position aligned with the processing station; the first wafer on the first substrate support surface is exposed to the first processing condition; the substrate support assembly is in the first direction Rotate to move the first wafer to the initial position of the second substrate support surface; expose the first wafer to the second processing condition; rotate the substrate support surface in the first direction to move the first wafer to the second 3. The initial position of the substrate supporting surface; exposing the first wafer to the third processing condition; rotating the substrate supporting assembly in the first direction to move the first wafer to the initial position of the fourth substrate supporting surface; The first wafer is exposed to the fourth processing condition; the substrate support assembly is rotated in the second direction to move the first wafer to the initial position of the third substrate support surface; the first wafer is exposed to the third processing condition; Rotate the substrate support assembly in the second direction to move the first wafer to the initial position of the second substrate support surface; expose the first wafer to the second processing condition; rotate the substrate support assembly in the second direction to Moving the first wafer to the initial position of the first substrate supporting surface; and exposing the first wafer to the first processing condition.
揭示內容的額外具體實施例涉及一種形成薄膜的方法。在一或更多個具體實施例中,一種形成薄膜的方法,包含:將至少一個晶圓裝載到基板支撐組件中的x個基板支撐表面上,基板支撐表面中的每一個與x個空間上分離的隔離的處理站對齊;將基板支撐組件在第一方向中旋轉(rx-1)次,使得每個基板支撐表面旋轉(360/x)度至鄰接基板支撐表面,r為大於或等於1的一整數;將基板支撐組件在第二方向中旋轉(rx-1)次,使得每個基板支撐表面旋轉(360/x)度至鄰接基板支撐表面;以及在每個處理站,使至少一個晶圓的頂表面暴露至處理條件,以形成具有實質上均勻厚度的薄膜。An additional embodiment of the disclosure relates to a method of forming a thin film. In one or more specific embodiments, a method of forming a thin film includes: loading at least one wafer on x substrate support surfaces in a substrate support assembly, each of the substrate support surfaces and x spaces The separated and isolated processing stations are aligned; the substrate support assembly is rotated (rx-1) times in the first direction, so that each substrate support surface rotates (360/x) degrees to the adjacent substrate support surface, r is greater than or equal to 1 Rotate the substrate support assembly in the second direction (rx-1) times so that each substrate support surface rotates (360/x) degrees to abut the substrate support surface; and in each processing station, make at least one The top surface of the wafer is exposed to processing conditions to form a thin film having a substantially uniform thickness.
揭示內容的一個或多個具體實施例涉及一種操作處理腔室的方法。在一或更多個具體實施例中,一種方法,包含:提供處理腔室,處理腔室包含x個空間上分離的隔離的處理站,處理腔室具有處理腔室溫度,且每一處理站獨立地具有處理站溫度,處理腔室溫度不同於處理站溫度;旋轉基板支撐組件rx次,基板支撐組件具有複數個基板支撐表面,複數個基板支撐表面與x個空間上分離的隔離的處理站對齊,使得每個基板支撐表面在第一方向中旋轉(360/x)度至鄰接基板支撐表面,r為大於或等於1的一整數;以及將基板支撐組件旋轉rx次,使得每個基板支撐表面在第二方向中旋轉(360/x)度至鄰接基板支撐表面。One or more specific embodiments of the disclosure relate to a method of operating a processing chamber. In one or more specific embodiments, a method includes: providing a processing chamber, the processing chamber includes x spatially separated and isolated processing stations, the processing chamber has a processing chamber temperature, and each processing station Independently have the processing station temperature, the processing chamber temperature is different from the processing station temperature; rotate the substrate support assembly rx times, the substrate support assembly has a plurality of substrate support surfaces, the plurality of substrate support surfaces are separated from x spatially isolated processing stations Align so that each substrate support surface rotates (360/x) degrees in the first direction to the adjacent substrate support surface, where r is an integer greater than or equal to 1, and rotate the substrate support assembly rx times so that each substrate supports The surface is rotated (360/x) degrees in the second direction to abut the substrate support surface.
揭示內容的額外具體實施例涉及一種操作處理腔室的方法。在一個或多個具體實施例,一種方法,包含:提供處理腔室,包含x個空間上分離的隔離的處理站,處理腔室具有處理腔室溫度,且每一處理站獨立地具有處理站溫度,處理腔室溫度不同於處理站溫度;將基板支撐組件在第一方向中對鄰接基板支撐表面旋轉(360/x)度,基板支撐組件具有複數個基板支撐表面,複數個基板支撐表面與x個空間上分離的隔離的處理站對齊;將基板支撐組件在第二方向中對鄰接基板支撐表面旋轉(360/x)度,其中第一方向中的旋轉與第二方向中的旋轉被重複n次,而n為大於或等於1的一整數;將基板支撐組件在一第一方向中旋轉(360/x)度兩次;將基板支撐組件在第一方向中旋轉(360/x)度且隨後將基板支撐組件在第二方向中旋轉(360/x)度,第一方向與第二方向中的旋轉被重複m次,而m為大於或等於1的一整數;以及將基板支撐組件在第二方向中旋轉(360/x)度。An additional embodiment of the disclosure relates to a method of operating a processing chamber. In one or more embodiments, a method includes: providing a processing chamber including x spatially separated and isolated processing stations, the processing chamber has a processing chamber temperature, and each processing station independently has a processing station The temperature of the processing chamber is different from the temperature of the processing station; the substrate support assembly is rotated (360/x) degrees to the adjacent substrate support surface in the first direction. The substrate support assembly has a plurality of substrate support surfaces, and the plurality of substrate support surfaces are x spatially separated and isolated processing stations are aligned; the substrate support assembly is rotated (360/x) degrees to the adjacent substrate support surface in the second direction, where the rotation in the first direction and the rotation in the second direction are repeated n times, and n is an integer greater than or equal to 1; rotate the substrate support assembly in a first direction (360/x) twice; rotate the substrate support assembly in the first direction (360/x) degree And then the substrate support assembly is rotated (360/x) degrees in the second direction, the rotation in the first direction and the second direction is repeated m times, and m is an integer greater than or equal to 1; and the substrate support assembly Rotate (360/x) degrees in the second direction.
在描述本揭示內容的幾個示例性具體實施例之前,應當理解,本揭示內容不限於在以下說明中闡述的構造或處理步驟的細節。本揭示內容能夠具有其他具體實施例,並且能夠以各種方式被實踐或執行。Before describing several exemplary specific embodiments of the present disclosure, it should be understood that the present disclosure is not limited to the details of the configuration or processing steps set forth in the following description. The present disclosure can have other specific embodiments, and can be practiced or executed in various ways.
本文所述「基板」是指在製造過程中在其上執行薄膜處理的基板上形成的任何基板或材料表面。本文所述「基板」是指在製造過程中在其上執行薄膜處理的基板上形成的任何基板或材料表面。基板包括但不限於半導體晶圓。可以將基板暴露於預處理處理以拋光、蝕刻、還原、氧化、羥基化、退火和/或烘烤基板表面。除了直接在基板本身的表面上進行薄膜處理外,在本揭示內容中,所揭示的任何薄膜處理步驟還可以在形成於基板上的底層上進行,如下面更詳細地說明,且用詞「基板表面」旨在包括背景內容所指示的底層。因此,例如,在膜/層或部分膜/層已經沉積在基板表面上的情況下,新沉積的膜/層的暴露表面成為基板表面。As used herein, "substrate" refers to any substrate or material surface formed on a substrate on which thin film processing is performed during the manufacturing process. As used herein, "substrate" refers to any substrate or material surface formed on a substrate on which thin film processing is performed during the manufacturing process. The substrate includes but is not limited to a semiconductor wafer. The substrate may be exposed to a pretreatment process to polish, etch, reduce, oxidize, hydroxylate, anneal, and/or bake the surface of the substrate. In addition to directly performing thin film processing on the surface of the substrate itself, in the present disclosure, any thin film processing steps disclosed can also be performed on the bottom layer formed on the substrate, as described in more detail below, and the word "substrate "Surface" is intended to include the bottom layer indicated by the background content. Therefore, for example, in the case where the film/layer or part of the film/layer has been deposited on the substrate surface, the exposed surface of the newly deposited film/layer becomes the substrate surface.
如本說明書和所附申請專利範圍中所使用的,用詞「前驅物」、「反應物」、「反應氣體」等可互換使用,是指可以與基板表面或與形成於其上的薄膜反應的任何氣態物質。As used in this specification and the scope of the appended application, the terms "precursor", "reactant", "reactive gas", etc. are used interchangeably and refer to react with the surface of the substrate or with the thin film formed on it Of any gaseous substance.
本揭示內容的一個或多個具體實施例,使用兩個或多個處理環境之間的空間分隔。一些具體實施例有利地提供了使不相容氣體維持分離的設備和方法。一些具體實施例有利地提供了包括可優化電漿處理的設備和方法。一些具體實施例有利地提供允許差異化的熱劑量環境、差異化的電漿處理環境和其他環境的設備和方法。One or more specific embodiments of the present disclosure use spatial separation between two or more processing environments. Some specific embodiments advantageously provide devices and methods for maintaining separation of incompatible gases. Some specific embodiments advantageously provide devices and methods including optimizable plasma processing. Some specific embodiments advantageously provide devices and methods that allow a differentiated thermal dose environment, a differentiated plasma processing environment, and other environments.
本揭示內容的一個或多個具體實施例,針對具有四個在空間上分開的處理環境的處理腔室,也稱為處理站。一些具體實施例具有多於四個,並且一些具體實施例具有少於四個。可以將處理環境共面安裝到在水平面內移動的晶圓上。處理環境以圓形佈置。其上安裝有一到四個(或更多個)獨立晶圓加熱器的可旋轉結構,使晶圓沿圓形路徑移動,圓形路徑的直徑類似於處理環境。每個加熱器可以被控制溫度並且可以具有一個或多個同心區域。為了裝載晶圓,可以降低可旋轉結構,以便真空機器人可以拾取完成的晶圓並將未加工的晶圓放置在位於每個晶圓加熱器上方(在較低的Z位置)的升舉銷上。在操作中,每個晶圓可以處於獨立的環境中,直到過程完成為止,然後可旋轉結構可以旋轉(對於四個站為旋轉90°,對於三個站為旋轉120°)以將加熱器上的晶圓移至下一個環境以進行處理。One or more specific embodiments of the present disclosure are directed to a processing chamber having four spatially separated processing environments, also referred to as processing stations. Some specific embodiments have more than four, and some specific embodiments have less than four. The processing environment can be mounted coplanar to a wafer moving in a horizontal plane. The processing environment is arranged in a circle. A rotatable structure with one to four (or more) independent wafer heaters mounted on it allows the wafers to move along a circular path whose diameter is similar to the processing environment. Each heater can be temperature controlled and can have one or more concentric areas. In order to load the wafers, the rotatable structure can be lowered so that the vacuum robot can pick up the finished wafers and place the unprocessed wafers on the lift pins located above each wafer heater (in the lower Z position) . In operation, each wafer can be in an independent environment until the process is complete, and then the rotatable structure can be rotated (90° for four stations, 120° for three stations) to put the heater on The wafers are moved to the next environment for processing.
本揭示內容的一些具體實施例有利地提供了具有不相容氣體的ALD的空間分離。一些具體實施例允許比傳統的時域或空間處理腔室更高的處理量和工具資源利用。每個處理環境可以在不同的壓力下運行。加熱器旋轉方向為Z方向,因此每個加熱器都可以密封在一個腔室內。Some specific embodiments of the present disclosure advantageously provide spatial separation of ALD with incompatible gases. Some specific embodiments allow for higher throughput and tool resource utilization than traditional time-domain or spatial processing chambers. Each processing environment can operate under different pressures. The heater rotation direction is the Z direction, so each heater can be sealed in a chamber.
一些具體實施例有利地提供了電漿環境,環境可以包括微波、ICP、平行板CCP或三電極CCP中的一個或多個。整個晶圓可以浸入電漿中;消除了由於晶圓上不均勻電漿而產生的電漿損傷。Some specific embodiments advantageously provide a plasma environment, which may include one or more of microwave, ICP, parallel plate CCP, or three electrode CCP. The entire wafer can be immersed in the plasma; the plasma damage caused by the uneven plasma on the wafer is eliminated.
在一些具體實施例中,噴淋頭和晶圓之間的小間隙,可用於增加劑量氣體利用率和循環時間速度。精確的噴頭溫度控制和高工作範圍(最高230°C)。不受理論的束縛,據信噴淋頭溫度越接近晶圓溫度,晶圓溫度均勻性就越好。In some specific embodiments, the small gap between the shower head and the wafer can be used to increase the dosage gas utilization and cycle time speed. Precise nozzle temperature control and high working range (up to 230°C). Without being bound by theory, it is believed that the closer the shower head temperature is to the wafer temperature, the better the wafer temperature uniformity.
噴淋頭可包括小的氣孔(>200 µm)、大量的氣孔(成千上萬到超過一千萬個),以及使用較小的分配量來遞歸地給噴淋頭分配氣體以提高速度。可藉由雷射鑽孔或乾法蝕刻產生小尺寸和大量的氣孔。當晶圓靠近噴淋頭時,氣體會通過垂直孔流向晶圓而產生湍流。一些具體實施例允許使用大量緊密間隔開的孔,使氣體以較低速度通過噴淋頭,以實現均勻分佈到晶圓表面。Sprinklers can include small air holes (>200 µm), a large number of air holes (thousands to more than ten million), and use a small distribution amount to recursively distribute gas to the sprinkler to increase speed. Small size and large number of pores can be generated by laser drilling or dry etching. When the wafer is close to the shower head, the gas will flow to the wafer through the vertical hole, causing turbulence. Some specific embodiments allow the use of a large number of closely spaced holes to allow the gas to pass through the shower head at a lower velocity to achieve uniform distribution to the wafer surface.
一些具體實施例涉及在單個工具上使用複數個空間上分離的處理站(腔室)的整合處理平台。處理平台可以具有可執行不同處理的各種腔室。Some specific embodiments relate to an integrated processing platform using a plurality of spatially separated processing stations (chambers) on a single tool. The processing platform may have various chambers that can perform different processing.
本揭示內容的一些具體實施例,涉及用於將附接到晶圓加熱器的晶圓從一個環境移動到另一環境的設備和方法。可以藉由將晶圓靜電吸附(或夾持)到加熱器,來實現快速移動。晶圓的運動可以是線性或圓周運動。Some specific embodiments of the present disclosure relate to equipment and methods for moving a wafer attached to a wafer heater from one environment to another environment. Fast movement can be achieved by electrostatically attracting (or clamping) the wafer to the heater. The movement of the wafer can be linear or circular.
本揭示內容的一些具體實施例涉及處理一個或多個基板的方法。示例包括但不限於:將一個晶圓在一個加熱器上運行到空間上分離的複數個不同的連續環境;將兩個晶圓在兩個晶圓加熱器上運行到三個環境(兩個環境相同,一個不同的環境在兩個相似環境之間);晶圓一看到環境A然後看到B,然後重複,而晶圓二看到環境B然後看到A,然後重複;一個環境保持空閒狀態(沒有晶圓);在兩個第一環境和兩個第二環境中運行兩個晶圓,其中兩個晶圓同時看到相同的環境(即,兩個晶圓都在A中,隨後都轉到B);具有兩個A和兩個B環境的四個晶圓;以及兩個晶圓在A中處理,而另外兩個晶圓在B中處理。在一些具體實施例中,晶圓重複地暴露於環境A和環境B,然後暴露於位於同一腔室中的第三環境。Some specific embodiments of the present disclosure relate to methods of processing one or more substrates. Examples include, but are not limited to: running a wafer on a heater into a plurality of different continuous environments that are spatially separated; running two wafers on two wafer heaters into three environments (two environments Same, a different environment is between two similar environments); wafer one sees environment A, then sees B, then repeats, while wafer two sees environment B, then sees A, then repeats; one environment remains idle Status (no wafers); run two wafers in two first environments and two second environments, where both wafers see the same environment at the same time (ie, both wafers are in A, and then All go to B); four wafers with two A and two B environments; and two wafers are processed in A and the other two wafers are processed in B. In some embodiments, the wafer is repeatedly exposed to environment A and environment B, and then exposed to a third environment in the same chamber.
在一些具體實施例中,晶圓經過複數個腔室以進行處理,其中至少一個腔室在同一腔室內利用複數個空間上分離的環境進行循序處理。In some embodiments, the wafer passes through a plurality of chambers for processing, and at least one of the chambers uses a plurality of spatially separated environments for sequential processing in the same chamber.
一些具體實施例針對在同一腔室內具有空間分離的處理環境的設備,其中環境處於顯著不同的壓力下(例如,一個壓力>100mT,另一個壓力>3T)。在一些具體實施例中,加熱器旋轉機器人在z軸上移動,以將每個晶圓/加熱器密封到空間上分離的環境中。Some specific embodiments are directed to equipment with spatially separated processing environments in the same chamber, where the environments are at significantly different pressures (for example, one pressure>100mT, the other pressure>3T). In some specific embodiments, the heater rotating robot moves on the z-axis to seal each wafer/heater into a spatially separated environment.
一些具體實施例包括利用垂直結構構件在腔室上方構建的結構,垂直結構構件向腔室蓋的中心施加向上的力,以消除由頂側上的大氣壓力和另一側上的真空引起的偏轉。可以根據頂板的偏轉,機械調節上方結構的力的大小。可以使用反饋電路和力傳感器自動完成力的調節,也可以使用例如可以由操作員轉動的螺絲手動完成。Some specific embodiments include structures built above the chamber using vertical structural members that apply upward force to the center of the chamber cover to eliminate deflection caused by atmospheric pressure on the top side and vacuum on the other side . The force of the upper structure can be adjusted mechanically according to the deflection of the top plate. The adjustment of the force can be done automatically using a feedback circuit and a force sensor, or manually, for example, using a screw that can be turned by an operator.
本揭示內容的一個或多個具體實施例,針對具有至少兩個在空間上分開的處理環境的處理腔室,也稱為處理站。一些具體實施例具有兩個以上並且一些具體實施例具有四個以上的處理站。可以將處理環境共面安裝到在水平面內移動的晶圓上。處理環境以圓形佈置。其上安裝有一到四個(或更多個)獨立晶圓加熱器的可旋轉結構,使晶圓沿圓形路徑移動,圓形路徑的直徑類似於處理環境。每個加熱器可以被控制溫度並且可以具有一個或多個同心區域。為了裝載晶圓,可以降低可旋轉結構,以便真空機器人可以拾取完成的晶圓並將未加工的晶圓放置在位於每個晶圓加熱器上方(在較低的Z位置)的升舉銷上。在操作中,每個晶圓可以處於獨立的環境中,直到過程完成為止,然後可旋轉結構可以旋轉(對於四個站為旋轉90°,對於三個站為旋轉120°)以將加熱器上的晶圓移至下一個環境以進行處理。在一個或多個具體實施例中,當晶圓在模擬單個晶圓腔室的處理站中靜止時,發生初級沉積步驟。One or more specific embodiments of the present disclosure are directed to a processing chamber having at least two spatially separated processing environments, also referred to as processing stations. Some specific embodiments have more than two and some specific embodiments have more than four processing stations. The processing environment can be mounted coplanar to a wafer moving in a horizontal plane. The processing environment is arranged in a circle. A rotatable structure with one to four (or more) independent wafer heaters mounted on it allows the wafers to move along a circular path whose diameter is similar to the processing environment. Each heater can be temperature controlled and can have one or more concentric areas. In order to load the wafers, the rotatable structure can be lowered so that the vacuum robot can pick up the finished wafers and place the unprocessed wafers on the lift pins located above each wafer heater (in the lower Z position) . In operation, each wafer can be in an independent environment until the process is complete, and then the rotatable structure can be rotated (90° for four stations, 120° for three stations) to put the heater on The wafers are moved to the next environment for processing. In one or more specific embodiments, the primary deposition step occurs when the wafer is stationary in a processing station that simulates a single wafer chamber.
在空間性ALD沉積工具(或其他空間處理腔室)中,晶圓被移入第一處理站,然後被移至第二處理站。在一些情況下,第一處理站和第二處理站是相同的(即一樣的),導致薄膜厚度缺乏均勻性,並且導致薄膜的沉積特性(例如折射率、濕蝕刻速率、平面位移等)缺乏均勻性。另外,由於晶圓的不同部分在一個站處暴露於不同的處理環境,因此從一個處理站移動到下一個處理站的順序導致晶圓上的前緣和後緣差異。In a spatial ALD deposition tool (or other spatial processing chamber), the wafer is moved to the first processing station and then to the second processing station. In some cases, the first processing station and the second processing station are the same (ie, the same), resulting in a lack of uniformity in film thickness and a lack of film deposition characteristics (such as refractive index, wet etching rate, plane displacement, etc.) Uniformity. In addition, since different parts of the wafer are exposed to different processing environments at one station, the sequence of moving from one processing station to the next results in differences in the leading and trailing edges on the wafer.
在兩個不同的處理站之間簡單地來回移動,是最清晰的空間性沉積工具操作方法。但是,在兩個以上的處理站之間移動會帶來挑戰,諸如用於電、水和氣體的旋轉連結,以及將每個晶圓/基板支撐表面與每個處理站對齊(要使他們從任何位置對齊的公差,比只需將每個底座對準兩個處理站要來得嚴格)。Simply moving back and forth between two different processing stations is the clearest way to operate a spatial deposition tool. However, moving between more than two processing stations can present challenges, such as rotating connections for electricity, water, and gas, and aligning each wafer/substrate support surface with each processing station (to keep them from The tolerance of any position alignment is stricter than just aligning each base to two processing stations).
另外已觀察到,在習知操作期間,當將晶圓裝載到基板支座上並從第一處理站移動到第二處理站然後再返回到第一處理站時,基板支座上的晶圓的所有部分並非全部將同時處於同一環境中,從而導致前緣和後緣差異。In addition, it has been observed that during the conventional operation, when the wafer is loaded on the substrate support and moved from the first processing station to the second processing station and then back to the first processing station, the wafer on the substrate support Not all of the parts will be in the same environment at the same time, resulting in a difference between the leading edge and the trailing edge.
在一個或多個具體實施例中,將晶圓裝載到基板支座上,並在第一方向上將晶圓從第一處理站移至第二處理站再移至第一處理站,然後在第二方向中移回第二處理站再到第二處理站,以使兩種類型的處理站之間花費的時間平均。在這樣的移動過程中,觀察到兩個晶圓的平均值與其他兩個晶圓的平均值不同(例如,如果有高溫/低溫,則兩個晶圓將為邊緣高而中心低的位置,而另外兩個晶圓將為邊緣低而中心高)。在一個或多個具體實施例中,令人驚訝地發現,僅在(至少)四個處理站之間求平均值才能在所有晶圓上以相似的輪廓實現合理的平均值。因此,在一個或多個具體實施例中,有利地優化了處理站之間的移動順序,以將在處理站之間移動期間同一時間在晶圓並非所有部分都位於相同環境(例如溫度、壓力、反應氣體等)中的影響最小化。In one or more specific embodiments, the wafer is loaded on the substrate support, and the wafer is moved in the first direction from the first processing station to the second processing station and then to the first processing station, and then Move back to the second processing station and then to the second processing station in the second direction to average the time spent between the two types of processing stations. During such a movement, it is observed that the average value of the two wafers is different from the average value of the other two wafers (for example, if there is a high temperature/low temperature, the two wafers will have high edges and low centers. The other two wafers will have low edges and high centers). In one or more specific embodiments, it was surprisingly found that only averaging between (at least) four processing stations can achieve a reasonable average with similar profiles on all wafers. Therefore, in one or more specific embodiments, the sequence of movement between processing stations is advantageously optimized so that not all parts of the wafer are located in the same environment (such as temperature, pressure, etc.) at the same time during the movement between processing stations. , Reactive gas, etc.).
圖1和圖2示出了根據本揭示內容的一個或多個具體實施例的處理腔室100。圖1示出了根據本揭示內容的一個或多個具體實施例的處理腔室100的橫截面等距視圖。圖2示出了根據本揭示內容的一個或多個具體實施例的處理腔室100的截面圖。因此,本揭示內容的一些具體實施例針對結合有支撐組件200和頂板300的處理腔室100。Figures 1 and 2 show a
處理腔室100具有帶有壁104和底部106的殼體102。殼體102與頂板300一起界定內部空間109,也稱為處理空間。The
處理腔室100包括複數個處理站110。處理站110位於殼體102的內部空間109中,並且圍繞支撐組件200的旋轉軸211以圓形佈置定位。每個處理站110包括具有正面114的氣體噴射器112。在一些具體實施例中,每個氣體噴射器112的正面114實質上共面。處理站110被定義為其中可以進行處理的區域。例如,如下所述,處理站110可以由加熱器230的基板支撐表面231和氣體噴射器112的正面114限定。The
處理站110可以被配置為執行任何合適的處理,並提供任何合適的處理條件。所使用的氣體噴射器112的類型,例如將取決於所執行的處理的類型以及噴淋頭或氣體噴射器的類型。例如,被配置為用作原子層沉積設備的處理站110可以具有噴淋頭或渦旋型氣體噴射器。然而,配置為用作電漿站的處理站110可以具有一個或多個電極和/或接地板的配置,以產生電漿,同時允許電漿氣體流向晶圓。在圖2中示出的具體實施例,在圖的左側具有處理站110a,在圖的右側具有處理站110b,處理站110a與處理站110b的類型不同。合適的處理站110包括但不限於熱處理站、微波電漿、三電極CCP、ICP、平行板CCP、UV曝光、激光處理、泵送室、退火站和計量站。The
圖3至圖6示出了根據本揭示內容的一個或多個具體實施例的支撐組件200。支撐組件200包括可旋轉的中心基座210。可旋轉中心基座210可具有對稱或不對稱的形狀,並界定旋轉軸211。如在圖6中可以看到的那樣,旋轉軸211沿第一方向延伸。第一方向可以稱為垂直方向或沿著z軸;然而應當理解,這裡使用的術語「垂直」並不限於垂直於重力的方向。Figures 3 to 6 show a
支撐組件200包括連接到中心基座210並從中心基座210延伸的至少兩個支撐臂220。支撐臂220具有內端221和外端222。內端221與中心基座210接觸,從而當中心基座210繞旋轉軸211旋轉時,支撐臂220也旋轉。支撐臂220可藉由緊固件(例如螺栓)或藉由與中心基座210一體成形,而在內端221處連接至中心基座210。The
在一些具體實施例中,支撐臂220正交於旋轉軸211延伸,使得內端221或外端222中的一個比同一支撐臂220上的內端221和外端222中的另一個要來得遠離旋轉軸211。在一些具體實施例中,支撐臂220的內端221比相同支撐臂220的外端222更靠近旋轉軸211。In some embodiments, the
支撐組件200中的支撐臂220的數量可以變化。在一些具體實施例中,存在至少兩個支撐臂220、至少三個支撐臂220、至少四個支撐臂220或至少五個支撐臂220。在一些具體實施例中,存在三個支撐臂220。在一些具體實施例中,有四個支撐臂220。在一些具體實施例中,有五個支撐臂220。在一些具體實施例中,有六個支撐臂220。The number of
支撐臂220可以圍繞中心基座210對稱地佈置。例如,在具有四個支撐臂220的支撐組件200中,每個支撐臂220圍繞中心基座210以90°的間隔定位。在具有三個支撐臂220的支撐組件200中,支撐臂220圍繞中心基座210以120°的間隔定位。換句話說,在具有四個支撐臂220的具體實施例中,支撐臂佈置成提供圍繞旋轉軸211的四折(four-fold)對稱。在一些具體實施例中,支撐組件200具有n個支撐臂220,並且n個支撐臂220被佈置為提供圍繞旋轉軸211的n折對稱。The
加熱器230位於支撐臂220的外端222。在一些具體實施例中,每個支撐臂220具有加熱器230。加熱器230的中心位於距旋轉軸線211一定距離處,使得加熱器230在中心基座210旋轉時沿圓形路徑運動。The
加熱器230具有可以支撐晶圓的支撐表面231。在一些具體實施例中,加熱器230支撐表面231為實質上共面。以這種方式使用時,「實質上共面」是指由各個支撐表面231形成的平面在由另一支撐表面231形成的平面的±5°、±4°、±3°、±2°或±1°之內。The
在一些具體實施例中,加熱器230直接定位在支撐臂220的外端222上。在一些具體實施例中,如圖所示,加熱器230藉由加熱器支架234升高到支撐臂220的外端222上方。加熱器支架234可以具有任何尺寸和長度,以增加加熱器230的高度。In some embodiments, the
在一些具體實施例中,在中央基座210、支撐臂220和/或加熱器支架234中的一個或多個中形成通道236。通道236可用於路由電連結或提供氣流。In some embodiments, a
加熱器可以是技術人員已知的任何合適類型的加熱器。在一些具體實施例中,加熱器是電阻加熱器,在加熱器主體內具有一個或多個加熱元件。The heater may be any suitable type of heater known to the skilled person. In some specific embodiments, the heater is a resistance heater, with one or more heating elements in the heater body.
一些具體實施例的加熱器230包括附加部件。例如,加熱器可以包括靜電吸盤。靜電吸盤可以包括各種導線和電極,從而當加熱器移動時,位於加熱器支撐表面231上的晶圓可以被保持在適當的位置。這允許晶圓在處理開始時被吸附在加熱器上,並在移動到不同的處理區域時保持在同一加熱器上的相同位置。在一些具體實施例中,導線和電極穿過支撐臂220中的通道236。圖7示出了支撐組件200的一部分的放大圖,其中示出了通道236。通道236沿著支撐臂220和加熱器支架234延伸。第一電極251a和第二電極251b與加熱器230或與加熱器230內部的部件(例如,電阻絲)電連通。第一導線253a連接到第一連接器252a處的第一電極251a。第二導線253b連接到第二連接器252b處的第二電極251b。The
在一些具體實施例中,溫度測量裝置(例如高溫計、熱敏電阻、熱電偶)位於通道236內,以測量加熱器230的溫度或加熱器230上的基板的溫度中的一個或多個。在一些具體實施例中,用於溫度測量裝置的控制線和/或測量線被佈線通過通道236。在一些具體實施例中,一個或多個溫度測量裝置被定位在處理腔室100內,以測量加熱器230和/或加熱器230上的晶圓的溫度。合適的溫度測量設備是技術人員已知的,並且包括但不限於光學高溫計和接觸熱電偶。In some embodiments, a temperature measuring device (for example, a pyrometer, a thermistor, or a thermocouple) is located in the
導線可以穿過支撐臂220和支撐組件200以與電源(未示出)連接。在一些具體實施例中,到電源的連結允許支撐組件200連續旋轉而不會纏結或折斷導線253a、253b。在一些具體實施例中,如圖7所示,第一導線253a和第二導線253b沿著支撐臂220的通道236延伸到中心基座210。在中心基座210中,第一導線253a與中心第一連接器254a連接,第二導線253b與中心第二連接器254b連接。中心連接器254a、254b可以是連接板258的一部分,使得電力或電子信號可以穿過中心連接器254a、254b。在所示的具體實施例中,支撐組件200可以連續旋轉而不會扭曲或折斷導線,因為導線終止於中心基座210中。第二連結在連接板258的相對側(處理腔室的外部)。The wire may pass through the
在一些具體實施例中,導線通過通道236直接連接到處理腔室外部的電源或電子部件。在這種具體實施例中,導線具有足夠的鬆弛度,以允許支撐組件200旋轉有限的量而不會扭曲或折斷導線。在一些具體實施例中,在旋轉方向反轉之前,支撐組件200旋轉小於或等於大約1080°、990°、720°、630°、360°或270°。這允許加熱器旋轉通過每個站而不會斷開導線。In some specific embodiments, the wires are directly connected to the power supply or electronic components outside the processing chamber through the
再次參照圖3至圖6所示,加熱器230和支撐表面231可包括一個或多個氣體出口,以提供背面氣體的流動。這可以幫助從支撐表面231移除晶圓。如圖4和5所示,支撐表面231包括複數個開口237和氣體通道238。開口237和/或氣體通道238可以與真空源或氣體源(例如淨化氣體)中的一個或多個流體連通。在此類具體實施例中,可包括中空管以允許氣體源與開口237和/或氣體通道238流體連通。Referring again to FIGS. 3 to 6, the
在一些具體實施例中,加熱器230和/或支撐表面231被配置為靜電吸盤。在這種具體實施例中,電極251a、251b(見圖7)可包括用於靜電吸盤的控制線。In some specific embodiments, the
支撐組件200的一些具體實施例包括密封平台240。密封平台具有頂表面241、底表面和厚度。密封平台240可以定位在加熱器230周圍,以幫助提供密封或屏障,以最小化流到支撐組件200下方的區域的氣體。Some specific embodiments of the
在一些具體實施例中,如圖4所示,密封平台240是環形的並且圍繞每個加熱器230定位。在所示的具體實施例中,密封平台240位於加熱器230下方,使得密封平台240的頂表面241在加熱器的支撐表面231下方。In some embodiments, as shown in FIG. 4, the
密封平台240可以具有多種目的。例如,密封平台240可用於通過增加熱質量,來增加加熱器230的溫度均勻性。在一些具體實施例中,密封平台240與加熱器230一體地形成(例如參見圖6)。在一些具體實施例中,密封平台240與加熱器230分離。例如,圖8中所示的具體實施例具有作為連接到加熱器支架234的單獨部件的密封平台240,使得密封平台240的頂表面241低於加熱器230的支撐表面231的高度。The
在一些具體實施例中,密封平台240用作支撐板245的保持器。在一些具體實施例中,如圖5所示,支撐板245是單個部件,其具有複數個開口242圍繞所有加熱器230,以允許存取加熱器230的支撐表面231。開口242可以允許加熱器230穿過支撐板245。在一些具體實施例中,支撐板245被固定,使得支撐板245垂直移動並隨加熱器230一起旋轉。In some specific embodiments, the
在一個或多個具體實施例中,支撐組件200是鼓形的部件;例如參照圖20,圓柱體具有配置成支撐複數個晶圓的頂表面246。支撐組件200a的頂表面246具有複數個凹槽(凹穴257),凹槽尺寸被設置為在處理期間支撐一個或多個晶圓。在一些具體實施例中,凹穴257的深度大約等於要處理的晶圓的厚度,使得晶圓的頂面與圓柱體的頂面246實質上共面。這種支撐組件200的示例可被設想為圖5的變型,而沒有支撐臂220。圖20示出了使用圓柱體的支撐組件200的具體實施例的剖視圖。支撐組件200包括尺寸設計成支撐晶圓以進行處理的複數個凹穴257。在所示的具體實施例中,凹穴257的底部是加熱器230的支撐表面231。加熱器230的電源連結可以通過支柱227和支撐板245進行佈線。加熱器230可以被獨立地供電以控制各個凹穴257和晶圓的溫度。In one or more specific embodiments, the
參照圖9,在一些具體實施例中,支撐板245具有形成主平面248的頂表面246,主平面248實質平行於由加熱器230的支撐表面231形成的主平面247。在一些具體實施例中,支撐板245具有形成主平面248的頂表面246,該主平面248在支撐表面231的主平面247上方距離D。在一些具體實施例中,距離D實質上等於待處理的晶圓260的厚度,使得晶圓260的表面261與支撐板245的頂表面246共面,如圖6所示。以此方式使用的術語「實質上共面」,是指由晶圓260的表面261形成的主平面的共面性在±1mm、±0.5mm、±0.4mm、±0.3mm、±0.2mm或±0.1mm之內。9, in some specific embodiments, the
參照圖9,本揭示內容的一些具體實施例具有構成用於處理的支撐表面的個別部件。在此,密封平台240是與加熱器230分開的部件,並且被定位成使得密封平台240的頂表面241在加熱器230的支撐表面231下方。密封平台240的頂表面241和加熱器230的支撐表面231之間的距離足以允許支撐板245定位在密封平台240上。可以控制支撐板245的厚度和/或密封平台240的位置,使得支撐板245的頂表面246之間的距離D足夠大,以使得晶圓260的頂表面261(見圖6)與支撐板245的頂表面246實質上共面。Referring to Figure 9, some specific embodiments of the present disclosure have individual components that constitute a support surface for processing. Here, the
在一些具體實施例中,如圖9所示,支撐板245由支撐柱227支撐。當使用單個部件平台時,支撐柱227可用於防止支撐板245的中心下垂。在一些具體實施例中,不存在密封平台240,並且支撐柱227是用於支撐板245的主要支撐。In some specific embodiments, as shown in FIG. 9, the supporting
支撐板245可具有多種構造以與加熱器230和密封平台240的多種構造相互作用。圖10A圖示根據本揭示內容的一個或多個具體實施例的支撐板245的俯視圖。圖10B是圖10A的沿線10B-10B'截取的支撐板245的截面圖。在此具體實施例中,支撐板245是平面部件,其中頂表面246和底表面249是實質上平坦的和/或實質上共面的。如圖9所示,在密封平台240用於支撐支撐板245的情況下,所示具體實施例可能特別有用。The
圖11A示出了根據本揭示內容的一個或多個具體實施例的支撐板245的另一具體實施例的底部等距視圖。圖11B是圖11A的沿線11B-11B'截取的支撐板245的截面圖。在此具體實施例中,每個開口242在支撐板245的底表面249上具有圍繞開口242的外周的突出環270。FIG. 11A shows a bottom isometric view of another specific embodiment of the
圖12A示出了根據本揭示內容的一個或多個具體實施例的支撐板245的另一具體實施例的底部等距視圖。圖12B是圖12A的沿線12B-12B'截取的支撐板245的截面圖。在此具體實施例中,每個開口242在支撐板245的底表面249中具有圍繞開口242的外周的凹環272。凹環272形成凹底表面273。在密封平台240不存在或密封平台240與加熱器230的支撐表面231共面的情況下,這種具體實施例可能是有用的。凹底表面273可以定位在加熱器230的支撐表面231上,使得支撐板245的底部圍繞加熱器230的側面在加熱器230的支撐表面231下方延伸。Figure 12A shows a bottom isometric view of another specific embodiment of the
本揭示內容的一些具體實施例涉及用於多站處理室的頂板300。參照圖1和圖13,頂板300具有限定蓋的厚度的頂表面301和底表面302,以及一個或多個邊緣303。頂板300包括至少一個延伸穿過其厚度的開口310。開口310的尺寸被設置為允許添加可以形成處理站110的氣體噴射器112。Some specific embodiments of the present disclosure relate to a
圖14是根據本揭示內容的一個或多個具體實施例的處理站110的分解圖。所示的處理站110包括三個主要部件:頂板300(也稱為蓋子)、幫浦/淨化插件330和氣體噴射器112。圖14所示的氣體噴射器112是噴淋頭式氣體噴射器。在一些具體實施例中,插件連接至真空(排氣)或與真空(排氣)流體連通。在一些具體實施例中,插件連接至淨化氣體源或與淨化氣體源流體連通。FIG. 14 is an exploded view of the
頂板300中的開口310可以具有統一的尺寸或具有不同的尺寸。不同尺寸/形狀的氣體噴射器112可以與幫浦/淨化插件330一起使用,幫浦/淨化插件330的形狀適合於從開口310過渡到氣體噴射器112。例如,如圖所示,幫浦/淨化插件330包括頂部331和底部333與側壁335。當插入到頂板300中的開口310中時,鄰近底部333的突出部分334可以位於形成在開口310中的隔板315上。在一些具體實施例中,在開口中沒有隔板315,並且幫浦/淨化插件330的凸緣部分337擱置在頂板300的頂部上。在所示的具體實施例中,突出部分334擱置在隔板315上,並且O形環314位於它們之間,以幫助形成氣密密封。The
在一些具體實施例中,頂板300中有一個或多個淨化環309(見圖13)。淨化環309可與淨化氣室(未示出)或淨化氣體源(未示出)流體連通,以提供淨化氣體的正向流,以防止處理氣體從處理腔室洩漏。In some embodiments, there are one or more purification rings 309 in the top plate 300 (see Figure 13). The
一些具體實施例的幫浦/淨化插件330包括氣室336,在幫浦/淨化插件330的底部333中具有至少一個開口338。氣室336具有入口(未示出),通常在幫浦/淨化插件330的頂部331或側壁335附近。The pump/
在一些具體實施例中,氣室336可充有可穿過幫浦/淨化插件330的底部333中的開口338的淨化或惰性氣體。通過開口338的氣體流可以幫助形成氣幕式屏障,以防止處理氣體從處理腔室內部洩漏。In some embodiments, the
在一些具體實施例中,氣室336連接至真空源或與真空源流體連通。在這樣的具體實施例中,氣體流過幫浦/淨化插件330的底部333中的開口338進入氣室336。氣體可以從氣室排空以排出。這樣的佈置可以用於在使用期間從處理站110排出氣體。In some embodiments, the
幫浦/淨化插件330包括開口339,氣體噴射器112可插入開口339中。示出的氣體噴射器112具有凸緣342,凸緣342可以與鄰近幫浦/淨化插件330的頂部331的突出部分332接觸。氣體噴射器112的直徑或寬度可以是可以適合在幫浦/淨化插件330的開口339內的任何合適的尺寸。這允許在頂板300中的相同開口310內使用各種類型的氣體噴射器112。The pump/
參照圖2和圖15,頂板300的一些具體實施例包括在頂板300的中心部分上方經過的桿360。桿360可以使用連接器367在中心附近連接到頂板300。連接器367可用於施加垂直於頂板300的頂部331或底部333的力,以補償由於壓力差或由於頂板300的重量而導致的頂板300中的翹曲。在一些具體實施例中,桿360和連接器367能夠補償頂板的中心處的偏轉,此偏轉上至(或等於)大約1.5 mm,頂板的寬度為大約1.5 m,頂板的厚度上至(或等於)大約100 mm。在一些具體實施例中,馬達365或致動器連接到連接器367,並且可以引起施加到頂板300的方向力的改變。馬達365或致動器可以被支撐在桿360上。所示的桿360在兩個位置處與頂板300的邊緣接觸。然而,技術人員將認識到可以存在一個連接位置或多於兩個連接位置。2 and 15, some specific embodiments of the
在一些具體實施例中,如圖2中所示,支撐組件200包括至少一個馬達250。至少一個馬達250連接到中心基座210,並且被構造成使支撐組件200繞旋轉軸211旋轉。在一些具體實施例中,至少一個馬達被配置成使中心基座210在沿著旋轉軸211的方向中移動。例如,在圖2中,馬達255連接到馬達250,並且可以使支撐組件200沿旋轉軸211移動。換句話說,所示的馬達255可以使支撐組件200沿z軸移動(垂直或正交於馬達250引起的運動)。在一些具體實施例中,如圖所示,有第一馬達250使支撐組件200繞旋轉軸211旋轉,以及第二馬達255使支撐組件200沿旋轉軸211(即沿z軸或垂直地)移動。In some embodiments, as shown in FIG. 2, the
參照圖2和圖16,一種或多種真空流和/或淨化氣流可用於幫助將一個處理站110a與相鄰的處理站110b隔離。淨化氣室370可與在處理站110的外邊界處的淨化氣體端口371流體連通。在圖16所示的具體實施例中,淨化氣室370和淨化氣體端口371位於頂板300中。示出為幫浦/淨化插件330的一部分的氣室336,與用作幫浦/淨化氣體端口的開口338流體連通。淨化氣體端口371和淨化氣室370(如圖13所示)以及真空端口(開口338)可圍繞處理站110的周邊延伸以形成氣幕。氣幕可以幫助最小化或消除處理氣體向處理腔室的內部空間109中的洩漏。2 and 16, one or more vacuum flows and/or purge gas flows may be used to help isolate one
在圖16所示的具體實施例中,差動泵送可用於幫助隔離處理站110。示出了幫浦/淨化插件330與加熱器230和帶有O形環329的支撐板245接觸。O形環329定位在開口338的任一側,與氣室336流體連通。一個O形環329位於開口338的圓周內,另一個O形環329位於開口338的圓周外。O型環329和帶有開口338的幫浦/淨化氣室336的組合可提供足夠的壓差,以保持處理站110對於處理腔室100的內部空間109的氣密密封。在一些具體實施例中,在開口338的圓周的內部或外部定位有一個O形環329。在一些具體實施例中,有兩個O形環329,分別位於與氣室370流體連通的淨化氣體端口371的圓周內部和外部。在一些具體實施例中,有一個O形環329,位於與氣室370流體連通的淨化氣體端口371的圓周的內部或外部。In the specific embodiment shown in FIG. 16, differential pumping can be used to help isolate the
可以將處理站110的邊界視為幫浦/淨化插件330在其中隔離處理氣體的區域。在一些具體實施例中,處理站110的外邊界是開口338的最外邊緣381,開口338與幫浦/淨化插件330的氣室336流體連通,如圖14和16所示。The boundary of the
處理站110的數量可以隨加熱器230和支撐臂220的數量而變化。在一些具體實施例中,存在相等數量的加熱器230、支撐臂220和處理站110。在一些具體實施例中,加熱器230、支撐臂220和處理站110被配置為使得加熱器230的每個支撐表面231可同時位於不同處理站110的前表面214附近。換句話說,每個加熱器同時位於處理站中。The number of
圍繞處理腔室100的處理站110的間距可以改變。在一些具體實施例中,處理站110足夠靠近在一起以最小化站之間的空間,使得基板可以在處理站110之間快速地移動,而傳送到一個站之外花費的時間量和距離為最少。在一些具體實施例中,處理站110被定位得足夠近,以使得在加熱器230的支撐表面231上運輸的晶圓總是在一個處理站110之內。The spacing of the
圖17圖示根據本揭示內容的一個或多個具體實施例的處理平台400。圖17所示的具體實施例僅表示一種可能的配置,並且不應被視為限制本揭示內容的範圍。例如,在一些具體實施例中,處理平台400具有與所示具體實施例不同數量的一個或多個處理腔室100、緩衝站420和/或機器人430配置。Figure 17 illustrates a
示例性處理平台400包括中央轉移站410,中央轉移站410具有複數個側面411、412、413、414。所示的轉移站410具有第一側411、第二側412、第三側413和第四側414。儘管示出了四個側面,但是本領域技術人員將理解,取決於例如處理平台400的整體配置,轉移站410可以有任何合適數量的側面。在一些具體實施例中,轉移站410具有三個側面、四個側面、五個側面、六個側面、七個側面或八個側面。The
轉移站410具有安置在其中的機器人430。機器人430可以是能夠在處理期間移動晶圓的任何合適的機器人。在一些具體實施例中,機器人430具有第一臂431和第二臂432。第一臂431和第二臂432可彼此獨立地移動。第一臂431和第二臂432可以在x-y平面中和/或沿著z軸移動。在一些具體實施例中,機器人430包括第三臂(未示出)或第四臂(未示出)。每個手臂可以獨立於其他手臂移動。The
所示的具體實施例包括六個處理腔室100,兩個處理腔室100分別連接到中央轉移站410的第二側412、第三側413和第四側414。每個處理腔室100可以被配置為執行不同的處理。The specific embodiment shown includes six processing
處理平台400還可包括一個或多個緩衝站420,緩衝站420連接到中央轉移站410的第一側411。緩衝站420可以執行相同或不同的功能。例如,緩衝站可以容納晶圓盒,晶圓被處理並返回到原始盒,或者緩衝站之一可以容納未處理的晶圓,晶圓在處理之後被移動到另一緩衝站。在一些具體實施例中,一個或多個緩衝站被配置為在處理之前和/或之後對晶圓進行預處理、預加熱或清洗。The
處理平台400還可在中央轉移站410與任何處理腔室100之間包括一個或多個狹縫閥418。狹縫閥418可打開和關閉以將處理腔室100內的內部空間與中央轉移站410內的環境隔離。例如,如果處理腔室將在處理過程中產生電漿,則可能需要關閉此處理腔室的狹縫閥,以防止雜散的電漿損壞轉移站中的機器人。The
處理平台400可以連接到工廠介面450,以允許將晶圓或晶圓盒裝載到處理平台400中。工廠介面450內的機器人455可用於將晶圓或盒移入和移出緩衝站。晶圓或盒可以通過中央轉移站410中的機器人430在處理平台400內移動。在一些具體實施例中,工廠介面450是另一群集工具(即另一多腔室處理平台)的轉移站。The
可以提供控制器495並且將其耦合到處理平台400的各個部件,以控制部件操作。控制器495可以是控制整個處理平台400的單個控制器,也可以是控制處理平台400的各個部分的多個控制器。例如,處理平台400可以包括用於各個處理腔室100、中央傳送站410、工廠介面450和機器人430中的每個的單獨控制器。A
在一些具體實施例中,控制器495包括中央處理單元(CPU)496、記憶體497和支援電路498。控制器495可以直接(或經由與特定處理腔室及(或)支援系統部件相關聯的電腦(或控制器))控制處理平台400。In some specific embodiments, the
控制器495可為可用於工業設定中以控制各種腔室與子處理器的一般用途電腦處理器的任何形式之任意者。控制器495的記憶體497或電腦可讀取媒體,可以是容易獲得的記憶體中的一個或多個,例如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、磁碟、硬碟、光學儲存媒體(例如光碟或數位視頻光碟)、快閃碟、或任何其他形式的數位儲存器(本地或遠端的)。記憶體497可以保留可由處理器(CPU 496)操作以控制處理平台400的參數和部件的指令集。The
支援電路498耦合至CPU 496以由習知方式支援處理器。這些電路包含快取、電源供應器、時脈電路、輸入輸出系統、與子系統等等。一個或多個過程可以作為軟體例程存儲在記憶體498中,軟體例程在被處理器執行或調用時使處理器以本文所述的方式控制處理平台400或各個處理腔室的操作。軟體例程亦可被由第二CPU(未圖示)儲存及或執行,第二CPU位於由CPU 496控制的硬體的遠端處。The
本揭示內容的一些或全部處理和方法也可以在硬體中執行。藉此,處理可以以軟體實現並且可以使用電腦系統執行,可以以硬體(例如特定應用積體電路或其他類型的硬體實現例)或者以軟體和硬體的組合來執行。當由處理器執行時,軟體例程將一般用途電腦轉換成控制腔室操作以執行處理的專用電腦(控制器)。Some or all of the processing and methods of the present disclosure can also be executed in hardware. In this way, the processing can be implemented in software and can be executed using a computer system, and can be executed in hardware (such as application-specific integrated circuits or other types of hardware implementations) or a combination of software and hardware. When executed by the processor, the software routine converts a general-purpose computer into a dedicated computer (controller) that controls the chamber operations to perform processing.
在一些具體實施例中,控制器495具有一種或多種配置以執行單獨的過程或子過程以執行方法。控制器495可以連接到並且配置成操作中間部件以執行方法的功能。例如,控制器495可以連接到並配置成控制氣體閥、致動器、馬達、狹縫閥、真空控制器或其他部件中的一個或多個。In some specific embodiments, the
圖18A至圖18I示出了具有不同處理站110的處理腔室100的各種構造。帶字母的圓圈代表不同的處理站110和處理條件。例如,在圖18A中,存在四個處理站110,每個處理站具有不同的字母。這代表四個處理站110,每個處理站具有與其他處理站不同的條件。如箭頭所示,可以通過從站A到D移動帶有晶圓的加熱器來進行處理。暴露於D之後,循環可以繼續或反向。18A to 18I show various configurations of the
參照圖18B,可以同時處理兩個或四個晶圓,使晶圓在加熱器上在A和B位置之間來回移動。兩個晶圓可以在A位置開始,兩個晶圓可以在B位置開始。獨立處理站110允許在第一週期期間關閉兩個站,從而每個晶圓開始於A暴露。加熱器和晶圓可以順時針或逆時針連續旋轉。在一些具體實施例中,加熱器和晶圓在第一方向(例如,從A到B)旋轉90°,然後在第二方向(例如,從B回到A)旋轉90°。可以重複進行此旋轉,以使四個晶圓/加熱器得到處理,而支撐組件的旋轉角度不超過90º。Referring to Figure 18B, two or four wafers can be processed simultaneously, moving the wafers back and forth between the A and B positions on the heater. Two wafers can start at position A, and two wafers can start at position B. The
在圖18B中示出的具體實施例還可以用於在四個處理站110中處理兩個晶圓。如果其中一個處理處於非常不同的壓力下,或者A和B的處理時間非常不同,則這可能特別有用。The specific embodiment shown in FIG. 18B can also be used to process two wafers in four
參照圖18C,可以在單個處理腔室100中以ABC處理處理三個晶圓。一個站可以關閉,也可以執行其他功能(例如,預熱)。Referring to FIG. 18C, three wafers can be processed with ABC processing in a
參照圖18D,可以在AB處理過程中處理兩個晶圓。例如,晶圓可以僅放置在B加熱器上。順時針旋轉四分之一圈將一個晶圓放在A站中,將第二晶圓放在T站中。向後轉會將兩個晶圓都移至B站,逆時針再轉四分之一圈會將第二個晶圓移至A站,將第一個晶圓移至B站。Referring to Figure 18D, two wafers can be processed during AB processing. For example, the wafer can be placed only on the B heater. Rotate a quarter turn clockwise to place one wafer in station A and the second wafer in station T. Backward transfer will move both wafers to station B, and a quarter turn counterclockwise will move the second wafer to station A and the first wafer to station B.
在圖18E中,可以同時處理多達四個晶圓。例如,如果將A站配置為執行CVD或ALD處理,則可以同時處理四個晶圓。In Figure 18E, up to four wafers can be processed simultaneously. For example, if station A is configured to perform CVD or ALD processing, four wafers can be processed simultaneously.
圖18F至圖18I示出了具有三個處理站110的處理腔室100的類似類型的構造。簡而言之,如圖18F所示,單個晶圓(或多個晶圓)可以經受ABC處理。在圖18G中,可以通過將一個晶圓放置在A位置並且將另一個晶圓放置在B位置之一,來對兩個晶圓進行AB處理。然後可以來回移動晶圓,以使從B位置開始的晶圓在第一次移動中移至A位置,然後返回相同的B位置。在圖18H中,可以對晶圓進行AB處理過程。在圖18I中,可以同時處理三個晶圓。18F to 18I show a similar type of configuration of the
圖19A和19B示出了本揭示內容的另一具體實施例。圖19A示出了加熱器230和支撐板245的局部視圖,加熱器230和支撐板245已經旋轉到處理站110下方的位置,使得晶圓101與氣體噴射器112相鄰。支撐板245上或加熱器230的外部上的O形環329處於鬆弛狀態。19A and 19B show another specific embodiment of the present disclosure. 19A shows a partial view of the
圖19B示出了朝著處理站110移動之後的支撐板245和加熱器230,使得加熱器230的支撐表面231與處理站110中的氣體噴射器112的前表面114接觸或幾乎接觸。在此位置,O形圈329被壓縮,在支撐板245的外邊緣或加熱器230的外部周圍形成密封。這允許晶圓101盡可能靠近氣體噴射器112移動,以最小化反應區域219的體積,從而可以快速淨化反應區域219。19B shows the
可能從反應區域219流出的氣體通過開口338排到氣室336中,並排到排氣管或前級管(未示出)。可藉由淨化氣室370和淨化氣體通口371,產生開口338外部的淨化氣簾。另外,加熱器230和支撐板245之間的間隙137,可以幫助進一步遮蔽反應區域219,並防止反應性氣體流入處理腔室100的內部容積109。The gas that may flow out of the
回到圖17,一些具體實施例的控制器495具有選自以下的一種或多種配置:在複數個處理腔室之間移動機器人上的基板的配置;從系統加載和/或卸載基板的配置;用於打開/關閉狹縫閥的配置;為一個或多個加熱器供電的配置;測量加熱器溫度的配置;測量加熱器上晶圓溫度的配置;從加熱器裝載或卸載晶圓的配置;提供溫度測量和加熱器功率控制之間反饋的配置;用於使支撐組件繞旋轉軸旋轉的配置;使支撐組件沿旋轉軸(即沿z軸)移動的配置;用於設置或改變支撐組件的旋轉速度的配置;將氣體流提供給氣體噴射器的配置;用於向一個或多個電極供電以在氣體注射器中產生電漿的配置;控制電漿源的電源的配置;控制電漿源電源的頻率和/或功率的配置;和/或為熱退火處理站提供控制的配置。Returning to FIG. 17, the
一個或多個具體實施例涉及一種操作處理腔室100的方法。在一個或多個具體實施例中,一種方法包括提供處理腔室100,處理腔室100包括x個在空間上分離的隔離的處理站110。在一或更多個具體實施例中,其中x為在從2至10的一範圍內的一整數。在一個或多個具體實施例中,x是指基板支撐表面的數量。在其他具體實施例中,x是指多個基板表面或多個處理站中的一個或多個。在一些具體實施例中,基板支撐表面的數量和處理站的數量相同並且等於x。在一或更多個具體實施例中,其中x為在從2至6的一範圍內的一整數。在一個或多個具體實施例中,x選自2、3、4、5、6、7、8、9或10。在其他具體實施例中,x選自2、3、4、5或6。在一個或多個實施方式中,x為4。One or more specific embodiments relate to a method of operating the
在一些具體實施例中,x'是指不同的空間分離的隔離處理站的數量。不同的空間分離的隔離處理站,指的是在處理站中不同的處理條件。例如,在有四個包含兩個不同處理條件的處理站的系統中,x'等於2。這類具體實施例在每種類型的處理條件下具有相等數量的站。在一個或多個具體實施例中,處理室包括四個處理站,四個處理站被分成交替的第一處理站和第二處理站,使得第一處理站具有第一處理條件,並且第二處理站具有第二處理條件,並且晶圓繞全部處理站旋轉而暴露於每種處理條件兩次。例如,圖7示出了一個具體實施例,其中在四個處理站中存在兩種不同類型的處理條件(A和B)。在此示例中,x = 4且x'= 2。In some specific embodiments, x′ refers to the number of different spatially separated isolation processing stations. Different spatially separated isolation processing stations refer to different processing conditions in the processing stations. For example, in a system with four processing stations with two different processing conditions, x'is equal to 2. This type of embodiment has an equal number of stations under each type of processing conditions. In one or more specific embodiments, the processing chamber includes four processing stations, and the four processing stations are divided into alternating first and second processing stations, such that the first processing station has the first processing condition, and the second The processing station has a second processing condition, and the wafer is rotated around all the processing stations to be exposed to each processing condition twice. For example, Figure 7 shows a specific embodiment in which there are two different types of processing conditions (A and B) in four processing stations. In this example, x = 4 and x'=2.
在一個或多個具體實施例中,處理腔室100具有處理腔室溫度,並且每個處理站110獨立地具有處理站溫度,處理腔室溫度不同於處理站溫度。在一個或多個具體實施例中,具有與x個空間上分離的隔離處理站110對齊的複數個基板支撐表面231的基板支撐組件200被旋轉(rx-1)次,使得每個基板支撐表面231在第一方向上旋轉(360/x)度至相鄰基板支撐表面231。本文所述術語「(rx-1)」是指基板支撐組件的次數(即,旋轉次數)。在一個或多個具體實施例中,r表示處理週期(即ALD週期)的數量,並且是大於或等於1的整數。在一些具體實施例中,r大於10、大於50或大於100。在一個或多個實施方式中,r在1至10的範圍內,或在1至8的範圍內,或在1至6的範圍內,或在1至4的範圍內,或選自1、2、3或4。在其他實施方式中,r為1。在其他實施方式中,r為2、3或4。In one or more specific embodiments, the
在一個或多個具體實施例中,然後將基板支撐組件200旋轉(rx-1)次,以使每個基板支撐表面231在第二方向上旋轉(360 / x)度至相鄰基板支撐表面231。In one or more specific embodiments, the
在一個或多個具體實施例中,第一方向和第二方向彼此相反。在一個或多個具體實施例中,第一方向選自逆時針或順時針。在一個或多個具體實施例中,第二方向是逆時針或順時針的另一個。In one or more specific embodiments, the first direction and the second direction are opposite to each other. In one or more specific embodiments, the first direction is selected from counterclockwise or clockwise. In one or more specific embodiments, the second direction is the other of counterclockwise or clockwise.
在一或多個具體實施例中,複數個基板支撐表面231實質上共面。以這種方式使用時,「實質上共面」是指由各個支撐表面231形成的平面在由另一支撐表面231形成的平面的±5°、±4°、±3°、±2°或±1°之內。在一些具體實施例中,用詞「實質上共面」是指由各個支撐表面形成的平面在±50μm、±40μm、±30μm、±20μm或±10μm內。In one or more specific embodiments, the plurality of
在一或多個具體實施例中,基板支撐表面包括可支撐晶圓的加熱器230。在一些具體實施例中,基板支撐表面或加熱器230包括靜電吸盤。In one or more specific embodiments, the substrate supporting surface includes a
在一個或多個具體實施例中,方法還包括:控制處理腔室溫度或處理站溫度中的一個或多個。In one or more specific embodiments, the method further includes: controlling one or more of the temperature of the processing chamber or the temperature of the processing station.
在一個或多個具體實施例中,方法還包括:控制複數個基板支撐組件200的旋轉速度(rx-1)。In one or more specific embodiments, the method further includes: controlling the rotation speed (rx-1) of the plurality of
揭示內容的一個或多個具體實施例涉及一種操作處理腔室100的方法。在一個或多個具體實施例中,方法包括提供具有至少兩個不同處理站110的處理腔室100,包括第一基板支撐表面231、第二基板支撐表面231、第三基板支撐表面231、第四基板支撐表面231的基板支撐組件200,每個基板支撐表面231處於與處理站110對準的初始位置。將第一基板支撐表面231上的第一晶圓暴露於第一處理條件。基板支撐組件200沿第一方向旋轉,以將第一晶圓移動到第二基板支撐表面231的初始位置。第一晶圓暴露於第二處理條件。基板支撐組件200沿第一方向旋轉,以將第一晶圓移動到第三基板支撐表面231的初始位置。第一晶圓暴露於第三處理條件。基板支撐組件200沿第一方向旋轉,以將第一晶圓移動到第四基板支撐表面231的初始位置。第一晶圓暴露於第四處理條件。基板支撐組件200沿第二方向旋轉,以將第一晶圓移動到第三基板支撐表面231的初始位置。第一晶圓暴露於第三處理條件。基板支撐組件200沿第二方向旋轉,以將第一晶圓移動到第二基板支撐表面231的初始位置。第一晶圓暴露於第二處理條件。基板支撐組件200沿第二方向旋轉,以將第一晶圓移動到第一基板支撐表面231的初始位置,且第一晶圓暴露於第一處理條件。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。One or more specific embodiments of the disclosure relate to a method of operating the
在一或更多個具體實施例中,方法還包含:使第二基板支撐表面231上的第二晶圓暴露至第二處理條件;將基板支撐組件200在第一方向中旋轉,以將第二晶圓移動至第三基板支撐表面231的初始位置;使第二晶圓暴露至第三處理條件;將基板支撐組件200在第一方向中旋轉以將第二晶圓移動至第四基板支撐表面231的初始位置;使該第二晶圓暴露至第四處理條件;將基板支撐組件200在第一方向中旋轉,以將第二晶圓移動至第一基板支撐表面231的初始位置;使第二晶圓暴露至第一處理條件;將基板支撐組件200在第二方向中旋轉以將第二晶圓移動至第四基板支撐表面231的初始位置;使第二晶圓暴露至第四處理條件;將基板支撐組件200在第二方向中旋轉以將第二晶圓移動至第三基板支撐表面231的初始位置;使第二晶圓暴露至第三處理條件;將基板支撐組件200在第二方向中旋轉以將第二晶圓移動至第二基板支撐表面231的初始位置;以及使第二晶圓暴露至第二處理條件。In one or more specific embodiments, the method further includes: exposing the second wafer on the second substrate supporting surface 231 to a second processing condition; rotating the substrate supporting assembly 200 in a first direction to The second wafer is moved to the initial position of the third substrate support surface 231; the second wafer is exposed to the third processing condition; the substrate support assembly 200 is rotated in the first direction to move the second wafer to the fourth substrate support The initial position of the surface 231; exposing the second wafer to the fourth processing condition; rotating the substrate support assembly 200 in the first direction to move the second wafer to the initial position of the first substrate supporting surface 231; The second wafer is exposed to the first processing condition; the substrate support assembly 200 is rotated in the second direction to move the second wafer to the initial position of the fourth substrate support surface 231; the second wafer is exposed to the fourth processing Conditions; rotate the substrate support assembly 200 in the second direction to move the second wafer to the initial position of the third substrate support surface 231; expose the second wafer to the third processing conditions; place the substrate support assembly 200 in the first Rotate in two directions to move the second wafer to the initial position of the second substrate supporting surface 231; and expose the second wafer to the second processing conditions.
在一或更多個具體實施例中,方法還包含:使第三基板支撐表面231上的第三晶圓暴露至第三處理條件;將基板支撐組件200在第一方向中旋轉,以將第三晶圓移動至第四基板支撐表面231的初始位置;使第三晶圓暴露至第四處理條件;將基板支撐組件200在第一方向中旋轉以將第三晶圓移動至第一基板支撐表面231的初始位置;使第三晶圓暴露至第一處理條件;將基板支撐組件200在第一方向中旋轉,以將第三晶圓移動至第二基板支撐表面231的初始位置;使第三晶圓暴露至第二處理條件;將基板支撐組件200在第二方向中旋轉以將第三晶圓移動至第一基板支撐表面231的初始位置;使第三晶圓暴露至第一處理條件;將基板支撐組件200在第二方向中旋轉以將第三晶圓移動至第四基板支撐表面231的初始位置;使第三晶圓暴露至第四處理條件;將基板支撐組件200在第二方向中旋轉以將第三晶圓移動至第三基板支撐表面231的初始位置;以及使第三晶圓暴露至第三處理條件。In one or more specific embodiments, the method further includes: exposing the third wafer on the third substrate supporting surface 231 to a third processing condition; rotating the substrate supporting assembly 200 in the first direction to The three wafers are moved to the initial position of the fourth substrate support surface 231; the third wafer is exposed to the fourth processing condition; the substrate support assembly 200 is rotated in the first direction to move the third wafer to the first substrate support The initial position of the surface 231; exposing the third wafer to the first processing condition; rotating the substrate support assembly 200 in the first direction to move the third wafer to the initial position of the second substrate supporting surface 231; Three wafers are exposed to the second processing condition; the substrate support assembly 200 is rotated in the second direction to move the third wafer to the initial position of the first substrate support surface 231; the third wafer is exposed to the first processing condition Rotate the substrate support assembly 200 in the second direction to move the third wafer to the initial position of the fourth substrate support surface 231; expose the third wafer to the fourth processing condition; place the substrate support assembly 200 in the second Rotate in the direction to move the third wafer to the initial position of the third substrate support surface 231; and expose the third wafer to the third processing condition.
在一或更多個具體實施例中,方法還包含:使第四基板支撐表面231上的第四晶圓暴露至第四處理條件;將基板支撐組件200在第一方向中旋轉,以將第四晶圓移動至第一基板支撐表面231的初始位置;使第四晶圓暴露至第一處理條件;將基板支撐組件200在第一方向中旋轉以將第四晶圓移動至第二基板支撐表面231的初始位置;使第四晶圓暴露至第二處理條件;將基板支撐組件200在第一方向中旋轉,以將第四晶圓移動至第三基板支撐表面231的初始位置;使第四晶圓暴露至第三處理條件;將基板支撐組件200在第二方向中旋轉以將第四晶圓移動至第二基板支撐表面231的初始位置;使第四晶圓暴露至第二處理條件;將基板支撐組件200在第二方向中旋轉以將第四晶圓移動至第一基板支撐表面231的初始位置;使第四晶圓暴露至第一處理條件;將基板支撐組件200在第二方向中旋轉以將第四晶圓移動至第四基板支撐表面231的初始位置;以及使第四晶圓暴露至第四處理條件。In one or more specific embodiments, the method further includes: exposing the fourth wafer on the fourth substrate supporting surface 231 to a fourth processing condition; rotating the substrate supporting assembly 200 in the first direction to Move the four wafers to the initial position of the first substrate support surface 231; expose the fourth wafer to the first processing condition; rotate the substrate support assembly 200 in the first direction to move the fourth wafer to the second substrate support The initial position of the surface 231; exposing the fourth wafer to the second processing condition; rotating the substrate support assembly 200 in the first direction to move the fourth wafer to the initial position of the third substrate supporting surface 231; Four wafers are exposed to the third processing condition; the substrate support assembly 200 is rotated in the second direction to move the fourth wafer to the initial position of the second substrate support surface 231; the fourth wafer is exposed to the second processing condition Rotate the substrate support assembly 200 in the second direction to move the fourth wafer to the initial position of the first substrate support surface 231; expose the fourth wafer to the first processing condition; place the substrate support assembly 200 in the second Rotate in the direction to move the fourth wafer to the initial position of the fourth substrate support surface 231; and expose the fourth wafer to the fourth processing condition.
圖21描繪了根據本揭示內容的一個或多個具體實施例的沉積薄膜的方法600的流程圖。圖22示出了根據本揭示內容的一個或多個具體實施例的處理腔室配置。參照圖21和22,方法600在操作620處開始,在操作620中,將至少一個晶圓裝載到x個基板支撐表面上。在一個或多個具體實施例中,x是2至10範圍內的整數。在一個或多個具體實施例中,x是指基板支撐表面的數量。在其他具體實施例中,x是指多個基板表面或多個處理站110中的一個或多個。在一些具體實施例中,基板支撐表面的數量和晶圓及/或處理站的數量相同並且等於x。在一或更多個具體實施例中,其中x為在從2至6的一範圍內的一整數。在一個或多個具體實施例中,x選自2、3、4、5、6、7、8、9或10。在其他具體實施例中,x選自2、3、4、5或6。在一個或多個實施方式中,x為4。FIG. 21 depicts a flowchart of a
在操作630,基板支撐組件在第一方向上旋轉(rx-1)次,使得每個基板支撐表面旋轉(360 / x)度至相鄰的處理站110,其中r是大於或等於1的整數。數字r表示處理週期(即ALD週期)的數量。本文所述術語「(rx-1)」或「(rx'-1)」是指基板支撐組件的次數(即,旋轉次數)。In
在一些具體實施例中,存在一個以上的處理週期(r)以圍繞處理腔室完整旋轉。例如,圖22示出了根據方法600的處理,其中存在x = 4個處理站110,其中x′= 2個不同類型的處理條件(A和B)。在此具體實施例中,基板支撐組件可以在每個方向上旋轉奇數次,以提供對兩種處理條件的交替暴露。在一些具體實施例中,在每個方向上的轉數等於(rx'-1)次。在圖7所示的具體實施例中,r = 2並且x′= 2,從而在第一方向上存在三個旋轉117a、117b、117c。In some embodiments, there is more than one processing cycle (r) to completely rotate around the processing chamber. For example, FIG. 22 shows processing according to
在操作640,在每個處理站,將至少一個晶圓的頂表面暴露於處理條件以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In
在操作650,將基板支撐組件沿第二方向旋轉(rx-1)次或(rx'-1)次,以便每個基板支撐表面旋轉(360 / x)度至相鄰的處理站110。如圖22所示,在第二方向上存在三個旋轉118a、118b、118c。In
在判定點660處,如果已經在基板上形成了預定厚度的薄膜,則此方法停止。如果在判定點660處尚未在基板上獲得薄膜的預定厚度,則重複處理循環625,直到獲得預定厚度為止。At the
圖23描繪了根據本揭示內容的一個或多個具體實施例的沉積薄膜的方法700的流程圖。圖24示出了根據本揭示內容的一個或多個具體實施例的處理腔室配置。參照圖23和24,方法700在操作720處開始,在操作720中,將至少一個晶圓裝載到x個基板支撐表面上。在一個或多個具體實施例中,x是2至10範圍內的整數。在一個或多個具體實施例中,x是指基板支撐表面的數量。在其他具體實施例中,x是指多個基板表面或多個處理站110中的一個或多個。在一些具體實施例中,基板支撐表面的數量和晶圓及/或處理站110的數量相同並且等於x。在一或更多個具體實施例中,其中x為在從2至6的一範圍內的一整數。在一個或多個具體實施例中,x選自2、3、4、5、6、7、8、9或10。在其他具體實施例中,x選自2、3、4、5或6。在一個或多個實施方式中,x為4。FIG. 23 depicts a flowchart of a
在操作730,基板支撐組件在第一方向上旋轉rx次,使得每個基板支撐表面旋轉到每個相鄰的處理站110,其中r是大於或等於1的整數。本文所述術語「(rx)」是指基板支撐組件的次數(即,旋轉次數)。例如,在圖23至圖24所示的具體實施例中,當存在四個處理站時(即,當x = 4時),基板支座在第一方向上旋轉至少四次,並且在第二方向上旋轉至少四次。In
在一些具體實施例中,存在一個以上的處理週期以圍繞處理腔室完整旋轉。例如,圖24示出了根據方法700的處理,其中存在x = 4個處理站110,其中x′= 2個不同類型的處理條件(A和B)。在此具體實施例中,基板支撐組件可以在每個方向上旋轉以提供對兩種處理條件的交替暴露。在一些具體實施例中,在每個方向上的轉數等於(rx)次。在圖24所示的具體實施例中,沿第一方向的四個旋轉117a、117b、117c、117d導致兩個完整的ALD循環,而基板返回到初始處理站110。In some embodiments, there is more than one processing cycle to completely rotate around the processing chamber. For example, FIG. 24 shows processing according to
在操作740,在每個處理站,將至少一個晶圓的頂表面暴露於處理條件以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In
在操作750,將基板支撐組件沿第二方向旋轉(rx)次,以便每個基板支撐表面旋轉(360 / x)度至相鄰的處理站110。如圖24所示,在第二方向上有四個旋轉118a、118b、118c、118d。In
在判定點760處,如果已經在基板上形成了預定厚度的薄膜,則此方法停止。如果在判定點760處尚未在基板上獲得薄膜的預定厚度,則重複循環725,直到獲得預定厚度為止。At the
圖25描繪了根據本揭示內容的一個或多個具體實施例的沉積薄膜的方法800的流程圖。圖26示出了根據本揭示內容的一個或多個具體實施例的處理腔室配置。參照圖25和26,方法800在操作820處開始,在操作820中,將至少一個晶圓裝載到x個基板支撐表面上。在一個或多個具體實施例中,x是2至10範圍內的整數。在一個或多個具體實施例中,x是指基板支撐表面的數量。在其他具體實施例中,x是指多個基板表面或多個處理站110中的一個或多個。在一些具體實施例中,基板支撐表面的數量和晶圓及/或處理站的數量相同並且等於x。在一或更多個具體實施例中,其中x為在從2至6的一範圍內的一整數。在一個或多個具體實施例中,x選自2、3、4、5、6、7、8、9或10。在其他具體實施例中,x選自2、3、4、5或6。在一個或多個實施方式中,x為4。FIG. 25 depicts a flowchart of a
在操作830,將基板支撐組件沿第一方向旋轉(360 / x)度,然後沿第二方向旋轉(360 / x)度,以使每個基板支撐表面旋轉至每個相鄰的處理站120。在第一方向和第二方向上的旋轉可以重複n次,而n是大於或等於1的整數。數字n表示處理週期(即ALD週期)的數量。換句話說,在第一站和第二站中,在第一方向上旋轉然後在第二方向上旋轉然後在第二方向上旋轉的每個處理是一個處理循環,從而使基板分別暴露於第一反應氣體和第二反應氣體的每一個中。In
圖26示出了根據方法800的處理,其中存在x = 4個處理站120,其中x′= 4個不同類型的處理條件(A、B、C和D)。在此具體實施例中,基板支撐組件100沿第一方向117旋轉,使得放置在處理站120a上的基板旋轉117a至處理站120b,然後基板支撐組件100沿第二方向118旋轉,以使基板(現在位於處理站120b上)旋轉118a回到處理站120a。此旋轉可以重複n次,n是大於或等於1的整數。數字n表示處理週期(即ALD週期)的數量。Figure 26 shows processing according to
在操作840,在每個處理站,將至少一個晶圓的頂表面暴露於處理條件以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In
在操作850,然後將基板支撐組件沿第一方向117旋轉(360 / x)度,然後沿第一方向117旋轉另一個(360 / x)度。參考圖26,位於處理站120a上的基板旋轉117a至處理站120b,然後旋轉117b至處理站120c。在一些具體實施例的操作850中,將基板支座旋轉足夠的次數,以將基板移動到第二組處理站。例如,將基板支座旋轉兩次,以使最初在站A中的基板移動到站C中。In
在一些具體實施例中(未示出),當基板支座從站A旋轉到站B時,至少一個晶圓的頂表面暴露於處理條件下以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In some specific embodiments (not shown), when the substrate support rotates from station A to station B, the top surface of at least one wafer is exposed to processing conditions to form a thin film. In one or more specific embodiments, the processing conditions include one or more of temperature, pressure, reactive gas, and the like. In one or more specific embodiments, the formed film has a substantially uniform thickness. The term "substantially uniform" as used herein refers to the film thickness within ±5 nm, ±4 nm, ±3 nm, ±2 nm, or ±1 nm of the formed film.
在一些具體實施例中(未示出),當基板支座從站B旋轉到站C時,至少一個晶圓的頂表面暴露於處理條件下以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In some specific embodiments (not shown), when the substrate support rotates from station B to station C, the top surface of at least one wafer is exposed to processing conditions to form a thin film. In one or more specific embodiments, the processing conditions include one or more of temperature, pressure, reactive gas, and the like. In one or more specific embodiments, the formed film has a substantially uniform thickness. The term "substantially uniform" as used herein refers to the film thickness within ±5 nm, ±4 nm, ±3 nm, ±2 nm, or ±1 nm of the formed film.
在操作860,將基板支撐組件100沿第一方向117旋轉(360 / x)度,然後沿第二方向118旋轉(360 / x)度,以使每個基板支撐表面旋轉至每個相鄰的處理站120。此旋轉可以重複m次,m是大於或等於1的整數。數字m表示處理週期(即ALD週期)的數量。In
參照圖26,基板支撐組件100沿第一方向117旋轉,使得現放置在處理站120c上的基板旋轉117a至處理站120d,然後基板支撐組件100沿第二方向118旋轉,以使基板(現在位於處理站120d上)旋轉118b回到處理站120c。此旋轉可以重複m次,m是大於或等於1的整數。數字m表示處理週期(即ALD週期)的數量。26, the
在操作870,在每個處理站,將至少一個晶圓的頂表面暴露於處理條件以形成薄膜。在一個或多個具體實施例中,處理條件包括溫度、壓力、反應氣體等中的一個或多個。在一個或多個具體實施例中,所形成的薄膜具有實質上均勻的厚度。本文所述術語「實質上均勻」,是指在所形成的薄膜的±5 nm、±4 nm、±3 nm、±2 nm或±1 nm之內的薄膜厚度。In
在操作880,然後將基板支撐組件沿第二方向118旋轉(360 / x)度。參考圖26,位於處理站120c上的基板旋轉118c至處理站120b。In
在判定點890,如果已經在基板上形成了預定厚度的薄膜,則方法停止。如果在判定點890處尚未在基板上獲得薄膜的預定厚度,則重複循環725,直到獲得預定厚度為止。At
在一個或多個具體實施例中,當形成薄膜時,至少一個晶圓是靜止的。In one or more specific embodiments, when the thin film is formed, at least one wafer is stationary.
在方法的一個或多個具體實施例中,基板支撐表面包括加熱器。在一或多個具體實施例中,基板支撐表面或加熱器包括靜電吸盤。In one or more specific embodiments of the method, the substrate support surface includes a heater. In one or more specific embodiments, the substrate support surface or heater includes an electrostatic chuck.
本說明書中對於「在一個具體實施例中」、「在一些具體實施例中」、「在一個或更多個具體實施例中」或「在一具體實施例中」等的參照,表示所說明的相關聯於此具體實施例的特定特徵、結構或特性,係被包含在本揭示內容的至少一個具體實施例中。因此,貫穿本說明書在各個地方出現的短語「在一個或更多個具體實施例中」、「在一些具體實施例中」、「在一個具體實施例中」或「在一具體實施例中」等,不一定是指本揭示內容的相同具體實施例。此外,特定特徵、結構、配置或特性可以在一個或多個具體實施例中以任何合適的方式組合。References in this specification to "in a specific embodiment", "in some specific embodiments", "in one or more specific embodiments", or "in a specific embodiment", etc., indicate the description The specific feature, structure, or characteristic associated with this specific embodiment is included in at least one specific embodiment of the present disclosure. Therefore, the phrases "in one or more specific embodiments", "in some specific embodiments", "in a specific embodiment" or "in a specific embodiment" appear in various places throughout this specification. "And so on, do not necessarily refer to the same specific embodiment of the present disclosure. In addition, specific features, structures, configurations, or characteristics can be combined in any suitable manner in one or more specific embodiments.
雖然本文揭示內容係關於特定具體實施例,但應瞭解到這些具體實施例僅用於說明本揭示內容的原理與應用。在本發明技術領域中具有通常知識者將顯然瞭解到,可對本揭示內容的方法與設備進行各種修改與變異,而不脫離本揭示內容的精神與範圍。因此,本揭示內容意為涵蓋這種修改與變異,只要這種修改與變異位於附加申請專利範圍及其均等範圍之內。Although the content disclosed herein is about specific specific embodiments, it should be understood that these specific embodiments are only used to illustrate the principles and applications of the present disclosure. Those with ordinary knowledge in the technical field of the present invention will obviously understand that various modifications and variations can be made to the methods and equipment of the present disclosure without departing from the spirit and scope of the present disclosure. Therefore, this disclosure is intended to cover such modifications and variations, as long as such modifications and variations are within the scope of additional patent applications and their equivalent scope.
100:處理腔室 102:殼體 104:壁 106:底部 109:內部空間 110:處理站 110a:處理站 110b:處理站 112:氣體噴射器 114:前表面 117:旋轉 117a:旋轉 117b:旋轉 117c:旋轉 117d:旋轉 118:旋轉 118a:旋轉 118b:旋轉 118c:旋轉 118d:旋轉 120a:處理站 120b:處理站 120c:處理站 120d:處理站 137:間隙 200:基板支撐組件 210:中心基座 211:旋轉軸 219:反應區域 220:支撐臂 221:內端 222:外端 227:支柱 230:加熱器 231:基板支撐表面 234:加熱器支架 236:通道 237:開口 238:氣體通道 240:密封平台 241:頂表面 242:開口 245:支撐板 246:頂表面 247:主平面 248:主平面 249:底表面 250:馬達 251a:第一電極 251b:第二電極 252a:第一連接器 252b:第二連接器 253a:第一導線 253b:第二導線 254a:中心第一連接器 254b:中心第二連接器 255:馬達 257:凹穴 258:連接板 260:晶圓 261:表面 270:突出環 272:凹環 273:凹底表面 300:頂板 301:頂表面 302:底表面 303:邊緣 309:淨化環 310:開口 314:O形環 315:隔板 329:O形環 330:幫浦/淨化插件 331:頂部 332:突出部分 333:底部 334:突出部分 335:側壁 336:氣室 337:凸緣部分 338:開口 339:開口 342:凸緣 360:桿 365:馬達 367:連接器 370:淨化氣室 371:淨化氣體端口 381:最外邊緣 400:處理平台 410:中央轉移站 411:側面 412:側面 413:側面 414:側面 418:狹縫閥 420:緩衝站 430:機器人 431:第一臂 432:第二臂 450:工廠介面 455:機器人 495:控制器 496:中央處理單元(CPU) 497:記憶體 498:支援電路 600:方法 620-660:步驟 700:方法 720-760:步驟 800:方法 820-890:步驟100: processing chamber 102: shell 104: wall 106: bottom 109: Internal Space 110: processing station 110a: processing station 110b: processing station 112: Gas injector 114: front surface 117: Rotation 117a: rotation 117b: rotation 117c: rotation 117d: rotation 118: Rotation 118a: rotation 118b: Rotate 118c: Rotate 118d: rotation 120a: processing station 120b: processing station 120c: processing station 120d: processing station 137: Gap 200: substrate support assembly 210: Center Pedestal 211: Rotation axis 219: Reaction Area 220: support arm 221: inner end 222: Outer End 227: Pillar 230: heater 231: substrate support surface 234: heater bracket 236: Channel 237: open 238: Gas Channel 240: Sealed platform 241: Top Surface 242: open 245: Support plate 246: top surface 247: main plane 248: main plane 249: bottom surface 250: Motor 251a: first electrode 251b: second electrode 252a: first connector 252b: second connector 253a: first wire 253b: second wire 254a: Center first connector 254b: Center second connector 255: Motor 257: pit 258: connecting plate 260: Wafer 261: Surface 270: protruding ring 272: Concave Ring 273: concave bottom surface 300: top plate 301: top surface 302: bottom surface 303: Edge 309: Purification Ring 310: open 314: O-ring 315: Partition 329: O-ring 330: pump/purification plug-in 331: top 332: protruding part 333: bottom 334: protruding part 335: Sidewall 336: Air Chamber 337: Flange 338: open 339: open 342: Flange 360: pole 365: Motor 367: Connector 370: Clean Air Chamber 371: Purge gas port 381: outermost edge 400: Processing platform 410: Central Transfer Station 411: side 412: side 413: side 414: side 418: slit valve 420: buffer station 430: Robot 431: first arm 432: second arm 450: Factory interface 455: Robot 495: Controller 496: Central Processing Unit (CPU) 497: Memory 498: Support Circuit 600: method 620-660: steps 700: method 720-760: steps 800: method 820-890: steps
可參考多個具體實施例以更特定地說明以上簡要總結的本揭示內容,以更詳細瞭解本揭示內容的上述特徵,附加圖式圖示說明了其中一些具體實施例。然而應注意到,附加圖式僅圖示說明本揭示內容的典型具體實施例,且因此不應被視為限制本揭示內容的範圍,因為揭示內容可允許其他等效的具體實施例。A number of specific embodiments may be referred to in order to more specifically describe the present disclosure briefly summarized above, so as to understand the above-mentioned features of the present disclosure in more detail, and the attached drawings illustrate some of the specific embodiments. It should be noted, however, that the attached drawings only illustrate typical specific embodiments of the present disclosure, and therefore should not be considered as limiting the scope of the present disclosure, as the disclosure may allow other equivalent specific embodiments.
圖1示出了根據本揭示內容的一個或多個具體實施例的處理腔室的橫截面等距視圖;Figure 1 shows a cross-sectional isometric view of a processing chamber according to one or more specific embodiments of the present disclosure;
圖2示出了根據本揭示內容的一個或多個具體實施例的處理腔室的截面圖;Figure 2 shows a cross-sectional view of a processing chamber according to one or more specific embodiments of the present disclosure;
圖3示出了根據本揭示內容的一個或多個具體實施例的支座組件的底部平行投影圖;Fig. 3 shows a bottom parallel projection view of the support assembly according to one or more specific embodiments of the present disclosure;
圖4示出了根據本揭示內容的一個或多個具體實施例的支座組件的頂部平行投影圖;Fig. 4 shows a top parallel projection view of the support assembly according to one or more specific embodiments of the present disclosure;
圖5示出了根據本揭示內容的一個或多個具體實施例的支座組件的頂部平行投影圖;Fig. 5 shows a top parallel projection view of the support assembly according to one or more specific embodiments of the present disclosure;
圖6示出了根據本揭示內容的一個或多個具體實施例的支座組件的截面側視圖;Fig. 6 shows a cross-sectional side view of a support assembly according to one or more specific embodiments of the present disclosure;
圖7示出了根據本揭示內容的一個或多個具體實施例的支座組件的部分截面側視圖;FIG. 7 shows a partial cross-sectional side view of a seat assembly according to one or more specific embodiments of the present disclosure;
圖8示出了根據本揭示內容的一個或多個具體實施例的支座組件的部分截面側視圖;Figure 8 shows a partial cross-sectional side view of a support assembly according to one or more specific embodiments of the present disclosure;
圖9示出了根據本揭示內容的一個或多個具體實施例的支座組件的部分截面側視圖;FIG. 9 shows a partial cross-sectional side view of a seat assembly according to one or more specific embodiments of the present disclosure;
圖10A是根據本揭示內容的一個或多個具體實施例的支撐板的俯視圖;Figure 10A is a top view of a support plate according to one or more specific embodiments of the present disclosure;
圖10B是圖10A的沿線10B-10B'截取的支撐板的截面側視圖;Figure 10B is a cross-sectional side view of the support plate taken along
圖11A是根據本揭示內容的一個或多個具體實施例的支撐板的底部等距視圖;Figure 11A is a bottom isometric view of a support plate according to one or more specific embodiments of the present disclosure;
圖11B是圖11A的沿線11B-11B'截取的支撐板的截面側視圖;Figure 11B is a cross-sectional side view of the support plate taken along
圖12A是根據本揭示內容的一個或多個具體實施例的支撐板的底部等距視圖;Figure 12A is a bottom isometric view of a support plate according to one or more specific embodiments of the present disclosure;
圖12B是圖12A的沿線12B-12B'截取的支撐板的截面側視圖;Figure 12B is a cross-sectional side view of the support plate taken along
圖13示出了根據本揭示內容的一個或多個具體實施例的處理腔室的頂板的橫截面等距視圖;Figure 13 shows a cross-sectional isometric view of the top plate of the processing chamber according to one or more specific embodiments of the present disclosure;
圖14是根據本揭示內容的一個或多個具體實施例的處理站的分解截面圖;Figure 14 is an exploded cross-sectional view of a processing station according to one or more specific embodiments of the present disclosure;
圖15示出了根據本揭示內容的一個或多個具體實施例的處理腔室的頂板的橫截面等距視圖;Figure 15 shows a cross-sectional isometric view of the top plate of the processing chamber according to one or more specific embodiments of the present disclosure;
圖16示出了根據本揭示內容的一個或多個具體實施例的處理腔室的處理站的部分橫截面側視圖;Figure 16 shows a partial cross-sectional side view of a processing station of a processing chamber according to one or more specific embodiments of the present disclosure;
圖17是根據本揭示內容的一個或多個具體實施例的處理平台的示意圖;FIG. 17 is a schematic diagram of a processing platform according to one or more specific embodiments of the present disclosure;
圖18A至圖18I示出了根據本揭示內容的一個或多個具體實施例的處理腔室中的處理站配置的示意圖;18A to 18I show schematic diagrams of a processing station configuration in a processing chamber according to one or more specific embodiments of the present disclosure;
圖19A和19B示出了根據本揭示內容的一個或多個具體實施例的處理的示意圖;19A and 19B show schematic diagrams of processing according to one or more specific embodiments of the present disclosure;
圖20示出了根據本揭示內容的一個或多個具體實施例的支座組件的截面側視圖。FIG. 20 shows a cross-sectional side view of a seat assembly according to one or more specific embodiments of the present disclosure.
圖21描繪了根據本文描述的具體實施例的形成薄膜的方法的一個具體實施例的流程圖;FIG. 21 depicts a flowchart of a specific embodiment of a method of forming a thin film according to the specific embodiment described herein;
圖22是根據本揭示內容的一個或多個具體實施例的處理腔室與處理流程的示意圖;22 is a schematic diagram of a processing chamber and processing flow according to one or more specific embodiments of the present disclosure;
圖23描繪了根據本文描述的具體實施例的形成薄膜的方法的一個具體實施例的流程圖;FIG. 23 depicts a flowchart of a specific embodiment of a method of forming a thin film according to specific embodiments described herein;
圖24是根據本揭示內容的一個或多個具體實施例的處理腔室與處理流程的示意圖;24 is a schematic diagram of a processing chamber and processing flow according to one or more specific embodiments of the present disclosure;
圖25描繪了根據本文描述的具體實施例的形成薄膜的方法的一個具體實施例的流程圖;以及FIG. 25 depicts a flowchart of a specific embodiment of a method of forming a thin film according to specific embodiments described herein; and
圖26是根據本揭示內容的一個或多個具體實施例的處理腔室與處理流程的示意圖。FIG. 26 is a schematic diagram of a processing chamber and processing flow according to one or more specific embodiments of the present disclosure.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date and number) no
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date and number) no
600:方法 600: method
620-660:步驟 620-660: steps
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862751909P | 2018-10-29 | 2018-10-29 | |
US62/751,909 | 2018-10-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202033819A true TW202033819A (en) | 2020-09-16 |
TWI780369B TWI780369B (en) | 2022-10-11 |
Family
ID=70464585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108138999A TWI780369B (en) | 2018-10-29 | 2019-10-29 | Methods of operating a spatial deposition tool |
Country Status (6)
Country | Link |
---|---|
JP (2) | JP7538794B2 (en) |
KR (2) | KR20240121354A (en) |
CN (1) | CN113166938A (en) |
SG (1) | SG11202104098RA (en) |
TW (1) | TWI780369B (en) |
WO (1) | WO2020092184A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113838770A (en) * | 2020-06-24 | 2021-12-24 | 拓荆科技股份有限公司 | Wafer processing device capable of providing purge gas |
US11818810B2 (en) | 2021-03-26 | 2023-11-14 | Applied Materials, Inc. | Heater assembly with purge gap control and temperature uniformity for batch processing chambers |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143082A (en) * | 1998-10-08 | 2000-11-07 | Novellus Systems, Inc. | Isolation of incompatible processes in a multi-station processing chamber |
KR100972255B1 (en) | 2005-08-05 | 2010-07-23 | 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드 아시아 | System and method for processing semiconductor workpieces |
CN100358097C (en) * | 2005-08-05 | 2007-12-26 | 中微半导体设备(上海)有限公司 | Semiconductor technology processing system and method |
US20070218702A1 (en) * | 2006-03-15 | 2007-09-20 | Asm Japan K.K. | Semiconductor-processing apparatus with rotating susceptor |
JP5315898B2 (en) | 2008-09-30 | 2013-10-16 | 東京エレクトロン株式会社 | Deposition equipment |
JP5572515B2 (en) * | 2010-10-15 | 2014-08-13 | 東京エレクトロン株式会社 | Film forming apparatus and film forming method |
US20120222620A1 (en) * | 2011-03-01 | 2012-09-06 | Applied Materials, Inc. | Atomic Layer Deposition Carousel with Continuous Rotation and Methods of Use |
US20130192761A1 (en) * | 2012-01-31 | 2013-08-01 | Joseph Yudovsky | Rotary Substrate Processing System |
KR20130106906A (en) * | 2012-03-21 | 2013-10-01 | 주식회사 윈텔 | Substrate processing apparatus and substrate processing method |
TWI643971B (en) * | 2014-01-05 | 2018-12-11 | 美商應用材料股份有限公司 | Film deposition using spatial atomic layer deposition or pulsed chemical vapor deposition |
WO2015103358A1 (en) * | 2014-01-05 | 2015-07-09 | Applied Materials, Inc. | Film deposition using spatial atomic layer deposition or pulsed chemical vapor deposition |
US9797042B2 (en) * | 2014-05-15 | 2017-10-24 | Lam Research Corporation | Single ALD cycle thickness control in multi-station substrate deposition systems |
US10096464B2 (en) * | 2014-10-04 | 2018-10-09 | Applied Materials, Inc. | Atomic layer deposition of high density silicon dioxide |
US20170088952A1 (en) | 2015-09-28 | 2017-03-30 | Ultratech, Inc. | High-throughput multichamber atomic layer deposition systems and methods |
-
2019
- 2019-10-28 KR KR1020247025914A patent/KR20240121354A/en not_active Application Discontinuation
- 2019-10-28 KR KR1020217016393A patent/KR102691905B1/en active IP Right Grant
- 2019-10-28 JP JP2021521999A patent/JP7538794B2/en active Active
- 2019-10-28 WO PCT/US2019/058248 patent/WO2020092184A1/en active Application Filing
- 2019-10-28 CN CN201980077606.6A patent/CN113166938A/en active Pending
- 2019-10-28 SG SG11202104098RA patent/SG11202104098RA/en unknown
- 2019-10-29 TW TW108138999A patent/TWI780369B/en active
-
2023
- 2023-05-16 JP JP2023080971A patent/JP2023113690A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20210070383A (en) | 2021-06-14 |
KR20240121354A (en) | 2024-08-08 |
CN113166938A (en) | 2021-07-23 |
JP2022505601A (en) | 2022-01-14 |
TWI780369B (en) | 2022-10-11 |
SG11202104098RA (en) | 2021-05-28 |
JP7538794B2 (en) | 2024-08-22 |
JP2023113690A (en) | 2023-08-16 |
KR102691905B1 (en) | 2024-08-06 |
WO2020092184A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI768849B (en) | Single wafer processing environments with spatial separation | |
US20200090978A1 (en) | Methods Of Operating A Spatial Deposition Tool | |
JP2023113690A (en) | Methods of operating spatial deposition tool | |
US20240352586A1 (en) | Dithering or dynamic offsets for improved uniformity | |
US20200066572A1 (en) | Methods Of Operating A Spatial Deposition Tool | |
TWI754180B (en) | Processing chamber and method of forming film | |
TWI754179B (en) | Spatial wafer processing with improved temperature uniformity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |