Nothing Special   »   [go: up one dir, main page]

TW201924294A - Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing - Google Patents

Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing Download PDF

Info

Publication number
TW201924294A
TW201924294A TW106139719A TW106139719A TW201924294A TW 201924294 A TW201924294 A TW 201924294A TW 106139719 A TW106139719 A TW 106139719A TW 106139719 A TW106139719 A TW 106139719A TW 201924294 A TW201924294 A TW 201924294A
Authority
TW
Taiwan
Prior art keywords
data
bit
frozen
byte
complex
Prior art date
Application number
TW106139719A
Other languages
Chinese (zh)
Inventor
李世凱
吳明儒
李晃昌
Original Assignee
財團法人資訊工業策進會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人資訊工業策進會 filed Critical 財團法人資訊工業策進會
Priority to TW106139719A priority Critical patent/TW201924294A/en
Priority to CN201711224957.4A priority patent/CN109802909A/en
Priority to US15/831,345 priority patent/US20190149370A1/en
Publication of TW201924294A publication Critical patent/TW201924294A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • H04L5/026Multiplexing of multicarrier modulation signals using code division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)

Abstract

Embodiments relate to a baseband processing apparatus and a baseband processing method based on orthogonal frequency-division multiplexing (OFDM). In order to solve the problem of high PAPR in OFDM systems, the baseband processing apparatus and method generate a plurality of data with different peak to average power ratios (PAPRs) by modifying bit representations of the frozen bits used by a polar encoder, and then select the one of the plurality of data with the smallest PAPR as an OFDM signal.

Description

基於正交分頻多工的基頻處理裝置與基頻處理方法 Fundamental frequency processing device and fundamental frequency processing method based on orthogonal frequency division multiplexing

本發明的實施例是關於一種基頻處理裝置與一種基頻處理方法。更具體而言,本發明的實施例是關於基於正交分頻多工的一種基頻處理裝置與一種基頻處理方法。 Embodiments of the present invention are directed to a baseband processing apparatus and a baseband processing method. More specifically, embodiments of the present invention relate to a baseband processing apparatus and a baseband processing method based on orthogonal frequency division multiplexing.

正交分頻多工(Orthogonal frequency-division multiplexing,OFDM)是一種在多個載波頻率上對數位資料進行調變與解調變的技術。概括來說,正交分頻多工的技術核心是將一整段頻段分割成多個相互正交的子載波(sub-carriers),並讓資料平行地在這些子載波上傳輸,藉此提高資料傳輸率與頻寬使用效率。 Orthogonal frequency-division multiplexing (OFDM) is a technique for modulating and demodulating digital data over multiple carrier frequencies. In summary, the core of orthogonal frequency division multiplexing is to divide an entire frequency band into a plurality of mutually orthogonal sub-carriers, and let the data be transmitted in parallel on these sub-carriers, thereby improving Data transfer rate and bandwidth usage efficiency.

在傳統的正交分頻多工系統中,因為正交分頻多工訊號是多個子載波訊號的線性總和,所以正交分頻多工訊號的振幅大小的會產生極大的變化,這使得正交分頻多工訊號通常具有高峰均功率比(Peak to average power ratio,PAPR)。一旦正交分頻多工訊號的峰均功率比太高,則傳統的正交分頻多工系統的運作將會受到影響。舉例而言,高峰均功率比的正交分頻多工訊號會嚴重影響到功率放大器(power amplifier)的放大效率、數位 類比訊號轉換器(Digital to analog converter,DAC)或類比數位訊號轉換器(Analog to digital converter,ADC)的轉換品質等等。 In the conventional orthogonal frequency division multiplexing system, since the orthogonal frequency division multiplexing signal is a linear sum of a plurality of subcarrier signals, the amplitude of the orthogonal frequency division multiplexing signal greatly changes, which makes Cross-frequency multiplexed signals typically have a Peak to Average Power Ratio (PAPR). Once the peak-to-average power ratio of the orthogonal frequency division multiplexing signal is too high, the operation of the conventional orthogonal frequency division multiplexing system will be affected. For example, the orthogonal frequency division multiplexing signal of the peak-to-average power ratio can seriously affect the amplification efficiency and digital position of the power amplifier. The conversion quality of a digital to analog converter (DAC) or an analog to digital converter (ADC).

有鑑於此,在本發明所屬技術領域中,如何改善正交分頻多工訊號具有高峰均功率比將是一項亟需被解決的問題。 In view of this, in the technical field to which the present invention pertains, how to improve the peak-to-average power ratio of the orthogonal frequency division multiplexing signal will be an urgent problem to be solved.

為了解決至少上述的問題,本發明的實施例提供了一種基於正交分頻多工的基頻處理裝置,且該基頻處理裝置可包含一極化碼編碼器、一調變器、一反向離散傅立葉轉換轉換器與一控制器。該調變器可以與該極化碼編碼器電性連接,該反向離散傅立葉轉換轉換器可以與該調變器電性連接,而該控制器可以與該反向離散傅立葉轉換轉換器電性連接。該極化碼編碼器可用以將複數第一資料編碼為複數第二資料,該複數第一資料中的每一個包含一資訊位元組以及一凍結位元組,該複數資訊位元組具有相同的位元長度以及相同的位元表示,該複數凍結位元組具有相同的位元長度,該複數凍結位元組中的每一組包含一特定凍結位元組,且該複數特定凍結位元組具有相同的位元長度但具有不同的位元表示。該調變器可用以將該複數第二資料調變為複數第三資料。該反向離散傅立葉轉換轉換器可用以將該複數第三資料轉換為複數第四資料。該控制器則可用以計算該複數第四資料中的每一個的一峰均功率比,並從該複數第四資料中選出一第四資料候選者,該第四資料候選者對應至該複數峰均功率比中的最小者。 In order to solve at least the above problems, an embodiment of the present invention provides a baseband processing apparatus based on orthogonal frequency division multiplexing, and the baseband processing apparatus may include a polarization code encoder, a modulator, and a reverse A discrete Fourier transform converter with a controller. The modulator can be electrically connected to the polarization code encoder, the inverse discrete Fourier converter can be electrically connected to the modulator, and the controller can be electrically connected to the inverse discrete Fourier converter connection. The polarization code encoder may be configured to encode the plurality of first data into a plurality of second data, each of the plurality of first data comprising an information byte and a frozen byte, the complex information byte having the same The bit length and the same bit indicate that the complex frozen byte has the same bit length, each of the complex frozen bytes includes a specific frozen byte, and the complex specific frozen bit Groups have the same bit length but different bit representations. The modulator can be used to convert the plural second data into a plurality of third data. The inverse discrete Fourier transform converter can be used to convert the complex third data into a plurality of fourth data. The controller may be configured to calculate a peak-to-average power ratio of each of the plurality of fourth materials, and select a fourth data candidate from the fourth plurality of data, the fourth data candidate corresponding to the complex peak The smallest of the power ratios.

為了解決至少上述的問題,本發明的實施例還提供了一種一種基於正交分頻多工的基頻處理方法,且該方法可包含以下步驟:由一極化碼編碼器,將複數第一資料編碼為複數第二資料,其中該複數 第一資料中的每一個包含一資訊位元組以及一凍結位元組,該複數資訊位元組具有相同的位元長度以及相同的位元表示,該複數凍結位元組具有相同的位元長度,該複數凍結位元組中的每一組包含一特定凍結位元組,且該複數特定凍結位元組具有相同的位元長度但具有不同的位元表示;由一調變器,將該複數第二資料調變為複數第三資料;由一反向離散傅立葉轉換轉換器,將該複數第三資料轉換為複數第四資料;以及由一控制器,計算該複數第四資料中的每一個的一峰均功率比,並從該複數第四資料中選出一第四資料候選者,其中該第四資料候選者對應至該複數峰均功率比中的最小者。 In order to solve at least the above problems, an embodiment of the present invention further provides a method for processing a base frequency based on orthogonal frequency division multiplexing, and the method may include the following steps: using a polarization code encoder to convert the first number The data is encoded as a plurality of second data, wherein the plural Each of the first data includes an information byte and a frozen byte, the complex information byte having the same bit length and the same bit representation, the complex frozen byte having the same bit Length, each of the plurality of frozen byte groups includes a specific frozen byte, and the complex specific frozen byte has the same bit length but has a different bit representation; by a modulator, Converting the plurality of second data into a plurality of third data; converting the complex third data into a plurality of fourth data by an inverse discrete Fourier transform converter; and calculating, by a controller, the fourth data in the plurality A peak-to-peak power ratio of each of the four data candidates is selected from the fourth plurality of data, wherein the fourth data candidate corresponds to the smallest of the complex peak-to-average power ratios.

在本發明的實施例中,可透過改變被一極化碼編碼器所使用的凍結位元的位元表示來產生複數個對應至不同峰均功率比的資料,並從中選擇峰均功率比最小的資料來作為正交分頻多工訊號。相較於在傳統的正交分頻多工系統,正交分頻多工訊號的峰均功率比是無法被調整的,在本發明的實施例中,正交分頻多工訊號的峰均功率比是可以被調整的。因此,本發明的實施例可有效地解決正交分頻多工訊號具有高峰均功率比的問題。 In an embodiment of the present invention, a plurality of bits corresponding to different peak-to-average power ratios may be generated by changing a bit representation of a frozen bit used by a polarization code encoder, and a peak-to-average power ratio is selected from the minimum. The data is used as an orthogonal frequency division multiplexing signal. Compared with the conventional orthogonal frequency division multiplexing system, the peak-to-average power ratio of the orthogonal frequency division multiplexing signal cannot be adjusted. In the embodiment of the present invention, the peak of the orthogonal frequency division multiplexing signal is averaged. The power ratio can be adjusted. Therefore, the embodiment of the present invention can effectively solve the problem that the orthogonal frequency division multiplexing signal has a peak-average power ratio.

發明內容並非有意概括本發明的所有實施例,而只是整體地敘述了本發明的核心概念、本發明可解決的問題、可採用的手段以及可達到的功效,以提供本發明所屬技術領域中具有通常知識者對本發明的基本理解。 The Summary of the Invention is not intended to be an overview of all embodiments of the present invention, but merely to exemplarily describe the core concepts of the present invention, the problems that can be solved by the present invention, the means that can be employed, and the achievable efficiencies. A general understanding of the invention is generally provided by the skilled person.

如下所示: As follows:

1‧‧‧基頻處理裝置 1‧‧‧ fundamental frequency processing device

11‧‧‧極化碼編碼器 11‧‧‧Polarization code encoder

13‧‧‧調變器 13‧‧‧Transformer

15‧‧‧反向離散傅立葉轉換轉換器 15‧‧‧Inverse Discrete Fourier Transform Converter

17‧‧‧控制器 17‧‧‧ Controller

19‧‧‧交錯器 19‧‧‧Interlacer

D1‧‧‧第一資料 D1‧‧‧First Information

D2‧‧‧第二資料 D2‧‧‧Second information

D3‧‧‧第三資料 D3‧‧‧ Third Information

D4‧‧‧第四資料 D4‧‧‧ Fourth Information

FRZ‧‧‧凍結位元 FRZ‧‧‧ frozen bit

IN‧‧‧數位輸入訊號 IN‧‧‧ digital input signal

OUT‧‧‧數位輸出訊號 OUT‧‧‧ digital output signal

X1~X8‧‧‧第一資料的位元 X1~X8‧‧‧ bit of the first data

Y1~Y8‧‧‧第二資料的位元 Y1~Y8‧‧‧ bits of the second data

4‧‧‧基於正交分頻多工的基頻處理方法 4‧‧‧Base frequency processing method based on orthogonal frequency division multiplexing

401~407‧‧‧步驟 401~407‧‧‧Steps

第1A圖例示了在本發明的一或多個實施例中一種基於正交分頻多工的基頻處理裝置。 FIG. 1A illustrates a baseband processing apparatus based on orthogonal frequency division multiplexing in one or more embodiments of the present invention.

第1B圖例示了在本發明的一或多個實施例中另一種基於正交分頻多工的基頻處理裝置。 FIG. 1B illustrates another baseband processing apparatus based on orthogonal frequency division multiplexing in one or more embodiments of the present invention.

第2A-2B圖是本發明的一或多個實施例中一種極化碼編碼器的運作的示意圖。 2A-2B is a schematic diagram of the operation of a polarization code encoder in one or more embodiments of the present invention.

第3圖是本發明的一或多個實施例中另一種極化碼編碼器的運作的示意圖。 Figure 3 is a schematic illustration of the operation of another polarization code encoder in one or more embodiments of the present invention.

第4圖例示了在本發明的一或多個實施例中一種基於正交分頻多工的基頻處理方法。 Figure 4 illustrates a method of processing a baseband based on orthogonal frequency division multiplexing in one or more embodiments of the present invention.

以下所述各種實施例並非用以限制本發明只能在所述的環境、應用、結構、流程或步驟方能實施。於圖式中,與本發明非直接相關的元件皆已省略。於圖式中,各元件的尺寸以及各元件之間的比例僅是範例,而非用以限制本發明。除了特別說明之外,在以下內容中,相同(或相近)的元件符號可對應至相同(或相近)的元件。 The various embodiments described below are not intended to limit the scope of the invention, which can be implemented in the environments, applications, structures, procedures or steps described. In the drawings, elements that are not directly related to the present invention have been omitted. In the drawings, the dimensions of the various components and the ratios between the components are merely exemplary and are not intended to limit the invention. Unless otherwise stated, the same (or similar) element symbols may correspond to the same (or similar) elements in the following.

第1A圖例示了在本發明的一或多個實施例中一種基於正交分頻多工的基頻處理裝置1A,而第1B圖例示了在本發明的一或多個實施例中另一種基於正交分頻多工的基頻處理裝置1B。第1A圖與第1B圖所示內容僅是為了說明本發明的實施例,而非為了限制本發明。基頻處理裝置1A與基頻處理裝置1B各自可應用於一正交分頻多工發射器,且用以進行各種數位訊號處理,例如但不限於:編碼(Coding)、調變(Modulation)、反向離 散傅立葉轉換(Inverse Discrete Fourier Transform,IDFT)等等。基頻處理裝置1A與基頻處理裝置1B各自可被整合為一系統單晶片(System on Chip,SoC),但並不以此為限。 FIG. 1A illustrates a baseband processing apparatus 1A based on orthogonal frequency division multiplexing in one or more embodiments of the present invention, and FIG. 1B illustrates another example in one or more embodiments of the present invention. A baseband processing apparatus 1B based on orthogonal frequency division multiplexing. 1A and 1B are merely illustrative of the embodiments of the present invention and are not intended to limit the present invention. The baseband processing device 1A and the baseband processing device 1B are each applicable to an orthogonal frequency division multiplexing transmitter and are used for performing various digital signal processing, such as, but not limited to, coding, modulation, and Reverse Inverse Discrete Fourier Transform (IDFT) and the like. The baseband processing device 1A and the baseband processing device 1B can each be integrated into a system on chip (SoC), but not limited thereto.

參照第1A圖與第1B圖,基頻處理裝置1A與基頻處理裝置1B各自可基本上包含一極化碼編碼器11、一調變器13、一反向離散傅立葉轉換轉換器15、一控制器17與一交錯器19。極化碼編碼器11可電性連接至調變器13,調變器13可電性連接至反向離散傅立葉轉換轉換器15,反向離散傅立葉轉換轉換器15可電性連接至控制器17。在基頻處理裝置1A中,交錯器19可電性連接至極化碼編碼器11。在基頻處理裝置1B中,交錯器19可電性連接至極化碼編碼器11以及控制器17。 Referring to FIGS. 1A and 1B, the baseband processing device 1A and the baseband processing device 1B can each basically include a polarization code encoder 11, a modulator 13, an inverse discrete Fourier transform converter 15, and a first The controller 17 is coupled to an interleaver 19. The polarization code encoder 11 is electrically connected to the modulator 13, the modulator 13 is electrically connected to the inverse discrete Fourier transform converter 15, and the inverse discrete Fourier transform converter 15 is electrically connected to the controller 17. . In the fundamental frequency processing device 1A, the interleaver 19 is electrically connected to the polarization code encoder 11. In the fundamental frequency processing device 1B, the interleaver 19 is electrically connected to the polarization code encoder 11 and the controller 17.

於某些實施例中,基頻處理裝置1A與基頻處理裝置1B各自還可包含其他元件/模組,以進行該正交分頻多工發射器所需要的其他數位訊號處理。第1A圖與第1B圖所示的各個區塊之間的連接可以是直接連接(即,未經由特定功能的元件來相互連接),也可以是間接連接(即,經由特定功能的元件來相互連接)。 In some embodiments, the baseband processing device 1A and the baseband processing device 1B may each include other components/modules to perform other digital signal processing required by the orthogonal frequency division multiplexing transmitter. The connections between the respective blocks shown in FIG. 1A and FIG. 1B may be direct connections (ie, not connected to each other via elements of a specific function), or may be indirect connections (ie, via specific functional elements to each other). connection).

極化碼編碼器(Polar Code Encoder)11是一種採用極化碼的編碼器。極化碼屬於前向錯誤更正碼的一種,且是一種在理論上可以達到香農極限(Shannon Limit)的編碼。極化碼可以實現通道極化(Channel Polarization),而通道極化可以使得每一個通道會呈現出不同的可靠性。隨著極化碼的編碼長度增加,部分通道的通道容量(Channel Capacity)將趨近於一(無雜訊通道),而部分通道的通道容量將趨近於零(純雜訊通道),而在完美通道上傳輸的訊息,理論上將可以達到香農極限。極化碼編碼器11可 以經由一積體電路(Integrated Circuit,IC)來實現,但並不以此為限。 The Polar Code Encoder 11 is an encoder using a polarization code. The polarization code is a type of forward error correction code and is a code that can theoretically reach the Shannon Limit. Polarization codes can achieve Channel Polarization, and channel polarization can make each channel exhibit different reliability. As the code length of the polarization code increases, the channel capacity of some channels will approach one (no noise channel), and the channel capacity of some channels will approach zero (pure noise channel). The message transmitted on the perfect channel will theoretically reach the Shannon limit. Polarization code encoder 11 It is realized by an integrated circuit (IC), but is not limited thereto.

調變器13是一種數位調變器。根據不同的調變需求,調變器13可具有不同的結構,例如但不限於:振幅位移調變(Amplitude Shift Keying,ASK)結構、頻率位移調變(Frequency Shift Keying,FSK)結構、相位位移調變(Phase Shift Keying,PSK)結構與正交振幅調變(Quadrature Amplitude Modulation,QAM)結構等。調變器13可以經由一積體電路來實現,但並不以此為限。 The modulator 13 is a digital modulator. According to different modulation requirements, the modulator 13 can have different structures, such as but not limited to: Amplitude Shift Keying (ASK) structure, Frequency Shift Keying (FSK) structure, phase position. Phase Shift Keying (PSK) structure and Quadrature Amplitude Modulation (QAM) structure. The modulator 13 can be implemented via an integrated circuit, but is not limited thereto.

反向離散傅立葉轉換轉換器15是一種能夠實現反向離散傅立葉轉換的轉換器。根據不同的轉換需求,反向離散傅立葉轉換轉換器15可以具有不同的結構,例如但不限於:一般反向離散傅立葉變換結構及在硬體上容易實現的反向快速傅立葉變換(Inverse Fast Fourier Transform,IFFT)結構。反向離散傅立葉轉換轉換器15可以經由一積體電路來實現,但並不以此為限。 The inverse discrete Fourier transform converter 15 is a converter capable of implementing inverse discrete Fourier transform. The inverse discrete Fourier transform converter 15 may have different structures according to different conversion requirements, such as but not limited to: a general inverse discrete Fourier transform structure and an inverse fast Fourier transform that is easily implemented on a hardware (Inverse Fast Fourier Transform) , IFFT) structure. The inverse discrete Fourier transform converter 15 can be implemented by an integrated circuit, but is not limited thereto.

控制器17是一種微處理器(microprocessor)、微控制器(microcontroller)。微處理器或微控制器是一種可程式化的特殊積體電路,其具有運算、儲存、輸出/輸入等功能,且可接受並處理各種編碼指令,藉以進行各種邏輯運算與算術運算,並輸出相應的運算結果。 The controller 17 is a microprocessor and a microcontroller. A microprocessor or microcontroller is a programmable special integrated circuit that has functions of operation, storage, output/input, etc., and can accept and process various coding instructions, thereby performing various logic operations and arithmetic operations, and outputting The corresponding operation result.

交錯器(Interleaver)19是一種用以針對多個輸入位元進行交錯及/或重新排列,以產生經交錯及/或經重新排列的多個輸出位元的裝置。 Interleaver 19 is a device for interleaving and/or rearranging a plurality of input bits to produce interleaved and/or rearranged output bits.

參照第1A圖與第1B圖,基頻處理裝置1A與基頻處理裝置1B各自可接收一數位輸入訊號IN,並輸出一數位輸出訊號OUT。極化碼編碼 器11可用以將複數筆第一資料D1編碼成複數筆第二資料D2。每一筆第一資料D1是由一串二進制的位元來表示,且可包含一資訊位元組(即,數位輸入訊號IN所夾帶的資訊位元)以及一凍結位元組(即,由極化碼編碼器11或控制器17所決定及/或產生的凍結位元FRZ)。該複數資訊位元組來自於同一數位輸入訊號IN所夾帶的資訊位元,故具有相同的位元長度以及相同的位元表示。該複數凍結位元組具有相同的位元長度,但具有不同的位元表示。在基頻處理裝置1A中,交錯器19可用以將數位輸入訊號IN所夾帶的資訊位元以及由極化碼編碼器11所決定及/或產生的每一組凍結位元FRZ進行交錯及/或重新排列),以產生複數第一資料D1。在基頻處理裝置1B中,交錯器19可用以將數位輸入訊號IN所夾帶的資訊位元以及由控制器17所決定/產生的每一組凍結位元FRZ進行交錯及/或重新排列),以產生複數第一資料D1。交錯器19可以根據位元可靠性,而對數位輸入訊號IN所夾帶的資訊位元以及由極化碼編碼器11或控制器17所決定/產生的每一組凍結位元進行交錯及/或重新排列,以產生第一資料D1。 Referring to FIGS. 1A and 1B, the baseband processing device 1A and the baseband processing device 1B each can receive a digital input signal IN and output a digital output signal OUT. Polarization code encoding The device 11 can be used to encode the plurality of first data D1 into the second data D2. Each first data D1 is represented by a string of binary bits, and may include an information byte (ie, an information bit entrained by the digital input signal IN) and a frozen byte (ie, by a pole) The frozen bit FRZ) determined and/or generated by the code encoder 11 or the controller 17. The complex information byte is derived from the information bits carried by the same digit input signal IN, and thus has the same bit length and the same bit representation. The complex frozen byte has the same bit length but has a different bit representation. In the baseband processing apparatus 1A, the interleaver 19 can be used to interleave the information bits entrained by the digital input signal IN and each set of frozen bits FRZ determined and/or generated by the polarization code encoder 11 and/or Or rearrange) to generate a plurality of first data D1. In the baseband processing device 1B, the interleaver 19 can be used to interleave and/or rearrange the information bits entrained by the digital input signal IN and each group of frozen bits FRZ determined/generated by the controller 17. To generate a plurality of first data D1. The interleaver 19 can interleave the information bits carried by the digital input signal IN and each group of frozen bits determined/generated by the polarization code encoder 11 or the controller 17 according to the bit reliability. Rearrange to generate the first data D1.

該複數凍結位元組的該複數的相同的位元長度可以取決於極化碼編碼器11所採用的一編碼率。編碼率可以被定義為第一資料D1所包含的資訊位元組的位元長度與第一資料D1的位元長度之比值。舉例來說,若極化碼編碼器11所採用的編碼率是1/2,且第一資料D1所包含的資訊位元組(即,數位輸入訊號IN所夾帶的資訊位元資料)的位元長度是四(即,四個位元),則極化碼編碼器11將會以四個凍結位元來組成第一資料D1所包含的凍結位元組,使得資訊位元組的位元長度與第一資料D1的位元長度之比值等於1/2。 The same bit length of the complex number of the complex frozen byte may depend on a coding rate employed by the polarization code encoder 11. The coding rate can be defined as the ratio of the bit length of the information byte included in the first data D1 to the bit length of the first data D1. For example, if the coding rate used by the polarization code encoder 11 is 1/2, and the information byte of the first data D1 (ie, the information bit data carried by the digital input signal IN) is located, The length of the element is four (ie, four bits), and the polarization code encoder 11 will form the frozen byte included in the first data D1 with four frozen bits, so that the bits of the information byte The ratio of the length to the bit length of the first data D1 is equal to 1/2.

該複數凍結位元組中的每一組可包含一特定凍結位元組,且這些特定凍結位元組具有相同的位元長度但具有不同的位元表示。於某些實施例中,特定凍結位元組的位元長度可以等於凍結位元組的位元長度,亦即,可以選擇凍結位元組的所有位元來組成特定凍結位元組。於某些實施例中,特定凍結位元組的位元長度可以少於凍結位元組的位元長度,亦即,可以只選擇凍結位元組的部分位元來組成特定凍結位元組。舉例而言,若凍結位元組的位元長度為四(即,四個位元),則其包含的特定凍結位元組的位元長度可以是一、二、三或四,亦即,可以選擇該四個位元中的一、二、三或四個來組成特定凍結位元組。 Each of the plurality of frozen byte groups can include a particular frozen byte group, and the particular frozen byte groups have the same bit length but different bit representations. In some embodiments, the bit length of a particular frozen byte may be equal to the bit length of the frozen byte, ie, all bits of the frozen byte may be selected to form a particular frozen byte. In some embodiments, the bit length of a particular frozen byte may be less than the bit length of the frozen byte, that is, only a portion of the bits of the frozen byte may be selected to form a particular frozen byte. For example, if the bit length of the frozen byte is four (ie, four bits), the bit length of the specific frozen byte included therein may be one, two, three, or four, that is, One, two, three or four of the four bits can be selected to form a particular frozen byte.

該複數特定凍結位元組具有不同的位元表示。舉例來說,因每一位元都可以表示為零或一,故若凍結位元組的位元長度為四(即,四個位元),則取決於特定凍結位元組的位元長度(可以是一、二、三或四個位元),特定凍結位元組最多可以有二的四次方(也就是16)種不同的位元表示。被極化碼編碼器11編碼的第一資料D1的數量可取決於具有不同位元表示的特定凍結位元組的數量,故可表示為二的r次方,其中r為正整數,且相當於特定凍結位元組的位元長度。舉例而言,若特定凍結位元組的位元長度為三,則具有不同位元表示的特定凍結位元組的數量與被極化碼編碼器11編碼的第一資料D1的數量都為八(也就是二的三次方)。 The complex specific frozen byte has a different bit representation. For example, since each bit can be represented as zero or one, if the bit length of the frozen byte is four (ie, four bits), it depends on the bit length of the specific frozen byte. (may be one, two, three or four bits), a specific frozen byte can have up to two fourth powers (ie 16) different bit representations. The number of first data D1 encoded by the polarization code encoder 11 may depend on the number of specific frozen byte groups having different bit representations, and thus may be expressed as the rth power of two, where r is a positive integer and is equivalent The length of the bit in a particular frozen byte. For example, if the bit length of a specific frozen byte is three, the number of specific frozen bytes having different bit representations and the number of first data D1 encoded by the polarization code encoder 11 are both eight. (that is, the third party of the second).

在極化碼的架構底下,一旦凍結位元組的位元長度被決定了之後,則凍結位元組所包含每一個位元的位元可靠性也就被確定了。因此,在某些實施例中,極化碼編碼器11可以根據凍結位元的位元可靠性而分別從該複數凍結位元組中決定該複數特定凍結位元組。舉例來說,若凍結位元 組的位元長度為四(即,四個位元),且特定凍結位元組的位元長度被確定為二(即,二個位元),則極化碼編碼器11可以從這四個位元中選出兩個可靠性最高的位元來組成特定凍結位元組。 Under the architecture of the polarization code, once the bit length of the frozen byte is determined, the bit reliability of each bit contained in the frozen byte is determined. Thus, in some embodiments, the polarization code encoder 11 can determine the complex particular frozen byte from the complex frozen byte, respectively, based on the bit reliability of the frozen bit. For example, if the bit is frozen The bit length of the group is four (ie, four bits), and the bit length of the specific frozen byte is determined to be two (ie, two bits), then the polarization code encoder 11 can be from the four Two of the most reliable bits are selected from the bits to form a specific frozen byte.

在極化碼的架構底下,一旦凍結位元組的位元長度被決定了之後,則凍結位元組所包含每一個位元的位元位置也就被確定了。因此,在某些實施例中,極化碼編碼器11可以根據凍結位元的位元位置而分別從該複數凍結位元組中決定該複數特定凍結位元組。舉例來說,若凍結位元組的位元長度為四(即,四個位元),且特定凍結位元組的位元長度被確定為二(即,二個位元),則極化碼編碼器11可以根據這四個位元的位元位置,選出兩個在預設位元位置(例如第一個和第二個位元位置)處的位元來組成特定凍結位元組。 Under the architecture of the polarization code, once the bit length of the frozen byte is determined, the bit position of each bit contained in the frozen byte is also determined. Thus, in some embodiments, the polarization code encoder 11 may determine the complex particular frozen byte from the complex frozen byte, respectively, based on the bit position of the frozen bit. For example, if the frozen byte has a bit length of four (ie, four bits) and the bit length of the specific frozen byte is determined to be two (ie, two bits), then the polarization The code encoder 11 can select two bits at the preset bit positions (for example, the first and second bit positions) to form a specific frozen byte according to the bit positions of the four bits.

在某些實施例中,極化碼編碼器11也可以基於一隨機選取位元的方式而分別從該複數凍結位元組中決定該複數特定凍結位元組。舉例來說,若凍結位元組的位元長度為四(即,四個位元),且特定凍結位元組的位元長度被確定為二(即,二個位元),則極化碼編碼器11可以從這四個位元中隨機選出二個位元來組成特定凍結位元組。 In some embodiments, the polarization code encoder 11 may also determine the complex specific frozen byte from the complex frozen byte, respectively, based on a manner of randomly selecting the bit. For example, if the frozen byte has a bit length of four (ie, four bits) and the bit length of the specific frozen byte is determined to be two (ie, two bits), then the polarization The code encoder 11 can randomly select two bits from the four bits to form a specific frozen byte.

第2A-2B圖是本發明的一或多個實施例中一種極化碼編碼器的運作的示意圖。第2A-2B圖所示內容僅是為了說明本發明的實施例,而非為了限制本發明。第2A-2B圖呈現了具有不同位元表示的二個第一資料D1及其相對應的二個第二資料D2。參照第2A-2B圖,假設這二個第一資料D1所包含的資訊位元組(即,數位輸入訊號IN所夾帶的資訊位元資料)的位元長度都是四(即,四個資訊位元),且因極化碼編碼器11所採用的編碼 率是1/2,故這二個第一資料D1所包含的凍結位元組的位元長度也都是四(即,四個凍結位元)。因此,這二個第一資料D1的位元長度都是八(即,八個位元),且分別以位元X1、位元X2、...、位元X8來表示,而這二個第二資料D2的位元長度也都是八(即,八個位元),且分別以位元Y1、位元Y2、...、位元Y8來表示。另外,這二個第一資料D1所包含的資訊位元組(即,數位輸入訊號IN所夾帶的資訊位元資料)的四個資訊位元分別以位元X4、位元X6、位元X7、與位元X8來表示,而這二個第一資料D1所包含的凍結位元組的四個凍結位元別以位元X1、位元X2、位元X3、與位元X5來表示。 2A-2B is a schematic diagram of the operation of a polarization code encoder in one or more embodiments of the present invention. The contents of the 2A-2B diagram are only for the purpose of illustrating the embodiments of the present invention and are not intended to limit the invention. Figure 2A-2B shows two first data D1 with different bit representations and their corresponding two second data D2. Referring to FIG. 2A-2B, it is assumed that the information bits of the two first data D1 (ie, the information bit data carried by the digital input signal IN) have a bit length of four (ie, four information). Bit) and because of the encoding used by the polarization code encoder 11 The rate is 1/2, so the bit lengths of the frozen bytes included in the two first data D1 are also four (ie, four frozen bits). Therefore, the bit lengths of the two first data D1 are all eight (ie, eight bits), and are represented by bit X1, bit X2, ..., bit X8, respectively. The bit length of the second data D2 is also eight (ie, eight bits), and is represented by the bit Y1, the bit Y2, ..., the bit Y8, respectively. In addition, the four information bits of the information byte (ie, the information bit data carried by the digital input signal IN) included in the two first data D1 are respectively the bit X4, the bit X6, and the bit X7. And the bit X8 is represented, and the four frozen bits of the frozen byte included in the two first data D1 are represented by the bit X1, the bit X2, the bit X3, and the bit X5.

極化碼編碼器11可以根據上述四個凍結位元(即,位元X1、位元X2、位元X3、與位元X5)的位元可靠性、位元位置,或基於一隨機選取位元的方式,從上述四個凍結位元選出一或多個特定凍結位元。為了便於說明,在第2A-2B圖中,假設特定凍結位元組的位元長度是一(即,一個特定凍結位元),且該特定凍結位元以位元X5來表示。 The polarization code encoder 11 may be based on the bit reliability of the above four frozen bits (ie, bit X1, bit X2, bit X3, and bit X5), bit position, or based on a randomly selected bit. In the meta mode, one or more specific frozen bits are selected from the above four frozen bits. For convenience of explanation, in FIG. 2A-2B, it is assumed that the bit length of a specific frozen byte is one (ie, one specific frozen bit), and the specific frozen bit is represented by bit X5.

在這二個第一資料D1中,位元X4、位元X6、位元X7、與位元X8(即,上述資訊位元)的數值都是「1」,而位元X1、位元X2、位元X3(即,上述凍結位元)的數值都是「0」。另外,在第2A圖中,位元X5(即,上述特定凍結位元)的數值是「0」,而在第2B圖中,位元X5(即,上述特定凍結位元)的數值是「1」。在此情況下,如第2A圖所示,第一資料D1所包含的八個位元X1-X8的位元可表示為「0 0 0 0 0 1 1 1」,且第二資料D2所包含的八個位元Y1-Y8的位元可表示為「0 0 0 1 0 0 0 1」。另外,如第2B圖所示,第一資料D1所包含的八個位元X1-X8的位元可表示為「0 0 0 0 1 1 1 1」,且第二資料D2所包含的八個位元Y1-Y8的位元可表示為「1 0 0 1 1 0 0 1」。因此,只需要改變單一個位元(例如,位元X5)的數值,就可以產生二個具有不同位元表示的第二資料D2。 In the two first data D1, the values of the bit X4, the bit X6, the bit X7, and the bit X8 (ie, the information bit) are all "1", and the bit X1, the bit X2 The value of bit X3 (ie, the above-mentioned frozen bit) is "0". Further, in Fig. 2A, the value of the bit X5 (i.e., the specific frozen bit) is "0", and in the second block BB, the value of the bit X5 (i.e., the specific frozen bit) is " 1". In this case, as shown in FIG. 2A, the bits of the eight bits X1-X8 included in the first data D1 can be represented as “0 0 0 0 0 1 1 1”, and the second data D2 is included. The bits of the eight bits Y1-Y8 can be represented as "0 0 0 1 0 0 0 1". In addition, as shown in FIG. 2B, the bits of the eight bits X1-X8 included in the first data D1 can be represented as “0 0 0 0 1 1 1 1”, and the eight bits included in the second data D2 are included. The bit of the bit Y1-Y8 can be expressed as "1 0 0 1 1 0 0 1". Therefore, it is only necessary to change the value of a single bit (e.g., bit X5) to generate two second data D2 having different bit representations.

第3圖是本發明的一或多個實施例中另一種極化碼編碼器的運作的示意圖。第3圖所示內容僅是為了說明本發明的實施例,而非為了限制本發明。參照第3圖,極化碼編碼器11是一種系統式(systematic)極化碼編碼器,其透過進行兩次相同的編碼程序,且在第二次編碼程序中,將凍結位元的數值重置(例如,重設為零),使得第一資料D1中資訊位元(例如,位元X4、位元X6、位元X7、與位元X8)的位元表示和第二資料D2中的資訊位元(例如,位元Y4、位元Y6、位元Y7、與位元Y8)的位元表示相同。因此,無論第一資料D1中的凍結位元(例如,位元X1、位元X2、位元X3、與位元X5)的位元表示如何變化,第二資料D2中的資訊位元(例如,位元Y4、位元Y6、位元Y7、與位元Y8)的位元表示都還是與第一資料D1中的資訊位元(例如,位元X4、位元X6、位元X7、與位元X8)的位元表示相同。換言之,在第3圖中,倘若第一資料D1中的凍結位元(即,位元X1、位元X2、位元X3、與位元X5)的位元表示發生變化,則第二資料D2最多也只會有四個位元(即,位元Y1、位元Y2、位元Y3、與位元Y5)的數值會發生變化。 Figure 3 is a schematic illustration of the operation of another polarization code encoder in one or more embodiments of the present invention. The illustrations in Figure 3 are for illustrative purposes only and are not intended to limit the invention. Referring to Fig. 3, the polarization code encoder 11 is a systematic polarization code encoder which performs the same encoding procedure twice, and in the second encoding procedure, the value of the frozen bit is heavy. Set (eg, reset to zero), such that the bit representation of the information bits (eg, bit X4, bit X6, bit X7, and bit X8) in the first data D1 and the second data D2 The bit representation of the information bit (eg, bit Y4, bit Y6, bit Y7, and bit Y8) is the same. Therefore, regardless of how the bit representation of the frozen bit (eg, bit X1, bit X2, bit X3, and bit X5) in the first data D1 changes, the information bit in the second data D2 (eg, The bit representation of bit Y4, bit Y6, bit Y7, and bit Y8) is still the same as the information bit in the first data D1 (for example, bit X4, bit X6, bit X7, and The bits of bit X8) represent the same. In other words, in FIG. 3, if the bit representation of the frozen bit (ie, bit X1, bit X2, bit X3, and bit X5) in the first data D1 changes, the second data D2 At most, only four bits (ie, bit Y1, bit Y2, bit Y3, and bit Y5) will change in value.

回到第1A圖與第1B圖,每當極化碼編碼器11將一筆第一資料D1編碼為第二資料D2(即,碼字(Code word))之後,調變器13可用以將第二資料D2調變成第三資料D3。該調變器的星狀圖(constellation)點數為M=2m,代表第二資料D2每m個位元會被調變成第三資料D3的一個符元(symbol)。 Returning to FIGS. 1A and 1B, the modulator 13 can be used every time the polarization code encoder 11 encodes a first data D1 into a second data D2 (ie, a code word). The second data D2 is converted into the third data D3. The constellation point of the modulator is M=2 m , which means that every m bits of the second data D2 will be converted into a symbol of the third data D3.

當調變器13將第二資料D2調變成第三資料D3之後,反向離 散傅立葉轉換轉換器15可用以將第三資料D3(頻域資料)轉換成第四資料D4(時域資料)。以反向快速傅立葉轉換為例,反向離散傅立葉轉換轉換器15可以根據以下方程式來將第三資料D3轉換成第四資料D4: 其中,d k 是第三資料D3,x n 是第四資料D4,n表示離散時間點,且N表示第四資料D4的長度。 After the modulator 13 adjusts the second data D2 to the third data D3, the inverse discrete Fourier transform converter 15 can be used to convert the third data D3 (frequency domain data) into the fourth data D4 (time domain data). Taking the inverse fast Fourier transform as an example, the inverse discrete Fourier transform converter 15 can convert the third data D3 into the fourth data D4 according to the following equation: Where d k is the third data D3, x n is the fourth data D4, n represents a discrete time point, and N represents the length of the fourth data D4.

於某些實施例中,每當調變器13將一筆第二資料D2調變成第三資料D3之後,反向離散傅立葉轉換轉換器15便根據方程式(1)將第三資料D3轉換為第四資料D4。於某些實施例中,為了減少反向離散傅立葉轉換的計算量,除了第一筆第三資料D3之外,反向離散傅立葉轉換轉換器15也可以基於一位元轉換查找表(Lookup Table,LUT)來將其他筆第三資料D3轉換為第四資料D4。 In some embodiments, each time the modulator 13 converts a second data D2 into a third data D3, the inverse discrete Fourier transform converter 15 converts the third data D3 to the fourth according to equation (1). Information D4. In some embodiments, in order to reduce the amount of computation of the inverse discrete Fourier transform, the inverse discrete Fourier transform converter 15 may be based on a one-bit conversion lookup table (Lookup Table, in addition to the first third data D3). LUT) to convert the other pen third data D3 into the fourth data D4.

具體而言,因為一組特定凍結位元組總共有r個位元,若將第一資料D1的一組特定凍結位元組其中b個位元(b是一個小於或等於r的一正整數)的位元表示進行改變(例如由零改變為一),則可能造成第二資料D2的p個位元與第三資料D3的q個符元也產生相對應的改變。在預先建立位元轉換查找表的過程中,將第二資料D2中可能產生改變的p個位元的每一個分別建立一組位元轉換查找表輸入,再經過調變器13及反向離散傅立葉轉換轉換器15可以得到一組相應的位元轉換查找表輸出,所有位元轉換查找表輸入與所有相應的位元轉換查找表輸出即可構成一個位元轉換查找表。舉例而言,若第二資料D2有p個位元會受到第一資料D1的b個位元改變而改變,而第二資料D2的p個位元分別落在第ji位置(i是從1到p之間的所有正整 數,包含1與p)。針對每一個i,將第二資料D2的第ji位置的位元表示設定為「1」而其他位置位元表示皆設定為「0」即可得到上述的一組位元轉換查找表輸入,接著將上述p組位元轉換查找表輸入皆分別經過調變器13及反向離散傅立葉轉換轉換器15就可以得到相應的p組位元轉換查找表輸出,並得以建立該位元轉換查找表。另外,位元轉換查找表也可以是由外部的任何計算機裝置或處理器預先建立並儲存於基頻處理裝置1A或基頻處理裝置1B中。 Specifically, since a group of specific frozen byte groups has a total of r bits, if a group of specific frozen bytes of the first data D1 is b bits (b is a positive integer less than or equal to r) The bit representation changes (e.g., from zero to one), which may result in a corresponding change in the p bits of the second data D2 and the q symbols of the third data D3. In the process of pre-establishing the bit conversion lookup table, each of the p bits in the second data D2 may be changed to establish a set of bit conversion lookup table inputs, and then passed through the modulator 13 and the inverse discrete The Fourier transform converter 15 can obtain a corresponding set of bit conversion lookup table outputs, all bit conversion lookup table inputs and all corresponding bit conversion lookup table outputs to form a bit conversion lookup table. For example, if the second data D2 has p bits, it will be changed by the b bits of the first data D1, and the p bits of the second data D2 fall at the j i position (i is from All positive integers between 1 and p, including 1 and p). For each i, j i will be the first bit position of the second data D2 is set to indicate "1" and other bits represent the position are set to "0" can be obtained by the above-mentioned set of conversion bit input look-up table, Then, the p group bit conversion lookup table input is respectively passed through the modulator 13 and the inverse discrete Fourier transform converter 15 to obtain the corresponding p group bit conversion lookup table output, and the bit conversion lookup table is established. . Alternatively, the bit conversion lookup table may be pre-established by any external computer device or processor and stored in the baseband processing device 1A or the baseband processing device 1B.

在第一資料D1的位元長度被確定之後,極化碼編碼器11的編碼結構也就被確定,而一旦極化碼編碼器11的編碼結構被確定,基頻處理裝置1A與基頻處理裝置1B各自便可預先得知第一資料D1中的哪一個位元的數值改變,會使得第二資料D2中的哪一個或哪些位元跟著改變。以第2A-2B圖為例,隨著位元X5(即,上述特定凍結位元)的數值改變,則第二資料D2中的位元Y1和位元Y5的數值將會跟著改變,但第二資料D2中的其他的位元不會跟著改變。因此,基於反向離散傅立葉轉換的線性特性,除了第一筆第四資料D4必須經由反向離散傅立葉轉換之外,反向離散傅立葉轉換轉換器15只需要將第一筆第四資料D4與目前要計算的第四資料D4中位元數值即將改變的一或多個位元在該位元轉換查找表中所預先儲存的轉換結果相加,便可取得其他筆第四資料D4。 After the bit length of the first data D1 is determined, the coding structure of the polarization code encoder 11 is also determined, and once the coding structure of the polarization code encoder 11 is determined, the fundamental frequency processing device 1A and the fundamental frequency processing are determined. Each of the devices 1B can know in advance which value of the bit in the first data D1 changes, which one or which of the second data D2 will be changed. Taking the 2A-2B diagram as an example, as the value of the bit X5 (ie, the specific frozen bit) changes, the values of the bit Y1 and the bit Y5 in the second data D2 will change, but The other bits in the second data D2 will not change. Therefore, based on the linear characteristic of the inverse discrete Fourier transform, in addition to the first fourth data D4 having to pass the inverse discrete Fourier transform, the inverse discrete Fourier transform converter 15 only needs to have the first fourth data D4 with the current The other fourth data D4 can be obtained by adding one or more bits of the fourth data D4 to be calculated to be changed in the bit conversion lookup table.

每當反向離散傅立葉轉換轉換器15將第三資料D3轉換成第四資料D4之後,控制器17可用以根據以下方程式,計算第四資料D4的一峰均功率比: 其中,PAPR即為該峰均功率比,x n 是第四資料D4,max(|x n |2)是第四資料 D4的最大功率,E(|x n |2)是第四資料D4的平均功率。 Each time the inverse discrete Fourier transform converter 15 converts the third data D3 into the fourth data D4, the controller 17 can calculate a peak-to-average power ratio of the fourth data D4 according to the following equation: Where PAPR is the peak-to-average power ratio, x n is the fourth data D4, max(| x n | 2 ) is the maximum power of the fourth data D4, and E (| x n | 2 ) is the fourth data D4 Average power.

控制器17在計算出全部第四資料D4的峰均功率比之後,可以從這些第四資料中選出一第四資料候選者作為數位輸出訊號OUT,其中該第四資料候選者對應至全部峰均功率比中的最小者。 After calculating the peak-to-average power ratio of all the fourth data D4, the controller 17 may select a fourth data candidate as the digital output signal OUT from the fourth data, wherein the fourth data candidate corresponds to all peaks. The smallest of the power ratios.

對於由控制器17所選出的數位輸出訊號OUT所進行的後續處理,與一般正交分頻多工發射器所為的處理相同。舉例而言,可以將數位輸出訊號OUT轉換為類比訊號,接著對該類比訊號進行中頻轉換與射頻轉換,然後傳送一正交分頻多工訊號至一正交分頻多工接收器。 The subsequent processing for the digital output signal OUT selected by the controller 17 is the same as that for the general orthogonal frequency division multiplexing transmitter. For example, the digital output signal OUT can be converted into an analog signal, and then the analog signal is subjected to intermediate frequency conversion and radio frequency conversion, and then an orthogonal frequency division multiplexing signal is transmitted to an orthogonal frequency division multiplexing receiver.

包含基頻處理裝置1A或基頻處理裝置1B的正交分頻多工發射器所傳送的正交分頻多工訊號可以使用傳統的正交分頻多工接收器來接收並處理,而不需要使用特殊設計的正交分頻多工接收器來接收與處理。舉例而言,傳統的正交分頻多工接收器會先將接收到的正交分頻多工信號轉換為數位基頻訊號,接著對該數位基頻訊號進行傅立葉轉換(Fourier Transform),然後進行解調變(Demodulation),最後再進行解碼(Decoding)。對應至採用極化碼的極化碼編碼器11,在解碼階段,可以採用接續消除(Successive Cancellation,SC)解碼器或是接續消除列表(SC-List)解碼器。接續消除解碼器與接續消除列表解碼器的基本核心是在解碼過程中保留機率最高的一條或數條解碼路徑,來作為解碼器的輸出。 The orthogonal frequency division multiplexing signal transmitted by the orthogonal frequency division multiplexing transmitter including the baseband processing device 1A or the baseband processing device 1B can be received and processed using a conventional orthogonal frequency division multiplexing receiver without A specially designed orthogonal frequency division multiplexing receiver is required for reception and processing. For example, a conventional orthogonal frequency division multiplexing receiver first converts the received orthogonal frequency division multiplexing signal into a digital fundamental frequency signal, and then performs Fourier Transform on the digital base frequency signal, and then Demodulation is performed, and finally decoding (Decoding). Corresponding to the polarization code encoder 11 using a polarization code, in the decoding stage, a Successive Cancellation (SC) decoder or a SC-List decoder can be used. The basic core of the splicing elimination decoder and the splicing elimination list decoder is to reserve one or several decoding paths with the highest probability during the decoding process as the output of the decoder.

需說明的是,在本發明的實施例中,與包含基頻處理裝置1A或基頻處理裝置1B的正交分頻多工發射器搭配的正交分頻多工接收器並不需輔助資訊(Side Information),例如第一資料D1中特定凍結位元組的位元位置與位元表示等資訊,就可以對上述數位基頻訊號進行解碼。因此,不同 於採用選擇性映射(Selected Mapping,SLM)的正交分頻多工發射器必須額外傳送r位元(即,輔助資訊),包含基頻處理裝置1A或基頻處理裝置1B的正交分頻多工發射器並不需要傳送該輔助資訊。另需說明的是,在第一資料D1中,凍結位元組所包含的凍結位元並不是數位輸入訊號IN所夾帶的資訊位元資料,故改變凍結位元組所包含的凍結位元的位元表示,基本上並不會影響到接續消除解碼器與接續消除列表解碼器的運作與效果。 It should be noted that, in the embodiment of the present invention, the orthogonal frequency division multiplexing receiver combined with the orthogonal frequency division multiplexing transmitter including the baseband processing device 1A or the baseband processing device 1B does not need auxiliary information. (Side Information), for example, information such as a bit position and a bit representation of a specific frozen byte in the first data D1, and the above-mentioned digital baseband signal can be decoded. Therefore, different The orthogonal frequency division multiplexing transmitter using Selected Mapping (SLM) must additionally transmit r bits (ie, auxiliary information), including orthogonal frequency division of the baseband processing device 1A or the baseband processing device 1B. The multiplex transmitter does not need to transmit the auxiliary information. It should be noted that, in the first data D1, the frozen bit included in the frozen byte is not the information bit data carried by the digital input signal IN, so the frozen bit included in the frozen byte is changed. The bit representation basically does not affect the operation and effect of the connection elimination decoder and the connection elimination list decoder.

第4圖例示了在本發明的一或多個實施例中一種基於正交分頻多工的基頻處理方法。第4圖所示內容僅是為了說明本發明的實施例,而非為了限制本發明。參照第4圖,基於正交分頻多工的基頻處理方法4可包含以下步驟:由一極化碼編碼器,將複數第一資料編碼為複數第二資料,其中該複數第一資料中的每一個包含一資訊位元組以及一凍結位元組,該複數資訊位元組具有相同的位元長度以及相同的位元表示,該複數凍結位元組具有相同的位元長度,該複數凍結位元組中的每一組包含一特定凍結位元組,且該複數特定凍結位元組具有相同的位元長度但具有不同的位元表示(標示為步驟401);由一調變器,將該複數第二資料調變為複數第三資料(標示為步驟403);由一反向離散傅立葉轉換轉換器,將該複數第三資料轉換為複數第四資料(標示為步驟405);以及由一控制器,計算該複數第四資料中的每一個的一峰均功率比,並從該複數第四資料中選出一第四資料候選者,其中該第四資料候選者對應至該 複數峰均功率比中的最小者(標示為步驟407)。 Figure 4 illustrates a method of processing a baseband based on orthogonal frequency division multiplexing in one or more embodiments of the present invention. The contents shown in Figure 4 are for illustrative purposes only and are not intended to limit the invention. Referring to FIG. 4, the basic frequency processing method 4 based on orthogonal frequency division multiplexing may include the following steps: encoding, by a polarization code encoder, a plurality of first data into a plurality of second data, wherein the plurality of first data Each of the plurality of information bytes includes a same bit length and the same bit representation, the complex frozen byte having the same bit length, the complex number Each of the frozen bytes includes a particular frozen byte, and the complex specific frozen byte has the same bit length but has a different bit representation (labeled as step 401); Translating the plurality of second data into a plurality of third data (labeled as step 403); converting the complex third data into a plurality of fourth data (indicated as step 405) by an inverse discrete Fourier transform converter; And calculating, by a controller, a peak-to-average power ratio of each of the plurality of fourth materials, and selecting a fourth data candidate from the fourth plurality of data, wherein the fourth data candidate corresponds to the The smallest of the complex peak-to-average power ratios (labeled as step 407).

在某些實施例中,基於正交分頻多工的基頻處理方法4還可包含以下步驟:由該極化碼編碼器,根據凍結位元的位元可靠性而分別從該複數凍結位元組中決定該複數特定凍結位元組。 In some embodiments, the orthogonal frequency division multiplexing based baseband processing method 4 may further comprise the step of: from the polarization code encoder, respectively, from the complex freeze bit according to the bit reliability of the freeze bit The plural specific freeze byte is determined in the tuple.

在某些實施例中,基於正交分頻多工的基頻處理方法4還可包含以下步驟:由該極化碼編碼器,根據凍結位元的位元位置而分別從該複數凍結位元組中決定該複數特定凍結位元組。 In some embodiments, the orthogonal frequency division multiplexing based baseband processing method 4 may further include the step of: by the polarization code encoder, respectively, freeze the bit from the complex bit according to the bit position of the frozen bit The group determines the plural specific frozen byte.

在某些實施例中,基於正交分頻多工的基頻處理方法4還可包含以下步驟:由該極化碼編碼器,基於一隨機選取位元的方式而分別從該複數凍結位元組中決定該複數特定凍結位元組。 In some embodiments, the orthogonal frequency division multiplexing based baseband processing method 4 may further include the step of: by the polarization code encoder, respectively, freeze the bit from the complex number based on a randomly selected bit manner The group determines the plural specific frozen byte.

在某些實施例中,步驟405可包含:由該反向離散傅立葉轉換轉換器,基於一位元轉換查找表來將該複數第三資料轉換為該複數第四資料。 In some embodiments, step 405 can include converting, by the inverse discrete Fourier transform converter, the complex third data to the complex fourth data based on a one-bit conversion lookup table.

在某些實施例中,步驟405可包含:由該反向離散傅立葉轉換轉換器,基於一位元轉換查找表來將該複數第三資料轉換為該複數第四資料。另外,在這些實施例中,該極化碼編碼器是一系統式極化碼編碼器。 In some embodiments, step 405 can include converting, by the inverse discrete Fourier transform converter, the complex third data to the complex fourth data based on a one-bit conversion lookup table. Additionally, in these embodiments, the polarization code encoder is a systematic polarization code encoder.

在某些實施例中,關於基於正交分頻多工的基頻處理方法4,其中該複數第一資料的數量為2的r次方,且r為正整數。 In some embodiments, with respect to the orthogonal frequency division multiplexing based fundamental frequency processing method 4, wherein the number of the plurality of first data is 2 r-th power, and r is a positive integer.

在某些實施例中,關於基於正交分頻多工的基頻處理方法4,其中該複數凍結位元組的該複數位元長度取決於一編碼率。 In some embodiments, with respect to the orthogonal frequency division multiplexing based fundamental frequency processing method 4, wherein the complex bit length of the complex frozen byte group depends on a coding rate.

於某些實施例中,可在基頻處理裝置1A或基頻處理裝置1B上實現基於正交分頻多工的基頻處理方法4。由於本發明所屬技術領域中具 有通常知識者可根據上文針對基頻處理裝置1A與基頻處理裝置1B的說明而清楚得知基於正交分頻多工的基頻處理方法4所具備的全部相對應步驟,故相關細節於此不再贅述。 In some embodiments, the fundamental frequency processing method 4 based on orthogonal frequency division multiplexing may be implemented on the baseband processing device 1A or the baseband processing device 1B. Due to the technical field of the invention Those skilled in the art can clearly understand all the corresponding steps of the fundamental frequency processing method 4 based on the orthogonal frequency division multiplexing according to the above description of the baseband processing apparatus 1A and the baseband processing apparatus 1B, so that details are relevant. This will not be repeated here.

以上所揭露的實施例並非為了限制本發明。本發明所屬技術領域中具有通常知識者可輕易完成的改變或均等性的安排都落於本發明的範圍內。本發明的範圍以申請專利範圍所載內容為準。 The embodiments disclosed above are not intended to limit the invention. Arrangements for changes or equivalences that can be easily accomplished by those of ordinary skill in the art to which the invention pertains are within the scope of the invention. The scope of the invention is defined by the scope of the claims.

Claims (16)

一種基於正交分頻多工的基頻處理裝置,包含:一極化碼編碼器,用以將複數第一資料編碼為複數第二資料,該複數第一資料中的每一個包含一資訊位元組以及一凍結位元組,該複數資訊位元組具有相同的位元長度以及相同的位元表示,該複數凍結位元組具有相同的位元長度,該複數凍結位元組中的每一組包含一特定凍結位元組,且該複數特定凍結位元組具有相同的位元長度但具有不同的位元表示;一調變器,與該極化碼編碼器電性連接,並用以將該複數第二資料調變為複數第三資料;一反向離散傅立葉轉換轉換器,與該調變器電性連接,並用以將該複數第三資料轉換為複數第四資料;以及一控制器,與該反向離散傅立葉轉換轉換器電性連接,並用以計算該複數第四資料中的每一個的一峰均功率比,並從該複數第四資料中選出一第四資料候選者,該第四資料候選者對應至該複數峰均功率比中的最小者。 A fundamental frequency processing device based on orthogonal frequency division multiplexing includes: a polarization code encoder for encoding a plurality of first data into a plurality of second data, each of the plurality of first data comprising a information bit a tuple and a frozen byte, the complex information byte having the same bit length and the same bit representation, the complex frozen byte having the same bit length, each of the complex frozen bytes A set includes a specific frozen byte, and the complex specific frozen byte has the same bit length but has a different bit representation; a modulator is electrically connected to the polarization code encoder and used to Transforming the plurality of second data into a plurality of third data; an inverse discrete Fourier transform converter electrically connected to the modulator and configured to convert the complex third data into a plurality of fourth data; and a control And electrically coupled to the inverse discrete Fourier transform converter, and configured to calculate a peak-to-average power ratio of each of the plurality of fourth data, and select a fourth data candidate from the fourth plurality of data, The fourth candidate information corresponds to the plurality of peak to average power ratio of the smallest. 如請求項1所述的基頻處理裝置,其中該極化碼編碼器還用以根據凍結位元的位元可靠性而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The baseband processing device of claim 1, wherein the polarization code encoder is further configured to determine the complex specific frozen byte from the plurality of frozen byte groups according to bit reliability of the frozen bit. 如請求項1所述的基頻處理裝置,其中該極化碼編碼器還用以根據凍結位元的位元位置而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The baseband processing device of claim 1, wherein the polarization code encoder is further configured to determine the complex specific frozen byte from the plurality of frozen byte groups according to the bit position of the frozen bit. 如請求項1所述的基頻處理裝置,其中該極化碼編碼器還用以基於一隨機選取位元的方式而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The baseband processing device of claim 1, wherein the polarization code encoder is further configured to determine the complex specific frozen byte from the plurality of frozen byte groups based on a randomly selected bit. 如請求項1所述的基頻處理裝置,其中該反向離散傅立葉轉換轉換器基於一位元轉換查找表來將該複數第三資料轉換為該複數第四資料。 The baseband processing device of claim 1, wherein the inverse discrete Fourier transform converter converts the complex third data into the complex fourth data based on a one-bit conversion lookup table. 如請求項1所述的基頻處理裝置,其中該極化碼編碼器是一系統式極化碼編碼器。 The baseband processing device of claim 1, wherein the polarization code encoder is a systematic polarization code encoder. 如請求項1所述的基頻處理裝置,其中該複數第一資料的數量為2的r次方,r為正整數。 The baseband processing device according to claim 1, wherein the number of the plurality of first materials is 2 r-th power, and r is a positive integer. 如請求項1所述的基頻處理裝置,其中該複數凍結位元組的該複數位元長度取決於一編碼率。 The baseband processing device of claim 1, wherein the complex bit length of the complex frozen byte group depends on a coding rate. 一種基於正交分頻多工的基頻處理方法,包含以下步驟:由一極化碼編碼器,將複數第一資料編碼為複數第二資料,其中該複數第一資料中的每一個包含一資訊位元組以及一凍結位元組,該複數資訊位元組具有相同的位元長度以及相同的位元表示,該複數凍結位元組具有相同的位元長度,該複數凍結位元組中的每一組包含一特定凍結位元組,且該複數特定凍結位元組具有相同的位元長度但具有不同的位元表示;由一調變器,將該複數第二資料調變為複數第三資料;由一反向離散傅立葉轉換轉換器,將該複數第三資料轉換為複數第四資料;以及由一控制器,計算該複數第四資料中的每一個的一峰均功率比,並 從該複數第四資料中選出一第四資料候選者,其中該第四資料候選者對應至該複數峰均功率比中的最小者。 A method for processing a fundamental frequency based on orthogonal frequency division multiplexing includes the following steps: encoding, by a polarization code encoder, a plurality of first data into a plurality of second data, wherein each of the plurality of first data includes one An information byte and a frozen byte, the complex information byte having the same bit length and the same bit representation, the complex frozen byte having the same bit length, the complex frozen byte Each group includes a specific frozen byte, and the complex specific frozen byte has the same bit length but has a different bit representation; the second data is converted into a complex number by a modulator a third data; converting the complex third data into a plurality of fourth data by an inverse discrete Fourier transform converter; and calculating, by a controller, a peak-to-average power ratio of each of the plurality of fourth data, and A fourth data candidate is selected from the fourth plurality of data, wherein the fourth data candidate corresponds to the smallest one of the complex peak-to-average power ratios. 如請求項9所述的基頻處理方法,還包含以下步驟:由該極化碼編碼器,根據凍結位元的位元可靠性而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The method for processing a baseband according to claim 9, further comprising the step of: determining, by the polarization code encoder, the plurality of specific freeze bits from the plurality of frozen byte groups according to bit reliability of the freeze bit Tuple. 如請求項9所述的基頻處理方法,還包含以下步驟:由該極化碼編碼器,根據凍結位元的位元位置而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The method for processing a baseband according to claim 9, further comprising the step of: determining, by the polarization code encoder, the plurality of specific freeze bits from the plurality of frozen byte groups according to the bit position of the freeze bit group. 如請求項9所述的基頻處理方法,還包含以下步驟:由該極化碼編碼器,基於一隨機選取位元的方式而分別從該複數凍結位元組中決定該複數特定凍結位元組。 The method for processing a baseband according to claim 9, further comprising the step of: determining, by the polarization code encoder, the plurality of specific freeze bits from the plurality of frozen byte groups based on a manner of randomly selecting bits group. 如請求項9所述的基頻處理方法,其中轉換該複數第三資料轉換為該複數第四資料的該步驟包含:由該反向離散傅立葉轉換轉換器,基於一位元轉換查找表來將該複數第三資料轉換為該複數第四資料。 The baseband processing method of claim 9, wherein the step of converting the complex third data into the complex fourth data comprises: using the inverse discrete Fourier transform converter, based on a one-bit conversion lookup table The plural third data is converted into the fourth data. 如請求項9所述的基頻處理方法,其中該極化碼編碼器是一系統式極化碼編碼器。 The method of processing a baseband according to claim 9, wherein the polarization code encoder is a systematic polarization code encoder. 如請求項9所述的基頻處理方法,其中該複數第一資料的數量為2的r次方,且r為正整數。 The method of processing a baseband according to claim 9, wherein the number of the plurality of first data is 2 r-th power, and r is a positive integer. 如請求項9所述的基頻處理方法,其中該複數凍結位元組的該複數位元長度取決於一編碼率。 The baseband processing method of claim 9, wherein the complex bit length of the complex frozen byte group depends on a coding rate.
TW106139719A 2017-11-16 2017-11-16 Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing TW201924294A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106139719A TW201924294A (en) 2017-11-16 2017-11-16 Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing
CN201711224957.4A CN109802909A (en) 2017-11-16 2017-11-29 Fundamental frequency processing unit and fundamental frequency processing method based on orthogonal frequency division multiplexing
US15/831,345 US20190149370A1 (en) 2017-11-16 2017-12-04 Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139719A TW201924294A (en) 2017-11-16 2017-11-16 Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing

Publications (1)

Publication Number Publication Date
TW201924294A true TW201924294A (en) 2019-06-16

Family

ID=66431463

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139719A TW201924294A (en) 2017-11-16 2017-11-16 Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing

Country Status (3)

Country Link
US (1) US20190149370A1 (en)
CN (1) CN109802909A (en)
TW (1) TW201924294A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962753B (en) * 2017-12-26 2022-02-18 华为技术有限公司 Method and equipment for rate matching and polar code coding
CN110113282B (en) * 2019-04-19 2021-07-20 苏州大学 Probability PAPR (peak-to-average power ratio) inhibition method based on polarization code assistance
CN111010255B (en) * 2019-11-22 2022-03-01 苏州大学 IM/DD transmission method and system based on polarization code coding

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580836B1 (en) * 2004-12-03 2006-05-16 한국전자통신연구원 Transmitting apparatus and method of ofdm system
KR20110074555A (en) * 2008-09-22 2011-06-30 노오텔 네트웍스 리미티드 Method and system for space code transmit diversity of pucch
US8306148B2 (en) * 2008-11-20 2012-11-06 Advanced Micro Devices, Inc. Method to reduce peak to average power ratio in multi-carrier modulation receivers
FI20086201A0 (en) * 2008-12-16 2008-12-16 Nokia Corp Calculation of Nonlinearity Metrics
WO2013063450A1 (en) * 2011-10-27 2013-05-02 Lsi Corporation Block-based crest factor reduction (cfr)
US10135460B2 (en) * 2013-10-01 2018-11-20 Texas Instruments Incorporated Apparatus and method for multilevel coding (MLC) with binary alphabet polar codes
KR102526618B1 (en) * 2013-10-25 2023-04-27 마벨 아시아 피티이 엘티디. Range extension mode for wifi
WO2015066925A1 (en) * 2013-11-11 2015-05-14 华为技术有限公司 Polar code encoding method and device
US10193578B2 (en) * 2014-07-10 2019-01-29 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
WO2017127973A1 (en) * 2016-01-25 2017-08-03 Qualcomm Incorporated Generation of polar codes with a variable block length utilizing puncturing
EP3427397B1 (en) * 2016-03-15 2020-10-21 Huawei Technologies Co., Ltd. Polarized spectrally-precoded transmission
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN106209717B (en) * 2016-07-12 2019-07-05 北京邮电大学 A kind of adaptive polarization-QAM combined modulation method promoting power amplifier efficiency
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
US10432357B2 (en) * 2017-06-02 2019-10-01 Qualcomm Incorporated Sequence-based polar code description

Also Published As

Publication number Publication date
US20190149370A1 (en) 2019-05-16
CN109802909A (en) 2019-05-24

Similar Documents

Publication Publication Date Title
Tarokh et al. On the computation and reduction of the peak-to-average power ratio in multicarrier communications
KR101115437B1 (en) Low density parity checkldpc encoded higher order modulation
JP6552128B2 (en) System and method for generating a codebook with fewer projections per complex dimension and use thereof
US10727951B2 (en) Low-complexity constellation shaping
JP5237358B2 (en) System, method, and computer-readable medium for multi-level shaping for a wireless communication system
JP4097712B2 (en) Quadrature amplitude modulation (QAM) signal processing apparatus and method
RU2249918C1 (en) Method and device for digital communication
CA2461090C (en) Transmitting/receiving apparatus and method for reducing papr in an ofdm mobile communication system
WO2002009300A2 (en) Method and system for turbo encoding in adsl
EP3306821B1 (en) Methods of converting or reconverting a data signal and method and system for data transmission and/or data reception
JPH11163826A (en) Method for encoding data
JP2010130397A (en) Coding and modulation method of wireless communication device, and decoding method
WO2007010376A2 (en) Adaptive multilevel block coded modulation for ofdm systems
JPH07154437A (en) Method for constituting digital radio transmitter
TW201924294A (en) Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing
JPH11266225A (en) Method for identifying code word
JPH07288554A (en) Method and equipment of trellis coding
Shiragapur et al. Peak-to-average power ratio reduction using coding and hybrid techniques for OFDM system
CN111092663B (en) Optical orthogonal frequency division multiplexing system and communication method based on bit weighted distribution
Abdullah et al. SELECTIVECODEWORD SHIFT (SCS) TECHNIQUE FOR PAPR REDUCTION OF OFDM SYSTEMS
Manhas et al. OFDM PAPR reduction using recurring SLM with cyclic and linear block codes schemes
JP4494276B2 (en) Adaptive modulation apparatus and adaptive modulation method
Jeong et al. Performance improvement techniques for CCK-OFDM WLAN modem
Schmidt On the peak-to-mean envelope power ratio of phase-shifted binary codes
Roshan et al. Reduction of peak to average power ratio in OFDM technique by using cyclic codes