TW201803888A - Specific modification of antibody with IgG-binding peptide capable of specifically and easily modifying the antibody - Google Patents
Specific modification of antibody with IgG-binding peptide capable of specifically and easily modifying the antibody Download PDFInfo
- Publication number
- TW201803888A TW201803888A TW105123520A TW105123520A TW201803888A TW 201803888 A TW201803888 A TW 201803888A TW 105123520 A TW105123520 A TW 105123520A TW 105123520 A TW105123520 A TW 105123520A TW 201803888 A TW201803888 A TW 201803888A
- Authority
- TW
- Taiwan
- Prior art keywords
- residue
- igg
- peptide
- xaa1
- acid
- Prior art date
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Description
本發明係關於一種IgG結合肽、經交聯劑修飾之IgG結合肽、該經交聯劑修飾之IgG結合肽與IgG之複合體、及生產該複合體之方法等。 The invention relates to an IgG-binding peptide, an IgG-binding peptide modified with a cross-linking agent, a complex of the IgG-binding peptide modified with a cross-linking agent and IgG, and a method for producing the complex.
先前以來,抗體於各種研究、開發中被大量用於檢測靶分子,作為檢測試劑或診斷藥而於產業上亦變得極重要。又,抗體因其對靶分子之特異性而亦作為用於治療疾病之醫藥品受到關注。 In the past, antibodies have been used to detect target molecules in a large variety of research and development, and it has become extremely important in the industry as a detection reagent or diagnostic drug. In addition, antibodies have attracted attention as medicines for treating diseases due to their specificity for target molecules.
作為用以對抗體附加功能之化學修飾,一直採用鹼性磷酸酶(AP)或過氧化酶(HRP)等酶(非專利文獻1~2)、進而用於放射性同位素之碘化或螯合化合物之附加(非專利文獻3)、利用生物素等低分子化合物所進行之修飾(非專利文獻4)。該等修飾主要係經由離胺酸之胺基或半胱胺酸之硫醇基、及經活化之羧基等而進行,該等雖然對於官能基具有特異性,但並非部位特異性,因而存在因抗體對抗原結合部位之修飾等而導致抗體之活性降低等問題、或難以控制所結合之化合物之數量等問題。關於近年來出現之抗體醫藥之抗體藥物複合體(ADC)(非專利文獻5~6),亦使抗癌劑部位非特異性地與抗體結合,因而存在抗體本身之活性減弱,因抗癌劑之結合數之控制之困難性而導致其後之製劑化之步驟變得複雜等問題。 As a chemical modification to add functions to antibodies, enzymes such as alkaline phosphatase (AP) or peroxidase (HRP) (non-patent documents 1 to 2) have been used, and iodinated or chelated compounds for radioisotopes have been used. (Non-Patent Document 3) and modification using low-molecular compounds such as biotin (Non-Patent Document 4). These modifications are mainly carried out through the amino group of lysine or the thiol group of cysteine, and the activated carboxyl group, etc. Although these are specific to functional groups, they are not site-specific. The modification of the antibody to the antigen-binding site caused problems such as a decrease in the activity of the antibody, or difficulties in controlling the number of compounds to be bound. Regarding the antibody drug complex (ADC) of antibody medicine (non-patent documents 5 to 6) that has appeared in recent years, the anticancer agent site also binds to the antibody non-specifically, so the activity of the antibody itself is weakened. The difficulty in controlling the number of combinations leads to problems such as that the subsequent formulation steps become complicated.
為了克服此種問題,進行有使用部位特異性地導入有特定官能基之抗體,並對抗體進行修飾。例如,可藉由利用基因工程學之改型 將非天然胺基酸(非專利文獻7~9)或游離之半胱胺酸(非專利文獻10~11)導入至特定部位,而實現特定部位之修飾。又,報告有利用轉麩胺醯胺酶(TG)將抗體中之天然或者人工導入之特定麩醯胺作為靶進行修飾(非專利文獻12~13),但已知其反應產率會根據所導入之化合物之結構或設為靶之麩醯胺殘基之空間環境而大幅度受到影響。進而,亦利用將抗體之Fc上之糖鏈作為靶之修飾技術(非專利文獻14~15),該等方法雖為部位特異性者,但需要進行糖鏈之氧化修飾,因而存在反應步驟變得複雜等問題。如此,雖然業界逐步開發出部位特異性之抗體修飾技術,但多數情形時需要對抗體本身進行抗體工程學之改型,考慮到該改型所伴隨之抗體之功能降低或開發之高成本,而未必可謂有利之方法。 In order to overcome such a problem, an antibody having a specific functional group specifically introduced at a use site is performed, and the antibody is modified. For example, by using genetic engineering An unnatural amino acid (Non-Patent Documents 7 to 9) or free cysteine (Non-Patent Documents 10 to 11) is introduced into a specific site, and a specific site is modified. In addition, it has been reported that natural or artificially introduced specific glutamine in antibodies is modified by using transglutaminase (TG) as a target (Non-Patent Documents 12 to 13). The structure of the introduced compound or the space environment of the target glutamine residue is greatly affected. Furthermore, modification techniques that use the sugar chain on the Fc of the antibody as a target are also used (Non-Patent Documents 14 to 15). Although these methods are site-specific, oxidative modification of the sugar chain is required, so there are changes in the reaction steps. Get complicated and so on. In this way, although the industry has gradually developed site-specific antibody modification technologies, in most cases it is necessary to modify the antibody engineering of the antibody itself. Considering the reduced function of the antibody accompanying the modification or the high cost of development, Not necessarily an advantageous approach.
[非專利文獻1]Imagawa, M. et al., Journal of Applied Biochemistry, 1982, 4, pp. 41-57 [Non-Patent Document 1] Imagawa, M. et al., Journal of Applied Biochemistry, 1982, 4, pp. 41-57
[非專利文獻2]Hashida, S et al., Journal of Applied Biochemistry, 1984, 6, pp. 56-63 [Non-Patent Document 2] Hashida, S et al., Journal of Applied Biochemistry, 1984, 6, pp. 56-63
[非專利文獻3]Rodwell, J. D. et al., Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, pp.2632-2636 [Non-Patent Document 3] Rodwell, J. D. et al., Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, pp. 2632-2636
[非專利文獻4]Hermanson, G. T., Bioconjugate Techniques, The third edition, Elsevier, USA, 2013 [Non-Patent Document 4] Hermanson, G. T., Bioconjugate Techniques, The third edition, Elsevier, USA, 2013
[非專利文獻5]Lewis Phillips, G. D. et al., Cancer Research, 2008, 68, pp. 9280-9290 [Non-Patent Document 5] Lewis Phillips, G. D. et al., Cancer Research, 2008, 68, pp. 9280-9290
[非專利文獻6]Boyraz, B. et al., Current Medical Research and Opinion, 2013, 29, pp. 405-414 [Non-Patent Document 6] Boyraz, B. et al., Current Medical Research and Opinion, 2013, 29, pp. 405-414
[非專利文獻7]Axup, J. Y. et al., Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, pp. 16101-16106 [Non-Patent Document 7] Axup, J. Y. et al., Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, pp. 16101-16106
[非專利文獻8]Tian, F. et al., Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, pp. 1766-1771 [Non-Patent Document 8] Tian, F. et al., Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, pp. 1766-1771
[非專利文獻9]Zimmerman, E. S. et al., Bioconjugate chemistry, 2014, 25, pp. 351-361 [Non-Patent Document 9] Zimmerman, E. S. et al., Bioconjugate chemistry, 2014, 25, pp. 351-361
[非專利文獻10]Shen, B. Q. et al., Nature Biotechnology, 2012, 30, pp. 184-189 [Non-Patent Document 10] Shen, B. Q. et al., Nature Biotechnology, 2012, 30, pp. 184-189
[非專利文獻11]Bernardes, G. J. et al., Nature Protocols, 2013, 8, pp. 2079-2089 [Non-Patent Document 11] Bernardes, G. J. et al., Nature Protocols, 2013, 8, pp. 2079-2089
[非專利文獻12]Dennler, P. et al., Bioconjugate Chemistry, 2014, 25, pp. 569-578 [Non-Patent Document 12] Dennler, P. et al., Bioconjugate Chemistry, 2014, 25, pp. 569-578
[非專利文獻13]Jeger, S. et al., Angewandte Chemie 2010, 49, pp. 9995-9997 [Non-Patent Document 13] Jeger, S. et al., Angewandte Chemie 2010, 49, pp. 9995-9997
[非專利文獻14]Bejot, R et al., J. Labelled. Compd. Rad., 2012, 55, pp. 346-353 [Non-Patent Document 14] Bejot, R et al., J. Labelled. Compd. Rad., 2012, 55, pp. 346-353
[非專利文獻15]Zhou, Q. et al., Bioconjugate Chemistry, 2014, 25, pp. 510-520 [Non-Patent Document 15] Zhou, Q. et al., Bioconjugate Chemistry, 2014, 25, pp. 510-520
因此,需要可特異性地且簡便地修飾抗體之方法。 Therefore, there is a need for a method that can specifically and easily modify antibodies.
本發明者等人迄今為止已對特異性地或選擇性地與IgG結合之肽(以下稱為「IgG結合肽」)進行了報告(參照WO2013/027796及WO2008/054030)。為了解決上述問題,本發明者基於IgG結合肽與 IgG Fc之複合體之X射線結晶結構解析,對結合狀態下之IgG結合肽之各胺基酸之位置與IgG Fc之各胺基酸之位置關係進行了詳細研究。進而發現,藉由將能夠與交聯劑結合之胺基酸導入至肽,並利用交聯劑對該胺基酸進行修飾,製備經交聯劑部位特異性地修飾之IgG結合肽,使用該IgG結合肽可對IgG進行修飾,從而完成了本案發明。 The present inventors have reported on peptides that specifically or selectively bind to IgG (hereinafter referred to as "IgG-binding peptides") (see WO2013 / 027796 and WO2008 / 054030). In order to solve the above problems, the inventors based on the IgG binding peptide and The X-ray crystal structure of the IgG Fc complex was analyzed, and the relationship between the position of each amino acid of the IgG-binding peptide and the position of each amino acid of IgG Fc in the bound state was studied in detail. It was further found that, by introducing an amino acid capable of binding to a cross-linking agent into a peptide, and modifying the amino acid with a cross-linking agent, an IgG-binding peptide specifically modified by a cross-linking agent site was prepared, and this was used The IgG-binding peptide can modify IgG, thus completing the present invention.
即,本發明包括以下之態樣。 That is, the present invention includes the following aspects.
(1)一種肽,其特徵在於包含下述式I:(X1-3)-C-(X2)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-(X1-3) (I) (1) A peptide characterized by comprising the following formula I: (X 1-3 ) -C- (X 2 ) -H- (Xaa1) -G- (Xaa2) -LVWC- (X 1-3 ) ( I)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,且W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, H is a histidine residue, Xaa1 is an lysine residue, a half Cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, and Xaa2 is a glutamic acid residue or Asparagine residue, L is leucine residue, V is valine residue, and W is tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
(2)如上述(1)所記載之肽,其特徵在於包含下述式II:(X1-3)-C-(Xaa3)-(Xaa4)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-(X1-3) (II) (2) The peptide according to the above (1), characterized by comprising the following formula II: (X 1-3 ) -C- (Xaa3)-(Xaa4) -H- (Xaa1) -G- (Xaa2) -LVWC- (X 1-3 ) (II)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘 基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,W為色胺酸殘基,Xaa3為丙胺酸殘基、絲胺酸殘基或蘇胺酸殘基,且Xaa4為酪胺酸殘基或色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, H is a histidine residue, Xaa1 is an lysine residue, a half Cysteine residue, aspartic acid residue, glutamic acid residue Group, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, Xaa2 is a glutamate residue or an asparagine residue, L is a leucine residue, and V is Valine residue, W is tryptophan residue, Xaa3 is alanine residue, serine residue or threonine residue, and Xaa4 is tyrosine residue or tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
(3)如上述(1)或(2)所記載之肽,其特徵在於包含下述式III:(X1-3)-C-A-Y-H-(Xaa1)-G-E-L-V-W-C-(X1-3) (III) (3) The peptide according to (1) or (2) above, characterized in that it comprises the following formula III: (X 1-3 ) -CAYH- (Xaa1) -GELVWC- (X 1-3 ) (III)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,A為丙胺酸殘基,Y為酪胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,E為麩胺酸殘基,L為白胺酸殘基,V為纈胺酸殘基,且W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, A is an alanine residue, Y is a tyrosine residue, and H is Histamine residue, Xaa1 is lysine residue, cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G Is a glycine residue, E is a glutamic acid residue, L is a leucine residue, V is a valine residue, and W is a tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
(4)如上述(1)至(3)中任一項所記載之肽,其中於設為17個胺基酸殘基之情形時自N末端起第1~3、15~17號之各胺基酸殘基為第1號胺基酸殘基=S、G、F或無,第2號胺基酸殘基=D、G、A、S、P、高半胱胺酸或無,第3號胺基酸殘基=S、D、T、N、E或R,第15號胺基酸殘基=S、T或D,第16號胺基酸殘基=H、G、Y、T、N、D、F、高半胱胺酸或無,第17號胺基酸殘基=Y、F、H、M或無。 (4) The peptide according to any one of (1) to (3) above, wherein when the number is 17 amino acid residues, each of the numbers 1 to 3 and 15 to 17 from the N-terminus The amino acid residue is No. 1 amino acid residue = S, G, F, or None, and the No. 2 amino acid residue = D, G, A, S, P, homocysteine, or None, No. 3 amino acid residues = S, D, T, N, E, or R, No. 15 amino acid residues = S, T, or D, No. 16 amino acid residues = H, G, Y , T, N, D, F, homocysteine or none, amino acid residue No. 17 = Y, F, H, M or none.
(5)如上述(4)所記載之肽,其包含以下1)~15)中之任一胺基酸序列,其中Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,Xaa2為高半胱胺酸。 (5) The peptide according to the above (4), which comprises any amino acid sequence of 1) to 15) below, wherein Xaa1 is an lysine residue, a cysteine residue, or aspartic acid Residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, Xaa2 is homocysteine.
1)DCAYH(Xaa1)GELVWCT(序列編號1) 1) DCAYH (Xaa1) GELVWCT (serial number 1)
2)GPDCAYH(Xaa1)GELVWCTFH(序列編號2) 2) GPDCAYH (Xaa1) GELVWCTFH (serial number 2)
3)RCAYH(Xaa1)GELVWCS(序列編號3) 3) RCAYH (Xaa1) GELVWCS (serial number 3)
4)GPRCAYH(Xaa1)GELVWCSFH(序列編號4) 4) GPRCAYH (Xaa1) GELVWCSFH (serial number 4)
5)SPDCAYH(Xaa1)GELVWCTFH(序列編號5) 5) SPDCAYH (Xaa1) GELVWCTFH (serial number 5)
6)GDDCAYH(Xaa1)GELVWCTFH(序列編號6) 6) GDDCAYH (Xaa1) GELVWCTFH (serial number 6)
7)GPSCAYH(Xaa1)GELVWCTFH(序列編號7) 7) GPSCAYH (Xaa1) GELVWCTFH (serial number 7)
8)GPDCAYH(Xaa1)GELVWCSFH(序列編號8) 8) GPDCAYH (Xaa1) GELVWCSFH (serial number 8)
9)GPDCAYH(Xaa1)GELVWCTHH(序列編號9) 9) GPDCAYH (Xaa1) GELVWCTHH (serial number 9)
10)GPDCAYH(Xaa1)GELVWCTFY(序列編號10) 10) GPDCAYH (Xaa1) GELVWCTFY (serial number 10)
11)SPDCAYH(Xaa1)GELVWCTFY(序列編號11) 11) SPDCAYH (Xaa1) GELVWCTFY (serial number 11)
12)SDDCAYH(Xaa1)GELVWCTFY(序列編號12) 12) SDDCAYH (Xaa1) GELVWCTFY (serial number 12)
13)RGNCAYH(Xaa1)GQLVWCTYH(序列編號13) 13) RGNCAYH (Xaa1) GQLVWCTYH (serial number 13)
14)G(Xas2)DCAYH(Xaa1)GELVWCT(Xaa2)H(序列編號36) 14) G (Xas2) DCAYH (Xaa1) GELVWCT (Xaa2) H (serial number 36)
15)RRGPDCAYH(Xaa1)GELVWCTFH(序列編號37) 15) RRGPDCAYH (Xaa1) GELVWCTFH (serial number 37)
(6)如上述(1)或(2)所記載之肽,其特徵在於包含下述式IV:D-C-(Xaa3)-(Xaa4)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-T (IV) (6) The peptide according to (1) or (2) above, which is characterized by comprising the following formula IV: DC- (Xaa3)-(Xaa4) -H- (Xaa1) -G- (Xaa2) -LVWCT ( IV)
(式中,D為天冬胺酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,W為色胺酸殘基,T為蘇胺酸殘基,Xaa3為丙胺酸殘基或蘇胺酸殘基,且Xaa4為酪胺酸殘基或色胺酸殘基)所表示之包含13個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 (In the formula, D is an aspartic acid residue, C is a cysteine residue, H is a histidine residue, and Xaa1 is an lysine residue, a cysteine residue, and an aspartic acid residue. Group, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, Xaa2 is a glutamic acid residue or asparagine residue, and L is leucine Acid residues, V is a valine residue, W is a tryptophan residue, T is a threonine residue, Xaa3 is an alanine residue or a threonine residue, and Xaa4 is a tyrosine residue or The amino acid sequence represented by tryptophan residue) includes 13 amino acid residues, and can bind to human IgG and / or rabbit IgG.
(7)如上述(6)所記載之肽,其包含以下1)~4)中之任一胺基酸序列,其中Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸。 (7) The peptide according to the above (6), which comprises an amino acid sequence of any of 1) to 4) below, wherein Xaa1 is an lysine residue, a cysteine residue, or aspartic acid Residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid.
1)DCTYH(Xaa1)GNLVWCT(序列編號14) 1) DCTYH (Xaa1) GNLVWCT (serial number 14)
2)DCAYH(Xaa1)GNLVWCT(序列編號15) 2) DCAYH (Xaa1) GNLVWCT (serial number 15)
3)DCTYH(Xaa1)GELVWCT(序列編號16) 3) DCTYH (Xaa1) GELVWCT (serial number 16)
4)DCAWH(Xaa1)GELVWCT(序列編號17) 4) DCAWH (Xaa1) GELVWCT (serial number 17)
(8)一種肽,其特徵在於包含下述式V: D-C-(Xaa2)-(Xaa3)-(Xaa4)-(Xaa1)-G-(Xaa5)-L-(Xaa6)-W-C-T (V) (8) A peptide characterized by comprising the following formula V: D-C- (Xaa2)-(Xaa3)-(Xaa4)-(Xaa1) -G- (Xaa5) -L- (Xaa6) -W-C-T (V)
(式中,D為天冬胺酸殘基,C為半胱胺酸殘基,G為甘胺酸殘基,L為白胺酸殘基,W為色胺酸殘基,T為蘇胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,Xaa2為丙胺酸殘基、絲胺酸殘基或蘇胺酸殘基,Xaa3為色胺酸殘基或酪胺酸殘基,Xaa4為組胺酸殘基、精胺酸殘基、絲胺酸殘基或蘇胺酸殘基,Xaa5為麩胺酸殘基、天冬醯胺殘基、精胺酸殘基、或天冬胺酸殘基,且Xaa6為異白胺酸殘基或纈胺酸殘基)所表示之包含13個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 (Where D is an aspartic acid residue, C is a cysteine residue, G is a glycine residue, L is a leucine residue, W is a tryptophan residue, and T is a threonine Acid residue, Xaa1 is lysine residue, cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, Xaa2 is propylamine Acid residue, serine residue or threonine residue, Xaa3 is tryptophan residue or tyrosine residue, Xaa4 is histamine residue, arginine residue, serine residue or Threonine residue, Xaa5 is a glutamic acid residue, an asparagine residue, an arginine residue, or an aspartic acid residue, and Xaa6 is an isoleucine residue or a valine residue The amino acid sequence represented by) contains 13 amino acid residues and is capable of binding to human IgG and / or rabbit IgG.
(9)如上述(1)至(8)中任一項所記載之肽,其中肽於外側之2個半胱胺酸(C)殘基間形成二硫鍵,或肽之外側之2個半胱胺酸殘基中之硫基利用以下之式:
所表示之連結子而連結。 The linkers indicated are linked.
(10)如上述(1)至(9)中任一項所記載之肽,其係利用標記物質進 行標記。 (10) The peptide according to any one of (1) to (9) above, which is obtained by using a labeling substance. Line tag.
(11)如上述(1)至(10)中任一項所記載之肽,其結合有藥劑。 (11) The peptide according to any one of (1) to (10) above, which is bound with a pharmaceutical agent.
(12)如上述(1)至(11)中任一項所記載之肽,其中Xaa1為離胺酸殘基。 (12) The peptide according to any one of (1) to (11) above, wherein Xaa1 is an lysine residue.
(13)如上述(1)至(12)中任一項所記載之肽,其中Xaa1係經交聯劑修飾。 (13) The peptide according to any one of (1) to (12) above, wherein Xaa1 is modified with a crosslinking agent.
(14)如上述(13)所記載之肽,其中上述交聯劑為選自由DSG(二琥珀醯亞胺基戊二酸鹽)、DSS(二琥珀醯亞胺基辛二酸鹽)、DMA(己二亞胺酸二甲酯二鹽酸鹽)、DMP(庚二亞胺酸二甲酯二鹽酸鹽)、DMS(辛二亞胺酸二甲酯二鹽酸鹽)、DTBP(3,3'-二硫代雙丙亞胺酸二甲酯二鹽酸鹽)、及DSP(二硫代雙琥珀醯亞胺基丙酸)所組成之群中。 (14) The peptide according to the above (13), wherein the cross-linking agent is selected from the group consisting of DSG (disuccinimidyliminoglutarate), DSS (disuccinimidyliminosuberate), and DMA (Dimethyl adipimidate dihydrochloride), DMP (dimethylheptimimidate dihydrochloride), DMS (dimethyloctimidate dihydrochloride), DTBP (3 , 3'-dithiobispropionimide dimethyl dihydrochloride) and DSP (dithiobissuccinimide iminopropionate).
(15)如上述(14)之肽,其中上述交聯劑為DSG(二琥珀醯亞胺基戊二酸鹽)或DSS(二琥珀醯亞胺基辛二酸鹽)。 (15) The peptide according to the above (14), wherein the cross-linking agent is DSG (disuccinimidyliminoglutarate) or DSS (disuccinimidyliminosuberate).
(16)一種複合體,其係如上述(13)至(15)中任一項所記載之肽與IgG之複合體,並且係藉由經交聯劑修飾之肽與IgG之交聯反應而形成。 (16) A complex which is a complex of a peptide and IgG as described in any one of (13) to (15) above, and which is obtained by a cross-linking reaction between a peptide modified with a cross-linking agent and IgG form.
(17)一種生產肽與IgG之複合體之方法,其包括將如上述(13)至(15)中任一項所記載之肽與IgG混合而使經交聯劑修飾之肽與IgG進行交聯反應之步驟。 (17) A method for producing a complex of a peptide and an IgG, comprising mixing the peptide described in any one of (13) to (15) above with the IgG to cross-link the peptide modified with a cross-linking agent with the IgG Steps of the joint reaction.
(18)一種醫藥組合物,其包含如上述(1)至(15)中任一項所記載之肽或如上述(16)所記載之複合體。 (18) A pharmaceutical composition comprising the peptide according to any one of the above (1) to (15) or the complex according to the above (16).
(19)一種生產2個以上之半胱胺酸殘基利用連結子連結而成之肽的方法,其包括將包含2個以上之半胱胺酸殘基之肽與以下之式:
所表示之化合物(式中,R1及R2分別獨立為任意之鹵素原子)混合,而獲得2個以上之半胱胺酸殘基中之硫基利用以下之式:
所表示之連結子連結而成之肽的步驟。 Steps of peptides represented by the indicated linkers.
(20)如上述(19)所記載之方法,其中於上述化合物中,R1及R2相同,且為Cl、Br、或I。 (20) The method according to the above (19), wherein in the compound, R 1 and R 2 are the same and are Cl, Br, or I.
(21)如上述(19)或(20)所記載之方法,其中上述肽係如上述(1)至(8)及(10)至(15)之任一項所規定之肽。 (21) The method according to the above (19) or (20), wherein the peptide is a peptide specified in any one of the above (1) to (8) and (10) to (15).
本發明之經交聯劑修飾之IgG結合肽由於可於短時間內且幾乎無副反應地附加至IgG,故而藉由使各種化合物與該IgG結合肽結合,可利用各種化合物而特異性地且簡便地修飾IgG。又,本發明之經交聯劑修飾之IgG結合肽可直接與野生型IgG等結合,而無需對抗體分子之序列進行改型,因此不會引起抗體分子之基因改型所伴隨之功能降低,從而能夠以更低之成本使各種化合物與抗體結合。進而,所導入之化合物可預先與IgG結合肽結合,且該IgG結合肽與抗體之結合反應可於適當之反應條件下進行,因此於使所導入之化合物與IgG直接反應之步驟中無需先前所必須之複雜反應,又,可防止因該反應所引起之抗體之功能降低。 The cross-linker-modified IgG-binding peptide of the present invention can be added to IgG in a short period of time with almost no side reactions. Therefore, by binding various compounds to the IgG-binding peptide, various compounds can be used specifically and Easy modification of IgG. In addition, the IgG-binding peptide modified by the cross-linking agent of the present invention can directly bind to wild-type IgG and the like without modifying the sequence of the antibody molecule, and therefore does not cause a reduction in the function accompanying the genetic modification of the antibody molecule. Thus, various compounds can be bound to antibodies at a lower cost. Furthermore, the introduced compound can be bound to an IgG binding peptide in advance, and the binding reaction between the IgG binding peptide and the antibody can be performed under appropriate reaction conditions. Therefore, the step of directly reacting the introduced compound with IgG does not need to be previously performed. The necessary complex reaction can prevent the reduction of the function of the antibody caused by the reaction.
圖1(A)表示IgG結合肽(C35A-3/15:DCAYHRGELVWCT(序列編號33))與人類IgG Fc之複合體之結構。IgG結合肽係以空間填充模型表示,IgG Fc係以帶模型表示,以線模型表示Fc之糖鏈。圖1(B)表示經DSG(disuccinimidylglutarate,二琥珀醯亞胺基戊二酸鹽)修飾之IgG結 合肽(C35A-3/15(R8K):DCAYHKGELVWCT(序列編號34))與IgG Fc之交聯結構之模型。肽之主鏈係以帶模型表示。肽-Lys8表示C35A-3/15(R8K)之第6號離胺酸殘基,肽-Tyr6-Gly9表示C35A-3/15(R8K)之第4號酪胺酸殘基至第7號甘胺酸殘基。又,Fc-Lys248表示依據EU編號之Fc之Lys248,Fc-Pro247-Asp249表示依據EU編號之Fc之Pro247至Asp249。 FIG. 1 (A) shows the structure of a complex of an IgG-binding peptide (C35A-3 / 15: DCAYHRGELVWCT (SEQ ID NO: 33)) and a human IgG Fc. The IgG-binding peptides are represented by a space-filled model, the IgG Fc is represented by a band model, and the sugar chain of Fc is represented by a line model. Figure 1 (B) shows the IgG structure modified by DSG (disuccinimidylglutarate). Model of the cross-linked structure of the peptide (C35A-3 / 15 (R8K): DCAYHKGELVWCT (SEQ ID NO: 34)) and IgG Fc. The backbone of the peptide is represented by a band model. Peptide-Lys8 represents the 6th lysine residue of C35A-3 / 15 (R8K), and peptide-Tyr6-Gly9 represents the 4th tyrosine residue of C35A-3 / 15 (R8K) to 7th glycine Amino acid residues. In addition, Fc-Lys248 represents Lys248 of Fc according to EU number, and Fc-Pro247-Asp249 represents Pro247 to Asp249 of Fc according to EU number.
圖2表示標記化IgG結合肽與各種蛋白質之混合物之SDS-PAGE(Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis,十二烷基磺酸鈉-聚丙烯醯胺凝膠電泳)(A)及西方墨點(B)之結果。圖中,DSG表示將與DSG(二琥珀醯亞胺基戊二酸鹽)反應之IgG結合肽供於試驗,DSS(disuccinimidylsuberate,二琥珀醯亞胺基辛二酸鹽)表示將與DSS(二琥珀醯亞胺基辛二酸鹽)反應之IgG結合肽供於試驗。又,圖中,hIgG表示人類IgG,hIgA表示人類IgA,HAS表示人類血清白蛋白。 Figure 2 shows SDS-PAGE (Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis) of a mixture of labeled IgG-binding peptides and various proteins (A) and Western blot ( B) Results. In the figure, DSG indicates that an IgG-binding peptide that reacts with DSG (disuccinimidyl glutarate) is used for the test, and DSS (disuccinimidylsuberate) indicates that it will react with DSS (di Succinimide imino suberate) IgG-binding peptide was used for the test. In the figure, hIgG indicates human IgG, hIgA indicates human IgA, and HAS indicates human serum albumin.
圖3表示標記化IgG結合肽與IgG之反應中之反應莫耳比(A)及反應時間(B)之基於ELISA(Enzyme-Linked Immunosorbent Assay,酶聯免疫吸附測定)所獲得之研究結果。DSS R8K 0min係對IgG之10倍莫耳比之標記化IgG結合肽添加Tris-HCl(pH值7.0)而將NHS基阻斷後,添加至孔中者。No DSS R8K係使用有未與DSS結合之生物素化IgG結合(R8K)肽者,no pep表示未添加肽之對照。 FIG. 3 shows the results obtained by ELISA (Enzyme-Linked Immunosorbent Assay) based on the reaction mol ratio (A) and the reaction time (B) in the reaction between the labeled IgG-binding peptide and IgG. DSS R8K 0min is a trivalent HCl (pH 7.0) added to the labeled IgG-binding peptide of 10 times the molar ratio of IgG to block the NHS group and added to the wells. No DSS R8K is a biotinylated IgG-binding (R8K) peptide that does not bind to DSS. No pep indicates a control without peptide addition.
圖4表示使用尺寸排除層析法測定標記化IgG結合肽對各蛋白質(hIgA、hIgG、BSA(牛血清白蛋白))之反應性而獲得之結果。(A)表示測定經DSS修飾之IgG結合肽之反應性而獲得之結果,(B)表示測定經DSG修飾之IgG結合肽之反應性而獲得之結果。 FIG. 4 shows the results obtained by measuring the reactivity of labeled IgG-binding peptides to each protein (hIgA, hIgG, BSA (bovine serum albumin)) using size exclusion chromatography. (A) shows the results obtained by measuring the reactivity of the DSS-modified IgG-binding peptide, and (B) shows the results obtained by measuring the reactivity of the DSG-modified IgG-binding peptide.
圖5(A)表示於對人類IgG添加以莫耳比計為0.5、1.0、2.0、或5.0之人類IgG之Fc溶液與溶解於DMF中之經DSG修飾之IgG結合肽並攪拌 後,於室溫下使之反應後之液相層析法之結果。圖5(B)表示於以各莫耳比使人類IgG與經DSG修飾之IgG結合肽進行反應之情形時之未反應(波峰2)、1個肽之附加物(波峰3)、及2個肽之附加物(波峰4)之產生量之變化。 Fig. 5 (A) shows the Fc solution of human IgG added with a molar ratio of 0.5, 1.0, 2.0, or 5.0 to human IgG and DSG-modified IgG-binding peptide dissolved in DMF and stirred Then, the result of liquid chromatography after reacting at room temperature. FIG. 5 (B) shows the unreacted state (peak 2), the addition of one peptide (peak 3), and two when a human IgG is reacted with a DSG-modified IgG-binding peptide at each mole ratio. Changes in the amount of peptide appendage (peak 4).
圖6表示於對以pH值4.0(A)、pH值5.5(B)、或pH值7.0(C)製備之人類IgG之Fc溶液添加以莫耳比計為1.0之溶解於DMF中之經DSG修飾之IgG結合肽並攪拌後,於室溫下使之反應,反應之1、5、10、或30分鐘後之未反應(波峰2)、1個肽之附加物(波峰3)、及2個肽之附加物(波峰4)之產生量之變化。 Figure 6 shows the DSG dissolved in DMF added to the Fc solution of human IgG prepared at pH 4.0 (A), pH 5.5 (B), or pH 7.0 (C) in DMF. The modified IgG-binding peptide was stirred at room temperature, and reacted at room temperature. The reaction was unreacted after 1, 5, 10, or 30 minutes (peak 2), an addition to the peptide (peak 3), and 2 Changes in the amount of peptide addition (peak 4).
圖7A表示藉由經DSG修飾之生物素化IgG結合肽(生物素化IgG結合肽)或生物素化抗人類IgG小鼠抗體(抗hIgG mAb-生物素標記)、及PE標記鏈黴親和素(SA-PE標記)檢測4D5-Fc抗體對乳腺癌細胞株SK-BR3上之HER2抗原之結合而獲得之結果。圖7B表示不添加4D5-Fc抗體並進行相同之實驗(生物素化IgG結合肽+SA-PE標記、或抗hIgG mAb-生物素標記+SA-PE標記)之結果、及使用4D5-Fc抗體與PE標記抗人類IgG小鼠抗體(抗hIgG mAb-PE標記)作為陽性對照之結果。 Figure 7A shows DSG-modified biotinylated IgG-binding peptide (biotinylated IgG-binding peptide) or biotinylated anti-human IgG mouse antibody (anti-hIgG mAb-biotin-labeled), and PE-labeled streptavidin (SA-PE labeling) The result obtained by detecting the binding of 4D5-Fc antibody to the HER2 antigen on breast cancer cell line SK-BR3. Figure 7B shows the results of the same experiment (biotinylated IgG binding peptide + SA-PE labeling, or anti-hIgG mAb-biotin labeling + SA-PE labeling) without the addition of 4D5-Fc antibody, and the use of 4D5-Fc antibody Results were compared with PE-labeled anti-human IgG mouse antibodies (anti-hIgG mAb-PE labeling) as a positive control.
圖8A表示疊氮化肽抗體與二苯并環辛炔-順丁烯二醯亞胺(Dibenzocyclooctyne-maleimide)化VHH(variable domain of heavy chain of heavy-chainantibody,重鏈抗體可變區)藉由點擊反應而進行連結後之離子交換層析法之結果所獲得之3個主要之波峰(a、b、及c)。圖8B表示於還原狀態下利用SDS-PAGE對所獲得之各個波峰進行分析而獲得之結果。區帶1表示對抗HER2人類IgG抗體進行電泳而獲得之結果,區帶2表示對抗HER2人類IgG抗體-疊氮化肽進行電泳而獲得之結果,區帶3表示對波峰a(未反應之抗HER2人類IgG抗體)進行電泳而獲得之結果,區帶4表示對波峰b(抗HER2人類IgG抗體-1價VHH)進行電泳而獲得之結果,區帶5表示對波峰c(抗HER2人類IgG抗體-2價VHH) 進行電泳而獲得之結果,區帶6表示對VHH進行電泳而獲得之結果,區帶7表示對分子量標記物進行電泳而獲得之結果。 FIG. 8A shows an azide peptide antibody and a dibenzocyclooctyne-maleimide (Dibenzocyclooctyne-maleimide) VHH (variable domain of heavy chain of heavy-chain antibody). The three main peaks (a, b, and c) obtained as a result of ion exchange chromatography after linking by clicking the reaction. FIG. 8B shows the results obtained by analyzing each of the obtained peaks by SDS-PAGE in a reduced state. Band 1 indicates the result obtained by electrophoresis of anti-HER2 human IgG antibody, band 2 indicates the result obtained by electrophoresis of anti-HER2 human IgG antibody-azide peptide, and band 3 indicates the peak a (unreacted anti-HER2). The result obtained by electrophoresis of human IgG antibody), band 4 represents the result obtained by electrophoresis of peak b (anti-HER2 human IgG antibody-1 valence VHH), and the band 5 represents the result of peak c (anti-HER2 human IgG antibody- 2 price VHH) The results obtained by performing electrophoresis, band 6 indicates the results obtained by electrophoresis of VHH, and band 7 indicates the results obtained by electrophoresis of molecular weight markers.
圖9A~C表示使用藉由7-AAD染色去除死細胞後之細胞組分,並使用抗HER2人類IgG抗體(圖9A)、抗IgA受體VHH(C末端附加HIS標籤)(圖9B)、抗HER2人類抗體-1價VHH(C末端附加HIS標籤)(圖9C)作為1次抗體,使用最終濃度為50nM之生物素化抗HIS抗體+經PE標記之SA(Serum Albumin,血清白蛋白)之混合物作為2次抗體,對高表現HER2之SK-BR3細胞進行FACS(Fluorescence Activated Cell Sorting,螢光激活細胞分類術)解析而獲得之結果。圖9D~F表示使用抗HER2人類抗體(圖9D)、抗IgA受體VHH(C末端附加HIS標籤)(圖9E)、抗HER2人類抗體-1價VHH(圖9F)作為1次抗體,並使用PE標記抗人類IgG多株抗體作為2次抗體,檢測向利用DMSO(Dimethyl sulfoxide,二甲基亞碸)1.3%所進行之分化誘導而高表現IgA受體之HL60細胞之結合而獲得之結果。 Figures 9A ~ C show the use of 7-AAD staining to remove cell components from dead cells, and the use of anti-HER2 human IgG antibody (Figure 9A), anti-IgA receptor VHH (C-terminal HIS tag attached) (Figure 9B), Anti-HER2 human antibody-1 valent VHH (C-terminally attached HIS tag) (Figure 9C) was used as the primary antibody, using a biotinylated anti-HIS antibody with a final concentration of 50 nM + PE-labeled SA (Serum Albumin, serum albumin) The mixture was used as a secondary antibody, and SK-BR3 cells expressing HER2 were analyzed by FACS (Fluorescence Activated Cell Sorting). Figures 9D to F show the use of anti-HER2 human antibody (Figure 9D), anti-IgA receptor VHH (C-terminal HIS tag attached) (Figure 9E), and anti-HER2 human antibody-1 valent VHH (Figure 9F) as primary antibodies, and PE-labeled anti-human IgG polyclonal antibody was used as a secondary antibody, and the results obtained by detecting the binding to HL60 cells that induced differentiation by 1.3% of DMSO (Dimethyl sulfoxide) and highly expressed IgA receptors were obtained. .
圖10-1表示於0-10nM之藥劑(赫賽汀或實施例11中所製備之抗體藥物複合體)之存在下培養SK-BR3細胞,使用細胞測定套組並藉由吸光度(Abs.)對72小時後之細胞數進行評價而獲得之結果。圖中,BG(Back ground,陰影)表示未添加細胞之對照。圖10A表示抗HER2抗體-DM1* 1對SK-BR3細胞之效果,圖10B表示抗HER2抗體-DM1* 2對SK-BR3細胞之效果。 Figure 10-1 shows the culture of SK-BR3 cells in the presence of a 0-10 nM agent (Herceptin or the antibody-drug complex prepared in Example 11). The cell assay kit was used and the absorbance (Abs.) Was used. The number of cells obtained after 72 hours was evaluated. In the figure, BG (Back ground, shading) indicates a control without added cells. FIG. 10A shows the effect of anti-HER2 antibody-DM1 * 1 on SK-BR3 cells, and FIG. 10B shows the effect of anti-HER2 antibody-DM1 * 2 on SK-BR3 cells.
圖10-2係上接圖10-1之圖。圖10C表示抗HER2抗體-DM1* 1對C6細胞之效果,圖10D表示抗HER2抗體-DM1* 2對C6細胞之效果。 Figure 10-2 is the figure following figure 10-1. FIG. 10C shows the effect of anti-HER2 antibody-DM1 * 1 on C6 cells, and FIG. 10D shows the effect of anti-HER2 antibody-DM1 * 2 on C6 cells.
圖11表示實施例12中所製備之具有利用二氯丙酮之SS交聯結構的IgG結合肽之合成流程。 FIG. 11 shows a synthetic scheme of an IgG-binding peptide having an SS cross-linked structure using dichloroacetone prepared in Example 12. FIG.
圖12表示於0-500nM之藥劑之存在下培養SK-BR3細胞,並利用細胞測定套組對72小時後之細胞數進行評價而獲得之結果。圖12A表 示添加有赫賽汀或VcMMAE之情形時之結果,圖12B表示添加有赫賽汀或實施例12中所製備之抗體藥物複合體之情形時之結果。 FIG. 12 shows the results obtained by culturing SK-BR3 cells in the presence of a 0-500 nM agent and evaluating the number of cells after 72 hours using a cell measurement kit. Figure 12A The results are shown in the case where Herceptin or VcMMAE is added, and FIG. 12B shows the results in the case where Herceptin or the antibody-drug complex prepared in Example 12 is added.
圖13A表示人類、小鼠、兔、及大鼠之各種IgG抗體之基於SDS-PAGE所獲得之電泳之結果(區帶1:標記物,區帶2:曲妥珠單抗(IgG1),區帶3:人類IgG1,區帶4:人類IgG2,區帶5:人類IgG3,區帶6:人類IgG4,區帶7:小鼠IgG1,區帶8:小鼠IgG2b,區帶9:小鼠IgG3,區帶10:兔IgG(多株抗體),區帶11:大鼠IgG1,區帶12:大鼠IgG2b,區帶13:大鼠IgG2c)。圖13B表示將進行電泳後之凝膠轉印至PVDF(polyvinylidene fluoride,聚偏二氟乙烯)膜,並使用生物素標記IgG結合肽及HRP標記抗生蛋白鏈菌素進行西方墨點所獲得之結果。 FIG. 13A shows the results of electrophoresis based on SDS-PAGE for various IgG antibodies of human, mouse, rabbit, and rat (band 1: label, band 2: trastuzumab (IgG1), region Band 3: human IgG1, band 4: human IgG2, band 5: human IgG3, band 6: human IgG4, band 7: mouse IgG1, band 8: mouse IgG2b, band 9: mouse IgG3 (Zone 10: rabbit IgG (multiple antibody), zone 11: rat IgG1, zone 12: rat IgG2b, zone 13: rat IgG2c). FIG. 13B shows the results obtained by transferring the gel after electrophoresis to a PVDF (polyvinylidene fluoride, polyvinylidene fluoride) film, and using Western blotting using biotin-labeled IgG-binding peptide and HRP-labeled streptavidin. .
<IgG結合肽> <IgG-binding peptide>
本說明書中所使用之「IgG」係指哺乳動物、例如人類及黑猩猩等靈長類、大鼠、小鼠、及兔等實驗動物、豬、牛、馬、綿羊、及山羊等家畜動物、以及狗及貓等寵物之IgG、較佳為人類之IgG(IgG1、IgG2、IgG3或IgG4)。本說明書中之IgG進而較佳為人類IgG1、IgG2、或者IgG4、或兔IgG,尤佳為人類IgG1、IgG2、或IgG4。 As used herein, "IgG" refers to mammals, primates such as humans and chimpanzees, experimental animals such as rats, mice, and rabbits, livestock animals such as pigs, cattle, horses, sheep, and goats, and The IgG of pets such as dogs and cats is preferably human IgG (IgG1, IgG2, IgG3, or IgG4). The IgG in this specification is further preferably human IgG1, IgG2, or IgG4, or rabbit IgG, and particularly preferably human IgG1, IgG2, or IgG4.
於一態樣中,本發明係關於一種肽,其特徵在於包含下述式I:(X1-3)-C-(X2)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-(X1-3) (I) In one aspect, the present invention relates to a peptide, which is characterized by comprising the following formula I: (X 1-3 ) -C- (X 2 ) -H- (Xaa1) -G- (Xaa2) -LVWC- (X 1-3 ) (I)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基, Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,且W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, H is a histidine residue, Xaa1 is an lysine residue, a half Cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, Xaa2 is a glutamic acid residue or an asparagine residue, L is a leucine residue, V is a valine residue, and W is a tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
上述式中,N末端或C末端之X1-3之表述意指半胱胺酸(C或Cys)以外之獨立且任意之胺基酸殘基X連續存在1~3個,構成其之胺基酸殘基為相同或不同之殘基,較佳為包含全部3個並非相同殘基之序列。同樣地,X2亦意指半胱胺酸(C或Cys)以外之獨立且任意之胺基酸殘基X連續存在2個,構成其之胺基酸殘基為相同或不同之殘基,較佳為包含該2個連續之胺基酸殘基並非相同殘基之序列。 In the above formula, the expression of X 1-3 at the N-terminus or C-terminus means that an independent and arbitrary amino acid residue X other than cysteine (C or Cys) exists continuously for 1 to 3, and the amine constituting it The amino acid residues are the same or different residues, and it is preferred that the residues include all three sequences that are not the same. Similarly, X 2 also means that there are two independent and arbitrary amino acid residues X other than cysteine (C or Cys), and the amino acid residues constituting it are the same or different residues, It is preferred to include a sequence in which the two consecutive amino acid residues are not the same.
式I之2個半胱胺酸殘基可以二硫鍵進行結合而形成環狀肽。通常,於式I之肽中,外側之2個半胱胺酸殘基以二硫鍵進行結合。或者於式I之肽中,外側之2個半胱胺酸殘基中之硫基亦可利用以下之式:
所表示之連結子而連結。上述式中之虛線部分意指與硫基之鍵結部分。該連結子對於還原反應等較通常之二硫鍵穩定。該肽例如可藉由以下<生產半胱胺酸殘基利用連結子連結而成之肽的方法>中所記載之方法而製備。 The linkers indicated are linked. The dotted line portion in the above formula means a bonding portion with a sulfur group. This linker is more stable to reduction reactions and the like than ordinary disulfide bonds. This peptide can be produced, for example, by the method described in the following "Method for producing a peptide in which a cysteine residue is linked by a linker".
將於式I之肽之胺基酸序列中進而對胺基酸殘基X進行特定之式I'及式I"所表示之肽示於以下。 The peptides represented by the formulae I 'and I "in the amino acid sequence of the peptide of the formula I and further specifically the amino acid residue X are shown below.
即,式I'所表示之肽之特徵在於包含 (X1-3)-C-(X1)-Y-H-(Xaa1)-G-N-L-V-W-C-(X1-3) (I') That is, the peptide represented by Formula I 'is characterized by comprising (X 1-3 ) -C- (X 1 ) -YH- (Xaa1) -GNLVWC- (X 1-3 ) (I')
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,Y為酪胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,N為天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,且W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, Y is a tyrosine residue, H is a histidine residue, Xaa1 Is an amino acid residue, a cysteine residue, an aspartic acid residue, a glutamic acid residue, a 2-aminosuberic acid, or a diaminopropionic acid, and G is a glycine residue, N is asparagine residue, L is leucine residue, V is valine residue, and W is tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
式I"所表示之肽之特徵在於包含(X1-3)-C-A-(X1)-H-(Xaa1)-G-E-L-V-W-C-(X1-3) (I") The peptide represented by Formula I "is characterized by comprising (X 1-3 ) -CA- (X 1 ) -H- (Xaa1) -GELVWC- (X 1-3 ) (I")
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,A為丙胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,E為麩胺酸殘基,L為白胺酸殘基,V為纈胺酸殘基,且 W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, A is alanine residue, H is a histamine residue, and Xaa1 is Leucine residue, cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, E Is a glutamic acid residue, L is a leucine residue, V is a valine residue, and W is tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
又,將於式I之肽之胺基酸序列中進而對胺基酸殘基X進行特定之式II所表示之肽示於以下。 In addition, a peptide represented by the formula II in which the amino acid residue X is specified in the amino acid sequence of the peptide of the formula I is shown below.
即,式II所表示之肽之特徵在於包含(X1-3)-C-(Xaa3)-(Xaa4)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-(X1-3) (II) That is, the peptide represented by Formula II is characterized by including (X 1-3 ) -C- (Xaa3)-(Xaa4) -H- (Xaa1) -G- (Xaa2) -LVWC- (X 1-3 ) ( II)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,W為色胺酸殘基,Xaa3為丙胺酸殘基、絲胺酸殘基或蘇胺酸殘基,且Xaa4為酪胺酸殘基或色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, H is a histidine residue, Xaa1 is an lysine residue, a half Cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, and Xaa2 is a glutamic acid residue or Asparagine residue, L is leucine residue, V is valine residue, W is tryptophan residue, Xaa3 is alanine residue, serine residue or threonine residue, And Xaa4 is a tyrosine residue or a tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
於上述式I'、式I"及式II之肽之胺基酸序列中設為17個胺基酸殘基之情形時自N末端起第1號及第2號以及第16號及第17號胺基酸殘基X亦可缺失,此種肽包含13個胺基酸長度。 In the case where 17 amino acid residues are set in the amino acid sequence of the peptide of the formula I ', formula I "and formula II described above, Nos. 1 and 2 and 16 and 17 from the N-terminus The amino acid residue X can also be deleted. This peptide contains 13 amino acids in length.
本說明書中所使用之所謂「設為17個胺基酸殘基之情形時之」係於以胺基酸編號稱呼肽之胺基酸殘基時,用以針對式I之肽等自作 為最長之胺基酸長度之17個殘基之N末端起依序自第1號至第17號進行編號而簡便地進行表述之用語。 The so-called "in the case of 17 amino acid residues" as used in the present specification is used to refer to peptide residues of formula I when the amino acid residue of a peptide is referred to by the amino acid number. The 17-residue N-terminus, which is the longest amino acid in length, is numbered from No. 1 to No. 17 in order to simplify the expression.
又,將於式I之肽之胺基酸序列中進而對胺基酸殘基X進行特定之式III所表示之肽示於以下。 In addition, a peptide represented by the formula III in which the amino acid residue X is specified in the amino acid sequence of the peptide of the formula I is shown below.
即,式III所表示之肽之特徵在於包含(X1-3)-C-A-Y-H-(Xaa1)-G-E-L-V-W-C-(X1-3) (III) That is, the peptide represented by Formula III is characterized by including (X 1-3 ) -CAYH- (Xaa1) -GELVWC- (X 1-3 ) (III)
(式中,X之各者獨立為半胱胺酸以外之任意之胺基酸殘基,C為半胱胺酸殘基,A為丙胺酸殘基,Y為酪胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,E為麩胺酸殘基,L為白胺酸殘基,V為纈胺酸殘基,且W為色胺酸殘基) (Wherein each of X is independently any amino acid residue other than cysteine, C is a cysteine residue, A is an alanine residue, Y is a tyrosine residue, and H is Histamine residue, Xaa1 is lysine residue, cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G Is a glycine residue, E is a glutamic acid residue, L is a leucine residue, V is a valine residue, and W is a tryptophan residue)
所表示之包含13~17個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 The amino acid sequence shown contains 13 to 17 amino acid residues, and can bind to human IgG and / or rabbit IgG.
於上述式III之肽之胺基酸序列中設為17個胺基酸殘基之情形時自N末端起第1號及第2號、以及第16號及第17號胺基酸殘基X亦可缺失,此種肽包含13個胺基酸長度。 In the case where 17 amino acid residues are set in the amino acid sequence of the peptide of the above formula III, the first and second amino acids from the N-terminus, and the amino acid residues 16 and 17 are X It can also be deleted, and this peptide contains 13 amino acids in length.
進而,上述各式之肽之胺基酸序列之半胱胺酸(C)以外之胺基酸殘基、即設為17個胺基酸殘基之情形時自N末端起第1~3、5、6、15~17號之各胺基酸殘基較佳為自以下中選擇。此處,各大寫字母之羅 馬字母係胺基酸之單字符表述:第1號胺基酸殘基=S、G、F或無,第2號胺基酸殘基=D、G、A、S、P、高半胱胺酸或無,第3號胺基酸殘基=S、D、T、N、E或R,第15號胺基酸殘基=S、T或D,第16號胺基酸殘基=H、G、Y、T、N、D、F、高半胱胺酸或無,第17號胺基酸殘基=Y、F、H、M或無。 Furthermore, when the amino acid residues other than the cysteine (C) of the amino acid sequence of each of the above-mentioned peptides are set to 17 amino acid residues, from 1 to 3, Each amino acid residue of No. 5, 6, 15-17 is preferably selected from the following. Here, the capital letters Horse alphabet is a single character expression of amino acid: No. 1 amino acid residue = S, G, F or none, No. 2 amino acid residue = D, G, A, S, P, homocysteine Amino acid or none, amino acid residue No. 3 = S, D, T, N, E or R, amino acid residue No. 15 = S, T or D, amino acid residue No. 16 = H, G, Y, T, N, D, F, homocysteine or none, amino acid residue No. 17 = Y, F, H, M or none.
第5號胺基酸殘基=A或T,第6號胺基酸殘基=Y或W。 Amino acid residue No. 5 = A or T, and amino acid residue No. 6 = Y or W.
又,將於式I之肽之胺基酸序列中進而對胺基酸殘基X進行特定之式IV所表示之肽示於以下。 In addition, peptides represented by the formula IV in which the amino acid residue X is specified in the amino acid sequence of the peptide of the formula I are shown below.
即,式IV所表示之肽之特徵在於包含D-C-(Xaa3)-(Xaa4)-H-(Xaa1)-G-(Xaa2)-L-V-W-C-T (IV) That is, the peptide represented by Formula IV is characterized by including D-C- (Xaa3)-(Xaa4) -H- (Xaa1) -G- (Xaa2) -L-V-W-C-T (IV)
(式中,D為天冬胺酸殘基,C為半胱胺酸殘基,H為組胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,G為甘胺酸殘基,Xaa2為麩胺酸殘基或天冬醯胺殘基,L為白胺酸殘基,V為纈胺酸殘基,W為色胺酸殘基,T為蘇胺酸殘基,Xaa3為丙胺酸殘基或蘇胺酸殘基,且 Xaa4為酪胺酸殘基或色胺酸殘基)所表示之包含13個胺基酸殘基之胺基酸序列,且能夠與人類IgG及/或兔IgG結合。 (In the formula, D is an aspartic acid residue, C is a cysteine residue, H is a histidine residue, and Xaa1 is an lysine residue, a cysteine residue, and an aspartic acid residue. Group, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, G is a glycine residue, Xaa2 is a glutamic acid residue or asparagine residue, and L is leucine Acid residues, V is a valine residue, W is a tryptophan residue, T is a threonine residue, Xaa3 is an alanine residue or a threonine residue, and Xaa4 is an amino acid sequence represented by a tyrosine residue or a tryptophan residue) containing 13 amino acid residues, and can bind to human IgG and / or rabbit IgG.
於以下1)~19)中列舉式I之肽之若干具體例,但並不受該等所限制:1)DCAYH(Xaa1)GELVWCT(序列編號1)、2)GPDCAYH(Xaa1)GELVWCTFH(序列編號2)、3)RCAYH(Xaa1)GELVWCS(序列編號3)、4)GPRCAYH(Xaa1)GELVWCSFH(序列編號4)、5)SPDCAYH(Xaa1)GELVWCTFH(序列編號5)、6)GDDCAYH(Xaa1)GELVWCTFH(序列編號6)、7)GPSCAYH(Xaa1)GELVWCTFH(序列編號7)、8)GPDCAYH(Xaa1)GELVWCSFH(序列編號8)、9)GPDCAYH(Xaa1)GELVWCTHH(序列編號9)、10)GPDCAYH(Xaa1)GELVWCTFY(序列編號10)、11)SPDCAYH(Xaa1)GELVWCTFY(序列編號11)、12)SDDCAYH(Xaa1)GELVWCTFY(序列編號12)、13)RGNCAYH(Xaa1)GQLVWCTYH(序列編號13)、14)G(Xaa2)DCAYH(Xaa1)GELVWCT(Xaa2)H(序列編號36)、15)RRGPDCAYH(Xaa1)GELVWCTFH(序列編號37)、16)DCTYH(Xaa1)GNLVWCT(序列編號14)、17)DCAYH(Xaa1)GNLVWCT(序列編號15)、18)DCTYH(Xaa1)GELVWCT(序列編號16)、及19)DCAWH(Xaa1)GELVWCT(序列編號17),(式中,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,Xaa2為高半胱胺酸,較佳為高半胱胺酸彼此相互形成二硫鍵)。 Some specific examples of peptides of formula I are listed in the following 1) to 19), but are not limited by them: 1) DCAYH (Xaa1) GELVWCT (sequence number 1), 2) GPDCAYH (Xaa1) GELVWCTFH (sequence number 2), 3) RCAYH (Xaa1) GELVWCS (serial number 3), 4) GPRCAYH (Xaa1) GELVWCSFH (serial number 4), 5) SPDCAYH (Xaa1) GELVWCTFH (serial number 5), 6) GDDCAYH (Xaa1) GELVWCTFH ( Sequence numbers 6), 7) GPSCAYH (Xaa1) GELVWCTFH (Sequence number 7), 8) GPDCAYH (Xaa1) GELVWCSFH (Sequence number 8), 9) GPDCAYH (Xaa1) GELVWCTHH (Sequence number 9), 10) GPDCAYH (Xaa1) GELVWCTFY (serial number 10), 11) SPDCAYH (Xaa1) GELVWCTFY (serial number 11), 12) SDDCAYH (Xaa1) GELVWCTFY (serial number 12), 13) RGNCAYH (Xaa1) GQLVWCTYH (serial number 13), 14) G ( Xaa2) DCAYH (Xaa1) GELVWCT (Xaa2) H (serial number 36), 15) RRGPDCAYH (Xaa1) GELVWCTFH (serial number 37), 16) DCTYH (Xaa1) GNLVWCT (serial number 14), 17) DCAYH (Xaa1) GNLVWCT (Sequence number 15), 18) DCTYH (Xaa1) GELVWCT (sequence number 16), and 19) DCAWH (Xaa1) GELVWCT (sequence number 17), (where Xaa1 is an lysine residue, a cysteine residue Group, aspartic acid residue, glutamic acid residue, 2-aminooctyl Diacid, or diaminopropionic acid, Xaa2 is homocysteine, preferably homocysteine forms disulfide bonds with each other).
作為式I之肽之較佳之具體例,可列舉:1)DCAYH(Xaa1)GELVWCT(序列編號1)、2)GPDCAYH(Xaa1)GELVWCTFH(序列編號2)、13)RGNCAYH(Xaa1)GQLVWCTYH(序列編號13)、14)G(Xaa2)DCAYH(Xaa1)GELVWCT(Xaa2)H(序列編號36)、及15)RRGPDCAYH(Xaa1)GELVWCTFH(序列編號37) As preferred specific examples of the peptide of formula I, 1) DCAYH (Xaa1) GELVWCT (sequence number 1), 2) GPDCAYH (Xaa1) GELVWCTFH (sequence number 2), 13) RGNCAYH (Xaa1) GQLVWCTYH (sequence number) 13), 14) G (Xaa2) DCAYH (Xaa1) GELVWCT (Xaa2) H (Serial Number 36), and 15) RRGPDCAYH (Xaa1) GELVWCTFH (Serial Number 37)
(式中,Xaa1為離胺酸殘基,Xaa2為高半胱胺酸,較佳為半胱胺酸彼此及/或高半胱胺酸彼此相互形成二硫鍵)。 (In the formula, Xaa1 is an lysine residue, and Xaa2 is a homocysteine, and it is preferred that the cysteines and / or the homocysteines form disulfide bonds with each other).
又,本發明之肽之特徵在於包含下述式V:D-C-(Xaa2)-(Xaa3)-(Xaa4)-(Xaa1)-G-(Xaa5)-L-(Xaa6)-W-C-T (V) The peptide of the present invention is characterized by comprising the following formula V: D-C- (Xaa2)-(Xaa3)-(Xaa4)-(Xaa1) -G- (Xaa5) -L- (Xaa6) -W-C-T (V)
(式中,D為天冬胺酸殘基,C為半胱胺酸殘基,G為甘胺酸殘基,L為白胺酸殘基,W為色胺酸殘基,T為蘇胺酸殘基,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸,Xaa2為丙胺酸殘基、絲胺酸殘基或蘇胺酸殘基,Xaa3為色胺酸殘基或酪胺酸殘基,Xaa4為組胺酸殘基、精胺酸殘基、絲胺酸殘基或蘇胺酸殘基,Xaa5為麩胺酸殘基、天冬醯胺殘基、精胺酸殘基、或天冬胺酸殘基,且Xaa6為異白胺酸殘基或纈胺酸殘基)所表示之包含13個胺基酸殘基之胺基酸序列作為廣義之一次結構,且能夠與人類IgG及/或兔IgG 結合。 (Where D is an aspartic acid residue, C is a cysteine residue, G is a glycine residue, L is a leucine residue, W is a tryptophan residue, and T is a threonine Acid residue, Xaa1 is lysine residue, cysteine residue, aspartic acid residue, glutamic acid residue, 2-aminosuberic acid, or diaminopropionic acid, Xaa2 is propylamine Acid residue, serine residue or threonine residue, Xaa3 is tryptophan residue or tyrosine residue, Xaa4 is histamine residue, arginine residue, serine residue or Threonine residue, Xaa5 is a glutamic acid residue, an asparagine residue, an arginine residue, or an aspartic acid residue, and Xaa6 is an isoleucine residue or a valine residue The amino acid sequence represented by) contains 13 amino acid residues as a generalized primary structure, and can interact with human IgG and / or rabbit IgG Combined.
式V之2個半胱胺酸殘基可以二硫鍵進行結合而形成環狀肽。通常,式V之肽之外側之2個半胱胺酸殘基以二硫鍵進行結合。或者,於式V之肽中,外側之2個半胱胺酸殘基中之硫基亦可利用以下之式:
所表示之連結子而連結。上述式中之虛線部分意指與硫基之鍵結部分。該連結子對於還原反應等較通常之二硫鍵穩定。該肽例如可藉由以下<生產半胱胺酸殘基利用連結子連結而成之肽的方法>中所記載之方法而製備。 The linkers indicated are linked. The dotted line portion in the above formula means a bonding portion with a sulfur group. This linker is more stable to reduction reactions and the like than ordinary disulfide bonds. This peptide can be produced, for example, by the method described in the following "Method for producing a peptide in which a cysteine residue is linked by a linker".
於以下20)~31)中列舉式V之肽之若干具體例,但並不受該等所限制:20)DCTYT(Xaa1)GNLVWCT(序列編號18)、21)DCAYT(Xaa1)GNLVWCT(序列編號19)、22)DCSYT(Xaa1)GNLVWCT(序列編號20)、23)DCTWT(Xaa1)GNLVWCT(序列編號21)、24)DCTYH(Xaa1)GNLVWCT(序列編號22)、25)DCTYR(Xaa1)GNLVWCT(序列編號23)、26)DCTYS(Xaa1)GNLVWCT(序列編號24)、27)DCTYT(Xaa1)GNLVWCT(序列編號25)、28)DCTYT(Xaa1)GELVWCT(序列編號26)、29)DCTYT(Xaa1)GRLVWCT(序列編號27)、30)DCTYT(Xaa1)GDLVWCT(序列編號28)、及 31)DCTYT(Xaa1)GNLIWCT(序列編號29),(式中,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸)。 Some specific examples of peptides of formula V are listed in the following 20) ~ 31), but are not limited by them: 20) DCTYT (Xaa1) GNLVWCT (sequence number 18), 21) DCAYT (Xaa1) GNLVWCT (sequence number 19), 22) DCSYT (Xaa1) GNLVWCT (serial number 20), 23) DCTWT (Xaa1) GNLVWCT (serial number 21), 24) DCTYH (Xaa1) GNLVWCT (serial number 22), 25) DCTYR (Xaa1) GNLVWCT ( (Serial numbers 23), 26) DCTYS (Xaa1) GNLVWCT (serial number 24), 27) DCTYT (Xaa1) GNLVWCT (serial number 25), 28) DCTYT (Xaa1) GELVWCT (serial number 26), 29) DCTYT (Xaa1) GRLVWCT (serial number 27), 30) DCTYT (Xaa1) GDLVWCT (serial number 28), and 31) DCTYT (Xaa1) GNLIWCT (SEQ ID NO: 29), (where Xaa1 is an lysine residue, a cysteine residue, an aspartic acid residue, a glutamic acid residue, 2-aminooctyl Diacid, or diaminopropionic acid).
如上所述,與本發明相關之上述式之肽之特徵在於:於各胺基酸序列中具有隔開之至少2個半胱胺酸(C)殘基,並以可於該半胱胺酸殘基間形成二硫鍵之方式配置半胱胺酸殘基,較佳之肽亦可為2個半胱胺酸殘基以二硫鍵進行結合而形成環狀肽,且於各半胱胺酸殘基之N末端側及C末端側具有1或2個半胱胺酸以外之任意之胺基酸殘基。於在各半胱胺酸殘基之N末端側及C末端側具有1或2個胺基酸殘基之情形時,設為17個胺基酸殘基之情形時自N末端起第1~2、16~17號之各胺基酸殘基為上述例示者。 As described above, the peptide of the above formula related to the present invention is characterized by having at least two cysteine (C) residues separated in each amino acid sequence, and The cysteine residues are arranged in a way that disulfide bonds are formed between the residues. The preferred peptide is also that two cysteine residues are combined by a disulfide bond to form a cyclic peptide, and each cysteine The residue has 1 or 2 amino acid residues other than cysteine on the N-terminal side and C-terminal side. When there are 1 or 2 amino acid residues on the N-terminal side and the C-terminal side of each cysteine residue, the case where it is set to 17 amino acid residues is 1 to 1 from the N-terminus. 2. Each amino acid residue of Nos. 16 to 17 is exemplified above.
如上所述,於本發明之肽中,Xaa1為離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、及麩胺酸殘基等蛋白質構成胺基酸、以及二胺基丙酸及2-胺基辛二酸等非蛋白質構成胺基酸,較佳為離胺酸殘基。Xaa1較佳為能夠利用下述交聯劑進行修飾。於本說明書中,所謂「非蛋白質構成胺基酸」係指於活體內無法用於構成蛋白質之胺基酸。為了提高利用交聯劑對本發明之肽進行修飾時之部位特異性,本發明之肽較佳為於其序列中完全不具有或幾乎不具有(例如僅具有1個或2個)與Xaa1相同之殘基。例如,於Xaa1為離胺酸殘基之情形時,本發明之肽較佳為於其序列中於Xaa1以外之部位完全不具有或幾乎不具有離胺酸殘基。 As described above, in the peptide of the present invention, Xaa1 is an amino acid and a diamine group of proteins such as lysine residue, cysteine residue, aspartic acid residue, and glutamic acid residue. Non-proteins such as propionic acid and 2-aminosuberic acid constitute an amino acid, and preferably an amino acid residue. Xaa1 is preferably capable of being modified with the following crosslinking agent. In the present specification, the "non-protein constituting amino acid" refers to an amino acid that cannot be used to constitute a protein in a living body. In order to improve the site specificity when the peptide of the present invention is modified with a cross-linking agent, the peptide of the present invention preferably has absolutely no or almost no (e.g., only one or two) in the sequence of Residues. For example, in the case where Xaa1 is an lysine residue, the peptide of the present invention preferably has no or almost no lysine residue in the sequence other than Xaa1.
本發明之肽與人類IgG之結合親和性與和其他人類免疫球蛋白(IgA、IgE、IgM)之結合親和性相比高約10倍以上、較佳為約50倍以上、更佳為約200倍以上。與本發明之肽和人類IgG之結合相關之解離常數(Kd)可藉由表面電漿子共振譜分析(例如使用BIACORE系統)進行確定,例如為未達1×10-1M~1×10-3M,較佳為未達1×10-4M,更佳 為未達1×10-5M。 The binding affinity of the peptide of the present invention to human IgG is about 10 times or more, preferably about 50 times or more, and more preferably about 200 times compared to the binding affinity of other human immunoglobulins (IgA, IgE, IgM). Times more. The dissociation constant (Kd) related to the binding of the peptide of the present invention to human IgG can be determined by surface plasmon resonance spectrum analysis (for example, using the BIACORE system), for example, it is less than 1 × 10 -1 M ~ 1 × 10 -3 M, preferably less than 1 × 10 -4 M, and more preferably less than 1 × 10 -5 M.
本發明之IgG結合肽係與IgG之Fc區域結合。本發明之IgG結合肽如下述實施例中所表示般,於上述Xaa1中,與IgG Fc之特定之區域、即人類IgG Fc中之依據Eu編號之Lys248殘基(以下,於本說明書中亦簡記為「Lys248」,相當於人類IgG CH2(序列編號30)之第18號殘基)或Lys246殘基(以下,於本說明書中亦簡記為「Lys246」,相當於人類IgG CH2(序列編號30)之第16號殘基)、較佳為Lys248接近。 The IgG-binding peptide of the present invention binds to the Fc region of IgG. The IgG-binding peptide of the present invention is as shown in the following examples. In the above Xaa1, a specific region with the IgG Fc, that is, the Lys248 residue according to the Eu number in the human IgG Fc (hereinafter, also briefly described in this specification) "Lys248", which corresponds to the 18th residue of human IgG CH2 (SEQ ID NO: 30) or Lys246 residue (hereinafter, abbreviated as "Lys246" in this specification, which corresponds to human IgG CH2 (SEQ ID NO: 30) Residue 16), preferably Lys248 is close.
本發明之肽可藉由慣用之液相合成法、固相合成法等肽合成法、利用自動肽合成機所進行之肽合成等(Kelley et al.,Genetics Engineering Principles and Methods,Setlow,J.K.eds.,Plen μm Press NY.(1990)Vol.12,p.1-19;Stewart et al.,Solid-Phase Peptide Synthesis(1989)W.H.Freeman C0.; Houghten,Proc.Natl.Acad.Sci.USA(1985)82:p.5132,「新生化學實驗課程1 蛋白質IV」(1992)日本生化學會編,東京化學同人)進行製造。或者,亦可藉由使用有編碼本發明之肽之核酸的基因重組法或噬菌體顯示法等而製造肽。例如可將編碼本發明之肽之胺基酸序列的DNA(deoxyribonucleic acid,脫氧核糖核酸)組入至表現載體中,將表現載體導入至宿主細胞中並對細胞進行培養,藉此製造目標之肽。所製造之肽可藉由常用方法、例如凝膠過濾層析法、離子交換管柱層析法、親和層析法、逆相管柱層析法、HPLC(high performance liquid chromatography,高效液相層析法)等層析法、硫酸銨區分、超過濾、及免疫吸附法等進行回收或精製。 The peptides of the present invention can be prepared by conventional peptide synthesis methods such as liquid phase synthesis method and solid phase synthesis method, peptide synthesis using an automatic peptide synthesizer, etc. (Kelley et al., Genetics Engineering Principles and Methods, Setlow, JKeds ., Plen μm Press NY. (1990) Vol. 12, p. 1-19; Stewart et al., Solid-Phase Peptide Synthesis (1989) WHFreeman CO .; 1985) 82: p. 5132, "Creative Chemistry Experiment Course 1 Protein IV" (1992), edited by the Japan Biochemical Society, Tokyo Chemical Co., Ltd.). Alternatively, the peptide may be produced by a genetic recombination method, a phage display method, or the like using a nucleic acid encoding the peptide of the present invention. For example, DNA (deoxyribonucleic acid) encoding the amino acid sequence of the peptide of the present invention can be incorporated into a expression vector, the expression vector can be introduced into a host cell, and the cell can be cultured to produce a target peptide. . The produced peptides can be prepared by common methods such as gel filtration chromatography, ion exchange column chromatography, affinity chromatography, reverse phase column chromatography, and high performance liquid chromatography (HPLC). Analysis), such as chromatography, ammonium sulfate separation, ultrafiltration, and immunoadsorption methods.
於肽合成中,例如準備保護了各胺基酸(不論是天然或非天然)之欲鍵結之α-胺基與α-羧基以外之官能基之胺基酸類,於各個胺基酸之α-胺基與α-羧基之間進行肽鍵形成反應。通常,經由適當之間隔基或連結子預先將位於肽之C末端之胺基酸殘基之羧基與固相結合。選擇性地去除如此而獲得之二肽之胺基末端之保護基,並與下一個胺基酸 之α-羧基之間形成肽鍵。連續地進行此種操作而製造側基經保護之肽,最後去除所有保護基,並自固相分離。保護基之種類或保護方法、肽結合法之詳細內容詳細記載於上述文獻中。 In peptide synthesis, for example, amino acids that are intended to protect the α-amino group to be bonded to each amino acid (whether natural or unnatural) and functional groups other than α-carboxyl groups, and -A peptide bond formation reaction is performed between the amine group and the α-carboxyl group. Generally, the carboxyl group of the amino acid residue at the C-terminus of the peptide is bound to the solid phase in advance via an appropriate spacer or linker. Selectively remove the protective group at the amino terminal of the dipeptide thus obtained, and remove it from the next amino acid A peptide bond is formed between the α-carboxyl groups. This operation is carried out continuously to produce side-group protected peptides, and finally all protecting groups are removed and separated from the solid phase. The details of the type of the protecting group, the protecting method, and the peptide binding method are described in detail in the aforementioned literature.
藉由基因重組法所進行之製造例如可藉由包括編碼本發明之肽之DNA插入至適當之表現載體中,將載體導入至適當之宿主細胞中並對細胞進行培養,自細胞內或細胞外液回收目標之肽的方法而進行。載體並無限定,例如為質體、噬菌體、黏接質體、噬菌粒、及病毒等載體。 The production by the genetic recombination method can be performed, for example, by inserting the DNA encoding the peptide of the present invention into an appropriate expression vector, introducing the vector into an appropriate host cell, and culturing the cell, either inside or outside the cell. The method is performed by recovering the target peptide. The vector is not limited, and examples include vectors such as plastids, phages, adherent plastids, phagemids, and viruses.
作為質體載體,並無限定,可列舉源自大腸桿菌之質體(例如pET22b(+)、pBR322、pBR325、pUC118、pUC119、pUC18、pUC19、pBluescript等)、源自枯草桿菌之質體(例如pUB110、pTP5等)、及源自酵母之質體(例如YEp13、YCp50等)等。 The plastid vector is not limited, and examples include plastids derived from E. coli (for example, pET22b (+), pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), plastids derived from Bacillus subtilis (e.g. pUB110, pTP5, etc.), and yeast-derived plastids (eg, YEp13, YCp50, etc.).
作為噬菌體載體,並無限定,可列舉T7噬菌體顯示載體(T7Select10-3b、T7Select1-1b、T7Select1-2a、T7Select1-2b、T7Select1-2c等(Novagen))、及λ噬菌體載體(Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP、λZAPII等)。作為病毒載體,並無限定,例如可列舉反轉錄病毒、腺病毒、腺相關病毒、牛痘病毒、及仙台病毒等動物病毒、以及桿狀病毒等昆蟲病毒等。作為黏接質體載體,並無限定,可列舉Lorist 6、Charomid 9-20、及Charomid 9-42等。 The phage vector is not limited, and examples thereof include T7 phage display vectors (T7Select10-3b, T7Select1-1b, T7Select1-2a, T7Select1-2b, T7Select1-2c, etc. (Novagen)), and lambda phage vectors (Charon4A, Charon21A, EMBL3). , EMBL4, λgt10, λgt11, λZAP, λZAPII, etc.). The viral vector is not limited, and examples thereof include retroviruses, adenoviruses, adeno-associated viruses, vaccinia virus, and animal viruses such as Sendai virus, and insect viruses such as baculovirus. The adhesive plastid carrier is not limited, and examples thereof include Lorist 6, Charomid 9-20, and Charomid 9-42.
作為噬菌粒載體,並無限定,例如已知有pSKAN、pBluescript、pBK、及pComb3H等。載體可以能夠表現目標DNA之方式包含調節序列、或用以選擇包含目標DNA之載體的選擇標記物、用以插入目標DNA之多選殖位點等。此種調節序列中包含啟動子、促進子、終止子、S-D序列或核糖體結合部位、複製起始點、及poly A位點等。又,選擇標記物例如可使用安比西林耐受性基因、新黴素耐受性基 因、康黴素耐受性基因、及二氫葉酸還原酶基因等。用以導入載體之宿主細胞為大腸桿菌或枯草桿菌等細菌、酵母細胞、昆蟲細胞、動物細胞(例如哺乳動物細胞)、及植物細胞等,向該等細胞之轉形或轉染例如包括磷酸鈣法、電穿孔法法、脂轉染法、粒子槍法、及PEG(Polyethylene glycol,聚乙二醇)法等。轉形細胞之培養係依據宿主生物之培養所使用之通常方法而進行。例如大腸桿菌或酵母細胞等微生物之培養液含有宿主微生物可合成代謝之碳源、氮源、及無機鹽類等。 The phagemid vector is not limited, and examples thereof include pSKAN, pBluescript, pBK, and pComb3H. The vector may be capable of expressing the target DNA in a manner including a regulatory sequence, a selection marker for selecting a vector containing the target DNA, a multiple selection site for inserting the target DNA, and the like. Such regulatory sequences include a promoter, a promoter, a terminator, an S-D sequence or a ribosome binding site, an origin of replication, a poly A site, and the like. As the selection marker, for example, an ampicillin-resistant gene or a neomycin-resistant gene can be used. Factor, concomycin resistance gene, and dihydrofolate reductase gene. The host cells used to introduce the vector are bacteria such as E. coli or Bacillus subtilis, yeast cells, insect cells, animal cells (such as mammalian cells), and plant cells, and the transformation or transfection of such cells includes calcium phosphate Method, electroporation method, lipofection method, particle gun method, and PEG (Polyethylene glycol, polyethylene glycol) method. The culture of the transformed cells is performed according to a usual method used for the culture of the host organism. For example, the culture medium of microorganisms such as E. coli or yeast cells contains a carbon source, a nitrogen source, an inorganic salt, and the like that can be metabolized by the host microorganism.
為了使本發明之肽之回收變得容易,較佳為使藉由表現所生成之肽分泌至細胞外。此可藉由將能夠實現自該細胞分泌肽之編碼肽序列之DNA結合於編碼目標肽之DNA之5'末端側而進行。轉移至細胞膜之融合肽被訊號肽酶所切斷,分泌目標肽並釋放至培養基中。或者,亦可對蓄積於細胞內之目標肽進行回收。於該情形時,物理性或化學性地破壞細胞,並使用蛋白質精製技術而回收目標肽。 In order to facilitate the recovery of the peptide of the present invention, it is preferred that the peptide produced by expression is secreted outside the cell. This can be performed by binding DNA encoding a peptide sequence capable of secreting a peptide from the cell to the 5 'end side of DNA encoding a peptide of interest. The fusion peptide transferred to the cell membrane is cleaved by the signal peptidase, secretes the target peptide and is released into the culture medium. Alternatively, the target peptide accumulated in the cell may be recovered. In this case, the cells are physically or chemically destroyed, and the target peptide is recovered using a protein purification technique.
因此,本發明進而亦關於一種編碼本發明之肽之核酸。此處,核酸包含DNA或RNA(RibonucleicAcid,核糖核酸)(例如mRNA(Messenger RNA,信使核糖核酸))。 Therefore, the present invention further relates to a nucleic acid encoding the peptide of the present invention. Here, the nucleic acid includes DNA or RNA (RibonucleicAcid, ribonucleic acid) (for example, mRNA (Messenger RNA, messenger ribonucleic acid)).
於使本發明之IgG結合肽與其他蛋白質融合之情形時,可於分別製備IgG結合肽與其他蛋白質後,視需要使用連結子使IgG結合肽與蛋白質融合,亦可藉由基因重組法視需要添加適當之連結子,而以融合蛋白質之形式製作。於該情形時,較佳為以無損本發明之IgG結合肽與IgG之結合性之方式製作融合蛋白質。 When the IgG-binding peptide of the present invention is fused with other proteins, after preparing the IgG-binding peptide and other proteins separately, a linker can be used to fuse the IgG-binding peptide with the protein if necessary, or by genetic recombination if necessary. Add appropriate linkers and make them as fusion proteins. In this case, it is preferable to prepare a fusion protein in such a manner that the binding property between the IgG-binding peptide and IgG of the present invention is not impaired.
<經交聯劑修飾之肽> <Peptide Modified with Crosslinking Agent>
於一態樣中,本發明中之上述IgG結合肽較佳為經交聯劑修飾。 In one aspect, the aforementioned IgG-binding peptide in the present invention is preferably modified with a cross-linking agent.
如上所述,本發明之IgG結合肽如下述實施例中所表示般,於上述Xaa1中,與IgG Fc之特定之區域、即人類IgG Fc中之依據Eu編碼之 Lys248或Lys246、較佳為Lys248接近。因此,藉由利用交聯劑對本發明之IgG結合肽之Xaa1進行修飾,並使之與IgG進行交聯反應,可於IgG結合肽之Xaa1與IgG Fc之Lys248或Lys246、較佳為Lys248之間部位特異性地形成交聯結構。如上所述,藉由利用交聯劑及各種化合物對本發明之IgG結合肽之Xaa1進行修飾,並使之與IgG進行交聯反應,可特異性地且簡便地將各種化合物導入至IgG。又,根據本發明,由於可經由IgG結合肽而導入化合物,故而可將各種結構之化合物導入至IgG。進而,本發明之方法由於所獲得之產物之產率較高,又,不伴有抗體本身之改型,故而亦具有使抗體之功能降低之可能性較低之優點。 As described above, the IgG-binding peptide of the present invention is as shown in the following examples. In Xaa1, the specific region with the IgG Fc, that is, the human IgG Fc is encoded according to Eu. Lys248 or Lys246, preferably Lys248 is close. Therefore, by using a cross-linking agent to modify the Xaa1 of the IgG-binding peptide of the present invention and cross-linking it with IgG, it can be between Xaa1 of the IgG-binding peptide and Lys248 or Lys246, preferably Lys248 of the IgG Fc. Site-specific topographic cross-linked structure. As described above, by modifying Xaa1 of the IgG-binding peptide of the present invention with a cross-linking agent and various compounds, and performing a cross-linking reaction with IgG, various compounds can be specifically and simply introduced into IgG. In addition, according to the present invention, since a compound can be introduced through an IgG-binding peptide, a compound having various structures can be introduced into IgG. Furthermore, the method of the present invention has the advantage of lowering the possibility of reducing the function of the antibody because the product obtained has a higher yield and is not accompanied by modification of the antibody itself.
本發明之IgG結合肽亦可用於人類以外之動物、較佳為哺乳動物之IgG。於該情形時,關於本發明之IgG結合肽所結合之IgG中之部位,只要為閱讀了本說明書之從業者,則可藉由對例如人類IgG之序列與其他動物之IgG之序列進行配對而容易地特定。 The IgG-binding peptide of the present invention can also be used for animal IgG, preferably mammalian IgG. In this case, as long as it is a practitioner who has read the present specification, the position in the IgG to which the IgG-binding peptide of the present invention binds can be obtained by pairing the sequence of, for example, human IgG with the sequence of IgG of another animal. Easily specified.
於本發明中,所謂「交聯劑」係用以藉由共價鍵結使本發明之IgG結合肽與IgG Fc連結之化學物質。關於本發明之交聯劑,只要為從業者,則可適當選擇,可設為至少具有2處可與所需之胺基酸(例如離胺酸殘基、半胱胺酸殘基、天冬胺酸殘基、麩胺酸殘基、2-胺基辛二酸、或二胺基丙酸、及精胺酸等)鍵結之部位的化合物。作為該例,並無限定,可列舉:DSG(disuccinimidyl glutarate、二琥珀醯亞胺基戊二酸鹽)、DSS(disuccinimidyl suberate、二琥珀醯亞胺基辛二酸鹽)等包含較佳為2個以上之琥珀醯亞胺基之交聯劑、DMA(dimethyl adipimidate‧2 HCl、己二亞胺酸二甲酯二鹽酸鹽)、DMP(dimethyl pimelimidate‧2 HCl、庚二亞胺酸二甲酯二鹽酸鹽)、及DMS(dimethyl suberimidate‧2 HCl、辛二亞胺酸二甲酯二鹽酸鹽)等包含較佳為2個以上之亞胺酸部分的交聯劑、以及DTBP(dimethyl 3,3'- dithiobispropionimidate‧2HCl、3,3'-二硫代雙丙亞胺酸二甲酯二鹽酸鹽)及DSP(dithiobis(succinimidyl propionate)、二硫代雙琥珀醯亞胺基丙酸)等具有SS鍵之交聯劑。 In the present invention, the so-called "crosslinking agent" is a chemical substance used to link the IgG-binding peptide of the present invention with IgG Fc by covalent bonding. The cross-linking agent of the present invention can be appropriately selected as long as it is a practitioner, and it can be set to have at least two amino acids (e.g., lysine residue, cysteine residue, asparagine) Compounds at the sites where amino acid residues, glutamic acid residues, 2-aminosuberic acid, or diaminopropionic acid, and arginine are bonded. The examples are not limited, and examples thereof include DSG (disuccinimidyl glutarate, disuccinimidyl glutarate), DSS (disuccinimidyl suberate, disuccinimidyl suberate), etc. More than succinimide imino crosslinkers, DMA (dimethyl adipimidate‧2 HCl, dimethyl adipimidate dihydrochloride), DMP (dimethyl pimelimidate‧2 HCl, dimethylpimelimidate ‧ HCl Ester dihydrochloride), DMS (dimethyl suberimidate‧2 HCl, dimethyl suberimidate dihydrochloride), and other crosslinking agents containing preferably two or more imine moieties, and DTBP ( dimethyl 3,3'- dithiobispropionimidate‧2HCl, 3,3'-dithiobispropionimide dimethyl dihydrochloride) and DSP (dithiobis (succinimidyl propionate), dithiobissuccinimide propionate) have SS bonds Of crosslinking agent.
本發明之IgG結合肽亦可藉由其他功能性物質、例如IgA或VHH等抗體、標記物質及/或其他藥劑進行修飾。IgG結合肽與其他功能性物質之連結可藉由從業者所公知之方法、例如疊氮基與二苯并環辛炔(dibenzocyclooctyne)之反應、或順丁烯二醯亞胺基與巰基之反應等而進行。於利用標記物質進行標記之情形時,本發明之IgG結合肽會與IgG形成複合體,藉此可經由該標記物質進行IgG之檢測或定量。標記物質並無限定,例如包括螢光色素、化學發光色素、放射性同位素(例如放射性碘或放射性同位素金屬離子之螯合物、例如DOTA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid,1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸)或去鐵胺之螯合物)、以及生物素及GFP(綠色螢光蛋白質)等螢光蛋白質、發光蛋白質、以及過氧化酶等酶,較佳之標記物質之例為螢光素及FITC(Fluorescein Isothiocyanate,異硫氰酸螢光素)等螢光素衍生物、羅丹明及四甲基羅丹明等羅丹明衍生物、以及德克薩斯紅等螢光色素。於利用其他藥劑對本發明之肽進行修飾之情形時,作為藥劑,並無限定,例如可列舉:奧瑞斯他汀E等奧瑞斯他汀、美登素(Maytansine)、Emtansine、阿黴素(Doxorubicin)、博萊黴素(Bleomycin)、或該等之衍生物等抗癌劑;以及能夠與血腦障壁上之受體結合而向中樞神經移動之藥劑、或能夠與癌細胞等結合而使抗體向細胞內移動之藥劑等靶向劑。於連結有藥劑之情形時,本發明之IgG結合肽例如可藉由與用作醫藥抗體之IgG形成複合體而提高疾病之治療效果。 The IgG-binding peptide of the present invention can also be modified by other functional substances, such as antibodies such as IgA or VHH, labeling substances, and / or other agents. IgG-binding peptides can be linked to other functional substances by methods known to practitioners, such as the reaction of azide and dibenzocyclooctyne, or the reaction of cis-butenylimine and thiol. And so on. In the case of labeling with a labeling substance, the IgG-binding peptide of the present invention forms a complex with IgG, whereby IgG can be detected or quantified via the labeling substance. The labeling substance is not limited, and includes, for example, a fluorescent pigment, a chemiluminescent pigment, a radioisotope (such as a radioactive iodine or a chelate of a radioisotope metal ion, such as DOTA (1,4,7,10-tetraazacyclododecane-1,4,7 , 10-tetraacetic acid, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or deferoxamine chelate), and biotin and GFP (green Fluorescent proteins such as fluorescent proteins, luminescent proteins, and enzymes such as peroxidase. Examples of preferred labeling substances are luciferins and fluorescein derivatives such as FITC (Fluorescein Isothiocyanate), Rhodamine derivatives such as rhodamine and tetramethyl rhodamine, and fluorescent pigments such as Texas Red. In the case where the peptide of the present invention is modified with other drugs, the drug is not limited. Examples include auristatin such as auristatin E, Maytansine, Emtansine, and doxorubicin. ), Bleomycin (Bleomycin), or derivatives thereof; and drugs that can bind to receptors on the blood-brain barrier and move to the central nervous system, or can bind to cancer cells to make antibodies Targeting agents such as drugs moving into cells. When a pharmaceutical agent is linked, the IgG-binding peptide of the present invention can improve the therapeutic effect of a disease by forming a complex with IgG used as a pharmaceutical antibody, for example.
本發明之經交聯劑修飾之IgG結合肽例如可藉由使依據上述<IgG結合肽>之項目中所記載之方法而獲得之IgG結合肽與交聯劑進行 反應而製造。於該情形時,需要特異性地對IgG結合肽中之上述Xaa1之胺基酸殘基之側鏈進行修飾,該情況例如可藉由選擇Xaa1之種類與交聯劑之組合而進行。例如,DSS或DSG等包含琥珀醯亞胺基之交聯劑會與離胺酸殘基之側鏈及多肽之N末端所存在之一級胺進行反應,故而藉由將IgG結合肽之N末端封阻,並且使之與DSS或DSG進行反應,可利用DSS或DSG僅對離胺酸殘基之側鏈特異性地進行修飾。只要為從業者,則可適當選擇此種胺基酸殘基與交聯劑之組合。 The cross-linking agent-modified IgG-binding peptide of the present invention can be performed, for example, by using an IgG-binding peptide and a cross-linking agent obtained according to the method described in the above item of "IgG-binding peptide". Made by reaction. In this case, it is necessary to specifically modify the side chain of the amino acid residue of the aforementioned Xaa1 in the IgG-binding peptide, and this case can be performed, for example, by selecting a type of Xaa1 and a combination of a cross-linking agent. For example, DSS or DSG-containing crosslinkers containing succinimide will react with the side chain of the lysine residue and the primary amine present at the N-terminus of the polypeptide. Therefore, by blocking the N-terminus of the IgG-binding peptide And react with DSS or DSG, DSS or DSG can be used to specifically modify only the side chain of the lysine residue. As long as it is a practitioner, a combination of such an amino acid residue and a crosslinking agent can be appropriately selected.
本發明之經交聯劑修飾之IgG結合肽例如亦可藉由使用經交聯劑修飾之胺基酸殘基進行肽合成而製造。同樣地,於利用標記物質及/或其他藥劑對IgG結合肽進行修飾之情形時,亦可藉由使用附加有該等修飾之胺基酸殘基進行肽合成,而製備經標記物質及/或其他藥劑修飾之IgG結合肽。 The cross-linking agent-modified IgG-binding peptide of the present invention can also be produced, for example, by performing peptide synthesis using an amino acid residue modified with a cross-linking agent. Similarly, when a IgG-binding peptide is modified with a labeling substance and / or other drugs, the labeled substance and / or can be prepared by peptide synthesis using an amino acid residue to which these modifications are added. IgG-binding peptides modified by other agents.
<交聯反應> <Crosslinking reaction>
於一態樣中,本發明係關於一種包括將本發明之經交聯劑修飾之IgG結合肽與IgG進行混合之步驟的生產IgG結合肽與IgG之複合體之方法。根據本步驟,可於經交聯劑修飾之IgG結合肽與IgG之間產生交聯反應。交聯反應尤其可於IgG結合肽之上述Xaa1之胺基酸殘基與IgG Fc之Lys248或Lys246、較佳為Lys248之間部位特異性地產生。 In one aspect, the present invention relates to a method for producing a complex of IgG-binding peptide and IgG including the step of mixing the IgG-binding peptide modified with a cross-linking agent of the present invention with IgG. According to this step, a cross-linking reaction can be generated between the IgG-binding peptide modified with the cross-linking agent and the IgG. The cross-linking reaction can be generated specifically at the site between the amino acid residue of Xaa1 of the IgG-binding peptide and Lys248 or Lys246, preferably Lys248 of IgG Fc.
關於該混合步驟之條件,只要為於在本發明之IgG結合肽與IgG之間產生交聯反應之條件下進行者,則無特別限定。例如,可藉由將本發明之IgG結合肽與IgG於適當之緩衝液中於室溫(例如約15℃~30℃)下進行混合而進行反應。該混合步驟亦可視需要適量添加促進交聯反應之觸媒。 The conditions for this mixing step are not particularly limited as long as they are performed under conditions in which a crosslinking reaction occurs between the IgG-binding peptide and IgG of the present invention. For example, the reaction can be performed by mixing the IgG-binding peptide of the present invention and IgG in an appropriate buffer at room temperature (for example, about 15 ° C to 30 ° C). In this mixing step, an appropriate amount of a catalyst to promote the cross-linking reaction may be added as needed.
該混合步驟中之本發明之IgG結合肽與IgG之混合比率並無特別限定。本發明之IgG結合肽與IgG之莫耳比率例如可設為1:1~20:1、較佳為2:1~20:1或5:1~10:1。 The mixing ratio of the IgG-binding peptide and IgG of the present invention in this mixing step is not particularly limited. The molar ratio of the IgG-binding peptide to IgG of the present invention can be set to, for example, 1: 1 to 20: 1, preferably 2: 1 to 20: 1, or 5: 1 to 10: 1.
關於該混合步驟中之混合時間(反應時間),只要會於本發明之IgG結合肽與IgG之間產生交聯反應,則無限定,例如可設為1分鐘~5小時、較佳為10分鐘~2小時或15分鐘~1小時。 The mixing time (reaction time) in this mixing step is not limited as long as a cross-linking reaction occurs between the IgG-binding peptide of the present invention and IgG, and it can be set to, for example, 1 minute to 5 hours, preferably 10 minutes. ~ 2 hours or 15 minutes ~ 1 hour.
生產本發明之IgG結合肽與IgG之複合體的方法亦可視需要進而包括如下步驟,即自進行過上述步驟之混合物中,將雜質、例如未反應之IgG結合肽、IgG、及試劑等分離,而對該複合體進行精製。該步驟可藉由本領域公知之方法、例如凝膠過濾層析法、離子交換管柱層析法、親和層析法、逆相管柱層析法、及HPLC等層析法等而進行。 The method for producing a complex of the IgG-binding peptide and IgG of the present invention may optionally further include the step of separating impurities such as unreacted IgG-binding peptide, IgG, and reagents from the mixture having undergone the above steps, The complex is refined. This step can be performed by a method known in the art, such as gel filtration chromatography, ion exchange column chromatography, affinity chromatography, reverse phase column chromatography, and chromatography such as HPLC.
<複合體> <Complex>
於一態樣中,本發明係關於一種本發明之IgG結合肽與IgG之複合體。該複合體可藉由上述交聯反應而形成。因此,本發明較佳為關於一種IgG結合肽之上述Xaa1之胺基酸殘基與IgG Fc之Lys248或Lys246、較佳為Lys248之間經由交聯劑部位特異性地結合而成之IgG結合肽與IgG之複合體。 In one aspect, the invention relates to a complex of an IgG-binding peptide and IgG of the invention. The complex can be formed by the above-mentioned crosslinking reaction. Therefore, the present invention preferably relates to an IgG-binding peptide in which the amino acid residue of Xaa1 of the IgG-binding peptide is specifically bound to the IgG Fc Lys248 or Lys246, preferably Lys248, via a crosslinker site. Complex with IgG.
本發明之複合體係藉由部位特異性之交聯反應而形成,因此該交聯反應對IgG之活性產生負面影響之可能性較小。又,藉由將經修飾之IgG結合肽連結於IgG,可對IgG附加新的功能性。例如若使經標記物質修飾之IgG結合肽與IgG結合,則可經由該標記物質進行IgG之檢測或定量。標記物質之例如上所述,因此此處省略記載。又,例如若使經藥劑修飾之IgG結合肽與作為醫藥抗體之IgG結合,則可提高IgG之疾病之治療效果。藥劑之例如上所述,因此此處省略記載。 The complex system of the present invention is formed by a site-specific cross-linking reaction, so the cross-linking reaction is less likely to have a negative effect on the activity of IgG. In addition, by linking the modified IgG-binding peptide to IgG, new functionality can be added to IgG. For example, if an IgG-binding peptide modified with a labeling substance is bound to IgG, IgG can be detected or quantified via the labeling substance. Examples of the labeling substance are as described above, and therefore description thereof is omitted here. For example, if the IgG-binding peptide modified with a drug is bound to IgG as a pharmaceutical antibody, the therapeutic effect of IgG disease can be improved. Examples of medicines are as described above, and therefore descriptions are omitted here.
<醫藥組合物或診斷劑> <Pharmaceutical composition or diagnostic agent>
於一態樣中,本發明係關於一種包含上述IgG結合肽、上述經交聯劑修飾之IgG結合肽、或上述經交聯劑修飾之IgG結合肽與IgG之複合體之醫藥組合物或診斷劑。於包含於醫藥組合物中之情形時,IgG結合肽例如較佳為經上述藥劑修飾,於包含於診斷劑中之情形時, IgG結合肽例如較佳為經上述標記物質修飾。 In one aspect, the present invention relates to a pharmaceutical composition or diagnosis comprising the above-mentioned IgG-binding peptide, the above-mentioned cross-linker-modified IgG-binding peptide, or the above-mentioned cross-linker-modified IgG-binding peptide and IgG complex Agent. When it is contained in a pharmaceutical composition, the IgG-binding peptide is preferably modified with the above-mentioned agent, for example, and when it is contained in a diagnostic agent, The IgG-binding peptide is preferably modified with, for example, the above-mentioned labeling substance.
作為成為本發明之醫藥組合物及診斷劑之對象的疾病,並無限定,例如可列舉可利用抗體進行靶向之疾病或障礙,較佳為癌症、炎症性疾病、感染症、及神經退化性疾病。 The diseases to be targeted for the pharmaceutical composition and diagnostic agent of the present invention are not limited, and examples include diseases or disorders that can be targeted by antibodies, and preferably cancer, inflammatory diseases, infectious diseases, and neurodegenerative diseases. disease.
本發明之醫藥組合物可利用經口投予或非經口投予(例如靜脈注射、肌肉注射、皮下投予、腹腔內投予、直腸投予、或經黏膜投予等)進行投予。又,本發明之醫藥組合物可根據投予路徑而製成適當之劑型。具體而言,可製備為顆粒劑、錠劑、丸劑、膠囊劑、糖漿劑、乳劑、懸浮劑、靜脈注射、動脈注射、或者肌肉注射用之注射劑、點滴劑、外用劑、或栓劑等各種製劑形態。關於投予方法及劑型,只要為從業者,則可根據患者之性別、年齡、體重、症狀等而適當選擇。 The pharmaceutical composition of the present invention can be administered by oral or parenteral administration (for example, intravenous injection, intramuscular injection, subcutaneous administration, intraperitoneal administration, rectal administration, or transmucosal administration, etc.). In addition, the pharmaceutical composition of the present invention can be prepared into an appropriate dosage form depending on the route of administration. Specifically, it can be prepared into various preparations such as granules, lozenges, pills, capsules, syrups, emulsions, suspensions, intravenous injections, arterial injections, or injections, drips, external preparations, or suppositories for intramuscular injection. form. As for the administration method and dosage form, as long as it is a practitioner, it can be appropriately selected according to the sex, age, weight, symptoms, etc. of the patient.
本發明之醫藥組合物可依據常用方法進行製劑化(例如望參照Remington's Pharmaceutical Science,latest edition,Mark Publishing Company,Easton,美國),亦可一併包含醫藥上所容許之載體或添加物。 The pharmaceutical composition of the present invention can be formulated according to a commonly used method (for example, see Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton, USA), and can also include a pharmaceutically acceptable carrier or additive.
作為可包含於本發明之醫藥組合物中之載體及醫藥添加物之例,可列舉水、醫藥上容許之有機溶劑、膠原蛋白、聚乙烯醇、聚乙烯吡咯啶酮、羧基乙烯基聚合物、羧甲基纖維素鈉、聚丙烯酸鈉、海藻酸鈉、水溶性葡聚糖、羧甲基澱粉鈉、果膠、甲基纖維素、乙基纖維素、三仙膠、阿拉伯膠、酪蛋白、瓊脂、聚乙二醇、雙甘油、甘油、丙二醇、凡士林、石蠟、硬脂醇、硬脂酸、人類血清白蛋白(HSA)、甘露糖醇、山梨糖醇、乳糖、及容許作為醫藥添加物之界面活性劑等。 Examples of carriers and pharmaceutical additives that can be included in the pharmaceutical composition of the present invention include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, Sodium carboxymethyl cellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methyl cellulose, ethyl cellulose, sansyl gum, acacia, casein, Agar, polyethylene glycol, diglycerin, glycerol, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA), mannitol, sorbitol, lactose, and permitted as pharmaceutical additives Surfactants and so on.
實際之添加物係根據本發明之醫藥組合物之劑型而自上述中單獨或適當組合後選擇,但並不限定於該等。例如於用作注射用製劑之 情形時,可使用將本發明之IgG結合蛋白質或IgG結合蛋白質與IgG之複合體溶解於溶液、例如生理食鹽水、緩衝液、葡萄糖溶液等中,並向其中添加有容器吸附防止劑、例如Tween 80、Tween 20、明膠、人類血清白蛋白等者。或者,為了製成於使用前溶解並再構成之劑型,亦可為經冷凍乾燥者,作為用於冷凍乾燥之穩定劑,例如可使用甘露糖醇、葡萄糖等糖醇及/或糖類。 The actual additive is selected from the above alone or appropriately combined according to the dosage form of the pharmaceutical composition of the present invention, but is not limited to these. For example, for preparations for injection In this case, the IgG-binding protein or the complex of IgG-binding protein and IgG of the present invention can be used in a solution such as physiological saline, buffer solution, glucose solution, etc., and a container adsorption preventing agent such as Tween can be added to the solution. 80, Tween 20, gelatin, human serum albumin, etc. Alternatively, in order to prepare a dosage form that is dissolved and reconstituted before use, it may be freeze-dried. As a stabilizer for freeze-drying, for example, sugar alcohols such as mannitol and glucose and / or sugars may be used.
本發明之醫藥組合物之有效投予量及投予間隔可根據患者之性別、年齡、體重、及症狀等而適當選擇。 The effective administration amount and administration interval of the pharmaceutical composition of the present invention can be appropriately selected according to the sex, age, weight, and symptoms of the patient.
投予本發明之醫藥組合物之時期不論是產生上述疾病之臨床症狀之前或之後,均可預防性地投予,亦均可治療性地投予。 The period of administration of the pharmaceutical composition of the present invention can be administered either preventively or therapeutically before or after the clinical symptoms of the above-mentioned diseases occur.
<生產半胱胺酸殘基利用連結子連結而成之肽的方法> <Method for producing a peptide in which cysteine residues are linked by a linker>
於一態樣中,本發明係關於一種生產半胱胺酸殘基利用連結子連結而成之肽的方法。本方法包括如下步驟,即將包含2個以上、較佳為2個半胱胺酸殘基之肽與以下之式:
所表示之化合物(式中,R1及R2分別獨立為任意之鹵素原子)進行混合,而獲得2個以上、較佳為2個半胱胺酸殘基中之硫基利用以下之式:
所表示之連結子連結而成之肽。上述式中之虛線部分意指與硫基之鍵結部分。半胱胺酸殘基利用該連結子連結而成之肽對於還原反 應等較經通常之二硫鍵連結之肽穩定。 A peptide formed by the indicated linkers. The dotted line portion in the above formula means a bonding portion with a sulfur group. The peptides linked by cysteine residues using this linker are effective It should wait more stable than peptides linked by usual disulfide bonds.
於上述化合物中,R1及R2較佳為選自由F、Cl、Br、及I所組成之群中,進而較佳為選自由Cl、Br、及I所組成之群中。R1及R2較佳為相同,進而較佳為R1及R2均為Cl。 Among the above compounds, R 1 and R 2 are preferably selected from the group consisting of F, Cl, Br, and I, and further preferably selected from the group consisting of Cl, Br, and I. R 1 and R 2 are preferably the same, and more preferably R 1 and R 2 are both Cl.
本方法中之混合步驟之條件只要為於肽之半胱胺酸殘基間產生連結反應之條件,則無特別限定。例如可藉由將肽與上述化合物於適當之緩衝液、例如包含氯化胍之緩衝液中於室溫(例如約15℃~30℃)下進行混合而進行反應。該混合步驟亦可視需要適量添加促進連結反應之觸媒而進行。 The conditions of the mixing step in this method are not particularly limited as long as they are conditions that cause a linking reaction between the cysteine residues of the peptide. For example, the reaction can be performed by mixing the peptide and the compound in an appropriate buffer, such as a buffer solution containing guanidine chloride, at room temperature (for example, about 15 ° C to 30 ° C). This mixing step may be carried out by adding an appropriate amount of a catalyst that promotes the linking reaction as needed.
本方法之混合步驟中之肽與化合物之混合比率並無特別限定。肽與化合物之莫耳比率例如可設為1:0.2~1:10、較佳為1:0.5~1:5或1:1~1:2。 The mixing ratio of the peptide to the compound in the mixing step of the method is not particularly limited. The molar ratio of the peptide to the compound can be set to, for example, 1: 0.2 to 1:10, preferably 1: 0.5 to 1: 5, or 1: 1 to 1: 2.
關於該混合步驟中之混合時間(反應時間),只要會於肽之半胱胺酸殘基間產生連結反應,則無限定,例如可設為1分鐘~5小時、較佳為10分鐘~2小時或15分鐘~1小時。 The mixing time (reaction time) in this mixing step is not limited as long as a linking reaction occurs between the cysteine residues of the peptide, and it can be, for example, 1 minute to 5 hours, preferably 10 minutes to 2 Hour or 15 minutes ~ 1 hour.
本發明之方法亦可視需要進而包括如下步驟,即自進行過上述步驟之混合物中,將雜質、例如未反應之肽及化合物等分離,而對連結有半胱胺酸殘基之肽進行精製。該步驟可藉由本領域公知之方法、例如凝膠過濾層析法、離子交換管柱層析法、親和層析法、逆相管柱層析法、及HPLC等層析法等而進行。 The method of the present invention may optionally further include a step of separating impurities such as unreacted peptides and compounds from the mixture having undergone the above steps, and purifying the peptide to which the cysteine residue is linked. This step can be performed by a method known in the art, such as gel filtration chromatography, ion exchange column chromatography, affinity chromatography, reverse phase column chromatography, and chromatography such as HPLC.
本方法中所使用之肽之種類只要為半胱胺酸殘基能夠利用上述化合物進行連結者,則無特別限定,例如可列舉本說明書中所記載之IgG結合肽或WO2013/027796之說明書中所記載之肽。作為WO2013/027796之說明書中所記載之肽之例,可列舉將本說明書中所記載之IgG結合肽之Xaa1殘基置換為精胺酸殘基(R)之肽。 The type of the peptide used in this method is not particularly limited as long as it is a cysteine residue that can be linked using the above-mentioned compound, and examples thereof include the IgG-binding peptides described in this specification or those described in the specification of WO2013 / 027796. Documented peptide. Examples of peptides described in the specification of WO2013 / 027796 include peptides in which the Xaa1 residue of the IgG-binding peptide described in this specification is replaced with an arginine residue (R).
[實施例] [Example]
[實施例1:IgG結合肽與IgG之複合體之X射線結晶結構解析] [Example 1: Analysis of X-ray crystal structure of IgG-binding peptide and IgG complex]
<方法> <Method>
(1)IgG結合肽溶液之製作 (1) Preparation of IgG-binding peptide solution
藉由基於F-moc法之肽固相合成法並依據常用方法而製備具有G(HC)DCAYHRGELVWCT(HC)H-NH2之序列(序列編號31,其中HC為高半胱胺酸,第4號與第14號之2個Cys、第2號與第16號之2個高半胱胺酸分別於分子內形成二硫鍵)之環狀高半胱胺酸肽。將所製備之IgG結合肽0.8mg之粉末溶解於24μL之100%二甲基亞碸(和光純藥)中,而製備IgG結合肽溶液。 A sequence with G (HC) DCAYHRGELVWCT (HC) H-NH 2 (SEQ ID NO: 31, where HC is homocysteine, No. 4) was prepared by a peptide solid-phase synthesis method based on the F-moc method and according to a common method. The two Cys of No. 14 and No. 14 and the two homocysteine of No. 2 and No. 16 form disulfide bonds in the molecule respectively). A powder of 0.8 mg of the prepared IgG-binding peptide was dissolved in 24 μL of 100% dimethylsulfene (Wako Pure Chemical Industries, Ltd.) to prepare an IgG-binding peptide solution.
(2)Fc與IgG結合肽之複合體之製作 (2) Preparation of complex of Fc and IgG binding peptide
於包含10mM EDTA(Ethylene Diamine Tetraacetic Acid,乙二胺四乙酸)及1mM L-半胱胺酸之20mmol/L磷酸緩衝液(pH值7.0)中於37℃下使用Papain(羅氏公司製造)將人類IgG(中外制藥)之鉸鏈部分切斷。繼而,使用陽離子交換管柱(TSKgel SP5-PW(Tosoh))於流速1mL/min、20mM乙酸鈉緩衝液(pH值5.0)中利用0-0.3M NaCl之梯度進行溶出對人類IgG Fc進行精製。將包含16mg/mL之人類IgG Fc之63μL之溶液(0.1M氯化鈉(和光純藥)、0.04M 2-嗎啉乙磺酸(和光純藥)(pH值6.0))與上述(1)中所製作之IgG結合肽溶液2μL進行混合,而製備Fc與IgG結合肽之複合體溶液。 Humans were treated with Papain (manufactured by Roche) in a 20 mmol / L phosphate buffer (pH 7.0) containing 10 mM EDTA (Ethylene Diamine Tetraacetic Acid) and 1 mM L-cysteine at 37 ° C. The hinge part of IgG (Zhongwai Pharmaceutical) was severed. Next, human IgG Fc was purified using a cation exchange column (TSKgel SP5-PW (Tosoh)) at a flow rate of 1 mL / min in a 20 mM sodium acetate buffer (pH 5.0) using a gradient of 0-0.3M NaCl. 63 μL of a solution containing 16 mg / mL of human IgG Fc (0.1M sodium chloride (Wako Pure Chemical Industries, Ltd.), 0.04M 2-morpholine ethanesulfonic acid (Wako Pure Chemical Industries, Ltd.) (pH 6.0)) and the above (1) 2 μL of the IgG-binding peptide solution prepared in the above was mixed to prepare a complex solution of Fc and IgG-binding peptide.
(3)Fc與IgG結合肽之複合體之結晶之製作 (3) Fabrication of crystals of Fc and IgG binding peptide complex
Fc與IgG結合肽之複合體之結晶可藉由沈滴蒸氣擴散法而獲得。即,使用作為結晶化用自動儀之HydoraII+(Matrix公司製造),將上述(2)中所製作之Fc與IgG結合肽之複合體溶液0.3μL和結晶化劑(20%聚乙二醇3350(Sigma-Aldrich)、0.2M碘化鉀(和光純藥)(pH值6.9))0.3μL於智能結晶化板(VERITAS公司製造)之S1孔上進行混合,而製成結晶化滴劑。分注上述結晶化劑70μL作為貯備溶液。利用PowerSeal CRISTAL VIEW(Greiner Bio-One公司製造)將板密閉後,於20℃之恆溫槽內靜置約2週,而獲得結晶。 Crystals of the complex of Fc and IgG-binding peptides can be obtained by the dripping vapor diffusion method. That is, using HydoraII + (manufactured by Matrix Corporation) as an automatic instrument for crystallization, 0.3 μL of a complex solution of the Fc and IgG-binding peptide prepared in the above (2) and a crystallization agent (20% polyethylene glycol 3350 ( Sigma-Aldrich), 0.2 M potassium iodide (Wako Pure Chemical Industries, Ltd.) (pH 6.9)) 0.3 μL were mixed on the S1 well of a smart crystallizing plate (manufactured by VERITAS) to prepare crystallized drops. 70 μL of the above-mentioned crystallization agent was dispensed as a stock solution. Leverage PowerSeal CRISTAL VIEW (manufactured by Greiner Bio-One) sealed the plate and left it in a constant temperature bath at 20 ° C for about 2 weeks to obtain crystals.
(4)Fc與IgG結合肽之複合體之結晶之X射線繞射強度資料之收集 (4) Collection of X-ray diffraction intensity data of crystals of the complex of Fc and IgG binding peptide
將上述(3)中所獲得之結晶移動至穩定化母液(22%聚乙二醇3350、0.2M碘化鉀、0.1M氯化鈉、25%甘油(w/v)、0.04M 2-嗎啉乙磺酸(pH值6.0))中,於-170℃之氮氣氣流下急速冷凍,並利用振動法測定X射線繞射資料。於X射線之波長為1埃、振動角為1°/幀下實施。繼而,使用繞射強度資料處理程式HKL2000(HKL Research公司製造),以分辨率3.0埃對繞射強度資料進行處理。其結果為,結晶之空間群為P21,晶格常數為a=66.1埃、b=60.5埃、c=69.5埃、α=γ=90°、β=101.3°。所獲得之資料之完整性(Completeness)為99.9%,Rmerge為13.8%。 Move the crystals obtained in (3) to the stabilized mother liquor (22% polyethylene glycol 3350, 0.2M potassium iodide, 0.1M sodium chloride, 25% glycerol (w / v), 0.04M 2-morpholine ethyl In sulfonic acid (pH 6.0)), it was rapidly frozen under a nitrogen gas flow at -170 ° C, and the X-ray diffraction data was measured by a vibration method. The X-ray was performed at a wavelength of 1 angstrom and a vibration angle of 1 ° / frame. Next, the diffraction intensity data processing program HKL2000 (manufactured by HKL Research) was used to process the diffraction intensity data with a resolution of 3.0 angstroms. As a result, the space group of the crystal was P21, and the lattice constants were a = 66.1 angstrom, b = 60.5 angstrom, c = 69.5 angstrom, α = γ = 90 °, and β = 101.3 °. The completeness of the obtained information was 99.9% and Rmerge was 13.8%.
(5)Fc與IgG結合肽之複合體之結晶結構之確定 (5) Determination of the crystal structure of the complex of Fc and IgG binding peptide
針對DCAYHRGELVWCT(序列編號33),利用CCP4(Collaborative Computational Project Number 4)所包含之程式Phaser對上述(4)中所獲得之繞射強度資料嘗試進行基於分子置換法之相位確定。分子置換法之檢索模型係利用於蛋白質資料庫(PDB、URL:http://www.rcsb.0rg/pdb/)中以PDB登記碼:1DN2登記之Fc部分之模型。其結果為,於非對稱單位中發現了1分子之模型。繼而反覆實施使用有CCP4所包含之結構精密化程式Refmac5之結構精密化與使用有作為模型構件程式之X-tal view之模型之修正,而獲得Fc與IgG結合肽(DCAYHRGELVWCT(序列編號33))之複合體之結晶結構。於Fc之肽結合部位觀測到相當於IgG結合肽之電子密度。所確定之結晶結構之正確性之指標即R因數為0.216。進而,根據精密化之階段中未加入至計算中之相當於全反射之5%之結構因數而計算之Rfree因數為0.317。 For DCAYHRGELVWCT (sequence number 33), the Phaser based on the molecular replacement method was used to determine the phase of the diffraction intensity data obtained in (4) above using Phaser, a program included in CCP4 (Collaborative Computational Project Number 4). The search model of the molecular replacement method is a model of the Fc part registered in the protein database (PDB, URL: http: //www.rcsb.0rg/pdb/) with the PDB registration code: 1DN2. As a result, a model of one molecule was found in the asymmetric unit. Then, the structure refinement using the structure refinement program Refmac5 included in CCP4 and the modification of the model using X-tal view as a model building program were repeatedly implemented to obtain Fc and IgG binding peptides (DCAYHRGELVWCT (SEQ ID NO: 33)) The crystalline structure of the complex. An electron density equivalent to the IgG-binding peptide was observed at the peptide-binding site of the Fc. The R-factor is 0.216, which is an indicator of the correctness of the crystal structure. Furthermore, the Rfree factor calculated based on the structural factor equivalent to 5% of total reflection that was not added to the calculation in the stage of refinement was 0.317.
(6)交聯結構模型之製作 (6) Production of cross-linked structure model
基於上述X射線結晶解析之結構,於計算科學軟體MOE(Molecular Operating Environment)上製作交聯結構模型。於將DCAYHRGELVWCT(序列編號33)之第6號胺基酸置換為Lys後,以將該Lys之ε胺基與抗體Fc之第248號Lys之ε胺基之間相連之形式將利用DSG或DSS所獲得之交聯結構進行模型化。 Based on the X-ray crystallized structure, a cross-linked structure model was made on the computational science software MOE (Molecular Operating Environment). After replacing the 6th amino acid of DCAYHRGELVWCT (SEQ ID NO: 33) with Lys, the form of linking the epsilon amino group of Lys with the epsilon amino group of Lys No. 248 of antibody Fc will use DSG or DSS The obtained crosslinked structure is modeled.
<結果> <Result>
如圖1A所示,認為IgG結合肽係結合於與蛋白質A之結合部位重疊之CH2與CH3域之交界區域,並以與已經報告之IgG結合肽Fc-III(DeLano,W.L.et al.,Science,2000,287,pp.1279-1283)類似之形式與IgG結合。IgG結合肽與Fc之特徵性之相互作用在於IgG結合肽之第8號殘基Arg之側鏈之胍基以2.91埃與Fc之Glu380(基於EU編號,以下相同)之側鏈之羧酸鹽結合。該Glu380之側鏈於人類IgG Fc中與Lys248鹽結合而形成分子內之鹽結合之網狀,IgG結合肽之Arg8與Fc之Lys248經由與Fc之Glu380之相互作用而接近。因此,構思出將IgG結合肽之第8號殘基Arg換為Lys,並以類似於該鹽結合之網狀結構之形式利用交聯劑將肽之Lys8與抗體之Lys248之側鏈之胺基進行交聯。實際上,以IgG結合肽與人類IgG Fc之複合體結構為基礎,製作利用DSG(二琥珀醯亞胺基戊二酸鹽)或者DSS(二琥珀醯亞胺基辛二酸鹽)所形成之交聯結構之模型,結果認為能夠於空間上不伴有抗體之主鏈結構之變形而導入交聯劑(圖1B)。 As shown in FIG. 1A, it is believed that the IgG-binding peptide binds to the junction region of the CH2 and CH3 domains that overlaps with the binding site of protein A, and uses the IgG-binding peptide Fc-III (DeLano, WL et al., Science) , 2000, 287, pp. 1279-1283) in a similar manner to IgG. The characteristic interaction between IgG-binding peptide and Fc is the carboxylate of the guanidine group on the side chain of residue 8 of IgG-binding peptide Arg with 2.91 Angstroms and the side chain of Glu380 (based on EU numbering, the same below) of Fc Combined. The side chain of the Glu380 is bound to the intramolecular salt-binding network in the human IgG Fc by binding with the Lys248 salt, and the Arg8 of the IgG-binding peptide and the Lys248 of the Fc are approached through the interaction with the Glu380 of the Fc. Therefore, it was conceived to replace residue No. 8 of IgG-binding peptide Arg with Lys, and use a cross-linking agent to form the peptide's Lys8 with the amino group of the side chain of Lys248 of the antibody in a form similar to the network structure of the salt binding Perform cross-linking. In fact, based on the complex structure of IgG-binding peptide and human IgG Fc, DSG (disuccinimidylglutarate) or DSS (disuccinimidyl suberate) is produced. As a result of the model of the cross-linked structure, it was thought that a cross-linking agent could be introduced in the space without accompanying deformation of the main chain structure of the antibody (FIG. 1B).
[實施例2:標記用肽之製備與特性] [Example 2: Preparation and characteristics of labeling peptide]
<方法> <Method>
利用生物素或者5/6TAMURA琥珀醯亞胺酯(AnaSpec,Inc.)(螢光色素)對胺基進行修飾之胺基-PEG4化合成肽GPDCAYHXGELVWCTFH(序列編號2)(其中,C末端經醯胺化)係藉由Fmoc固相合成法並依據常用方法而合成。於去除保護基後,於pH值 8.5之水溶液中於氧化條件下形成分子內S-S鍵,使用逆相HPLC並藉由流速1.0ml/min、包含0.1%之TFA(Trifluoroacetic acid,三氟乙酸)之10%至60%之乙腈之梯度進行溶出對具有分子內S-S鍵之肽進行精製。 Biotin or 5 / 6TAMURA succinimide (AnaSpec, Inc.) (fluorescent pigment) amine-modified amine-PEG4 synthesis peptide GPDCAYHXGELVWCTFH (SEQ ID NO. 2) (Chemical) is synthesized by the Fmoc solid-phase synthesis method according to a common method. After removing the protective group, at pH In the aqueous solution of 8.5, an intramolecular SS bond was formed under oxidizing conditions. Reverse phase HPLC was used, and a gradient of 10% to 60% acetonitrile in 0.1% TFA (Trifluoroacetic acid) was used with a flow rate of 1.0 ml / min. Dissolution is performed to purify a peptide having an intramolecular SS bond.
於將包含1mM之經精製之IgG結合肽的DMF(Dimethylformamide,二甲基甲醯胺)溶液100μL與100mM之DSS或DSG(Thermo Fisher Scientific公司)之乙腈溶液100μL進行混合後,於室溫下反應一晚。利用0.1% TFA將反應物稀釋至2.5倍後,噴射至Waters公司製造之μ Bondasphere 5C18 100埃(直徑3.9mm×150mm),並以包含0.1% TFA之4%至60%之乙腈之梯度進行溶出。關於交聯劑對所獲得之產物之附加,於連接有BEH300 C18(1.7μm、直徑2.1mm×50mm)管柱之LC-質譜儀(Acquity SQD UPLC system,Waters Corp.)上以包含0.1%甲酸之4%至60%之乙腈之梯度進行溶出,並藉由波峰之分子量之測定而確認。 100 μL of a DMF (Dimethylformamide, dimethylformamide) solution containing 1 mM purified IgG-binding peptide was mixed with 100 μL of a 100 mM solution of DSS or DSG (Thermo Fisher Scientific) in acetonitrile, and then reacted at room temperature. one night. After diluting the reactant to 2.5 times with 0.1% TFA, spray it to μ Bondasphere 5C18 100 angstroms (diameter 3.9mm × 150mm) manufactured by Waters, and dissolve it in a gradient containing 4% to 60% acetonitrile of 0.1% TFA. . Regarding the addition of a crosslinking agent to the obtained product, an LC-mass spectrometer (Acquity SQD UPLC system, Waters Corp.) connected to a BEH300 C18 (1.7 μm, diameter 2.1 mm × 50 mm) column was used to contain 0.1% formic acid. A gradient of 4% to 60% of acetonitrile was dissolved and confirmed by measurement of the molecular weight of the peak.
所獲得之標記化試劑肽之親和性解析係於藉由添加十分之一量之1M Tris-HCl(pH值=7.0)使之反應15min而將NHS基水解後,藉由以下之方法而進行。於將0.4M EDC(1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide,1-乙基-3-(3-二甲基胺基丙基)碳二醯亞胺)與0.1M磺基-NHS(sulfo-N-hydroxysuccinimide,磺基-N-羥基琥珀醯亞胺)進行等量混合後,向設置於BIAcoreT200(GE healthcare)之CM5感測晶片上以10μl/ml之流速對感測晶片噴射7分鐘,藉此使感測晶片活化,並於pH值4.0(10mM乙酸Na)之條件下以固定化量以RU值計成為4000~5000之方式將IgG固定化。一面使用HBS-EP緩衝液(0.01M HEPES、0.15M NaCl、0.005% Tween 20、3mM EDTA、pH值7.0),一面以流速50μl/ml噴射10nM至2μM之濃度之肽180秒,藉此監測結合反應,其後利用緩衝液洗淨600sec,藉此 測定解離反應。結合參數之解析係使用BIAevalution T100軟體而進行。 The affinity analysis of the obtained labeled reagent peptide was performed by adding 1 / 10th of 1M Tris-HCl (pH = 7.0) for 15 minutes to hydrolyze the NHS group, and then carried out by the following method . In 0.4M EDC (1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and 0.1M sulfo- NHS (sulfo-N-hydroxysuccinimide, sulfo-N-hydroxysuccinimide) was mixed in equal amounts, and the sensor wafer was sprayed onto a CM5 sensor wafer set at BIAcoreT200 (GE healthcare) at a flow rate of 10 μl / ml. After 7 minutes, the sensor wafer was activated, and the IgG was immobilized under the condition of pH 4.0 (10 mM Na acetate) so that the amount of immobilization became 4000 to 5000 in terms of RU value. While using HBS-EP buffer (0.01M HEPES, 0.15M NaCl, 0.005% Tween 20, 3mM EDTA, pH 7.0), spray a peptide at a concentration of 10nM to 2μM at a flow rate of 50μl / ml for 180 seconds to monitor binding The reaction was followed by washing with a buffer solution for 600 sec. The dissociation reaction was measured. The analysis of the combined parameters was performed using BIAevalution T100 software.
<結果> <Result>
為了研究交聯結構之導入是否會對IgG結合肽之特異性及親和性產生影響,利用SPR(Surface Plasmon Resonance,表面電漿子共振)解析測定導入有交聯結構之IgG結合肽向IgG之結合力(表1)。將第8殘基之精胺酸置換為離胺酸之IgG結合肽(以下亦稱為I型(R8K))對人類IgG之親和性為131nM(Kd),與置換前之IgG結合肽(以下亦稱為I型)相比,親和性降低了10倍。於使各交聯劑結合於I型(R8K)肽而成者中,關於對人類IgG之親和性,I型(R8K)-DSG-OH約為330nM(Kd),I型(R8K)-DSS-OH約為390nM(Kd),並未發現因結合交聯劑引起之親和性之大幅度減少。不論為何種肽,均具有以Kd值計為μM以下之親和性,因此認為可實現特異性充分之標記化。 In order to study whether the introduction of the cross-linked structure will affect the specificity and affinity of the IgG-binding peptide, SPR (Surface Plasmon Resonance, Surface Plasmon Resonance) analysis was used to determine the binding of the IgG-bound peptide with the cross-linked structure to the IgG Force (Table 1). Substituted the arginine residue of residue 8 with lysine-based IgG-binding peptide (hereinafter also referred to as type I (R8K)) for human IgG with an affinity of 131 nM (Kd), and the IgG-binding peptide before replacement (hereinafter (Also known as type I), the affinity is reduced by 10 times. Among those obtained by binding each cross-linking agent to a type I (R8K) peptide, about the affinity for human IgG, the type I (R8K) -DSG-OH is about 330 nM (Kd), and the type I (R8K) -DSS -OH was about 390 nM (Kd), and no significant decrease in affinity due to binding of the crosslinking agent was found. Regardless of the peptide, since it has an affinity of μM or less in terms of Kd value, it is considered that sufficient specificity can be achieved.
[實施例3:利用IgG結合肽之人類IgG-Fc之特異性修飾] [Example 3: Specific modification of human IgG-Fc using IgG-binding peptide]
<方法> <Method>
藉由與實施例2相同之方法製備利用DSS或DSG對於N末端附加有生物素-PEG4之IgG結合肽(TypeI(R8K))進行修飾之標記化試劑肽,並 使之與人類IgG Fc進行反應,研究人類IgG Fc之標記化反應。即,藉由與實施例2相同之方法於逆相管柱中對過剩之與DSS或DSG反應後之IgG結合肽(R8K)(200pmol/5μL in 0.1% TFA)進行精製後,於減壓下將乙腈去除,其後添加約1/8之0.5M Na2HPO4進行中和,並立刻以莫耳比10倍量添加至蛋白質樣本(hIgG(中外製藥)、hIgA(Athens Research&Technology)、HSA(Sigma-Aldrich)、或血清(自健康者採血所得者))(各40pmol/5μL,血清係使用利用PBS(Phosphate-buffered Saline,磷酸鹽緩衝液)稀釋10倍而成者)中,而將最終量製成以PBS計為20μL後,於室溫下放置5分鐘。其後,添加1μl之1M Tris-HCl(pH值=7.0)而使反應停止後,添加4xSDS樣本溶液6.7μl及2-巰基乙醇1.4μl(最終5%),於95℃下處理10min,其後使用預製凝膠SuperSepTMAce,5-20%(和光純藥)進行SDS-PAGE。電泳後之凝膠於使用Hoefer Semiphor TE70 Trans-Blot System以35mA、60分鐘轉印至PVDF膜後,利用0.5%BSA(Bovine Serum Albumin,牛血清白蛋白)進行阻斷。經生物素化肽標記之蛋白質係使用SA偶聯HRP(稀釋1000倍,Vector Laboratories)並藉由化學發光試劑(ImmunoStar(註冊商標)Basic,和光純藥)而檢測。 In the same manner as in Example 2, a labeling reagent peptide modified with DSS or DSG for the IgG-binding peptide (TypeI (R8K)) with biotin-PEG4 attached to the N-terminus was prepared and reacted with human IgG Fc. To study the labeling reaction of human IgG Fc. That is, the excess IgG-binding peptide (R8K) (200 pmol / 5 μL in 0.1% TFA) after reacting with DSS or DSG was purified in a reverse-phase column by the same method as in Example 2, and then under reduced pressure. The acetonitrile was removed, and then about 1/8 of 0.5M Na 2 HPO 4 was added for neutralization, and immediately added to protein samples (hIgG (Chinese and foreign pharmaceuticals), hIgA (Athens Research & Technology), HSA ( Sigma-Aldrich), or serum (obtained from a healthy person) (40 pmol / 5 μL each, the serum is 10 times diluted with PBS (Phosphate-buffered Saline, phosphate buffer)), and the final After measuring the amount to 20 μL in PBS, the solution was left at room temperature for 5 minutes. After that, 1 μl of 1M Tris-HCl (pH = 7.0) was added to stop the reaction, and then 4 × SDS sample solution 6.7 μl and 2-mercaptoethanol 1.4 μl (final 5%) were added, and treated at 95 ° C. for 10 minutes, and thereafter SDS-PAGE was performed using a pre-made gel SuperSep ™ Ace, 5-20% (Wako Pure Chemical Industries, Ltd. ) . The gel after electrophoresis was transferred to a PVDF membrane using a Hoefer Semiphor TE70 Trans-Blot System at 35 mA for 60 minutes, and then blocked with 0.5% BSA (Bovine Serum Albumin, bovine serum albumin). Biotinylated peptide-labeled proteins were detected using SA-coupled HRP (1000-fold dilution, Vector Laboratories) with a chemiluminescence reagent (ImmunoStar (registered trademark) Basic, Wako Pure Chemical Industries, Ltd.).
<結果> <Result>
如圖2B所示,於西方墨點法中,僅於與IgG反應之情形時觀察到視為複合體之帶,因此得知與DSG或DSS反應後之IgG結合肽均未與IgA或HAS、血清中之IgG以外之蛋白質結合,而選擇性地與IgG結合。 As shown in FIG. 2B, in the Western blot method, a band that is regarded as a complex is observed only when reacting with IgG. Therefore, it is learned that the IgG-binding peptides that reacted with DSG or DSS did not react with IgA or HAS, Proteins other than IgG in the serum bind to and selectively bind to IgG.
[實施例4:IgG結合肽對IgG之反應條件之研究] [Example 4: Study on reaction conditions of IgG-binding peptide to IgG]
<方法> <Method>
(1)反應莫耳比之研究 (1) Response to Morse ratio
於96孔微盤(Nunc(註冊商標)MaxiSorp)之孔中,將包含各蛋白質 (IgG(中外製藥)、IgA(Athens Research & Technology)、或牛明膠(和光純藥))(50ng(0.33pmol)/μl/well)之0.1M NaHCO3溶液添加至盤中並於室溫下放置一晚,藉此使各蛋白質吸附於盤之表面,並利用0.5% BSA進行阻斷後,向各孔中添加以與實施例2相同之方式製備之經DSG修飾之生物素化IgG結合肽(以莫耳比計為0,1,2,5,10),經過1小時後添加3μL之1M Tris-HCl(pH值7.0)而使反應停止。添加50μL之利用0.5%BSA稀釋2000倍之SA-HRP(Vector Laboratories),並於室溫下反應一小時後,利用0.1%PBST(Phosphate-buffered Saline with Tween 20,磷酸鹽緩衝液+Tween20)洗淨5次,其後HRP(Horseradish Peroxidase,辣根過氧化酶)之顯色使用TMB(Tetramethyl benzidine,四甲基聯苯胺)溶液(Wako Chemicals)進行5分鐘之顯色反應後,利用ELISA讀板儀(型號680微盤讀取器(Bio-Rad))測定450nm之吸光度。 In the wells of a 96-well microplate (Nunc (registered trademark) MaxiSorp), each protein (IgG (Chinese and foreign pharmaceutical), IgA (Athens Research & Technology), or bovine gelatin (Wako Pure Chemical Industries, Ltd.)) (50ng (0.33pmol) ) / μl / well) 0.1M NaHCO 3 solution was added to the dish and left at room temperature for one night, so that each protein was adsorbed on the surface of the dish, and blocked with 0.5% BSA, and then into each well. DSG-modified biotinylated IgG-binding peptide (0,1,2,5,10 in molar ratio) prepared in the same manner as in Example 2 was added, and 3 μL of 1M Tris-HCl was added after 1 hour. (pH 7.0) and the reaction was stopped. Add 50 μL of SA-HRP (Vector Laboratories) diluted 2000-fold with 0.5% BSA and react at room temperature for one hour, then wash with 0.1% PBST (Phosphate-buffered Saline with Tween 20, phosphate buffer + Tween 20) Clean 5 times, and then develop HRP (Horseradish Peroxidase, horseradish peroxidase) for color development using TMB (Tetramethyl benzidine, tetramethyl benzidine) solution (Wako Chemicals) for 5 minutes, then read the plate by ELISA The instrument (model 680 micro-disk reader (Bio-Rad)) measures the absorbance at 450 nm.
(2)反應時間之研究 (2) Research on reaction time
向藉由50ng/50μL之溶液於4℃下固定化一晚而獲得之hIgG(50ng)中以莫耳比2添加經DSG修飾之生物素化IgG結合肽,並於各反應時間(0~60分鐘)內添加3μL之1M Tris-HCl(pH值7.0)而使反應停止。結合之檢測係與(A)同樣地進行。 To hIgG (50ng) obtained by immobilizing a 50ng / 50μL solution at 4 ° C overnight, a DSG-modified biotinylated IgG-binding peptide was added at a molar ratio of 2 to the reaction time (0 ~ 60). The reaction was stopped by adding 3 μL of 1M Tris-HCl (pH 7.0) within 3 minutes. The detection of binding was performed in the same manner as in (A).
<結果> <Result>
使用DSS標記化IgG結合肽,並利用ELISA對取決於與抗體反應之莫耳數及反應時間之差異之反應效率進行研究(圖3)。即,使固定於塑膠板之IgG結合肽之莫耳比自1變化至10並使其與hIgG反應,結果於大致莫耳比5時發現飽和,因此認為若添加莫耳比5左右之肽試劑,則抗體之標記化充分(圖3A)。於未經DSS修飾之生物素化IgG結合(R8K)肽(NO DSS R8K)中雖發現極弱之結合,但認為係藉由利用非共價鍵結合之肽所形成之結合活性。進而,即便過量添加標記化IgG結 合肽試劑,亦完全未檢測到對其他蛋白質(hIgA、牛明膠或者用作阻斷劑之BSA)之結合。 DSS was used to label the IgG-binding peptide and ELISA was used to study the reaction efficiency depending on the difference in the number of moles and reaction time with the antibody (Figure 3). That is, the molar ratio of the IgG-binding peptide immobilized on a plastic plate was changed from 1 to 10 and reacted with hIgG. As a result, saturation was found at approximately molar ratio 5. Therefore, it is considered that if a molar reagent with a molar ratio of about 5 is added, , The labeling of the antibody is sufficient (Figure 3A). Although very weak binding was found in the non-DSS-modified biotinylated IgG-binding (R8K) peptide (NO DSS R8K), it is believed that the binding activity was formed by utilizing non-covalently bonded peptides. Furthermore, even if the labeled IgG Peptide binding reagents, no binding to other proteins (hIgA, bovine gelatin or BSA used as a blocking agent) was detected at all.
其次,對於以莫耳比1:2使IgG與IgG結合肽反應時之反應時間進行研究。其結果為,於約15分鐘時發現飽和,因此認為反應於15分鐘時幾乎結束(圖3B)。 Next, the reaction time when IgG was reacted with the IgG-binding peptide at a molar ratio of 1: 2 was investigated. As a result, saturation was found at about 15 minutes, and the reaction was considered to be almost complete at 15 minutes (Fig. 3B).
根據以上結果,顯示出經交聯劑修飾後之本發明之IgG結合肽於短時間內特異性地與IgG結合。 Based on the above results, it was shown that the IgG-binding peptide of the present invention modified with a cross-linking agent specifically binds to IgG in a short time.
[實施例5:利用螢光IgG結合肽之Fc之標記化] [Example 5: Fc labeling using fluorescent IgG-binding peptide]
<方法> <Method>
使IgG(中外製藥)、IgA(Athens Research & Technology)、或BSA(Sigma-Aldrich)(15μg:以IgG換算計為100pmol)與依據實施例2所製備之DSG交聯肽或DSS交聯肽(500pmol)於200μL中於室溫下反應60min,添加10μL之1M Tris-HCl(pH值=7.0)而使反應停止。其後,於SuperdexTM200 10/30GL直徑1.0cm×30cm(GE Healthcare);流速:0.3ml/min;電泳緩衝液:PBS pH值7.4之條件下進行尺寸排除層析法,並使用螢光檢測器RF-10A(島津製作所)(激發光:541nm螢光:565nm)進行測定。 IgG (Chinese and foreign pharmaceutical), IgA (Athens Research & Technology), or BSA (Sigma-Aldrich) (15 μg: 100 pmol in terms of IgG conversion) and the DSG cross-linked peptide or DSS cross-linked peptide prepared according to Example 2 ( 500 pmol) was reacted in 200 μL at room temperature for 60 min, and 10 μL of 1M Tris-HCl (pH = 7.0) was added to stop the reaction. Thereafter, size exclusion chromatography was performed under conditions of SuperdexTM 200 10 / 30GL diameter 1.0 cm × 30 cm (GE Healthcare); flow rate: 0.3 ml / min; electrophoresis buffer: PBS pH 7.4, and a fluorescence detector RF was used -10A (Shimadzu Corporation) (excitation light: 541 nm fluorescence: 565 nm) was measured.
<結果> <Result>
使與DSS或DSG反應後之標記化IgG結合肽以相對於各蛋白質之莫耳比1:5於室溫下與蛋白質反應60min,並利用尺寸排除層析法進行分析。不論使用何種標記化IgG結合肽(DSS或DSG),對IgG之反應性之特異性均為相相同程度,且均完全未檢測到hIgA或BSA等對其他蛋白質之螢光標記化(圖4)。根據以上情況得知,不論使用所製作之何種IgG結合肽,均具有較高之特異性,而可對人類IgG進行螢光標記。 The labeled IgG-binding peptide reacted with DSS or DSG was reacted with the protein at a molar ratio of 1: 5 to each protein for 60 min at room temperature, and analyzed by size exclusion chromatography. No matter what kind of labeled IgG-binding peptide (DSS or DSG) is used, the specificity of the reactivity to IgG is the same degree, and no fluorescent labeling of other proteins such as hIgA or BSA is detected (Figure 4) ). Based on the above, it is known that no matter what kind of IgG-binding peptide is produced, it has high specificity, and human IgG can be fluorescently labeled.
[實施例6:利用IgG結合肽之Fc之修飾物之解析(pH值4.5)] [Example 6: Analysis of Modification of Fc Using IgG Binding Peptide (pH 4.5)]
<方法> <Method>
添加0.5、1.0、2.0、5.0μL(以莫耳比計為0.5、1.0、2.0、5.0)之人類IgG(中外製藥)之Fc溶液(20μM、0.1M乙酸緩衝液pH值4.5)200μL與溶解於DMF中之藉由與實施例2相同之方法進行過DSG修飾之IgG結合肽(RGNCAYHXGQLVWCTYH(序列編號35)、X為離胺酸)(4mM),並快速攪拌後,於室溫下反應15分鐘,添加10μL之1M Tris-HCl(pH值7.0)而使反應停止。將反應物50μL噴射至連接有Shodex IEC SP-825管柱之NGC層析系統(Bio-Rad),進行25mM乙酸鹽緩衝液(Acetate buffer)(pH值4.5)向包含1M NaCl之25mM乙酸鹽緩衝液(pH值4.5)之梯度進行溶出,以215nm之吸光度監測蛋白質之溶出。分取所獲得之各波峰,並供於利用LC/MS(Liquid Chromatography-Mass Spectrometry,液相色譜-質譜)而進行之分子量測定。 Add 200 μL of 0.5, 1.0, 2.0, 5.0 μL (0.5, 1.0, 2.0, 5.0 in molar ratio) of human IgG (Chinese and foreign pharmaceuticals) Fc solution (20 μM, 0.1M acetic acid buffer pH 4.5) and dissolve in DSG-modified IgG-binding peptide (RGNCAYHXGQLVWCTYH (SEQ ID NO: 35), X is lysine) (4mM) in DMF, which was modified by the same method as in Example 2. After rapid stirring, it was reacted at room temperature for 15 minutes 10 μL of 1M Tris-HCl (pH 7.0) was added to stop the reaction. 50 μL of the reaction was sprayed onto an NGC chromatography system (Bio-Rad) connected to a Shodex IEC SP-825 column, and 25 mM acetate buffer (pH 4.5) was applied to 25 mM acetate buffer containing 1 M NaCl. Dissolution was performed with a gradient of pH (4.5), and protein dissolution was monitored by absorbance at 215 nm. Each of the obtained peaks was fractionated and used for molecular weight measurement by LC / MS (Liquid Chromatography-Mass Spectrometry).
將20μL所獲得之波峰之餾分注射至連接有Waters ACQUITY UPLC BEH C8(1.7μm 2.1mm×100mm)管柱之Shimadzu LCMS-8030後,進行包含0.1%甲酸之4%乙腈至包含0.1%甲酸之60%乙腈之梯度進行溶出。進行所溶出之波峰之質譜分析,並藉由自使用解析軟體之多價離子波峰之反捲積(deconvolution)而計算質量。 20 μL of the obtained peak fraction was injected into Shimadzu LCMS-8030 connected to a Waters ACQUITY UPLC BEH C8 (1.7 μm 2.1 mm × 100 mm) column, and then 4% acetonitrile containing 0.1% formic acid to 60% containing 0.1% formic acid A gradient of% acetonitrile was used for dissolution. Mass spectral analysis of the eluted peaks was performed and the mass was calculated by deconvolution of the polyvalent ion peaks using analytical software.
<結果> <Result>
使人類IgG11-Fc與經DSG修飾之IgG結合肽(4mM、生物素-PEG4-RGNCAYHXGQLVWCTYH-NH2;分子量2760,X為經DSG化之離胺酸,2個Cys形成分子內SS鍵)以莫耳比計為0.5、1.0、2.0、或5.0反應,結果如圖5A所示,出現了原本之人類IgG11-Fc之溶出位置之波峰(波峰2)與2個波峰3、4(認為波峰1係經DSG化之IgG結合肽)。為了鑑定該等之分子種類,而進行LCMS解析。反應前之IgG1-Fc於離子交換層析圖中於波峰1之位置溶出,且於LCMS解析中獲得55084之值。進行反應後之2、3、4之波峰之LCMS解析,結果分別獲得55087、 57735(55087+2648)、60384(55087+5297)之值。根據該情況得知,反應後之波峰2為未反應之Fc,波峰3與4為於Fc分別結合有1個及2個肽者。 Human IgG11-Fc and DSG-modified IgG binding peptide (4mM, biotin-PEG4-RGNCAYHXGQLVWCTYH-NH 2 ; molecular weight 2760, X is lysine with DSG, 2 Cys form intramolecular SS bond) The ear ratio is 0.5, 1.0, 2.0, or 5.0. The results are shown in Figure 5A. The peaks (peak 2) and two peaks 3 and 4 of the original dissolution position of human IgG11-Fc appear. DSGized IgG-binding peptide). In order to identify these molecular species, LCMS analysis was performed. The IgG1-Fc before the reaction was eluted at the position of peak 1 in the ion exchange chromatogram, and a value of 55084 was obtained in the LCMS analysis. The LCMS analysis of the peaks 2, 3, and 4 after the reaction was performed, and the values of 55087, 57735 (55087 + 2648), and 60384 (55087 + 5297) were obtained, respectively. According to this situation, it is known that peak 2 after the reaction is unreacted Fc, and peaks 3 and 4 are those in which one and two peptides are bound to the Fc, respectively.
圖5B係將以各莫耳比進行反應之情形時之未反應(波峰2)、1個肽之附加物(波峰3)、2個肽之附加物(波峰4)之產生量之變化進行圖表化而成者。例如可知,於以莫耳比1:1進行反應之情形時,未反應物亦變成20%以下,若為莫耳比1:2,則未反應物為10%以下而產量極高。又,於過度之莫耳比1:5之情形時,2個肽之附加物之產生比率亦相對增加,但於離子交換層析圖上並未檢測到附加有2個以上之肽之Fc,因此得知該標記反應極具特異性。 FIG. 5B is a graph showing changes in the amount of unreacted (peak 2), one peptide addition (peak 3), and two peptide additions (peak 4) when reacting at each mole ratio. Into a person. For example, it can be seen that when the reaction is performed at a molar ratio of 1: 1, the unreacted material also becomes 20% or less. If the molar ratio is 1: 2, the unreacted material is 10% or less and the yield is extremely high. Moreover, in the case of an excessive molar ratio of 1: 5, the production ratio of the appendages of the two peptides also relatively increased, but no Fc with more than two peptides was detected on the ion exchange chromatogram. Therefore, it is known that the labeling reaction is very specific.
[實施例7:pH值與反應時間對利用IgG結合肽之Fc之反應的影響] [Example 7: Effect of pH and reaction time on Fc response using IgG-binding peptide]
<方法> <Method>
向以pH值4.0(25mM乙酸緩衝液)、pH值5.5(25mM乙酸緩衝液)、或pH值7.0(PBS)製備之人類IgG之Fc溶液200μL中添加1.0μL(以莫耳比計為1.0)之實施例5中所製備之溶解於DMF中之經DSG修飾之IgG結合肽(4mM),並快速攪拌後,於室溫下進行反應。於反應後1、5、10、或30分鐘時添加10μL之1M Tris-HCl(pH值7.0)而使反應停止,將反應物50μL噴射至連接有Shodex IEC SP-825管柱之NGC層析系統(Bio-Rad),進行25mM乙酸鹽緩衝液(pH值4.5)至包含1M NaCl之25mM乙酸鹽緩衝液(pH值4.5)之梯度進行溶出,利用215nm之吸光度監測蛋白質之溶出。基於所獲得之層析圖而計算各波峰之比率。 1.0 μL (1.0 in molar ratio) of 200 μL of an Fc solution of human IgG prepared at pH 4.0 (25 mM acetate buffer), pH 5.5 (25 mM acetate buffer), or pH 7.0 (PBS) The DSG-modified IgG-binding peptide (4 mM) dissolved in DMF prepared in Example 5 was quickly stirred and then reacted at room temperature. Add 10 μL of 1M Tris-HCl (pH 7.0) at 1, 5, 10, or 30 minutes after the reaction to stop the reaction. Spray 50 μL of the reactant to the NGC chromatography system connected to the Shodex IEC SP-825 column. (Bio-Rad), a gradient of 25 mM acetate buffer (pH 4.5) to 25 mM acetate buffer (pH 4.5) containing 1 M NaCl was used for dissolution, and protein dissolution was monitored using an absorbance at 215 nm. The ratio of each peak is calculated based on the obtained chromatogram.
<結果> <Result>
如圖6所示,得知於已試驗之pH值4.0、pH值5.5、及pH值7.0之任一種情況下,標記化反應均較早,反應之90%以上均於1分鐘以內結束。又,於pH值4.0之情況下,未反應物之殘量超過40%而反應產率較低,尤其是2個肽之附加物(波峰4)之產量為15%左右,與其他pH值 之情形時(35-40%)相比較低。於pH值5.5及7.0之情況下,未反應物之產量亦較低為10%~未達20%,得知高效率地進行反應。作為pH值5.5與7.0之差異,可見波峰4之產量於pH值7.0之情況下有若干降低之傾向。 As shown in FIG. 6, it was found that in any of the tested pH values of 4.0, 5.5, and 7.0, the labeling reaction was earlier, and more than 90% of the reaction was completed within 1 minute. In addition, at a pH of 4.0, the residual amount of unreacted substances exceeds 40% and the reaction yield is low, especially the yield of the two peptides (peak 4) is about 15%, which is in line with other pH values. This situation is relatively low (35-40%). In the case of pH 5.5 and 7.0, the yield of unreacted substances is also low from 10% to less than 20%, and it is known that the reaction proceeds efficiently. As the difference between pH 5.5 and 7.0, it can be seen that the yield of Wave 4 has a tendency to decrease slightly in the case of pH 7.0.
[實施例8:使用IgG結合肽之單鏈Fv-Fc抗體之利用螢光標記所進行之FACS解析] [Example 8: FACS analysis of single-chain Fv-Fc antibody using IgG-binding peptide using fluorescent labeling]
<方法> <Method>
使用Lipofectamine 2000將保有將針對Her2之scFv(4D5)與Fc基因連結而成之scFv-Fc的pcDNA3.1/Zeo(+)轉染至HEK293細胞中,並培養5天後,利用蛋白質A管柱對分泌至培養液中之scFv-Fc進行精製,而製備4D5-Fc抗體(具有對HER2之特異性的單鏈Fv純系4D5與Fc之融合蛋白質)。繼而,使將所製備之4D5-Fc抗體1.0μg於包含3%BSA之PBS 10μL中進行稀釋而成者與藉由與實施例2相同之方法進行過DSG修飾之N末端生物素化IgG結合肽(生物素-PEG4-RGNCAYHXGQLVWCTYH(序列編號35),X為經DSG化之離胺酸,2個Cys形成分子內SS鍵)0.16μg(20pmol)混合並反應10分鐘。將該反應物添加至分散於包含10%FBS之PBS 100μL之乳腺癌細胞株SK-BR3(自ATCC購買)(5.0×105細胞),並於4℃下放置30分鐘。利用包含3%BSA之PBS洗淨1次,並於懸浮於包含3%BSA之PBS 100μL中後,添加PE標記鏈黴親和素(Vector Laboratories)0.01μg(0.2pmol),於4℃下放置30分鐘。再次利用包含3%BSA之PBS洗淨1次後,將其分散至包含3%BSA之PBS100 μL中,並於添加10μL之7-AAD活性染料(Beckman Coulter)後,放置15分鐘。添加PBS 400μL使之分散,並於通過35μm之篩網(Corning)後,於S3eTM細胞分選儀(Bio-Rad)上進行分析。 Lipofectamine 2000 was used to transfect pcDNA3.1 / Zeo (+) containing scFv-Fc from Her2 scFv (4D5) and Fc gene into HEK293 cells. After 5 days of culture, protein A column was used. The scFv-Fc secreted into the culture medium is purified to prepare a 4D5-Fc antibody (a single-chain Fv pure Fusion protein of 4D5 and Fc having specificity to HER2). Next, 1.0 μg of the prepared 4D5-Fc antibody was diluted in 10 μL of PBS containing 3% BSA, and the N-terminal biotinylated IgG-binding peptide DS-modified by the same method as in Example 2 was used. (Biotin-PEG4-RGNCAYHXGQLVWCTYH (SEQ ID NO: 35), X is a DSG lysine, and 2 Cys form an intramolecular SS bond) 0.16 μg (20 pmol) were mixed and reacted for 10 minutes. This reaction was added to a breast cancer cell line SK-BR3 (purchased from ATCC) (5.0 × 10 5 cells) dispersed in 100 μL of PBS containing 10% FBS, and left at 4 ° C. for 30 minutes. After washing once with PBS containing 3% BSA and suspending in 100 μL of PBS containing 3% BSA, 0.01 μg (0.2 pmol) of PE-labeled streptavidin (Vector Laboratories) was added and left at 4 ° C for 30 minutes. minute. After washing once with PBS containing 3% BSA again, it was dispersed in 100 μL of PBS containing 3% BSA, and after adding 10 μL of 7-AAD reactive dye (Beckman Coulter), it was left for 15 minutes. 400 μL of PBS was added to disperse, and after passing through a 35 μm sieve (Corning), analysis was performed on an S3e ™ cell sorter (Bio-Rad).
<結果> <Result>
將藉由經DSG修飾之生物素化IgG結合肽與PE標記鏈黴親和素對4D5-Fc抗體向乳腺癌細胞株SK-BR3上之HER2抗原之結合進行檢測所獲得之結果示於圖7A。作為對照,亦一併表示使用生物素化抗人類IgG小鼠抗體(抗hIgG mAb-生物素標記)(0.01μg)代替經DSG修飾之生物素化IgG結合肽(生物素化IgG結合肽)之情形時之流式細胞儀解析之結果(於任一情形時,均僅使用除藉由7-AAD染色進行染色之死細胞以外之細胞組分進行分析)。於2個體系中,螢光強度均幾乎無差異,因此得知經SG修飾之生物素化IgG結合肽可藉由特異性地對人Fc進行標記而利用於單鏈Fv-Fc等之FACS染色。另一方面,亦對未添加4D5-Fc之體系進行了研究作為陰性對照(圖7B),與未添加SG修飾生物素化IgG結合肽之體系(抗hIgG mAb-生物素標記+SA-PE標記、及抗hIgG mAb-PE標記)同樣地,完全未觀察到螢光強度之偏移,因此得知於為單獨之經DSG修飾之生物素化IgG結合肽之情況下不會產生對細胞之非特異性之修飾。 The results obtained by detecting the binding of the 4D5-Fc antibody to the HER2 antigen on the breast cancer cell line SK-BR3 by DSG-modified biotinylated IgG-binding peptide and PE-labeled streptavidin are shown in FIG. 7A. As a control, it is also shown that a biotinylated anti-human IgG mouse antibody (anti-hIgG mAb-biotin labeling) (0.01 μg) is used instead of a DSG-modified biotinylated IgG binding peptide (biotinylated IgG binding peptide). Results of flow cytometry analysis in the case (in either case, only cell components other than dead cells stained by 7-AAD staining were used for analysis). In both systems, there was almost no difference in fluorescence intensity. Therefore, it was learned that SG-modified biotinylated IgG-binding peptides can be specifically labeled with human Fc and used for FACS staining of single-chain Fv-Fc, etc. . On the other hand, the system without the addition of 4D5-Fc was also studied as a negative control (Figure 7B), and the system without the addition of SG-modified biotinylated IgG-binding peptide (anti-hIgG mAb-biotin labeling + SA-PE labeling) , And anti-hIgG mAb-PE labeling) Similarly, no shift in fluorescence intensity was observed at all, so it was learned that in the case of a DSG-modified biotinylated IgG-binding peptide alone, non-cytokines were not produced. Specific modification.
[實施例9:利用IgG結合肽之抗IgA受體VHH與人類IgG抗體之偶聯物形成] [Example 9: Formation of conjugate of anti-IgA receptor VHH using IgG-binding peptide and human IgG antibody]
<方法> <Method>
經DSG修飾之N末端疊氮化IgG結合肽(疊氮化-PEG4-GPDCAYHXGELVWCTFH(序列編號2),X為經DSG化之離胺酸,2個Cys形成分子內SS鍵,C末端醯胺化)係藉由與實施例2相同之方法製備。將該肽以10mM之濃度溶解於DMSO中,將該溶液20μL添加至溶解於25mM乙酸緩衝液(pH值5.0)中之16.6μM之抗HER2人類IgG抗體(中外製藥)溶液8mL中(肽與抗體之莫耳比=1:1.5),並於室溫下使其等反應5小時。反應後,於CIMmultusTM SO3-1(SHOWA DENKO)之管柱(1mL)上利用25mM乙酸緩衝液(pH值5.0)之0至1M之NaCl梯度溶出對疊氮化肽抗HER2人類IgG抗體(1價疊氮化肽抗體、2價疊氮化肽 抗體之混合物)進行精製。 DSG-modified N-terminal azide IgG-binding peptide (azide-PEG4-GPDCAYHXGELVWCTFH (sequence number 2), X is a lysine acid modified by DSG, 2 Cys form an intramolecular SS bond, and the C-terminal is aminated ) Was prepared by the same method as in Example 2. The peptide was dissolved in DMSO at a concentration of 10 mM, and 20 μL of the solution was added to 8 mL of a 16.6 μM anti-HER2 human IgG antibody (Chinese and foreign pharmaceutical) solution dissolved in 25 mM acetic acid buffer (pH 5.0) (peptide and antibody Molar ratio = 1: 1.5), and allowed to react for 5 hours at room temperature. After the reaction, the azide anti-HER2 human IgG antibody (1) was eluted on a column (1 mL) of CIMmultus TM SO3-1 (SHOWA DENKO) with a NaCl gradient of 0 to 1M in 25 mM acetate buffer (pH 5.0). Valence azide antibody, mixture of bivalent azide antibody).
源自羊駝之抗IgA受體VHH抗體純系2b1-L9(C末端附加有HIS標籤)係使用附加至C末端之HIS標籤對利用大腸桿菌HB2151所分泌表現者進行親和精製。具體而言,於將具有VHH基因之噬菌粒載體pKSTV03導入至大腸桿菌HB2151中之後,於2TYAG培養盤中進行選擇,並於2TYA液體培養基中於37℃下培養一晚。於將該培養液10mL添加至2TYA 500mL中並於37℃下培養1小時後,添加500μL之1M IPTG,並振盪培養16小時。使離心後之菌體懸浮於TES緩衝液(0.2M Tris-base、0.5mM EDTA、0.5M蔗糖)10mL中,並於冰上靜置2小時。添加20mL稀釋至4倍之TES緩衝液使之再懸浮,並於冰上靜置1h後進行離心,對上清液組分(同質組分)進行回收。上清液係於親和管柱(His trap excel、GE Healthcare)中使用Profinia(BioRad)之精製系統對VHH進行精製而成者(關於流速,結合、溶出2mL/min,洗淨2mL/min,關於緩衝液(Buffer),平衡化緩衝液係使用0.5M NaCl、20mM磷酸鈉,洗淨緩衝液係使用0.5M NaCl、20mM磷酸鈉,溶出緩衝液係使用500mM咪唑、0.5M NaCl、20mM磷酸鈉)。繼而,於PBS(pH值7.4)中,於0.1mM之DTT(Dithiothreitol,二硫蘇糖醇)之存在下於室溫下進行1小時還原處理後,於IEC SP-825(Shodex)管柱(8.0mm×75mm)上利用10mM乙酸緩衝液(pH值4.5)之0至1M之NaCl梯度溶出進行精製。將經還原處理之VHH溶液(41.2μM、pH值4.5)200μL與溶解於10mM乙酸緩衝液(pH值4.5)中之870μM之二苯并環辛炔(DBCO)-順丁烯二醯亞胺(Click Chemistry Tools)42μL進行混合(以莫耳比計為1:4.4),並於室溫下使其等反應1小時。將藉由上述方式所製備之二苯并環辛炔-順丁烯二醯亞胺化VHH(22μM)290μL與藉由上述方式所製備之疊氮化肽抗體溶液(17μM、pH值4.5)116μL進行混合(以莫耳比計為3.3:1),並使其等於4℃下反應14小時。反應物係於 IEC SP-825(Shodex)管柱(8.0mm×75mm)上,於10mM乙酸緩衝液(pH值4.5)中利用0至1M之NaCl之梯度進行溶出而精製。經精製之組分於還原後,於5-20%之梯度凝膠Super Sep Ace(WAKO)上藉由SDS-PAGE進行分離,然後藉由CBB進行蛋白質染色。 The alpaca-derived anti-IgA receptor VHH antibody pure line 2b1-L9 (with the HIS tag attached to the C-terminus) was affinity purified using the HIS tag attached to the C-terminus to the expression expressed by E. coli HB2151. Specifically, after the phagemid vector pKSTV03 having the VHH gene was introduced into E. coli HB2151, selection was performed in a 2TYAG culture plate, and culture was performed overnight in a 2TYA liquid culture medium at 37 ° C. After 10 mL of this culture solution was added to 500 mL of 2TYA and cultured at 37 ° C. for 1 hour, 500 μL of 1M IPTG was added and the culture was shaken for 16 hours. The centrifuged cells were suspended in 10 mL of TES buffer (0.2M Tris-base, 0.5mM EDTA, 0.5M sucrose), and left to stand on ice for 2 hours. 20 mL of TES buffer diluted to 4 times was added to resuspend it, and it was left to stand on ice for 1 h and then centrifuged to recover the supernatant component (homogeneous component). Supernatant was purified from VHH in affinity column (His trap excel, GE Healthcare) using Profinia (BioRad) purification system (about 2mL / min for flow rate, binding and dissolution, 2mL / min for washing, about Buffer (Buffer), 0.5M NaCl, 20mM sodium phosphate for the equilibration buffer system, 0.5M NaCl, 20mM sodium phosphate for the washing buffer system, and 500mM imidazole, 0.5M NaCl, 20mM sodium phosphate for the dissolution buffer system) . Then, in PBS (pH 7.4) in the presence of 0.1 mM DTT (Dithiothreitol, dithiothreitol) at room temperature for 1 hour after reduction treatment, in an IEC SP-825 (Shodex) column ( 8.0 mm × 75 mm) was purified by using a gradient of 0 to 1 M NaCl in 10 mM acetic acid buffer (pH 4.5). 200 μL of a reduction-treated VHH solution (41.2 μM, pH 4.5) and 870 μM dibenzocyclooctyne (DBCO) -cis-butenedifluorene imine (10 μM) dissolved in 10 mM acetic acid buffer (pH 4.5) Click Chemistry Tools) was mixed with 42 μL (1: 4.4 in molar ratio), and allowed to react at room temperature for 1 hour. 290 μL of dibenzocyclooctyne-cis-butene difluorinated VHH (22 μM) and 116 μL of azide antibody solution (17 μM, pH 4.5) prepared by the above method Mixing (3.3: 1 in mole ratio) was carried out, and it was made to react at 4 degreeC for 14 hours. Reactant IEC SP-825 (Shodex) column (8.0 mm x 75 mm) was purified by dissolving it in a 10 mM acetic acid buffer (pH 4.5) using a gradient of 0 to 1 M NaCl. After reduction, the purified components were separated by SDS-PAGE on a 5-20% gradient gel Super Sep Ace (WAKO), and then protein stained by CBB.
<結果> <Result>
藉由疊氮化肽抗體與二苯并環辛炔-順丁烯二醯亞胺化VHH之點擊反應所進行之連結後之離子交換層析法之結果為獲得3個(a、b、及c)主要波峰(圖8A)。將於還原狀態下利用SDS-PAGE對各者進行分析所獲得之結果示於圖8B。於a(區帶3)中觀察到與原本之IgG(區帶1)相同之源自H鏈之50kDa及源自L鏈之25kDa之帶。於b(區帶4)中,L鏈之帶雖無變化,但除原本之IgG抗體之重鏈(約50kDa)(區帶1)以外,亦觀察到大致相同濃度之約80kDa之位置之新的帶。於c(區帶5)中,L鏈之帶雖無變化,但原本之重鏈(約50kDa)之帶消失,而僅觀察到約80kDa之帶。根據該等情況得知,a係未附加VHH之IgG抗體,b係連結有1個VHH之IgG抗體(抗HER2人類抗體-1價VHH),c係連結有2個VHH之IgG抗體(抗HER2人類抗體-2價VHH)。 The result of ion-exchange chromatography after the click reaction of the azide peptide antibody and the dibenzocyclooctyne-cis-butene difluorinated VHH was 3 c) The main peak (Figure 8A). The results obtained by analyzing each of them in the reduced state by SDS-PAGE are shown in FIG. 8B. In a (band 3), a 50 kDa derived from the H chain and a 25 kDa derived from the L chain were observed in the same manner as the original IgG (band 1). In b (band 4), although there is no change in the band of the L chain, in addition to the original heavy chain (about 50 kDa) of the IgG antibody (band 1), a new position of about 80 kDa at about the same concentration was also observed. The belt. In c (zone 5), although the band of the L chain remained unchanged, the band of the original heavy chain (about 50 kDa) disappeared, and only a band of about 80 kDa was observed. According to these circumstances, it is known that a is an IgG antibody with no VHH attached, b is an IgG antibody (anti-HER2 human antibody-1 valent VHH) linked to one VHH, and c is an IgG antibody (anti-HER2) linked to two VHH Human antibody-2 is VHH).
根據以上情況得知,藉由使用IgG結合肽試劑而導入至IgG抗體上之疊氮基與導入至VHH低分子抗體之二苯并環辛炔基間之點擊反應,可將低分子抗體(VHH等)連結於IgG抗體。 According to the above situation, it is known that by using a IgG-binding peptide reagent, a click reaction between an azide group introduced into an IgG antibody and a dibenzocyclooctynyl group introduced into a VHH low-molecular antibody, a low-molecular antibody (VHH Etc.) linked to an IgG antibody.
[實施例10:抗IgA受體VHH與抗HER2人類IgG抗體經由IgG結合肽而成之偶聯物之藉由FACS所進行之抗原結合解析] [Example 10: Analysis of antigen binding by FACS of a conjugate of an anti-IgA receptor VHH and an anti-HER2 human IgG antibody via an IgG-binding peptide]
<方法> <Method>
HL60細胞(自JCRB獲取)係於包含10%FBS以及100units/mL青黴素G及100μg/mL鏈黴素硫酸鹽之RPMI1640培養基(Life Technologies公司)中添加1.3%DMSO並分化誘導6天。關於SK-BR3細胞(自ATCC購買),於包含10%FBS、100units/mL青黴素G、及100μg/mL鏈黴素硫 酸鹽之McCoy's 5A(Life Technologies公司)培養基中於37℃下於5%CO2培養箱中培養後,利用胰蛋白酶-EDTA(Life Technologies公司)將細胞剝離並回收。使各2×105之細胞分散於200μL之包含3%BSA之PBS中,以最終濃度成為200nM之方式添加1次抗體(抗HER2人類IgG抗體、實施例9中所製備之抗IgA受體VHH(C末端附加HIS標籤)、或實施例9中所製備之抗HER2人類抗體-1價VHH(C末端附加HIS標籤)),並於4℃下放置30分鐘。於洗淨1次後,向分散於包含3%BSA之PBS中之細胞液200μL中添加1)生物素化抗HIS標籤抗體(MBL Life Science)+經PE標記之SA(最終濃度50nM)(Vector Laboratories)、或2)經PE標記之抗人類IgG多株抗體(Affimetrix eBioscience)(最終濃度13nM)作為2次抗體,並於4℃下放置30分鐘。於洗淨1次後,向分散於包含3%BSA之PBS中之細胞液200μL中添加7-AAD活性染料(Beckman Coulter)10μL並放置15分鐘後,添加800μL之PBS,使之通過35μm之篩網(Corning)後於S3eTM細胞分選儀(Bio-Rad)上進行分析。 HL60 cells (obtained from JCRB) were added to RPMI1640 medium (Life Technologies) containing 10% FBS and 100 units / mL penicillin G and 100 μg / mL streptomycin sulfate (Life Technologies), and induced differentiation for 6 days. About SK-BR3 cells (purchased from ATCC), in McCoy's 5A (Life Technologies) medium containing 10% FBS, 100 units / mL penicillin G, and 100 μg / mL streptomycin sulfate at 37 ° C in 5% CO 2 After culturing in an incubator, the cells were detached by trypsin-EDTA (Life Technologies) and recovered. Each 2 × 10 5 cells were dispersed in 200 μL of PBS containing 3% BSA, and the primary antibody (anti-HER2 human IgG antibody, anti-IgA receptor VHH prepared in Example 9) was added so that the final concentration became 200 nM. (C-terminal HIS tag attached), or the anti-HER2 human antibody-1 valence VHH (C-terminal HIS tag attached) prepared in Example 9, and left at 4 ° C for 30 minutes. After washing once, add 200 μL of cell fluid dispersed in PBS containing 3% BSA 1) Biotinylated anti-HIS-tagged antibody (MBL Life Science) + PE-labeled SA (final concentration 50nM) (Vector Laboratories), or 2) PE-labeled anti-human IgG polyclonal antibody (Affimetrix eBioscience) (final concentration 13nM) as secondary antibodies, and left at 4 ° C for 30 minutes. After washing once, 10 μL of 7-AAD reactive dye (Beckman Coulter) was added to 200 μL of the cell solution dispersed in PBS containing 3% BSA and left for 15 minutes, then 800 μL of PBS was added and passed through a 35 μm sieve The analysis was performed on a S3e ™ cell sorter (Bio-Rad) after Corning.
<結果> <Result>
使用藉由7-AAD染色而去除死細胞之細胞組分,並使用抗HER2人類IgG抗體(圖9A)、抗IgA受體VHH(C末端附加HIS標籤)(圖9B)、抗HER2人類抗體-1價VHH(C末端附加HIS標籤)(圖9C)作為1次抗體,使用最終濃度50nM之生物素化抗HIS抗體+經PE標記之SA之混合物作為2次抗體對高表現HER2之SK-BR3細胞進行FACS解析,將所獲得之結果示於圖9A~C。於圖9C之情形時,觀察到較大之螢光偏移,因此得知所製備之抗HER2人類抗體-1價VHH中之抗HER2抗體具有對SKBR-3細胞之結合活性。 Use 7-AAD staining to remove cell components from dead cells, and use anti-HER2 human IgG antibody (Figure 9A), anti-IgA receptor VHH (C-terminally attached HIS tag) (Figure 9B), anti-HER2 human antibody- Monovalent VHH (H-tag attached to the C-terminus) (Figure 9C) was used as a primary antibody, and a mixture of biotinylated anti-HIS antibody + PE-labeled SA was used as a secondary antibody against SK-BR3 with high expression of HER2 The cells were analyzed by FACS, and the obtained results are shown in Figs. 9A to 9C. In the case of FIG. 9C, a large fluorescence shift was observed, and thus it was known that the anti-HER2 antibody in the prepared anti-HER2 human antibody-1 valence VHH has binding activity to SKBR-3 cells.
另一方面,使用抗HER2人類抗體(圖9D)、抗IgA受體VHH(C末端附加HIS標籤)(圖9E)、抗HER2人類抗體-1價VHH(圖9F)作為1次抗體,並使用PE標記抗人類IgG多株抗體作為2次抗體對在藉由 DMSO1.3%而進行之分化誘導中向高表現IgA受體之HL60細胞之結合進行檢測,將所獲得之結果示於圖9D~F。即便於該等中,亦僅於圖9F之抗HER2人類抗體-1價VHH中觀察到對HL60之結合,因此得知抗HER2人類抗體-1價VHH中之VHH保持有對IgA受體之抗原結合活性。再者,圖9D中之若干螢光偏移表示少量HER2於經分化之HL60細胞上表現,但與基於該結合之螢光強度相比,圖9F中之螢光強度遠大於其,因此認為可忽略對HER2之結合所產生之影響。 On the other hand, anti-HER2 human antibody (Figure 9D), anti-IgA receptor VHH (C-terminal HIS tag attached) (Figure 9E), and anti-HER2 human antibody-1 valence VHH (Figure 9F) were used as primary antibodies and used PE-labeled anti-human IgG polyclonal antibodies are used as secondary antibody pairs. The binding of DMSO to HL60 cells expressing IgA receptors at a high level of 1.3% was detected, and the results obtained are shown in Figures 9D to F. That is to say, binding to HL60 is only observed in the anti-HER2 human antibody-1 valence VHH of FIG. 9F. Therefore, it is known that the VHH in the anti-HER2 human antibody-1 valence VHH retains the antigen to the IgA receptor. Binding activity. Furthermore, some fluorescence shifts in FIG. 9D indicate that a small amount of HER2 is expressed on differentiated HL60 cells, but the fluorescence intensity in FIG. 9F is much larger than that based on the fluorescence intensity based on the binding, so it is considered that it can be Ignore the effect on HER2 binding.
[實施例11:利用IgG結合肽之抗體藥物複合體之細胞增殖抑制] [Example 11: Inhibition of cell proliferation of an antibody drug complex using an IgG-binding peptide]
<方法> <Method>
利用順丁烯二醯亞胺乙醯氧基琥珀醯亞胺酯對N末端之胺基進行修飾之順丁烯二醯亞胺-PEG4化合成肽RRGPDCAYHXGELVWCTFH(序列編號37:於序列編號2之肽之N末端附加有2個Arg而成者,X為離胺酸,C末端醯亞胺化)係藉由Fmoc固相合成法並依據常用方法而合成。於將保護基去除後,於pH值8.5之水溶液中於氧化條件下形成分子內S-S鍵,使用逆相HPLC並藉由流速1.0ml/min、包含0.1%TFA之10%至60%之乙腈之梯度進行溶出對具有分子內S-S鍵之肽進行精製。向溶解於DMSO中之肽(18.5mM)40μL中添加同樣地溶解於DMSO中之DM-1(emtansine(XDCExplorer公司),50mM)24μL(肽與DM-1之莫耳比=1:1.6),進而添加吡啶3.4μL(最終濃度5%),於50℃下使其等反應3小時。繼而,添加溶解於乙腈中之DSG(500mM)80μL,並於50℃下使之反應3小時,而於IgG結合肽之順丁烯二醯亞胺基與DM-1之巰基之間形成交聯結構。將全部量於包含0.1%TFA之10%乙腈10ml中進行稀釋,將離心後之上清液注射至Inertsustain C18管柱(7.6mm 1×250mm,GL Science),以包含0.1%TFA之10%至70%之乙腈之梯度進行溶出。進行溶出物之質量分析,並回收目標物質,其後於去除溶劑後進行冷凍乾燥。 N-terminal amine group modified with cis-butenylimide ethoxylated succinimide ester cis-butenimide-PEG4 synthesis peptide RGPPDCAYHXGELVWCTFH (SEQ ID NO: 37: peptide in SEQ ID NO: 2 The N-terminus is obtained by adding two Args, X is an lysine, and the C-terminus is imidized). It is synthesized by the Fmoc solid-phase synthesis method and according to a common method. After removing the protecting group, an intramolecular SS bond was formed in an aqueous solution of pH 8.5 under oxidizing conditions. Reverse-phase HPLC was used with a flow rate of 1.0 ml / min and 10% to 60% acetonitrile containing 0.1% TFA. Gradient dissolution refines peptides with intramolecular SS bonds. To 40 μL of the peptide (18.5 mM) dissolved in DMSO was added 24 μL of DM-1 (emtansine (XDCExplorer), 50 mM) similarly dissolved in DMSO (molar ratio of peptide to DM-1 = 1: 1.6), Further, 3.4 μL of pyridine (final concentration 5%) was added, and the mixture was allowed to react at 50 ° C. for 3 hours. Then, 80 μL of DSG (500 mM) dissolved in acetonitrile was added and reacted at 50 ° C. for 3 hours, and a cross-link was formed between the cis-butenylimide group of the IgG-binding peptide and the thiol group of DM-1. structure. The entire amount was diluted in 10 ml of 10% acetonitrile containing 0.1% TFA, and the centrifuged supernatant was injected into an Insertsustain C18 column (7.6 mm 1 × 250 mm, GL Science) to 10% to 0.1% TFA. A gradient of 70% acetonitrile was used for dissolution. Mass analysis of the eluted substance was performed, and the target substance was recovered, and then the solvent was removed, followed by freeze-drying.
將連結有溶解於DMSO中之12.0mM之DM-1的DSG修飾順丁烯二醯亞胺-PEG4化IgG結合肽試劑0.56μL與溶解於10mM乙酸緩衝液(pH值5.5)中之6.8μM之抗HER2人類抗體(中外製藥)1mL進行混合,並於室溫下使其等反應30分鐘(肽與抗體之莫耳比=1:1)。藉由上述方式所製備之DM-1修飾人類抗體(抗體藥物複合體、ADC)係於陽離子之離子交換管柱Shodex SP825(8.0mm×75mm,Shodex)中利用包含10mM乙酸緩衝液(pH值5.5)之0M至1.0M之NaCl之梯度進行溶出而精製。於分取未反應之抗體以外之2個波峰(波峰A、B)後,於Vivaspin(10000Da臨界,Sartorius)上藉由3000g之離心操作進行脫鹽濃縮。所獲得之樣本係利用MALDI-TOF-MAS autoflex speed TOF/TOF-KG(Bruker Daltonics)測定質量,波峰A與原本之抗HER2人類抗體相比增加3553(理論值3535),波峰B與原本之抗HER2人類抗體相比增加7092(理論值7070),因此確認連結有DM-1之順丁烯二醯亞胺-PEG4化IgG結合肽分別導入有1個(抗HER2抗體-DM1* 1)、及2個(抗HER2抗體-DM1* 2)。 0.56 μL of DSG-modified maleimide-PEG4ized IgG-binding peptide reagent linked to 12.0 mM DM-1 dissolved in DMSO and 6.8 μM dissolved in 10 mM acetate buffer (pH 5.5) 1 mL of anti-HER2 human antibody (Chinese and foreign pharmaceutical) was mixed and allowed to react for 30 minutes at room temperature (molar ratio of peptide to antibody = 1: 1). The DM-1 modified human antibody (antibody-drug complex, ADC) prepared by the above method was used in a cationic ion exchange column Shodex SP825 (8.0mm × 75mm, Shodex) using a 10 mM acetate buffer solution (pH 5.5) ) From 0M to 1.0M NaCl gradient elution and purification. After the two peaks (peaks A and B) other than the unreacted antibody were collected, desalting and concentration were performed on a Vivaspin (10000 Da critical, Sartorius) by a 3000 g centrifugation operation. The obtained sample was measured by MALDI-TOF-MAS autoflex speed TOF / TOF-KG (Bruker Daltonics). The peak A was increased by 3553 (theoretical value 3535) compared with the original anti-HER2 human antibody, and the peak B was compared with the original anti-HER2 antibody. HER2 human antibody increased by 7092 (theoretical value 7070). Therefore, it was confirmed that one cis-butenediimine-PEG4 IgG-binding peptide to which DM-1 was linked was introduced (anti-HER2 antibody-DM1 * 1), and 2 (anti-HER2 antibody-DM1 * 2).
於96孔之細胞培養盤之各孔中以成為10000cell/100μL之方式將SK-BR3細胞(自ATCC購買)或C6細胞(自JCRB獲取)接種至包含10%FBS、100units/mL青黴素G及100μg/mL鏈黴素硫酸鹽之McCoy's 5A(Life Technologies公司)培養基中。於37℃下於5%CO2培養箱中培養24小時後,添加各濃度之包含藉由上述方式所製備之抗體藥物複合體(ADC)之培養基100μL,進而於37℃之CO2培養箱中培養72小時。向各孔中逐次添加10μL之細胞計數Kit-8(同人化學),並於37℃之CO2培養箱中保溫2小時,其後利用讀板儀測定450nm之吸光度。 SK-BR3 cells (purchased from ATCC) or C6 cells (obtained from JCRB) were seeded in each well of a 96-well cell culture plate to contain 10,000 cells / 100 μL to contain 10% FBS, 100 units / mL penicillin G, and 100 μg. / mL of streptomycin sulfate in McCoy's 5A (Life Technologies) medium. After incubating in a 5% CO 2 incubator at 37 ° C. for 24 hours, 100 μL of a medium containing the antibody-drug complex (ADC) prepared in the above manner was added at each concentration, and then in a CO 2 incubator at 37 ° C. Incubate for 72 hours. To each well, 10 μL of the cell-counting Kit-8 (Tongren Chemical) was added, and the cells were incubated in a CO 2 incubator at 37 ° C. for 2 hours, and then the absorbance at 450 nm was measured using a plate reader.
<結果> <Result>
為了對所製備之ADC對乳腺癌細胞株SK-BR3之細胞增殖抑制效果進行評價,於0-10nM之ADC之存在下培養SK-BR3細胞,並利用細 胞測定套組對72小時後之細胞數進行評價(圖10)。本次製備之抗HER2抗體-DM1* 1、抗HER2抗體-DM1* 2對於高表現HER2之SK-BR3,均以0.4nM以上之濃度顯示出顯著之細胞增殖抑制活性。另一方面,關於未表現HER2之C6細胞,於所使用之抗體藥物複合體之濃度範圍內未觀察到細胞增殖抑制。根據以上情況得知,藉由經由IgG結合肽之共價鍵結之抗體藥物複合體可對癌細胞株表現出有效之細胞增殖抑制活性。 In order to evaluate the inhibitory effect of the prepared ADC on the proliferation of breast cancer cell line SK-BR3, SK-BR3 cells were cultured in the presence of ADC of 0-10nM, and The cell assay set evaluated the number of cells after 72 hours (Figure 10). The anti-HER2 antibody-DM1 * 1 and anti-HER2 antibody-DM1 * 2 prepared this time showed a significant cell proliferation inhibitory activity at a concentration of 0.4nM or more for SK-BR3, which expresses HER2. On the other hand, in C6 cells that did not express HER2, no cell proliferation inhibition was observed in the concentration range of the antibody-drug complex used. According to the above circumstances, it is known that an antibody-drug complex covalently bonded via an IgG-binding peptide can exhibit effective cell proliferation inhibitory activity on cancer cell lines.
[實施例12:藉由具有利用二氯丙酮所獲得之SS交聯結構的IgG結合肽所進行之抗體藥物複合體之細胞增殖抑制] [Example 12: Cell proliferation inhibition of an antibody drug complex by an IgG-binding peptide having an SS cross-linked structure obtained using dichloroacetone]
<方法> <Method>
N末端乙醯化RRC(Acm保護)-PEG4化合成肽GPDCAYHXGELVWCTFH(序列編號2,X為離胺酸,C末端醯胺化)係於肽合成珠粒(Rink-amide-Chemmatrix resin,Biotage)上藉由Fmoc固相合成法並依據常用方法而合成。於自樹脂切出肽並脫保護後,獲得肽(圖11、a)。將所獲得之肽65mg(15.6μmol)溶解於包含6M Gn‧HCl之磷酸緩衝液(pH值=7.3)5mL中,並向其中添加溶解於乙腈120μL中之1,3-二氯-2-丙酮(2.9mg,23.4μmol,1.5等量莫耳),於室溫下進行攪拌。1小時後,藉由HPLC分析確認反應結束,並直接利用HPLC對反應溶液進行精製,藉此獲得環化肽(圖11、b、33mg、7.8μmol、產率50%)。向該環化肽中添加懸浮於90%乙酸水溶液(8.8mL)中之乙酸銀(30.8mg,184.5μmol),並於室溫下且於遮光下攪拌5小時。添加二硫蘇糖醇(DTT:352mg,2.3mmol),藉由離心分離將所產生之沈澱物去除,利用HPLC對所獲得之上清液進行精製,藉此獲得環化肽(圖11、c、20.5mg、5.2μmol、產率67%)。 N-terminal acetylated RRC (Acm-protected) -PEG4 synthesis peptide GPDCAYHXGELVWCTFH (sequence number 2, X is lysine, C-terminated amidation) is on peptide synthesis beads (Rink-amide-Chemmatrix resin, Biotage) It was synthesized by the Fmoc solid-phase synthesis method and according to a common method. After the peptide was cut out from the resin and deprotected, the peptide was obtained (Fig. 11, a). 65 mg (15.6 μmol) of the obtained peptide was dissolved in 5 mL of a phosphate buffer solution (pH = 7.3) containing 6 M Gn‧HCl, and 1,3-dichloro-2-acetone dissolved in 120 μL of acetonitrile was added thereto. (2.9 mg, 23.4 μmol, 1.5 equal moles), and stirred at room temperature. After 1 hour, the completion of the reaction was confirmed by HPLC analysis, and the reaction solution was directly purified by HPLC to obtain a cyclized peptide (FIG. 11, b, 33 mg, 7.8 μmol, 50% yield). To this cyclized peptide was added silver acetate (30.8 mg, 184.5 μmol) suspended in a 90% aqueous acetic acid solution (8.8 mL), and stirred at room temperature under light-shielding for 5 hours. Dithiothreitol (DTT: 352 mg, 2.3 mmol) was added, the resulting precipitate was removed by centrifugation, and the obtained supernatant was purified by HPLC to obtain a cyclized peptide (Figure 11, c , 20.5 mg, 5.2 μmol, yield 67%).
將藉由上述方式所製備之環化肽及同樣地溶解於DMSO中之27mM之VcMMAE(順丁烯二醯亞胺基己醯基-纈胺酸-瓜胺酸-對胺基苯甲 醯氧基羰基-單甲基澳瑞他汀(auristatin)E,MedChem Express)18μL(肽與VcMMAE之莫耳比=1:1.4)添加至溶解於DMSO中之溶液(60mM)6μL中,進而添加吡啶1.2μL(最終濃度5%),於50℃下使其等反應3小時。繼而,添加溶解於乙腈中之DSG(500mM)25μL,於50℃下使之反應3小時。將全部量於包含0.1%TFA之10%乙腈10ml中進行稀釋,將離心後之上清液注射至Inertsustain C18管柱(7.6mm×250mm,GL Science),以包含0.1%TFA之10%至80%之乙腈之梯度進行溶出。進行溶出物之質量分析並回收目標物質,其後將溶劑去除後進行冷凍乾燥。 The cyclized peptide prepared in the above manner and 27 mM VcMMAE (cis-butenyldiiminohexanyl-valinic acid-citrulline-p-aminobenzyl) similarly dissolved in DMSO Ethoxycarbonyl-monomethyl auristatin E (MedChem Express) 18 μL (Molar ratio of peptide to VcMMAE = 1: 1.4) was added to 6 μL of a solution (60 mM) dissolved in DMSO, and pyridine was further added 1.2 μL (final concentration 5%), and allowed to react at 50 ° C. for 3 hours. Then, 25 μL of DSG (500 mM) dissolved in acetonitrile was added and reacted at 50 ° C. for 3 hours. The entire amount was diluted in 10 ml of 10% acetonitrile containing 0.1% TFA, and the centrifuged supernatant was injected into an Insertsustain C18 column (7.6 mm × 250 mm, GL Science) to contain 10% to 80% of 0.1% TFA. A gradient of% acetonitrile was used for dissolution. Mass analysis of the eluted substance was performed to recover the target substance, and then the solvent was removed, followed by freeze-drying.
將溶解於DMSO中之5.0mM之DSG修飾N末端乙醯化RRC-PEG4化IgG結合肽試劑(R8K)5.4μL與溶解於10mM乙酸緩衝液(pH值5.5)中之6.8μM之抗HER2人類IgG抗體(中外製藥)1mL進行混合,並於室溫下使其等反應15小時(肽與抗體之莫耳比=1:4)。藉由上述方式所製備之VcMMAE修飾人類IgG抗體(抗體藥物複合體,ADC)係於陽離子之離子交換管柱Shodex SP825(8.0mm×75mm,Shodex)中利用包含10mM乙酸緩衝液(pH值4.5)之0M至1.0M之NaCl之梯度進行溶出而精製。分取未反應之抗體以外之主要之1個波峰後,於Vivaspin(10000Da臨界,Sartorius)上藉由3000g之離心操作進行脫鹽濃縮。所獲得之樣本係利用MALDI-TOF-MAS autoflex speed TOF/TOF-KG(Bruker Daltonics)測定質量,與原本之抗HER2人類抗體相比增加3941(理論值4178),因此確認導入有1個附加有VcMMAE之N末端乙醯基-RRC-PEG4化IgG結合肽(R8K)。 5.4 μL of 5.0 mM DSG modified N-terminal acetylated RRC-PEG4 IgG-binding peptide reagent (R8K) dissolved in DMSO and 6.8 μM anti-HER2 human IgG dissolved in 10 mM acetate buffer (pH 5.5) Antibodies (Chinese and foreign pharmaceuticals) 1 mL were mixed and allowed to react for 15 hours at room temperature (molar ratio of peptide to antibody = 1: 4). The VcMMAE modified human IgG antibody (antibody drug complex, ADC) prepared by the above method was used in a cationic ion exchange column Shodex SP825 (8.0mm × 75mm, Shodex) using a 10 mM acetate buffer solution (pH 4.5) A gradient of 0M to 1.0M of NaCl was eluted and purified. The main peak other than the unreacted antibody was fractionated, and then desalted and concentrated on a Vivaspin (10,000 Da critical, Sartorius) by a 3000 g centrifugation operation. The obtained sample was measured by MALDI-TOF-MAS autoflex speed TOF / TOF-KG (Bruker Daltonics). The mass was increased by 3941 (theoretical value 4178) compared to the original anti-HER2 human antibody, so it was confirmed that 1 N-terminal acetofluorene-RRC-PEG4 IgG-binding peptide (R8K) of VcMMAE.
於96孔之細胞培養盤之各孔中以成為10000cell/100μL之方式將SK-BR3細胞(自ATCC購買)或者C6細胞(自JCRB獲取)接種至包含10%FBS、100units/mL青黴素G及100μg/mL鏈黴素硫酸鹽之McCoy's 5A(Life Technologies公司)培養基中。於37℃下於5%CO2培養箱中培 養24小時後,添加各濃度之包含抗體藥物複合體(ADC)之培養基100μL,進而於37℃之CO2培養箱中培養72小時。向各孔中逐次添加10μL之細胞計數Kit-8(同人化學),並於37℃之CO2培養箱中保溫2小時後,利用讀板儀測定450nm之吸光度。 SK-BR3 cells (purchased from ATCC) or C6 cells (obtained from JCRB) were seeded in each well of a 96-well cell culture plate to contain 10,000 cells / 100 μL to contain 10% FBS, 100 units / mL penicillin G, and 100 μg. / mL of streptomycin sulfate in McCoy's 5A (Life Technologies) medium. After culturing in a 5% CO 2 incubator at 37 ° C. for 24 hours, 100 μL of a medium containing antibody drug complex (ADC) at each concentration was added, and then cultured in a CO 2 incubator at 37 ° C. for 72 hours. To each well, 10 μL of a cell-counting Kit-8 (following human chemistry) was added, and the cells were incubated in a CO 2 incubator at 37 ° C. for 2 hours, and then the absorbance at 450 nm was measured using a plate reader.
<結果> <Result>
為了對所製備之ADC對乳腺癌細胞株SK-BR3之細胞增殖抑制效果進行評價,於0-500nM ADC之存在下培養SK-BR3細胞,並利用細胞測定套組對72小時後之細胞數進行評價(圖12)。關於所使用之抗癌劑VcMMAE本身,僅於250nM以上之情況下觀察到增殖抑制(圖12A),於本次所製備之ADC中,對於高表現HER2之SK-BR3,以0.4nM以上之濃度顯示出顯著之細胞增殖抑制活性(圖12B),藉由與抗體之偶聯物而細胞增殖抑制活性增強500倍左右。另一方面,僅於原本之抗HER2人類抗體中未觀察到此種細胞增殖抑制。根據以上情況得知,藉由經由IgG結合肽之共價鍵結之抗體藥物複合體可對癌細胞株發揮出有效之細胞增殖抑制活性。 In order to evaluate the inhibitory effect of the prepared ADC on the proliferation of breast cancer cell line SK-BR3, SK-BR3 cells were cultured in the presence of 0-500 nM ADC, and the cell number was measured after 72 hours using a cell measurement kit. Evaluation (Figure 12). Regarding the used anticancer agent VcMMAE itself, proliferation inhibition was observed only at a level of 250 nM or more (Figure 12A). In the ADC prepared this time, for SK-BR3, which expresses HER2, at a concentration of 0.4 nM or more A significant cell proliferation inhibitory activity was shown (Fig. 12B), and the cell proliferation inhibitory activity was increased by about 500 times by the conjugate with the antibody. On the other hand, such inhibition of cell proliferation was not observed only in the original anti-HER2 human antibody. According to the above circumstances, it is known that an antibody-drug complex covalently bonded via an IgG-binding peptide can exhibit an effective cell proliferation inhibitory activity on a cancer cell line.
[實施例13:針對各種IgG之利用IgG結合肽所進行之標記評價] [Example 13: Labeling evaluation using IgG-binding peptides for various IgGs]
<方法> <Method>
向人類、小鼠、兔、及大鼠之各種抗體溶液(14μM)1.25μL(相當於抗體2.5μg)中添加PBS 3.15μL,並混合藉由與實施例2相同之方法進行過DSG修飾之N末端生物素化IgG結合肽生物素-PEG4-RGNCAYHXGQLVWCTYH(序列編號35,X為經DSG化之離胺酸,2個Cys形成分子內SS鍵)之DMSO溶液(118μM)0.65μL後,於室溫下使其等反應30分鐘(抗體與肽之莫耳比=1:4)。向該反應液(5.0μL)中添加SDS-PAGE之樣本緩衝液(4×)5.0μL、2-巰基乙醇0.6μL、超純水9.35μL並進行混合後,於95℃下加熱10分鐘,並於梯度凝膠(Super SepTM Ace 5-20%,Wako Chemicals)上進行SDS-PAGE。凝膠係利用 CBB(Coomassie brilliant blue,考馬斯亮藍)進行蛋白質染色,又,自凝膠轉印至PVDF膜之蛋白質係供於西方墨點法(Western Blot)。即,利用0.5%BSA對轉印後之PVDF(Polyvinylidene fluoride,聚偏二氟乙烯)膜進行阻斷,使HRP標記抗生蛋白鏈菌素(Vector Laboratories)於室溫下反應1小時,使用化學發光檢測試劑Chemi-Lumi One(NACALAI TESQUE)並利用化學發光成像器ChemDock(BioRad)進行檢測。用作標記之抗體如下所述。人類IgG1(Clone ID:CB1)、人類IgG2(Clone ID:CB2)、人類IgG3(Clone ID:CB3)、人類IgG4(Clone ID:CB4)、小鼠IgG1(Clone ID:CB5)、小鼠IgG2b(Clone ID:CB8)、及小鼠IgG3(Clone ID:CB9)係自Crown Bioscience Inc.購買。大鼠IgG1(Clone #:43414)與IgG2b(Clone #:141945)係自R&D公司購買,IgG2c(Clone Name:SB68b)係自LifeSpan BioScience公司購買,兔IgG係自Thermo Scientific公司購買。 3.15 μL of PBS was added to 1.25 μL (equivalent to 2.5 μg of antibody) of various antibody solutions (14 μM) in humans, mice, rabbits, and rats, and mixed with DSG-modified N by the same method as in Example 2. Terminal biotinylated IgG-binding peptide biotin-PEG4-RGNCAYHXGQLVWCTYH (sequence number 35, X is DSG-ized lysine, 2 Cys form intramolecular SS bond) in DMSO solution (118 μM) 0.65 μL, at room temperature The reaction was allowed to wait for 30 minutes (Molar ratio of antibody to peptide = 1: 4). To this reaction solution (5.0 μL) was added 5.0 μL of SDS-PAGE sample buffer (4 ×), 0.6 μL of 2-mercaptoethanol, 9.35 μL of ultrapure water, and the mixture was heated at 95 ° C. for 10 minutes. SDS-PAGE was performed on a gradient gel (Super Sep ™ Ace 5-20%, Wako Chemicals). The gel system uses CBB (Coomassie brilliant blue, Coomassie brilliant blue) for protein staining, and the protein system transferred from the gel to the PVDF membrane is used for Western Blot. That is, the PVDF (Polyvinylidene fluoride) film was blocked with 0.5% BSA, and the HRP-labeled streptavidin (Vector Laboratories) was reacted at room temperature for 1 hour, and chemiluminescence was used. Detection reagent Chemi-Lumi One (NACALAI TESQUE) and detection using a chemiluminescence imager ChemDock (BioRad). The antibodies used as labels are described below. Human IgG1 (Clone ID: CB1), human IgG2 (Clone ID: CB2), human IgG3 (Clone ID: CB3), human IgG4 (Clone ID: CB4), mouse IgG1 (Clone ID: CB5), mouse IgG2b ( Clone ID: CB8) and mouse IgG3 (Clone ID: CB9) were purchased from Crown Bioscience Inc. Rat IgG1 (Clone #: 43414) and IgG2b (Clone #: 141945) were purchased from R & D, IgG2c (Clone Name: SB68b) was purchased from LifeSpan BioScience, and rabbit IgG was purchased from Thermo Scientific.
<結果> <Result>
如圖13所示,與曲妥珠單抗(抗HER2人類化IgG1抗體)相同程度地對於人類單株IgG1、人類IgG2、及人類IgG4確認到深色之帶。又,所使用之動物抗體中,兔多株IgG抗體尤其明顯地被染色。根據以上情況得知,使用本IgG結合肽之標記可高效率地對人類IgG1、2、及4以及兔IgG抗體進行標記。 As shown in FIG. 13, dark bands were confirmed for human monoclonal IgG1, human IgG2, and human IgG4 to the same extent as trastuzumab (anti-HER2 humanized IgG1 antibody). Among the animal antibodies used, rabbit IgG antibodies were significantly stained. Based on the above, it is known that the labeling of human IgG1, 2, and 4 and rabbit IgG antibodies can be efficiently performed using the labeling of the IgG-binding peptide.
使用本發明之IgG結合肽,可將與IgG結合肽連結之各種化合物以短時間且幾乎無副反應地附加至IgG之Fc。藉此,可利用各種化合物特異性地且簡便地對用作檢測試劑、診斷藥、及醫藥等之IgG進行修飾。 Using the IgG-binding peptide of the present invention, various compounds linked to the IgG-binding peptide can be added to the Fc of IgG in a short time and with almost no side reactions. This makes it possible to specifically and easily modify IgGs used as detection reagents, diagnostic drugs, medicines, and the like with various compounds.
本說明書中所引用之所有刊物、專利及專利申請係直接藉由引用而組入至本說明書中。 All publications, patents, and patent applications cited in this specification are incorporated directly into this specification by reference.
<110> 鹿兒島大學 <110> Kagoshima University
<120> 藉由IgG結合肽之抗體之特異性修飾 <120> Specific modification of antibodies by IgG-binding peptides
<130> PH-6549-TW <130> PH-6549-TW
<160> 37 <160> 37
<170> PatentIn第3.5版 <170> PatentIn version 3.5
<210> 1 <210> 1
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 1 <400> 1
<210> 2 <210> 2
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 2 <400> 2
<210> 3 <210> 3
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 3 <400> 3
<210> 4 <210> 4
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 4 <400> 4
<210> 5 <210> 5
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 5 <400> 5
<210> 6 <210> 6
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 6 <400> 6
<210> 7 <210> 7
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 7 <400> 7
<210> 8 <210> 8
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 8 <400> 8
<210> 9 <210> 9
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 9 <400> 9
<210> 10 <210> 10
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 10 <400> 10
<210> 11 <210> 11
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 11 <400> 11
<210> 12 <210> 12
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 12 <400> 12
<210> 13 <210> 13
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 13 <400> 13
<210> 14 <210> 14
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 14 <400> 14
<210> 15 <210> 15
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 15 <400> 15
<210> 16 <210> 16
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 16 <400> 16
<210> 17 <210> 17
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 17 <400> 17
<210> 18 <210> 18
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 18 <400> 18
<210> 19 <210> 19
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 19 <400> 19
<210> 20 <210> 20
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 20 <400> 20
<210> 21 <210> 21
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 21 <400> 21
<210> 22 <210> 22
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 22 <400> 22
<210> 23 <210> 23
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 23 <400> 23
<210> 24 <210> 24
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 24 <400> 24
<210> 25 <210> 25
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 25 <400> 25
<210> 26 <210> 26
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 26 <400> 26
<210> 27 <210> 27
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 27 <400> 27
<210> 28 <210> 28
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 28 <400> 28
<210> 29 <210> 29
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (6)..(6) <222> (6) .. (6)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 29 <400> 29
<210> 30 <210> 30
<211> 110 <211> 110
<212> PRT <212> PRT
<213> 智人 <213> Homo sapiens
<400> 30 <400> 30
<210> 31 <210> 31
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (2)..(2) <222> (2) .. (2)
<223> Xaa為高絲胺酸 <223> Xaa is homoserine
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (16)..(16) <222> (16) .. (16)
<223> Xaa為高絲胺酸 <223> Xaa is homoserine
<400> 31 <400> 31
<210> 32 <210> 32
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 32 <400> 32
<210> 33 <210> 33
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<400> 33 <400> 33
<210> 34 <210> 34
<211> 13 <211> 13
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<400> 34 <400> 34
<210> 35 <210> 35
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 35 <400> 35
<210> 36 <210> 36
<211> 17 <211> 17
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (2)..(2) <222> (2) .. (2)
<223> Xaa為高絲胺酸 <223> Xaa is homoserine
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (8)..(8) <222> (8) .. (8)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (16)..(16) <222> (16) .. (16)
<223> Xaa為高絲胺酸 <223> Xaa is homoserine
<400> 36 <400> 36
<210> 37 <210> 37
<211> 19 <211> 19
<212> PRT <212> PRT
<213> 人工 <213> Artificial
<220> <220>
<223> IgG結合肽 <223> IgG-binding peptide
<220> <220>
<221> 未歸類特性 <221> Unclassified characteristics
<222> (10)..(10) <222> (10) .. (10)
<223> Xaa為離胺酸、半胱胺酸、天冬胺酸、麩胺酸、 2-胺基辛二酸、或二胺基丙酸 <223> Xaa is lysine, cysteine, aspartic acid, glutamic acid, 2-aminosuberic acid, or diaminopropionic acid
<400> 37 <400> 37
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123520A TWI787151B (en) | 2016-07-25 | 2016-07-25 | Specific decoration of antibodies by IgG-binding peptides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123520A TWI787151B (en) | 2016-07-25 | 2016-07-25 | Specific decoration of antibodies by IgG-binding peptides |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201803888A true TW201803888A (en) | 2018-02-01 |
TWI787151B TWI787151B (en) | 2022-12-21 |
Family
ID=62014295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105123520A TWI787151B (en) | 2016-07-25 | 2016-07-25 | Specific decoration of antibodies by IgG-binding peptides |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI787151B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789295A (en) * | 2018-10-10 | 2021-05-11 | 国立大学法人鹿儿岛大学 | Solid support comprising IgG-binding peptide and method for separating IgG |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751286A (en) * | 1985-11-19 | 1988-06-14 | The Johns Hopkins University | Protein label and drug delivery system |
JP5994068B2 (en) * | 2011-08-24 | 2016-09-21 | 国立大学法人 鹿児島大学 | IgG-binding peptide and method for detecting and purifying IgG thereby |
-
2016
- 2016-07-25 TW TW105123520A patent/TWI787151B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789295A (en) * | 2018-10-10 | 2021-05-11 | 国立大学法人鹿儿岛大学 | Solid support comprising IgG-binding peptide and method for separating IgG |
CN112789295B (en) * | 2018-10-10 | 2023-08-15 | 国立大学法人鹿儿岛大学 | Solid phase carrier containing IgG binding peptide and separation method of IgG |
Also Published As
Publication number | Publication date |
---|---|
TWI787151B (en) | 2022-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7076152B2 (en) | Specific modification of antibody with IgG-binding peptide | |
JP7165366B2 (en) | Site-specific RI-labeled antibody with IgG binding peptide | |
JP7291395B2 (en) | IgG-Binding Peptides and Specific Modification of Antibodies with the Peptides | |
Cheloha et al. | Improved GPCR ligands from nanobody tethering | |
US20100189727A1 (en) | Masking Ligands For Reversible Inhibition Of Multivalent Compounds | |
JP2016511279A (en) | Method for producing immunoligand / payload complex | |
Hui et al. | Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG | |
KR20180053751A (en) | Recombinant immunoglobulin heavy chain comprising a sirtase conjugation loop and conjugate thereof | |
WO2011135040A1 (en) | Fluorescent antibody fusion protein, its production and use | |
TWI787151B (en) | Specific decoration of antibodies by IgG-binding peptides | |
CN113912716B (en) | Antibodies against alpha-synuclein antigens and uses thereof | |
Apley et al. | Optimized production of fc fusion proteins by sortase enzymatic ligation | |
KR20180050261A (en) | Novel fusion proteins comprising single chain fragment variable and viral coat protein, and uses thereof | |
CN117580858A (en) | Multivalent proteins and screening methods | |
WO2023035226A1 (en) | Anti-ang2 antibody, preparation method therefor, and application thereof | |
Haas et al. | Fluorescent Citrine-IgG fusion proteins produced in mammalian cells | |
WO2024074762A1 (en) | Ultrastable antibody fragments with a novel disuldide bridge | |
Basak et al. | Molecular Tags for Proteins and Their Biological Applications | |
AU2022269007A1 (en) | Methods and compositions thereof for site-specific labeling of human igg by proximity-based sortase-mediated ligation | |
Hui | Engineering a light-activated protein domain for the site-specific conjugation of native IgGs |