TW201724273A - Techniques for bottom-up filling of three-dimensional semiconductor device topographies - Google Patents
Techniques for bottom-up filling of three-dimensional semiconductor device topographies Download PDFInfo
- Publication number
- TW201724273A TW201724273A TW105126623A TW105126623A TW201724273A TW 201724273 A TW201724273 A TW 201724273A TW 105126623 A TW105126623 A TW 105126623A TW 105126623 A TW105126623 A TW 105126623A TW 201724273 A TW201724273 A TW 201724273A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- feature
- dielectric layer
- dielectric
- integrated circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
- 239000004065 semiconductor Substances 0.000 title claims abstract description 88
- 238000012876 topography Methods 0.000 title abstract description 14
- 238000011049 filling Methods 0.000 title abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 133
- 239000002184 metal Substances 0.000 claims abstract description 133
- 239000000463 material Substances 0.000 claims abstract description 124
- 230000004888 barrier function Effects 0.000 claims abstract description 92
- 238000000151 deposition Methods 0.000 claims abstract description 16
- 239000011800 void material Substances 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 494
- 239000000945 filler Substances 0.000 claims description 34
- 239000013545 self-assembled monolayer Substances 0.000 claims description 26
- 239000002094 self assembled monolayer Substances 0.000 claims description 22
- 235000021355 Stearic acid Nutrition 0.000 claims description 15
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 15
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 15
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 14
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 239000010937 tungsten Substances 0.000 claims description 11
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 8
- -1 octadecyltris(dimethylamino)decane Chemical compound 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- VOQMPZXAFLPTMM-UHFFFAOYSA-N 4-(4-chlorophenoxy)piperidine Chemical compound C1=CC(Cl)=CC=C1OC1CCNCC1 VOQMPZXAFLPTMM-UHFFFAOYSA-N 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- DGXIWVPFUVBGLB-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)C(C(Cl)(Cl)Cl)CCCCCCCC Chemical compound C(CCCCCCCCCCCCCCCCC)C(C(Cl)(Cl)Cl)CCCCCCCC DGXIWVPFUVBGLB-UHFFFAOYSA-N 0.000 claims description 6
- UMUVKMNHJFWLQT-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)C(C(OC)(OC)OC)CCCCCCCC Chemical compound C(CCCCCCCCCCCCCCCCC)C(C(OC)(OC)OC)CCCCCCCC UMUVKMNHJFWLQT-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims description 6
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 229910017121 AlSiO Inorganic materials 0.000 claims description 5
- 229910004129 HfSiO Inorganic materials 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 5
- 229910006501 ZrSiO Inorganic materials 0.000 claims description 5
- GNKTZDSRQHMHLZ-UHFFFAOYSA-N [Si].[Si].[Si].[Ti].[Ti].[Ti].[Ti].[Ti] Chemical compound [Si].[Si].[Si].[Ti].[Ti].[Ti].[Ti].[Ti] GNKTZDSRQHMHLZ-UHFFFAOYSA-N 0.000 claims description 5
- RRZKHZBOZDIQJG-UHFFFAOYSA-N azane;manganese Chemical compound N.[Mn] RRZKHZBOZDIQJG-UHFFFAOYSA-N 0.000 claims description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims description 5
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910019001 CoSi Inorganic materials 0.000 claims description 3
- 229910005883 NiSi Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- HBDYYQJHBYPUPQ-UHFFFAOYSA-N [S].CCCCCCCCCCCCCCCCCC Chemical compound [S].CCCCCCCCCCCCCCCCCC HBDYYQJHBYPUPQ-UHFFFAOYSA-N 0.000 claims 1
- 229910000652 nickel hydride Inorganic materials 0.000 claims 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 43
- 238000002161 passivation Methods 0.000 abstract description 20
- 230000008021 deposition Effects 0.000 abstract description 10
- 238000001465 metallisation Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 238000000231 atomic layer deposition Methods 0.000 description 13
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000003989 dielectric material Substances 0.000 description 7
- FTMKAMVLFVRZQX-UHFFFAOYSA-N octadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCCCP(O)(O)=O FTMKAMVLFVRZQX-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 229910052917 strontium silicate Inorganic materials 0.000 description 2
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- PZVDSEMMSUQGSR-UHFFFAOYSA-N N-[bis(dimethylamino)-octadecylsilyl]-N-methylmethanamine Chemical compound C(CCCCCCCCCCCCCCCCC)[Si](N(C)C)(N(C)C)N(C)C PZVDSEMMSUQGSR-UHFFFAOYSA-N 0.000 description 1
- 229910003811 SiGeC Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- OOJQNBIDYDPHHE-UHFFFAOYSA-N barium silicon Chemical compound [Si].[Ba] OOJQNBIDYDPHHE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- GPMBECJIPQBCKI-UHFFFAOYSA-N germanium telluride Chemical compound [Te]=[Ge]=[Te] GPMBECJIPQBCKI-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- CXXKWLMXEDWEJW-UHFFFAOYSA-N tellanylidenecobalt Chemical compound [Te]=[Co] CXXKWLMXEDWEJW-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41791—Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823821—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明係關於用於三維半導體裝置形貌之由下而上填充的技術。 The present invention relates to a technique for bottom-up filling of a three-dimensional semiconductor device topography.
在典型的三維電晶體架構中,三維矽鰭從下層的矽基板垂直地聳立。金屬閘係包覆鰭之頂及兩側,提供所謂三閘電晶體。相較之下,傳統二維平面電晶體僅具有單一矽表面,閘極係設置於該單一矽表面之上。閘極介電質係正常設置在閘極與下層的矽之間。 In a typical three-dimensional transistor architecture, three-dimensional fins stand vertically from the underlying germanium substrate. The metal gate system covers the top and sides of the fin to provide a so-called three-gate transistor. In contrast, a conventional two-dimensional planar transistor has only a single meandering surface, and a gate is disposed over the single meandering surface. The gate dielectric is normally placed between the gate and the lower layer.
100A‧‧‧積體電路 100A‧‧‧ integrated circuit
102‧‧‧介電層 102‧‧‧ dielectric layer
103‧‧‧介電層 103‧‧‧ dielectric layer
104‧‧‧半導體本體 104‧‧‧Semiconductor body
105‧‧‧磊晶半導體本體 105‧‧‧Explosive semiconductor body
106‧‧‧凹口 106‧‧‧ Notch
106a‧‧‧凹槽/孔洞部分 106a‧‧‧ Groove/hole section
106b‧‧‧底部部分 106b‧‧‧ bottom part
106c‧‧‧側壁部分 106c‧‧‧ Sidewall section
107‧‧‧接觸金屬層 107‧‧‧Contact metal layer
108‧‧‧介電層 108‧‧‧ dielectric layer
110‧‧‧障壁層 110‧‧‧Baffle layer
112‧‧‧功函數金屬層 112‧‧‧Work function metal layer
113‧‧‧障壁層 113‧‧‧Baffle layer
114‧‧‧填充材料 114‧‧‧Filling materials
116‧‧‧金屬層 116‧‧‧metal layer
118‧‧‧特徵之區域 118‧‧‧Characteristic area
120‧‧‧接觸金屬層 120‧‧‧Contact metal layer
200‧‧‧源極/汲極接點 200‧‧‧Source/bungee contacts
100B‧‧‧積體電路 100B‧‧‧ integrated circuit
100A’‧‧‧積體電路 100A’‧‧‧ integrated circuit
100B’‧‧‧積體電路 100B’‧‧‧ integrated circuit
1000‧‧‧計算系統 1000‧‧‧Computation System
1002‧‧‧主機板 1002‧‧‧ motherboard
1004‧‧‧處理器 1004‧‧‧ processor
1006‧‧‧通訊晶片 1006‧‧‧Communication chip
圖1例示保形填充在層間介電質(ILD)中形成的特徵。 Figure 1 illustrates features formed by conformal fill in interlayer dielectric (ILD).
圖2A為依據本揭露之實施例組態的積體電路(IC)之剖面視圖。 2A is a cross-sectional view of an integrated circuit (IC) configured in accordance with an embodiment of the present disclosure.
圖2B為依據本揭露之實施例在形成填充材料之層之 後圖2A之IC的剖面視圖。 2B is a layer forming a filling material in accordance with an embodiment of the present disclosure. A cross-sectional view of the IC of Figure 2A is shown.
圖2C為依據本揭露之實施例在部分移除填充材料、功函數金屬(WFM)層及障壁層之後圖2B之IC的剖面視圖。 2C is a cross-sectional view of the IC of FIG. 2B after partial removal of the fill material, work function metal (WFM) layer, and barrier layer in accordance with an embodiment of the present disclosure.
圖2D為依據本揭露之實施例在移除填充材料之剩餘之後圖2C之IC的剖面視圖。 2D is a cross-sectional view of the IC of FIG. 2C after removal of the remainder of the fill material in accordance with an embodiment of the present disclosure.
圖2E為依據本揭露之實施例在形成金屬層之後圖2D之IC的剖面視圖。 2E is a cross-sectional view of the IC of FIG. 2D after forming a metal layer in accordance with an embodiment of the present disclosure.
圖3A為依據本揭露之另一實施例組態的IC之剖面視圖。 3A is a cross-sectional view of an IC configured in accordance with another embodiment of the present disclosure.
圖3B為依據本揭露之實施例在形成填充材料之層之後圖3A之IC的剖面視圖。 3B is a cross-sectional view of the IC of FIG. 3A after forming a layer of fill material in accordance with an embodiment of the present disclosure.
圖3C為依據本揭露之實施例在部分移除第二障壁層和填充材料之後圖3B之IC的剖面視圖。 3C is a cross-sectional view of the IC of FIG. 3B after partial removal of the second barrier layer and filler material in accordance with an embodiment of the present disclosure.
圖3D為依據本揭露之實施例在移除填充材料之剩餘之後圖3C之IC的剖面視圖。 3D is a cross-sectional view of the IC of FIG. 3C after removal of the remainder of the fill material in accordance with an embodiment of the present disclosure.
圖3E為依據本揭露之實施例在形成金屬層之後圖3D之IC的剖面視圖。 3E is a cross-sectional view of the IC of FIG. 3D after forming a metal layer in accordance with an embodiment of the present disclosure.
圖4為依據本揭露之另一實施例組態的IC之剖面視圖。 4 is a cross-sectional view of an IC configured in accordance with another embodiment of the present disclosure.
圖5為依據本揭露之另一實施例組態的IC之剖面視圖。 5 is a cross-sectional view of an IC configured in accordance with another embodiment of the present disclosure.
圖6為依據本揭露之實施例組態的源極/汲極(S/D)接點之剖面視圖。 6 is a cross-sectional view of a source/drain (S/D) contact configured in accordance with an embodiment of the present disclosure.
圖7為例示依據範例實施例以積體電路結構實行的計算系統或使用揭示的技術形成的裝置。 7 is a diagram illustrating a computing system implemented in an integrated circuit structure in accordance with an example embodiment or an apparatus formed using the disclosed techniques.
本實施例之這些或其它特徵將藉由讀取下列連同採用於此說明的圖來詳細說明而較佳地了解。在圖式中,在各種圖中例示的各個相同的或近乎相同的組件可由相似的數字代表。為了簡潔的目的,並非在每一個圖式中標號每一個組件。進一步而言,將理解的是,並非必要按比例繪圖或將說明的實施例限制到繪示的特定組態。舉例而言,在一些圖一般地指示直線、直角及平滑表面的同時,所揭露的技術之實際實行可具有較不完美的直線、直角等,並且一些特徵可具有表面形貌或另以是非平滑的,其給定製造工序之真實世界限定。簡而言之,圖僅提供用以繪示範例結構。 These and other features of the present embodiments will be better understood by reading the following description in conjunction with the drawings. In the drawings, various identical or nearly identical components that are illustrated in the various figures are represented by like numerals. For the sake of brevity, not every component is labeled in every figure. Further, it will be understood that the illustrated embodiments are not necessarily to For example, while some figures generally indicate straight lines, right angles, and smooth surfaces, the actual implementation of the disclosed techniques may have less perfect straight lines, right angles, etc., and some features may have surface topography or otherwise non-smooth It is the real world limit of a given manufacturing process. In short, the figures are only provided to illustrate the example structure.
對於三維半導體裝置形貌之由下而上填充來揭示技術。依據一些實施例,可在凹槽、孔洞或在介電層中圖案化的其它者之底部表面之上形成種子層。種子層可例如為功函數金屬(WFM;work function metal)層或障壁層(barrier layer)。在任一情形中,依據一些實施例,至少初始可僅在種子層之上選擇性地沉積。在沒有接縫(seam)或孔隙(void)形成於其中的一些情形中,隨著沉積持續,填充金屬可從底部到頂部生長來填充特徵。在一些實例中,特徵(或其中其它的層)之側壁之可選的選 擇性鈍化(passivation)可在具有沉積於其上的鈍化分子的該些表面上抑制填充金屬之沉積,從而促進選擇性形成在特徵內的填充金屬。依據一些實施例,在利用犧牲填充材料的蝕刻和凹入/掘入工序可被使用於在特徵之底部部分的種子層。眾多的組態及變化按照本揭露將為明白的。 The bottom-up filling of the topography of a three-dimensional semiconductor device reveals the technique. According to some embodiments, the seed layer may be formed over the bottom surface of the recess, the hole, or other of the layers patterned in the dielectric layer. The seed layer may be, for example, a work function metal (WFM) layer or a barrier layer. In either case, according to some embodiments, at least initially may be selectively deposited only over the seed layer. In some cases where no seams or voids are formed, as the deposition continues, the filler metal can grow from bottom to top to fill the features. In some instances, an optional selection of sidewalls of features (or other layers thereof) Selective passivation inhibits deposition of the filler metal on the surfaces having passivation molecules deposited thereon, thereby facilitating selective formation of filler metal within the features. According to some embodiments, an etching and recessing/digging process using a sacrificial filler material can be used for the seed layer at the bottom portion of the feature. Numerous configurations and variations will be apparent in light of this disclosure.
概觀 Overview
隨著尺寸的縮小,變為的益困難的是,在三維電晶體裝置中填充形貌。現存的保形填充(conformal filling)技術造成形成接縫或孔隙,像是在圖1中繪示的該些者,圖1例示在層間介電層(ILD;inter-layer dielectric)中形成之特徵的保形填充。該些接縫或孔隙引起裝置可靠性問題且在沒有施用極端熱的條件下正常是無法治癒的。由於在水平場上的沉積率相較於對之垂直的側壁的差異,故一些現存的工序給序非保形填充。此外,藉由離子佈植(ion implantation)而利用表面修改之現存的由下而上填充工序受限於具有低長寬比(aspect ratio)和不變的尺寸及間距(pitch),並且利用無電化學(electroless chemistry)的該些者係非常難以在對於粒子形成的控制上保持。 As the size shrinks, it becomes difficult to fill the topography in the three-dimensional crystal device. Existing conformal filling techniques result in the formation of seams or voids, such as those illustrated in Figure 1, which illustrates the formation of features in an inter-layer dielectric (ILD). Conformal fill. These seams or voids cause device reliability problems and are normally incurable without the application of extreme heat. Because of the difference in deposition rates on the horizontal field compared to the vertical sidewalls, some existing processes give order non-conformal fills. In addition, the existing bottom-up filling process utilizing surface modification by ion implantation is limited to having a low aspect ratio and a constant size and pitch, and utilizing no electricity. These ones of electroless chemistry are very difficult to maintain in controlling the formation of particles.
因此且依據本揭露之一些實施例,針對三維半導體裝置形貌之由下而上填充揭示技術。依據一些實施例,可在介電層中的凹槽、孔洞或其它圖案化的特徵之底部表面之上形成種子層。舉例來說,種子層可為功函數金屬(WFM)層或障壁層。依據一些實施例,在任一情形中, 填充金屬至少初始地可僅在種子層之上選擇性地沉積。隨著沉積持續,填充金屬可生長以從底部到頂部來填充特徵,在一些情形中沒有接縫或孔隙於其中。在一些實例中,特徵之側壁(或在其中的其它層)的可選的選擇性鈍化可抑制在具有鈍化分子配置於其上的該些表面上填充金屬之沉積,從而促進在特徵內選擇性形成填充金屬。依據一些實施例,利用犧牲填充材料之蝕刻及凹入/掘入工序可在特徵之底部部分形成種子層中使用。 Thus, and in accordance with some embodiments of the present disclosure, the bottom-up fill technique is disclosed for the topography of a three-dimensional semiconductor device. According to some embodiments, a seed layer may be formed over a bottom surface of a recess, hole or other patterned feature in the dielectric layer. For example, the seed layer can be a work function metal (WFM) layer or a barrier layer. According to some embodiments, in either case, The filler metal may at least initially be selectively deposited only over the seed layer. As the deposition continues, the filler metal can grow to fill the features from bottom to top, with no seams or voids in some cases. In some examples, optional selective passivation of the sidewalls of the feature (or other layers therein) can inhibit deposition of a filler metal on the surfaces having passivation molecules disposed thereon, thereby facilitating selectivity within the features A filler metal is formed. According to some embodiments, the etching and recessing/digging process using the sacrificial filler material can be used in forming the seed layer in the bottom portion of the feature.
依據一些實施例,例如在三維電晶體架構中,能夠在形成閘極結構以及源極/汲極接點結構中使用揭示的技術。依據一些實施例,可利用於此揭示的技術而無關於特徵尺寸及間距,用以提供具有最小化(或另以是降低的)缺陷之存在的無接縫的(seamless)或無縫隙的(gapless)由下而上填充。如按本揭露將理解的是,在一些實例中,去除或降低在金屬(例如,閘極金屬;源極/汲極接點金屬)中接縫或縫隙的存在可改善裝置可靠性及量產。眾多合適的使用及應用按照本揭露將為明白的。 In accordance with some embodiments, the disclosed techniques can be used in forming gate structures and source/drain contact structures, such as in a three-dimensional transistor architecture. In accordance with some embodiments, the techniques disclosed herein may be utilized without regard to feature size and spacing to provide seamless or seamless (with the presence of minimized (or otherwise reduced) defects ( Gapless) is filled from bottom to top. As will be appreciated in accordance with the present disclosure, in some instances, removing or reducing the presence of seams or gaps in a metal (eg, gate metal; source/drain contact metal) may improve device reliability and mass production. . Numerous suitable uses and applications will be apparent in light of this disclosure.
依據一些實施例,可例如藉由給定積體電路或在特徵之底部具有化學的特異層(chemically distinct layer)且無接縫的或另以無縫隙的填充該特徵的其它裝置之視覺或其它檢測(例如,掃描電子顯微鏡(scanning electron microscope)或SEM、成像;透射型電子顯微鏡(transmission electron microscope)或TEM、成像)可偵測揭露技術之使用。在一些情形中,在半導體鰭之上填充 之區域中孔隙或接縫的存在可能表示使用於此揭露的技術。 According to some embodiments, the visual or other means of the device may be filled, for example, by a given integrated circuit or with a chemically distinct layer at the bottom of the feature and without seams or otherwise seamlessly filling the feature. Detection (eg, scanning electron microscope or SEM, imaging; transmission electron microscope or TEM, imaging) can detect the use of the disclosure technique. In some cases, filling the semiconductor fins The presence of voids or seams in the regions may be indicative of the techniques disclosed herein.
方法和結構 Method and structure
圖2A~2E例示依據本揭露之實施例用於形成IC 100A的積體電路(IC;integrated circuit)製造工序流程。依據一些實施例,可例如使用圖2A~2E之工序流程來藉由在三維p型金屬氧化物半導體(PMOS;p-type metal-oxide-semiconductor)電晶體裝置中選擇性沉積填充材料(例如,閘極材料)提供由下而上填充。圖2A~2E之工序流程的其它合適的使用按照本揭露將為明白的。 2A to 2E illustrate a manufacturing process flow of an integrated circuit (IC) for forming an IC 100A according to an embodiment of the present disclosure. According to some embodiments, the process flow of FIGS. 2A-2E can be used to selectively deposit a filler material in a three-dimensional p-type metal-oxide-semiconductor (O.S.) device (eg, The gate material) is provided from bottom to top. Other suitable uses of the process flow of Figures 2A-2E will be apparent in light of this disclosure.
工序可開始於圖2A,其為依據本揭露之實施例組態的積體電路(IC)100A之剖面視圖。如所能見到的,IC 100A可包括介電層102。如按照本揭露將為明白的是,介電層102能從任何合適的介電材料來形成。舉例而言,在一些情形中,介電層102可從氧化物形成,像是二氧化矽(SiO2)。在一些情形中,介電層102可從氮化物形成,像是氮化矽(Si3N4)、氮氧化矽(SiON)、碳氧化矽(SiCN)、或氮化硼(BN)。在一些情形中,介電層102可從碳化物形成,像是碳化矽(SiC)。在更一般的含義中且依據一些實施例,介電層102可從前述材料之任一者或結合形成。在其它實例中,介電層102可為同質介電結構(homogeneous dielectric structure)(例如僅包含單一介電材料)。在一些其它實例中,介電層102在一些 實施例中可為異質介電結構(heterogeneous dielectric structure)(例如包含不同介電材料組成之部分)。在一些施實例中,介電層102可例如為層間介電質(ILD)。 The process can begin with Figure 2A, which is a cross-sectional view of an integrated circuit (IC) 100A configured in accordance with an embodiment of the present disclosure. As can be seen, the IC 100A can include a dielectric layer 102. As will be appreciated in light of the present disclosure, dielectric layer 102 can be formed from any suitable dielectric material. For example, in some cases, dielectric layer 102 may be formed from an oxide, such as silicon dioxide (SiO 2). In some cases, dielectric layer 102 can be formed from a nitride such as tantalum nitride (Si 3 N 4 ), hafnium oxynitride (SiON), tantalum carbonitride (SiCN), or boron nitride (BN). In some cases, dielectric layer 102 can be formed from carbides, such as tantalum carbide (SiC). In a more general sense and in accordance with some embodiments, the dielectric layer 102 can be formed from any of the foregoing materials or combinations. In other examples, dielectric layer 102 can be a homogeneous dielectric structure (eg, comprising only a single dielectric material). In some other examples, dielectric layer 102 can be a heterogeneous dielectric structure (eg, comprising portions of different dielectric materials) in some embodiments. In some embodiments, dielectric layer 102 can be, for example, an interlayer dielectric (ILD).
介電層102可以特徵106來圖案化。在一些實例中,特徵106可例如具有一或多個凹槽/孔洞部分106a。在一些情形中,特徵106可具有底部部分106b和一或多個側壁部分106c。介電層102之維度與幾何以及特徵106能對給定目標應用或終端使用來客製化。如按照本揭露將明白的是,可經由任何合適的標準、客製或適當的圖案化技術在介電層102內進行圖案化特徵106。用於介電層102和特徵106之其它合適的材料、維度、幾何以及形成技術將取決於給定的應用且按照本揭露將為明白的。 Dielectric layer 102 can be patterned with features 106. In some examples, feature 106 can have, for example, one or more groove/hole portions 106a. In some cases, feature 106 can have a bottom portion 106b and one or more side wall portions 106c. The dimensions and geometry of dielectric layer 102 and features 106 can be customized for a given target application or terminal use. As will be appreciated in light of this disclosure, the patterned features 106 can be performed within the dielectric layer 102 via any suitable standard, custom or suitable patterning technique. Other suitable materials, dimensions, geometries, and formation techniques for dielectric layer 102 and features 106 will depend on a given application and will be apparent in light of this disclosure.
又,如能從圖2A所見的,IC 100A可包括半導體本體104,其配置於介電層102內且突出進入特徵106,造成並排於在介電層102中半導體本體104的一或多個凹槽(或孔洞)106a之存在。如按照本揭露將為明白的是,半導體本體104能從任何合適的半導體材料形成。舉例而言,在一些情形中,半導體本體104可從矽(Si)、鍺(Ge)、鍺化矽(SiGe)、碳化矽鍺(SiGeC)或碳化矽(SiC)。在一些情形中,半導體本體104可從III-V複合半導體形成,諸如氮化鍺(GaN)、砷化鍺(GaAs)、砷化銦(InAs)、磷化銦(InP)或砷化銦鎵(InGaAs)。在更一般的含義中且依據一些實施例,半導體本體104可從前述材料之任一者或結合來形成。 Moreover, as can be seen from FIG. 2A, the IC 100A can include a semiconductor body 104 disposed within the dielectric layer 102 and protruding into the feature 106, resulting in one or more recesses that are side-by-side in the semiconductor body 104 in the dielectric layer 102. The presence of a slot (or hole) 106a. As will be appreciated in light of the present disclosure, the semiconductor body 104 can be formed from any suitable semiconductor material. For example, in some cases, the semiconductor body 104 can be from germanium (Si), germanium (Ge), germanium telluride (SiGe), tantalum carbide (SiGeC), or tantalum carbide (SiC). In some cases, the semiconductor body 104 can be formed from a III-V composite semiconductor, such as GaN, GaAs, InAs, InP, or InGaAs. (InGaAs). In a more general sense and in accordance with some embodiments, the semiconductor body 104 can be formed from any or a combination of the foregoing materials.
如對給定目標應用或終端使用所期望的是,可客製化半導體本體104之維度和幾何。在一些情形中,半導體本體104可被組態為鰭或其它鰭狀的突起。依據一些實施例,如按照本揭露將為明白的是,能利用半導體本體104來例如形成基於鰭的(fin-based)電晶體裝置或其它合適基於鰭的半導體架構。 As desired for a given target application or terminal usage, the dimensions and geometry of the semiconductor body 104 can be customized. In some cases, the semiconductor body 104 can be configured as a fin or other fin-like protrusion. In accordance with some embodiments, as will be appreciated in light of the present disclosure, semiconductor body 104 can be utilized to form, for example, a fin-based transistor device or other suitable fin-based semiconductor architecture.
如按照本揭露將為明白的是,可經由任何合適的標準、客製或適當的圖案化(例如,finFET(鰭式電晶體)製造)技術來進行半導體本體104之形成。在一些實例中,半導體本體104可具有一或多個層,像是硬掩膜(hardmask)或其它層,形成於其(例如,在其上表面)與任何上覆/疊加(overlying)層,像是介電層108(討論於下)。用於半導體本體104之其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照此揭露將為明白的。 As will be appreciated in light of this disclosure, the formation of semiconductor body 104 can be performed via any suitable standard, custom or suitable patterning (e.g., finFET fabrication) technique. In some examples, the semiconductor body 104 can have one or more layers, such as a hard mask or other layer formed thereon (eg, on its upper surface) and any overlying/overlying layers, Like dielectric layer 108 (discussed below). Other suitable materials, dimensions, geometries, and forming techniques for the semiconductor body 104 will depend on the given application and will be apparent in light of this disclosure.
如能進一步從圖2A看到的是,IC 100A可包括介電層108。依據實施例,介電層108可組態以作為閘極介電層。介電層108可從任何合適的高k介電材料來形成(例如具有大於或等於二氧化矽所具的介電常數k)。舉例而言,在一些情形中,介電層108可從氧化物形成,諸如二氧化鉿(HfO2)、氧化鋁(Al2O3)、二氧化鋯(ZrO2)、氧化鉭(Ta2O5)、二氧化鈦(TiO2)、氧化鑭(La2O3)或氧化釓(Gd2O3)。在一些情形中,介電層108可從矽摻雜的氧化物形成,例如像是鉿矽酸鹽 (HfSiOx)、矽酸鋁(AlSiOx)、矽酸鋯(ZrSiOx)、矽酸鉭(TaSiOx)、矽酸鈦(TiSiOx)、矽酸鑭(LaSiOx)或矽酸釓(GdSiOx)。在一些情形中,介電層108可從可從矽摻雜的氧化物形成,例如像是鉿矽酸鹽(HfSiOx)、矽酸鋁(AlSiOx)、矽酸鋯(ZrSiOx)、矽酸鉭(TaSiOx)、矽酸鈦(TiSiOx)、矽酸鑭(LaSiOx)或矽酸釓(GdSiOx)。其它合適的稀土氧化物和稀土矽酸鹽將取決於給定目標應用且按照此揭露將為明白的。在更一般的含意中且依據一些實施例,介電層108可從前述材料之任一者或結合來形成。依據一些實施例,介電層108和介電層102可以是不同材料組成的。 As can be further seen from FIG. 2A, the IC 100A can include a dielectric layer 108. According to an embodiment, the dielectric layer 108 can be configured to function as a gate dielectric layer. Dielectric layer 108 can be formed from any suitable high-k dielectric material (e.g., having a dielectric constant k greater than or equal to that of cerium oxide). For example, in some cases, dielectric layer 108 may be formed from an oxide such as hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), zirconium dioxide (ZrO 2 ), tantalum oxide (Ta 2 ) O 5 ), titanium dioxide (TiO 2 ), lanthanum oxide (La 2 O 3 ) or lanthanum oxide (Gd 2 O 3 ). In some cases, the dielectric layer 108 may be formed from a doped silicon oxide, such as for example, hafnium silicate (HfSiO x), aluminum silicate (AlSiO x), zirconium silicate (ZrSiO x), tantalum silicate (TaSiO x), titanium silicate (TiSiO x), lanthanum silicate (LaSiO x) or gadolinium silicate (GdSiO x). In some cases, the dielectric layer 108 may be formed from silicon oxide doped with from, for example, such as hafnium silicate (HfSiO x), aluminum silicate (AlSiO x), zirconium silicate (ZrSiO x), silicon Barium acid (TaSiO x ), titanium silicate (TiSiO x ), barium strontium silicate (LaSiO x ) or barium strontium silicate (GdSiO x ). Other suitable rare earth oxides and rare earth cerates will depend on the intended application and will be apparent as disclosed herein. In a more general sense and in accordance with some embodiments, the dielectric layer 108 can be formed from any one or combination of the foregoing materials. According to some embodiments, dielectric layer 108 and dielectric layer 102 may be composed of different materials.
如對給定目標應用或終端使用所期望的是,能客製化介電層108之維度和幾何。在一些情形中,介電層108可具有例如在約1~10nm之範圍中的平均厚度(例如,約1~5nm、約5~10nm或在約1~10nm之範圍中的任何其它子範圍)。在一些情形中,介電層108可具有例如在約0.5~5nm之範圍中的平均厚度(例如,約0.5~2.5nm、約2.5~5nm或約0.5~5nm之範圍中的任何其它子範圍)。在一些情形中,介電材料108可具有例如在約0.1~3nm之範圍中的平均厚度(例如,約0.1~1nm、約1~2nm、約2~3nm或在約0.1~3nm之範圍中的任何其它子範圍)。在一些情形中,介電層108可具有例如約1nm或以下的平均厚度(例如,約0.5nm或以下、約0.1nm或以下等)。 As desired for a given target application or terminal usage, the dimensions and geometry of the dielectric layer 108 can be customized. In some cases, dielectric layer 108 can have an average thickness, for example, in the range of about 1 to 10 nm (eg, about 1 to 5 nm, about 5 to 10 nm, or any other subrange in the range of about 1 to 10 nm). . In some cases, dielectric layer 108 can have an average thickness, for example, in the range of about 0.5 to 5 nm (eg, any other subrange in the range of about 0.5 to 2.5 nm, about 2.5 to 5 nm, or about 0.5 to 5 nm). . In some cases, the dielectric material 108 can have an average thickness, for example, in the range of about 0.1 to 3 nm (eg, about 0.1 to 1 nm, about 1 to 2 nm, about 2 to 3 nm, or about 0.1 to 3 nm). Any other subrange). In some cases, dielectric layer 108 can have an average thickness of, for example, about 1 nm or less (eg, about 0.5 nm or less, about 0.1 nm or less, etc.).
在一些實例中,介電層108可具有在例如由低層介電層102(例如包括在其中形成的特徵106)和半導體本體104所提供的形貌之上實質均勻的厚度。在一些實例中,可設置介電層108作為在這類形貌之上的實質保形層(conformal layer)。在其它實例中,可設置介電層108具有非均勻或另以在這類形貌之上變化的厚度。舉例來說,在一些情形中,介電層108之第一部分可具有在第一範圍內的厚度,然而其第二部分可具有在第二、不同的範圍內之厚度。在一些實例中,介電層108可具有第一及第二部分,其具有彼此相差了約20%或以下、約15%或以下、約10%或以下或者約5%或以下的平均厚度。在一些情形中,介電層108可從特徵106之底部部分106b擴展到特徵106之側壁部分106c的全高度。在一些其它情形中,介電層108可從特徵106之底部部分106b擴展到等於介電層108之厚度的特徵106之側壁部分106c之高度(例如,像是能從討論於下之圖4~5來看見)。 In some examples, dielectric layer 108 can have a substantially uniform thickness over a topography provided, for example, by low-level dielectric layer 102 (eg, features 106 formed therein) and semiconductor body 104. In some examples, dielectric layer 108 can be provided as a substantial conformal layer over such topography. In other examples, the dielectric layer 108 can be provided to have a thickness that is non-uniform or otherwise varied above such topography. For example, in some cases, the first portion of the dielectric layer 108 can have a thickness in the first range, while the second portion can have a thickness in the second, different range. In some examples, dielectric layer 108 can have first and second portions having an average thickness that differs from each other by about 20% or less, about 15% or less, about 10% or less, or about 5% or less. In some cases, the dielectric layer 108 can extend from the bottom portion 106b of the feature 106 to the full height of the sidewall portion 106c of the feature 106. In some other instances, the dielectric layer 108 can extend from the bottom portion 106b of the feature 106 to a height equal to the sidewall portion 106c of the feature 106 of the thickness of the dielectric layer 108 (eg, as can be seen from Figure 4 below). 5 to see).
如按照本揭露將為明白的是,能使用任何合適的技術來形成介電層108。舉例而言,在一些情形中,可經由像是電漿增強化學氣相沉積(PECVD;plasma-enhanced CVD)的化學氣相沉積(CVD;chemical vapor deposition)工序和原子層沉積(ALD;atomic layer deposition)工序之任一者或結合來形成介電層108。用於介電層108之其它合適的材料、維度、幾何及形成技術將取決於給定應用且按照本揭露將為明白的。 As will be appreciated in light of the present disclosure, dielectric layer 108 can be formed using any suitable technique. For example, in some cases, a chemical vapor deposition (CVD) process such as plasma-enhanced CVD (CVD) and atomic layer deposition (ALD; atomic layer) may be performed. The dielectric layer 108 is formed by either or a combination of the deposition processes. Other suitable materials, dimensions, geometries, and formation techniques for dielectric layer 108 will depend on a given application and will be apparent in light of this disclosure.
依據一些實施例,可在介電層108之上形成障壁層110。在一些情形中,能例如從金屬氮化物形成障壁層110,像是一氮化鈦(TiN)、一氮化鉭(TaN)、氮化釩(VN)、氮化鈮(NbN)或氮化鋯(ZrN)其中任一者或結合。在更一般的含意中且依據一些實施例,可從任何合適的材料形成障壁層110,該材料可至少部分作為用於主IC 100A(或組態為於此所說明的其它主IC)的可靠性層。如按照本揭露將理解的是,依據一些實施例,障壁層110可以範例維度、幾何及上面所討論的技術之任一者例如相對介電層108來形成。在一些情形中,障壁層110對下層的介電層108之形貌可為保形的。在一些實例中,障壁層110至少初始從特徵106之底部部分106b擴展到特徵106之側壁部分106c之全高度。在一些實例中,障壁層110可從特徵106之底部部分106b擴展到小於特徵106之側壁部分106c之全高度。用於障壁層110之其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 According to some embodiments, the barrier layer 110 may be formed over the dielectric layer 108. In some cases, the barrier layer 110 can be formed, for example, from a metal nitride, such as titanium nitride (TiN), tantalum nitride (TaN), vanadium nitride (VN), tantalum nitride (NbN), or nitride. Zirconium (ZrN) either or a combination. In a more general sense and in accordance with some embodiments, the barrier layer 110 can be formed from any suitable material that can be at least partially reliable for use with the primary IC 100A (or other primary ICs configured as described herein). Sex layer. As will be understood in accordance with the present disclosure, barrier layer 110 can be formed in any of the exemplary dimensions, geometries, and techniques discussed above, such as opposing dielectric layer 108, in accordance with some embodiments. In some cases, the morphology of the barrier layer 110 to the underlying dielectric layer 108 can be conformal. In some examples, the barrier layer 110 initially extends at least from the bottom portion 106b of the feature 106 to the full height of the sidewall portion 106c of the feature 106. In some examples, the barrier layer 110 can extend from the bottom portion 106b of the feature 106 to less than the full height of the sidewall portion 106c of the feature 106. Other suitable materials, dimensions, geometries, and forming techniques for the barrier layer 110 will depend on the given application and will be apparent in light of this disclosure.
依據一些實施例,可在障壁層110之上形成功函數金屬(WFM;work function metal)層112。如按照本揭露將為明白的是,WFM層112能從任何合適的功函數金屬形成。舉例而言,在一些情形中,WFM層112可從鎢(W)、釕(Ru)、鈷(Co)、氮化鈦(TiN)、氮化釩(VN)、氮化鈮(NbN)及氮化鋯(ZrN)。如按照本揭露將理解的是,依據一些實施例,WFM層112可例如相 對於介電層108以範例的維度、幾何及上面所討論的技術之任一者來形成。在一些情形中,WFM層112對於下層的障壁層110之形貌是保形的。在一些實例中,WFM層112可至少初始地從特徵106之底部部分106b擴展到特徵106之側壁部分106c之全高度。在一些實例中,WFM層112可從特徵106之底部部分106b擴展到低於特徵106之側壁部分106c之全高度。依據一些實施例,WFM層112可至少部分地作為例如用於金屬層116的種子層(對照圖2E討論於下)。用於WFM層112之其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 According to some embodiments, a function function metal (WFM) layer 112 may be formed over the barrier layer 110. As will be appreciated in light of this disclosure, the WFM layer 112 can be formed from any suitable work function metal. For example, in some cases, the WFM layer 112 can be derived from tungsten (W), ruthenium (Ru), cobalt (Co), titanium nitride (TiN), vanadium nitride (VN), tantalum nitride (NbN), and Zirconium nitride (ZrN). As will be appreciated in accordance with the present disclosure, in accordance with some embodiments, the WFM layer 112 can be, for example, phased. Dielectric layer 108 is formed in any of the exemplary dimensions, geometries, and techniques discussed above. In some cases, the WFM layer 112 is conformal to the topography of the underlying barrier layer 110. In some examples, the WFM layer 112 can at least initially extend from the bottom portion 106b of the feature 106 to the full height of the sidewall portion 106c of the feature 106. In some examples, the WFM layer 112 can extend from the bottom portion 106b of the feature 106 to a full height below the sidewall portion 106c of the feature 106. According to some embodiments, the WFM layer 112 can be at least partially as a seed layer, for example for the metal layer 116 (discussed below with respect to Figure 2E). Other suitable materials, dimensions, geometries, and forming techniques for the WFM layer 112 will depend on the given application and will be apparent in light of this disclosure.
工序可如在圖2B中繼續,其為依據本揭露之實施例在形成填充材料114之層之後圖2A之IC 100A的剖面視圖。如能見到的是,填充材料114可配置在WFM層112、障壁層110及介電層108之上於特徵106(例如在與半導體本體104並排的凹槽/孔洞106a內)內。填充材料114能為廣泛的材料中之任一者。舉例而言,在一些情形中,填充材料114可為二氧化矽(不具有)、碳化物硬掩膜及鎢(W)之任一者或結合。在一些情形中,填充材料114可為介電質或可選擇性的形成金屬(例如像是下面討論的金屬層116)於其上的其它絕緣材料。在更一般的含意中且依據一些實施例,可從前述的材料之任一者或結合來形成填充材料114。如按照本揭露將理解的是,以一般的含意填充材料114可考慮犧牲填充材料。 The process can continue as in FIG. 2B, which is a cross-sectional view of IC 100A of FIG. 2A after forming a layer of fill material 114 in accordance with an embodiment of the present disclosure. As can be seen, the fill material 114 can be disposed over the WFM layer 112, the barrier layer 110, and the dielectric layer 108 within the features 106 (eg, within the recesses/holes 106a alongside the semiconductor body 104). Filler material 114 can be any of a wide variety of materials. For example, in some cases, the fill material 114 can be any or a combination of cerium oxide (not having), a carbide hard mask, and tungsten (W). In some cases, the fill material 114 can be a dielectric or other insulating material that can selectively form a metal (such as, for example, the metal layer 116 discussed below). In a more general sense and in accordance with some embodiments, the filler material 114 can be formed from any of the foregoing materials or combinations. As will be understood in light of the present disclosure, filling material 114 in a general sense may be considered to sacrifice the filler material.
能如對給定目標應用或終端使用所期望的來客製化填充材料114之維度和幾何且在一些實例中可至少部分地取決於特徵106之維度和幾何以及其中的半導體本體104。如按照本揭露將明白的是,使用任何合適的技術來沉積填充材料114。舉例而言,在一些情形中,可使用像是電漿增強化學氣相沉積(PECVD;plasma-enhanced CVD)的化學氣相沉積(CVD;chemical vapor deposition)工序、原子層沉積(ALD;atomic layer deposition)工序以及旋轉塗佈沉積(SOD;spin-on deposition)工序之任一者或結合來沉積填充材料114。可使用化學機械平坦化(CMP;chemical-mechanical planarization)工序與蝕刻且清潔工序(etch-and-clean process)之任一者或結合來移除不欲之過多的填充材料114(例如,可能在IC 100A之上表面之上擴展的超覆層(overburden))。用於填充材料114的其它合適的材料、維度、幾何以及形成技術將取決於給定的應用且按照本揭露將為明白的。 The dimensions and geometry of the fill material 114 can be customized as desired for a given target application or terminal and in some instances can depend, at least in part, on the dimensions and geometry of the features 106 and the semiconductor body 104 therein. As will be appreciated in accordance with the present disclosure, the fill material 114 is deposited using any suitable technique. For example, in some cases, a chemical vapor deposition (CVD) process such as plasma-enhanced CVD (CVD), atomic layer deposition (ALD; atomic layer) may be used. The deposition process 114 and the spin-on deposition (SOD) process are combined to deposit the filler material 114. Any one or combination of a chemical-mechanical planarization (CMP) process and an etch-and-clean process may be used to remove unwanted filler material 114 (eg, possibly Overburden over the surface above the IC 100A). Other suitable materials, dimensions, geometries, and forming techniques for the fill material 114 will depend on the given application and will be apparent in light of this disclosure.
工序可如在圖2C中繼續,其為依據本揭露之實施例在部分移除填充材料114、WFM層112及障壁層110之後圖2B之IC 100A之剖面視圖。如按照本揭露將為明白的是,可使用任何合適的技術部分地從特徵106移除填充材料114、WFM層112及障壁層110。舉例而言,在一些情形中,可使用濕蝕刻(wet etch)工序或乾蝕刻工序、能如對給定的目標應用和終端使用來客製化的蝕刻化學、打磨或平坦化工序(例如,CMP)以及飛灰處理(ash process)(例如其不會氧化任何存在的金屬)其中任一者或結合來部分移除(或掘入)填充材料114、WFM層112及障壁層110。依據一些實施例,部分移除填充材料114可與部分移除WFM層112和障壁層110順序地或並行地發生。如按照本揭露將理解的是,若使用來同時部分地移除填充材料114、WFM層112及障壁層110的相同蝕刻劑亦使用來隨後移除填充材料114之殘餘(例如,如下面參考圖2D的討論),則接著其所期望的是確保對給定目標應用和終端使用所期望的適當的處理時序。依據實施例,在從特徵106移除填充材料114、WFM層112及障壁層110之各者的部分之時,填充材料114、WFM層112及障壁層110之各者可僅保留在例如特徵106之底部部分106b中。在一些實例中,障壁層110和WFM層112各者可從特徵106之底部部分106b擴展到低於特徵106之側壁部分106c之全高度。 The process may continue as in FIG. 2C, which is a cross-sectional view of IC 100A of FIG. 2B after partial removal of fill material 114, WFM layer 112, and barrier layer 110 in accordance with an embodiment of the present disclosure. As will be appreciated in light of this disclosure, the fill material 114, the WFM layer 112, and the barrier layer 110 can be partially removed from the features 106 using any suitable technique. For example, in some cases, a wet etch process or a dry etch process, an etch chemistry, a sanding or planarization process (eg, CMP) that can be customized for a given target application and end use can be used. ) and fly ash processing (ash Process (eg, it does not oxidize any metal present) either or in combination to partially remove (or dig into) the fill material 114, the WFM layer 112, and the barrier layer 110. According to some embodiments, partially removing the fill material 114 may occur sequentially or in parallel with the partially removed WFM layer 112 and the barrier layer 110. As will be understood in accordance with the present disclosure, the same etchant used to simultaneously partially remove the fill material 114, the WFM layer 112, and the barrier layer 110 is also used to subsequently remove the residue of the fill material 114 (eg, as described below) 2D discussion), then what it is expected to be to ensure the appropriate processing timing desired for a given target application and terminal usage. Depending on the embodiment, each of the fill material 114, the WFM layer 112, and the barrier layer 110 may remain only in, for example, feature 106 when portions of each of the fill material 114, the WFM layer 112, and the barrier layer 110 are removed from the features 106. In the bottom portion 106b. In some examples, each of the barrier layer 110 and the WFM layer 112 can extend from the bottom portion 106b of the feature 106 to a full height below the sidewall portion 106c of the feature 106.
工序可如在圖2D中繼續,其為依據本揭露之實施例在移除填充材料114之殘餘之後圖2C之IC 100A的剖面視圖。如按照本揭露將理解的是,依據一些實施例,例如上面對照圖2C及部分移除填充材料114所討論的技術之任一者可為了該目的而使用。依據實施例,在移除填充材料114之殘餘之時,WFM層112和障壁層110仍可例如僅部分保留在特徵106之底部部分106b中。在底部部分106b之上的WFM層112之部分可至少部分作為例如用於金屬層116的種子層(討論於下)。 The process can continue as in FIG. 2D, which is a cross-sectional view of IC 100A of FIG. 2C after removal of the residue of fill material 114 in accordance with an embodiment of the present disclosure. As will be appreciated in accordance with the present disclosure, any of the techniques discussed above with respect to FIG. 2C and partially removing the filler material 114 may be used for this purpose in accordance with some embodiments. Depending on the embodiment, upon removal of the residue of the fill material 114, the WFM layer 112 and the barrier layer 110 may still remain, for example, only partially in the bottom portion 106b of the feature 106. Portions of the WFM layer 112 above the bottom portion 106b may be at least partially as, for example, a seed layer for the metal layer 116 (discussed below).
工序可如在圖2E中繼續,其為依據本揭露之實施例在形成金屬層116之後圖2D之IC 100A之剖面視圖。如按照本揭露將明白的是,能從任何合適的導電材料形成金屬層116。舉例而言,在一些情形中,可從金屬形成金屬層116,像是銅(Cu)、鋁(Al)、鎢(W)、鎳(Ni)、鈷(Co)、銀(Ag)、金(Au)、鈦(Ti)或鉭(Ta)。在一些情形中,可從氮化物形成金屬層116,像是氮化鈦(TiN)或氮化鉭(TaN)。在更一般的含意中且依據一些實施例,可從前述材料之任一者或結合形成金屬層116。 The process can continue as in FIG. 2E, which is a cross-sectional view of IC 100A of FIG. 2D after forming metal layer 116 in accordance with an embodiment of the present disclosure. As will be appreciated in accordance with the present disclosure, metal layer 116 can be formed from any suitable electrically conductive material. For example, in some cases, metal layer 116 may be formed from a metal such as copper (Cu), aluminum (Al), tungsten (W), nickel (Ni), cobalt (Co), silver (Ag), gold. (Au), titanium (Ti) or tantalum (Ta). In some cases, metal layer 116 may be formed from the nitride, such as titanium nitride (TiN) or tantalum nitride (TaN). In a more general sense and in accordance with some embodiments, the metal layer 116 can be formed from any of the foregoing materials or combinations.
可如對給定目標應用或終端使用所期望的來客製化金屬層116之維度和幾何,並且在一些情形中可至少部分取決於特徵106之維度和幾何以及其中的半導體本體104。依據一些實施例,金屬層116可在特徵106之底部部分106b之上選擇性地在WFM層112之薄層(例如,種子層)之上形成(例如,選擇性的沉積或另以選擇性的生長)。為了該目的,按照本揭露將為明顯的是,能使用任何合適的技術形成金屬層116。舉例而言,在一些情形中,能經由原子層沉積(ALD)工序、化學氣相沉積(CVD)工序及無電沉積(electroless deposition)工序之任一者或結合來形成金屬層116。用於金屬層116的其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 The dimensions and geometry of the metal layer 116 can be customized as desired for a given target application or terminal, and in some cases can depend, at least in part, on the dimensions and geometry of the features 106 and the semiconductor body 104 therein. In accordance with some embodiments, metal layer 116 may be selectively formed over a thin layer (eg, a seed layer) of WFM layer 112 over bottom portion 106b of feature 106 (eg, selective deposition or otherwise selective) Growing). For this purpose, it will be apparent in light of the present disclosure that the metal layer 116 can be formed using any suitable technique. For example, in some cases, the metal layer 116 can be formed via any one or combination of an atomic layer deposition (ALD) process, a chemical vapor deposition (CVD) process, and an electroless deposition process. Other suitable materials, dimensions, geometries, and forming techniques for metal layer 116 will depend on the particular application and will be apparent in light of this disclosure.
在一些情形中且依據實施例,金屬層116可初始地僅 在WFM層112之薄層(例如,種子層)上生長,造成在半導體本體104周圍之特徵106內無接縫地、由下而上填充金屬層116。依據實施例,隨著金屬層116達成且清出半導體本體104之頂部,金屬層116之生長可在特徵106內側向地持續。在一些實例中,隨著金屬層116清出半導體本體104之頂部,孔隙或接縫可形成於特徵106之區域118中。如按照本揭露將理解的是,在一些情形中,其可期望的是,消除或另以降低這類孔隙或接縫之存在。為了該目的,如按照本揭露將為明白的是,可使用任何合適的金屬回焊(reflow)工序來回焊金屬層116。然而,在其它情形中,這類的孔隙或接縫可保留在區域118中而在IC 200A(或如於此說明所組態之其它主IC)上不具有影響或另以具有可忽略或可接受的影響。 In some cases and depending on the embodiment, the metal layer 116 may initially only Growth on a thin layer (e.g., seed layer) of the WFM layer 112 results in a seamless, underlying, filled metal layer 116 within features 106 around the semiconductor body 104. Depending on the embodiment, as metal layer 116 reaches and clears the top of semiconductor body 104, growth of metal layer 116 may continue inwardly of feature 106. In some examples, a void or seam may be formed in region 118 of feature 106 as metal layer 116 clears the top of semiconductor body 104. As will be understood in accordance with the present disclosure, in some instances it may be desirable to eliminate or otherwise reduce the presence of such voids or seams. For this purpose, as will be appreciated in light of the present disclosure, the metal layer 116 can be soldered back and forth using any suitable metal reflow process. However, in other cases, such voids or seams may remain in region 118 without having an effect on IC 200A (or other primary IC configured as described herein) or otherwise having negligible or Accepted influence.
依據一些實施例,在部分移除填充材料114、WFM層112及障壁層110之後(例如,在上面如對照圖2C所討論的)或是在移除填充材料114之殘餘之後(例如,在上面如對照圖2D所討論的),介電層108可選地可遭受其曝露部分之選擇性鈍化。在一些實例中且依據實施例,介電層108之曝露表面之鈍化可以金屬層116提升特徵106之由下而上填充(如對照圖2E在上面所討論的)。 According to some embodiments, after partially removing the fill material 114, the WFM layer 112, and the barrier layer 110 (eg, as discussed above with respect to FIG. 2C) or after removing the residue of the fill material 114 (eg, on top) As discussed with respect to Figure 2D, the dielectric layer 108 can optionally be subjected to selective passivation of its exposed portions. In some examples and in accordance with an embodiment, passivation of the exposed surface of dielectric layer 108 may be filled from bottom to top of metal layer 116 lift feature 106 (as discussed above with respect to FIG. 2E).
如按照本揭露將為明白的是,可使用任何合適的鈍化材料及技術來部分或全部地鈍化介電層108。舉例而言,在一些情形中,可使用一或多個自組裝單分子層(SAM;self-assembled monolayer)選擇性地鈍化介電層108。如 按照本揭露將理解的是,經由SAM選擇性鈍化介電層108可從汽相(vapor phase)或從溶解在溶劑中的分子(或兩者)而發生。在一些情形中,可使用優先附接到氧化表面的一或多個SAM來選擇性的鈍化介電層108,像是亞磷酸(phosphonic acid)、硫醇(thiols)、羧酸(carboxylic acid)及氨(amine)。一些合適的範例包括正十八烷基膦酸(ODPA;octadecylphosphonic acid)、十八烷硫醇(ODT;1-octadecanethiol)以及十八烷酸(octadecanoic acid)(ODCA;硬脂酸(stearic acid))。在一些情形中,可使用一或多個優先附接到介電質表面的一或多個SAM選擇性地鈍化介電層108,像是氯基(chloro-)、烷氧基(alkoxy-)及具有在1~20碳之範圍中的烷鏈(alkane chain)長度之氨基矽烷(amino-silanes)。一些合適的範例包括有機矽(organosilicon)複合物,像是十八烷基三氯矽烷(ODTCS;octadecyltrichlorosilane)、十八烷基三(二甲胺基)矽烷(ODTAS;octadecyltris(dimethylamino)silane)以及十八烷基三甲氧基矽烷(ODTMS;octadecyltrimethoxysilane)。在一些實例中,可選定鈍化劑(passivant)以致不會與WFM層112、介電層102以及介電層108之任一者或所有者反應(或另以僅可忽略不計的反應)。在更一般的含意中且依據一些實施例,可使用上述材料和技術之任一者或結合來提供介電層108之選擇性鈍化。若由於與任何周圍的材料之反應性而鈍化材料 之選擇性不足的話,則接著能從在其中鈍化係不欲使用熱退火(thermal annealing)、濕蝕刻工序及乾蝕刻工序的表面移除任何不欲的鈍化劑(passivant)材料。 As will be appreciated in light of the present disclosure, dielectric layer 108 may be partially or completely passivated using any suitable passivation material and technique. For example, in some cases, the dielectric layer 108 can be selectively passivated using one or more self-assembled monolayers (SAMs). Such as It will be understood in accordance with the present disclosure that selective dielectric passivation of dielectric layer 108 via SAM can occur from a vapor phase or from molecules (or both) dissolved in a solvent. In some cases, one or more SAMs preferentially attached to the oxidized surface can be used to selectively passivate the dielectric layer 108, such as phosphoric acid, thiols, carboxylic acid. And ammonia. Some suitable examples include n-octadecylphosphonic acid (ODPA; octadecylphosphonic acid), octadecanethiol (ODT; 1-octadecanethiol), and octadecanoic acid (ODCA; stearic acid). ). In some cases, the dielectric layer 108 can be selectively passivated using one or more SAMs preferentially attached to the dielectric surface, such as chloro-, alkoxy- And amino-silanes having an alkane chain length in the range of 1 to 20 carbons. Some suitable examples include organosilicon complexes such as octadecyltrichlorosilane (ODTCS; octadecyltrichlorosilane), octadecyltris (dimethylamino)silane, and Octadecyltrimethoxydecane (ODTMS; octadecyltrimethoxysilane). In some examples, a passivant may be selected so as not to react with either or both of WFM layer 112, dielectric layer 102, and dielectric layer 108 (or otherwise negligible reaction). In a more general sense and in accordance with some embodiments, any of the materials and techniques described above or in combination may be used to provide selective passivation of the dielectric layer 108. Passivation of materials due to reactivity with any surrounding materials If the selectivity is insufficient, then any unwanted passivant material can be removed from the surface in which the passivation is not intended to use thermal annealing, wet etching, and dry etching processes.
圖3A~3E依據本揭露之另一實施例而例示用於形成IC 100B的IC製造工序流程。依據一些實施例,可使用圖3A~3E之工序流程來例如藉由在三維n型金屬氧化半導體(NMOS;n-type metal-oxide-semiconductor)裝置電晶體裝置中選擇性沉積填充材料(例如,閘極材料)提供由下而上填充。圖3A~3E之工序流程之其它合適的使用依據本揭露將為明白的。 3A-3E illustrate an IC manufacturing process flow for forming an IC 100B in accordance with another embodiment of the present disclosure. According to some embodiments, the process flow of FIGS. 3A-3E can be used to selectively deposit a filler material (eg, by a three-dimensional n-type metal-oxide-semiconductor device) in a three-dimensional metal-oxide-semiconductor device. The gate material) is provided from bottom to top. Other suitable uses of the process flow of Figures 3A-3E will be apparent in light of this disclosure.
工序可如在圖3A中開始,其係依為據本揭露之另一實施例組態的IC 100B之剖面視圖。如能見到的,IC 100B可包括如上所討論以特徵106圖案化的介電層102。又,如從圖3A能見到的是,IC 100B可包括配置在介電層102內且突出到特徵106中的半導體本體104,造成如上所討論在介電層102中出現與半導體本體104並排的一或多個凹槽(或孔洞)106a。如進一步從圖3A能見到的是,IC 100B可包括如上所討論的介電層108、障壁層110以及WFM層112。 The process can begin as in Figure 3A, which is a cross-sectional view of an IC 100B configured in accordance with another embodiment of the present disclosure. As can be seen, the IC 100B can include a dielectric layer 102 patterned with features 106 as discussed above. Again, as can be seen from FIG. 3A, IC 100B can include semiconductor body 104 disposed within dielectric layer 102 and protruding into feature 106, causing side-by-side semiconductor body 104 to appear in dielectric layer 102 as discussed above. One or more grooves (or holes) 106a. As can be further seen from FIG. 3A, IC 100B can include dielectric layer 108, barrier layer 110, and WFM layer 112 as discussed above.
然而,依據一些實施例,不似上面討論的IC 100A,IC 100B可更包括在WFM層112之上形成的障壁層113。障壁層113可從廣泛的材料之任一者形成。舉例而言,在一些情形中,可從金屬形成障壁層113,像是鉭(Ta)、鈦(Ti)或錳(Mn)。在一些情形中,可從氮化物形成 障壁層113,像是氮化鉭(TaN)、氮化鈦(TiN)或氮化錳(MnN)。在更一般的含意中且依據一些實施例,可從前述材料之任一者或結合來形成障壁層113。 However, in accordance with some embodiments, unlike the IC 100A discussed above, the IC 100B may further include a barrier layer 113 formed over the WFM layer 112. The barrier layer 113 can be formed from any of a wide variety of materials. For example, in some cases, the barrier layer 113 may be formed from a metal such as tantalum (Ta), titanium (Ti), or manganese (Mn). In some cases, it can form from nitride The barrier layer 113 is, for example, tantalum nitride (TaN), titanium nitride (TiN) or manganese nitride (MnN). In a more general sense and in accordance with some embodiments, the barrier layer 113 can be formed from any one or combination of the foregoing materials.
如按照本揭露將理解的是,依據一些實施例,可以例如相對介電層108的範例維度、幾何及上面討論的技術之任一者來形成障壁層113。在一些實例中,障壁層113可至少初始地從特徵106之底部部分106b擴展到特徵106之側壁部分106c之全高度。在一些實例中,障壁層113可從特徵106之底部部分106b擴展到低於特徵106之側壁部分106c之全高度。依據一些實施例,障壁層113可至少部分作為例如用於金屬層116的種子層(對照圖3E在上面以及下面所討論的)。用於障壁層113的其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 As will be appreciated in light of this disclosure, the barrier layer 113 can be formed, for example, with respect to any of the example dimensions, geometries, and techniques discussed above for the dielectric layer 108, in accordance with some embodiments. In some examples, the barrier layer 113 can at least initially extend from the bottom portion 106b of the feature 106 to the full height of the sidewall portion 106c of the feature 106. In some examples, the barrier layer 113 can extend from the bottom portion 106b of the feature 106 to a full height below the sidewall portion 106c of the feature 106. According to some embodiments, the barrier layer 113 can be at least partially as, for example, a seed layer for the metal layer 116 (discussed above and below with respect to FIG. 3E). Other suitable materials, dimensions, geometries, and forming techniques for the barrier layer 113 will depend on the given application and will be apparent in light of this disclosure.
工序可如在圖3B中繼續,其為依據本揭露之實施例在形成填充材料114的層之後圖3A之IC 100B的剖面視圖。如能見到的是,填充材料114(討論於上)可配置於障壁層113、WFM層112、障壁層110及介電層108之上特徵106內(例如,在與半導體本體104並排的凹槽/孔洞106a內)。如上所注解的,依據一些實施例,填充材料114在一般含意上可考慮犧牲填充材料。可使用如上面所討論的CMP工序與蝕刻及清潔工序之任一者或結合來移除不欲之過多的填充材料114(例如,可能在IC 100B之上表面之上擴展的超覆層)。 The process can continue as in FIG. 3B, which is a cross-sectional view of IC 100B of FIG. 3A after forming a layer of fill material 114 in accordance with an embodiment of the present disclosure. As can be seen, the fill material 114 (discussed above) can be disposed within the features 106 above the barrier layer 113, the WFM layer 112, the barrier layer 110, and the dielectric layer 108 (eg, in a recess alongside the semiconductor body 104). / hole 106a). As noted above, in accordance with some embodiments, the filler material 114 may generally be considered to be a sacrificial filler material. Any or a combination of the CMP process and the etching and cleaning processes as discussed above may be used to remove unwanted excess fill material 114 (eg, an overlying layer that may spread over the upper surface of IC 100B).
工序可如在圖3C中繼續,其為依據本揭露之一些實施例在部分移除障壁層113和填充材料114之後圖3B之IC 100B之剖面視圖。依據一些實施例,如按照本揭露將理解的是,可使用任何合適的技術從特徵106部分移除填充材料114和障壁層113,包括例如對照圖2C及部分移除填充材料114在上面所討論的該些範例技術之任一者。依據一些實施例,部分移除填充材料114可順序的發生或與部分移除障壁層113同時發生。如按照本揭露將理解的是,若使用來同時間部分移除填充材料114和障壁層113的相同蝕刻劑亦使用來移除隨後移除填充材料114之殘餘(例如,在下面對照圖3D所討論的),則接著如對給定的目標應用或終端使用所期望的是,其可期望確保適當的處理時序。依據一些實施例,在當從特徵106移除填充材料114及障壁層113的時候,填充材料114和障壁層113可例如僅部分保留在特徵106之底部部分106b中。在一些實例中,障壁層113可從特徵106之底部部分106b擴展到低於特徵106之側壁部分106c之全高度。 The process may continue as in FIG. 3C, which is a cross-sectional view of IC 100B of FIG. 3B after partial removal of barrier layer 113 and fill material 114 in accordance with some embodiments of the present disclosure. In accordance with some embodiments, as will be appreciated in accordance with the present disclosure, the fill material 114 and the barrier layer 113 can be partially removed from the feature 106 using any suitable technique, including, for example, the control of FIG. 2C and the partial removal of the fill material 114 discussed above. Any of these example techniques. According to some embodiments, the partial removal of the fill material 114 may occur sequentially or simultaneously with partial removal of the barrier layer 113. As will be understood in accordance with the present disclosure, the same etchant used to partially remove the fill material 114 and the barrier layer 113 at the same time is also used to remove residuals that subsequently remove the fill material 114 (eg, as described below with respect to FIG. 3D). As discussed, then as desired for a given target application or terminal usage, it may be desirable to ensure proper processing timing. According to some embodiments, when the fill material 114 and the barrier layer 113 are removed from the feature 106, the fill material 114 and the barrier layer 113 may, for example, only partially remain in the bottom portion 106b of the feature 106. In some examples, the barrier layer 113 can extend from the bottom portion 106b of the feature 106 to a full height below the sidewall portion 106c of the feature 106.
工序可如在圖3D中繼續,其係為依據本揭露之實施例在移除填充材料114之殘餘之後圖3C之IC 100B的剖面視圖。如按照本揭露將理解的是,依據一些實施例,例如對照圖3C與部分移除填充材料114及障壁層113而在上面討論的技術之任一者可為該目的而被使用。 The process can continue as in FIG. 3D, which is a cross-sectional view of IC 100B of FIG. 3C after removal of the residue of fill material 114 in accordance with an embodiment of the present disclosure. As will be appreciated in accordance with the present disclosure, any of the techniques discussed above may be used for this purpose, such as with reference to FIG. 3C and partially removing fill material 114 and barrier layer 113, in accordance with some embodiments.
依據實施例,在當移除填充材料114之殘餘的時候,障壁層113仍可僅部分保留例如在特徵106之底部部分 106b中。在底部部分106b之上的障壁層113之部分可至少部分作為例如用於金屬層116的種子層(討論於下)。WFM層112和障壁層110可保留在特徵106之底部部分106b之上以及可選擇地在特徵106之側壁部分106c之上。 According to an embodiment, the barrier layer 113 may still only partially remain, for example, at the bottom portion of the feature 106 when the residue of the filler material 114 is removed. 106b. Portions of the barrier layer 113 above the bottom portion 106b may be at least partially as, for example, a seed layer for the metal layer 116 (discussed below). The WFM layer 112 and the barrier layer 110 may remain above the bottom portion 106b of the feature 106 and optionally over the sidewall portion 106c of the feature 106.
工序可如在圖3E中繼續,其為依據本揭露之實施例在形成金屬層116之後圖3D之IC 100B的剖面視圖。可在特徵106之底部部分106b之上選擇性地形成(例如,選擇性地沉積或另以選擇性的生長)金屬層116(上面討論的)於障壁層113之薄層(例如,種子層)之上。依據一些實施例,至少初始可以此方式選擇性地形成金屬層116而不形成於WFM層112上。為此目的,能使用如上面所討論任何合適的技術來形成金屬層116。在一些情形中且依據實施例,金屬層116初始地可僅在障壁層113之薄層(例如,種子層)上生長,造成在半導體本體104周圍於特徵106內金屬層116之無接縫、由下而上的填充。隨著金屬層116達成且清出半導體本體104之頂部,金屬層116之生長可在特徵106內側向地繼續。在一些情形中,隨著金屬層116清出半導體本體104之頂部,孔隙或接縫可如上所討論的在特徵106之區域118中形成。若想要的話,可如上所述消除或另以降低這類孔隙或接縫之存在。 The process can continue as in FIG. 3E, which is a cross-sectional view of IC 100B of FIG. 3D after formation of metal layer 116 in accordance with an embodiment of the present disclosure. A thin layer (eg, a seed layer) of the metal layer 116 (discussed above) to the barrier layer 113 can be selectively formed (eg, selectively deposited or otherwise selectively grown) over the bottom portion 106b of the feature 106. Above. According to some embodiments, the metal layer 116 may be selectively formed at least initially in this manner without being formed on the WFM layer 112. For this purpose, the metal layer 116 can be formed using any suitable technique as discussed above. In some cases and in accordance with an embodiment, the metal layer 116 may initially be grown only on a thin layer (eg, a seed layer) of the barrier layer 113, resulting in a seamless seam of the metal layer 116 within the feature 106 around the semiconductor body 104, Bottom-up fill. As metal layer 116 reaches and clears the top of semiconductor body 104, growth of metal layer 116 may continue inwardly of feature 106. In some cases, as metal layer 116 clears the top of semiconductor body 104, voids or seams may be formed in region 118 of feature 106 as discussed above. If desired, the presence of such voids or seams can be eliminated or otherwise reduced as described above.
依據一些實施例,在部分移除填充材料114和障壁層113之後(例如,如對照圖3C在上面討論的)或在移除 填充材料114之殘餘之後(例如,如對照圖3D在上面所討論的),WFM層112可選擇地遭受其任何曝露表面之選擇性鈍化。在一些實例中且依據實施例,WFM層112之曝露表面之鈍化可以金屬層116提升特徵106之由下而上填充(如對照圖3E在上面所討論的)。依據一些實施例,可例如相對於介電層108之選擇的鈍化使用上面討論的範例材料和技術之任一者來提供WFM層112之鈍化。此外,依據一些實施例,能從於其中鈍化係不欲使用如上所討論的熱退火、濕蝕刻工序及乾蝕刻工序之任一者或結合的表面移除任何不欲的鈍化材料。 According to some embodiments, after partially removing the fill material 114 and the barrier layer 113 (eg, as discussed above with respect to FIG. 3C) or after removal After the residue of fill material 114 (e.g., as discussed above with respect to Figure 3D), WFM layer 112 optionally suffers from selective passivation of any of its exposed surfaces. In some examples and in accordance with an embodiment, passivation of the exposed surface of WFM layer 112 may be filled from bottom to top of metal layer 116 lift feature 106 (as discussed above with respect to FIG. 3E). In accordance with some embodiments, passivation of the WFM layer 112 may be provided using, for example, any of the example materials and techniques discussed above with respect to selected passivation of the dielectric layer 108. Moreover, in accordance with some embodiments, any unwanted passivating material can be removed from the surface in which the passivation system is not intended to use any of the thermal annealing, wet etching processes, and dry etching processes discussed above or in combination.
依據一些實施例,可選擇性地在特徵106內形成介電層108。舉例而言,考量圖4~5,其分別為依據本揭露之一些實施例組態的IC 100A'和IC 100B'之剖面視圖。如於此能見到的,介電層108可例如在半導體本體104以及特徵106之底部部分106b之上形成,但不在特徵106之側壁部分106c之上。在一些實例中,介電層108可從特徵106之底部部分106b到特徵106之側壁部分106c之高度擴展了約等於介電層108之厚度。 Dielectric layer 108 may be selectively formed within feature 106 in accordance with some embodiments. For example, consider Figures 4-5, which are cross-sectional views of IC 100A ' and IC 100B ' configured in accordance with some embodiments of the present disclosure, respectively. As can be seen herein, the dielectric layer 108 can be formed over the semiconductor body 104 and the bottom portion 106b of the feature 106, for example, but not over the sidewall portion 106c of the feature 106. In some examples, the dielectric layer 108 may extend from the bottom portion 106b of the feature 106 to the sidewall portion 106c of the feature 106 by a thickness approximately equal to the thickness of the dielectric layer 108.
為此目的,依據一些實施例,犧牲阻擋層(例如像是上面討論的SAM材料之任一者)可形成於給定表面(例如,側壁部分160c)之上,其中不希望有介電層108並且選擇性原子層沉積(ALD;atomic layer deposition)可利用來沉積介電層108之介電材料。應用的SAM材料之分子可形成圍包單層(blanket monolayer),其阻擋例如
在特徵106之側壁部分106c(或任何其它所欲的部分)上介電層108之沉積。依據一些實施例,應用的SAM材料可例如經由熱處理(thermal treatment)隨後移除。在一些情形中,在約200~400℃之範圍中的溫度之熱處理(例如,約200~250℃、約250~300℃、約300~350℃、約350~400℃或在約200-400℃之範圍中的任何其它子範圍)可能足以移除任何應用的SAM材料。如按照本揭露將理解的是,由於在給定SAM阻擋層將在其處熱分解的低溫,其可期望的是,充足地提供介電層108之低溫形成以避免SAM層之提前降解(premature degradation)。在一些實例中且依據一些實施例,可利用用於介電材料之低溫ALD工序,介電材料像是氧化鉿(HfO2)或二氧化鋯(ZrO2)。例如,在ALD工序中,四(二甲氨基)鉿(tetrakis(dimethylamido)hafnium)將在約250℃與水反應以依據下列關係生成HfO2膜:
如按照本揭露將理解的是,依據一些實施例,在介電層102中特徵106(例如,如在圖4中)的或WFM層112(例如,如在圖5中)的曝露側壁部分106c可選地可對照介電層108之可選的選擇性鈍化而以在上面所討論的範例鈍化材料(例如,SAM)及技術之任一者來選擇性地鈍化。 As will be appreciated in accordance with the present disclosure, the exposed sidewall portion 106c of the feature 106 (eg, as in FIG. 4) or the WFM layer 112 (eg, as in FIG. 5) in the dielectric layer 102, in accordance with some embodiments. Optionally, selective passivation can be selectively performed with any of the example passivation materials (e.g., SAM) and techniques discussed above with respect to optional selective passivation of dielectric layer 108.
如先前所注解的,依據一些實施例,能例如在形成閘極結構以及源極/汲極接點結構中使用於此揭示的技術。 舉例而言,考量圖6,其為依據本揭露之實施例組態的源極/汲極(S/D)接點200之剖面視圖。如能見到的是,S/D接點200可包括介電層102和半導體本體104(兩者皆在上面討論過)。 As previously noted, the techniques disclosed herein can be used, for example, in forming gate structures and source/drain contacts structures, in accordance with some embodiments. For example, consider Figure 6, which is a cross-sectional view of a source/drain (S/D) contact 200 configured in accordance with an embodiment of the present disclosure. As can be seen, the S/D contact 200 can include a dielectric layer 102 and a semiconductor body 104 (both discussed above).
S/D接點200亦可包括介電層103。如按照本揭露將理解的是,可例如對照介電層102以上面討論的範例材料、維度、幾何及技術之任一者來形成介電層103。在一些情形中,介電層103可為與介電層102不同材料成分的。 The S/D contact 200 can also include a dielectric layer 103. As will be appreciated in accordance with the present disclosure, dielectric layer 103 can be formed, for example, in contrast to dielectric layer 102 in any of the example materials, dimensions, geometries, and techniques discussed above. In some cases, dielectric layer 103 can be of a different material composition than dielectric layer 102.
如能進一步從圖6見到的是,S/D接點200亦可包括形成在半導體本體104之上的磊晶半導體(Epitaxial semiconductor)本體105。磊晶半導體本體105可為例如三維半導體結構。如按照本揭露將理解的是,可例如對照半導體本體104以上面討論的範例材料之任一者來形成磊晶半導體本體105。如按照本揭露將為明白的是,可使用任何合適的技術來形成磊晶半導體本體105。舉例而言,在一些情形中,可使用像是有機金屬氣相磊晶(MOVPE;metalorganic vapor phase epitaxy)或分子束磊晶(MBE;molecular beam epitaxy)的磊晶工序(epitaxy process)、原子層沉積工序(ALD)以及化學氣相沉積(CVD)工序之任一者或結合來形成磊晶半導體本體105。可如對給定的目標應用或終端使用所期望的來客製化磊晶半導體本體105之維度和幾何。用於磊晶半導體本體105之其它合適的材料、維度、幾何以及形成技術 將取決於給定的應用且按照本揭露將為明白的。 As can be further seen from FIG. 6, the S/D contact 200 can also include an epitaxial semiconductor body 105 formed over the semiconductor body 104. The epitaxial semiconductor body 105 can be, for example, a three-dimensional semiconductor structure. As will be appreciated in accordance with the present disclosure, the epitaxial semiconductor body 105 can be formed, for example, against the semiconductor body 104 in any of the example materials discussed above. As will be appreciated in light of this disclosure, any suitable technique can be used to form the epitaxial semiconductor body 105. For example, in some cases, an epitaxy process such as metalorganic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MPE), atomic layer can be used. The epitaxial semiconductor body 105 is formed by any one or a combination of a deposition process (ALD) and a chemical vapor deposition (CVD) process. The dimensions and geometry of the epitaxial semiconductor body 105 can be customized as desired for a given target application or terminal. Other suitable materials, dimensions, geometries, and formation techniques for the epitaxial semiconductor body 105 It will depend on the given application and will be apparent in light of this disclosure.
依據一些實施例,可回蝕(etch back)介電層103以揭顯露磊晶半導體本體105之頂部表面,並且可在磊晶半導體本體105之曝露的頂部表面之上形成接觸金屬層107。可從任何合適的導電金屬或金屬矽化物形成接觸金屬層107。舉例而言,在一些情形中,可從矽化鎳(NiSix)和矽化鈷(CoSix)之任一者或結合形成接觸金屬層107。在一些其它情形中,可例如從相對於金屬層116在上面所討論的範例導電材料之任一者形成接觸金屬層107。 According to some embodiments, the dielectric layer 103 may be etched back to reveal the top surface of the epitaxial semiconductor body 105, and the contact metal layer 107 may be formed over the exposed top surface of the epitaxial semiconductor body 105. Contact metal layer 107 can be formed from any suitable conductive metal or metal halide. For example, in some cases, the contact metal layer 107 may be formed from either or a combination of nickel niobide (NiSi x ) and cobalt telluride (CoSi x ). In some other cases, the contact metal layer 107 can be formed, for example, from any of the exemplary conductive materials discussed above with respect to the metal layer 116.
按照本揭露將明白的是,可使用任何合適的技術形成接觸金屬層107。舉例而言,在一些情形中,可使用物理氣相沉積(PVD)工序、化學氣相沉積(CVD)工序以及原子層沉積(ALD)工序之任一者或結合來形成接觸金屬層107。可如對給定目標應用或終端使用所期望的來客製化接觸金屬層107之維度和幾何,且在一些情形中可至少部分地取決於下層的磊晶半導體本體105之形貌。用於接觸金屬層107之其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 It will be apparent in light of the present disclosure that the contact metal layer 107 can be formed using any suitable technique. For example, in some cases, the contact metal layer 107 may be formed using any one or combination of a physical vapor deposition (PVD) process, a chemical vapor deposition (CVD) process, and an atomic layer deposition (ALD) process. The dimensions and geometry of the contact metal layer 107 can be customized as desired for a given target application or terminal, and in some cases can depend, at least in part, on the topography of the underlying epitaxial semiconductor body 105. Other suitable materials, dimensions, geometries, and forming techniques for contacting metal layer 107 will depend on the particular application and will be apparent in light of this disclosure.
如能進一步從圖6看見的是,S/D接點200亦可包括藉由下層的接觸金屬層107(與可能的介電層103)所是供的形貌之上形成介電層108、障壁層110及WFM層112(各者已於上面討論)。依據一些實施例,可在例如藉由WFM層112所提供的下層的形貌之上形成接觸金屬層 120。如按照本揭露將理解的是,依據一些實施例,可以例如相對於金屬層116而在上面討論的範例材料及技術之任一者來形成接觸金屬層120。可如對給定的目標應用或終端使用所期望的來客製化接觸金屬層120之維度和幾何,且在一些情形中可至少部分取決於凹口106之維度與幾何。用於接觸金屬層120之其它合適的材料、維度、幾何及形成技術將取決於給定的應用且按照本揭露將為明白的。 As can be further seen from FIG. 6, the S/D contact 200 can also include a dielectric layer 108 formed over the topography provided by the underlying contact metal layer 107 (and possibly the dielectric layer 103), Barrier layer 110 and WFM layer 112 (each of which has been discussed above). According to some embodiments, the contact metal layer can be formed over the topography of the underlying layer provided by, for example, the WFM layer 112. 120. As will be appreciated in accordance with the present disclosure, contact metal layer 120 can be formed, for example, with respect to metal layer 116 in any of the example materials and techniques discussed above, in accordance with some embodiments. The dimensions and geometry of the contact metal layer 120 can be customized as desired for a given target application or terminal, and in some cases can depend, at least in part, on the dimensions and geometry of the recess 106. Other suitable materials, dimensions, geometries, and forming techniques for contacting metal layer 120 will depend on the particular application and will be apparent in light of this disclosure.
範例系統 Sample system
圖7例示依據範例實施例以使用揭示的技術形成的積體電路結構或裝置來實行的計算系統1000。如能見到的是,計算系統1000容納有主機板1002。主機板1002可包括眾多個組件,組件包括(但不限於)處理器1004及至少一通訊晶片1006,其各者能實體地或電性地耦接至主機板1002或另以整合於其中。如將理解的是,主機板1002可例如為任何印刷電路板,無論是主板、在主板上裝有子板(daughterboard)或系統1000之唯一板等。取決於其應用,計算系統1000可包括一或多個其它組件,其可或不可能不實體地和電性地耦接至主機板1002。這些其它組件可包括(但不限於)揮發性記憶體(例如,DRAM)、非揮發性記憶體(例如,ROM)、圖形處理器、數位信號處理器、加密處理器(crypto processor)、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制 器、電池、音訊編解碼器(audio codec)、視訊編解碼器(video codec)、功率放大器、全球定位系統(GPS)裝置、羅盤、加速度計、陀螺儀、揚聲器、攝像機及大量儲存裝置(像是硬碟驅動、光碟(CD)、數位多功能光碟(DVD)等等)。依據實施例,包括在計算系統1000中的組件之任一者可包括使用揭示的技術所形成的一或多個積體電路結構或裝置。在一些實施例中,多個功能可以被整合到一或多個晶片中(例如,注意通訊晶片1006舉例來說能為處理器1004之部分或另以整合到處理器1004中)。 FIG. 7 illustrates a computing system 1000 implemented in accordance with an exemplary embodiment using an integrated circuit structure or apparatus formed using the disclosed techniques. As can be seen, the computing system 1000 houses a motherboard 1002. The motherboard 1002 can include a number of components including, but not limited to, a processor 1004 and at least one communication chip 1006, each of which can be physically or electrically coupled to the motherboard 1002 or otherwise integrated therein. As will be appreciated, the motherboard 1002 can be, for example, any printed circuit board, whether it be a motherboard, a daughterboard mounted on the motherboard, or the only board of the system 1000. Depending on its application, computing system 1000 can include one or more other components that may or may not be physically and electrically coupled to motherboard 1002. These other components may include, but are not limited to, volatile memory (eg, DRAM), non-volatile memory (eg, ROM), graphics processors, digital signal processors, crypto processors, chipsets , antenna, display, touch screen display, touch screen control , battery, audio codec, video codec, power amplifier, global positioning system (GPS) device, compass, accelerometer, gyroscope, speaker, camera and mass storage device It is a hard disk drive, a compact disc (CD), a digital versatile disc (DVD), etc.). In accordance with an embodiment, any of the components included in computing system 1000 can include one or more integrated circuit structures or devices formed using the disclosed techniques. In some embodiments, multiple functions may be integrated into one or more of the wafers (eg, note that communication chip 1006 can be, for example, part of processor 1004 or otherwise integrated into processor 1004).
通訊晶片1006致能無線通訊以用於傳輸資料到計算系統1000且從計算系統1000傳輸資料。術語「無線」且其衍生可使用來描述可透過使用通過非固體媒體之調變的電磁放射來將資料進行通訊的電路、裝置、系統、方法、技術、通訊通道等。該術語並非暗示關聯的裝置未包含任何線,雖然在一些實施例中他們可能沒有。通訊晶片1006可建置任何數目的無線標準或協定,包括(但不限於)Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演進(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍牙、其衍生以及定為3G、4G、5G及以上的任何其它無線協定。計算系統1000可包括複數個通訊晶片1006。舉例而言,第一通訊晶片1006可專用於較短範圍無線通訊,像是Wi-Fi和藍牙,而第二 通訊晶片1006可專用於較長範圍的無線通訊,像是GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO以及其它。 Communication chip 1006 enables wireless communication for transmitting data to and from computing system 1000. The term "wireless" and derived therefrom can be used to describe circuits, devices, systems, methods, techniques, communication channels, and the like that can communicate data using electromagnetic emissions modulated by non-solid media. The term does not imply that the associated device does not contain any lines, although in some embodiments they may not. The communication chip 1006 can be configured with any number of wireless standards or protocols including, but not limited to, Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA+ , HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, its derivatives, and any other wireless protocol defined as 3G, 4G, 5G and above. Computing system 1000 can include a plurality of communication chips 1006. For example, the first communication chip 1006 can be dedicated to shorter range wireless communication, such as Wi-Fi and Bluetooth, and second. The communication chip 1006 can be dedicated to a longer range of wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
計算系統1000之處理器1004包幹封裝在處理器1004內的積體電路晶粒。在一些實施例中,處理器之積體電路晶粒包括使用於此多方面的說明之揭示的技術形成的一或多個積體電路結構或裝置來建置的內建電路(onboard circuitry)。術語「處理器」可指任例如處理來自暫存器及/或記憶體的電子資料以將該電子資料變換成可儲存於暫存器及/或記憶體中的任何裝置或裝置之部分。 Processor 1004 of computing system 1000 encapsulates the integrated circuit die packaged within processor 1004. In some embodiments, the integrated circuit die of the processor includes onboard circuitry built using one or more integrated circuit structures or devices formed using the techniques disclosed in the various aspects of the description. The term "processor" may refer to any portion of any device or device that processes, for example, electronic data from a register and/or memory to transform the electronic data into storables and/or memory.
通訊晶片1006亦可包括封裝在通訊晶片1006內的積體電路晶粒。依據一些這類範例實施例,通訊晶片之積體電路晶粒包括使用如於此說明之揭露的技術所形成的一或多個積體電路結構或裝置。如按照本揭露將理解的是,請注意,多個標準無線能力可直接整合到處理器1004(例如,其中任何晶片1006之功能係整合到處理器1004中,而非具有分開的通訊晶片)中。進一步要注意的是,處理器1004可為具有這類無線能力的晶片組。簡而言之,能使用任何數目的處理器1004及/或通訊晶片1006。同樣,任何一個晶片或晶片組能具有整合於其中的多個功能。 The communication chip 1006 can also include integrated circuit dies that are packaged within the communication chip 1006. In accordance with some such exemplary embodiments, the integrated circuit die of the communication chip includes one or more integrated circuit structures or devices formed using the techniques disclosed herein. As will be appreciated in light of this disclosure, it is noted that multiple standard wireless capabilities can be directly integrated into the processor 1004 (eg, where the functionality of any of the chips 1006 is integrated into the processor 1004, rather than having separate communication chips) . It is further noted that the processor 1004 can be a chipset having such wireless capabilities. In short, any number of processors 1004 and/or communication chips 1006 can be used. Also, any one wafer or wafer set can have multiple functions integrated therein.
在各種建置中,計算裝置1000可為膝上型電腦(laptop)、易網機(netbook)、筆記型電腦、智慧電話、平板、個人數位助理(PDA)、超行動PC(ultra- mobile PC)、行動電話、桌上型電腦、伺服器、印表機、掃描器、監視器、機上盒、娛樂控制單元、數位相機、可攜音樂播放器、數位視訊記錄器或是處理資料或運用使用於此各方面地說明揭示的技術形成的一或多個積體電路結構或裝置的任何其它電子裝置。 In various configurations, the computing device 1000 can be a laptop, a netbook, a notebook, a smart phone, a tablet, a personal digital assistant (PDA), an ultra mobile PC (ultra- Mobile PC), mobile phone, desktop computer, server, printer, scanner, monitor, set-top box, entertainment control unit, digital camera, portable music player, digital video recorder or processing data Or any other electronic device using one or more integrated circuit structures or devices formed using the techniques disclosed herein in various aspects.
進一步的範例實施例 Further example embodiments
下列範例屬於進一步實施例,從其中眾多的置換及組態將為明白的。 The following examples are further examples, from which numerous permutations and configurations will be apparent.
範例1為積體電路,包括:第一介電層,具有圖案化於其中的特徵,該特徵具有底部部分和側壁部分,且半導體本體擴展通過該特徵之該底部部分;第二介電層,配置在該半導體本體及該特徵之該底部部分之上於該特徵內,其中該第二介電層係為比該第一介電層較高介電常數的;種子層,配置在該第二介電層之至少部分之上於該特徵內;以及金屬層,配置在該種子層之上,其中:該金屬層及該種子層為不同材料成分的;以及該金屬層不具有與該半導體本體並排的接縫和孔隙之至少一者。 Example 1 is an integrated circuit comprising: a first dielectric layer having features patterned therein, the feature having a bottom portion and a sidewall portion, and the semiconductor body extends through the bottom portion of the feature; a second dielectric layer, Arranging in the feature on the semiconductor body and the bottom portion of the feature, wherein the second dielectric layer is higher in dielectric constant than the first dielectric layer; the seed layer is disposed in the second At least a portion of the dielectric layer is over the feature; and a metal layer disposed over the seed layer, wherein: the metal layer and the seed layer are of different material composition; and the metal layer does not have the semiconductor body Side by side seams and at least one of the apertures.
範例2包括範例1、3~5、13~14及16~19之任一者的標的,其中該種子層包括功函數金屬(WFM)層。 Example 2 includes the subject matter of any of Examples 1, 3 to 5, 13-14, and 16-19, wherein the seed layer includes a work function metal (WFM) layer.
範例3包括範例2之標的,其中該WFM層:包括鎢(W)、釕(Ru)、鈷(Co)、氮化鈦(TiN)、氮化釩(VN)、氮化鈮(NbN)以及氮化鋯(ZrN)之至少一者;以及具有在約0.1~3nm之範圍中的平均厚度。 Example 3 includes the subject matter of Example 2, wherein the WFM layer includes tungsten (W), ruthenium (Ru), cobalt (Co), titanium nitride (TiN), vanadium nitride (VN), tantalum nitride (NbN), and At least one of zirconium nitride (ZrN); and having an average thickness in the range of about 0.1 to 3 nm.
範例4包括範例2之標的,其中該WFM層從該特徵之底部部分擴展至低於該特徵之側壁部分的全高度。 Example 4 includes the subject matter of Example 2, wherein the WFM layer extends from a bottom portion of the feature to a full height below a sidewall portion of the feature.
範例5包括範例1~4、13~14及16~19之任一者的標的,其中該第二介電層之至少部分係以自組裝單分子層(SAM)來鈍化,該SAM包含正十八烷基膦酸(ODPA)、十八烷硫醇(ODT)、十八烷酸(ODCA)、十八烷基三氯矽烷(ODTCS)、十八烷基三(二甲胺基)矽烷(ODTAS)以及十八烷基三甲氧基矽烷(ODTMS)之至少一者。 Example 5 includes the subject matter of any one of Examples 1 to 4, 13 to 14, and 16 to 19, wherein at least a portion of the second dielectric layer is passivated with a self-assembled monolayer (SAM), the SAM comprising Octamethylphosphonic acid (ODPA), octadecyl mercaptan (ODT), octadecanoic acid (ODCA), octadecyltrichlorodecane (ODTCS), octadecyltris(dimethylamino)decane ( At least one of ODTAS) and octadecyltrimethoxydecane (ODTMS).
範例6包括範例1、7~13以及15~19之任一者的標的,其中該種子層包括障壁層。 Example 6 includes the subject matter of any of Examples 1, 7-13, and 15-19, wherein the seed layer includes a barrier layer.
範例7包括範例6之標的,其中該障壁層:包括鉭(Ta)、鈦(Ti)、錳(Mn)、氮化鉭(TaN)、氮化鈦(TiN)及氮化錳(MnN)之至少一者;以及具有在約0.1~3nm之範圍中的平均厚度。 Example 7 includes the subject matter of Example 6, wherein the barrier layer comprises: tantalum (Ta), titanium (Ti), manganese (Mn), tantalum nitride (TaN), titanium nitride (TiN), and manganese nitride (MnN). At least one; and having an average thickness in the range of about 0.1 to 3 nm.
範例8包括範例6之標的,其中該障壁層從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度。 Example 8 includes the subject matter of Example 6, wherein the barrier layer extends from the bottom portion of the feature to the full height of the sidewall portion of the feature.
範例9包括範例6之標的且更包括WFM層,配置在該第二介電層與該種子層之間該第二介電層之至少部分之上於該特徵內。 Example 9 includes the subject matter of Example 6 and further includes a WFM layer disposed over at least a portion of the second dielectric layer between the second dielectric layer and the seed layer.
範例10包括範例9之標的,其中該WFM層:包括鎢(W)、釕(Ru)、鈷(Co)、氮化鈦(TiN)、氮化釩(VN)、氮化鈮(NbN)以及氮化鋯(ZrN)之至少一者;以及具有在約0.1~3nm之範圍中的平均厚度。 Example 10 includes the subject matter of Example 9, wherein the WFM layer comprises: tungsten (W), ruthenium (Ru), cobalt (Co), titanium nitride (TiN), vanadium nitride (VN), tantalum nitride (NbN), and At least one of zirconium nitride (ZrN); and having an average thickness in the range of about 0.1 to 3 nm.
範例11包括範例9之標的,其中該WFM層從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度。 Example 11 includes the subject matter of Example 9, wherein the WFM layer extends from the bottom portion of the feature to the full height of the sidewall portion of the feature.
範例12包括範例9之標的,其中該WFM層之至少部分係以自組裝單分子層(SAM)來鈍化,該SAM包含正十八烷基膦酸(ODPA)、十八烷硫醇(ODT)、十八烷酸(ODCA)、十八烷基三氯矽烷(ODTCS)、十八烷基三(二甲胺基)矽烷(ODTAS)以及十八烷基三甲氧基矽烷(ODTMS)之至少一者。 Example 12 includes the subject matter of Example 9, wherein at least a portion of the WFM layer is passivated with a self-assembled monolayer (SAM) comprising n-octadecylphosphonic acid (ODPA), octadecanethiol (ODT) At least one of octadecanoic acid (ODCA), octadecyltrichlorodecane (ODTCS), octadecyltris(dimethylamino)decane (ODTAS), and octadecyltrimethoxydecane (ODTMS) By.
範例13包括範例1~12及14~19之任一者的標的且更包括障壁層,配置在該第二介電層與該種子層之間該第二介電層之至少部分之上於該特徵內。 The example 13 includes the target of any one of the examples 1 to 12 and 14 to 19, and further includes a barrier layer disposed on the at least a portion of the second dielectric layer between the second dielectric layer and the seed layer Within the feature.
範例14包括範例13之標的,其中該障壁層:從該特徵之該底部部分擴展到低於該特徵之該側壁部分的全高度;以及具有在約0.1~3nm之範圍中的平均厚度。 Example 14 includes the subject matter of Example 13, wherein the barrier layer extends from the bottom portion of the feature to a full height below the sidewall portion of the feature; and has an average thickness in the range of about 0.1 to 3 nm.
範例15包括範例13之標的,其中該障壁層:從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度;以及具有在約0.1~3nm之範圍中的平均厚度。 Example 15 includes the subject matter of Example 13, wherein the barrier layer extends from the bottom portion of the feature to a full height of the sidewall portion of the feature; and has an average thickness in the range of about 0.1 to 3 nm.
範例16包括範例1~15及17~19之任一者的標的,其中該種子介電層:包括二氧化鉿(HfO2)、氧化鋁(Al2O3)、二氧化鋯(ZrO2)、氧化鉭(Ta2O5)、二氧化鈦(TiO2)、氧化鑭(La2O3)、氧化釓(Gd2O3)、鉿矽酸鹽(HfSiOx)、矽酸鋁(AlSiOx)、矽酸鋯(ZrSiOx)、矽酸鉭(TaSiOx)、矽酸鈦(TiSiOx)、矽酸鑭(LaSiOx)以及矽酸釓(GdSiOx)之至少一者;以及 具有在約0.1~3nm之範圍中的平均厚度。 Example 16 includes the subject matter of any one of Examples 1 to 15 and 17 to 19, wherein the seed dielectric layer comprises: hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), zirconium dioxide (ZrO 2 ) , lanthanum oxide (Ta 2 O 5 ), titanium dioxide (TiO 2 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Gd 2 O 3 ), ceric acid (HfSiO x ), aluminum silicate (AlSiO x ) , zirconium silicate (ZrSiO x), tantalum silicate (TaSiO x), titanium silicate (TiSiO x), lanthanum silicate (LaSiO x) and gadolinium silicate (GdSiO x) is at least one; and having about 0.1 Average thickness in the range of ~3 nm.
範例17包括範例1~16及18~19之任一者的標的,其中該第二介電層從該特徵之該底部部分擴展到等於該第二介電層之厚度的該特徵之該側壁部分的高度。 Example 17 includes the subject matter of any one of Examples 1-16 and 18-19, wherein the second dielectric layer extends from the bottom portion of the feature to the sidewall portion of the feature equal to the thickness of the second dielectric layer the height of.
範例18包括範例1~17及19之任一者的標的,其中該第二介電層從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度。 Example 18 includes the subject matter of any of Examples 1-17 and 19, wherein the second dielectric layer extends from the bottom portion of the feature to a full height of the sidewall portion of the feature.
範例19包括範例1~18之任一者的標的,其中直接在該半導體本體之上的該金屬層之部分在其中具有接縫和孔隙之至少一者。 Example 19 includes the subject matter of any of Examples 1-18, wherein the portion of the metal layer directly over the semiconductor body has at least one of a seam and a void therein.
範例20為一種形成積體電路的方法,該方法包含:提供第一介電層,其具有圖案化於其中的特徵,該特徵具有底部部分和側壁部分,並且半導體本體擴展通過該特徵之該底部部分;在該半導體本體和該特徵之該底部部分之上形成第二介電層,其中該第二介電層係為比該第一介電層較高的介電常數的;在該第二介電層之上形成種子層;以及在該種子層之上形成金屬層,其中:該金屬層與該種子層係為不同材料成分的;以及該金屬層不具有與該半導體本體並排的接縫和孔隙之至少一者。 Example 20 is a method of forming an integrated circuit, the method comprising: providing a first dielectric layer having features patterned therein, the feature having a bottom portion and a sidewall portion, and the semiconductor body extends through the bottom of the feature Forming a second dielectric layer over the semiconductor body and the bottom portion of the feature, wherein the second dielectric layer is higher in dielectric constant than the first dielectric layer; Forming a seed layer over the dielectric layer; and forming a metal layer over the seed layer, wherein: the metal layer and the seed layer are of different material composition; and the metal layer does not have a seam alongside the semiconductor body And at least one of the pores.
範例21包括範例20、22~25、31~32以及34~37之任一者的標的,其中該種子層包括功函數金屬(WFM)層,且該方法更包括:在該特徵內該WFM層之上沉積填充材料,其中該填充材料包括二氧化矽(SiO2)、鎢(W)及碳化物硬掩膜之至少一者。 Example 21 includes the subject matter of any of the examples 20, 22-25, 31-32, and 34-37, wherein the seed layer includes a work function metal (WFM) layer, and the method further includes: the WFM layer within the feature A filler material is deposited thereon, wherein the filler material comprises at least one of cerium oxide (SiO 2 ), tungsten (W), and a carbide hard mask.
範例22包括範例21之標的且更包括:從該特徵移除該填充材料和該WFM層之各者的部分,使得該填充材料和該WFM層之各者部分地保留在該特徵之該底部部分中,其中該WFM層從該特徵之該底部部分擴展到低於該特徵之該側壁部分的全高度。 Example 22 includes the subject matter of Example 21 and further comprising: removing portions of each of the fill material and the WFM layer from the feature such that each of the fill material and the WFM layer remain partially at the bottom portion of the feature Where the WFM layer extends from the bottom portion of the feature to a full height below the sidewall portion of the feature.
範例23包括範例22之標的且更包括:從該特徵移除該填充材料之殘餘。 Example 23 includes the subject matter of Example 22 and further includes removing residuals of the fill material from the feature.
範例24包括範例23之標的且更包括:初始地僅在該WFM層之上選擇性地沉積該金屬層;以及生長該金屬層以填充該特徵,其中該金屬層不具有與該半導體本體並排的接縫和孔隙之至少一者。 Example 24 includes the subject matter of Example 23 and further comprising: initially selectively depositing the metal layer only over the WFM layer; and growing the metal layer to fill the feature, wherein the metal layer does not have side-by-side with the semiconductor body At least one of seams and voids.
範例25包括範例20~24、31~32以及34~37之任一者的標的且更包括:以自組裝單分子層(SAM)來鈍化該第二介電層之至少部分,該SAM包含正十八烷基膦酸(ODPA)、十八烷硫醇(ODT)、十八烷酸(ODCA)、十八烷基三氯矽烷(ODTCS)、十八烷基三(二甲胺基)矽烷(ODTAS)以及十八烷基三甲氧基矽烷(ODTMS)之至少一者。 Example 25 includes the subject matter of any of Examples 20-24, 31-32, and 34-37 and further comprising: passivating at least a portion of the second dielectric layer with a self-assembled monolayer (SAM), the SAM comprising positive Octadecylphosphonic acid (ODPA), octadecyl mercaptan (ODT), octadecanoic acid (ODCA), octadecyltrichlorodecane (ODTCS), octadecyltris(dimethylamino)decane At least one of (ODTAS) and octadecyltrimethoxydecane (ODTMS).
範例26包括範例20、27~31以及33~37之任一者的標的,其中該種子層包括障壁層,且該方法包括:在該第二介電層與該種子層之間該第二介電層之上形成功函數金屬(WFM)層;以及在該特徵內該障壁層之上沉積填充材料,其中該填充材料包含二氧化矽(SiO2)、鎢(W)及碳化物硬掩膜之至少一者。 Example 26 includes the subject matter of any one of Examples 20, 27-31, and 33-37, wherein the seed layer includes a barrier layer, and the method includes: the second dielectric between the second dielectric layer and the seed layer a success function metal (WFM) layer overlying the electrical layer; and depositing a fill material over the barrier layer within the feature, wherein the fill material comprises cerium oxide (SiO 2 ), tungsten (W), and a carbide hard mask At least one of them.
範例27包括範例26之標的且更包括:從該特徵移除該填充材料和該障壁層之各者的部分,使得該填充材料和該障壁層之各者部分地保留在該特徵之該底部部分中,其中該障壁層從該特徵之該底部部分擴展到低於該特徵之該側壁部分之全高度。 Example 27 includes the subject matter of Example 26 and further comprising: removing portions of each of the filler material and the barrier layer from the feature such that each of the filler material and the barrier layer partially remain in the bottom portion of the feature Where the barrier layer extends from the bottom portion of the feature to a full height below the sidewall portion of the feature.
範例28包括範例27之標的且更包括:從該特徵移除該填充材料之殘餘。 Example 28 includes the subject matter of Example 27 and further includes removing residuals of the fill material from the feature.
範例29包括範例28之標的且更包括:初始地僅在該障壁層之上選擇性地沉積該金屬層;以及生長該金屬層用以填充該特徵,其中該金屬層不具有與該半導體本體並排的接縫和孔隙之至少一者。 Example 29 includes the subject matter of Example 28 and further comprising: initially selectively depositing the metal layer only over the barrier layer; and growing the metal layer to fill the feature, wherein the metal layer does not have side-by-side with the semiconductor body At least one of the seams and the voids.
範例30包括範例26之標的且更包括:以自組裝單分子層(SAM)來鈍化該WFM層之至少部分,該SAM層包含正十八烷基膦酸(ODPA)、十八烷硫醇(ODT)、十八烷酸(ODCA)、十八烷基三氯矽烷(ODTCS)、十八烷基三(二甲胺基)矽烷(ODTAS)以及十八烷基三甲氧基矽烷(ODTMS)之至少一者。 Example 30 includes the subject matter of Example 26 and further comprising: passivating at least a portion of the WFM layer with a self-assembled monolayer (SAM) comprising n-octadecylphosphonic acid (ODPA), octadecanethiol ( ODT), octadecanoic acid (ODCA), octadecyltrichlorodecane (ODTCS), octadecyltris(dimethylamino)decane (ODTAS), and octadecyltrimethoxydecane (ODTMS) At least one.
範例31包括範例20~30及32~37之任一者的標的且更包括:在該第二介電層與該種子層之間該第二介電層之上形成障壁層。 Example 31 includes the subject matter of any of Examples 20-30 and 32-37 and further comprising: forming a barrier layer over the second dielectric layer between the second dielectric layer and the seed layer.
範例32包括範例31之標的,其中該障壁層從該特徵之該底部部分擴展到低於該特徵之該側壁部分的全高度。 Example 32 includes the subject matter of Example 31, wherein the barrier layer extends from the bottom portion of the feature to a full height below the sidewall portion of the feature.
範例33包括範例31之標的,其中該障壁層從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度。 Example 33 includes the subject matter of Example 31, wherein the barrier layer extends from the bottom portion of the feature to the full height of the sidewall portion of the feature.
範例34包括範例20~33及35~37之任一者的標的,其中該第二介電層從該特徵之該底部部分擴展到等於該第二介電層之厚度的該特徵之該側壁部分的高度。 Example 34 includes the subject matter of any one of Examples 20 to 33 and 35 to 37, wherein the second dielectric layer extends from the bottom portion of the feature to the sidewall portion of the feature equal to the thickness of the second dielectric layer the height of.
範例35包括範例20~34及36~37之任一者的標的,第二介電層從該特徵之該底部部分擴展到該特徵之該側壁部分的全高度。 Example 35 includes the subject matter of any of Examples 20-34 and 36-37, the second dielectric layer extending from the bottom portion of the feature to the full height of the sidewall portion of the feature.
範例36包括範例20~35及37之任一者的標的,其中直接在該半導體本體之上的該金屬層之部分在其中具有接縫和孔隙之至少一者。 The example 36 includes the subject matter of any of the examples 20-35 and 37, wherein the portion of the metal layer directly over the semiconductor body has at least one of a seam and a void therein.
範例37為一種積體電路,經由包括範例20~36之任一者的標的之方法形成。 Example 37 is an integrated circuit formed by a method including the subject matter of any of Examples 20 to 36.
範例38為一種積體電路,包括:第一介電層,具有擴展通過其的半導體鰭;第二介電層,配置在該半導體鰭之上,其中該第二介電層係為比該第一介電層較高的介電常數的;第一障壁層,配置在該第二介電層之上;功函數金屬(WFM)層,配置在該第一障壁層之上;以及第一金屬層,配置在該WFM層之上,其中該第一金屬層不具有接縫和孔隙之至少一者。 Example 38 is an integrated circuit comprising: a first dielectric layer having a semiconductor fin extending therethrough; a second dielectric layer disposed over the semiconductor fin, wherein the second dielectric layer is a dielectric layer having a higher dielectric constant; a first barrier layer disposed over the second dielectric layer; a work function metal (WFM) layer disposed over the first barrier layer; and a first metal a layer disposed over the WFM layer, wherein the first metal layer does not have at least one of a seam and a void.
範例39包括範例38及40之任一者的標的且更包括配置於該WFM層之上的第二障壁層,其中該第一金屬層係配置於該第二障壁層之上。 The example 39 includes the subject matter of any of the examples 38 and 40 and further includes a second barrier layer disposed over the WFM layer, wherein the first metal layer is disposed over the second barrier layer.
範例40包括範例38~39及41~43之任一者的標的,其中除直接在該半導體鰭之上的該第一金屬層之區域中之外,該第一金屬層不具有接縫和孔隙之至少一者,其中該 區域在其中具有接縫和孔隙之至少一者。 Example 40 includes the subject matter of any one of Examples 38-39 and 41-43, wherein the first metal layer has no seams and voids except in the region of the first metal layer directly above the semiconductor fin At least one of which The region has at least one of a seam and a void therein.
範例41包括範例38、40及42~43之任一者的標的且更包括:磊晶半導體本體,配置於該半導體鰭之上;以及第二金屬層,配置在該磊晶半導體本體之上;其中該第一金屬層係配置在該磊晶半導體本體及該第二金屬層之上且組態以作為源極/汲極接點。 The example 41 includes the targets of any one of the examples 38, 40, and 42-43 and further includes: an epitaxial semiconductor body disposed on the semiconductor fin; and a second metal layer disposed on the epitaxial semiconductor body; The first metal layer is disposed on the epitaxial semiconductor body and the second metal layer and configured to serve as a source/drain junction.
範例42包括範例41之標的,其中該第二金屬層包含矽化鎳(NiSix)和矽化鈷(CoSix)之至少一者。 Examples 42, wherein at least one of the second metal layer comprises a nickel silicide (NiSi x) and cobalt silicide (CoSi x) 41 comprises the subject matter of the examples.
範例43包括範例41之標的且更包括:第三介電層,該第一介電層係配置於該第三介電層中,其中:該第一及第三介電層係不同材料成分的;以及該第二及第三介電層係不同材料成分的。 Example 43 includes the subject matter of Example 41 and further comprising: a third dielectric layer, wherein the first dielectric layer is disposed in the third dielectric layer, wherein: the first and third dielectric layers are different material compositions And the second and third dielectric layers are of different material compositions.
已針對例示及說明的目的提出範例實施例之前述說明。不打算窮舉或將本揭露限制到揭露之精準形式。按照本揭露許多修改和變化是可能的。所要打算的是,本揭露之範圍不受此詳細的說明所限制,而相反的是由附加到此的申請專利範圍所限制。未來對此案請求優先權的申請的案件可以不同的方式請求所揭示的標的,且一般可包括如於此各方面地揭示或另以展示之任一組的一或多個限定。 The foregoing description of the exemplary embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the disclosure be not limited by the description The case of an application for which priority is claimed in the future may request the disclosed subject matter in a different manner, and may generally include one or more definitions of any of the groups disclosed or otherwise shown herein.
100A‧‧‧積體電路 100A‧‧‧ integrated circuit
102‧‧‧介電層 102‧‧‧ dielectric layer
104‧‧‧半導體本體 104‧‧‧Semiconductor body
106‧‧‧凹口 106‧‧‧ Notch
106a‧‧‧凹槽/孔洞部分 106a‧‧‧ Groove/hole section
106b‧‧‧底部部分 106b‧‧‧ bottom part
106c‧‧‧側壁部分 106c‧‧‧ Sidewall section
108‧‧‧介電層 108‧‧‧ dielectric layer
110‧‧‧障壁層 110‧‧‧Baffle layer
112‧‧‧功函數金屬層 112‧‧‧Work function metal layer
Claims (25)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/052304 WO2017052610A1 (en) | 2015-09-25 | 2015-09-25 | Techniques for bottom-up filling of three-dimensional semiconductor device topographies |
WOPCT/US15/52304 | 2015-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201724273A true TW201724273A (en) | 2017-07-01 |
TWI697964B TWI697964B (en) | 2020-07-01 |
Family
ID=58386909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105126623A TWI697964B (en) | 2015-09-25 | 2016-08-19 | Techniques for bottom-up filling of three-dimensional semiconductor device topographies |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI697964B (en) |
WO (1) | WO2017052610A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674650B (en) * | 2017-08-31 | 2019-10-11 | 台灣積體電路製造股份有限公司 | Wrap-around contact plug and method manufacturing same |
US10978354B2 (en) | 2019-03-15 | 2021-04-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective dual silicide formation |
US11233134B2 (en) | 2019-12-19 | 2022-01-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Field effect transistors with dual silicide contact structures |
US11489057B2 (en) | 2020-08-07 | 2022-11-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Contact structures in semiconductor devices |
TWI805620B (en) * | 2017-09-21 | 2023-06-21 | 英商Iqe有限公司 | Metal electrode with tunable work functions |
US11855144B2 (en) | 2018-10-31 | 2023-12-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source/drain metal contact and formation thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10170305B1 (en) * | 2017-08-30 | 2019-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Selective film growth for bottom-up gap filling |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100566675B1 (en) * | 2004-12-14 | 2006-03-31 | 삼성전자주식회사 | Semiconductor device and method of manufacturing the same |
US8507350B2 (en) * | 2011-09-21 | 2013-08-13 | United Microelectronics Corporation | Fabricating method of semiconductor elements |
US8723236B2 (en) * | 2011-10-13 | 2014-05-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of manufacturing same |
US8659032B2 (en) * | 2012-01-31 | 2014-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET and method of fabricating the same |
US9583362B2 (en) * | 2014-01-17 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company Ltd. | Metal gate structure and manufacturing method thereof |
US9236446B2 (en) * | 2014-03-13 | 2016-01-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Barc-assisted process for planar recessing or removing of variable-height layers |
-
2015
- 2015-09-25 WO PCT/US2015/052304 patent/WO2017052610A1/en active Application Filing
-
2016
- 2016-08-19 TW TW105126623A patent/TWI697964B/en active
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674650B (en) * | 2017-08-31 | 2019-10-11 | 台灣積體電路製造股份有限公司 | Wrap-around contact plug and method manufacturing same |
US10468260B2 (en) | 2017-08-31 | 2019-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wrap-around contact plug and method manufacturing same |
US10475654B2 (en) | 2017-08-31 | 2019-11-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wrap-around contact plug and method manufacturing same |
US10636664B2 (en) | 2017-08-31 | 2020-04-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wrap-around contact plug and method manufacturing same |
US10879075B2 (en) | 2017-08-31 | 2020-12-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wrap-around contact plug and method manufacturing same |
TWI805620B (en) * | 2017-09-21 | 2023-06-21 | 英商Iqe有限公司 | Metal electrode with tunable work functions |
US11855144B2 (en) | 2018-10-31 | 2023-12-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source/drain metal contact and formation thereof |
US11482458B2 (en) | 2019-03-15 | 2022-10-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective dual silicide formation |
US10978354B2 (en) | 2019-03-15 | 2021-04-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective dual silicide formation |
US11990376B2 (en) | 2019-03-15 | 2024-05-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selective dual silicide formation |
US11233134B2 (en) | 2019-12-19 | 2022-01-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Field effect transistors with dual silicide contact structures |
US11855177B2 (en) | 2019-12-19 | 2023-12-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Field effect transistors with dual silicide contact structures |
US11489057B2 (en) | 2020-08-07 | 2022-11-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Contact structures in semiconductor devices |
US12040372B2 (en) | 2020-08-07 | 2024-07-16 | Tawian Semiconductor Manufacturing Company, Ltd. | Contact structures in semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
TWI697964B (en) | 2020-07-01 |
WO2017052610A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11855223B2 (en) | Self-aligned gate endcap (SAGE) architectures with gate-all-around devices | |
TWI697964B (en) | Techniques for bottom-up filling of three-dimensional semiconductor device topographies | |
US20210104431A1 (en) | Contact plugs for semiconductor device and method of forming same | |
US10727241B2 (en) | 3D NAND structures including group III-N material channels | |
US20180130707A1 (en) | Bottom-up fill (buf) of metal features for semiconductor structures | |
US10115721B2 (en) | Planar device on fin-based transistor architecture | |
CN107689376B (en) | Semiconductor device and method | |
CN107689355B (en) | Semiconductor device and method | |
CN107980170B (en) | Transition metal dry etch by atomic layer removal of oxide layer for device fabrication | |
US11862635B2 (en) | Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions | |
US11217456B2 (en) | Selective etching and controlled atomic layer etching of transition metal oxide films for device fabrication | |
US20230037957A1 (en) | Gate-to-gate isolation for stacked transistor architecture via non-selective dielectric deposition structure | |
CN115732548A (en) | Gate-to-gate isolation via selective dielectric deposition structures for stacked transistor architectures | |
US11749733B2 (en) | FIN shaping using templates and integrated circuit structures resulting therefrom | |
US20100283152A1 (en) | Integrated circuits including ild structure, systems, and fabrication methods thereof | |
EP4156242A2 (en) | Cmos architecture with thermally stable silicide gate workfunction metal | |
US20230326756A1 (en) | Method for forming semiconductor structure | |
US20230197777A1 (en) | Source or drain metallization prior to contact formation in stacked transistors | |
US20240213026A1 (en) | Chemical mechanical polishing of metal gate cuts formed after source and drain contacts | |
US20240105452A1 (en) | Gate cuts with self-forming polymer layer | |
US20230126135A1 (en) | Forksheet transistor with asymmetric dielectric spine | |
US20240203739A1 (en) | Dielectric layer stack for wide gate cut structures | |
US20220406656A1 (en) | Semiconductor structure and method for forming the same |