TW201622226A - Organic electrolyte and organic electrolyte battery - Google Patents
Organic electrolyte and organic electrolyte battery Download PDFInfo
- Publication number
- TW201622226A TW201622226A TW104126652A TW104126652A TW201622226A TW 201622226 A TW201622226 A TW 201622226A TW 104126652 A TW104126652 A TW 104126652A TW 104126652 A TW104126652 A TW 104126652A TW 201622226 A TW201622226 A TW 201622226A
- Authority
- TW
- Taiwan
- Prior art keywords
- halogen
- alkyl group
- carbon atoms
- branched alkyl
- linear
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
Description
本發明係關於有機系電解質及使用其之有機系電解質蓄電池。The present invention relates to an organic electrolyte and an organic electrolyte storage battery using the same.
近年,朝向建構以與地球環境之和諧為目標的社會,已有許多抑制因利用化石燃料所造成之CO2 排放的嘗試。其中尤其關於在汽車等運輸部份的CO2 排放,已由政府制定規範,且各汽車公司所進行之油電混合車(HEV)、插電式油電混合車(PHEV)、蓄電池驅動式電動車(BEV)的開發、商品化速度正加快。做為此等電動車的能量源,能夠穩定地長期重複充放電之大型蓄電池的開發蓬勃進行。相較於包含鎳氫電池之其它蓄電池,有機系電解質蓄電池其操作電壓高,為容易達到高輸出、高能量密度之有力的電池,做為電動車的能量源,重要性益發增加。為此,種種的開發持續進行,舉例來說,已有人探討為了使影響電動車可行進距離的初始蓄電容量提昇的化合物。發明人等亦探討了種種之化合物,結果發現具有環己基的化合物會使初始蓄電容量提昇(專利文獻1)。 另一方面,於汽車用途,要求初始蓄電容量,且同時要求能使用長達約10年程度,即高耐久性。舉例來說,在非專利文獻1中報告:根據使用鋰-銦合金電極的通電實驗,對電解質添加十氫萘等之飽和烴化合物時,往合金電極上之樹枝狀鋰的形成受抑制。儘管該報告教示於使用鋰金屬負極之二次電池的劣化抑制效果,然而詳細的實驗內容亦有不明之處,並不清楚能否適用於實際的蓄電池。 [先前技術文獻] [專利文獻]In recent years, in an attempt to construct a society that is in harmony with the global environment, there have been many attempts to curb CO 2 emissions caused by the use of fossil fuels. In particular, the CO 2 emissions in the transportation part of automobiles have been standardized by the government, and the hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and battery-driven electric vehicles carried out by various automobile companies. The development and commercialization of the vehicle (BEV) is accelerating. As an energy source for such electric vehicles, the development of large-sized batteries capable of stably charging and discharging for a long period of time has been vigorously carried out. Compared with other batteries including nickel-hydrogen batteries, organic-based electrolyte batteries have high operating voltages, and are powerful batteries that are easy to achieve high output and high energy density. As an energy source for electric vehicles, the importance is increased. For this reason, various developments have continued, and for example, compounds for increasing the initial storage capacity that affect the travelable distance of an electric vehicle have been discussed. The inventors have also studied various compounds, and as a result, it has been found that a compound having a cyclohexyl group increases the initial storage capacity (Patent Document 1). On the other hand, in automotive applications, the initial storage capacity is required, and at the same time, it is required to be used for up to about 10 years, that is, high durability. For example, it is reported in Non-Patent Document 1 that when a saturated hydrocarbon compound such as decalin is added to an electrolyte according to an electric conduction experiment using a lithium-indium alloy electrode, formation of dendritic lithium on the alloy electrode is suppressed. Although this report teaches the deterioration suppressing effect of a secondary battery using a lithium metal negative electrode, the detailed experimental contents are also unclear, and it is not clear whether it can be applied to an actual battery. [Prior Technical Literature] [Patent Literature]
[專利文獻1] 國際公開2013/094603 [非專利文獻][Patent Document 1] International Publication 2013/094603 [Non-Patent Document]
[非專利文獻1] Journal of Power Sources,第20卷,第253-258頁[Non-Patent Document 1] Journal of Power Sources, Vol. 20, pp. 253-258
[發明所欲解決之課題][Problems to be solved by the invention]
本發明之目的為使有機系電解質蓄電池之長期耐久性提昇。 [解決課題之手段]The object of the present invention is to improve the long-term durability of an organic electrolyte battery. [Means for solving the problem]
本案發明人等就前述問題進行致力探討的結果,發現:藉由在有機系電解質中包含含環己基之化合物,耐久性提昇,亦發現藉由調整有機系電解質中所包含之低黏度溶劑的種類及摻合量,可使耐久性更加提昇,終至完成本發明。As a result of intensive investigations on the above-mentioned problems, the inventors of the present invention found that by including a compound containing a cyclohexyl group in an organic electrolyte, durability is improved, and it has been found that the type of the low-viscosity solvent contained in the organic electrolyte is adjusted. And the blending amount can further improve the durability, and finally complete the present invention.
亦即,本發明係關於一種有機系電解質,含有由高介電常數溶劑及低黏度溶劑構成之有機溶劑、及下述式(1)~(4)之任一者表示的化合物,其特徵在於該低黏度溶劑為碳酸二乙酯及/或碳酸甲乙酯,該有機溶劑中的該低黏度溶劑之比率為70體積%以上。 【化1】(式(1)中,R1 ~R11 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素,R12 ~R13 為氫原子、「甲基、乙基或含鹵素的甲基、乙基」或鹵素,R14 為無取代或具取代基的環己基,取代基數最大為11,且各自獨立為碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。) 【化2】(在式(2)中,R1 ~R11 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素,R12 為碳數3或4之直鏈的伸烷基,一部分氫亦可取代成鹵素及/或「甲基或含鹵素的甲基」。R13 為無取代或具取代基的環己基,取代基數最大為11,且各自獨立為碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。) 【化3】(式(3)中,R1 ~R14 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。) 【化4】(式(4)中,R1 ~R16 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。)In other words, the present invention relates to an organic electrolyte comprising an organic solvent composed of a high dielectric constant solvent and a low viscosity solvent, and a compound represented by any one of the following formulas (1) to (4). The low-viscosity solvent is diethyl carbonate and/or ethyl methyl carbonate, and the ratio of the low-viscosity solvent in the organic solvent is 70% by volume or more. 【化1】 (In the formula (1), R 1 to R 11 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or Halogen, R 12 to R 13 are a hydrogen atom, "methyl, ethyl or halogen-containing methyl, ethyl" or halogen, and R 14 is an unsubstituted or substituted cyclohexyl group having a maximum number of substituents of 11, Each is independently a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkyl group having 1 to 4 carbon atoms containing halogen, or a halogen. (In the formula (2), R 1 to R 11 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, Or halogen, R 12 is a linear alkyl group having a carbon number of 3 or 4, and a part of hydrogen may be substituted with a halogen and/or a "methyl or halogen-containing methyl group". R 13 is unsubstituted or substituted. a cyclohexyl group having a maximum number of substituents of 11, and each independently being a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or a halogen. 3] (In the formula (3), R 1 to R 14 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or Halogen.) [Chemical 4] (In the formula (4), R 1 to R 16 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or halogen.)
又,本發明係關於使用前述有機系電解質之有機系電解質蓄電池。 [發明之效果]Further, the present invention relates to an organic electrolyte storage battery using the organic electrolyte. [Effects of the Invention]
藉由使用本發明之有機系電解質,可使蓄電池之耐久性提昇。因此,電動車搭載使用本發明之有機系電解質的蓄電池時,能夠抑制長期重複充放電所造成之劣化,延長電動車的使用期限。又,由於此高耐久性,因此能夠以相對高的電壓來充電。By using the organic electrolyte of the present invention, the durability of the battery can be improved. Therefore, when the electric vehicle is equipped with the storage battery using the organic electrolyte of the present invention, deterioration due to repeated charge and discharge over a long period of time can be suppressed, and the service life of the electric vehicle can be prolonged. Moreover, due to this high durability, it is possible to charge at a relatively high voltage.
以下,就本發明詳加描述。Hereinafter, the present invention will be described in detail.
本發明之有機系電解質包含下述式(1)~(4)之任一者表示之化合物。The organic electrolyte of the present invention contains a compound represented by any one of the following formulas (1) to (4).
【化5】 【化5】
式(1)中,R1 ~R11 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素,R12 ~R13 為氫原子、「甲基、乙基或含鹵素的甲基、乙基」或鹵素,R14 為無取代或具取代基的環己基,取代基數最大為11,且各自獨立為碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。In the formula (1), R 1 to R 11 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or a halogen. R 12 R R 13 are a hydrogen atom, a "methyl, ethyl or halogen-containing methyl group, an ethyl group" or a halogen, and R 14 is an unsubstituted or substituted cyclohexyl group having a maximum number of substituents of 11, and each It is a linear or branched alkyl group having a carbon number of 1 to 4, a linear or branched alkyl group having a halogen number of 1 to 4, or a halogen.
【化6】 【化6】
在式(2)中,R1 ~R11 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素,R12 為碳數3或4之直鏈的伸烷基,一部分氫亦可取代成鹵素及/或「甲基或含鹵素的甲基」。R13 為無取代或具取代基的環己基,取代基數最大為11,且各自獨立為碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。In the formula (2), R 1 to R 11 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or Halogen, R 12 is a linear alkyl group having a carbon number of 3 or 4, and a part of hydrogen may be substituted with a halogen and/or a "methyl or halogen-containing methyl group". R 13 is an unsubstituted or substituted cyclohexyl group having a maximum number of substituents of 11, and each independently is a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched halogen having 1 to 4 carbon atoms; Alkyl, or halogen.
【化7】 【化7】
式(3)中,R1 ~R14 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。In the formula (3), R 1 to R 14 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or a halogen. .
【化8】 【化8】
式(4)中,R1 ~R16 各自獨立為氫原子、碳數1~4之直鏈或分支的烷基、含鹵素的碳數1~4之直鏈或分支的烷基、或鹵素。In the formula (4), R 1 to R 16 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen-containing linear or branched alkyl group having 1 to 4 carbon atoms, or a halogen. .
做為以該式(1)~(4)之任一者所表示的化合物,具體而言可列舉:環己基(3,4-二甲基環己基)甲烷、1-環己基-1-(3,4-二甲基環己基)乙烷、2-(3,4-二甲基環己基)-2-環己基丙烷、環己基(2,4-二甲基環己基)甲烷、1-環己基-1-(2,4-二甲基環己基)乙烷、2-(2,4-二甲基環己基)-2-環己基丙烷、環己基(2,5-二甲基環己基)甲烷、1-環己基-1-(2,5-二甲基環己基)乙烷、2-(2,5-二甲基環己基)-2-環己基丙烷、環己基(2-乙基環己基)甲烷、1-環己基-1-(2-乙基環己基)乙烷、2-環己基-2-(2-乙基環己基)丙烷、環己基(3-乙基環己基)甲烷、1-環己基-1-(3-乙基環己基)乙烷、2-環己基-2-(3-乙基環己基)丙烷、環己基(4-乙基環己基)甲烷、1-環己基-1-(4-乙基環己基)乙烷、2-環己基-2-(4-乙基環己基)丙烷、環己基(2-甲基環己基)甲烷、1-環己基-1-(2-甲基環己基)乙烷、環己基(3-甲基環己基)甲烷、1-環己基-1-(3-甲基環己基)乙烷、2-環己基-2-(3-甲基環己基)丙烷、環己基(4-甲基環己基)甲烷、1-環己基-1-(4-甲基環己基)乙烷、(2-甲基環己基)(4-甲基環己基)甲烷、1-(2-甲基環己基)-1-(4-甲基環己基)乙烷、2-(2-甲基環己基)-2-(4-甲基環己基)丙烷、(2-甲基環己基)(3-甲基環己基)甲烷、1-(2-甲基環己基)-1-(3-甲基環己基)乙烷、2-(2-甲基環己基)-2-(3-甲基環己基)丙烷、(4-甲基環己基)(3-甲基環己基)甲烷、1-(4-甲基環己基)-1-(3-甲基環己基)乙烷、2-(4-甲基環己基)-2-(3-甲基環己基)丙烷、環己基(4-異丁基苯基)甲烷、環己基(4-異丁基環己基)甲烷、1-環己基-1-(4-異丁基環己基)乙烷、2-環己基-2-(4-異丁基環己基)丙烷、環己基(2-異丁基環己基)甲烷、1-環己基-1-(2-異丁基環己基)乙烷、2-環己基-2-(2-異丁基環己基)丙烷、環己基(3-異丁基環己基)甲烷、1-環己基-1-(3-異丁基環己基)乙烷、2-環己基-2-(3-異丁基環己基)丙烷、環己基(4-異丙基苯基)甲烷、環己基(4-異丙基環己基)甲烷、1-環己基-1-(4-異丙基環己基)乙烷、2-環己基-2-(4-異丙基環己基)丙烷、環己基(2-異丙基環己基)甲烷、1-環己基-1-(2-異丙基環己基)乙烷、2-環己基-2-(2-異丙基環己基)丙烷、2-環己基-2-(2-異丙基環己基)丙烷、環己基(3-異丙基環己基)甲烷、1-環己基-1-(3-異丙基環己基)乙烷、2-環己基-2-(3-異丙基環己基)丙烷、2,2-二環己基丁烷、1,3-二環己基丁烷、1,4-二環己基丁烷、1,1-二環己基-2-甲基丙烷、二環己基甲烷、1,1-二環己基乙烷、2,2-二環己基丙烷、雙(4-甲基環己基)甲烷、1,1-雙(4-甲基環己基)乙烷、1,1-雙(2-甲基環己基)乙烷、1,1-雙(3-甲基環己基)乙烷、1,1-雙(4-乙基環己基)乙烷、1,1-雙(2-乙基環己基)乙烷、1,1-雙(3-乙基環己基)乙烷、1,1-雙(4-(異丙基環己基))乙烷、1,1-雙(2-(異丙基環己基))乙烷、1,1-雙(3-(異丙基環己基))乙烷、1,1-雙(3,4-二甲基環己基)乙烷、1,1-雙(3,5-二甲基環己基)乙烷、1,1-雙(2,5-二甲基環己基)乙烷、1,1-雙(3,4,5-三甲基環己基)乙烷、1,1-雙(3-氟環己基)乙烷、1,1-雙(2,5-二氟環己基)乙烷、1,1-雙(3,5-二氟環己基)乙烷、1,1-雙(2,4-二氟環己基)乙烷、1,1-雙(3,4,5-三氟環己基)乙烷、雙(4-甲基環己基)甲烷、雙(2-甲基環己基)甲烷、雙(3-甲基環己基)甲烷、雙(4-乙基環己基)甲烷、雙(2-乙基環己基)甲烷、雙(3-乙基環己基)甲烷、雙(4-異丙基環己基))甲烷、雙(2-異丙基環己基))甲烷、雙(3-異丙基環己基))甲烷、雙(3,4-二甲基環己基)甲烷、雙(3,5-二甲基環己基)甲烷、雙(2,5-二甲基環己基)甲烷、雙(3,4,5-三甲基環己基)甲烷、雙(3-氟環己基)甲烷、雙(2,5-二氟環己基)甲烷、雙(3,4-二氟環己基)甲烷、雙(3,5-二氟環己基)甲烷、雙(3,4,5-三氟環己基)甲烷、2,2-雙(4-甲基環己基)丙烷、2,2-雙(2-甲基環己基)丙烷、2,2-雙(3-甲基環己基)丙烷、2,2-雙(4-乙基環己基)丙烷、2,2-雙(2-乙基環己基)丙烷、2,2-雙(3-乙基環己基)丙烷、2,2-雙(4-異丙基苯基)丙烷、2,2-雙(2-異丙基苯基)丙烷、2,2-雙(3-異丙基苯基)丙烷、2,2-雙(3,4-二甲基環己基)丙烷、2,2-雙(3,5-二甲基環己基)丙烷、2,2-雙(2,5-二甲基環己基)丙烷、2,2-雙(3,4,5-三甲基環己基)丙烷、2,2-雙(3-氟環己基)丙烷、2,2-雙(2,5-二氟環己基)丙烷、2,2-雙(3,4-二氟環己基)丙烷、2,2-雙(3,5-二氟環己基)丙烷、反式八氫茚、順式八氫茚等。此等者可單獨使用一種或將兩種以上合併使用。Specific examples of the compound represented by any one of the formulas (1) to (4) include cyclohexyl (3,4-dimethylcyclohexyl)methane and 1-cyclohexyl-1-( 3,4-Dimethylcyclohexyl)ethane, 2-(3,4-dimethylcyclohexyl)-2-cyclohexylpropane, cyclohexyl (2,4-dimethylcyclohexyl)methane, 1- Cyclohexyl-1-(2,4-dimethylcyclohexyl)ethane, 2-(2,4-dimethylcyclohexyl)-2-cyclohexylpropane, cyclohexyl (2,5-dimethylcyclo) Hexyl)methane, 1-cyclohexyl-1-(2,5-dimethylcyclohexyl)ethane, 2-(2,5-dimethylcyclohexyl)-2-cyclohexylpropane, cyclohexyl (2- Ethylcyclohexyl)methane, 1-cyclohexyl-1-(2-ethylcyclohexyl)ethane, 2-cyclohexyl-2-(2-ethylcyclohexyl)propane, cyclohexyl (3-ethylcyclo) Hexyl)methane, 1-cyclohexyl-1-(3-ethylcyclohexyl)ethane, 2-cyclohexyl-2-(3-ethylcyclohexyl)propane, cyclohexyl (4-ethylcyclohexyl)methane , 1-cyclohexyl-1-(4-ethylcyclohexyl)ethane, 2-cyclohexyl-2-(4-ethylcyclohexyl)propane, cyclohexyl (2-methylcyclohexyl)methane, 1- Cyclohexyl-1-(2-methylcyclohexyl)ethane, cyclohexyl (3-methylcyclohexyl)methane, 1-cyclohexyl-1-(3-methylcyclohexane Ethylene, 2-cyclohexyl-2-(3-methylcyclohexyl)propane, cyclohexyl (4-methylcyclohexyl)methane, 1-cyclohexyl-1-(4-methylcyclohexyl)ethane , (2-methylcyclohexyl)(4-methylcyclohexyl)methane, 1-(2-methylcyclohexyl)-1-(4-methylcyclohexyl)ethane, 2-(2-methyl Cyclohexyl)-2-(4-methylcyclohexyl)propane, (2-methylcyclohexyl)(3-methylcyclohexyl)methane, 1-(2-methylcyclohexyl)-1-(3- Methylcyclohexyl)ethane, 2-(2-methylcyclohexyl)-2-(3-methylcyclohexyl)propane, (4-methylcyclohexyl)(3-methylcyclohexyl)methane, 1 -(4-methylcyclohexyl)-1-(3-methylcyclohexyl)ethane, 2-(4-methylcyclohexyl)-2-(3-methylcyclohexyl)propane, cyclohexyl (4 -isobutylphenyl)methane, cyclohexyl (4-isobutylcyclohexyl)methane, 1-cyclohexyl-1-(4-isobutylcyclohexyl)ethane, 2-cyclohexyl-2-(4 -isobutylcyclohexyl)propane, cyclohexyl (2-isobutylcyclohexyl)methane, 1-cyclohexyl-1-(2-isobutylcyclohexyl)ethane, 2-cyclohexyl-2-(2 -isobutylcyclohexyl)propane, cyclohexyl (3-isobutylcyclohexyl)methane, 1-cyclohexyl-1-(3-isobutylcyclohexyl)ethane, 2-cyclohexyl-2-(3 -isobutylcyclohexene Propane, cyclohexyl (4-isopropylphenyl)methane, cyclohexyl (4-isopropylcyclohexyl)methane, 1-cyclohexyl-1-(4-isopropylcyclohexyl)ethane, 2- Cyclohexyl-2-(4-isopropylcyclohexyl)propane, cyclohexyl (2-isopropylcyclohexyl)methane, 1-cyclohexyl-1-(2-isopropylcyclohexyl)ethane, 2- Cyclohexyl-2-(2-isopropylcyclohexyl)propane, 2-cyclohexyl-2-(2-isopropylcyclohexyl)propane, cyclohexyl (3-isopropylcyclohexyl)methane, 1-ring Hexyl-1-(3-isopropylcyclohexyl)ethane, 2-cyclohexyl-2-(3-isopropylcyclohexyl)propane, 2,2-dicyclohexylbutane, 1,3-bicyclo Hexetane, 1,4-dicyclohexylbutane, 1,1-dicyclohexyl-2-methylpropane, dicyclohexylmethane, 1,1-dicyclohexylethane, 2,2-dicyclohexyl Propane, bis(4-methylcyclohexyl)methane, 1,1-bis(4-methylcyclohexyl)ethane, 1,1-bis(2-methylcyclohexyl)ethane, 1,1-double (3-methylcyclohexyl)ethane, 1,1-bis(4-ethylcyclohexyl)ethane, 1,1-bis(2-ethylcyclohexyl)ethane, 1,1-double (3 -ethylcyclohexyl)ethane, 1,1-bis(4-(isopropylcyclohexyl))ethane, 1,1-bis(2-(isopropylcyclohexyl))ethane, 1,1 - double (3- (different Cyclohexyl)) ethane, 1,1-bis(3,4-dimethylcyclohexyl)ethane, 1,1-bis(3,5-dimethylcyclohexyl)ethane, 1,1- Bis(2,5-dimethylcyclohexyl)ethane, 1,1-bis(3,4,5-trimethylcyclohexyl)ethane, 1,1-bis(3-fluorocyclohexyl)ethane 1,1-bis(2,5-difluorocyclohexyl)ethane, 1,1-bis(3,5-difluorocyclohexyl)ethane, 1,1-bis(2,4-difluorocyclo Hexyl)ethane, 1,1-bis(3,4,5-trifluorocyclohexyl)ethane, bis(4-methylcyclohexyl)methane, bis(2-methylcyclohexyl)methane, bis (3) -Methylcyclohexyl)methane, bis(4-ethylcyclohexyl)methane, bis(2-ethylcyclohexyl)methane, bis(3-ethylcyclohexyl)methane, bis(4-isopropylcyclohexyl) )) methane, bis(2-isopropylcyclohexyl))methane, bis(3-isopropylcyclohexyl))methane, bis(3,4-dimethylcyclohexyl)methane, bis(3,5- Dimethylcyclohexyl)methane, bis(2,5-dimethylcyclohexyl)methane, bis(3,4,5-trimethylcyclohexyl)methane, bis(3-fluorocyclohexyl)methane, bis ( 2,5-Difluorocyclohexyl)methane, bis(3,4-difluorocyclohexyl)methane, bis(3,5-difluorocyclohexyl)methane, bis(3,4,5-trifluorocyclohexyl) Methane, 2,2-bis(4-methylcyclohexyl)propane , 2,2-bis(2-methylcyclohexyl)propane, 2,2-bis(3-methylcyclohexyl)propane, 2,2-bis(4-ethylcyclohexyl)propane, 2,2- Bis(2-ethylcyclohexyl)propane, 2,2-bis(3-ethylcyclohexyl)propane, 2,2-bis(4-isopropylphenyl)propane, 2,2-bis(2- Isopropylphenyl)propane, 2,2-bis(3-isopropylphenyl)propane, 2,2-bis(3,4-dimethylcyclohexyl)propane, 2,2-bis (3, 5-dimethylcyclohexyl)propane, 2,2-bis(2,5-dimethylcyclohexyl)propane, 2,2-bis(3,4,5-trimethylcyclohexyl)propane, 2, 2-bis(3-fluorocyclohexyl)propane, 2,2-bis(2,5-difluorocyclohexyl)propane, 2,2-bis(3,4-difluorocyclohexyl)propane, 2,2- Bis(3,5-difluorocyclohexyl)propane, trans octahydroindole, cis octahydroquinone, and the like. These may be used alone or in combination of two or more.
在此等者中尤以1,1-二環己基乙烷、1-環己基-1-(2,5-二甲基環己基)乙烷、1-環己基-1-(2,3-二甲基環己基)乙烷、1-環己基-1-(2,4-二甲基環己基)乙烷、1-環己基-1-(4-乙基環己基)乙烷、1,3-二環己基丙烷、1,4-二環己基丁烷、1,3-二環己基丁烷、反式八氫茚、順式八氫茚較佳,1,1-二環己基乙烷、1-環己基-1-(2,5-二甲基環己基)乙烷、反式八氫茚、順式八氫茚係特別理想。Among these, especially 1,1-dicyclohexylethane, 1-cyclohexyl-1-(2,5-dimethylcyclohexyl)ethane, 1-cyclohexyl-1-(2,3- Dimethylcyclohexyl)ethane, 1-cyclohexyl-1-(2,4-dimethylcyclohexyl)ethane, 1-cyclohexyl-1-(4-ethylcyclohexyl)ethane, 1, 3-dicyclohexylpropane, 1,4-dicyclohexylbutane, 1,3-dicyclohexylbutane, trans octahydroindole, cis octahydroquinone, 1,1-dicyclohexylethane It is particularly preferred that 1-cyclohexyl-1-(2,5-dimethylcyclohexyl)ethane, trans octahydroindole, and cis octahydroindole are preferred.
式(1)~(4)之任一者表示之化合物的摻合比率,在有機系電解質中較佳係0.05重量%以上,更佳係0.1重量%以上。另一方面,較佳係10重量%以下,更佳係5重量%以下。以式(1)所表示之化合物的摻合比率若比0.05重量%少,則可能無法獲得根據本發明之效果;若比10重量%多,則可能因電解質鹽的溶解度降低、或有機系電解質的黏度增加而導致蓄電池之性能惡化。The blending ratio of the compound represented by any one of the formulas (1) to (4) is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more, based on the organic electrolyte. On the other hand, it is preferably 10% by weight or less, more preferably 5% by weight or less. When the blending ratio of the compound represented by the formula (1) is less than 0.05% by weight, the effect according to the present invention may not be obtained; if it is more than 10% by weight, the solubility of the electrolyte salt may be lowered, or the organic electrolyte may be The viscosity increases and the performance of the battery deteriorates.
再者,式(1)~(4)之任一者表示之化合物的純度,較佳係95%以上,更佳係96%以上,又更佳係97%以上。在純度比95%低的情況下,可能包含妨礙本發明之效果的雜質,恐怕無法獲得原來的效果。Further, the purity of the compound represented by any one of the formulae (1) to (4) is preferably 95% or more, more preferably 96% or more, and still more preferably 97% or more. When the purity is lower than 95%, impurities which hinder the effects of the present invention may be contained, and the original effect may not be obtained.
本發明之有機系電解質係主要由以式(1)~(4)之任一者表示之化合物、有機溶劑及電解質鹽構成,做為該有機溶劑,使用高介電常數溶劑及低黏度溶劑。The organic-based electrolyte of the present invention is mainly composed of a compound represented by any one of the formulae (1) to (4), an organic solvent, and an electrolyte salt, and a high dielectric constant solvent and a low-viscosity solvent are used as the organic solvent.
有機溶劑中的高介電常數溶劑之含有比率較佳係5~30體積%,更佳係10~25體積%,尤其更佳係15~25體積%。 另一方面,有機系電解質中的低黏度溶劑之含有比率較佳係70~95體積%,更佳係75~90體積%,尤其更佳係75~85體積%。The content ratio of the high dielectric constant solvent in the organic solvent is preferably from 5 to 30% by volume, more preferably from 10 to 25% by volume, and still more preferably from 15 to 25% by volume. On the other hand, the content ratio of the low viscosity solvent in the organic electrolyte is preferably 70 to 95% by volume, more preferably 75 to 90% by volume, and still more preferably 75 to 85% by volume.
做為前述高介電常數溶劑,除了碳酸伸乙酯、碳酸伸丙酯,可列舉例如碳酸伸丁酯、γ-丁內酯、γ-戊內酯、四氫呋喃、1,4-二烷、N-甲基-2-吡咯烷酮、N-甲基-2-噁唑烷酮、環丁碸、2-甲基環丁碸等。As the high dielectric constant solvent, in addition to ethyl carbonate and propylene carbonate, for example, butyl carbonate, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, 1,4-two are mentioned. Alkane, N-methyl-2-pyrrolidone, N-methyl-2-oxazolidinone, cyclobutyl hydrazine, 2-methylcyclobutyl hydrazine, and the like.
做為前述低黏度溶劑,在本發明中係使用碳酸二乙酯及/或碳酸甲乙酯。其中尤以碳酸二乙酯特別理想。 做為低黏度溶劑,儘管已知碳酸二甲酯、碳酸甲丙酯、碳酸甲異丙酯、碳酸乙丙酯、碳酸二丙酯、碳酸甲丁酯、碳酸二丁酯、二甲氧基乙烷、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸異丙酯、乙酸丁酯、乙酸異丁酯、丙酸甲酯、丙酸乙酯、甲酸甲酯、甲酸乙酯、丁酸甲酯、異丁酸甲酯等之各種溶劑,然而在本發明中,使用含有70體積%以上之碳酸二乙酯及/或碳酸甲乙酯的有機溶劑做為低黏度溶劑,並藉由與前述式(1)表示之化合物搭配,可使蓄電池的耐久性提昇,搭載使用本發明之有機系電解質之蓄電池的電動車,能夠抑制長期重複充放電所造成之劣化。As the aforementioned low viscosity solvent, diethyl carbonate and/or ethyl methyl carbonate are used in the present invention. Among them, diethyl carbonate is particularly desirable. As a low viscosity solvent, although dimethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyrate, dibutyl carbonate, dimethoxy B are known. Alkane, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methyl propionate, ethyl propionate, methyl formate, ethyl formate, methyl butyrate , various solvents such as methyl isobutyrate, but in the present invention, an organic solvent containing 70% by volume or more of diethyl carbonate and/or ethyl methyl carbonate is used as a low viscosity solvent, and by the above formula (1) The combination of the compounds shown can improve the durability of the battery, and the electric vehicle equipped with the battery using the organic electrolyte of the present invention can suppress deterioration caused by repeated charge and discharge over a long period of time.
做為電解質鹽,可列舉例如六氟磷酸鋰(LiPF6 )、四氟硼酸鋰(LiBF4 )、六氟砷酸鋰(LiAsF6 )、六氟銻酸鋰(LiSbF6 )、過氯酸鋰(LiClO4 )及四氯鋁酸鋰(LiAlCl4 )等之無機鋰鹽、及三氟甲磺酸鋰(CF3 SO3 Li)、雙(三氟甲碸)醯亞胺鋰[(CF3 SO2 )2 NLi]、雙(五氟乙碸)醯亞胺鋰[(C2 F5 SO2 )2 NLi]及參(三氟甲碸)甲基化鋰[(CF3 SO2 )3 CLi]等之全氟烷烴磺酸衍生物之鋰鹽。電解質鹽可單獨使用1種,亦可混合多數種使用。 電解質鹽,通常期望以0.5~3莫耳/公升,較佳為以0.8~2莫耳/公升,更佳為以1.0~1.6莫耳/公升的濃度包含於有機系電解質中。Examples of the electrolyte salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluoroantimonate (LiSbF 6 ), and lithium perchlorate (LiClO 4 ). And an inorganic lithium salt such as lithium tetrachloroaluminate (LiAlCl 4 ), and lithium trifluoromethanesulfonate (CF 3 SO 3 Li), lithium bis(trifluoromethyl sulfonium) ruthenium [(CF 3 SO 2 ) 2 NLi], bis(pentafluoroacetamidine) quinone imide lithium [(C 2 F 5 SO 2 ) 2 NLi] and ginseng (trifluoromethyl hydrazine) methylated lithium [(CF 3 SO 2 ) 3 CLi], etc. A lithium salt of a perfluoroalkanesulfonic acid derivative. The electrolyte salt may be used singly or in combination of a plurality of types. The electrolyte salt is usually desirably contained in the organic electrolyte at a concentration of 0.5 to 3 m/liter, preferably 0.8 to 2 m/liter, more preferably 1.0 to 1.6 m/liter.
除了根據本發明之化合物,亦可使例如碳酸伸乙烯酯、氟代碳酸伸乙酯、碳酸乙烯基伸乙酯、1,3-丙烷磺內酯、亞硫酸伸乙酯等之電極保護材等包含於電解質。In addition to the compound according to the present invention, an electrode protective material such as a vinyl carbonate, a fluorocarbonic acid ethyl ester, a vinyl carbonate ethyl ester, a 1,3-propane sultone or a sulfite ethyl ester may be contained. For the electrolyte.
又,本發明提供使用前述本發明的有機系電解質之有機系電解質蓄電池。Moreover, the present invention provides an organic-based electrolyte secondary battery using the organic electrolyte of the present invention.
在本發明之有機系電解質蓄電池中,做為正極活性物質,若為能夠吸藏、釋出鋰之材料即可使用。舉例來說,可使用含鋰之複合氧化物LiMO2 (M為選自Mn、Fe、Co、Ni等金屬的僅1種、或2種以上的混合物,亦可將部份以Mg、Al、Ti等之其他陽離子取代)、LiMn2 O4 、LiNi0.5 Mn1.5 O4 等、或LiFePO4 、LiMnPO4 等為代表的橄欖石型材料。另外,可使用Li2 MnO3 、Li2 MSiO4 (M為金屬)等之富鋰系材料。 做為正極較佳係含有鋰及過渡金屬,尤佳係含有含鈷之層狀氧化物。In the organic-based electrolyte storage battery of the present invention, it can be used as a positive electrode active material, and is a material capable of occluding and releasing lithium. For example, a lithium-containing composite oxide LiMO 2 (M may be used alone or in combination of two or more metals selected from the group consisting of Mn, Fe, Co, Ni, etc., may also be partially Mg, Al, An olivine-type material typified by other cations such as Ti, LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 or the like, or LiFePO 4 or LiMnPO 4 . Further, a lithium-rich material such as Li 2 MnO 3 or Li 2 MSiO 4 (M is a metal) can be used. Preferably, the positive electrode contains lithium and a transition metal, and particularly preferably contains a layered oxide containing cobalt.
於負極係使用人造石墨或含天然石墨之碳系負極材料。 做為負極活性物質,係使用鋰能夠插入或與鋰反應之負極活性物質。做為該負極活性物質,雖以石墨做為主體,然而亦可混用非晶質碳等碳材料、或者Li金屬、Si、Sn、Al等之與Li形成合金的材料、Si氧化物、含Si與Si以外之其它金屬元素的Si複合氧化物、Sn氧化物、含Sn與Sn以外之其它金屬元素的Sn複合氧化物、Li4 Ti5 O12 等。Artificial graphite or a carbon-based negative electrode material containing natural graphite is used for the negative electrode. As the negative electrode active material, a negative electrode active material capable of inserting or reacting with lithium is used. As the negative electrode active material, graphite is mainly used, but a carbon material such as amorphous carbon or a material such as Li metal, Si, Sn, or Al which forms an alloy with Li, Si oxide, and Si may be mixed. Si composite oxide with other metal elements other than Si, Sn oxide, Sn composite oxide containing a metal element other than Sn and Sn, Li 4 Ti 5 O 12 or the like.
分隔件只要是由電絕緣性之多孔體構成即可,可列舉例如聚乙烯、聚丙烯等之聚烯烴、聚酯、聚對苯二甲酸乙二酯、聚醯亞胺等之聚合物製的膜或纖維不織布。材質可單獨使用,亦可使用多數種。又,分隔件可為單層,亦可為多層(複合化膜)。又,亦可包含陶瓷等之無機材料奈米粒子。 又,亦可於分隔件之兩面塗佈聚偏二氟乙烯等高分子化合物使用。The separator may be composed of a porous body that is electrically insulating, and examples thereof include a polyolefin such as polyethylene or polypropylene, a polymer such as polyester, polyethylene terephthalate or polyimine. The film or fiber is not woven. The material can be used alone or in most cases. Further, the separator may be a single layer or a multilayer (composite film). Further, inorganic material nano particles such as ceramics may be contained. Further, a polymer compound such as polyvinylidene fluoride may be applied to both surfaces of the separator.
本發明之有機系電解質蓄電池中,亦可使用因包含高分子化合物而成為凝膠狀的電解質,該高分子化合物係因有機溶劑而膨潤成為保持有機系電解質的保持體。此乃由於藉由包含因有機溶劑而膨潤的高分子化合物可獲得高離子傳導率,能夠得到優越的充放電效率,同時可防止電池漏液。在有機系電解質中包含高分子化合物的情形下,高分子化合物的含量較佳係設為0.1質量%以上、10質量%以下的範圍內。In the organic-based electrolyte storage battery of the present invention, an electrolyte which is gel-like by the inclusion of the polymer compound may be used, and the polymer compound is swollen by the organic solvent to form a support for holding the organic electrolyte. This is because high ion conductivity can be obtained by including a polymer compound which is swollen by an organic solvent, whereby excellent charge and discharge efficiency can be obtained, and leakage of the battery can be prevented. When the polymer compound is contained in the organic electrolyte, the content of the polymer compound is preferably in the range of 0.1% by mass or more and 10% by mass or less.
又,在分隔件的兩面塗佈聚偏二氟乙烯等之高分子化合物使用的情形下較佳係將有機系電解質及高分子化合物的質量比設為50:1~10:1的範圍內。藉由設為此範圍內,可獲得更高的充放電效率。In the case where a polymer compound such as polyvinylidene fluoride is applied to both surfaces of the separator, the mass ratio of the organic electrolyte to the polymer compound is preferably in the range of 50:1 to 10:1. By setting it within this range, higher charge and discharge efficiency can be obtained.
做為前述高分子化合物,可列舉例如聚乙烯基甲醛、聚環氧乙烷及含聚環氧乙烷的交聯體等之醚系高分子化合物、聚甲基丙烯酸酯等之酯系高分子化合物、丙烯酸酯系高分子化合物、及聚偏二氟乙烯、及偏二氟乙烯與六氟丙烯之共聚物等之偏二氟乙烯的聚合物。高分子化合物可單獨使用1種,亦可混合多數種使用。尤其,由高溫保存時之膨潤防止效果的觀點而言,期望使用聚偏二氟乙烯等氟系高分子化合物。Examples of the polymer compound include an ether polymer compound such as polyvinyl formaldehyde, polyethylene oxide, and a polyethylene oxide-containing crosslinked product, and an ester polymer such as polymethacrylate. A polymer of a vinylidene fluoride compound such as a compound, an acrylate-based polymer compound, and a copolymer of polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropropylene. The polymer compound may be used singly or in combination of a plurality of types. In particular, from the viewpoint of the swelling preventing effect at the time of high-temperature storage, it is desirable to use a fluorine-based polymer compound such as polyvinylidene fluoride.
通常,電池充電之際的電壓(充電電壓)愈高,可對電池充電愈多的電力,且亦可使放電時的輸出提昇。另一方面,充電電壓高,則容易導致電極材料等的劣化,有重複性降低或安全性或經濟性方面的問題。因此,有機系電解質蓄電池之充電電壓目前一般為4.10~4.20V。然而,由於本發明之有機系電解質蓄電池具有高耐久性,因此可採用較高的充電電壓。具體而言,可以比4.20V高、較佳在4.25V以上、更佳在4.35V以上、再更佳在4.45V以上的充電電壓來使用。 [實施例]Generally, the higher the voltage (charging voltage) at the time of charging the battery, the more power the battery can be charged, and the output at the time of discharge can be increased. On the other hand, when the charging voltage is high, deterioration of the electrode material or the like is likely to occur, and there is a problem of reduction in repeatability or safety or economy. Therefore, the charging voltage of the organic electrolyte storage battery is currently generally 4.10 to 4.20V. However, since the organic-based electrolyte storage battery of the present invention has high durability, a higher charging voltage can be employed. Specifically, it can be used at a charging voltage higher than 4.20 V, preferably 4.25 V or higher, more preferably 4.35 V or higher, still more preferably 4.45 V or higher. [Examples]
儘管在以下舉實施例來具體説明本發明,然而本發明並不受限於此等實施例。 再者,儘管在此使用圖1針對硬幣型之有機系電解質蓄電池進行說明,然而本發明之有機系電解質蓄電池的形式並不限定於硬幣型,亦可應用例如鈕扣型、袋型、方型、或具有螺旋結構之圓柱型等的有機系電解質蓄電池。又,有機系電解質蓄電池的尺寸亦為任意,可為大型、小型或薄型。Although the invention is specifically illustrated by the following examples, the invention is not limited to the embodiments. In addition, although the coin type organic electrolyte battery is described with reference to FIG. 1, the form of the organic electrolyte battery of the present invention is not limited to the coin type, and may be, for example, a button type, a bag type, a square type, or the like. Or an organic electrolyte storage battery having a cylindrical structure such as a spiral structure. Further, the size of the organic electrolyte storage battery is also arbitrary, and it can be large, small, or thin.
圖1為顯示硬幣型之有機系電解質蓄電池之結構的示意剖面圖。此電池為正極12及負極14在介有分隔件15的情況下所疊層者。正極12、負極14及分隔件15皆為圓板狀,容納於由金屬製之外裝零件11及外裝零件13所界定的空間內。外裝零件11、13之內部被有機系電解質所充滿,外裝零件11、13之周緣部係藉由以密封墊片17中介填隙而密封。另外,外裝零件13及負極14之間配置著金屬製的彈簧18及間隔件19。Fig. 1 is a schematic cross-sectional view showing the structure of a coin type organic-based electrolyte storage battery. This battery is a laminate in which the positive electrode 12 and the negative electrode 14 are laminated with the separator 15 interposed therebetween. The positive electrode 12, the negative electrode 14, and the separator 15 are all in the shape of a disk, and are accommodated in a space defined by the metal exterior part 11 and the exterior part 13. The inside of the exterior parts 11 and 13 is filled with an organic electrolyte, and the peripheral portions of the exterior parts 11 and 13 are sealed by interposing a gap by a gasket 17. Further, a metal spring 18 and a spacer 19 are disposed between the exterior member 13 and the negative electrode 14.
正極係如以下方式製作。於活性物質:LiNi1/3 Mn1/3 Co1/3 O2 90重量%、導電助劑:乙炔黑5重量%、黏結材:聚偏二氟乙烯5重量%的混合物中,添加N-甲基吡咯烷酮(以下簡稱為NMP)並混練,製作漿料。將製作之漿料滴加至鋁集電體上,使用具有測微器之膜塗抹器及自動塗佈機進行製膜,在烘箱中於100℃、氮氣環境下使其乾燥。將所製作之正極衝孔為直徑15mm的圓形後,進行壓製。正極活性物的質量約16mg。The positive electrode was produced in the following manner. In the active material: LiNi 1/3 Mn 1/3 Co 1/3 O 2 90% by weight, conductive auxiliary: acetylene black 5% by weight, binder: polyvinylidene fluoride 5 wt% mixture, add N- Methylpyrrolidone (hereinafter abbreviated as NMP) was kneaded to prepare a slurry. The produced slurry was dropped onto an aluminum current collector, formed into a film using a film applicator having a micrometer, and an automatic coater, and dried in an oven at 100 ° C under a nitrogen atmosphere. The prepared positive electrode was punched into a circular shape having a diameter of 15 mm, and then pressed. The mass of the positive electrode active material was about 16 mg.
負極係如以下方式製作。於活性物質:人造石墨94重量%、導電助劑:乙炔黑1重量%、黏結材:聚偏二氟乙烯5重量%的混合物中,添加NMP並混練,製作漿料。將製作之漿料滴加至銅集電體上,使用具有測微器之膜塗抹器及自動塗佈機進行製膜,在烘箱中於110℃、氮氣環境下使其乾燥。將所製作之負極衝孔為直徑15mm的圓形後,進行壓製。負極活性物的質量為約10mg。The negative electrode was produced in the following manner. In the mixture of the active material: 94% by weight of artificial graphite, 1% by weight of a conductive auxiliary agent: acetylene black, and 5% by weight of a binder: polyvinylidene fluoride, NMP was added and kneaded to prepare a slurry. The produced slurry was dropped onto a copper current collector, formed into a film using a film applicator having a micrometer, and an automatic coater, and dried in an oven at 110 ° C under a nitrogen atmosphere. The prepared negative electrode was punched into a circular shape having a diameter of 15 mm, and then pressed. The mass of the negative electrode active material was about 10 mg.
使用以上述方法所製作之正極、負極與衝孔為圓形之厚度25微米的聚丙烯製之分隔件、及各種已製備之有機系電解質製作硬幣型蓄電池。有機溶劑使用高介電常數溶劑及低黏度溶劑,在將此等者以各自之預定體積比混合的溶劑中,使LiPF6 以1莫耳/公升的比率溶解。又,化合物的純度皆在97%以上。高介電常數溶劑使用碳酸伸乙酯(以下簡稱為EC);低黏度溶劑使用碳酸二乙酯(以下簡稱為DEC)、或碳酸甲乙酯(以下簡稱為EMC)、或碳酸二甲酯(以下簡稱為DMC)。A coin-type secondary battery was produced using a positive electrode made of the above method, a negative electrode, a separator made of polypropylene having a circular thickness of 25 μm, and various prepared organic electrolytes. As the organic solvent, a high dielectric constant solvent and a low viscosity solvent are used, and LiPF 6 is dissolved at a ratio of 1 mol/liter in a solvent in which these are mixed in a predetermined volume ratio. Further, the purity of the compound was 97% or more. The high dielectric constant solvent uses ethyl carbonate (hereinafter referred to as EC); the low viscosity solvent uses diethyl carbonate (hereinafter abbreviated as DEC), or ethyl methyl carbonate (hereinafter referred to as EMC), or dimethyl carbonate (hereinafter referred to as EMC) Hereinafter referred to as DMC).
(實施例1) 如以下之表1所示方式製備有機系電解質,且如前述記載方式製作硬幣型蓄電池。(Example 1) An organic electrolyte was prepared as shown in Table 1 below, and a coin battery was produced as described above.
【表1】
(比較例1) 如以下之表2所示方式,製備無化合物、及化合物已改變之有機系電解質,與實施例1同樣地製作硬幣型蓄電池。(Comparative Example 1) A coin-type secondary battery was produced in the same manner as in Example 1 except that an organic electrolyte having no compound and a compound was changed in the manner shown in Table 2 below.
【表2】
(比較例2) 如以下之表3所示方式,製備低黏度溶劑已改變成DMC之有機系電解質,與實施例1同樣地製作硬幣型蓄電池。(Comparative Example 2) A coin-type secondary battery was produced in the same manner as in Example 1 except that an organic electrolyte having a low viscosity solvent changed to DMC was prepared as shown in Table 3 below.
【表3】
(實施例2) 如以下之表4所示方式製備高介電常數溶劑及低黏度溶劑之比率已改變的有機系電解質,與實施例1同樣地製作硬幣型蓄電池。(Example 2) A coin-type secondary battery was produced in the same manner as in Example 1 except that an organic electrolyte having a high dielectric constant solvent and a low viscosity solvent ratio was prepared as shown in Table 4 below.
【表4】
(比較例3) 如以下之表5所示方式製備高介電常數溶劑及低黏度溶劑之比率已改變的有機系電解質,與實施例1同樣地製作硬幣型蓄電池。(Comparative Example 3) A coin-type secondary battery was produced in the same manner as in Example 1 except that an organic electrolyte having a high dielectric constant solvent and a low viscosity solvent ratio was prepared as shown in Table 5 below.
【表5】
將以上述之方法所製作之硬幣型蓄電池及袋型蓄電池設置於室溫之恆溫器內,進行充放電測試。首先以0.840mA之定電流、4.45V之定電壓進行8小時充電後,以0.840mA的定電流進行放電至3.00V為止。將此時的放電容量做為初始蓄電容量。初始充放電後,以1.68mA之定電流、4.45V之定電壓充電4小時,於充電狀態下靜置在60℃之恆溫槽,高溫保存3週。保存後,以1.68mA之電流放電至3.00V為止,以1.68mA之定電流、4.45V之定電壓充電4小時後,再度以1.68mA之電流進行放電至3.00V為止。將此時的放電容量做為保存後蓄電容量。 各電池之初始蓄電容量及保存後蓄電容量係統整於表6。另外,由於比較1-4之電池在初期充放電時已經劣化,因此並未實施保存測試。The coin type battery and the pouch type battery fabricated by the above method were placed in a thermostat at room temperature to perform a charge and discharge test. First, charging was performed for 8 hours at a constant current of 0.840 mA and a constant voltage of 4.45 V, and then discharging was performed at a constant current of 0.840 mA until 3.00 V. The discharge capacity at this time was taken as the initial storage capacity. After the initial charge and discharge, the battery was charged at a constant current of 1.68 mA and a constant voltage of 4.45 V for 4 hours, and was allowed to stand in a thermostat at 60 ° C in a charged state, and stored at a high temperature for 3 weeks. After the storage, the battery was discharged to 3.00 V at a current of 1.68 mA, charged at a constant current of 1.68 mA, and charged at a constant voltage of 4.45 V for 4 hours, and then discharged to 3.00 V at a current of 1.68 mA. The discharge capacity at this time is taken as the storage capacity after storage. The initial storage capacity of each battery and the storage capacity after storage are summarized in Table 6. In addition, since the batteries of Comparative 1-4 were deteriorated at the time of initial charge and discharge, the storage test was not performed.
【表6】
(參考例1) 如以下之表7所示方式製備有機系電解質,與實施例1同樣地製作硬幣型蓄電池。將充電電壓改變成4.20V(參考1-1~1-9)、或4.35V(參考1-10~1-18)而測定各電池之初始蓄電容量及保存後蓄電容量。測定結果係統整於表8。(Reference Example 1) An organic electrolyte was prepared as shown in Table 7 below, and a coin battery was produced in the same manner as in Example 1. The initial storage capacity of each battery and the storage capacity after storage were measured by changing the charging voltage to 4.20 V (reference 1-1 to 1-9) or 4.35 V (refer to 1-10 to 1-18). The measurement results are summarized in Table 8.
【表7】
以上的結果可知:在使用高介電常數溶劑、及使用碳酸二乙酯及/或碳酸甲乙酯做為低黏度溶劑之有機溶劑中適量含有式(1)~(4)之任一者表示之化合物的本發明之有機系電解質,具有使高溫保存後之蓄電容量增加的效果,亦即有耐久性改善的效果。又,因該耐久性,可於比習知更高的充電電壓使用。 [產業上利用性]As a result of the above, it is understood that any one of the formulas (1) to (4) is represented by using a high dielectric constant solvent and an organic solvent using diethyl carbonate and/or ethyl methyl carbonate as a low viscosity solvent. The organic electrolyte of the present invention having the compound has an effect of increasing the storage capacity after storage at a high temperature, that is, an effect of improving durability. Moreover, due to this durability, it can be used at a higher charging voltage than conventional ones. [Industrial use]
本發明之有機系電解質具有使蓄電池之高溫保存後的蓄電容量增加的效果,電動車搭載使用本發明之有機系電解質之蓄電池時,由於使電池的耐久性提昇,能夠使汽車的長期可靠度提昇。The organic-based electrolyte of the present invention has an effect of increasing the storage capacity after storage of the battery at a high temperature. When the battery using the organic-based electrolyte of the present invention is mounted on the electric vehicle, the durability of the battery can be improved, and the long-term reliability of the automobile can be improved. .
11‧‧‧外裝零件
12‧‧‧正極
13‧‧‧外裝零件
14‧‧‧負極
15‧‧‧分隔件
17‧‧‧墊片
18‧‧‧彈簧
19‧‧‧間隔件11‧‧‧ Exterior parts
12‧‧‧ positive
13‧‧‧ Exterior parts
14‧‧‧negative
15‧‧‧Parts
17‧‧‧shims
18‧‧‧ Spring
19‧‧‧ spacers
圖1為顯示硬幣型之有機系電解質蓄電池之結構的示意剖面圖。Fig. 1 is a schematic cross-sectional view showing the structure of a coin type organic-based electrolyte storage battery.
11‧‧‧外裝零件 11‧‧‧ Exterior parts
12‧‧‧正極 12‧‧‧ positive
13‧‧‧外裝零件 13‧‧‧ Exterior parts
14‧‧‧負極 14‧‧‧negative
15‧‧‧分隔件 15‧‧‧Parts
17‧‧‧墊片 17‧‧‧shims
18‧‧‧彈簧 18‧‧‧ Spring
19‧‧‧間隔件 19‧‧‧ spacers
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166581A JP2016042448A (en) | 2014-08-19 | 2014-08-19 | Organic electrolyte and organic electrolyte storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201622226A true TW201622226A (en) | 2016-06-16 |
Family
ID=55350538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104126652A TW201622226A (en) | 2014-08-19 | 2015-08-17 | Organic electrolyte and organic electrolyte battery |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016042448A (en) |
TW (1) | TW201622226A (en) |
WO (1) | WO2016027588A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102680034B1 (en) * | 2020-11-03 | 2024-06-28 | 주식회사 엘지에너지솔루션 | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4433701B2 (en) * | 2002-07-24 | 2010-03-17 | 三菱化学株式会社 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
EP2797153A4 (en) * | 2011-12-22 | 2015-07-29 | Jx Nippon Oil & Energy Corp | Organic electrolyte, and organic electrolyte storage battery |
JP5516677B2 (en) * | 2012-08-31 | 2014-06-11 | 三菱化学株式会社 | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
-
2014
- 2014-08-19 JP JP2014166581A patent/JP2016042448A/en active Pending
-
2015
- 2015-07-13 WO PCT/JP2015/069994 patent/WO2016027588A1/en active Application Filing
- 2015-08-17 TW TW104126652A patent/TW201622226A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2016027588A1 (en) | 2016-02-25 |
JP2016042448A (en) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5429631B2 (en) | Non-aqueous electrolyte battery | |
US9991561B2 (en) | Lithium ion secondary battery | |
JP6109746B2 (en) | Organic electrolyte and organic electrolyte storage battery | |
CN109904406B (en) | Non-aqueous electrolyte secondary battery | |
WO2017020430A1 (en) | Non-aqueous electrolyte of lithium-ion battery and lithium-ion battery | |
TW201731146A (en) | Negative electrode active material and producing method, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery and producing method | |
JP6031450B2 (en) | Organic electrolyte and organic electrolyte storage battery | |
WO2013094603A1 (en) | Organic electrolyte, and organic electrolyte storage battery | |
WO2014068931A1 (en) | Nonaqueous electrolyte secondary battery | |
JP6274532B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2010238505A (en) | Nonaqueous electrolyte solution | |
KR20160078877A (en) | Non-aqueous electrolyte secondary battery and a method for producing the same | |
TW201622226A (en) | Organic electrolyte and organic electrolyte battery | |
KR101639313B1 (en) | Cathode for lithium secondary battery and lithium secondary battery comprising the same | |
JP2015111491A (en) | Nonaqueous electrolyte secondary battery | |
KR101190463B1 (en) | Electrolyte for improving storage performance at high temperature and secondary battery comprising the same | |
KR102145751B1 (en) | Electrode Slurry Comprising Additive Preventing Gelation of Electrolyte and Secondary Battery Comprising the Same | |
TW201347269A (en) | Organic electrolyte and organic electrolyte storage cell using same | |
TW201440283A (en) | Organic electrolyte and organic electrolyte storage battery |