TW201628649A - 減少醫藥調配物中微可見顆粒之方法 - Google Patents
減少醫藥調配物中微可見顆粒之方法 Download PDFInfo
- Publication number
- TW201628649A TW201628649A TW104132942A TW104132942A TW201628649A TW 201628649 A TW201628649 A TW 201628649A TW 104132942 A TW104132942 A TW 104132942A TW 104132942 A TW104132942 A TW 104132942A TW 201628649 A TW201628649 A TW 201628649A
- Authority
- TW
- Taiwan
- Prior art keywords
- protein
- fatty acid
- composition
- particles
- polysorbate
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本揭示文係提供一安定的蛋白組成物,其含有一界面活性劑及每容器具有低於400個10微米或更大粒徑之微可見顆粒,或每容器低於10,000個2微米或更大粒徑之微可見顆粒。揭示此一安定蛋白組成物之製造方法,其係包括一移除或減少降解界面活性劑之酯酶活性的單元操作。此單元操作可為疏水作用層析或過濾、混合模式層析或其類似方法。
Description
本揭示文係關於不會隨時間形成有意義量之微可見顆粒的安定生醫藥調配組成物,以及製造不會隨時間形成有意義量之微可見顆粒的生醫藥調配物之方法。本揭示文亦關於製造含有一包含脂肪酸酯基團之完整乳化劑或安定劑的生醫藥調配物之組成物及方法。
生醫藥(或生物製劑)通常含有蛋白或核酸分子。這些分子通常相當大且具長期不穩定之傾向。為了維護時間內的效用、降低致免疫性和發炎反應以及符合法規需求,這些生物製劑必須具有長時間的安定性及商業上合理的保存期限。
生物調配物在儲存期間容易隨時間形成顆粒物質。顆粒可能是可見的或微可見的。微可見顆粒一般直徑係在150微米或100微米以下。某些顆粒可能為「外來的」,亦即生物分子以外的汙染物。然而,在該等含有蛋白之生物調配物中,蛋白可能自-聚集而形成顆粒。過度處理、攪動、熱應力、冷凍-解凍、微量奈米粒子例如矽油及其他與小瓶和注射筒有關的物質之導入,可造成蛋白聚集及形成微可見顆粒。具有高蛋白濃度的調配物,例如濃度大於約30mg/mL,更易於聚集和形成微可見顆粒。
考慮到與包含微可見顆粒相關的潛在風險,管理當局如
FDA提供了醫藥調配物中容許的微可見顆粒之數目限制。例如,USP 31 monograph<788>設定了非經腸胃之調配物中容許的顆粒之數目限制。就大量的非經腸胃藥物(大於100mL),限制係設定在每毫升(mL)不超過25個至少10微米的顆粒,及每毫升(mL)不超過3個至少25微米的顆粒。對於小量的非經腸胃藥物(100mL或更少),限制係設定在每容器不超過6,000個至少10微米的顆粒,及每容器不超過600個至少25微米的顆粒。
為了防止或降低蛋白質調配物中顆粒形成的速率,一般技術之調配者係於調配物中加入安定劑。這些安定劑包括界面活性劑和有機共溶劑,例如聚山梨醇酯界面活性劑和共聚物。共聚物包括例如環氧乙烷/聚環氧丙烷共聚物。一般用於醫藥製備物中之聚山梨醇酯包括聚山梨醇酯20和聚山梨醇酯80,但同樣可使用其他。
聚山梨醇酯為PEG-化山梨醇酐之脂肪酸酯(聚氧乙烯山梨醇酐酯)。聚氧乙烯係作為親水性首基而脂肪酸係作為親脂性尾基。聚山梨酸酯作為界面活性劑之效用係依照存在單一分子的此二者基團而定。當聚山梨酸酯降解(水解)成其組份首基和脂肪酸尾基時,其喪失了作為蛋白安定劑之效用,可能造成了聚集及後續的微可見顆粒形成。因此,在使用聚山梨醇酯作為蛋白安定劑之生醫藥調配物中,聚山梨醇酯本身的安定性對於恰當運作和防止微可見顆粒形成為重要的。
申請者們得到一驚人的發現,以宿主細胞蛋白存在之酯酶可與感興趣蛋白共純化;及在某些情況下酯酶可能降解存在含有感興趣蛋白之調配物中的界面活性劑,導致界面活性劑活性喪失並形成蛋白聚集物和微可見顆粒。
因此,在一方面本發明係提供每容器包含蛋白、脂肪酸酯界
面活性劑及低於400個微可見顆粒之組成物,其中該微可見顆粒係具有10微米或更大的粒徑。在一實施例中,此組成物係包括低於10,000個微可見顆粒,其中該微可見顆粒係具有至少2微米或更大的粒徑。在某些實施例中,此微可見顆粒係具有大於或等於10微米之粒徑。在其他的實施例中,此微可見顆粒之粒徑係大於或等於500奈米。又在其他的實施例中,此微可見顆粒的粒徑係大於或等於25微米。在某些實施例中,此微可見顆粒係具有低於150微米或低於100微米之粒徑。在其他的實施例中,此微可見顆粒之粒徑係大於或等於2微米。
在一實施例中,此蛋白為一抗體。在某些案例中,抗體的為高濃度,例如至少30mg/mL,至少40mg/mL,至少80mg/mL,或至少100mg/mL。
在一實施例中,脂肪酸酯係包括一或多個帶有約6個碳至21個碳的脂肪族尾基的脂肪酸酯。在某些案例中,此脂肪族尾基係具有至少18個碳,例如油酸酯、亞麻油酸酯、花生四烯酸酯及其類似物。在其他的案例中,此脂肪族尾基係具有少於18個碳,例如月桂酸酯、癸酸酯、辛酸酯、肉豆蔻酸酯、棕櫚酸酯、棕櫚油酸酯及其類似物。脂肪酸可為飽和的或各種的不飽和程度。在某些實施例中,該脂肪酸酯為清潔劑(detergent),例如離子性、極性或非離子清潔劑。
在某些實施例中,此脂肪酸酯為一聚氧化乙烯山梨醇酐脂肪酸酯。在一實施例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐油酸酯。在另外的實施例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐月桂酸酯。
在某些實施例中,組成物係具有降低量的脂酶活性使得組成物中的脂肪酸酯基本上仍為完整的。在某些實施例中,此組成物並無可偵測的酯酶活性。酯酶可為一羧酸酯水解酶(EC 3.1.1),例如脂肪酶。在一實
施例中,此酯酶為一類-磷脂酶B 2酯酶,例如倉鼠(Cricetulus sp.)類-磷脂酶B 2酯酶。在一特定的實施例中,此酯酶係包括一SEQ ID NO:1的胺基酸序列。
在某些實施例中,此組成物係包含一緩衝劑及/或一熱安定劑。
在某些實施例中,此組成物係在某溫度下儲存某些時間。在一實施例中,此組成物係在5℃儲存至少六個月。
在第二方面,本發明係提供含有一蛋白及一完整脂肪酸酯之組成物。所謂的完整(intact)為脂肪酸酯基本上並未降解,使得有低於20%的脂肪酸莫耳量水解成脂肪酸及首基。換言之,在一組成物中其中有20%具有單一脂肪酸鏈之脂肪酸酯被水解,每莫耳的游離脂肪酸則有4莫耳的脂肪酸酯。就帶有二個脂肪酸鏈的脂肪酸酯,20%水解係轉換成每2莫耳的游離脂肪酸有4莫耳的脂肪酸酯。就帶有三個脂肪酸鏈的脂肪酸酯,20%水解係轉換成每3莫耳的游離脂肪酸有4莫耳的脂肪酸酯。
在一實施例中,有不超過15%的脂肪酸酯水解成游離的脂肪酸和首基(每3莫耳的游離脂肪酸17莫耳的單酯),不超過10%的脂肪酸酯水解成游離的脂肪酸和首基(每莫耳的游離脂肪酸9莫耳的單酯,或不超過5%的脂肪酸酯水解成游離的脂肪酸(每莫耳的游離脂肪酸9莫耳的單酯)。
在一實施例中,此蛋白為一抗體。在某些案例中,此抗體為高濃度,例如至少30mg/mL,至少40mg/mL,至少80mg/mL,或至少100mg/mL。
在一實施例中,此脂肪酸酯係包括一或多個帶有約6個碳至21個碳的脂肪族尾基的脂肪酸酯。在某些案例中,此脂肪族尾基係具有至
少18個碳,例如油酸酯、亞麻油酸酯、花生四烯酸酯及其類似物。在其他的案例中,此脂肪族尾基係具有少於18個碳,例如月桂酸酯、癸酸酯、辛酸酯、肉豆蔻酸酯、棕櫚酸酯、棕櫚油酸酯及其類似物。脂肪酸可為飽和的或各種的不飽和程度。在某些實施例中,該脂肪酸酯為清潔劑(detergent),例如離子性、極性或非離子清潔劑。
在某些實施例中,此脂肪酸酯為一聚氧乙烯山梨醇酐脂肪酸酯。在一實施例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐油酸酯。在另外的實施例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐月桂酸酯。
在某些實施例中,組成物係具有降低量的脂酶活性使得組成物中的脂肪酸酯基本上仍為完整的。在某些實施例中,此組成物並無可偵測的酯酶活性。酯酶可為一羧酸酯水解酶(EC 3.1.1),例如脂肪酶。在一實施例中,此酯酶為一類-磷脂酶B 2酯酶,例如倉鼠(Cricetulus sp.)類-磷脂酶B 2酯酶。在一特定的實施例中,此酯酶係包含一SEQ ID NO:1的胺基酸序列。
在某些實施例中,此組成物係包含一緩衝劑及/或一熱安定劑。
在某些實施例中,此組成物係在某溫度下儲存某些時間。在一實施例中,此組成物係在5℃儲存至少六個月。
在第三方面,本發明係提供製造一安定的蛋白調配物之方法,其包括(a)將一疏水相互作用介質與包括一感興趣蛋白及一酯酶之組成物接觸;及(b)從介質收集此感興趣蛋白之步驟。從介質收集感興趣蛋白(如於承載或清洗溶液中流通,或以一清洗或溶離溶液溶離)係與減少酯酶的量有關。在某些案例中,在含感興趣蛋白之收集物中並無偵測到酯酶活性。
在一實施例中,此感興趣蛋白為一抗體,例如單株抗體、雙特異性抗體及/或尤其是一治療抗體或其片段。
在一實施例中,此酯酶為一羧酸酯水解酶(EC 3.1.1),例如脂肪酶。在一實施例中,此酯酶能水解一山梨醇酐或異山梨醇(iso-sorbide)之脂肪酸酯。在一實施例中,此酯酶為一類-磷脂酶B 2酯酶,例如倉鼠(Cricetulus sp.)類-磷脂酶B 2酯酶或其他嚙齒類的類-磷脂酶B 2酯酶。在一特定的實施例中,此酯酶係包括一SEQ ID NO:1的胺基酸序列。
在某些實施例中,係將收集的感興趣蛋白進一步處理。在某些案例中,係將所收集的感興趣蛋白進行緩衝劑交換、過濾及/或另外的層析步驟。在一實施例中,此感興趣蛋白係在收集後於某時間點濃縮。
在一實施例中,係將所收集的感興趣蛋白於某時間點與作為界面活性劑用以防止蛋白聚集及/或微可見顆粒形成的脂肪酸酯組合。在某些案例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐酯,例如聚氧乙烯(20)山梨醇酐單月桂酸酯或聚氧乙烯(20)山梨醇酐單油酸酯。
在一實施例中,係將感興趣蛋白加上脂肪酸酯的組合物與一緩衝劑和一熱安定劑組合。
在第四方面,本發明係提供一降低含有感興趣蛋白之組成物中的酯酶活性之方法,其包括(a)將含有感興趣蛋白及酯酶之組成物與介質接觸;(b)將感興趣蛋白與酯酶分離;及(c)收集感興趣蛋白之步驟。「介質」可為任何模式,例如層析樹脂、微珠、纖維素受質、膜或其類似物。在某些實施例中,此介質為一疏水作用介質,其可為疏水作用層析(HIC)樹脂或HIC膜。在其他的實施例中,此介質為一脂肪酸親和介質,其含有與一受質連接之配體或接合物,使該配體或接合物得以與脂肪酸或其脂肪族尾基相結合。
在一實施例中,此感興趣蛋白為一抗體,例如單株抗體、雙特異性抗體及/或尤其是一治療抗體或其片段。
在一實施例中,此酯酶為一羧酸酯水解酶(EC 3.1.1),例如脂肪酶。在一實施例中,此酯酶能水解一山梨醇酐或異山梨醇之脂肪酸酯。在一實施例中,此酯酶為一類-磷脂酶B 2酯酶,例如倉鼠(Cricetulus sp.)類-磷脂酶B 2酯酶或其他囓齒類的類-磷脂酶B 2酯酶。在一特定的實施例中,此酯酶係包括一SEQ ID NO:1的胺基酸序列。
在某些實施例中,係將收集的感興趣蛋白進一步處理。在某些案例中,係將所收集的感興趣蛋白進行緩衝劑交換、過濾及/或另外的層析步驟。在一實施例中,此感興趣蛋白係在收集後於某時間點濃縮。
在一實施例中,係將所收集的感興趣蛋白於某時間點與作為界面活性劑用以防止蛋白聚集及/或微可見顆粒形成的脂肪酸酯組合。在某些案例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐酯,例如聚氧乙烯(20)山梨醇酐單月桂酸酯或聚氧乙烯(20)山梨醇酐單油酸酯。
在一實施例中,係將感興趣蛋白加上脂肪酸酯的組合物與一緩衝劑和一熱安定劑組合。
在第五方面,本發明係提供一降低含有感興趣蛋白之組成物中微可見顆粒形成之方法。該方法係包括(a)從組成物中移除酯酶活性及(b)於組成物中加入脂肪酸酯之步驟。在一實施例中,於5℃儲存六個月後,含有此組成物的容器中係形成少於400個具有10微米或更大之平均粒徑的顆粒。在另外的實施例中,於5℃儲存六個月後,含有此組成物的容器中係形成少於10,000個具有2微米或更大之平均粒徑的顆粒。
在一實施例中,係藉由將組成物與介質接觸而從組成物中移除酯酶。「介質」可為任何模式,例如層析樹脂、微珠、纖維素受質、膜
或其類似物。在某些實施例中,此介質為一疏水作用介質,其可為疏水作用層析(HIC)樹脂或HIC膜。在其他的實施例中,此介質為一脂肪酸親和介質,其含有與一受質連接之配體或接合物,使該配體或接合物得以與脂肪酸或其脂肪族尾基相結合。
在一實施例中,此感興趣蛋白為一抗體,例如單株抗體、雙特異性抗體及/或尤其是一治療抗體或其片段。
在一實施例中,此酯酶為一羧酸酯水解酶(EC 3.1.1),例如脂肪酶。在一實施例中,此酯酶能水解山梨醇酐或異山梨醇之脂肪酸酯。在一特定的實施例中,此酯酶係優先地水解聚氧乙烯(20)山梨醇酐單月桂酸酯優於聚氧乙烯(20)山梨醇酐單油酸酯。在一實施例中,此酯酶為一類-磷脂酶B 2酯酶,例如倉鼠(Cricetulus sp.)類-磷脂酶B 2酯酶或其他囓齒類的類-磷脂酶B 2酯酶。在一特定的實施例中,此酯酶係包括一SEQ ID NO:1的胺基酸序列。
在某些實施例中,係將收集的感興趣蛋白進一步處理。在某些案例中,係將所收集的感興趣蛋白進行緩衝劑交換、過濾及/或另外的層析步驟。在一實施例中,此感興趣蛋白係在收集後於某時間點濃縮。
在一實施例中,係將所收集的感興趣蛋白於某時間點與作為介面活性劑或乳化劑用以防止蛋白聚集及/或微可見顆粒形成的脂肪酸酯組合。在某些案例中,此脂肪酸酯為聚氧乙烯(20)山梨醇酐酯,例如聚氧化乙烯(20)山梨醇酐單月桂酸酯或聚氧化烯(20)山梨醇酐單油酸酯。
在一實施例中,係將感興趣蛋白加上脂肪酸酯的組合物與一緩衝劑和一熱安定劑組合。
在一實施例中,此組成物係在5℃儲存至少6個月。詳細說明
本發明不限於所述的特定方法和實驗條件,因為此等方法和條件可改變。亦應了解,文中所用的術語僅作為描述特定實施例之目的,且不希望受限,因為本發明之範圍係由申請專利範圍所定義。
除非另有定義,否則所有文中所用的技術和科學術語係具有如本發明所屬技術之一般技術者所正常理解之相同意義。雖然在施行或試驗本發明時可使用任何與該等文中所述的方法和物質類似或相當者,但特定的方法和物質為目前所述。文中所提及的所有出版品係以引用的方式併入本文中。
術語「蛋白」係指任何具有約20個以上的胺基酸經由醯胺鍵共價連結之胺基酸聚合物。蛋白含有一或多個胺基酸聚合鏈,在本項技術中一般稱為「多肽」。因此,多肽可為一蛋白,且該蛋白可含有多個多肽以形成一單一構形之單一運作雙分子。在某些蛋白中可存有雙硫橋(於半胱胺酸之間形成胱胺酸)。這些共價鍵連可在一單一多肽鏈內,或在二個個別的多肽鏈之間。例如,雙硫橋為胰島素、免疫球蛋白、魚精蛋白及其類似物之正當結構的關鍵。就最近雙硫鍵形成的評論,請參見Oka和Bulleid,“Forming disulfides in the endoplasmic reticulum,”Biochim Biophys Acta,2013 Nov;1833(11):2425-9。
除了形成雙硫鍵之外,蛋白可進行其他的後轉譯修飾。這些修飾包括脂化(例如形成豆蔻醯化、棕櫚醯化、法尼醯化(farnesoylation)、四異戊二烯化(geranylgeranylation)及葡糖基磷脂醯肌醇(GPI)錨蛋白形成)、烷化(例如甲基化)、醯化、醯胺化、糖基化(例如在精胺酸、天門冬醯胺、胱胺酸、羥基離胺酸、絲胺酸、蘇胺酸、酪胺酸及/或色胺酸加入糖基基團),及磷醯化(亦即將磷酸基團加到絲胺酸、蘇胺酸、酪胺酸及/或組胺酸中)。
就於真核細胞中產生蛋白之後轉譯修飾之最近的評論,請參見Mowen和David,“Unconventional post-translational modifications in immunological signaling,”Nat Immunol,2014 Jun;15(6):512-20;以及Blixt和Westerlind,“Arraying the post-translational glycoproteome(PTG),”Curr Opin Chem Biol,2014 Feb;18:62-9。
免疫球蛋白為具有多個多肽鏈及廣泛後轉譯修飾之蛋白。典型的免疫球蛋白(例如IgG)係包括四條多肽鏈-二條輕鏈和二條重鏈。各輕鏈係經由一半胱胺酸雙硫鍵與一重鏈相連接,而二條重鏈係經由二個半胱胺酸雙硫鍵彼此相鍵結。哺乳動物系統中所產生的免疫球蛋白亦在各種殘基(例如在天門冬醯胺酸殘基上)以各種多糖類糖基化,且可物種間各不相同,其可影響治療性抗體之抗原性(參見Butler和Spearman,“The choice of mammalian cell host and possibilities for glycosylation engineering”,Curr Opin Biotech,2014 Dec;30:107-112)。
如文中所用,「蛋白」係包括生物治療蛋白、用於研究或治療的重組蛋白、trap蛋白和其他Fc-融合蛋白、嵌合蛋白、抗體、單株抗體、人類抗體、雙特異性抗體、抗體片段、奈抗體、重組抗體嵌合體、細胞激素、趨化激素、肽激素及其類似物。蛋白可使用以重組細胞為基礎的製造系統來製造,例如昆蟲桿狀病毒系統、酵母菌系統(例如畢赤酵母Pichia sp.)、哺乳動物系統(例如CHO細胞和CHO衍生物,如CHO-K1細胞)。對於最近討論生物治療蛋白及其生產的評論,請參見Ghaderi等人,“Production platforms for biotherapeutic glycoproteins.Occurrence,impact,and challenges of non-human sialylation,”Biotechnol Genet Eng Rev.2012;28:147-75。
術語「抗體」,如文中所用,係包括藉由雙硫鍵相連接的四條多肽鏈(二條重(H)鏈和二條輕(L)鏈)所組成的免疫球蛋白分子。各重鏈係
包括一重鏈可變區(文中縮寫為HCVR或VH)及一重鏈恆定區。重鏈恆定區係包括三個區CH1、CH2和CH3區。各輕鏈係包括一輕鏈可變區(文中縮寫為LCVR或VL)及一輕鏈恆定區。輕鏈恆定區係包括一個CL區。VH和VL區可進一步細分為高變區,稱為互補決定區(CDR),其間散佈著較保守性區域,稱為框架區(FR)。各VH和VL係由三個CDR和四個FR所組成,以下列順序由胺基端排列至羧基端:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4(重鏈CDR可縮寫為HCDR1、HCDR2和HCDR3;輕鏈CDR可縮寫為LCDR1、LCDR2和LCDR3)。術語「高親和力」抗體係指如表面電漿共振,例如BIACORETM或溶液-親和力ELISA所測,該等對其目標具有至少10-9M,至少10-1M;至少10-11M;或至少10-12M之結合親和力的抗體。
術語「雙特異性抗體」係包括能選擇性結合二或多個表位之抗體。雙特異性抗體一般係包括二條不同的重鏈,其中各重鏈係特異性結合一不同的表位一在二個不同的分子上(例如抗原)或在相同的分子上(例如在相同的抗原上)。若雙特異性抗體能選擇性結合二個不同的表位(epitope)(第一表位和第二表位),則第一重鏈對第一表位的親和力一般將至少低於第一重鏈對第二表位之親和力1至2,或3至4個數量級,且反之亦然。經雙特異性抗體所辨識的表位可在相同或不同的目標上(例如在相同或不同的蛋白上)。雙特異性抗體可例如藉由將辨識相同抗原上的不同表位之重鏈組合來製造。例如,辨識相同抗原的不同表位之編碼重鏈可變序列的核酸序列可與編碼不同重鏈恆定區之核酸序列融合,且此等序列可在表現一免疫球蛋白輕鏈的細胞中表現。典型的雙特異性抗體具有二條各具有三個重鏈CDR之重鏈,接著一(N-端或C-端)CH1區、絞鏈、一CH2區及一CH3區,而免疫球蛋白輕鏈並未賦予抗原結合特異性但可與各重鏈相結合,或可與各重鏈結合及可結合一或多個與重鏈抗原結合區結合之表位,或可
與各重鏈結合並使該一或二條重鏈與一或二個表位結合。
除非另有說明係包括一重鏈可變區,否則「重鏈」或「免疫球蛋白重鏈」一詞係包括來自任何生物之免疫球蛋白重鏈恆定區序列。除非另有說明,否則重鏈可變區係包括三個重鏈CDR和四個FR區。重鏈的片段包括一或多個CDR和一或多個FR,以及其組合。典型的重鏈,在可變區之後,係具有(從N-端至C-端):CH1區、絞鏈、CH2區及CH3區。重鏈之功能性片段係包括能特異性辨識一抗原(例如,以微莫耳(micromolar)、奈莫耳(nanomolar)或皮莫耳(picomolar)範圍之KD辨識抗原),其能從細胞表現及分泌,及其係包括至少一CDR之片段。
除非另有說明係包括人類κ和λ輕鏈,否則「輕鏈」一詞係包括來自任何生物之免疫球蛋白輕鏈恆定區序列。除非另有說明,否則輕鏈可變(VL)區典型地係包括三個輕鏈CDR和四個框架(FR)區。一般而言,全長的輕鏈,從胺基端至羧基端,係包括一包含FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4之VL區,及一輕鏈恆定區。可為本發明所用之輕鏈包括該等,例如不會選擇性結合與抗原結合蛋白選擇性結合之第一或第二抗原。適合的輕鏈包括該等可藉由針對現存的抗體庫(濕式庫或於矽中)中最常用的輕鏈作篩選而加以辨識者,其中輕鏈實質上不會干擾抗原結合蛋白之抗原結合區的親和力及/或選擇性。適合的輕鏈包括該等可結合一或二個與抗原結合蛋白之抗原結合區鍵結的表位者。
「可變區」一詞包括免疫球蛋白輕鏈或重鏈之胺基酸序列(若需要經修飾),其以從N-端至C-端的順序(除非另有指出),包括下列胺基酸區:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。「可變區」係包括能摺疊成具有雙β平板結構之典範區(VH或VL)的胺基酸序列,其中該β平板係在第一β平板和第二β平板之殘基間以雙硫鍵相連接。
「互補決定區」或術語「CDR」一詞係包括由生物的免疫球蛋白基因之核酸序列所編碼的胺基酸序列,其一般(亦即野生型動物)出現在免疫球蛋白分子(例如抗體或T細胞受體)之輕鏈或重鏈可變區的二個框架區之間。一CDR可由,例如,胚源序列或重排或未重排序列,及例如由未成熟或成熟的B細胞或T細胞所編碼。在某些情況下(例如就CDR3),CDR可由二或多個序列(例如胚原序列)所編碼,其為非毗鄰的(例如未重排的核酸序列)但在B細胞核酸序列中為毗鄰的,例如因剪接或連接序列之結果(例如V-D-J重組而形成一重鏈CDR3)。
「含Fc蛋白」一詞包括抗體、雙特異性抗體、免疫黏附素(immunoadhesin)及包括至少一免疫球蛋白CH2和CH3區之功能部份的其他結合蛋白。「功能部份」係指可結合一Fc受體(例如FcγR;或FcRn,亦即新生的Fc受體),及/或可參與補體活化之CH2和CH3區。若CH2和CH3區含有刪除、取代及/或插入或其他修飾,使其無法結合任何Fc受體且亦無法活化補體,則該CH2和CH3區並不具功能性。
含Fc-蛋白可在免疫球蛋白區包括修飾,其包括其中該等修飾係影響一或多個結合蛋白之效應子功能(例如影響FcγR結合、FcRn結合及因而影響半衰期及/或CDC活性之修飾)。此等修飾包括(但不限於)下列修飾及其組合:就免疫球蛋白恆定區之EU編號為:238、239、248、249、250、252、254、255、256、258、265、267、268、269、270、272、276、278、280、283、285、286、289、290、292、293、294、295、296、297、298、301、303、305、307、308、309、311、312、315、318、320、322、324、326、327、328、329、330、331、332、333、334、335、337、338、339、340、342、344、356、358、359、360、361、362、373、375、376、378、380、382、383、384、386、388、389、398、414、416、419、428、430、
433、434、435、437、438和439。
例如,但不限於,此結合蛋白為一含Fc-蛋白並具有提升的血清半衰期(相較於無所述的修飾之相同的含Fc-蛋白)且在位置250(例如,E或Q);250和428(例如,L或F);252(例如,L/Y/F/W或T),254(例如,S或T),及256(例如,S/R/Q/E/D或T)具有一修飾;或在428及/或433(例如,L/R/SI/P/Q或K)及/或434(例如,H/F或Y)之修飾;或在250及/或428之修飾;或在307或308(例如,308F、V308F)及434之修飾。在另外的實例中,此修飾可包括428L(例如,M428L)和434S(例如,N434S)修飾;428L、259I(例如,V259I)及308F(例如,V308F)修飾;433K(例如,H433K)和434(例如,434Y)修飾;252、254及256(例如,252Y、254T和256E)修飾;250Q和428L修飾(例如,T250Q和M428L);307及/或308修飾(例如,308F或308P)。
術語「細胞」包括任何適合用於表現一重組核酸序列之細胞。細胞包括該等原核細胞和真核細胞(單細胞或多細胞)、細菌細胞(例如,大腸桿菌(E.coli)、芽孢桿菌屬(Bacillus spp.)、鏈黴菌屬(Streptomyces spp.)等之菌株)、分歧桿菌細胞(mycobacteria cell)、真菌細胞、酵母菌細胞(例如釀酒酵母菌(S.cerevisiae)、裂殖酵母(S.pombe)、畢赤酵母(P.pastoris)、嗜甲醇畢赤酵母(P.methanolica)等)、植物細胞、昆蟲細胞(例如SF-9、SF-21、桿狀病毒感染的昆蟲細胞、粉紋夜蛾(Trichoplusia ni)等)、非人類動物細胞、人類細胞或細胞融合物,例如雜交瘤或四重雜交瘤。在某些實施例中,此細胞為人類、猴、猿、倉鼠、大鼠或小鼠細胞。在某些實施例中,此細胞為真核細胞且係由下列細胞選出:CHO(例如CHO K1、DXB-11 CHO、Veggie-CHO)、COS(e.g.、COS-7)、視網膜細胞、Vero、CV1、腎(例如,HEK293、293 EBNA、MSR 293、MDCK、HaK、BHK)、HeLa、HepG2、
WI38、MRC 5、Colo205、HB 8065、HL-60、(例如BHK21)、Jurkat、Daudi、A431(表皮)、CV-1、U937、3T3、L細胞、C127細胞、SP2/0、NS-0、MMT 060562、Sertoli細胞、BRL 3A細胞、HT1080細胞、骨髓瘤細胞、腫瘤細胞及衍生自前述細胞之細胞株。在某些實施例中,此細胞係包括一或多個病毒基因,例如表現病毒基因之視網膜細胞(例如,PER.C6TM細胞)。
術語「脂肪酸酯」係指含有一脂肪酸鏈係經由一酯鍵與首基相連接之任何有機化合物。當一羥基(例如,醇或羧酸)被一烷氧基基團取代時,則形成一酯鍵。如文中所用,羥基基團可為羧酸,更特言之,脂肪酸,及/或醇,例如甘油、山梨醇、山梨醇酐、異山梨醇酯或其類似物之部份。醇基團一般在文中係指首基。
脂肪酸酯之實例一般係包括磷脂質、脂質(例如首基為甘油,包括單酸甘油酯、二酸甘油酯及三酸甘油酯),及界面活性劑和乳化劑,其包括例如聚山梨醇酯如山梨醇酯20、山梨醇酯60和山梨醇酯80,為非離子清潔劑。界面活性劑和乳化劑可用作為共溶劑和安定劑。其係藉由與親水性表面和親脂性表面結合來維持成份,如蛋白的散布及結構穩定性。界面活性劑加到蛋白調配物中主要係增進蛋白對抗機械應力,例如氣/液界面和固/液界面剪力的安定性。無界面活性劑,蛋白在某些情況下可能在溶液中變得結構不穩定並形成多聚化聚集物,其最終變成微可見顆粒。
術語「脂肪酸」或「脂肪酸鏈」係指具有一脂肪族尾基之羧酸。脂肪族尾基僅為一包括碳和氫之烴鏈,且在某些案例中,包括氧、硫、氮及/或氯取代。脂肪族尾基可為飽和的(如在飽和脂肪酸中),其係指所有的碳-碳鍵皆為單鍵(亦即烷)。脂肪族尾基可為不飽和的(如不飽和脂肪酸),其中一或多個碳-碳鍵為雙鍵(烯),或叁鍵(炔)。
脂肪酸一般係指,其在其脂肪族尾基具有少於6個碳之短鏈
脂肪酸,具有6至12個碳之中鏈脂肪酸,具有13至21個碳之長鏈脂肪酸,及具有多於21個碳之脂肪族尾基的極長鏈脂肪酸。如上所提,脂肪酸亦根據其飽和度來分類,其係與硬度和熔點相關。常見的脂肪酸包括辛酸(8個碳:0雙鍵;8:0)、癸酸(10:0)、月桂酸(12:0)、肉豆蔻酸(14:0)、肉豆蔻腦酸(14:1)、棕櫚酸(16:0)、棕櫚油酸(16:1)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、反式油酸(18:1)、異油酸(18:1)、亞麻油酸(18:2)、反亞麻油酸(18:2)、α-次亞麻油酸(18:3)、花生酸(20:0)、花生四烯酸(20:4)、二十碳五烯酸(20:5)、二十二酸(22:0)、芥酸(22:1)、二十二碳六烯酸(22:6)、木蠟酸(24:0)及蠟酸(26:0)。
如上所提,聚山梨醇酯為可用作非離子界面活性劑和蛋白安定劑之脂肪酸酯。聚山梨醇酯20、聚山梨醇酯40、聚山梨醇酯60和聚山梨醇酯80係廣泛地應用在醫藥、化妝及食品工業上作為安定劑和乳化劑。聚山梨醇酯20主要包括聚氧乙烯(20)山梨醇酐之單月桂酸酯。聚山梨醇酯40主要包括聚氧乙烯(20)山梨醇酐之單棕櫚酸酯。聚山梨醇酯60主要包括聚氧乙烯(20)山梨醇酐之單硬脂酸酯。聚山梨醇酯80主要包括聚氧乙烯(20)山梨醇酐之單油酸酯。
商用級的聚山梨醇酯之品質係隨供應商而異。因此聚山梨醇酯通常為各種化學實體之混合物,主要係由聚氧乙烯(20)山梨醇酐單酯(如上述)所組成,在某些案例中,帶有異山梨醇酯汙染物。首基(在本案例中為聚氧乙烯(20)山梨醇酐)係包括聚山梨醇酐(失水山梨醇之混合物,包括1,4-失水山梨醇、1,5-失水山梨醇和1,4,3,6-二失水山梨醇),其在三個醇基上經取代,與三個聚氧乙烯基團形成醚鍵。第四個醇基團係經脂肪酸取代而形成脂肪酸酯。
在某些市售的聚山梨醇酯批次中,此聚山梨醇酯係含有異山
梨醇單酯。異山梨醇為葡萄糖的雜環衍生物,亦藉由山梨醇脫水所製備。其為二醇,亦即具有二個醇基團,可參與形成一或二個酯鍵。因此,例如,某些批次的聚山梨醇酯20可含有大量的異山梨醇月桂酸單-和二-酯。
除了首基變化,聚山梨醇酯之製備物係含有不同量的其他脂肪酸酯。例如,一特定來源的聚山梨醇酯20之分析顯示<10%辛酸,<10%癸酸,40-60%月桂酸,14-25%肉豆蔻酸,7-15%棕櫚酸,<11%油酸,<7%硬脂酸及<3%亞麻油酸。一批次聚山梨醇酯80之分析顯示<5%肉豆蔻酸,<16%棕櫚酸,>58%油酸,<6%硬脂酸和<18%亞麻油酸。
生醫藥通常係以非離子清潔劑如聚山梨醇酯20或聚山梨醇酯80調配。這些清潔劑幫助穩定大分子如抗體和其他蛋白,及幫助防止超分子三元複合物或其他聚集物形成。聚集物可能變成奈米粒子或10至100微米範圍或2至100微米範圍內的微可見顆粒,並干擾藥物產品的安定性及保存期限。因此,蛋白調配物的安定性在某些案例中係依照非離子清潔劑添加物的安定性而定。
「微可見顆粒」一詞係指看不見的顆粒,特別是在液體中,換言之,含有微可見顆粒,而非可見顆粒的溶液或其他液體,將不會出現混濁狀。微可見顆粒一般係包括該等粒徑100微米或更小之顆粒,但在某些案例中係包括150微米以下的顆粒(Narhi等人,“A critical review of analytical methods for subvisible and visible particles,”Curr Pharm Biotechnol 10(4):373-381(2009))。微可見顆粒可能為外來汙染物或蛋白聚集之結果。蛋白聚集物可能為柔軟及形狀上無定形的且因此可能難以使用習用的不透光度和顯微鏡法來偵測(Singh和Toler,“Monitoring of subvisible particles in therapeutic proteins,”Methods Mol Biol.2012;899:379-401)。微可見顆粒可能
包括,尤其是,矽汙染物(油性微滴)、游離脂肪酸(油性液滴)、聚集的蛋白(無定形顆粒)及/或蛋白/脂肪酸複合物(無定形顆粒)。
微可見顆粒可用任何一或多種不同的方法來偵測。USP標準係指定不透光度(方法1)和光學顯微鏡(方法2)方法。其他的方法包括流體影像分析、庫爾特計數(Coulter counting)和亞微米顆粒追蹤法。就不透光法(LO),係以當其在一流體槽中通過一光束時,以其投射在一光偵測器的陰影為基礎來計算顆粒。陰影之大小、形狀和逆向密度係依照顆粒相對於溶液的折射率之大小、形狀和差異而定。使用LO所偵測的尺寸下限範圍為約2微米。常用的LO裝置為HIAC儀器(Beckman Coulter,Brea,CA)。
不透光度因低估蛋白聚集物和其他無定形結構而遭受批評。流體影像分析,例如微流體造影(MFI)(Brightwell Technologies,Ottawa,Ontario)為一種偵測不規則形狀、易碎及透明的蛋白微可見顆粒,及區分矽微滴、氣泡和其他外來汙染物顆粒類型之更靈敏的方法(Sharma等人.,“Micro-flow imaging:Flow microscopy applied to sub-visible particulate analysis in protein formulations,”AAPS J.12(3):455-464(2010))。簡言之,MFI為流體顯微鏡技術,其中係攝取連續的明視野影像並即時分析。影像分析演算法係適用於區別氣泡、矽油微滴和蛋白聚集物。可分析低至約250微升及高至10毫升的體積。依照所用的系統,可偵測2至300微米,或0至70微米範圍內的顆粒(Id)。
FDA和其他政府管理機構已設立非經腸胃藥物調配物中所容許的微可見顆粒量之限制。主要的關鍵問題為環繞潛在致免疫性的不確定性及接受藥物之病患中的下游負面效應(Singh等人,“An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics,”J.Pharma.Sci.99(8):3302-21(2010))。就小體積的非經
腸胃藥物(亦即25mL或以下),藥典限制了大於或等於10微米之微可見顆粒(SVP)每容器不超過6,000個SVP,及大於等於25微米之SVP每容器不超過600個(United States Pharmacopeia and National Formulary(USP 33-NF 28),<788>Particulate Matter in Injections.)。就眼科藥物,SVP限制就10微米或更大者為每mL 50個,25微米或更大者為每mL 5個,及25微米或更大者為每mL 2個(Id於<789>Particulate Matter in Ophthalmic Solutions)。管理機構逐漸地考慮對製造商建立2微米或更大之SVP的規格(參見Singh等人,“An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics,”J.Pharm.Sci.99(8):3302-21(2010))。
術語「酯酶」係指催化酯鍵水解產生酸和醇之酵素。酯酶為種類多樣的酵素,包括乙醯酯酶(例如,乙醯膽鹼酯酶)、磷酯酶、核酸酶、巰酯酶、脂肪酶及其他羧酯水解酶(EC 3.1.因為其名稱係意味著一羧酯水解酶(亦稱為羧酯酶、羧酸酯水解酶及EC 3.1.1.1)使用水將一羧酸酯水解成醇和羧酸。脂肪酶為一種羧酯水解酶,其係催化脂質,包括三酸甘油酯、脂肪和油的水解,變成脂肪酸和醇首基。例如,三酸甘油酯係被脂肪酶如胰脂酶水解,形成單醯基甘油和二個脂肪酸鏈。
磷脂酶為將磷脂質水解成脂肪酸和其他產物的脂肪酶。磷脂酶係分成四大類:磷脂酶A包括磷脂酶A1和磷脂酶A2)、磷脂酶B,及磷二酯酶,磷二酯酶C和磷二酯酶D。除了典型的磷脂酶,類磷脂酶B酵素,其係存在溶酶體內腔中,被認為涉及脂質的催化作用。例如,類磷脂酶B 2(PLBL2),基於序列同源性和亞細胞內位置,被假定具有酯酶活性(Jensen等人,“Biochemical characterization and liposomal localization localization of the mannose-6-phosphate protein p76,”Biochem.J.402:449-458(2007))。
申請者們已發現與聚山梨醇酯(包括聚山梨醇酯20和聚山梨醇酯80)之去穩定有關的酵素活性。該活性經發現係與酯酶有關,例如包括表1之胺基酸序列的多肽。該等胜肽序列的BLAST研究顯示帶有推定的類磷脂酶B 2(PLBL2)之特性。PLBL2在倉鼠、大鼠、小鼠、人類和牛中為高度保守的。申請者們預想,PLBL2,其在特定程序下與在哺乳細胞株中所製造的某些種類之感興趣蛋白共純化,係具有造成聚山梨醇酯20和80水解之酯酶活性。申請者們預想,其他的酯酶種類,其中PLBL2為一實例,依照特定的感興趣蛋白及/或宿主細胞的遺傳/表觀遺傳背景,可能促成聚山梨醇酯不穩定性。
聚山梨醇酯80之酯水解最近已有報導(參見Labrenz,S.R.,“Ester hydrolysis of polysorbate 80 in mAb drug product:evidence in support of the hypothesized risk after observation of visible particulate in mAb formulations,”J.Pharma.Sci.103(8):2268-77(2014))。該報告提出,在含有IgG的調配物中有可見顆粒形成。作者假定,膠體IgG顆粒係由於聚山梨醇酯80之油酸酯酵素性水解所形成。雖然並無直接鑑別出酯酶,但作者假定,與IgG共純化的脂肪酶或tweenase,其造成了聚山梨醇酯80降解。有趣地,以聚山梨醇酯20調配的IgG並未形成顆粒且該假定的酯酶並未水解聚山梨醇酯20。作者提出,與IgG連結的假定脂肪酶並未影響飽和的C12脂肪酸(亦即月桂酸)(Id在7.)。
如文中所用,「脂肪酸酯水解百分率」係指已被水解的脂肪酸酯之莫耳比例。因為脂肪酸酯水解造成游離的脂肪酸釋放,因此脂肪酸酯水解百分率可藉由測量樣本中的游離脂肪酸來測定。因此,脂肪酸酯水解百分率可藉由計算游離脂肪酸的莫耳數除以脂肪酸莫耳數加上脂肪酯莫耳數之總和來測定。就聚山梨醇酯80和聚山梨醇酯20之水解百分率的情況,該數字可藉由計算游離油酸或月桂酸(亦即游離脂肪酸,亦稱為FFA)之莫耳數並除以剩餘的聚山梨醇酯的總莫耳數加上游離脂肪酸莫耳數來測定。
術語「酯酶抑制劑」係指任何減少、抑制或阻斷酯酶活性之
化學實體。申請者們預想,在含有脂肪酸酯界面活性劑之蛋白調配物中包含一酯酶抑制劑可幫助維持蛋白安定性及幫助減少SVP形成。本項技術中已知的常見酯酶包括orlistat(四氫利潑斯汀(tetrahydrolipistatin);一種羧酯酶2和脂蛋白脂肪酶之抑制劑)、二乙基傘形酮磷酸酯(diethylumbelliferyl phosphate)(一種膽固醇酯酶[脂肪酶A]抑制劑)、URB602([1-1’-聯苯]-3-基-胺甲酸環己酯;一種單醯甘油脂肪酶抑制劑),以及2-丁氧基苯基硼酸(一種激素-敏感的脂肪酶抑制劑)。在純化感興趣蛋白期間或在最終的調配物中包括一酯酶抑制劑預期係防止或減緩非離子清潔劑如聚山梨醇酯20和聚山梨醇酯80之水解,其轉而期望防止或減緩微可見顆粒形成。
術語「緩衝劑」係指穩定溶液之pH的緩衝溶液或緩衝試劑。緩衝劑一般係包括一弱酸及其共軛鹼,或一弱鹼及其共軛酸。在或接近最適pH時緩衝蛋白溶液係幫助確保適當的蛋白摺疊和功能。最佳的緩衝劑可例如藉由在各種pH測量蛋白(例如抗體)溶液的圓二色光譜來鑑別。圓二色光譜為一種用來測定蛋白結構變化(解摺疊)之方法(S.Beychok,“Circular dichroism of biological macromolecules,”Science 154(3754):1288-99(1966);Kemmer and Keller,“Nonlinear least-squares data fitting in Excel spreadsheets,”Nat Protoc.5(2):267-81(2010))。某些蛋白具有作為緩衝劑之能力(亦即所謂的「自我緩衝」)且因此不需要加入外來的緩衝劑來維持穩定的pH(Gokarn等人“Self-buffering antibody formulations,”J Pharm Sci.97(8):3051-66(2008))。常用的緩衝劑之實例係列於表2中。就更完整的生物溶液中緩衝劑之討論,請參見Irwin H.Segel,Biochemical Calculations(2nd ed.1976),或Remington,The Science and Practice of Pharmacy 244(Paul Beringer等人eds.,21st ed.2006)。
表2
術語「熱安定劑」係指包括在生醫藥調配物中,用以提供蛋白保護,對抗生物活性之熱降解、變性和腐敗的賦形劑或其他添加劑。一般而言,熱安定劑係幫助維持蛋白(例如抗體)之天然構形及防止在熱應力條件下聚集。熱應力可由冷凍-解凍循環、暴露於高溫或長時間儲存所產生。熱安定劑包括糖和其他碳水化合物、糖醇和多醇如聚乙二醇,以及胺基酸如甘胺酸。可用作熱安定劑之糖和糖醇的實例包括蔗糖、海藻糖和甘露醇。
術語「疏水作用介質」係指支撐結構和疏水基團的組合,其中該疏水基團係黏附於支撐結構。介質可為層析介質之形式,例如填充床管柱模式之微珠或其他顆粒、膜形式或可容納包括感興趣蛋白及污染物之液體的形式。因此,支撐結構係包括瓊脂微珠(例如sepharose)、矽石微珠、纖維素膜、纖維素微珠、親水性聚合物微珠及其類似物。疏水基團為介質的主要功能端,其係與疏水性分子和蛋白的疏水性界面結合。介質的疏水性程度可藉由選擇疏水性分子來控制。例如,下列分子可與介質基質相黏附,以產生疏水性漸增的疏水性作用介質,亦即從低疏水性至高疏水性:醚、丁基、辛基和苯基。烷基基團可為直鏈或支鏈。就疏水作用層析和介質之評論,請參見Kuczewski等人,“Development of a polishing step using a hydrophobic interaction membrane adsorber with a PER.C6®-derived
recombinant antibody,”Biotech.Bioeng.105(2):296-305(2010);Roettger和Ladisch,“Hydrophobic interaction chromatography,”Biotechnol Adv.7(1):15-29(1989);Shukla和Sanchayita,“Process for purifying proteins in a hydrophobic interaction chromatography flow-through fraction,”US Pat.No.7,427,659 B2,Sep.23,2008;及Müller和Franzreb,“Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions,”J.Chroma.A 1260:88-96(2012)。
疏水作用介質係用於稱為疏水作用層析之方法中和用以將感興趣蛋白與產物以及製程相關的污染物分開。當感興趣蛋白係於或從宿主細胞中製造及/或純化時,產物和製程相關的污染物係指宿主細胞(HCP)。來自中國倉鼠卵巢(CHO)細胞之HCP,一種常見的生物治療劑生產宿主細胞,可稱為CHOP(中國倉鼠卵巢蛋白)。在某些案例中,係將一含有感興趣蛋白(POI)和HCP之混合物施用於緩衝劑中的HIC介質,其係設計用來提高POI中疏水基團與HIC介質的疏水基團之結合。POI係藉由結合疏水性基團黏附於HIC介質,且某些HCP無法結合並出現在沖洗緩衝劑中。然後使用一促進POI從HIC疏水基團解離之緩衝劑來溶離POI,藉此將POI與不欲的HCP分離。
在某些案例中,HIC疏水基團係優先結合某些污染物,例如HCP,而POI係從HIC液流來收集。本處,申請者們係使用流通模式之HIC,其中污染物HCP之群族,包括酯酶活性,仍與疏水作用介質結合。
在某些案例中,可使用設計用來結合具有親脂屬性之特異性蛋白的親和層析,代替HIC或與HIC一起使用。因為某些酯酶,例如一般而言脂肪酶,或特言之磷脂酶,係與三酸甘油酯或磷脂質結合,可使用模擬該等脂質的分子來捕捉酯酶。例如,「肉豆蔻醯化的ADP核糖基化因子
1」(亦稱為「myrARF1」)可用來捕捉脂肪酶並讓POI保持未結合而流過。就製備myrARF1親和管柱,myrARF1可經由N-羥基琥珀醯亞胺活化與Q-sepharose結合(參見Morgan等人.,“Identification of phospholipase B from Dictyostelium discoideum reveals a new lipase family present in mammals,flies and nematodes,but not yeast,”Biochem.J.382:441-449(2004))。
如文中所用,術語「容器」係指包括注射器(如同預充填注射器)、小瓶(例如用於儲存生醫藥調配物之玻璃小瓶),或任何器皿,或係指含有一固體、液體或氣體物質。本處,術語「容器」係用來指,尤其是,含有生醫藥調配物的器皿,如FDA和USP在其指南中就微可見顆粒之限制中所用的術語(United States Pharmacopeia and National Formulary(USP 33-NF 28),<788>Particulate Matter in Injections)。
圖1係描繪一層析圖,其係顯示(A)較低品質的聚山梨醇酯20(PS20-A)、(B)較高品質的聚山梨醇酯20(PS20-B)及(C)聚山梨醇酯80(PS80)內之不同分子種類的相對量。
圖2係描繪一顯示磷脂酶活性(以百萬分率表示)及聚山梨醇酯20降解百分率之間的相關性之圖。
實例1:測定蛋白樣本中之微可見顆粒
FDA對於非經腸胃藥物產品中微可見顆粒之要求,就粒徑10微米之顆粒為每容器6,000個粒子,及粒徑25微米之顆粒為每容器600個粒子。目前,對於粒徑小於10微米的粒子並無規範存在,但FDA已要求測量2至10微米的粒子。
使用HIAC不透光度及Brightwell微-流體造影(MFI)來測量粒徑大於1微米之顆粒。HIAC係結合不透光度與雷射光散射,能在一移動的液流中偵測及計算範圍從500nm-350μm之粒子。以偵測器中所產生的電壓反應為基礎來區分粒子大小並以電壓反應為基礎分排預測的尺寸範圍。
就HIAC分析,將含有150mg/mL單株抗體之來自生產線的樣本(GMP批次)集成25mL的總體積。就各集中的樣本,產生每個樣本5毫升之3個讀數。亦以HIAC檢驗相同的150mg/mL抗體調配物之實驗室樣本。將來自至少3個小瓶的樣本(2.5mL/小瓶),7個1-mL注射器(1.14mL/注射器)或5個2.25-mL注射器(2mL/注射器)集中,並產生每個讀數1毫升之3個讀數。使用HIAC 9703和HIAC 8000A儀器(Hach Company,Loveland, CO),其係分別使用HRLD 400探針(其係讀取每mL至高18,000個累積計數)及MC05探針(其係讀取每mL至高10,000個累積計數),來產生不透光度讀數。
使用比HIAC不透光法更少材料的MFI法(亦即1mL的調配物,或1穩定小瓶或注射器)並得到比HIAC更高的微粒數目。因為MFI係以顯微鏡技術為基礎,該方法對半透明的蛋白微粒更敏感且能區分預充填注射器樣本之矽油微滴/氣泡與蛋白微粒。於含有150mg/mL單株抗體之實驗室樣本上進行MFI(如同HIAC分析)。就MFI,係產生每個讀數1毫升之1個讀數。。
實例2:無微粒規格之失敗
於5℃儲存6個月後,將二批GMP之150mg/mL抗體調配物就微可見顆粒經由不透光度進行評估。調配物係包括0.02%聚山梨醇酯及
150mg/mL抗體。使用親和力捕捉和離子交換層析之組合從CHO細胞培養中純化抗體。並未使用HIC。結果係如表3所示。
實例3:脂肪酸之品質和純度影響SVP形成
非離子清潔劑(聚山梨醇酯20和聚山梨醇酯80)之性質和品質對蛋白調配物中微可見顆粒形成之影響,係藉由以(i)來自A供應商之聚山梨醇酯20A(PS20-A),(ii)來自B供應商之聚山梨醇酯20 B(PS20-B),或(iii)聚山梨醇酯80(PS80)調配抗體來進行試驗。表4係顯示來自下列配方之調配藥物物質的HIAC SVP(10μm SVPs)數據:20mM組胺酸(pH 5.9),12.5mM乙酸鹽,0.02%非離子清潔劑(聚山梨醇酯),5%蔗糖(w/v),25mM精胺酸和150mg/mL抗體,以2.5mL填入附有West S2-F451 4432/50 GRY B2-40塞子之5mL第1型硼矽酸玻璃小瓶。
本處,含有聚山梨醇酯80之調配藥物物質(「mAb1」)顯現比該等含有聚山梨醇酯20之調配物明顯較少的SVP形成。再者,含有來自B供應商之聚山梨醇酯20(PS20-B)的調配物,(PS20-B)為一種較高等級的聚山梨醇酯80,比該等含有來自A供應商之聚山梨醇酯20(PS20-A;一種較
低等級的聚山梨醇酯20)的調配物顯現較少的SVP形成。PS20-A和PS20-B之比較分析顯示,PS20-B具有高於PS20-A 5-10%總酯類,PS20-A具有比PS20-B更多的異山梨醇月桂酸酯(圖1)。
在脂肪酸酯之降解促進了蛋白不穩定性和後續的SVP形成之假設下,比較聚山梨醇酯20和聚山梨醇酯80於無HIC下製備含有0.02%非離子清潔劑(聚山梨醇酯)之150mg/mL抗體(mAb1)調配物中的安定性[方法3,參見下文及表8])。以質譜測量剩餘酯類(單-和二-酯類)的相對量。樣本於5℃儲存6個月或於45℃儲存2個月後,觀察到聚山梨醇酯20之酯組份明顯降解。在相同的條件下觀察到聚山梨醇酯80較小範圍的降解(參見表5)。這些結果係與SVP顆粒形成的觀察相關。
於相同的條件下使用測量游離脂肪酸和脂肪酸酯的相對量的質譜,來測定與150mg/mL抗體(mAb1)調配之聚山梨醇酯20和聚山梨醇酯80的降解速率(如上表5所述)。使用下列公式測定酯降解百分比:
其中T0=零點時間,T1=實驗條件下的時間(亦即45℃下2個月;5℃下6個月),及POE=聚氧化乙烯。表6係顯示在150mg/mL抗體調配物中聚山梨醇酯20和聚山梨醇酯80的降解百分比。mAb1(但非所有的試驗抗體)之聚山梨醇酯80降解速率始終一致地低於其他相同抗體調配物中聚山梨醇酯
20的降解速率。(無HIC下所製造的MAb3調配物顯示PS80的降解大於PS20降解)。
實例4:聚山梨醇酯20降解活性
就測定造成聚山梨醇酯20降解之病源劑,係將緩衝的抗體(150mg/mL)以10kDa過濾分成二個溶離份:蛋白溶離份,及一緩衝劑溶離份。將這二個溶離份,以及完整的緩衝抗體加入0.2%(w/v)的超精細聚山梨醇酯20(PS20-B)並於45℃施予應力高達14天。此研究顯示(表7,A部份,第1-2列),蛋白溶離份,非緩衝劑溶離份,對山梨醇酐月桂酸酯(亦即聚山梨醇酯20之主要組份)具有降解效應,且該聚山梨醇酯20之降解係與抗體的濃度相關聯(表7,B部份,第3-4列)。
實例5:疏水作用層析
於CHO細胞宿主中製造抗體並使用二種方法之一純化(參見表8)。在一案例中,此抗體係使用離子交換作為精細純化步驟(polishing step)(捕捉步驟,離子交換1,離子交換2;「方法3」)。在其他的案例中,用於純化抗體的其中一個精細純化步驟為疏水作用層析作為另外的精細純化步驟(捕捉步驟,離子交換1,疏水作用;「方法6」)。以方法3或方法6純化的抗體,
係以150mg/mL調配於20mM組胺酸(pH 5.9)、12.5mM乙酸鹽、5%蔗糖、25mM精胺酸及0.02%聚山梨醇酯20中,並於45℃強降解高達14天。在第14天,大約98%的山梨醇酐月桂酸酯(亦即完整的酯)留在含有使用方法6純化的抗體之調配物中,而僅28%的山梨醇酐月桂酸酯留在含有使用方法3純化的抗體之調配物中。因此,疏水作用層析(HIC)步驟可能移除了促成聚山梨醇酯降解的活性。
評估大量處理步驟在移除假定的聚山梨醇酯降解因素(假定的酯酶活性)中的角色。將CHO細胞所產生的抗體進行連續的純化步驟,並在各步驟評估聚山梨醇酯20的安定性。一組的實驗結果係如表8所示,其係記錄在各步驟或步驟順序之完整的聚山梨醇酯20百分比。完整的聚山梨醇酯20百分比預測係與污染的酯酶活性之量成反比。
將多種不同抗體就相關的聚山梨醇酯降解活性(酯酶)和HIC對該活性的效應進行試驗。在各案例中,係偵測聚山梨醇酯20降解活性,且該活性實際上係藉由併入HIC純化步驟而消除(表9)。
揭露HIC在微可見顆粒形成中的角色。無意受限於理論,吾等假設非離子清潔劑在蛋白(例如抗體)調配物中的安定性係直接與微可見顆粒形成相關。界面活性劑活性的喪失可能讓蛋白聚集並形成微可見顆粒。另外或另一種選擇,由降解山梨醇酐脂肪酸酯所釋放的脂肪酸亦可能造成微可見顆粒形成為不能混溶的脂肪酸微滴。因此,於以HIC(例如,方法6)或無HIC(例如,方法方法3)所製造的藥物物質(150mg/mL抗體溶於20mM組胺酸(pH 5.9)、12.5mM乙酸鹽、5%蔗糖、25mM精胺酸及0.02%聚山梨醇酯20)中計算粒徑微10微米之可見顆粒的量。結果(表10中所示)顯示應用HIC步驟明顯地降低藥物物質中SVP形成(以10-倍以下的級數),即使是使用較低品質的PS20-A。
實例6:聚山梨醇酯降解分析
聚山梨醇酯20的降解係使用數個方法中之一或多個來檢測。第一種方法係應用酵素性比色分析來定量非酯化脂肪酸(NEFA)。使用NEFA-HR(2)套組(Wako Diagnostics,Richmond,VA)來偵測含有聚山梨醇酯之調配藥物物質中的脂肪酸。簡言之,將樣本與ATP和輔酶A(CoA)在醯基-CoA合成酶(ACS)的存在下混合。可用的(游離)脂肪酸與CoA反應形成醯基-CoA。醯基-CoA產物與氧及醯基-CoA氧化酶反應,產生反式-2,3-去氫醯基-CoA和過氧化氫。過氧化酶催化過氧化氫與4-胺基安替比林(4-aminoantipyrine)和
3-甲基-N-乙基-N-(β-羥乙基)-苯胺之反應,形成藍紫著色(550nm之最大吸收度)。樣本中NEFA的量係與著色的量成比例。就NEFA比色分析之詳細說明請參見,Duncombe,“The Colorimetric Micro-Determination of Non-Esterified Fatty Acids in Plasma,”Clin Chim Acta.9:122-5(1964);Itaya and Ui,“Colorimetric Determination of Free Fatty Acids in Biological Fluids,”J.Lipid Res.6:16-20(1965);Novak,M.,“Colorimetric Ultramicro Method for the Determination of Free Fatty Acids,”J.Lipid Res.6:431-3(1965);及Elphick,M.C.,“Modified Colorimetric Ultramicro Method for Estimating NEFA in Serum,”J.Clin.Pathol.21(5):567-70(1968)。
將含有感興趣蛋白之試驗樣本(及假定的宿主細胞蛋白污染物)施用於10kDa分子量截斷過濾器。將大於100g/L蛋白之滯留物回收於10mM組胺酸(pH 6.0)中並加入聚山梨醇酯20得到一100g/L蛋白,0.8%(w/v)聚山梨醇酯20,10mM組胺酸pH 6.0的試驗樣本(t最初)。將試驗樣本置於45℃下44小時(t最終)。某些樣本係加入油酸用以評估樣本中NEFA的回收率。如下計算聚山梨醇酯的百分比:
第二種測定聚山梨醇酯降解之方法係以質譜為基礎。使用LC/MS分析,此分析能測量及比較聚山梨醇酯中最初的酯類百分比及在45℃於不同的時間點培養後的剩餘酯類百分比。包括根據方法6所製造的MAb1(無HIC並含PS降解活性)及根據方法3所製造的mAb1(使用HIC
步驟且無PS降解活性)(參見實例3和5,以及表8)分別作為負對照和正對照。
簡言之,將15mg的抗體樣本(約5-10mg/mL,或7mg/mL±1.5mg/mL)施用於超過濾器(Amicon Ultra 50K,Millipore,Billerica,MA)並以14,000 x g離心15分鐘或直到剩餘的體積些微在裝置所標示的100μL以下。將1μL的10%聚山梨醇酯加到含有濃縮蛋白的旋轉過濾器中,接著渦旋。藉由以1000g反轉離心5分鐘回收樣本,將整個量回收到收集試管中。
測量回收體積並計算聚山梨醇酯濃度。將1μL的各回收樣本於個別的試管中稀釋100-倍,並以Nanodrop 1000(Thermo Fisher Scientific,Inc.,Wilmington,DE)測量蛋白濃度。然後以組胺酸緩衝劑(10mM,pH 6.0)及聚山梨醇酯儲存液稀釋樣本,達到150mg/mL蛋白濃度及0.2%(w/w)聚山梨醇酯濃度。
從各樣本保留零點時間(T0)樣本(2μL)並儲存於-80℃直到使用。將試驗樣本於氬氣下密封並於45℃培養引發降解,在所述的時間點移出,進行試驗。在各時間點從各樣本取出2μL並以水稀釋至100μL。若需儲存,則將各稀釋的時間點樣本存放於-80℃。於各時間點收集後,以氬氣填入樣本試管的頂部空間,將樣本容器密封,並將樣本放回培養箱中再繼續培養。
使用離子交換管柱(Oasis MAX管柱,30μm,2.1mm x 20mm;Waters Corporation,Milford,MA)分析時間點樣本,接著在t=5分鐘時用逆相層析(ACQUITY UPLC® BEH 130 C4管柱,1.7μm,2.1mm×50mm;Waters Corporation,Milford,MA)。逆向輸出係與一質譜儀(Thermo Q-Exactive mass spectrometer;Thermo Fisher Scientific,Inc.,Wilmington,DE)相連接。層析條件係如表11中所述。
在第一次注射之前,將系統以99%移動相A(0.1%甲酸之水中溶液)用0.1mL/分鐘的流速平衡40分鐘。使用水作為空白注射。質譜儀參數係如下:質量範圍150-2000 m/z;加熱器溫度250℃;電壓3.8kv;鞘氣40;輔柱氣體10;毛細管溫度350℃;及S-lens 50。當不需要質譜為基礎的鑑定時,電霧式偵測(CAD)係使用一分析流速及一100℃去溶劑化溫度(Lísa等人,“Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation,”J Chromatogr A.1176(1-2):135-42(2007);Plante等人,“The use of charged aerosol detection with HPLC for the measurement of lipids,”Methods Mol Biol.579:469-82(2009))。
就估算聚氧化乙烯(POE)之總量,係使用300-800 m/z範圍提取質量色譜圖,以避免來自降解蛋白的干擾,並將來自約8-15分鐘的波峰叢積分。就CAD色譜圖,係將來自約8-15分鐘的第一POE波峰叢直接積分(再次,滯留時間可能些微移動)。當有其他物類與POE共溶離時,則調整基線使其對波峰面積的影響減到最小。
就估算POE酯類的總量,係使用300-2000 m/z範圍提取質量色譜圖,並將來自約17-40分鐘的波峰叢積分。就CAD色譜圖,係將來自約17-40分鐘的POE酯類波峰叢直接積分。
POE酯類的百分比係根據方程式3來計算:
剩餘的POE酯類百分比係根據方程式4來計算:
實例7:脂肪酶和脂肪酶抑制劑
在CHO細胞培養所產生的示例抗體的HIC純化期間,追蹤聚山梨醇酯降解活性。將部份純化的CHO細胞萃取物用於HIC(苯基-sepharose)。收集含有幾乎所有抗體之液流並分析聚山梨醇酯降解活性。在該液流溶離份中並無觀察到聚山梨醇酯降解活性。從HIC介質中脫出HIC結合的溶離份及隨後進行100kDa截斷超過濾/透析。未過濾脫除的溶離份含有9.9%聚山梨醇酯降解活性,過濾器滲濾物含有1.3%聚山梨醇酯降解活
性及5%抗體產率,而過濾器滯留物含有7.4%聚山梨醇酯降解活性及95%抗體產率。
藉由將一脂肪酶抑制劑與加入聚山梨醇酯20之聚山梨醇酯降解活性溶離份混合,檢測聚山梨醇酯降解活性是否為脂肪酶。表12係代表顯示因脂肪酶抑制劑,相對於對照組(帶有相關的聚山梨醇酯降解活性之抗體加上聚山梨醇酯20無脂肪酶抑制劑)聚山梨醇酯降解活性下降之數據。脂肪酶抑制劑降低或消除了與抗體有關的聚山梨醇酯降解活性。
實例8:推定的類磷脂酶B 2活性
將含有聚山梨醇酯降解活性之CHO-產生的重組抗體HIC脫除溶離份(非流通)以結合/溶離模式進行另外的HIC,其中該抗體係以淺層梯度溶離。檢測溶離份之PS20降解活性並將該等具有此活性之溶離份進行(i)完整的質譜,(ii)自然粒徑排阻層析UV分析(SEC-UV),及(iii)胰蛋白酶消化接著LC-MS和蛋白體研究分析。逆相液體層析溶離份(疏水性最大的溶離份)顯示一未知的物類在疏水性溶離份L8中。含有聚山梨醇酯20及加入L8(1:100)的調配抗體樣本在第8天顯示20%聚山梨醇酯降解。在疏水性較低的溶離份L3-L7,以及L8中,偵測到抗體單體和游離的輕鏈。在溶離份L5-L8中偵測到抗體二聚物。
將HIC脫除溶離份L3-L9於自然條件下進行SEC-UV。溶離份L8分離成首先出現的三個主要波峰,以及後來出現的二個次要波峰並
代表較小的物類。首先脫離管柱的波峰含有抗體二聚物及其他寡聚物。第二波峰含有抗體單體。第三波峰含有具有聚山梨醇酯降解活性之物類。因此,此降解活性可與抗體分離且比抗體單體具較小的分子旋轉。
亦將HIC溶離份L8進行散彈式蛋白體分析。簡言之,將L8溶離份繼續地(i)保留在10kDa過濾器上,(ii)於6M胍-HCl、100mM Tris-HCl,pH 7.5中重組,(iii)於50℃以10mM叁(2-羧乙基)膦鹽酸鹽)(TCEP)處理30分鐘,接著於黑暗中在室溫以20mM吲哚-3-乙酸(IAA)處理30分鐘,(iv)稀釋8倍並以1份胰蛋白酶對20份樣本,加入胰蛋白酶及於37℃培養4小時,及然後(v)進行LC-MS/MS分析。生成的胜肽序列之蛋白體研究顯示五種與L8有關的蛋白:(i)推定的類磷脂酶B 2(代表15%的高峰溶離份)、(ii)peroxiredoxin-1、(iii)熱休克27kDa蛋白1、(iv)後期促進複合體次單元1,及(v)U3小核糖核蛋白MPP10蛋白。
聚山梨醇酯降解活性的量係與存在的類磷脂酶B2(PLBL2)豐度(abundance)相關。在各種純化步驟中,PLBL2的量係經由nanoLC-MS或LC-MS來測定,並測定聚山梨醇酯降解的速率(加入PS20溶離份)。以來自脂肪酶與藥物物質(亦即抗體)之胜肽強度的比率為基礎計算PLBL2。結果係如圖2和表13所示。
1以濃度調整降解速率。
2以來自脂肪酶與藥物物質之胜肽強度的比率為基礎計算磷脂酶的豐度。
<110> Regeneron Pharmaceuticals,Inc.
<120> 減少醫藥調配物中微可見顆粒之方法
<130> T0030TW01
<150> US 62/061,797
<151> 2014-10-09
<160> 31
<170> PatentIn version 3.5
<210> 1
<211> 17
<212> PRT
<213> 倉鼠
<400> 1
<210> 2
<211> 22
<212> PRT
<213> 倉鼠
<400> 2
<210> 3
<211> 12
<212> PRT
<213> 倉鼠
<400> 3
<210> 4
<211> 13
<212> PRT
<213> 倉鼠
<400> 4
<210> 5
<211> 17
<212> PRT
<213> 倉鼠
<400> 5
<210> 6
<211> 20
<212> PRT
<213> 倉鼠
<400> 6
<210> 7
<211> 19
<212> PRT
<213> 倉鼠
<400> 7
<210> 8
<211> 21
<212> PRT
<213> 倉鼠
<400> 8
<210> 9
<211> 13
<212> PRT
<213> 倉鼠
<400> 9
<210> 10
<211> 13
<212> PRT
<213> 倉鼠
<400> 10
<210> 11
<211> 13
<212> PRT
<213> 倉鼠
<400> 11
<210> 12
<211> 19
<212> PRT
<213> 倉鼠
<400> 12
<210> 13
<211> 12
<212> PRT
<213> 倉鼠
<400> 13
<210> 14
<211> 22
<212> PRT
<213> 倉鼠
<400> 14
<210> 15
<211> 14
<212> PRT
<213> 倉鼠
<400> 15
<210> 16
<211> 16
<212> PRT
<213> 倉鼠
<400> 16
<210> 17
<211> 18
<212> PRT
<213> 倉鼠
<400> 17
<210> 18
<211> 9
<212> PRT
<213> 倉鼠
<400> 18
<210> 19
<211> 9
<212> PRT
<213> 倉鼠
<400> 19
<210> 20
<211> 10
<212> PRT
<213> 倉鼠
<400> 20
<210> 21
<211> 19
<212> PRT
<213> 倉鼠
<400> 21
<210> 22
<211> 22
<212> PRT
<213> 倉鼠
<400> 22
<210> 23
<211> 12
<212> PRT
<213> 倉鼠
<400> 23
<210> 24
<211> 13
<212> PRT
<213> 倉鼠
<400> 24
<210> 25
<211> 17
<212> PRT
<213> 倉鼠
<400> 25
<210> 26
<211> 21
<212> PRT
<213> 倉鼠
<400> 26
<210> 27
<211> 19
<212> PRT
<213> 倉鼠
<400> 27
<210> 28
<211> 19
<212> PRT
<213> 倉鼠
<400> 28
<210> 29
<211> 18
<212> PRT
<213> 倉鼠
<400> 29
<210> 30
<211> 14
<212> PRT
<213> 倉鼠
<400> 30
<210> 31
<211> 9
<212> PRT
<213> 倉鼠
<400> 31
Claims (31)
- 一種組成物,其包含(a)一蛋白,(b)一完整的脂肪酸酯,及(c)(i)不超過400個10微米或更大粒徑之微可見顆粒,或(ii)不超過10,000個2微米或更大粒徑之微可見顆粒。
- 如請求項1之組成物,其中該蛋白為一抗體。
- 如請求項2之組成物,其中該抗體的濃度為至少30mg/mL,至少40mg/mL,至少80mg/mL,或至少100mg/mL。
- 如請求項1至3中任一項之組成物,其中該脂肪酸酯為一聚氧乙烯山梨醇酐或異山梨醇(iso-sorbide)脂肪酸單-或二-酯。
- 如請求項1至3中任一項之組成物,其中該脂肪酸酯為聚氧乙烯(20)山梨醇酐月桂酸酯。
- 如請求項1至3中任一項之組成物,其中該組成物並無可偵測的酯酶活性。
- 如請求項6之組成物,其中該酯酶為羧酸酯水解酶(EC 3.1.1)。
- 如請求項7之組成物,其中該羧酸酯水解酶為類-磷脂酶B 2(PLBL2)。
- 如請求項1至3中任一項之組成物,係包含一緩衝劑。
- 如請求項1至3中任一項之組成物,係包含一熱安定劑。
- 如請求項10之組成物,係包含一緩衝劑。
- 如請求項1至3中任一項之組成物,其中該組成物係儲存於5℃至少6個月。
- 如請求項12之組成物,其中該肪酸酯與游離的脂肪酸之莫耳比係大於4比1。
- 如請求項13之組成物,其中該肪酸酯與游離的脂肪酸之莫耳比係17:3,9:1,或19:1。
- 一種製造一安定的蛋白調配物之方法,其包括於一容器中填入調配的藥物物質之步驟,其基本上無酯酶活性且其含有一蛋白和一脂肪酸酯,其中該調配的藥物物質基本上無微可見顆粒。
- 如請求項15之方法,其中該調配的藥物物質係藉由將一含有蛋白和酯酶之組成物與疏水作用介質接觸,並收集蛋白所得來。
- 如請求項16之方法,其中該疏水作用介質為一疏水性相互作用層析(HIC)樹脂或HIC膜,其任一係包括黏附至受質之疏水性基團。
- 如請求項17之方法,其中從該疏水性基團係由下列組成之群中選出:苯基、醚、丁基、辛基、直鏈烷、支鏈烷、8-碳烷和18-碳烷。
- 如請求項16之方法,係包括在從疏水作用介質收集蛋白後,濃縮蛋白之步驟。
- 如請求項19之方法,係包括將一脂肪酸與該濃縮蛋白組合之步驟。
- 如請求項20之方法,係包括將一緩衝劑和一熱安定劑與該濃縮蛋白組合之步驟。
- 如請求項15之方法,其中組成物係於5℃儲存至少6個月。
- 如請求項15之方法,其中該容器係含有少於400個具有粒徑10微米之顆粒。
- 如請求項15之方法,其中其中該容器係含有少於10,000個具有粒徑2微米之顆粒。
- 如請求項15至24中任一項之方法,其中該蛋白為抗體。
- 如請求項25之方法,其中該抗體為重組的人類單株抗體。
- 如請求項15至24中任一項之方法,其中該酯酶為羧酸酯水解酶。
- 如請求項27之方法,其中該羧酸酯水解酶為類-磷脂酶B 2。
- 如請求項28之方法,其中該類-磷脂酶B 2係包含SEQ ID NO:1之胺基酸序列。
- 如請求項15至24中任一項之方法,其中該脂肪酸酯為聚氧乙烯(20)山梨醇酐月桂酸酯。
- 如請求項30之方法,其中該聚氧乙烯(20)山梨醇酐酯為山梨醇酯20或山梨醇酯80。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462061797P | 2014-10-09 | 2014-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201628649A true TW201628649A (zh) | 2016-08-16 |
Family
ID=54364685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104132942A TW201628649A (zh) | 2014-10-09 | 2015-10-07 | 減少醫藥調配物中微可見顆粒之方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10342876B2 (zh) |
AR (1) | AR102198A1 (zh) |
TW (1) | TW201628649A (zh) |
WO (1) | WO2016057739A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111201042A (zh) * | 2017-09-19 | 2020-05-26 | 里珍纳龙药品有限公司 | 减少粒子形成的方法以及由其形成的组合物 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201628649A (zh) | 2014-10-09 | 2016-08-16 | 再生元醫藥公司 | 減少醫藥調配物中微可見顆粒之方法 |
KR20230041834A (ko) | 2016-08-16 | 2023-03-24 | 리제너론 파아마슈티컬스, 인크. | 혼합물로부터 개별 항체들을 정량하는 방법 |
WO2018039499A1 (en) * | 2016-08-24 | 2018-03-01 | Regeneron Pharmaceuticals, Inc. | Host cell protein modification |
MX2019003890A (es) | 2016-10-06 | 2019-08-12 | Glaxosmithkline Ip Dev Ltd | Anticuerpos con union reducida a impurezas de proceso. |
WO2018081203A1 (en) | 2016-10-25 | 2018-05-03 | Regeneron Pharmaceuticals, Inc. | Methods and systems for chromatography data analysis |
EP3560945A1 (en) * | 2018-04-27 | 2019-10-30 | F. Hoffmann-La Roche AG | Methods for purification of polypeptides using polysorbates |
AU2019299321A1 (en) | 2018-07-02 | 2021-01-07 | Regeneron Pharmaceuticals, Inc. | Use of multiple hydrophobic interaction chromatography for preparing a polypeptide from a mixture |
MX2021010558A (es) | 2019-03-05 | 2021-10-13 | Regeneron Pharma | Albumina de suero humano en formulaciones. |
WO2020227126A1 (en) * | 2019-05-03 | 2020-11-12 | Lonza Ltd | Determination of contaminants in cell-based products with flow imaging microscopy |
EP4096802A4 (en) * | 2020-01-29 | 2024-07-03 | Merck Sharp & Dohme Llc | METHOD FOR SEPARATION OF HOST CELL LIPASES FROM ANTI-LAG3 ANTIBODY PRODUCTION |
JP2023516949A (ja) * | 2020-02-27 | 2023-04-21 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 活性に基づく宿主細胞タンパク質プロファイリング法 |
US20240002430A1 (en) | 2020-08-07 | 2024-01-04 | Hoffman-La Roche Inc. | Method for producing protein compositions |
IL310285A (en) | 2021-08-13 | 2024-03-01 | Biotest Ag | Fibrinogen preparations and preparation methods |
WO2023215267A1 (en) | 2022-05-02 | 2023-11-09 | Regeneron Pharmaceuticals, Inc. | Anti-interleukin-4 receptor (il-4r) antibody formulations |
WO2023215750A2 (en) | 2022-05-02 | 2023-11-09 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipase activity |
WO2024184444A1 (en) * | 2023-03-08 | 2024-09-12 | Immunovant Sciences Gmbh | High concentration protein formulations with polysorbate excipients and methods of making the same |
CN116563244B (zh) * | 2023-05-11 | 2024-04-23 | 中国食品药品检定研究院 | 一种亚可见颗粒质控方法、系统及设备 |
CN116563245B (zh) * | 2023-05-11 | 2024-09-27 | 中国食品药品检定研究院 | 一种基于粒径大小的亚可见颗粒计算方法、系统及设备 |
Family Cites Families (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190864A (en) | 1986-04-15 | 1993-03-02 | Northeastern University | Enzyme amplification by using free enzyme to release enzyme from an immobilized enzyme material |
US4801726A (en) | 1986-04-15 | 1989-01-31 | Northeastern University | Repetitive hit-and-run immunoassay and stable support-analyte conjugates; applied to T-2 toxin |
US4937188A (en) | 1986-04-15 | 1990-06-26 | Northeastern University | Enzyme activity amplification method for increasing assay sensitivity |
US5412083A (en) | 1992-04-16 | 1995-05-02 | Northeastern University | Carbohydrate heterobifunctional cross-linking reagent |
US5429746A (en) | 1994-02-22 | 1995-07-04 | Smith Kline Beecham Corporation | Antibody purification |
AU4986596A (en) | 1995-02-16 | 1996-09-04 | Massachusetts Health Research Institute, Inc. | Purified tetanus toxoid and toxin |
US5641870A (en) | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
DE69922740T2 (de) | 1998-05-11 | 2005-12-08 | Tosoh Corp., Shinnanyo | Methode zur Trennung von Nucleinsäuren mittels Flüssigchromatographie |
US7303746B2 (en) | 1999-06-08 | 2007-12-04 | Regeneron Pharmaceuticals, Inc. | Methods of treating eye disorders with modified chimeric polypeptides |
US7070959B1 (en) | 1999-06-08 | 2006-07-04 | Regeneron Pharmaceuticals, Inc. | Modified chimeric polypeptides with improved pharmacokinetic properties |
US7306799B2 (en) | 1999-06-08 | 2007-12-11 | Regeneron Pharmaceuticals, Inc. | Use of VEGF inhibitors for treatment of eye disorders |
US7087411B2 (en) | 1999-06-08 | 2006-08-08 | Regeneron Pharmaceuticals, Inc. | Fusion protein capable of binding VEGF |
DE60139944D1 (de) | 2000-10-12 | 2009-10-29 | Genentech Inc | Niederviskose konzentrierte proteinformulierungen |
US20020064860A1 (en) | 2000-11-29 | 2002-05-30 | Schering Corporation | Method for purifying adenoviruses |
US7101982B2 (en) | 2001-03-30 | 2006-09-05 | Immunex Corporation | Control of ph transitions during chromatography |
ES2536709T3 (es) | 2002-02-14 | 2015-05-27 | Chugai Seiyaku Kabushiki Kaisha | Utilización de ácido acético para eliminar los problemas inducidos por el ión Fe en las formulaciones de anticuerpos anti-HM1.24 o anti-IL6R |
CA2496918A1 (en) | 2002-08-28 | 2004-03-11 | Introgen Therapeutics Inc. | Chromatographic methods for adenovirus purification |
DK1545574T3 (da) | 2002-09-13 | 2014-09-08 | Biogen Idec Inc | Fremgangsmåde til rensning af polypeptider ved simuleret moving-bed-chromatografi |
WO2004087761A1 (ja) | 2003-03-31 | 2004-10-14 | Kirin Beer Kabushiki Kaisha | ヒトモノクローナル抗体およびヒトポリクローナル抗体の精製 |
EP1641827A2 (en) | 2003-06-27 | 2006-04-05 | Biogen Idec MA Inc. | Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous antibody-solutions |
AU2004285928B2 (en) | 2003-10-24 | 2012-02-02 | Amgen, Inc. | Process for purifying proteins in a hydrophobic interaction chromatography flow-through fraction |
US8084032B2 (en) | 2004-01-21 | 2011-12-27 | Ajinomoto Co., Inc. | Purification method which prevents denaturation of an antibody |
SE0400501D0 (sv) | 2004-02-27 | 2004-02-27 | Amersham Biosciences Ab | Antibody purification |
AU2005216847B2 (en) | 2004-02-27 | 2010-04-01 | Cytiva Bioprocess R&D Ab | A process for the purification of antibodies |
SE0400886D0 (sv) | 2004-04-02 | 2004-04-02 | Amersham Biosciences Ab | Process of purification |
US7795405B2 (en) | 2004-08-09 | 2010-09-14 | Guild Associates, Inc. | Procedure for the fractionation of proteins by using sequential ion exchange and hydrophobic interaction chromatography as prefractionation steps before analysis by two dimensional electrophoresis |
US20060027454A1 (en) | 2004-08-09 | 2006-02-09 | Dinovo Augustine | Procedure for the fractionation of proteins by using sequential ion exchange and hydrophobic interaction chromatography as prefractionation steps before analysis by two dimensional electrophoresis |
DK1827691T3 (en) | 2004-10-21 | 2017-02-13 | Ge Healthcare Bioprocess R&D Ab | chromatography matrix |
CA2621047A1 (en) | 2005-02-02 | 2006-08-24 | Regeneron Pharmaceuticals, Inc. | Method of treating eye injury with local administration of a vegf inhibitor |
US20080299671A1 (en) | 2005-12-02 | 2008-12-04 | Ge Healthcare Bio-Sciences Ab | Hydrophobic Interaction Chromatography |
CA2647111A1 (en) | 2006-03-28 | 2007-10-04 | F. Hoffmann-La Roche Ag | Anti-igf-1r human monoclonal antibody formulation |
SG10201406358SA (en) | 2006-04-05 | 2014-12-30 | Abbvie Biotechnology Ltd | Antibody purification |
PL2944306T3 (pl) | 2006-06-16 | 2021-07-12 | Regeneron Pharmaceuticals, Inc. | Postacie użytkowe antagonisty VEGF odpowiednie do podawania do ciała szklistego |
WO2008028974A1 (en) | 2006-09-08 | 2008-03-13 | Novo Nordisk A/S | Methods of optimizing chromatographic separation of polypeptides |
JP2010505874A (ja) | 2006-10-03 | 2010-02-25 | ノヴォ ノルディスク アー/エス | ポリペプチドコンジュゲートの精製方法 |
WO2008109721A1 (en) | 2007-03-06 | 2008-09-12 | Introgen Therapeutics, Inc. | Chromatographic methods for assessing adenovirus purity |
US8003364B2 (en) | 2007-05-14 | 2011-08-23 | Bavarian Nordic A/S | Purification of vaccinia viruses using hydrophobic interaction chromatography |
WO2009058769A1 (en) | 2007-10-30 | 2009-05-07 | Schering Corporation | Purification of antibodies containing hydrophobic variants |
CA2712732C (en) | 2008-01-25 | 2018-11-27 | Biogen Idec Ma Inc. | Automated system and method for monitoring chromatography column performance, and applications thereof |
CA2734246C (en) | 2008-08-15 | 2021-04-27 | Biogen Idec Ma Inc. | Methods for evaluating chromatography column performance |
US20100069617A1 (en) | 2008-09-12 | 2010-03-18 | Ge Healthcare Bio-Sciences Ab | Enhanced protein aggregate removal by mixed mode chromatography on hydrophobic interaction media in the presence of protein-excluded zwitterions |
CA2738499A1 (en) | 2008-10-20 | 2010-04-29 | Abbott Laboratories | Viral inactivation during purification of antibodies |
JP5808249B2 (ja) | 2008-10-20 | 2015-11-10 | アッヴィ・インコーポレイテッド | プロテインaアフィニティークロマトグラフィーを用いる抗体の単離および精製 |
WO2010129469A1 (en) | 2009-05-04 | 2010-11-11 | Abbott Biotechnology Ltd. | Stable high protein concentration formulations of human anti-tnf-alpha-antibodies |
SG176283A1 (en) | 2009-06-16 | 2012-01-30 | Genzyme Corp | Improved methods for purification of recombinant aav vectors |
US8821879B2 (en) | 2009-09-04 | 2014-09-02 | Xoma Technology Ltd. | Anti-botulism antibody coformulations |
BR112012009289B8 (pt) | 2009-10-20 | 2021-05-25 | Abbott Laboratoires | método para purificar um anticorpo anti-il-13 a partir de uma mistura de amostra que compreende um anticorpo anti-il-13 e pelo menos uma proteína de célula hospedeira (hcp) |
US8246833B2 (en) | 2009-12-17 | 2012-08-21 | Ge Healthcare Bio-Sciences Ab | Chromatography column and maintenance method |
KR20120118065A (ko) | 2010-02-12 | 2012-10-25 | 디에스엠 아이피 어셋츠 비.브이. | 단일 단위체 항체 정제 |
WO2012030512A1 (en) | 2010-09-03 | 2012-03-08 | Percivia Llc. | Flow-through protein purification process |
JP5919606B2 (ja) | 2010-11-11 | 2016-05-18 | アッヴィ バイオテクノロジー リミテッド | 改良型高濃度抗tnfアルファ抗体液体製剤 |
WO2012082933A1 (en) | 2010-12-15 | 2012-06-21 | Baxter International, Inc. | Eluate collection using conductivity gradient |
US9943594B2 (en) | 2011-10-11 | 2018-04-17 | Sanofi Biotechnology | Methods for the treatment of rheumatoid arthritis |
TWI589299B (zh) | 2011-10-11 | 2017-07-01 | 再生元醫藥公司 | 用於治療類風濕性關節炎之組成物及其使用方法 |
EP2773439A4 (en) | 2011-10-31 | 2015-07-01 | Merck Sharp & Dohme | CHROMATOGRAPHY METHOD FOR DECOMPOSING HETEROGENEOUS ANTIBODY AGGREGATES |
HUE038570T2 (hu) | 2011-11-14 | 2018-10-29 | Regeneron Pharma | Készítmények és eljárások izomtömeg és izomerõ növelésére GDF8 és/vagy aktivin A specifikus antagonizálásával |
JP2014533700A (ja) | 2011-11-21 | 2014-12-15 | ジェネンテック, インコーポレイテッド | 抗c−MET抗体の精製 |
EP2791176B1 (en) | 2011-12-15 | 2018-07-11 | Prestige Biopharma Pte. Ltd. | A method of antibody purification |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9150645B2 (en) | 2012-04-20 | 2015-10-06 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
US9181572B2 (en) | 2012-04-20 | 2015-11-10 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US20140154270A1 (en) | 2012-05-21 | 2014-06-05 | Chen Wang | Purification of non-human antibodies using kosmotropic salt enhanced protein a affinity chromatography |
US20130336957A1 (en) | 2012-05-21 | 2013-12-19 | Abbvie, Inc. | Novel purification of human, humanized, or chimeric antibodies using protein a affinity chromatography |
US9249182B2 (en) | 2012-05-24 | 2016-02-02 | Abbvie, Inc. | Purification of antibodies using hydrophobic interaction chromatography |
JP6465800B2 (ja) | 2012-08-06 | 2019-02-06 | バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. | エンベロープウイルスを不活化するための方法および組成物 |
US9650411B2 (en) | 2012-08-07 | 2017-05-16 | Kyowa Hakko Kirin Co., Ltd. | Method of purifying protein |
EP3266466A1 (en) * | 2012-12-20 | 2018-01-10 | Medimmune, LLC | Liquid antibody formulation with improved aggregation properties |
MX2015012114A (es) | 2013-03-08 | 2016-01-12 | Genzyme Corp | Fabricacion continua integrada de principios activos proteinicos terapeuticos. |
SG11201507230PA (en) | 2013-03-12 | 2015-10-29 | Abbvie Inc | Human antibodies that bind human tnf-alpha and methods of preparing the same |
US10023608B1 (en) | 2013-03-13 | 2018-07-17 | Amgen Inc. | Protein purification methods to remove impurities |
KR20150129033A (ko) | 2013-03-14 | 2015-11-18 | 애브비 인코포레이티드 | 저 산성 종 조성물 및 이의 제조 및 사용 방법 |
US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
EP3754012A1 (en) | 2013-03-15 | 2020-12-23 | Alder Biopharmaceuticals, Inc. | Antibody purification and purity monitoring |
EP2970378B1 (en) | 2013-03-15 | 2021-05-26 | Biogen MA Inc. | Hydrophobic interaction protein chromatography under no-salt conditions |
ES2837042T3 (es) | 2013-05-06 | 2021-06-29 | Scholar Rock Inc | Composiciones y métodos para la modulación del factor de crecimiento |
TWI682780B (zh) | 2013-05-30 | 2020-01-21 | 美商再生元醫藥公司 | 醫藥組成物用於製造治療與pcsk9功能獲得性突變有關之體染色體顯性高膽固醇血症的藥物之用途 |
US10111953B2 (en) | 2013-05-30 | 2018-10-30 | Regeneron Pharmaceuticals, Inc. | Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
TWI697334B (zh) | 2013-06-04 | 2020-07-01 | 美商再生元醫藥公司 | 藉由投與il-4r抑制劑以治療過敏及增強過敏原-特異之免疫療法的方法 |
KR101569783B1 (ko) | 2013-06-05 | 2015-11-19 | 한화케미칼 주식회사 | 항체의 정제 방법 |
US9150938B2 (en) | 2013-06-12 | 2015-10-06 | Orochem Technologies, Inc. | Tagatose production from deproteinized whey and purification by continuous chromatography |
TWI596107B (zh) | 2013-06-25 | 2017-08-21 | 卡地拉保健有限公司 | 單株抗體之新穎純化方法 |
JP6602765B2 (ja) | 2013-09-05 | 2019-11-06 | ジェネンテック, インコーポレイテッド | クロマトグラフィー再使用のための方法 |
WO2015038884A2 (en) | 2013-09-13 | 2015-03-19 | Genentech, Inc. | Compositions and methods for detecting and quantifying host cell protein in cell lines and recombinant polypeptide products |
CA3184564A1 (en) | 2013-09-13 | 2015-03-19 | Genentech, Inc. | Methods and compositions comprising an anti-il13 antibody and residual hamster phospholipase b-like 2 |
US8946395B1 (en) | 2013-10-18 | 2015-02-03 | Abbvie Inc. | Purification of proteins using hydrophobic interaction chromatography |
WO2015061526A1 (en) | 2013-10-25 | 2015-04-30 | Medimmune, Llc | Antibody purification |
US10115576B2 (en) | 2013-12-12 | 2018-10-30 | Waters Technologies Corporation | Method and an apparatus for analyzing a complex sample |
JO3701B1 (ar) | 2014-05-23 | 2021-01-31 | Regeneron Pharma | مضادات حيوية بشرية لمتلازمة الشرق الأوسط التنفسية - بروتين كورونا فيروس الشوكي |
FR3025515B1 (fr) | 2014-09-05 | 2016-09-09 | Lab Francais Du Fractionnement | Procede de purification d'un anticorps monoclonal |
TW201628649A (zh) | 2014-10-09 | 2016-08-16 | 再生元醫藥公司 | 減少醫藥調配物中微可見顆粒之方法 |
AU2015355150A1 (en) | 2014-12-02 | 2017-06-08 | Regeneron Pharmaceuticals, Inc. | Methods for treating dry eye disease by administering an IL-6R antagonist |
US10696735B2 (en) | 2015-01-21 | 2020-06-30 | Outlook Therapeutics, Inc. | Modulation of charge variants in a monoclonal antibody composition |
TWI710573B (zh) | 2015-01-26 | 2020-11-21 | 美商再生元醫藥公司 | 抗伊波拉病毒醣蛋白之人類抗體 |
TWI756187B (zh) | 2015-10-09 | 2022-03-01 | 美商再生元醫藥公司 | 抗lag3抗體及其用途 |
SG11201804765UA (en) | 2015-12-22 | 2018-07-30 | Regeneron Pharma | Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer |
MA44145A (fr) | 2015-12-22 | 2018-10-31 | Regeneron Pharma | Anticorps anti-cd20/anti-cd3 bispécifiques pour traiter la leucémie aiguë lymphoblastique |
EP3184119A1 (en) | 2015-12-23 | 2017-06-28 | Themis Bioscience GmbH | Chromatography based purification strategies for measles scaffold based viruses |
GB201602938D0 (en) | 2016-02-19 | 2016-04-06 | Ucb Biopharma Sprl | Protein purification |
US10947262B2 (en) | 2016-06-14 | 2021-03-16 | Biogen Ma Inc. | Hydrophobic interaction chromatography for purification of oligonucleotides |
WO2018027195A1 (en) | 2016-08-05 | 2018-02-08 | Abbvie Biotherapeutics Inc. | Compositions containing reduced amounts of daclizumab acidic isoforms and methods for preparing the same |
US10626376B2 (en) | 2016-11-14 | 2020-04-21 | St. Jude Children's Research Hospital | Method for isolating and purifying adeno-associated virus particles using salt |
US11697670B2 (en) | 2017-08-22 | 2023-07-11 | Biogen Ma Inc. | Methods for purifying antibodies having reduced high molecular weight aggregates |
KR20200133240A (ko) | 2018-03-16 | 2020-11-26 | 브리스톨-마이어스 스큅 컴퍼니 | 단백질 생산 동안의 대사 효소 활성 및 디술피드 결합 환원 |
WO2019178495A1 (en) | 2018-03-16 | 2019-09-19 | Biogen Ma Inc. | Methods for purifying recombinant adeno-associated viruses |
JP2021519752A (ja) | 2018-03-29 | 2021-08-12 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | 単量体モノクローナル抗体を精製する方法 |
US20210122783A1 (en) | 2018-06-19 | 2021-04-29 | Bristol-Myers Squibb Company | Methods of purifying proteins using chromatography |
AU2019299321A1 (en) | 2018-07-02 | 2021-01-07 | Regeneron Pharmaceuticals, Inc. | Use of multiple hydrophobic interaction chromatography for preparing a polypeptide from a mixture |
US20220267369A1 (en) | 2018-07-25 | 2022-08-25 | Merck Sharp & Dohme Corp. | Methods of separating host cell lipases from a production protein in chromatographic processes |
KR20210045425A (ko) | 2018-08-15 | 2021-04-26 | 브리스톨-마이어스 스큅 컴퍼니 | 하류 크로마토그래피에서의 재산화에 의한 단백질 단편화 제어 전략 |
JP2022506649A (ja) | 2018-11-05 | 2022-01-17 | ブリストル-マイヤーズ スクイブ カンパニー | Peg化タンパク質の精製方法 |
WO2020172658A1 (en) | 2019-02-24 | 2020-08-27 | Bristol-Myers Squibb Company | Methods of isolating a protein |
KR20210144819A (ko) | 2019-03-29 | 2021-11-30 | 브리스톨-마이어스 스큅 컴퍼니 | 크로마토그래피 수지의 소수성을 측정하는 방법 |
US20220267796A1 (en) | 2019-06-28 | 2022-08-25 | Takeda Pharmaceutical Company Limited | Adeno-associated virus purification methods |
-
2015
- 2015-10-07 TW TW104132942A patent/TW201628649A/zh unknown
- 2015-10-07 AR ARP150103235A patent/AR102198A1/es unknown
- 2015-10-08 US US14/878,079 patent/US10342876B2/en active Active
- 2015-10-08 WO PCT/US2015/054600 patent/WO2016057739A1/en active Application Filing
-
2019
- 2019-04-08 US US16/377,371 patent/US12070502B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111201042A (zh) * | 2017-09-19 | 2020-05-26 | 里珍纳龙药品有限公司 | 减少粒子形成的方法以及由其形成的组合物 |
TWI831747B (zh) * | 2017-09-19 | 2024-02-11 | 美商里珍納龍藥品有限公司 | 減少顆粒形成的方法及由此所形成的組成物 |
CN111201042B (zh) * | 2017-09-19 | 2024-05-10 | 里珍纳龙药品有限公司 | 减少粒子形成的方法以及由其形成的组合物 |
Also Published As
Publication number | Publication date |
---|---|
US10342876B2 (en) | 2019-07-09 |
WO2016057739A1 (en) | 2016-04-14 |
US20160101181A1 (en) | 2016-04-14 |
AR102198A1 (es) | 2017-02-08 |
US12070502B2 (en) | 2024-08-27 |
US20190231877A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12070502B2 (en) | Process for reducing subvisible particles in a pharmaceutical formulation | |
TWI831747B (zh) | 減少顆粒形成的方法及由此所形成的組成物 | |
AU2017315677B2 (en) | Endoglycosidase mutants for glycoprotein remodeling and methods of using it | |
US20220357335A1 (en) | Concentration-dependent self-interaction assay | |
US20230279136A1 (en) | Stable formulations comprising a bispecific bcma/cd3 antibody | |
IL305230A (en) | A pharmaceutical composition containing an anti-TSLP antibody | |
WO2022226339A1 (en) | Anti-tslp antibody compositions and uses thereof | |
JP2022525556A (ja) | Tnf-アルファ抗体の高濃度水性製剤 | |
TW202003572A (zh) | 厄瑞努單抗組成物及其用途 | |
US20240199688A1 (en) | Methods for reducing lipase activity | |
EP3840726B1 (en) | Lipase degradation resistant surfactants for use in large molecule therapeutic formulations | |
WO2024141567A1 (en) | Therapeutic variable domain of heavy chain (vhh) antibodies cross-neutralizing interleukin 17 (il-17) isoforms |