Nothing Special   »   [go: up one dir, main page]

TW201240484A - Thermal acoustic device and electric device - Google Patents

Thermal acoustic device and electric device Download PDF

Info

Publication number
TW201240484A
TW201240484A TW100112573A TW100112573A TW201240484A TW 201240484 A TW201240484 A TW 201240484A TW 100112573 A TW100112573 A TW 100112573A TW 100112573 A TW100112573 A TW 100112573A TW 201240484 A TW201240484 A TW 201240484A
Authority
TW
Taiwan
Prior art keywords
thermo
substrate
acoustic
thermoacoustic
electrode
Prior art date
Application number
TW100112573A
Other languages
Chinese (zh)
Other versions
TWI455604B (en
Inventor
Kai-Li Jiang
xiao-yang Lin
Lin Xiao
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201240484A publication Critical patent/TW201240484A/en
Application granted granted Critical
Publication of TWI455604B publication Critical patent/TWI455604B/en

Links

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a thermal acoustic device. The thermal acoustic device includes a substrate having a net structure, a thermal acoustic element disposing on a surface of the substrate, and a heater used to heat the thermal acoustic element. The substrate includes at least one linear structure including a linear carbon nanotube structure and an insulated coating coated on surface of the linear carbon nanotube structure. The thermal acoustic element includes a graphene film. The present invention further provides an electric device using the thermal acoustic device.

Description

201240484 *六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種熱致發聲裝置,尤其涉及一種基於石墨 烯的熱致發聲裝置及應用該熱致發聲裝置的電子裝置。 [0002] 〇 ❹ 【先前技術】 熱致發聲裝置一般由信號輸入裝置和發聲元件組成,通 過信號輸入裝置輸入信號到該發聲元件,進而發出聲音 。熱致發聲裝置為發聲裝置中的一種,其為基於熱聲效 應的一種熱致發聲裝置,請參見文獻“The Thermo-phone” , EDWARD C. WENTE, Vol.XIX,No.4, p333-345及 “On Some Thermal Effects of Elec-tric Currents” , William Henry Preece, Proceed i ngs of the Royal Society of London, Vol. 30,p408_411(1879-1881)。其揭示一種熱致發 聲裝置,該熱致發聲裝置通過向一導體中通入交流電來 實現發聲。該導體具有較小的熱容(Heat capacity) ,較薄的厚度,且可將其内部產生的熱量迅速傳導給周 圍氣體介質的特點。當交流電通過導體時,隨交流電電 流強度的變化,導體迅速升降溫,而和周圍氣體介質迅 速發生熱交換,促使周圍氣體介質分子運動,氣體介質 密度隨之發生變化,進而發出聲波。 [0003] 另外,H.D. Arnold 和 I.B. Crandall 在文獻 “The thermophone as a precision source of sound” ,Phys. Rev. 10,p22-38 (1 91 7)中揭示了一種簡單 的熱致發聲裝置,其採用一鉑片作熱致發聲元件。受材 100112573 表單編號A0101 第3頁/共58頁 1002020942-0 201240484 料本身的限制,採用該鉑片作熱致發聲元件的熱致發聲 裝置時,其所產生的發聲頻率最高僅可達4千赫茲,且發 聲效率較低。 【發明内容】 [0004] 有鑒於此,確有必要提供一種發聲頻率高且發聲效果好 的熱致發聲裝置。 [0005] —種熱致發聲裝置,其包括一致熱裝置以及一熱致發聲 元件,該致熱裝置用於向該熱致發聲元件提供能量使該 熱致發聲元件產生熱量;其中,所述熱致發聲元件包括 一石墨烯膜。 [0006] 與先前技術相比較,本發明所提供的熱致發聲裝置具有 以下優點:其一,由於所述熱致發聲裝置中的熱致發聲 元件無需磁鐵等其他複雜結構,故該熱致發聲裝置的結 構較為簡單,有利於降低該熱致發聲裝置的成本。其三 ,由於石墨稀膜的厚度較薄,熱容較低,因此,其發聲 頻率較高且具有較高的發聲效率。 【實施方式】 [0007] 以下將結合附圖詳細說明本發明實施例提供的熱致發聲 裝置。以下各實施例中將相同的元部件使用相同的標號 表示。本發明實施例中所涉及的示意圖係為了使本實施 例得到更好的說明,對實施例本身並沒有限制作用。 [0008] 請參閱圖1及圖2,本發明第一實施例提供一種熱致發聲 裝置10,該熱致發聲裝置10包括一熱致發聲元件102及一 致熱裝置104。 100112573 表單編號A0101 第4頁/共58頁 1002020942-0 201240484 • [0009]所述致熱裝置104用於向熱致發聲元件1〇2提供能量,使 熱致發聲元件1 〇2產生熱量,發出聲音。本實施例中,致 熱裝置104向熱致發聲元件提供電能’使熱致發聲元件 102在焦耳熱的作用下產生熱量。該致熱裝置1〇4包括一 第—電極104a及一第二電極丨“b。所述第一電極l〇4a和 第二電極104b分別與該熱致發聲元件1〇2電連接。本實施 例中’第一電極104a和第二電極i〇4b分別設置於熱致發 聲元件102的表面,並與該熱致發聲元件丨〇2的兩個相對 的邊齊平。 〇 [㈤10]該致熱裝置104中的第一電極104a和第二電極104b用於 向熱致發聲元件102提供電信號,使該熱致發聲元件102 產生焦耳熱,溫度升高,從而發出聲音。所述第一電極 • 104a與第二電極l〇4b可為層狀(絲狀或帶狀)、棒狀、 條狀、塊狀或其他形狀,其橫截面的形狀町為圓蜇、方 型、梯形、三角形、多邊形或其他不規則形狀。該第一 電極l〇4a與第二電極104b可通過黏結劑黏結的方式固疋 Q 於熱致發聲元件102的表面◊而為防止熱致發聲元件102 的熱量被第一電極l〇4a與第二電極1〇41)過多吸收而影響 發聲效果,該第一電極l〇4a及第二電極i〇4b與熱致發 元件102的接觸面積較小為好,因此,該第〆電極1〇忉和 第二電極104b的形狀優選為絲狀或帶狀。該第一電極 l〇4a與第二電極1〇4b材料可選擇為金屬、導電膠、導電 裂料、銦錫氧化物(ITO)或奈米碳管等。 [0011] 當第一電極l〇4a和第二電極l〇4b具有一定強度時,第〆 電極104a和第二電極i〇4b可以起到支撐該熱致發聲70件 100112573 表單編號A0101 第5頁/共58頁 1002020942Ό 201240484 [0012] [0013] [0014] 100112573 102的作用。如將第-電極1〇“和第二電極難的兩端 分別固定在-個框架上,熱致發聲元件1〇2設置在第一電 極1〇4a和第二電極難上,熱致發聲元件m通過第-電極104a和第二電極1〇4b懸空設置。 本實知例巾帛—電極1()4a與第二電極係利用銀聚 通過印刷方式如絲網印刷形成於熱致發聲元件ι〇2上的絲 狀銀電極。 該熱致發聲裝置1G進-步包括-第—電極引線(圖未示 )_及-第二電極引線(圖未示),該第一電極引線與第 -電極引線分別與熱致發聲裝置1G中的第一電極1〇4&和 第二電極祕電連接,使該第-電極1〇4a與該第-電極 引線電連接,使該第二電極1〇仆與該第二電極引線電連 接。所述熱致發聲裝置10通過該第-電極引線和第二電 極引線與外部電路電連接。 所述熱致發聲元件1G2包括—石㈣膜,所述石墨稀媒為 一個-維結構的具有面積的膜結構。該石墨稀膜的 厚度為0. 34奈米至1G奈米。該石墨軸包括至少一層石 墨稀。當石墨稀膜包括多層石墨烯時,該多層石墨射 以相互搭接形成石墨烯膜,以使石墨稀膜具有更大的面 積;或者該多層石墨射以相互疊加形成石墨烯膜以 使石墨稀膜的厚度增加。《地,該石墨稀膜為-單層 石墨^。所述石Μ為由複數個碳原子通過sp2鍵雜化構 成的早層的二維平面結構。該石墨稀的厚度可以為單層 碳原子的厚度。石墨_具有較高的透光性,單層的石 墨稀的透光率可以達到97 表單編號删 …&用石墨締媒作為 第6頁/共58頁 10020: 201240484 Ο [0015]201240484 *VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a thermo-acoustic device, and more particularly to a graphene-based thermoacoustic device and an electronic device using the same. [0002] 先前 ❹ [Prior Art] A thermo-acoustic device is generally composed of a signal input device and a sounding element, and a signal is input to the sound-emitting element through a signal input device to emit sound. The thermoacoustic device is one of the sounding devices, which is a thermoacoustic device based on the thermoacoustic effect, see the document "The Thermo-phone", EDWARD C. WENTE, Vol. XIX, No. 4, p333-345 And "On Some Thermal Effects of Elec-tric Currents", William Henry Preece, Proceed i ngs of the Royal Society of London, Vol. 30, p408_411 (1879-1881). It discloses a thermo-acoustic device that achieves sound by introducing an alternating current into a conductor. The conductor has a small heat capacity, a thin thickness, and the ability to rapidly transfer heat generated inside it to the surrounding gaseous medium. When the alternating current passes through the conductor, the conductor rapidly rises and falls with the change of the alternating current intensity, and the heat exchange with the surrounding gas medium rapidly causes the surrounding gas medium to move, and the density of the gas medium changes accordingly, thereby generating sound waves. [0003] In addition, HD Arnold and IB Crandall disclose a simple thermoacoustic device in the document "The thermophone as a precision source of sound", Phys. Rev. 10, p22-38 (1 91 7), which employs A platinum sheet is used as a thermoacoustic element. Receptaments 100112573 Form No. A0101 Page 3 of 58 pages 1002020942-0 201240484 The material itself is limited to the use of the platinum sheet as a thermo-acoustic component of the thermoacoustic device, which produces a frequency of up to 4,000 Hertz, and the vocal efficiency is low. SUMMARY OF THE INVENTION [0004] In view of the above, it is indeed necessary to provide a thermo-acoustic sounding device having a high sounding frequency and good sounding effect. [0005] A thermo-acoustic device comprising a uniform thermal device and a thermo-acoustic device for providing energy to the thermo-acoustic component to generate heat to the thermo-acoustic component; wherein the thermal The sound emitting element comprises a graphene film. [0006] Compared with the prior art, the thermoacoustic device provided by the present invention has the following advantages: First, since the thermo-acoustic element in the thermo-acoustic device does not require other complicated structures such as magnets, the thermo-acoustic sound is generated. The structure of the device is relatively simple, which is advantageous for reducing the cost of the thermo-acoustic device. Third, since the thin film of graphite is thinner and has a lower heat capacity, it has a higher sounding frequency and a higher sounding efficiency. [Embodiment] Hereinafter, a thermoacoustic sounding device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The same components are denoted by the same reference numerals in the following embodiments. The schematic diagrams involved in the embodiments of the present invention are not intended to limit the embodiments themselves in order to better illustrate the embodiments. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a thermo-acoustic device 10 that includes a thermo-acoustic component 102 and a pyrogenic device 104. 100112573 Form No. A0101 Page 4 of 58 1002020942-0 201240484 • [0009] The heating device 104 is used to supply energy to the thermo-acoustic element 1 〇 2, causing the thermo-acoustic element 1 〇 2 to generate heat, sound. In the present embodiment, the heating device 104 supplies electrical energy to the thermally audible elements to cause the thermally audible elements 102 to generate heat under the action of Joule heat. The heating device 1〇4 includes a first electrode 104a and a second electrode “b.” The first electrode 104a and the second electrode 104b are electrically connected to the thermo-acoustic element 1〇2, respectively. In the example, the first electrode 104a and the second electrode i〇4b are respectively disposed on the surface of the thermoacoustic element 102 and are flush with the opposite sides of the thermoacoustic element 丨〇2. 〇[(五)10] The first electrode 104a and the second electrode 104b in the thermal device 104 are used to provide an electrical signal to the thermo-acoustic element 102, causing the thermo-acoustic element 102 to generate Joule heat, and the temperature rises to emit a sound. • 104a and the second electrode 10b4b may be layered (filament or strip), rod, strip, block or other shape, and the shape of the cross section is round, square, trapezoidal, triangular, Polygon or other irregular shape. The first electrode 104a and the second electrode 104b can be bonded to the surface of the thermoacoustic element 102 by bonding of the adhesive to prevent the heat of the thermoacoustic element 102 from being blocked. An electrode l〇4a and the second electrode 1〇41) are excessively absorbed to affect the sound generation The contact area between the first electrode 104a and the second electrode i〇4b and the thermally actuating element 102 is preferably small. Therefore, the shape of the second electrode 1 〇忉 and the second electrode 104b is preferably filiform. Or the strip shape. The material of the first electrode 104a and the second electrode 1〇4b may be selected from a metal, a conductive paste, a conductive crack, an indium tin oxide (ITO) or a carbon nanotube, etc. [0011] When an electrode 10a and a second electrode 10b have a certain intensity, the second electrode 104a and the second electrode i4b can support the heat-induced sound 70 pieces 100112573 Form No. A0101 Page 5 / 58 pages 1002020942Ό 201240484 [0012] [0014] The function of 100112573 102. If the first electrode 1" and the two ends of the second electrode are respectively fixed on the frame, the thermo-acoustic element 1 〇 2 is set at the first The electrode 1〇4a and the second electrode are difficult, and the thermo-acoustic element m is suspended by the first electrode 104a and the second electrode 1〇4b. In the present embodiment, the electrode 1 (electrode 1) and the second electrode are formed of a silver-like silver electrode formed on the thermoacoustic element ι 2 by a printing method such as screen printing. The thermo-acoustic device 1G further includes a first electrode lead (not shown) _ and a second electrode lead (not shown), and the first electrode lead and the first electrode lead are respectively associated with the thermo-acoustic device 1G. The first electrode 1〇4& and the second electrode are electrically connected such that the first electrode 1〇4a is electrically connected to the first electrode lead, so that the second electrode 1 is electrically connected to the second electrode lead . The thermoacoustic device 10 is electrically connected to an external circuit through the first electrode lead and the second electrode lead. The thermoacoustic element 1G2 comprises a stone (four) film which is a one-dimensional structure having an area of a film structure. The thickness of the graphite thin film is from 0.34 nm to 1 G nm. The graphite shaft includes at least one layer of graphite thin. When the graphite thin film comprises a plurality of layers of graphene, the multi-layered graphite is sprayed to form a graphene film to overlap each other to make the graphite thin film have a larger area; or the multi-layer graphite is sprayed to form a graphene film to form a thinner graphite The thickness of the film is increased. "Ground, the graphite thin film is - single layer graphite ^. The sarcophagus is a two-dimensional planar structure of an early layer formed by a plurality of carbon atoms through sp2 bond hybridization. The thickness of the graphite thin can be the thickness of a single layer of carbon atoms. Graphite _ has a high light transmittance, and the transmittance of a single layer of graphite can reach 97. The form number is deleted. & Using graphite as the medium. Page 6 of 58 10020: 201240484 Ο [0015]

[0016] 熱致發聲元件的熱致發聲裝置可以為一透明的熱致發聲 裝置。由於石墨烯膜的厚度非常薄,因此具有較低的熱 容,其熱容可以小於2xl0_3焦耳每平方厘米開爾文,單 層石墨烯的熱容可以小於5. 57xl(T4焦耳每平方厘米開爾 文。所述石墨烯膜為一自支撐結構,所述自支撐為石墨 烯膜不需要大面積的載體支撐,而只要相對兩邊提供支 撐力即能整體上懸空而保持自身膜狀狀態,即將該石墨 烯膜置於(或固定於)間隔一固定距離設置的兩個支撐 體上時,位於兩個支撐體之間的石墨烯膜能夠懸空保持 自身膜狀狀態。實驗表明,石墨烯並非一個百分之百的 光潔平整的二維膜,而係有大量的微觀起伏在單層石墨 烯的表面上,單層石墨烯正係借助這種方式來維持自身 的自支撐性及穩定性。 所述石墨烯膜的致備方法可以為化學氣相沉積法、LB法 或採用膠帶從定向石墨上撕取的方法。本實施例中,採 用化學氣相沉積法製備石墨烯膜。該石墨烯膜採用化學 氣相沉積法生長在一個金屬膜基底的表面。 所述熱致發聲元件102的工作介質不限,只需滿足其電阻 率大於所述熱致發聲元件102的電阻率即可。所述介質包 括氣態介質或液態介質。所述氣態介質可為空氣。所述 液態介質包括非電解質溶液、水及有機溶劑等中的一種 或多種。所述液態介質的電阻率大於0.01歐姆·米,優選 地,所述液態介質為純淨水。純淨水的電導率可達到1. 5 xlO7歐姆·米,且其單位面積熱容也較大,可以傳導出熱 致發聲元件102產生的熱量,從而可對熱致發聲元件102 100112573 表單編號A0101 第7頁/共58頁 1002020942-0 201240484 進仃政熱。本實施例中,所述介質為空氣。 [0017] [0018] [0019] 100112573 ^實施例的熱致發聲裝置1G可通過第1極l〇4a及第二 ^ b與外。P電路電連接,而由此接入外部信號發聲 ,。由:熱致發聲元件1〇2包括石墨稀膜,石墨稀膜具有較 的單位面積熱谷以及較大的散熱面積,在致熱裝置104 :、致♦聲疋件lQ2輪入信號後,所述熱致發聲元件102 可迅速升降溫’產生週期性的溫度變化,並和周圍介質 决速進仃熱讀’使周圍介質的密度週期性地發生改變 ’進而發出聲音。簡而言之,本發明實施例的熱致發聲元 件102係藉由電__熱_聲”的轉換來達到發聲。另外,利 用石墨烯膜的高透光度,該熱致發聲I置1〇呈-透明熱 致發聲裝置。 本實施例提供的熱致發聲裝置10的聲壓級大於5〇分貝每 瓦聲壓級,發聲頻率範圍為丨赫茲至1〇萬赫茲(即 ΙΗζ-lOOkHz)。所述熱致發聲裝置在500赫茲_4萬赫茲 頻率範圍内的失真度可小於3%。 請參閱圖3及圖4,本發明第二實施例提供一種熱致發聲 裝置20。本實施例所提供的熱致發聲裝置20與第一實施 例提供的熱致發聲裝置10的不同之處在於,本實施例中 的該熱致發聲裝置20進一步包括一基底208。所述熱致發 聲元件102設置於該基底208的表面。所述第一電極l〇4a 和第二電極l〇4b設置於該熱致發聲元件102的表面。該基 底208的形狀、尺寸及厚度均不限’該基底2〇8的表面可 為平面或曲面。該基底208的材料不限’可以為具有一定 強度的硬性材料或柔性材料。優選地’該基底208的材料 表單編號A0101 第8頁/共58頁 1002020942-0 201240484 的電阻應大於該熱致發聲元件1 〇 2的電阻,且具有較好的 絕熱和耐熱性能,從而防止該熱致發聲元件! 〇2產生的熱 量過多的被該基底208吸收。具體地,所述絕緣材料可以 為玻璃、陶瓷、石英、金剛石、塑膠、樹脂或木質材料 〇 [0020] Ο 本實施例中,所述基底208包括至少一個孔2〇8a。該孔 208a的深度小於或等於所述基底208的厚度。當孔2〇8a 的深度小於基底208的厚度時,孔2〇8a為一盲孔。當孔 208a的深度等於基底208的厚度時,孔208a為一通孔。 所述孔208a的橫截面的形狀不限,可以為圓形、正方形 、長方形、三角形’多邊形、工字形、或者不規則圖形 。當該基底208包括複數個孔208a時,該複數個孔2〇8a 可均勻分佈、以一定規律分佈或隨機分佈於該基底2〇8。 每相鄰兩個孔208a的間距不限,優選為1〇〇微米至3毫米 。本實施例中,所述基底包括複數個孔208a,該孔2〇8a 為通孔,其橫截面為圓柱形,其均勻分佈於基底208。 Q [0021] 該熱致發聲元件102設置於基底208的表面,並相對於基 底208上的孔208a懸空設置》本實施例中,由於該熱致發 聲元件102位於孔208a上方的部分懸空設置,該部分的熱 致發聲元件102兩面均與周圍介質接觸,增加了熱致發聲 元件102與周圍氣體或液體介質接觸的面積,並且,由於 該熱致發聲元件102另一部分與該基底208的表面直接接 觸,並通過該基底208支撐,故該熱致發聲元件102不易 被破壞。 [0022] 請參見圖5,本發明第三實施例提供一種熱致發聲裝置3〇 100112573 表單編號A0101 第9頁/共58頁 1002020942-0 201240484 。本實施例所提供的熱致發聲裝置30與第二實施例提供 的熱致發聲裝置20的區別在於,本實施例中,該熱致發 聲裝置30的基底308包括至少一個槽308a,該槽308a設 置於基底308的一個表面308b。槽308a的深度小於基底 30 8的厚度。所述槽308a可以為一盲槽或一通槽。當槽 308a為一盲槽時,槽308a的長度小於基底308的兩個相 對的側面之間的距離。當槽308a為通槽時,槽308a的長 的等於基底308的兩個相對的側面之間的距離。所述槽 308a使該表面308b形成一凹凸不平的表面。該槽308a的 深度小於所述基底308的厚度,該槽308a的長度不限。該 槽308a在該基底308的表面308b上的形狀可為長方形、 弓形、多邊形、扁圓形或其他不規則形狀。請參閱圖5, 本實施例中,基底308上設置有複數個槽308a,該槽 308a為盲槽,該槽308a在基底308的表面308b上的形狀 為長方形。請參見圖6,該槽308a在其長度方向上的橫截 面為長方形,即,該槽308a為一長方體結構。請參閱圖7 ,該槽308a在其長度方向上的橫截面為三角形,即,該 槽308a為一三棱柱結構。當該基底308的表面308b具有 複數個盲槽時,該複數個盲槽可均勻分佈、以一定規律 分佈或隨機分佈於該基底308的表面308b。請參閱圖7, 相鄰兩個盲槽的槽間距可接近於0,即所述基底308與該 熱致發聲元件102接觸的區域為複數個線。可以理解,在 其他實施例中,通過改變該槽308a的形狀,該熱致發聲 元件102與該基底308接觸的區域為複數個點,即該熱致 發聲元件102與該基底308之間可為點接觸、線接觸或面 接觸。 100112573 表單編號A0101 第10頁/共58頁 1002020942-0 201240484 ' .[0023] 本實施例的熱致發聲裝置30中,由於所述基底綱包括至 少一槽308a,該槽308a可以反射所述熱致發聲元件1〇2 發出的聲波,從而增強所述熱致發聲裝置3〇在熱致發聲 元件102 —侧的發聲強度。當該相鄰的槽3〇8&之間的距離 接近於0時,該基底308既能支撐該熱致發聲元件1〇2,又 能使該熱致發聲元件102具有與周圍介質接觸的最大表面 積。 [0024] Ο 可以理解,當該槽308a的深度達到某—值時,通過該槽 308a反射的聲波會與原聲波產生疊加,從而引起相消干 涉’景>響熱致發聲元件102的發聲效果。為避免這一現象 ’優選地’該槽308a的深度小於等於毫求。另外,當 该槽308a的深度過小’通過基底308懸空設置的熱致發聲 元件102與基底308距離過近’不利於該熱致發聲元件 102的散熱。因此’優選地’該槽3〇8&的深度大於等於 10微米。 [0025] ❹ 請參見圖8及圖9,本發明第四實施例提供一種熱致發聲 裝置40。本實施例所提供的熱致發聲裝置40與第二實施 例提供的熱致發聲裝置20的區別在於,本實施例中,該 熱致發聲裝置40的基底408為一網狀結構。所述基底4〇8 包括複數個第一線狀結構408a及複數個第二線狀結構 408b。所述之線狀結構也可以為帶狀或者條狀的結構。 該複數個第一線狀結構408a與該複數個第二線狀結構 408b相互交叉設置形成一網狀結構的基底408。所述複數 個第一線狀結構408a可以相互平行,也可以不相互平行 ,所述複數個第二線狀結構408b可以相互平行’也可以 100112573 表單煸號A0101 第11頁/共58頁 1002020942-0 201240484 不相互平行,當複數個第一線狀結構408a相互平行,且 複數個第二線狀結構408b相互平行時,具體地,所述複 數個第一線狀結構408a的軸向均沿第一方向L1延伸,相 鄰的第一線狀結構408a之間的距離可以相等也可以不等 。相鄰的兩個第一線狀結構408a之間的距離不限,優選 地,其間距小於等於1厘米。本實施例中,該複數個第一 線狀結構408a之間等間距間隔設置,相鄰的兩個第一線 狀結構408a之間的距離為2厘米。所述複數個第二線狀結 構408b彼此間隔設置且其轴向均基本沿第二方向L2延伸 ,相鄰的第二線狀結構408b之間的距離可以相等也可以 不等。相鄰的兩個第二線狀結構408b之間的距離不限, 優選地,其間距小於等於1厘米。第一方向L1與第二方向 L2形成一夾角α,α大於0度小於等於90度。本實施例中 ,第一方向L1和第二方向L2之間的夾角為90。。所述複數 個第一線狀結構408a與該複數個第二線狀結構408b交叉 設置的方式不限。本實施例中,第一線狀結構408a和第 二線狀結構408b相互編織形成一網狀結構。在另一實施 例中,所述複數個間隔設置的第二線狀結構408b接觸設 置於所述複數個第一線狀結構408a的同一侧。該複數個 第二線狀結構408b與該複數個第一線狀結構408a的接觸 部可通過黏結劑固定設置,也可以通過焊接的方式固定 設置。當第一線狀結構408a的熔點較低時,也可以通過 熱壓的方式將第二線狀結構408b與第一線狀結構408a固 定設置。 [0026] 所述基底408具有複數個網孔408c。該複數個網孔408c 100112573 表單編號A0101 第12頁/共58頁 1002020942-0 201240484 ‘ . 由相互交叉設置的所述複數個第一線狀結構408a以及複 數個第二線狀結構408b圍成。所述網孔4〇8c為四邊形。 根據該複數個第一線狀結構408a和該複數個第二線狀結 構408b的交叉設置的角度不同,網孔408c可以為正方形 、長方形或菱形。網孔408c的大小由相鄰的兩個第一線 狀結構408a之間的距離和相鄰的兩個第二線狀結構408b 之間的距離決定。本實施例中,由於所述複數個第一線 狀結構408a與複數個第二線狀結構408b分別等間距平行 設置,且該複數個第一線狀結構4〇8a與該複數個第二線 〇 狀結構408b相互垂直,所以網孔408c為正方形,其邊長 為2厘米》 [0027] 所述第一線狀結構4〇8a的直徑不限,優選為10微米~5毫 米。該第一線狀結構408a的材料由絕緣材料製成,該材 料包括纖維、塑膠、樹脂或矽膠等。所述第一線狀結構 408a可以為紡織材料,具體地,該第一線狀結構4〇88可 以包括植物纖維、動物纖維、木纖維及礦物纖維中的一 Q 種或多種,如棉線、麻線、毛線、蠶絲線、尼龍線或氨 綸等。優選地,該絕緣材料應具有一定的耐熱性質和柔 性,如尼龍或聚酯等。另外,該第一線狀結構4〇ga也可 為外表包有絕緣層的導電絲。該導電絲可以為金屬絲或 者奈米碳管線狀結構。所述金屬包括金屬單質或者合金 ’該單質金屬可以為鋁、銅、鎢 '鉬、金、鈦、鈥、鈀 或铯等,該金屬合金可以為上述單質金屬任意組合的合 金。該絕緣層的材料可以為樹脂、塑膠、二氧化矽或金 屬氧化物等。本實施例中,該第一線狀結構4〇8a為表面 100112573 表單編號A0101 第13頁/共58頁 1002020942-0 201240484 塗覆有二氧化矽的奈米碳管線狀結構,二氧化矽構成的 絕緣層將奈米碳管線狀結構包裹,從而構成該第一線狀 結構408a。 [0028] [0029] [0030] 所述第二線狀結構408b的結構和材料與第一線狀結構 4 0 8 a的結構和材料相同。在同·-實施例中,第二線狀結 構408b的結構和材料可以和第一線狀結構408a的結構和 材料相同,也可以不相同。本實施例中,第二線狀結構 408b為表面塗覆有絕緣層的奈米碳管線狀結構。 所述奈米碳管線狀結構包括至少一根奈米碳管線,該奈 米碳管線包括複數個奈米碳管。該奈米碳管可以為單壁 奈米碳管、雙壁奈米碳管、多壁奈米碳管t的一種或幾 種。所述奈米碳管線可以為由複數個奈米碳管組成的純 結構。當奈米碳管線狀結構包括多根奈米碳管線時,該 多根奈米碳管線可以相互平行設置。當奈米碳管線狀結 構包括多根奈米碳管線時,該多根奈米碳管線可以相互 螺旋纏繞。奈米碳管線狀結構中的多根奈米碳管線也可 以通過黏結劑相互固定。 所述奈米碳管線可以為非扭轉的奈米碳營線或扭轉的奈 米碳管線。請參閱圖10,該非扭轉的奈米碳管線包括複 數個沿奈米碳管線長度方向延伸並首尾相連的奈米碳管 。優選地,該非扭轉的奈米碳管線包括複數個奈米碳管 片段,該複數個奈米碳管片段之間通過凡得瓦力首尾相 連,每一奈米碳管片段包括複數個相互平行並通過凡得 100112573 瓦力緊密結合的奈米碳管。即,該非扭轉的奈米碳管線 包括複數個奈米碳管沿同一方向延伸。在延伸方向上的 表單編號A0101 第〗4頁/共58頁 1002020942-0 201240484 奈米碳管通過凡得瓦力相互連接。該奈米碳賞片段具有 往意的長度、厚度、均勻性及形狀。該#扭轉的奈米碳 管線長度不限,直徑為0.5奈米〜100微求。 [0031] 所述扭轉的奈米碳管線為採用一機械力將所述非扭轉的 奈米碳管線沿相反方向扭轉獲得。請參閱圖11,該扭轉 的奈米碳管線包括複數個繞奈米碳管線軸向螺旋排列的 奈米碳管。優選地,該扭轉的奈米碳管線包括複數個奈 米碳管片段,該複數個奈米碳管片段之間通過凡得瓦力 Ο 首尾相連,每一奈米碳管片段包括複數個相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管 線長度不限,直徑為〇. 5奈米~1〇〇微米。所述奈米碳管線 及其製備方法請參見范守善等人於民國91年1丨月〇5曰申 請的,於民國97年11月21日公告的第1303239號台灣公 告專利‘一種奈米碳管繩及其製造方法”,專利權人: 鴻海精密工業股份有限公司,以及於民國98年7月21日公 ο 告的第1312337號台灣公告專f奈米破f絲及其製作方 法’專利權人:鴻海精密工業股份有限公司。為節省 篇幅’僅Μ於此’但上述巾請所有技術揭露也應視為 本發明申請所揭露的—部分。 [0032] 本實施例所提供的熱致發聲裝置採用網狀結構的基底 408具有以下優點·其一,網狀結構包括複數個網孔,在 給熱致發聲7〇件1()2提供支制同時,可錢熱致發聲元 件1〇2與周圍介質具有較大的接觸面積。其:,網狀結構 的基底408可以具有較奸的柔勒性因此’熱致發聲裝置 100112573 表單編號A0101 第15頁/共58頁 1002020942-0 201240484 40具有杈好的柔韌性。其三,當第一線狀結構4〇83或/矛 第二線狀結構408b包括塗覆有絕緣層的奈米碳管線狀結 構時,奈米碳管線狀結構可以具有較小的直徑,更進一 步增加了熱致發聲元件1〇2與周圍介質的接觸面積;奈米 奴官線狀結構具有較小的密度,因此,熱致發聲裝置4〇 的質量可以較小;奈米碳管線狀結構具有較好的柔韌性 ’可以多次彎折而不被破壞,因此,該熱致發聲裝置40 可以具有更長的使用壽命。 [0033] [0034] [0035] 100112573 可以理解的’本實施例中的基底408的網狀結構也可以由 至少一根上述各種線狀結構編織而成。當基底408包括— 根線狀結構時,該一根線狀結構可以多次彎折交又後形 成一網狀結構。 請參見圖12,本發明第五實施例提供一種熱致發聲裝置 50。本實施例所提供的熱致發聲裝置50與第二實施例提 供的熱致發聲裝置的區別在於,本實施例中,該熱致發 聲裝置50的基底508為一奈米碳管複合結構。 該奈米碳管複合結構包括一奈米碳管層及塗覆在該奈米 碳管層表面的絕緣材料層。所述奈米碳管層包括複數個 均勻分佈的奈米碳管。該奈米碳管可以為單壁奈米碳管 、雙壁奈米碳管、多壁奈米碳管中的一種或幾種。所述 奈米碳管層中的奈米碳管之間可以通過凡得瓦力緊密結 合。該奈米碳管層中的奈米碳管為無序或有序排列。這 裏的無序排列指奈米碳管的排列方向無規律,這裏的有 序排列指至少多數奈米碳管的排列方向具有一定規律。 具體地’當奈米碳管層包括無序排列的奈米碳管時,奈 表單編號A0101 第16頁/共58頁 201240484 ❹ [0036] ❹ 米碳管可以相互纏繞或者各向同性排列;當奈米碳管層 包括有序排列的奈米碳管時,奈米碳管沿一個方向或者 複數個方向擇優取向排列。該奈米碳管層的厚度不限, 可以為0. 5奈米〜1厘米,優選地,該奈米碳管層的厚度可 以為1 00微米〜1毫米。該奈米碳管層進一步包括複數個微 孔,該微孔由奈米碳管之間的間隙形成。所述奈米碳管 層中的微孔的孔徑可以小於等於50微米。所述奈米碳管 層可包括至少一層奈米碳管拉膜、奈米碳管絮化膜或奈 米碳管碾壓膜。 請參閱圖13,該奈米碳管拉膜包括複數個通過凡得瓦力 相互連接的奈米碳管。所述複數個奈米碳管基本沿同一 方向擇優取向排列。所述擇優取向係指在奈米碳管拉膜 中大多數奈米碳管的整體延伸方向基本朝同一方向。而 且,所述大多數奈米碳管的整體延伸方向基本平行於奈 米碳管拉膜的表面。進一步地,所述奈米碳管拉膜中多 數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈 米碳管拉膜中基本朝同一方向延伸的大多數奈米碳管中 每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得 瓦力首尾相連。當然,所述奈米碳管拉膜中存在少數隨 機排列的奈米碳管,這些奈米碳管不會對奈米碳管拉膜 中大多數奈米碳管的整體取向排列構成明顯影響。所述 奈米碳管拉膜為一自支撐的膜。所述自支撐為奈米碳管 拉膜不需要大面積的載體支撐,而只要相對兩邊提供支 撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米 碳管拉膜置於(或固定於)間隔一固定距離設置的兩個 100112573 表單編號A0101 第17頁/共58頁 1002020942-0 201240484 支撐體上時,位於兩個支撐體之間的奈米碳管拉膜能夠 懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管 拉臈中存在連續的通過凡得瓦力首尾相連延伸排列的奈 米碳管而實現。 [0037] [0038] [0039] 所述奈米碳管拉膜的厚度可以為〇5奈米〜1〇〇微米,寬度 與長度不限,根據第二基體1〇8的大小設定。所述奈米碳 官拉膜的具體結構及其製備方法請參見范守善等人於民 國96年2月12日申請的’於民國99年了月^曰公告的第 1327177號中國民國公告專利。為節省篇幅,僅引用於此 ,但所述申請所有技術揭露也應視為本發明申請技術揭 露的一部分。 當奈米碳管層包括多層奈米碳管拉膜時,相鄰兩層奈米 碳官拉膜中的奈米碳管的延伸方向之間形成的交叉角度 不限。 請參見圖14,所述奈米碳管絮化膜為通過一絮化方法形 成的奈米碳管膜。該奈米碳管絮化膜包括相互纏繞且均 勻分佈的奈米碳管。所述奈米碳管之間通過凡得瓦力相 互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜 各向同性。所述奈米碳管絮化膜的長度和寬度不限。由 於在奈米碳管絮化膜中,奈米碳管相互纏繞,因此該奈 米碳管絮化膜具有很好的柔韌性,且為一自支撐結構, 可以彎曲折疊成任意形狀而不破裂。所述奈米碳管絮化 膜的面積及厚度均不限,厚度為丨微米~丨毫米。所述奈米 碳官絮化臈及其製備方法請參見范守善等人於民國96年5 月11日申請的,於民國”年^月16日公開的第 100112573 表單編號A0101 第18頁/共58頁 1002020942-0 201240484 [0040][0016] The thermoacoustic device of the thermoacoustic element can be a transparent thermoacoustic device. Since the thickness of the graphene film is very thin, it has a low heat capacity, and its heat capacity can be less than 2 x 10 3 joules per square centimeter Kelvin, and the heat capacity of the single layer graphene can be less than 5. 57 x 1 (T4 joule per square centimeter Kelvin. The graphene film is a self-supporting structure, and the self-supporting graphene film does not require a large-area carrier support, and as long as the supporting force is provided on both sides, it can be suspended as a whole to maintain its own film state, that is, the graphene film. When placed on (or fixed to) two supports spaced apart by a fixed distance, the graphene film between the two supports can be suspended to maintain its own film state. Experiments show that graphene is not a 100% smooth and flat A two-dimensional film with a large number of microscopic undulations on the surface of a single-layer graphene, in which the single-layer graphene is maintained in such a way as to maintain its self-supportability and stability. The method may be a chemical vapor deposition method, an LB method or a method of tearing off the oriented graphite with a tape. In this embodiment, the stone is prepared by chemical vapor deposition. The graphene film is grown on the surface of a metal film substrate by chemical vapor deposition. The working medium of the thermoacoustic element 102 is not limited, and only needs to satisfy a resistivity higher than that of the thermo-acoustic element 102. The dielectric may include a gaseous medium or a liquid medium. The gaseous medium may be air. The liquid medium includes one or more of a non-electrolyte solution, water, an organic solvent, etc. Resistivity of the liquid medium More than 0.01 ohm·m, preferably, the liquid medium is pure water. The conductivity of the purified water can reach 1. 5 x lO7 ohm·m, and the heat capacity per unit area is also large, and the thermoacoustic element 102 can be conducted. The heat generated can thus be applied to the thermoacoustic component 102 100112573 Form No. A0101, page 7 / page 58 1002020942-0 201240484. In this embodiment, the medium is air. [0017] [0018] 0019] 100112573 ^ The thermo-acoustic device 1G of the embodiment can be electrically connected to the external P circuit through the first pole 10a and the second circuit, and thereby the external signal is sounded. By: the thermo-acoustic element 1 〇2 The graphite thin film has a relatively large heat flux per unit area and a large heat dissipating area. After the heating device 104: causes the acoustic element lQ2 to turn on the signal, the thermoacoustic element 102 can be quickly raised and lowered. The temperature 'generates a periodic temperature change and heats up with the surrounding medium to read 'heat the density of the surrounding medium periodically' to make a sound. In short, the thermoacoustic element 102 of the embodiment of the present invention. The sound is achieved by the conversion of electric__heat_sound. In addition, by using the high transmittance of the graphene film, the thermoacoustic I is set to a transparent heat-induced sounding device. The heat provided by this embodiment The sound pressure level of the sound generating device 10 is greater than 5 〇 decibels per watt sound pressure level, and the sounding frequency ranges from 丨Hz to 1 10,000 Hz (ie, ΙΗζ-lOO kHz). The thermoacoustic device may have a distortion of less than 3% in the frequency range of 500 Hz to 40,000 Hz. Referring to Figures 3 and 4, a second embodiment of the present invention provides a thermo-acoustic device 20. The thermo-acoustic device 20 of the present embodiment is different from the thermo-acoustic device 10 of the first embodiment in that the thermo-acoustic device 20 of the present embodiment further includes a substrate 208. The thermally audible element 102 is disposed on a surface of the substrate 208. The first electrode 104a and the second electrode 104b are disposed on a surface of the thermoacoustic element 102. The shape, size and thickness of the substrate 208 are not limited. The surface of the substrate 2〇8 may be a flat surface or a curved surface. The material of the substrate 208 is not limited to being a hard material or a flexible material having a certain strength. Preferably, the material of Form No. 208 of the substrate 208 has a resistance greater than that of the thermoacoustic element 1 〇2 and has better thermal and thermal resistance, thereby preventing the Thermal sounding components! Excessive heat generated by 〇2 is absorbed by the substrate 208. Specifically, the insulating material may be glass, ceramic, quartz, diamond, plastic, resin or wood material. [0020] In the present embodiment, the substrate 208 includes at least one hole 2〇8a. The depth of the aperture 208a is less than or equal to the thickness of the substrate 208. When the depth of the hole 2〇8a is smaller than the thickness of the substrate 208, the hole 2〇8a is a blind hole. When the depth of the hole 208a is equal to the thickness of the substrate 208, the hole 208a is a through hole. The shape of the cross section of the hole 208a is not limited and may be a circle, a square, a rectangle, a triangle 'polygon, an I-shape, or an irregular figure. When the substrate 208 includes a plurality of holes 208a, the plurality of holes 2〇8a may be uniformly distributed, distributed in a regular pattern, or randomly distributed to the substrate 2〇8. The spacing of each adjacent two holes 208a is not limited, and is preferably from 1 μm to 3 mm. In this embodiment, the substrate includes a plurality of holes 208a, which are through holes, and have a cylindrical shape in cross section, which is evenly distributed on the substrate 208. [0021] The thermoacoustic element 102 is disposed on the surface of the substrate 208 and is suspended relative to the hole 208a on the substrate 208. In this embodiment, since the portion of the thermo-acoustic element 102 above the hole 208a is suspended, The thermally audible elements 102 of the portion are in contact with the surrounding medium on both sides, increasing the area of contact of the thermally audible element 102 with the surrounding gas or liquid medium, and since another portion of the thermally audible element 102 is directly opposite the surface of the substrate 208 Contacted and supported by the substrate 208, the thermally audible element 102 is less susceptible to damage. [0022] Referring to FIG. 5, a third embodiment of the present invention provides a thermo-acoustic sounding device 3〇 100112573 Form No. A0101 Page 9 of 58 1002020942-0 201240484. The difference between the thermo-acoustic device 30 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that, in this embodiment, the base 308 of the thermo-acoustic device 30 includes at least one slot 308a, the slot 308a One surface 308b is disposed on the substrate 308. The depth of the groove 308a is smaller than the thickness of the substrate 308. The slot 308a can be a blind slot or a slot. When the slot 308a is a blind slot, the length of the slot 308a is less than the distance between the two opposing sides of the base 308. When the groove 308a is a through groove, the length of the groove 308a is equal to the distance between the two opposite sides of the substrate 308. The groove 308a causes the surface 308b to form an uneven surface. The depth of the groove 308a is smaller than the thickness of the substrate 308, and the length of the groove 308a is not limited. The shape of the groove 308a on the surface 308b of the substrate 308 may be rectangular, arcuate, polygonal, oblate, or other irregular shape. Referring to FIG. 5, in the embodiment, the substrate 308 is provided with a plurality of grooves 308a. The grooves 308a are blind grooves, and the groove 308a has a rectangular shape on the surface 308b of the substrate 308. Referring to Fig. 6, the groove 308a has a rectangular cross section in the longitudinal direction thereof, that is, the groove 308a has a rectangular parallelepiped structure. Referring to Fig. 7, the groove 308a has a triangular cross section in its longitudinal direction, i.e., the groove 308a has a triangular prism structure. When the surface 308b of the substrate 308 has a plurality of blind grooves, the plurality of blind grooves may be uniformly distributed, distributed in a regular pattern or randomly distributed on the surface 308b of the substrate 308. Referring to FIG. 7, the groove pitch of two adjacent blind grooves may be close to zero, that is, the area where the substrate 308 is in contact with the thermo-acoustic element 102 is a plurality of lines. It can be understood that in other embodiments, by changing the shape of the groove 308a, the area where the thermo-acoustic element 102 contacts the substrate 308 is a plurality of points, that is, between the thermo-acoustic element 102 and the substrate 308. Point contact, line contact or face contact. 100112573 Form No. A0101 Page 10 of 58 1002020942-0 201240484 '. [0023] In the thermo-acoustic device 30 of the present embodiment, since the substrate includes at least one groove 308a, the groove 308a can reflect the heat The sound waves emitted by the acoustic element 1〇2 are caused to enhance the vocal intensity of the thermoacoustic device 3 on the side of the thermoacoustic element 102. When the distance between the adjacent grooves 3〇8& is close to 0, the substrate 308 can support the thermoacoustic element 1〇2, and the thermo-acoustic element 102 can have the largest contact with the surrounding medium. Surface area. [0024] It can be understood that when the depth of the groove 308a reaches a certain value, the sound wave reflected by the groove 308a is superimposed with the original sound wave, thereby causing destructive interference 'jing> sounding of the heat-producing element 102. effect. To avoid this phenomenon, 'preferably' the depth of the groove 308a is less than or equal to the minimum. In addition, when the depth of the groove 308a is too small, the thermally audible element 102 suspended by the substrate 308 is too close to the substrate 308, which is disadvantageous for heat dissipation of the thermoacoustic element 102. Therefore, it is preferable that the depth of the groove 3〇8& is greater than or equal to 10 μm. ❹ Referring to FIG. 8 and FIG. 9, a fourth embodiment of the present invention provides a thermo-acoustic device 40. The thermo-acoustic device 40 of the present embodiment is different from the thermo-acoustic device 20 of the second embodiment in that, in the embodiment, the substrate 408 of the thermo-acoustic device 40 is a mesh structure. The substrate 4〇8 includes a plurality of first linear structures 408a and a plurality of second linear structures 408b. The linear structure may also be a strip or strip structure. The plurality of first linear structures 408a and the plurality of second linear structures 408b are interdigitated to form a substrate 408 having a mesh structure. The plurality of first linear structures 408a may or may not be parallel to each other, and the plurality of second linear structures 408b may be parallel to each other '100112573 Form No. A0101 Page 11 / Total 58 Pages 1002020942- 0 201240484 are not parallel to each other, when the plurality of first linear structures 408a are parallel to each other, and the plurality of second linear structures 408b are parallel to each other, specifically, the axial direction of the plurality of first linear structures 408a One direction L1 extends, and the distance between adjacent first linear structures 408a may be equal or unequal. The distance between the adjacent two first linear structures 408a is not limited, and preferably, the pitch is 1 cm or less. In this embodiment, the plurality of first linear structures 408a are equally spaced apart, and the distance between the adjacent two first linear structures 408a is 2 cm. The plurality of second linear structures 408b are spaced apart from each other and extend substantially in the second direction L2 in the axial direction, and the distance between the adjacent second linear structures 408b may be equal or unequal. The distance between the adjacent two second linear structures 408b is not limited, and preferably, the pitch is less than or equal to 1 cm. The first direction L1 forms an angle α with the second direction L2, and α is greater than 0 degrees and less than or equal to 90 degrees. In this embodiment, the angle between the first direction L1 and the second direction L2 is 90. . The manner in which the plurality of first linear structures 408a are disposed to intersect the plurality of second linear structures 408b is not limited. In this embodiment, the first linear structure 408a and the second linear structure 408b are woven together to form a mesh structure. In another embodiment, the plurality of spaced apart second linear structures 408b are disposed on the same side of the plurality of first linear structures 408a. The contact portion of the plurality of second linear structures 408b and the plurality of first linear structures 408a may be fixed by a bonding agent or may be fixed by soldering. When the melting point of the first linear structure 408a is low, the second linear structure 408b and the first linear structure 408a may be fixedly disposed by heat pressing. The substrate 408 has a plurality of meshes 408c. The plurality of cells 408c 100112573 Form No. A0101 Page 12 of 58 1002020942-0 201240484 ‘. The plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed by crossing each other. The mesh 4〇8c is quadrangular. The mesh 408c may be square, rectangular or diamond-shaped depending on the angle at which the intersection of the plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed. The size of the mesh 408c is determined by the distance between the adjacent two first linear structures 408a and the distance between the adjacent two second linear structures 408b. In this embodiment, the plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed in parallel at equal intervals, and the plurality of first linear structures 4〇8a and the plurality of second lines are The braided structures 408b are perpendicular to each other, so the mesh 408c is square and has a side length of 2 cm. [0027] The diameter of the first linear structure 4〇8a is not limited, and is preferably 10 micrometers to 5 millimeters. The material of the first linear structure 408a is made of an insulating material including fibers, plastics, resins or silicones. The first linear structure 408a may be a textile material. Specifically, the first linear structure 4〇88 may include one or more of plant fibers, animal fibers, wood fibers, and mineral fibers, such as cotton and linen. Line, wool, silk thread, nylon thread or spandex. Preferably, the insulating material should have a certain heat resistance and flexibility such as nylon or polyester. Further, the first linear structure 4?ga may be a conductive wire having an insulating layer on its outer surface. The conductive filaments may be wire or nanocarbon line-like structures. The metal includes a metal element or an alloy. The elemental metal may be aluminum, copper, tungsten 'molybdenum, gold, titanium, rhodium, palladium or iridium. The metal alloy may be an alloy of any combination of the above elemental metals. The material of the insulating layer may be a resin, a plastic, a ceria or a metal oxide. In this embodiment, the first linear structure 4〇8a is a surface 100112573 Form No. A0101 Page 13/58 page 1002020942-0 201240484 A carbon nanotube-like structure coated with cerium oxide, composed of cerium oxide The insulating layer encapsulates the nanocarbon line-like structure to constitute the first linear structure 408a. [0030] [0030] The structure and material of the second linear structure 408b are the same as the structure and material of the first linear structure 4 0 8 a. In the same embodiment, the structure and material of the second linear structure 408b may be the same as or different from the structure and material of the first linear structure 408a. In this embodiment, the second linear structure 408b is a nanocarbon line-like structure whose surface is coated with an insulating layer. The nanocarbon line-like structure includes at least one nanocarbon line including a plurality of carbon nanotubes. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube t. The nanocarbon line may be a pure structure composed of a plurality of carbon nanotubes. When the nanocarbon line-like structure includes a plurality of nanocarbon lines, the plurality of nanocarbon lines may be disposed in parallel with each other. When the nanocarbon line-like structure includes a plurality of nanocarbon lines, the plurality of nanocarbon lines may be spirally wound with each other. The plurality of carbon nanotubes in the nanocarbon line-like structure can also be fixed to each other by a binder. The nanocarbon line may be a non-twisted nanocarbon line or a twisted carbon line. Referring to Fig. 10, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending along the length of the nanocarbon pipeline and connected end to end. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and Through the carbon nanotubes that are tightly combined with 100,112,573 watts. That is, the non-twisted nanocarbon line includes a plurality of carbon nanotubes extending in the same direction. Form No. A0101 in the direction of extension No. 4 page / Total 58 pages 1002020942-0 201240484 The carbon nanotubes are connected to each other by van der Waals force. The nano carbon capture segment has a desired length, thickness, uniformity and shape. The length of the #twisted nano carbon pipeline is not limited, and the diameter is from 0.5 nm to 100 μ. [0031] The twisted nanocarbon line is obtained by twisting the non-twisted nanocarbon line in the opposite direction using a mechanical force. Referring to Figure 11, the twisted nanocarbon line includes a plurality of carbon nanotubes arranged axially helically around the carbon nanotube line. Preferably, the twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by a van der Waals force, and each of the carbon nanotube segments comprises a plurality of mutually parallel And through the close combination of the van der Waals carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted carbon nanotube wire has an unlimited length and has a diameter of from 0.5 nm to 1 μm. The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al., which was filed in the Republic of China in the first year of the Republic of China, and was published in the Republic of China on November 21, 1997. No. 1303239 Taiwan announced the patent 'a kind of carbon nanotube Rope and its manufacturing method", the patentee: Hon Hai Precision Industry Co., Ltd., and the 1312337 Taiwan Public Notice on July 21, 1998, Taiwan Announced Person: Hon Hai Precision Industry Co., Ltd. In order to save space 'only here', all the technical disclosures mentioned above should also be regarded as part of the disclosure of the present application. [0032] The heat-induced sound provided by this embodiment The base 408 of the device adopting the mesh structure has the following advantages. First, the mesh structure includes a plurality of mesh holes, and the heat-producing sound element 7 () 2 is provided at the same time, and the heat-generating sound-emitting element 1 〇 2 It has a large contact area with the surrounding medium. It: the base 408 of the mesh structure can have a softer feelability. Therefore, the 'thermo-acoustic device 100112573 form number A0101 page 15/58 page 1002020942-0 201240484 40 has Good Flexibility. Third, when the first linear structure 4〇83 or/spear second linear structure 408b includes a nanocarbon line-like structure coated with an insulating layer, the nanocarbon line-like structure may have a smaller The diameter further increases the contact area of the thermo-acoustic element 1〇2 with the surrounding medium; the nano-sinus linear structure has a small density, and therefore, the mass of the thermo-acoustic device 4〇 can be small; the nanocarbon The pipeline-like structure has better flexibility 'can be bent multiple times without being damaged, and therefore, the thermo-acoustic device 40 can have a longer service life. [0035] [0035] 100112573 understandable The mesh structure of the substrate 408 in this embodiment may also be woven from at least one of the above various linear structures. When the substrate 408 includes a linear structure, the one linear structure may be bent and folded multiple times. After forming a mesh structure, please refer to FIG. 12, a fifth embodiment of the present invention provides a thermo-acoustic device 50. The difference between the thermo-acoustic device 50 provided in this embodiment and the thermo-acoustic device provided in the second embodiment In this implementation The base 508 of the thermo-acoustic device 50 is a carbon nanotube composite structure. The carbon nanotube composite structure includes a carbon nanotube layer and an insulating material layer coated on the surface of the carbon nanotube layer. The carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes, and the carbon nanotubes may be one or a few of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The carbon nanotubes in the carbon nanotube layer can be tightly bonded by van der Waals force. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The arrangement means that the arrangement direction of the carbon nanotubes is irregular, and the ordered arrangement here means that at least most of the arrangement of the carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube layer includes a disordered arrangement of carbon nanotubes, the form number A0101 is 16 pages/58 pages 201240484 ❹ [0036] ❹ carbon nanotubes may be intertwined or isotropically arranged; When the carbon nanotube layer comprises an ordered arrangement of carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The thickness of the carbon nanotube layer is not limited and may be 0.5 nm to 1 cm. Preferably, the carbon nanotube layer may have a thickness of 100 μm to 1 mm. The carbon nanotube layer further includes a plurality of micropores formed by a gap between the carbon nanotubes. The pores in the carbon nanotube layer may have a pore diameter of 50 μm or less. The carbon nanotube layer may comprise at least one layer of carbon nanotube film, a carbon nanotube film or a carbon nanotube film. Referring to Fig. 13, the carbon nanotube film comprises a plurality of carbon nanotubes connected to each other by van der Waals force. The plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film are oriented in substantially the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The carbon nanotube film is a self-supporting film. The self-supporting carbon nanotube film does not require a large-area carrier support, and as long as the support force is provided on both sides, it can be suspended in the whole to maintain its own film state, that is, the carbon nanotube film is placed (or Fixed at a fixed distance setting of two 100112573 Form No. A0101 Page 17 / 58 pages 1002020942-0 201240484 On the support, the carbon nanotube film between the two supports can be suspended to maintain its own film State. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the nanotubes. [0039] The carbon nanotube film may have a thickness of 〇5 nm to 1 μm, and the width and length are not limited, and are set according to the size of the second substrate 1〇8. For the specific structure of the nano carbon official film and its preparation method, please refer to Fan Shoushan et al. on February 12, 1996, the application of the Republic of China, No. 1327177 announced in the Republic of China. To save space, reference is made only to this, but all technical disclosures of the application are also considered to be part of the technical disclosure of the present application. When the carbon nanotube layer comprises a multi-layered carbon nanotube film, the angle of intersection formed between the extending directions of the carbon nanotubes in the adjacent two layers of the carbon carbon film is not limited. Referring to Fig. 14, the carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube film are not limited, and the thickness is from 丨 micrometer to 丨 millimeter. The nano carbon official flocculation crucible and the preparation method thereof can be found in Fan Shoushan et al., which was filed on May 11, 1996, in the Republic of China, on the 16th of the year, on the 16th of the year, the form number A0101, page 18 of 58 Page 1002020942-0 201240484 [0040]

[0041] 100112573 200844041號台灣公開專利申請“奈米碳管薄膜的製備 方法”。為節省篇幅,僅引用於此,但上述申請所有技 術揭露也應視為本發明申請技術揭露的一部分。 請參見圖15,所述奈米碳管碾壓膜包括均勻分佈的奈米 破管,奈米碳管沿同一方.向或不同方向擇優取向排列。 奈米碳管也可以係各向同性的。所述奈米碳管碾壓膜中 的奈米碳管相互部分交疊,並通過凡得瓦力相互吸引, 緊密結合。所述奈米碳管碾壓膜中的奈米碳管與形成奈 米碳管陣列的生長基底的表面形成一夾角>5,其中,/5 大於等於0度且小於等於15度。依據碾壓的方式不同,該 奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。當 沿同一方向碾壓時,奈米碳管沿一固定方向擇優取向排 列。可以理解,當沿不同方向碾壓時,奈米碳管可沿複 數個方向擇優取向排列。該奈米碳管碾壓膜厚度不限, 優選為為1微米〜1毫米。該奈米碳管碾壓膜的面積不限, 由碾壓出膜的奈米碳管陣列的大小決定。當奈米碳管陣 列的尺寸較大時,可以碾壓制得較大面積的奈米碳管碾 壓膜。所述奈米碳管碾壓膜及其製備方法請參見范守善 等人於民國96年6月29日申請的,於民國99年12月21日 公告的第1334851號台灣公告專利“奈米碳管薄膜的製備 方法”。為節省篇幅,僅引用於此,但上述申請所有技 術揭露也應視為本發明申請技術揭露的一部分。 所述絕緣材料層位於奈米碳管層的表面,該絕緣材料層 的作用為使奈米碳管層與熱致發聲元件102相互絕緣。該 絕緣材料層僅分佈於奈米碳管層的表面,或者絕緣材料 表單編號A0101 第19頁/共58頁 1002020942-0 201240484 層包裹奈米碳管層中的每根奈米碳管。當絕緣材料層的 厚度軚薄時,不會將奈米碳管層中的微孔堵塞,因此, 該奈米碳管複合結構包括複數個微孔。所述熱致發聲元 件102相對於該複數個微孔至少部分懸空設置。複數個微 孔使熱致發聲元件102與外界接觸面積較大。 [0042] [0043] 本實施例所提供的熱致發聲裝置5〇採用奈米碳管複合結 構作為基底508,具有以下優點:第一,奈米碳管複合钟 構包括奈米碳管層和塗覆在奈米碳管層表面的絕緣材料 層,由於奈米碳管層可以由純的奈米碳管組成的結構, 因此,奈米碳管層的密度小,質量相對較輕,因此,熱 致發聲裝置50具有較小的質量,方便應用;第二,奈米 碳管層中的微孔係由奈米碳管之間的間隙構成,分佈均 勻,在絕緣材料層較薄的情況下,奈米碳管複合結構可 以保持該均勻分佈的微孔結構,因此,熱致發聲元件1〇2 通過该基底508可以與外界空氣較均勻地接觸;第三,所 述奈米碳管層具有良好的柔韌性,可以多次彎折而不被 破壞,因此,奈米碳管複合結構具有較好的柔韌性,採 用奈米碳管複合結構作為基底508的熱致發聲裝置5〇為— 柔性的發聲裝置,可以設置成任何形狀不受限制。 請參見圖16及圖17 ’本發明第六實施例提供—種熱致發 聲裝置60,該熱致發聲裝置60包括一基底6〇8、一致熱裝 置104及一熱致發聲元件102。該致熱裝置1〇4包括複數 個第一電極104a及複數個第二電極i〇4b,所述複數個第 一電極104a和複數個第二電極l〇4b分別和熱致發聲元件 102電連接。 100112573 表單編號A0101 第20頁/共58頁 1002020942-0 201240484 • [0044] Ο 所述複數個第一電極1〇4a與複數個第二電極1〇处交替間 隔設置於基底608。所述熱致發聲元件1〇2設置於該複數 個第一電極l〇4a與複數個第二電極1〇仆上,使該複數個 第一電極104a與複數個第二電極1〇41)位於基底6〇8與熱 致發聲元件1〇2之間,該熱致發聲元件1〇2相對於基底 608部分懸空。即,複數個第一電極1〇铛、複數個第二電 極104b、熱致發聲元件1〇2以及基底6〇8共同形成有複數 個間隙601,從而使該熱致發聲元件1〇2與周圍空氣產生較 大的接觸面積。各個相鄰的第一電極1〇4&與第二電極 104b之間的距離可以相等也可以不相等。優選地,各個 相鄰的第一電極1 〇4a與第二電極丨04b之間的距離相等。 相鄰的第一電極l〇4a與第二電極丨〇4b之間的距離不限, 優選為10微米~1厘米。 [0045] Ο [0046] 所述基底608主要起承載第一電極104a與第二電極1〇扑 的作用。該基底608的形狀與大小不限,材料為絕緣材料 或導電性差的材料。另外,該基底608的材料應具有較好 的絕熱性能,從而防止該熱致發聲元件1〇2產生的熱量被 該基底608吸收,而無法達到加熱周圍介質進而發聲的目 的。在本實施例中,該基底6〇8的材料可為玻璃、樹脂或 陶瓷等。本實施例中,所述基底6〇8為一正方形的玻璃板 ,其邊長為4. 5厘米,厚度為1毫米。 該間隙601由一個第一電極i〇4a、一個第二電極i〇4b與 基底608定義,該間隙601的高度取決於第一電極1〇4&與 第二電極104b的高度。在本實施例中,第一電極1〇4&與 第二電極104b的高度範圍為i微米〜1厘米。優選地第 100112573 表單編號A0101 第21頁/共58頁 1002020942-0 201240484 一電極104a和第二電極104b的高度為15微米。 [0047] 所述第一電極104a與第二電極104b可為層狀(絲狀或帶 狀)、棒狀、條狀、塊狀或其他形狀,其橫截面的形狀 可為圓型、方型、梯形、三角形、多邊形或其他不規則 形狀。該第一電極104a與第二電極104b可通過螺栓連接 或黏結劑黏結等方式固定於基底608。而為防止熱致發聲 元件102的熱量被第一電極104a與第二電極104b過多吸 收而影響發聲效果,該第一電極104a及第二電極104b與 熱致發聲元件102的接觸面積較小為好,因此,該第一電 極104a和第二電極104b的形狀優選為絲狀或帶狀。該第 一電極104a與第二電極104b材料可選擇為金屬、導電膠 、導電漿料、銦錫氧化物(ITO)、奈米碳管或碳纖維等 。當第一電極l〇4a或第二電極104b的材料為奈米碳管時 ,該第一電極104a或第二電極104b可以為一奈米碳管線 狀結構。該奈米碳管線狀結構的結構與第四實施例提供 的奈米碳管線狀結構相同。由於奈米碳管線狀結構中的 奈米碳管首尾相連,因此,奈米碳管線狀結構具有良好 的導電性,可以用作電極。 [0048] 該熱致發聲裝置60進一步包括一第一電極引線610及一第 二電極引線612,該第一電極引線610與第二電極引線 612分別與熱致發聲裝置60中的第一電極104a和第二電 極104b連接,使複數個第一電極104a分別與該第一電極 引線610電連接,使複數個第二電極104b分別與該第二電 極引線61 2電連接。所述熱致發聲裝置60通過該第一電極 引線610和第二電極引線612與外部電路電連接。這種連 100112573 表單編號A0101 第22頁/共58頁 1002020942-0 201240484 、使帛電極引線610和第二電極引線612之間 的熱致發聲几件1{)2的方塊電阻大大減小,可以提高熱致 發聲tl件102的發聲效率。 [0049] 實1中複數個第一電極1〇4a和複數個第二電極 1刚可以起到域熱致發聲元件1G2的作用,因此 ,基底 8並非必相辑。當本實施例巾的熱致發聲裝置⑽不 i括基底6084 ’第—電極丨⑷和第二電極1㈣在使熱 Ο [0050] 致發聲το件102與外部電路電連接的同時,還可以保護和 支撐熱致發聲元件1 〇2。 本實%例中,第一電極l〇4a與第二電極1〇4b為用絲網印 刷方法形成的絲狀銀電極。第一電極1〇4a數量為四個, 第二電極l〇4b數量為四個,該四個第一電極i〇4a與四個 第二電極104b交替且等間距設置於基底608。每個第一電 極104a與第二電極l〇4b的長度均為3厘米,高度為15微 米,相鄰的第一電極l〇4a與第二電極104b之間的距離為 5毫米。 Ο [0051] 本實施例提供的熱致發聲裝置60中,熱致發聲元件102通 過複數個第一電極104a和複數個第二電極104b懸空設置 ,增加了熱致發聲元件102與周圍空氣的接觸面積,有利 於熱致發聲元件102與周圍空氣熱交換,提高了發聲效率 〇 請參見圖18和圖19,本發明第七實施例提供一種熱致發 聲裝置70。該熱致發聲裝置70包括一基底608、一致熱裝 置104及一熱致發聲元件102。該致熱裝置104包括複數 100112573 表單編號A0101 第23頁/共58頁 1002020942-0 [0052] 201240484 個第—電極〗04a及複數個第二電極〗〇扑,所述複數個第 —電極〗〇4a和複數個第二電極1〇扑分別和熱致發聲元件 電連接。該熱致發聲元件1〇2包括一石墨烯膜。本實 施例所提供的熱致發聲裝置7〇與第六實施例所提供的熱 致發聲裝置6G的結構基本㈣,其區別在於,本實施例 中相鄰的兩個第一電極1 04a和第二電極i〇4b之間進一 步包括至少一個間隔元件714。 [0053] [0054] 所述間隔元件714與基底608可以為分離的元件,該間隔 元件714通過例如螺栓連接或黏結劑黏結等方式固定於基 底608。另外,該間隔元件714也可以與基底6〇8一體成 i即間隔元件714的材料與基底6〇8的材料相同。該間 隔元件714的形狀不限,可為球形、絲狀或帶狀結構。為 保持熱致發聲元件102具有良好的發聲效果,該間隔元件 Ή4在支撐熱致發聲元件102的同時應與熱致發聲元件 102具有較小的接觸面積,優選為該間隔元件714與熱致 發聲元件102之間為點接觸或線接觸。 在本實施例中,該間隔元件714的材料不限’可為玻璃、 陶瓷或樹脂等的絕緣材料,也可為金屬、合金或銦錫氧 化物等的導電材料。當間隔元件714為導電材料時,其與 第一電極104a和第二電極l〇4b電性絕緣,且,優選地, 間隔元件714與第一電極l〇4a和第二電極i〇4b平行。兮 間隔元件714的高度不限,優選為丨〇微米〜丨厘米。本實施 例中,該間隔元件714為採用絲網印刷方法形成的絲狀銀 ,該間隔元件714的高度與所述第一電極1〇4&及第二電極 104b的高度相同,為20微米。間隔元件714與第—電極 100112573 表單編號_八0101 第24頁/共58頁 1002020942-0 201240484 104a和第二電極104b平行設置。由於間隔元件714的高 度與第一電極l〇4a和第二電極l〇4b的高度相同,因此’ 所述熱致發聲元件102位於同一平面。 [0055] Ο 所述熱致發聲元件1 02設置於間隔元件714 '第一電極 104a及第二電極104b。該熱致發聲元件1〇2通過該間隔 元件714與基底608間隔設置’且與該基底608形成有一 空間701,該空間701係由所述第一電極l〇4a或所述第二 電極104b、所述間隔元件714、基底608以及熱致發聲元 件102共同形成。進一步地,為防止熱致發聲元件1〇2產 生駐波,保持熱致發聲元件102良好的發聲效果,該熱致 發聲元件102與基底608之間的距離優選為1〇微米〜1厘米 。本實施例中,由於第一電極l〇4a、第二電極l〇4b及間 隔元件714的高度為2〇微米,所述熱致發聲元件102設置 於第一電極104a、第二電極104b及間隔元件714,因此 ,該熱致發聲元件1〇2與基底608之間的距離為20微米。 [0056] ❹ 可以理解’第一電極l〇4a和第二電極l〇4b對熱致發聲元 件102也有一定的支撐作用,但當第一電極i〇4a和第二電 極104b之間的距離較大時,對熱致發聲元件102的支撐效 果不佳,在第一電極l〇4a和第二電極l〇4b之間設置間隔 元件714 ’可起到較好支撐熱致發聲元件102的作用’使 熱致發聲元件1〇2與基底608間隔設置並與基底608形成 有一空間701,從而保證熱致發聲元件1〇2具有良好的發 聲效果。 請參見圖20,本發明第八實施例提供一種熱致發聲裝置 。該熱致發聲裝置80包括至少一個致熱裝置和複數個 100112573 表單编號A0101 第25頁/共58頁 1002020942-0 [0057] 201240484 熱致發聲元件。所述複數個熱致發聲元件的情況包括兩 種:第一,該複數個熱致發聲元件的數量為至少兩個, 熱致發聲元件之間沒有相互接觸;第二,該複數個熱致 發聲元件的數量為一個’該熱致發聲元件設置於一具有 曲面的基底上,使其法線方向為複數個或者該熱致發聲 元件彎折後設置於不同的平面上。致熱裝置可以與熱致 發聲元件一一對應,也可以一個致熱裝置對應複數個熱 致發聲元件。該致熱裝置也可以為由對應所述複數個熱 致發聲元件的複數個部位組成的一整體結構。本實施例 中,該熱致發聲裝置80包括一第一致熱褒置8〇4、一第二 致熱裝置806、一基底208、一第一熱致發聲元件8〇2a及 一第二熱致發聲元件802b。 [0058] 所述基底208包括一第一表面(圖未標)及一第二表面( 圖未標)。所述基底208的形狀、尺寸及厚度均不限。所 述第一表面和第二表面可為平面、曲面或凹凸不平的表 面。第· 表面和第—表面可以為相鄰的兩個表面,也可 以為相對的兩個表面。本實施例中,所述基底208為一長 方體結構,第一表面和第二表面為兩個相對的表面。所 述基底208進一步包括複數個通孔208a ’該通孔2〇8a貫 穿於第一表面和第二表面,從而使第一表面和第二表面 成為凹凸不平的表面。所述複數個通孔208a可以相互平 行設置。 [0059] 所述第一熱致發聲元件8〇2a ax置於基底208的第一表面上 ,並相對於該第一表面至少部分懸空設置。所述第二熱 致發聲元件802b設置於第二表面上,並相對於第二表面 100112573 表單編號A0101 第26頁/共58頁 1002020942-0 201240484 至少部分懸空設置。所述第一熱致發聲元件802a為一石 墨烯膜。所述第二熱致發聲元件802b為一石墨烯膜或者 一奈米碳管層。所述奈米碳管層的結構與第五實施例中 所揭示的奈米碳管層的結構相同。由於奈米碳管層包括 至少一層奈米碳管膜,奈米碳管層的厚度較小,具有較 小的單位面積熱容,因此,奈米碳管層也可以作為熱致 發聲元件。 [0060] 所述第一致熱裝置804包括一第一電極104a及一第二電極 104b。所述第一電極104a和第二電極104b分別與該第一 〇 熱致發聲元件802a電連接。本實施例中,第一電極104a 和第二電極104b分別設置於第一熱致發聲元件802a的表 面,並與該第一熱致發聲元件8〇2a的兩個相對的邊齊平 。所述第二致熱裝置806包括一第一電極104a及一第二電 極104b。所述第一電極104a和第二電極104b分別與該第 二熱致發聲元件802b電連接。本實施例中,第一電極 104a和第二電極104b分別設置於第二熱致發聲元件802b 的表面,並與該第一熱致發聲元件802a的兩個相對的邊 [0061] 本實施例所提供的熱致發聲裝置80為雙面發聲裝置,通 過在兩個不同的表面上設置熱致發聲元件,可以使熱致 發聲元件所發出的聲音傳播範圍更大且更清晰。可以通 過控制致熱裝置選擇讓任何一個熱致發聲元件發出聲音 ,或者同時發出聲音,使該熱致發聲裝置的使用範圍更 加廣泛。進一步地,當一個熱致發聲元件出現故障時, 另一個熱致發聲元件可以繼續工作,提高了該熱致發聲 100112573 表單編號A0101 第27頁/共58頁 1002020942-0 201240484 裝置的使用壽命。 [0062] 請參見圖21,本發明第九實施例提供一種熱致發聲裝置 90。本實施例所提供的熱致發聲裝置90與第八實施例提 供的熱致發聲裝置80的結構的區別在於,本實施例所提 供的熱致發聲裝置90為一多面發聲裝置。 [0063] 本實施例中,所述基底908為一長方體結構,其包括四個 不同的表面,該四個不同的表面為凹凸不平的表面。所 述熱致發聲裝置90包括四個熱致發聲元件102,其中一個 熱致發聲元件102為一石墨烯膜,另外三個熱致發聲元件 102可以為石墨烯膜,也可以為奈米碳管層。 [0064] 每個致熱裝置104分別包括一個第一電極104a和一個第二 電極104b。第一電極104a和第二電極104b分別與一個熱 致發聲元件102電連接。 [0065] 本實施例所提供的熱致發聲裝置90可以實現向複數個方 向傳播聲音。 [0066] 請參見圖22,本發明第十實施例提供一種熱致發聲裝置 100。該熱致發聲裝置100包括一熱致發聲元件102、一 基底208及一致熱裝置1 004。所述熱致發聲元件102設置 於所述基底208。本實施例所提供的熱致發聲裝置100與 第二實施例提供的熱致發聲裝置20的結構的區別在於, 本實施例所提供的熱致發聲裝置100中,致熱裝置1 004為 一雷射器,或其他電磁波信號發生裝置。從該致熱裝置 1 004發出的電磁波信號1 020傳遞至該熱致發聲元件102 ,該熱致發聲元件102發聲。 100112573 表單編號A0101 第28頁/共58頁 1002020942-0 201240484 • [0067] 該致熱裝置1004可正對該熱致發聲元件ΐ〇2設置。當致熱 裝置1004為一雷射器時,當該基底208為透明基板時,該 雷射器可對應於該基底208遠離該熱致發聲元件102的表 面設置’從而使從雷射器發出的雷射穿過基底208傳遞至 該熱致發聲元件102。另外,當該致熱裝置1〇〇4發出的係 一電磁波信號時,該電磁波信號可透過基底208傳遞至該 熱致發聲元件102,此時,該致熱裝置1〇〇4也可以對應於 該基底208遠離該熱致發聲元件1〇2的表面設置。 [0068] Ο 本實施例的熱致發聲裝置1〇〇中,當熱致發聲元件102受 到如雷射等電磁波的照射時,該熱致發聲元件1〇2因吸收 電磁波的能量而受激發,並通過非韓射使吸收的光能全 部或部分轉變為熱。該熱致發聲元件102溫度根據電磁波 L號1020頻率及強度的變化而變化,並和周圍的空氣或 其他氣體或液體介質進行迅速的熱交換,從而使其周圍 介貝的溫度也產生等頻率的變化,造成周圍介質迅速的 膨脹和收縮,從而發出聲音。 Q [0069] 由於該熱致發聲裝置的工作原理為將—定形式的能量以 極快的速度轉換為熱量,並和周圍氣體或液體介質進行 快迷的熱交換,從而使該介質膨脹及收縮,從而發出聲 曰。可以理解,所述能量形式不局限於電能或光能,該 .、、、裝置也不局限於上述實施例中的電極或電磁波信號 發生器,任何可以使該熱致發聲元件發熱,並按照音頻 變化加熱周圍介質的裝置均可看作一致熱裝置,旅在本 發明保護範圍内。 100112573 本發明中的石墨烯膜具有較好的韌性和機械強度,所以 表單編號A0101 第29頁/共58頁 1002020942-0 [0070] 201240484 石墨烯膜可方便地製成各種形狀和尺寸的熱致發聲裝i 。本發明的熱致發聲I置不僅單獨可以作為揚聲器使用 ,也可方便地應用於各種需要發聲裝置的電子裝置中。 該熱致發聲裝置可以内置於電子裝置殼體中或者殼體外 表面,作為電子裝置的發聲單元。該熱致發聲裝置可以 取代電子裝置的傳統的發聲單元,也可以與傳統發聲單 元組合使用。該熱致發聲裝置可以與電子裝置的其他電 子元件公用電源或公用處理器等。也可以通過有線或無 線的方式與電子裝置連接,有線的方式比如通過信號傳 輸線與電子裝置的USB介面結合,無線的方式比如通過藍 f、 牙方式與電子裝置連接。該熱致發聲裝置也可以安裝或 集成在電子裝置的顯示幕上,作為電子裝置的發聲單元 。該電子裝置可以為音響、手機、MP3、MP4 '遊戲機、 數碼相機、數碼攝像機、電視或電腦等。例如,當電子 裝置為手機時,由於本實施例提供的熱致發聲裝置為一 透明的結構,該熱致發聲裝置可以通過機械固定方式或 者黏結劑貼合在手機顯示幕的表面。當電子裝置為MP3時 ,該熱致發聲裝置可以内置於MP3中,與MP3内部的電路 板電連接,當MP3通電時’該熱致發聲裝置可以發出聲音 〇 [0071] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 100112573 表單編號A0101 第30頁/共58頁 1002020942-0 201240484 【圖式簡單說明】 [0072] 圖1係本發明第一實施例提供的熱致發聲裝置的俯視圖。 [0073] 圖2係沿圖1中I I - 11線剖開的剖面圖。 [0074] 圖3係本發明第二實施例提供的熱致發聲裝置的俯視圖。 [0075] 圖4係沿圖3中IV- IV線剖開的剖面圖。 [0076] 圖5係本發明第三實施例提供的熱致發聲裝置的俯視圖。 [0077] 圖6係第三實施例中一種情況下沿圖5中VI-VI線剖開的剖 ^ 面圖。 〇 [0078] 圖7為第三實施例中另一種情況下沿圖5中VI-VI線剖開的 剖面圖。 [0079] 圖8係本發明第四實施例提供的熱致發聲裝置的俯視圖。 [0080] 圖9係沿圖8中IX-IX線剖開的剖面圖。 [0081] 圖10係圖8中熱致發聲裝置所採用的非扭轉的奈米碳管線 狀結構的掃描電鏡照片。 [0082] 圖11係圖8中熱致發聲裝置所採用的扭轉的奈米碳管線狀 結構的掃描電鏡照片。 [0083] 圖12係本發明第五實施例提供的採用表面塗有絕緣層的 奈米碳管層作為基底的熱致發聲裝置的側視剖面圖。 [0084] 圖13係圖12中的奈米碳管層所採用的奈米碳管拉膜的掃 描電鏡照片。 圖14係圖12中的奈米碳管層所採用的奈米碳管絮化膜的 掃描電鏡照片。 100112573 表單編號A0101 第31頁/共58頁 1002020942-0 [0085] 201240484 [0086] 圖15係圖12中的奈米碳管層所採用的奈米碳管碾壓膜的 掃描電鏡照片。 [0087] 圖16係本發明第六實施例提供的熱致發聲裝置的俯視圖 〇 [0088] 圖17係沿圖16中XVI I-XVII線剖開的剖面圖。 [0089] 圖1 8係本發明第七實施例提供的熱致發聲裝置的俯視圖 〇 [0090] 圖19係沿圖18中XIX-XIX線剖開的剖面圖。 [0091] 圖2 0係本發明第八實施例提供的熱致發聲裝置的側視剖 面圖。 [0092] 圖21係本發明第九實施例提供的熱致發聲裝置的側視剖 面圖。 [0093] 圖22為本發明第十實施例提供的熱致發聲裝置的侧視圖 〇 【主要元件符號說明】 [0094] 熱致發聲裝置:10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70 ; 80 ; 90 ; 100 [0095] 熱致發聲元件:102 [0096] 致熱裝置:104 ; 1004 [0097] 第一電極:1 04a [0098] 第二電極:104b [0099] 基底:208 ; 308 ; 408 ; 508 ; 608 ; 908 1002020942-0 100112573 表單編號A0101 第32頁/共58頁 201240484[00041] Taiwan Patent Publication No. 100112573, No. 200844041, "Preparation of Nano Carbon Films". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. Referring to Fig. 15, the carbon nanotube rolled film comprises uniformly distributed nano-tubes, and the carbon nanotubes are arranged along the same direction in a preferred orientation. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube rolled film partially overlap each other and are attracted to each other by the van der Waals force, and are tightly bonded. The carbon nanotubes in the carbon nanotube rolled film form an angle > 5 with the surface of the growth substrate forming the carbon nanotube array, wherein /5 is greater than or equal to 0 degrees and less than or equal to 15 degrees. The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed orientation. It will be appreciated that the carbon nanotubes may be arranged in a preferred orientation along a plurality of directions when rolled in different directions. The thickness of the carbon nanotube rolled film is not limited, and is preferably 1 μm to 1 mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, a large area of the carbon nanotube rolled film can be crushed. The carbon nanotube rolling film and its preparation method can be found in Fan Shoushan et al., which was filed on June 29, 1996, and announced on December 21, 1999 in Taiwan No. 1334851, Taiwan Announced Patent "Nano Carbon Tube" Method for preparing a film". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. The insulating material layer is located on the surface of the carbon nanotube layer, and the insulating material layer functions to insulate the carbon nanotube layer from the thermoacoustic element 102. The layer of insulating material is only distributed on the surface of the carbon nanotube layer, or the insulating material. Form No. A0101 Page 19 of 58 1002020942-0 201240484 Each of the carbon nanotubes in the layer of carbon nanotubes is wrapped. When the thickness of the insulating material layer is thin, the micropores in the carbon nanotube layer are not blocked, and therefore, the carbon nanotube composite structure includes a plurality of micropores. The thermally audible element 102 is at least partially suspended relative to the plurality of microwells. The plurality of micropores provide a large contact area of the thermoacoustic element 102 with the outside. [0043] The thermo-acoustic device 5〇 provided by the embodiment adopts a carbon nanotube composite structure as the substrate 508, and has the following advantages: First, the carbon nanotube composite clock structure includes a carbon nanotube layer and The insulating material layer coated on the surface of the carbon nanotube layer, because the carbon nanotube layer can be composed of a pure carbon nanotube, the carbon nanotube layer has a small density and a relatively low quality, therefore, The thermo-acoustic device 50 has a small mass and is convenient for application; secondly, the micropores in the carbon nanotube layer are composed of gaps between the carbon nanotubes and are evenly distributed, in the case where the insulating material layer is thin. The carbon nanotube composite structure can maintain the uniformly distributed microporous structure, and therefore, the thermo-acoustic element 1〇2 can be more uniformly contacted with the outside air through the substrate 508; third, the carbon nanotube layer has good The flexibility can be bent multiple times without being destroyed. Therefore, the carbon nanotube composite structure has good flexibility, and the thermo-acoustic device using the carbon nanotube composite structure as the substrate 508 is flexible. Sound device, can be set Any shape is not limited. Referring to Figures 16 and 17, a sixth embodiment of the present invention provides a thermally-induced sounding device 60 that includes a substrate 6〇8, a uniform thermal device 104, and a thermo-acoustic component 102. The heating device 1〇4 includes a plurality of first electrodes 104a and a plurality of second electrodes i〇4b, and the plurality of first electrodes 104a and the plurality of second electrodes 104b are electrically connected to the thermo-acoustic elements 102, respectively. . 100112573 Form No. A0101 Page 20 of 58 1002020942-0 201240484 • [0044] 复 The plurality of first electrodes 1〇4a and the plurality of second electrodes 1〇 are alternately disposed on the substrate 608. The thermoacoustic element 1〇2 is disposed on the plurality of first electrodes 104a and the plurality of second electrodes 1 such that the plurality of first electrodes 104a and the plurality of second electrodes 1〇41) are located Between the substrate 6〇8 and the thermoacoustic element 1〇2, the thermoacoustic element 1〇2 is partially suspended relative to the substrate 608. That is, the plurality of first electrodes 1 〇铛, the plurality of second electrodes 104b, the thermo-acoustic element 1 〇 2, and the substrate 6 〇 8 are collectively formed with a plurality of gaps 601 such that the thermo-acoustic elements 1 〇 2 and the surroundings The air creates a large contact area. The distance between each of the adjacent first electrodes 1〇4& and the second electrode 104b may or may not be equal. Preferably, the distance between each of the adjacent first electrodes 1 〇 4a and the second electrode 丨 04b is equal. The distance between the adjacent first electrode 104a and the second electrode 4b is not limited, and is preferably 10 micrometers to 1 centimeter. [0046] The substrate 608 mainly functions to carry the first electrode 104a and the second electrode 1 . The shape and size of the substrate 608 are not limited, and the material is an insulating material or a material having poor conductivity. In addition, the material of the substrate 608 should have good thermal insulation properties, so that the heat generated by the thermo-acoustic element 1 〇 2 is prevented from being absorbed by the substrate 608, and the purpose of heating the surrounding medium and sounding is not achieved. In this embodiment, the material of the substrate 6 8 may be glass, resin or ceramic or the like. 5厘米的厚度为1毫米。 In this embodiment, the substrate 6〇8 is a square glass plate having a side length of 4.5 cm, a thickness of 1 mm. The gap 601 is defined by a first electrode i〇4a, a second electrode i〇4b, and a substrate 608 whose height depends on the height of the first electrode 1〇4& and the second electrode 104b. In the present embodiment, the heights of the first electrodes 1〇4& and the second electrode 104b are in the range of i micrometers to 1 centimeter. Preferably, the number of the electrodes 104a and the second electrode 104b is 15 micrometers. [0047] The first electrode 104a and the second electrode 104b may be layered (filament or strip), rod, strip, block or other shape, and the cross section may be round or square. , trapezoids, triangles, polygons, or other irregular shapes. The first electrode 104a and the second electrode 104b may be fixed to the substrate 608 by bolting or bonding of a bonding agent or the like. In order to prevent the heat of the thermo-acoustic element 102 from being excessively absorbed by the first electrode 104a and the second electrode 104b, the contact area of the first electrode 104a and the second electrode 104b with the thermo-acoustic element 102 is small. Therefore, the shape of the first electrode 104a and the second electrode 104b is preferably a filament shape or a ribbon shape. The material of the first electrode 104a and the second electrode 104b may be selected from a metal, a conductive paste, a conductive paste, indium tin oxide (ITO), a carbon nanotube or a carbon fiber. When the material of the first electrode 104a or the second electrode 104b is a carbon nanotube, the first electrode 104a or the second electrode 104b may have a nanocarbon line structure. The structure of the nanocarbon line-like structure is the same as that of the nanocarbon line-like structure provided in the fourth embodiment. Since the carbon nanotubes in the nanocarbon line-like structure are connected end to end, the nanocarbon line-like structure has good electrical conductivity and can be used as an electrode. [0048] The thermo-acoustic device 60 further includes a first electrode lead 610 and a second electrode lead 612, and the first electrode lead 610 and the second electrode lead 612 are respectively associated with the first electrode 104a of the thermo-acoustic device 60. The second electrode 104b is connected to the second electrode 104b, and the plurality of first electrodes 104a are electrically connected to the first electrode lead 610, and the plurality of second electrodes 104b are electrically connected to the second electrode lead 61 2, respectively. The thermoacoustic device 60 is electrically connected to an external circuit through the first electrode lead 610 and the second electrode lead 612. Such a connection 100112573 form number A0101 page 22 / 58 page 1002020942-0 201240484, the thermal resistance of the 帛 electrode lead 610 and the second electrode lead 612 between the pieces 1{) 2 square resistance is greatly reduced, can Improve the sounding efficiency of the thermo-acoustic tl piece 102. [0049] In the first embodiment, the plurality of first electrodes 1〇4a and the plurality of second electrodes 1 can function as the domain thermo-acoustic element 1G2, and therefore, the substrate 8 is not necessarily matched. When the thermal sound generating device (10) of the present embodiment does not include the substrate 6084' the first electrode (4) and the second electrode 1 (4), it can also protect the heat generating device 102 from being electrically connected to the external circuit. And supporting the thermoacoustic element 1 〇2. In the present example, the first electrode 104a and the second electrode 1〇4b are filamentary silver electrodes formed by a screen printing method. The number of the first electrodes 1〇4a is four, and the number of the second electrodes 104b is four, and the four first electrodes i〇4a and the four second electrodes 104b are alternately and equally spaced on the substrate 608. Each of the first electrode 104a and the second electrode 104b has a length of 3 cm and a height of 15 μm, and a distance between the adjacent first electrode 104a and the second electrode 104b is 5 mm. [0051] In the thermo-acoustic device 60 provided by the embodiment, the thermo-acoustic element 102 is suspended by the plurality of first electrodes 104a and the plurality of second electrodes 104b, thereby increasing the contact of the thermo-acoustic element 102 with the surrounding air. The area is advantageous for heat exchange between the heat-induced sounding element 102 and the surrounding air, and the sound generation efficiency is improved. Referring to FIG. 18 and FIG. 19, a seventh embodiment of the present invention provides a thermo-acoustic sounding device 70. The thermoacoustic device 70 includes a substrate 608, a uniform thermal device 104, and a pyrogenic component 102. The heating device 104 includes a plurality of 100112573, a form number A0101, a page 23, a total of 58 pages, 1002020942-0 [0052] 201240484 first-electrode〗 04a and a plurality of second electrodes, the plurality of first-electrode 4a and a plurality of second electrodes 1 are electrically connected to the thermo-acoustic elements, respectively. The thermoacoustic element 1〇2 includes a graphene film. The structure of the thermo-acoustic device 7A provided in this embodiment is substantially the same as that of the thermo-acoustic device 6G provided in the sixth embodiment, and the difference is that the two adjacent first electrodes 104a and At least one spacer element 714 is further included between the two electrodes i〇4b. [0054] The spacer element 714 and the substrate 608 may be separate components that are secured to the substrate 608 by, for example, bolting or adhesive bonding. Alternatively, the spacer element 714 may be integral with the substrate 6A, i.e., the spacer element 714 may be of the same material as the substrate 6A8. The spacer element 714 is not limited in shape and may be in the form of a sphere, a filament or a ribbon. In order to maintain the sound-emitting element 102 with good sounding effect, the spacer element Ή4 should have a small contact area with the thermally-induced sound-emitting element 102 while supporting the thermally-induced sound-emitting element 102, preferably the spacer element 714 and the heat-producing sound The elements 102 are in point or line contact. In the present embodiment, the material of the spacer member 714 is not limited to an insulating material such as glass, ceramic or resin, and may be a conductive material such as a metal, an alloy or an indium tin oxide. When the spacer member 714 is a conductive material, it is electrically insulated from the first electrode 104a and the second electrode 104b, and, preferably, the spacer member 714 is parallel to the first electrode 104a and the second electrode i4b. The height of the spacer element 714 is not limited, and is preferably 丨〇 micrometers to 丨 cm. In this embodiment, the spacer element 714 is a filament-like silver formed by a screen printing method, and the height of the spacer element 714 is the same as the height of the first electrodes 1〇4& and the second electrode 104b, and is 20 μm. The spacer element 714 is disposed in parallel with the first electrode 100112573 form number_eight0101 page 24/58 page 1002020942-0 201240484 104a and the second electrode 104b. Since the height of the spacer member 714 is the same as the height of the first electrode 104a and the second electrode 104b, the thermo-acoustic elements 102 are located on the same plane. [0055] The thermo-acoustic element 102 is disposed on the spacer element 714 'the first electrode 104a and the second electrode 104b. The thermo-acoustic element 1 2 is spaced apart from the substrate 608 by the spacer element 714 and forms a space 701 with the substrate 608. The space 701 is defined by the first electrode 104a or the second electrode 104b. The spacer element 714, the substrate 608, and the thermally audible element 102 are collectively formed. Further, in order to prevent the thermo-acoustic element 1 〇 2 from generating a standing wave, maintaining the good sound-generating effect of the thermo-acoustic element 102, the distance between the thermo-acoustic element 102 and the substrate 608 is preferably 1 μm to 1 cm. In this embodiment, since the heights of the first electrode 104a, the second electrode 104b, and the spacer 714 are 2 〇 micrometers, the thermoacoustic element 102 is disposed on the first electrode 104a, the second electrode 104b, and the spacer. Element 714, therefore, the distance between the thermoacoustic element 1〇2 and the substrate 608 is 20 microns. [0056] It can be understood that the 'first electrode 10a and the second electrode 10b have a certain supporting effect on the thermo-acoustic element 102, but when the distance between the first electrode i〇4a and the second electrode 104b is greater than When the time is large, the supporting effect on the thermoacoustic element 102 is not good, and the spacer element 714' is disposed between the first electrode 104a and the second electrode 104b to better support the function of the thermoacoustic element 102. The thermo-acoustic element 1〇2 is spaced from the substrate 608 and forms a space 701 with the substrate 608, thereby ensuring that the thermo-acoustic element 1〇2 has a good vocalization effect. Referring to Figure 20, an eighth embodiment of the present invention provides a thermo-acoustic device. The thermoacoustic device 80 includes at least one heating device and a plurality of 100112573 Form No. A0101 Page 25 of 58 1002020942-0 [0057] 201240484 Thermoacoustic element. The plurality of thermo-acoustic elements include two types: first, the number of the plurality of thermo-acoustic elements is at least two, and the thermo-acoustic elements are not in contact with each other; and second, the plurality of thermal-induced sounds The number of components is a 'the thermoacoustic component is disposed on a substrate having a curved surface such that a plurality of normal directions are formed or the thermoacoustic components are bent and disposed on different planes. The heating means may correspond to the thermo-acoustic elements one-to-one, or one heating means may correspond to a plurality of thermo-acoustic elements. The heating means may also be a unitary structure consisting of a plurality of portions corresponding to the plurality of thermally audible elements. In this embodiment, the thermo-acoustic device 80 includes a first heating device 8〇4, a second heating device 806, a substrate 208, a first thermo-acoustic component 8〇2a, and a second heat. The sounding element 802b is caused. [0058] The substrate 208 includes a first surface (not labeled) and a second surface (not labeled). The shape, size and thickness of the substrate 208 are not limited. The first surface and the second surface may be flat, curved or uneven surfaces. The first surface and the first surface may be two adjacent surfaces or two opposite surfaces. In this embodiment, the substrate 208 is a rectangular parallelepiped structure, and the first surface and the second surface are two opposite surfaces. The substrate 208 further includes a plurality of through holes 208a' that pass through the first surface and the second surface such that the first surface and the second surface become uneven surfaces. The plurality of through holes 208a may be disposed in parallel with each other. [0059] The first thermo-acoustic element 8〇2a ax is placed on the first surface of the substrate 208 and is at least partially suspended relative to the first surface. The second thermal sounding element 802b is disposed on the second surface and is at least partially suspended relative to the second surface 100112573 Form No. A0101 Page 26 of 58 page 1002020942-0 201240484. The first thermo-acoustic element 802a is a graphene film. The second thermoacoustic element 802b is a graphene film or a carbon nanotube layer. The structure of the carbon nanotube layer is the same as that of the carbon nanotube layer disclosed in the fifth embodiment. Since the carbon nanotube layer includes at least one layer of carbon nanotube film, the carbon nanotube layer has a small thickness and a small heat capacity per unit area, and therefore, the carbon nanotube layer can also function as a thermoacoustic element. [0060] The first heating device 804 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the first 〇 thermo-acoustic element 802a, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the first thermo-acoustic element 802a and are flush with the opposite sides of the first thermo-acoustic element 8〇2a. The second heating device 806 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the second thermo-acoustic element 802b, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the second thermo-acoustic element 802b and opposite to the two sides of the first thermo-acoustic element 802a. [0061] This embodiment is The provided thermoacoustic device 80 is a double-sided sounding device, and by providing a thermo-acoustic component on two different surfaces, the range of sound emitted by the thermo-acoustic component can be made larger and clearer. It is possible to control the heating device to make any of the thermoacoustic elements emit sound, or to simultaneously emit sound, so that the use of the thermoacoustic device is wider. Further, when one of the thermo-acoustic elements fails, the other thermo-acoustic element can continue to work, improving the heat-induced sound. 100112573 Form No. A0101 Page 27 of 58 1002020942-0 201240484 The service life of the device. Referring to FIG. 21, a ninth embodiment of the present invention provides a thermo-acoustic sounding device 90. The thermo-acoustic device 90 of the present embodiment is different from the structure of the thermo-acoustic device 80 of the eighth embodiment in that the thermo-acoustic device 90 provided in this embodiment is a multi-faceted sound-emitting device. [0063] In this embodiment, the substrate 908 is a rectangular parallelepiped structure including four different surfaces, which are rugged surfaces. The thermo-acoustic device 90 includes four thermo-acoustic elements 102, one of which is a graphene film, and the other three of the thermo-acoustic elements 102 may be a graphene film or a carbon nanotube. Floor. [0064] Each of the heating devices 104 includes a first electrode 104a and a second electrode 104b, respectively. The first electrode 104a and the second electrode 104b are electrically connected to a thermo-acoustic element 102, respectively. [0065] The thermo-acoustic device 90 provided in this embodiment can realize the propagation of sound in a plurality of directions. Referring to FIG. 22, a tenth embodiment of the present invention provides a thermo-acoustic device 100. The thermoacoustic device 100 includes a thermo-acoustic component 102, a substrate 208, and a uniform thermal device 1 004. The thermally audible element 102 is disposed on the substrate 208. The difference between the structure of the thermo-acoustic device 100 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that in the thermo-acoustic device 100 provided in this embodiment, the heating device 1 004 is a mine. A transmitter, or other electromagnetic wave signal generating device. The electromagnetic wave signal 1 020 emitted from the heating device 1 004 is transmitted to the thermo-acoustic element 102, and the thermo-acoustic element 102 sounds. 100112573 Form No. A0101 Page 28 of 58 1002020942-0 201240484 • [0067] The heating device 1004 can be placed on the thermoacoustic element ΐ〇2. When the heating device 1004 is a laser, when the substrate 208 is a transparent substrate, the laser can be disposed corresponding to the surface of the substrate 208 away from the thermoacoustic element 102 so as to be emitted from the laser. Laser light is transmitted through the substrate 208 to the thermoacoustic element 102. In addition, when the electromagnetic device 1 〇〇 4 emits an electromagnetic wave signal, the electromagnetic wave signal can be transmitted to the thermo-acoustic element 102 through the substrate 208. At this time, the heating device 1 〇〇 4 can also correspond to The substrate 208 is disposed away from the surface of the thermoacoustic element 1〇2. [0068] In the thermo-acoustic device 1 of the present embodiment, when the thermo-acoustic element 102 is irradiated with electromagnetic waves such as lasers, the thermo-acoustic element 1 〇 2 is excited by absorbing energy of electromagnetic waves. And through non-Korean radiation, the absorbed light energy is converted into heat in whole or in part. The temperature of the thermoacoustic element 102 varies according to the frequency and intensity of the electromagnetic wave L1020, and is rapidly exchanged with the surrounding air or other gas or liquid medium, so that the temperature of the surrounding chamber also generates the same frequency. The change causes the surrounding medium to expand and contract rapidly, thereby making a sound. Q [0069] Since the thermal sound generating device works by converting the energy of the predetermined form into heat at a very fast speed and performing heat exchange with the surrounding gas or liquid medium, the medium expands and contracts. , thus making a hoar. It can be understood that the energy form is not limited to electric energy or light energy, and the device, the device is not limited to the electrode or the electromagnetic wave signal generator in the above embodiment, and any heat generating acoustic element can be heated and according to the audio. A device that varies the heating of the surrounding medium can be considered a consistent thermal device, and is within the scope of the present invention. 100112573 The graphene film of the present invention has good toughness and mechanical strength, so Form No. A0101 Page 29 of 58 1002020942-0 [0070] 201240484 Graphene film can be conveniently fabricated into various shapes and sizes of heat Sounds installed i. The thermoacoustic I arrangement of the present invention can be used not only as a speaker alone, but also conveniently in various electronic devices requiring sound generating devices. The thermo-acoustic device can be built in the housing of the electronic device or on the outer surface of the housing as a sounding unit of the electronic device. The thermoacoustic device can replace the conventional sounding unit of the electronic device or can be used in combination with a conventional sounding unit. The thermo-acoustic device can be used in conjunction with other electronic components of the electronic device or a utility processor or the like. It can also be connected to the electronic device through a wired or wireless method. The wired method is combined with the USB interface of the electronic device, for example, through a signal transmission line, and the wireless method is connected to the electronic device, for example, by blue f, tooth mode. The thermoacoustic device can also be mounted or integrated on the display screen of the electronic device as a sounding unit of the electronic device. The electronic device can be an audio, a mobile phone, an MP3, an MP4 'game console, a digital camera, a digital video camera, a television or a computer. For example, when the electronic device is a mobile phone, since the thermo-acoustic device provided by the embodiment is a transparent structure, the thermo-acoustic device can be attached to the surface of the display screen of the mobile phone by mechanical fixing or adhesive. When the electronic device is an MP3, the thermo-acoustic device can be built in the MP3 and electrically connected to the circuit board inside the MP3. When the MP3 is powered on, the thermo-acoustic device can emit a sound. [0071] In summary, the present invention It has clearly stated that it has met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. 100112573 Form No. A0101 Page 30 of 58 1002020942-0 201240484 [Simplified Schematic] FIG. 1 is a plan view of a thermo-acoustic device according to a first embodiment of the present invention. 2 is a cross-sectional view taken along line I I - 11 of FIG. 1. 3 is a top plan view of a thermo-acoustic device according to a second embodiment of the present invention. 4 is a cross-sectional view taken along line IV-IV of FIG. 3. 5 is a top plan view of a thermo-acoustic device according to a third embodiment of the present invention. 6 is a cross-sectional view taken along line VI-VI of FIG. 5 in a case of the third embodiment. Figure 7 is a cross-sectional view taken along line VI-VI of Figure 5 in another case of the third embodiment. 8 is a top plan view of a thermo-acoustic device according to a fourth embodiment of the present invention. 9 is a cross-sectional view taken along line IX-IX of FIG. 8. [0081] FIG. 10 is a scanning electron micrograph of a non-twisted nanocarbon line-like structure employed in the thermoacoustic device of FIG. [0082] FIG. 11 is a scanning electron micrograph of a twisted nanocarbon line-like structure employed in the thermoacoustic device of FIG. 12 is a side cross-sectional view showing a thermoacoustic device using a carbon nanotube layer coated with an insulating layer as a substrate according to a fifth embodiment of the present invention. 13 is a scanning electron micrograph of a carbon nanotube film taken by the carbon nanotube layer of FIG. Figure 14 is a scanning electron micrograph of a carbon nanotube flocculation film used in the carbon nanotube layer of Figure 12. 100112573 Form No. A0101 Page 31 of 58 1002020942-0 [0085] FIG. 15 is a scanning electron micrograph of a carbon nanotube rolled film used in the carbon nanotube layer of FIG. 16 is a plan view of a thermo-acoustic device according to a sixth embodiment of the present invention. [0088] FIG. 17 is a cross-sectional view taken along line XVI-XVII of FIG. 16. Figure 18 is a plan view of a thermoacoustic device according to a seventh embodiment of the present invention. [0090] Figure 19 is a cross-sectional view taken along line XIX-XIX of Figure 18. 20 is a side cross-sectional view of a thermoacoustic device according to an eighth embodiment of the present invention. Figure 21 is a side cross-sectional view showing a thermoacoustic device according to a ninth embodiment of the present invention. 22 is a side view of a thermoacoustic device according to a tenth embodiment of the present invention. [Main component symbol description] [0094] Thermoacoustic device: 10; 20; 30; 40; 50; 60; 80; 90; 100 [0095] Thermoacoustic element: 102 [0096] Heating device: 104; 1004 [0097] First electrode: 104a [0098] Second electrode: 104b [0099] Substrate: 208; 308; 408 ; 508 ; 608 ; 908 1002020942-0 100112573 Form number A0101 Page 32 / Total 58 pages 201240484

[0100] 孔:208a [0101] 槽:308a [0102] 表面:308b [0103] 第一線狀結構: 408a [0104] 第二線狀結構: 408b [0105] 網孔:408c [0106] 間隙:601 [0107] 第一電極引線: 610 [0108] 第二電極引線: 612 [0109] 間隔元件:714 [0110] 第一熱致發聲元件:802a [0111] 第二熱致發聲元件:802b [0112] 第一致熱裝置: 804 [0113] 第二致熱裝置: 806 [0114] 電磁波信號:1020 100112573 表單編號A0101 第33頁/共58頁 1002020942-0[0100] Hole: 208a [0101] Slot: 308a [0102] Surface: 308b [0103] First line structure: 408a [0104] Second line structure: 408b [0105] Mesh: 408c [0106] Gap: 601 [0107] First electrode lead: 610 [0108] Second electrode lead: 612 [0109] Spacer element: 714 [0110] First thermo-acoustic element: 802a [0111] Second thermo-acoustic element: 802b [0112] ] Coherent thermal device: 804 [0113] Second heating device: 806 [0114] Electromagnetic wave signal: 1020 100112573 Form number A0101 Page 33 / Total 58 pages 1002020942-0

Claims (1)

201240484 七、申請專利範圍: 1 . 一種熱致發聲裝置,其包括: —基底,該基底為一網狀結構; 一熱致發聲元件設置於該基底的表面; 一致熱裝置用於向該熱致發聲元件提供能量使該熱致發聲 元件產生熱量; 其改良在於,所述熱致發聲元件包括一石墨烯膜,所述基 底包括至少一線狀結構,所述至少一線狀結構包括一奈米 碳管線狀結構及設置於該奈米碳管線狀結構表面的絕緣層 〇 2.如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨烯膜包括多層石墨烯,該多層石墨烯相互搭接或者相 互疊加設置。 3 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨烯膜為單層石墨烯。 4.如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 石墨烯膜的厚度為0.34奈米至10奈米。 5 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 基底為由一個奈米碳管線狀結構彎折成的網狀結構,該奈 米碳管線狀結構的表面設置有絕緣層。 6.如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 基底為由複數個奈米碳管線狀結構組成的網狀結構,該複 數個奈米碳管線狀結構的表面均設置有絕緣層。 7 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 基底包括複數個第一線狀結構和複數個第二線狀結構,該 100112573 表單編號A010I 第34頁/共58頁 1002020942-0 201240484 複數個第一線狀結構和該複數個第二線狀結構相互交又設 置’所述第一線狀結構包括該奈米碳管線狀結構及設置於 該奈米礙管線狀結構表面的絕緣層,所述第二線狀結構包 括一奈米碳管線狀結構及設置於該奈米碳管線狀結構表面 的絕緣層。 8 .如申請專利範圍第5項至7項中任一項所述之熱致發聲裝置 ’其中’所述奈米碳管線狀結構包括至少一根奈米碳管線 ’該奈米碳管線包括複數個奈米碳管。 9.如申請專利範圍第8項所述之熱致發聲裝置,其中,所述 〇 奈米碳管線中奈米碳管的延伸方向平行於奈米碳管線的軸 向方向® 10 .如申請專利範圍第9項所述之熱致發聲裝置,其中,所述 奈米碳管線中在同一延伸方向上相鄰的奈米碳管通過凡得 瓦力首尾相連。 11 .如申請專利範圍第8項所述之熱致發聲裝置,其中,所述 奈米碳管線中的奈米碳管首尾相連且螺旋纏繞。 12.如申請專利範圍第8項所述之熱致發聲裝置,其中,所述 奈米碳管線為由該複數個奈米碳管組成的純結構。 13 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 基底包括複數個第一線狀結構和複數個第二線狀結構,該 複數個第一線狀結構和該複數個第二線狀結構相互交又設 置,所述第一線狀結構包括該奈米碳管線狀結構及設置於 該奈米碳管線狀結構表面的絕緣層,所述第二線狀結構為 絕緣材料或表面塗覆有絕緣層的導電絲。 14 . 如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 基底具有複數個網孔,該熱致發聲元件在相對於該網孔的 100112573 表單編號A0101 第35頁/共58頁 1002020942-0 201240484 位置懸空設置。 15 .如申請專利範圍第1項所述之熱致發聲裝置,其中,所述 致熱裝置包括一第一電極和一第二電極分別與該熱致發聲 元件電連接。 16 .如申請專利範圍第1項中任一項所述之熱致發聲裝置,其 中,所述致熱裝置為一電磁波信號發生裝置。 17 .如申請專利範圍第16項所述之熱致發聲裝置,其中,所述 致熱裝置為一雷射器。 18 . —種電子裝置,其中,該電子裝置包括如申請專利範圍第 1項至17項中任一項所述之熱致發聲裝置。 19 .如申請專利範圍第18項所述之電子裝置,其中,所述熱致 發聲裝置内置於該電子裝置中或者直接設置於該電子裝置 的外殼。 20.如申請專利範圍第18項所述之電子裝置,其中,所述熱致 發聲裝置通過USB介面與該電子裝置連接或者通過藍牙與 該電子裝置無線連接。 21 .如申請專利範圍第18項所述之電子裝置,其中,所述電子 裝置包括音響、手機、MP3、MP4、遊戲機、數碼相機、 數碼攝像機、電視或電腦。 22 .如申請專利範圍第18項所述之電子裝置,其中,該電子裝 置進一步包括一顯示幕,所述熱致發聲裝置設置於該顯示 幕的表面。 100112573 表單編號A0101 第36頁/共58頁 1002020942-0201240484 VII. Patent application scope: 1. A thermo-acoustic device comprising: a substrate, the substrate is a mesh structure; a thermo-acoustic element disposed on a surface of the substrate; a heat-consisting device for the heat-induced The sounding element provides energy to cause the thermo-acoustic element to generate heat; the improvement is that the thermo-acoustic element comprises a graphene film, the substrate comprises at least one linear structure, and the at least one linear structure comprises a nano carbon line The thermo-acoustic device according to the first aspect of the invention, wherein the graphene film comprises a plurality of layers of graphene, the multi-layer graphene They are overlapped or superimposed on each other. 3. The thermoacoustic device according to claim 1, wherein the graphene film is a single layer of graphene. 4. The thermoacoustic device according to claim 1, wherein the graphene film has a thickness of from 0.34 nm to 10 nm. 5. The thermoacoustic device according to claim 1, wherein the substrate is a mesh structure bent from a nanocarbon line-like structure, and the surface of the nanocarbon line structure is provided Insulation. 6. The thermoacoustic device according to claim 1, wherein the substrate is a network structure composed of a plurality of nanocarbon line-like structures, and surfaces of the plurality of nanocarbon line structures are An insulating layer is provided. 7. The thermoacoustic device according to claim 1, wherein the substrate comprises a plurality of first linear structures and a plurality of second linear structures, the 100112573 form number A010I page 34 of 58 Page 1002020942-0 201240484 A plurality of first linear structures and the plurality of second linear structures are disposed to intersect with each other. The first linear structure includes the nanocarbon pipeline-like structure and is disposed in the nanometer-like pipeline An insulating layer on the surface of the structure, the second linear structure comprising a nanocarbon line-like structure and an insulating layer disposed on a surface of the nanocarbon line-like structure. 8. The thermoacoustic device according to any one of claims 5 to 7, wherein the nanocarbon line-like structure comprises at least one nanocarbon line. The nanocarbon line includes plural A carbon nanotube. 9. The thermoacoustic device according to claim 8, wherein the carbon nanotubes in the tantalum carbon pipeline extend in a direction parallel to the axial direction of the nanocarbon pipeline. The thermoacoustic device according to the item 9, wherein the carbon nanotubes adjacent to each other in the same extending direction of the nanocarbon line are connected end to end by a van der Waals force. 11. The thermoacoustic device according to claim 8, wherein the carbon nanotubes in the nanocarbon line are connected end to end and spirally wound. 12. The thermoacoustic device according to claim 8, wherein the nanocarbon line is a pure structure composed of the plurality of carbon nanotubes. 13. The thermoacoustic device according to claim 1, wherein the substrate comprises a plurality of first linear structures and a plurality of second linear structures, the plurality of first linear structures and the plurality The second linear structures are disposed to overlap each other, and the first linear structure comprises the nanocarbon pipeline-like structure and an insulating layer disposed on a surface of the nanocarbon pipeline-like structure, wherein the second linear structure is insulated The material or surface is coated with a conductive wire of an insulating layer. 14. The thermoacoustic device according to claim 1, wherein the substrate has a plurality of meshes, and the thermoacoustic element is in a state relative to the mesh 100112573 Form No. A0101 Page 35 of 58 Page 1002020942-0 201240484 Location dangling settings. The thermoacoustic device of claim 1, wherein the heating device comprises a first electrode and a second electrode electrically connected to the thermo-acoustic element, respectively. The thermo-acoustic device according to any one of claims 1, wherein the heating device is an electromagnetic wave signal generating device. 17. The thermoacoustic device of claim 16, wherein the heating device is a laser. An electronic device, wherein the electronic device comprises the thermoacoustic device according to any one of claims 1 to 17. The electronic device of claim 18, wherein the thermo-acoustic device is built in the electronic device or directly disposed on an outer casing of the electronic device. 20. The electronic device of claim 18, wherein the thermo-acoustic device is connected to the electronic device via a USB interface or wirelessly connected to the electronic device via Bluetooth. The electronic device of claim 18, wherein the electronic device comprises an audio, a mobile phone, an MP3, an MP4, a game machine, a digital camera, a digital video camera, a television or a computer. The electronic device of claim 18, wherein the electronic device further comprises a display screen, the thermal sound generating device being disposed on a surface of the display screen. 100112573 Form No. A0101 Page 36 of 58 1002020942-0
TW100112573A 2011-03-29 2011-04-12 Thermal acoustic device and electric device TWI455604B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076748.6A CN102724616B (en) 2011-03-29 2011-03-29 Thermoacoustic device and electronic device

Publications (2)

Publication Number Publication Date
TW201240484A true TW201240484A (en) 2012-10-01
TWI455604B TWI455604B (en) 2014-10-01

Family

ID=46950252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112573A TWI455604B (en) 2011-03-29 2011-04-12 Thermal acoustic device and electric device

Country Status (3)

Country Link
JP (1) JP5134127B2 (en)
CN (1) CN102724616B (en)
TW (1) TWI455604B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645621B1 (en) * 2014-12-10 2016-08-08 한국과학기술원 Graphene thermoacoustic speaker and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261352B2 (en) * 2004-07-13 2007-08-28 Samsung Electronics Co., Ltd. Electrostatically driven carbon nanotube gripping device
CN101450288B (en) * 2007-11-30 2012-08-29 清华大学 Fiber membrane and preparation method thereof
JP4644723B2 (en) * 2008-03-31 2011-03-02 株式会社日立ハイテクノロジーズ Measuring device with nanotube probe
US8249279B2 (en) * 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8300855B2 (en) * 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
CN103475984B (en) * 2009-01-15 2016-06-22 北京富纳特创新科技有限公司 Thermo-acoustic device
JP2010171790A (en) * 2009-01-23 2010-08-05 Oki Semiconductor Co Ltd Bias potential generation circuit
JP2010245797A (en) * 2009-04-06 2010-10-28 Panasonic Corp Capacitor microphone
CN101964292B (en) * 2009-07-24 2012-03-28 清华大学 Graphene sheet-carbon nanotube film composite structure and preparation method thereof

Also Published As

Publication number Publication date
CN102724616B (en) 2015-06-03
CN102724616A (en) 2012-10-10
JP5134127B2 (en) 2013-01-30
TWI455604B (en) 2014-10-01
JP2012209921A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
TWI539828B (en) Thermal acoustic device and electric device
TWI478595B (en) Thermoacoustic device
TWI450600B (en) Thermal acoustic device and electric device
US8958579B2 (en) Thermoacoustic device
TWI429296B (en) Speaker
TWI578801B (en) Earphone
TWI420507B (en) Thermal acoustic device and electric device
TWI465119B (en) Thermal acoustic device and electric device
TWI503002B (en) Earphone
TWI450601B (en) Thermal acoustic device and electric device
TWI420508B (en) Thermal acoustic device and electric device
TW201240484A (en) Thermal acoustic device and electric device
TWI465120B (en) Thermal acoustic device and electric device
TWI452913B (en) Acoustic device
TWI383691B (en) Soft acoustic device
TWI375946B (en) Acoustic device
TW201111009A (en) Infrared physiotherapeutic device