TW201220382A - Process for producing light emitting diode, process for cutting light emitting diode and light emitting diode - Google Patents
Process for producing light emitting diode, process for cutting light emitting diode and light emitting diode Download PDFInfo
- Publication number
- TW201220382A TW201220382A TW100123974A TW100123974A TW201220382A TW 201220382 A TW201220382 A TW 201220382A TW 100123974 A TW100123974 A TW 100123974A TW 100123974 A TW100123974 A TW 100123974A TW 201220382 A TW201220382 A TW 201220382A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal
- light
- emitting diode
- compound semiconductor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000005520 cutting process Methods 0.000 title claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 376
- 239000002184 metal Substances 0.000 claims abstract description 376
- 239000000758 substrate Substances 0.000 claims abstract description 183
- 239000004065 semiconductor Substances 0.000 claims abstract description 126
- 150000001875 compounds Chemical class 0.000 claims abstract description 113
- 238000005530 etching Methods 0.000 claims abstract description 43
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 48
- 239000010931 gold Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 33
- 239000010949 copper Substances 0.000 claims description 28
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 19
- 229910052737 gold Inorganic materials 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 239000006227 byproduct Substances 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 238000003698 laser cutting Methods 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 3
- 230000002411 adverse Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 446
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 230000017525 heat dissipation Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 7
- 238000005253 cladding Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 230000005496 eutectics Effects 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- CAEXYIMHQABPJP-UHFFFAOYSA-N CCCCCCCCCCCCC[In] Chemical compound CCCCCCCCCCCCC[In] CAEXYIMHQABPJP-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical group [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- GSRNJUWQQSVPNG-UHFFFAOYSA-N arsanylidynesamarium Chemical compound [Sm]#[As] GSRNJUWQQSVPNG-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- -1 expansion system Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- ZNKMCMOJCDFGFT-UHFFFAOYSA-N gold titanium Chemical compound [Ti].[Au] ZNKMCMOJCDFGFT-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- MQBKFPBIERIQRQ-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene;cyclopentane Chemical compound [Mg+2].C=1C=C[CH-]C=1.[CH-]1[CH-][CH-][CH-][CH-]1 MQBKFPBIERIQRQ-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001258 titanium gold Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/641—Heat extraction or cooling elements characterized by the materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
201220382 六、發明說明: 本案根據2010年7月9日於日本提出之專利申請案 特願2010 — 156721號主張優先權’將其内容引用於此。 【發明所屬之技術領域】 本發明有關於發光二極體之製造方法、切斷方法以 及發光二極體’尤其係將金屬基板用作基板之發光二極 體之製造方法、切斷方法以及發光二極體。 【先前技術】 歷來,作為發出紅色、紅外光之高輸出發光二極體( 英文簡稱:LED),已知有一化合物半導體LED,其具備 由紹鎵砷化物(組成式AlxGa! - xAs ; 0 $ 1)形成之發 光層。另一方面,作為發出紅色、橙色、黃色或黃綠色 之可見光的高亮度發光二極體(英文簡稱:LED),已知有 一化合物半導體LED,其具備由鋁鎵銦磷化物(組成式 (AlxGai-x)YIn丨—yP mg !,〇< 形成之發光層 。作為此等LED之基板,一般是使用一種基板材料,其 係相對於從發光層射出之發光,在光學上為不透光,同 時機械上亦沒有那麼強的強度之砷化鎵(GaAs)等。 為此’近來為了得到更高亮度之Led,同時以進一 步提高元件的機械強度、提升散熱性為目的,已揭示一 種技術,該技術係將相對於發出的光為不透明之基板材 料除去,然後使將發出的光透過或反射、且由機械強度 、散熱性優異之材料形成的支持體層(基板)重新接合, 而構成接合型LED(例如,參照專利文獻丄〜7)。 201220382 根據基板接合技術之開發,可應用作為支持體層之 基板的自由度增加,已有提案一金屬基板的應用,該金 屬基板係在成本方面、機械強度、散熱性等皆具有極佳 優勢。 尤其,因為必須利用高電流發光之高輸出用的發光 二極體,其發熱量比習知構成多,所以散熱性之確保成 為一課題。金屬基板由於可將來自發光部(化合物半導體 層)之發熱有效率放出至發光二極體的外部,故使金屬基 板接合於化合物半導體層有助於發光二極體之高輸出化 、長壽命化。 使用金屬基板之發光二極體揭示於例如專利文獻8 以及專利文獻9中。 利用刀割或雷射切割等而使將金屬基板接合於具有 發光層而成之化合物半導體層的晶圓晶片化。 在此’刀割係將高速旋轉之圓盤狀切削刀推碰基板 而切斷者。 此外’雷射切割係將雷射照射於基板,並利用吸收 此雷射能量而產生之熱能來使切斷部融化、蒸發 (ablation:剝蝕)而切斷。 [先行技術文獻] [專利文獻] [專利文獻丨]特開200 1 — 339 1 00號公報 [專利文獻2]特開平6 — 302857號公報 [專利文獻3]特開2002— 246640號公報 [專利文獻4]特許2588849號公報 [專利文獻5]特開2001 — 57441號公報 201220382 [專利文獻6]特開2007 — 8 1010號公報 [專利文獻7]特開2006 — 32952號公報 [專利文獻8]特開2005 — 2363 03號公報 [專利文獻9]特開2006 — 13499號公報 【發明内容】 [發明欲解決之課題] 然而,利用刀割切斷金屬基板,存在割刀 生阻塞而不易切斬沾 谷易產 辦的問喊。此外,亦有切斷面吝& ^ 崩裂)或裂縫而影響電政F代沾爿 生缺口( «电路區域的問題。再者,t 度大,且會發生崩烈 削刀之寬 較寬,因而亦存在可女 見度必須設得 子在了有效使用作為電路區域 例降低的問題。 面積的比 另方面’利用雷射切割切斷金屬基板時 所產生之碎屑亦成—問題。 夸’切斷時 在此’碎4係因雷射光束之照射而產 ^、為被照射材料之炫^ ^ > 、副生成物 ,息,u < 熔融物或飛散物等附著抓丄 邊(材料表面或切斷面)者。 考於切斷部周 碎屬不僅使發光二極體之外觀不 正面側時成為引線接合X & 在碎屑附著於 側時成為晶片接合不良 卜’附著於背面 ISJ 〇201220382 VI. Description of the invention: The present application claims priority from Japanese Patent Application No. 2010-156721, filed on Jul. 9, 2010, the content of which is hereby incorporated by reference. [Technical Field] The present invention relates to a method for manufacturing a light-emitting diode, a method for cutting the same, and a method for manufacturing a light-emitting diode using a metal substrate as a substrate, a cutting method, and a light-emitting diode Diode. [Prior Art] As a high-output light-emitting diode (LED) that emits red and infrared light, a compound semiconductor LED is known, which is composed of samarium arsenide (composition formula AlxGa! - xAs; 0 $ 1) A light-emitting layer formed. On the other hand, as a high-brightness light-emitting diode (LED) which emits red, orange, yellow or yellow-green visible light, a compound semiconductor LED having a composition of aluminum gallium indium phosphide (AlxGai) is known. -x) YIn丨—yP mg !,〇< The formed light-emitting layer. As the substrate of such LEDs, a substrate material is generally used, which is optically opaque with respect to the light emitted from the light-emitting layer. At the same time, there is no such strong strength of gallium arsenide (GaAs), etc. For this purpose, a technique has recently been disclosed for the purpose of obtaining a higher brightness of Led while further improving the mechanical strength of the element and improving heat dissipation. This technique removes the substrate material that is opaque to the emitted light, and then re-joins the support layer (substrate) formed by the material that transmits or reflects the emitted light and is excellent in mechanical strength and heat dissipation, thereby forming the joint. LED (see, for example, Patent Document 丄7). 201220382 According to the development of the substrate bonding technology, the degree of freedom in the substrate which can be used as the support layer has increased. Proposal for the application of a metal substrate, which has excellent advantages in terms of cost, mechanical strength, heat dissipation, etc. In particular, since it is necessary to use a high-current light-emitting diode for high output, the heat generation ratio is higher. Since it is known that there are many components, the heat dissipation is ensured. The metal substrate can efficiently emit heat from the light-emitting portion (the compound semiconductor layer) to the outside of the light-emitting diode, so that the metal substrate is bonded to the compound semiconductor layer. The light-emitting diode of the metal substrate is disclosed in, for example, Patent Document 8 and Patent Document 9. The metal substrate is bonded to the metal substrate by knife cutting or laser cutting or the like. The wafer of the compound semiconductor layer in which the light-emitting layer is formed is wafer-formed. In this case, the disk-cutting cutter that rotates the disk at a high speed is pressed against the substrate, and the laser cutting device irradiates the laser to the substrate. The heat generated by the absorption of the laser energy is used to melt and evaporate the cut portion (ablation). [Priority Technical Literature] [Specialized [Patent Document 2] JP-A-2002-246857 (Patent Document 3) JP-A-2002-246640 (Patent Document 4) Patent No. 2588849 [Patent Document 5] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 9] JP-A-2006-13499 SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] However, the use of a knife to cut a metal substrate has a problem that the cutter is clogged and is not easy to cut off. call. In addition, there are also cut-offs and cracks or cracks that affect the electric power F-generation gaps (the problem of the circuit area. Moreover, the t-degree is large, and the width and width of the sharpening knife are widened. Therefore, there is also a problem that the degree of visibility must be set in the effective use as a circuit area. The area ratio is also a problem in the case of cutting off the metal substrate by laser cutting. 'When cutting off, here's the 4 series due to the irradiation of the laser beam, which is the light of the material to be irradiated ^ ^ > , by-products, interest, u < melt or scattering matter attached to the edge (Material surface or cut surface). When the cut-off portion is not only the appearance of the light-emitting diode is not the front side, it becomes a wire bonding X & When the debris adheres to the side, the wafer is poorly bonded. On the back ISJ 〇
Jt夕卜,若產生士午夕 到構成發光部之化;屑於發光部側,則會接觸 會導致發光二極體之可〜¥體層的側面而造成短路等, . J择性降低。 為了避免相關問題,雜土 + 較多’但於此情況,採用 〜到將切靳部之切份設得 之數量會減少。 片曰曰圓可製造之發光二極體 生之 金屬 具有 其界 屬層 )切鼷 雖界 界面 形。 劣化 間距 切斷 寬度 此問 之形 種發 可減 的不 的偏 201220382 此外’利用雷射切割切斷金屬基板時 熱的影響為一問題。 具體而言,於使不同種金屬(例如,與 基板中’因為於接合時在依各金屬之熱 不同之延展寬度的狀態下作接合,故成 面具有應力之狀態。在金屬基板由例如 的3層金屬層形成的情況,利用雷射切: 卜第1金屬層時,於第2金屬層在第丄金 面應力為釋放的,但因為第3金屬層侧 應力’所以切斷中應力平衡會崩解,金 結果’產生切割線偏離期望的位置、晶 、且發光二極體晶片變成異常形狀的問 此外,存在因發熱造成金屬基板膨脹而 寬度變不正確的問題。即,基板在膨脹 ’若在切斷後變成常溫而回到原本的尺 會與切斷時不同》金屬基板越厚發熱量 題會變更嚴重。 再者’若因熱的影響使得發光二極體晶 狀改變,便會產生影響晶片接合之問題 本發明係鑑於上述問題而完成者,目的 光二極體之製造方法、切斷方法以及發 低利用雷射切割切斷金屬基板時產生的 良影響,並可防止切斷時產生之熱所造 離等的不良情形。 切斷時所產 Cu)接合之 膨脹係數而 為在常溫下 第1〜第3金 利(雷射切斷 屬層側之面 之面仍殘留 屬基板會變 片之分割性 題。 使得切割之 的狀態下被 寸時,間距 越大,所以 片之背面側 〇 在於提供一 光二極體, 碎屑所帶來 成之切割線 201220382 [用於解決課題之手段] 本發明為了解決上述課題,提供以下手段。 (1)一種發光二極體之製造方法,其係將雷射照射於 晶圓而製造晶片狀的發光二極體之方法,特徵在於具有 :製作晶圓之步驟,該晶圓係具備由複數個金屬層形成 之金屬基板以及包含形成於該金屬基板上之發光層的化 合物半導體層;利用蝕刻除去前述化合物半導體層之切 斷預定線上的部分之步驟;利用蝕刻除去前述複數個金 屬層之中雷射照射面侧之至少一層的前述切斷預定線上 的部分之步驟;以及沿著俯視為前述金屬層之前述已除 去的部分照射雷射而切斷前述金屬基板之步 晶圓上要切斷之預 某種加工而形成之 仕此’ 1切斷預定線」係指顯示 定位置者’包含在基板等上實際實施 線以及未實施實際的加工之假想線。 此外,「 切斷預定線 切斷預定線上的部分 的部分。 意指俯視為包含「 I又认问亚哪/百」忍彳曰例如在 之陇桩沾〇 v | 2階段所形 之隣接的2個金屬層、由相同金屬材料形 料的金屬層且為一層的金屬[所::者為單-由不同種的金屬材料形成。 金屬層至 (2)如前項(1)記載之發光二極體之製、& 、 切斷刖述金屬基板之步驟之前’另具備利&其中 述複數個金屬層之中前述雷射照射蝕刻除去 層的前述切斷預定線上的部分之步驟。&側之至少 201220382 方法, 半導體 有比前 數之材 體之製 膨脹係 、鎳、 體之製 膨脹係 等合金 體之製 層。 其中, 層的金 其中, 層係由 體之製 (3) 如前項(1)或(2)記載之發光二極體之製造 其中,前述複數個金屬層包含具有比前述化合物 層之熱膨脹係數還大的熱膨脹係數之材料以及具 述化合物半導體層之熱膨脹係數還小的熱膨脹係 料。 (4) 如前項(1)至(3)中任一項記載之發光二極 造方法,其中,具有比前述化合物半導體層之熱 數還大的熱膨脹係數之材料係由鋁、銅、銀、金 鈦或此等合金中之任一者形成。 (5) 如前項(1)至(4)中任一項記載之發光二極 造方法,其中,具有比前述化合物半導體層之熱 數還小的熱膨脹係數之材料係由鉬、鎢、鉻或此 之任一者形成。 (6) 如前項(1)至(5)中任一項記載之發光二極 造方法,其中,前述複數個金屬層係三層的金屬 (7) 如前項(6)記載之發光二極體之製造方法, 前述三層的金屬層之中,挟著一層的金屬層之二 屬層係由相同金屬材料形成。 (8) 如前項(7)記載之發光二極體之製造方法, 前述一層的金屬層係由銦形成,前述二層的金屬 銅形成。 (9) 如前項(6)至(8)中任一項記載之發光二極 造方法,其中,利用I虫刻除去前述三層的金屬層之中挟 著一層的金屬層之二層的金屬層,並利用雷射切斷前述 一層的金屬層。 201220382 ,()w項⑴至(9)中任—項記載之發光二極體之 製造方法’其中’前述發光層係包含A1GaInP層或A1GaAs 層0 月〗項⑴至(10)中任―項記載之發光二極體之 製造方法,其中’前述化合物半導體層與前述金屬基板 之間具備反射構造體。 (12)-種切斷方法,係對晶圓照射雷射以切斷成晶 片狀的發光二極體之方法’該晶圓具備由複數個金厲層 形成之金屬基板與形成於該金屬基板上之化合物半導體 層,該切斷方法之特徵在於具有:利用蝕刻除去前述化 合物半導體層之切斷預定線上的部分之步驟;利用蝕刻 除去前述複數個金屬層之中雷射照射面側之至少一層的 前述切斷預定線上的部分之步驟;以及沿著俯視為前述 金屬層之前述已除去的部分照射雷射而切斷前述金屬基 板之步驟。 ⑴)如前項(12)記載之切斷方法,其中,切斷前述金 屬基板之步驟之前,更具備利用蝕刻除去前述複數個金 屬層之中前述雷射照射面之相反側之至少一層的前述切 斷預定線上的部分之步驟。 (14) 一種發光二極體,其係利用前項(1)至(13)中任 *項記載之發光^一極體之製造方法而製造。 (15) —種發光二極體,其係具備由複數個金屬層形 成之金屬基板以及包含形成於該金屬基板上之發光層的 化合物半導體層,該發光二極體之特徵在於:前述2屬 基板之側面係由並列於該金屬基板之厚度方向而配置之 -10- 201220382 濕式蝕刻面與雷射切斷面形成;複數個金屬層之中,前 述化合物半導體層側之至少一層的金屬層之側面與前述 化合物半導體層之相反側之至少一層的金屬層之側面係 由濕式飯刻面形成,因照射雷射而產生之副生成物僅附 著於前述金屬基板之侧面。 (16)如前項(15)記載之發光二極體,其中,前述複數 個金屬層係三層的金屬層,挾著一層的金屬層之二層的 金屬層之側面係由濕式蝕刻面形成,前述一層的金屬層 之側面係由雷射切斷面形成。 (17)如前項(16)記載之發光二極體,其中,前述一層 的金屬層係由19形成’前述二層的金屬層係由銅形成。 [發明效果] 很像本發明之發光二極體之製造方法, 借:ί丨丨田★丨入 U為作成具 J用蝕刻除去複數個金屬層之中 —屛之切献在— 由对知射面側之至少 „ 斷預疋線上的部分之步驟以及沪著广土 μ & ® 層之部分昭鼾贲u /口者除去此金屬 蝕刻預先除去昭A 步驟的構成,利用 古.、、、射雷射之側的金屬屛夕i #分,所以雷射b ^ S之切斷預定線上的 生之碎肩量。 里.楚少’可減少所產 身十面為包含發光 面側之金屬層已 基板的位置會遠 達化合物半導體 v 取此構成,在 a之化合物半導_ & ..^ 導體層侧的情況, ^ 肩始進行雷射切斷 離化合物半莫挪Η 4體層。結果’碎屑 層,可防止短肷 路’使良率提升。 201220382 切斷 屬層 上的 側的 與此 金屬 刻所 數量 度。: ,雀目 解之 割線 割性 面應 切割 的部 低雷 膨脹 熱的 構成 易於 ::其/發光二極體之製造方法,因為採用在 金=之步驟之前另具備利用餘刻除去複數個金 之中田射照射面之相反側之至少—層的切斷預定線 部分之構成,所以可利用勉刻預先除去照射雷射之 相反側之金屬層之切斷預定線上的部分,預先釋放 金屬層瞬接之金屬層的界面應力,減低雷射切斷中 基板内之應力的平衡崩解之程度。雖需考量到因姓 致之機械性強纟的降低,纟若增加蝕刻之金屬屏的 ’、'可進-步降低雷射切斷中應力的平衡崩解之程 不進行蝕刻而殘留之金屬層的機械性強度越大(例如 ),越可钱刻更多的數量之金屬層。 並且’減低雷射切斷中金屬基板内之應力的平衡崩 程度’結果可減低金屬基板變形之程度,可減低切 自期望之位置偏離的程度’可良好地維持晶片之分 ,並可防止發光二極體晶片之形狀變異常。 此外,因為在釋放複數個之界面應力之中的部分界 力的狀態下對位而進行雷射切斷’故據 線自期望之位置偏離的程度。 再者,因為利用蝕刻除去該金屬層之切斷預定線上 分,來薄化雷射切斷之金屬基板的厚度,所以可降 射切斷中產生之熱量,抑制發熱所致的金屬基板之 ,結果,可減低切割之間距寬度的變動,並可防止 影響導致發光二極體晶片之背面側的形狀改變。 更甚者,因為採用金屬基板由複數個金屬層形成之 ,所以可利用蝕刻選擇性依各金屬層進行蝕刻,將 控制金屬基板之蝕刻深度。 -12- 201220382 再且’因為不是雷射切斷所有金屬層,利用蝕刻除 去 °卩分使得雷射切斷之金屬的數量減少,所以可減少 雷射切斯時所產生之碎屑量,防止碎屑附著於包含發光 層之化合物半導體層的側面所導致的短路。此外,因為 可防止碎屑附著於金屬基板之正面以及背面,或減低附 著量’所以可減少外觀不良,並可減少引線接合不良或 晶片接合不良。 根據本發明之發光二極體之製造方法,因為複數個 金屬層採用包含熱膨脹係數較化合物半導體層之熱膨脹 係數大之材料與熱膨脹係數較化合物半導體層之熱膨脹 係數小的材料之構成,金屬基板全體之熱膨脹係數(對應 於溫度上昇而實際顯現之金屬基板的長度/體積膨脹之 比例)接近化合物半導體層之熱膨脹係數,所以化合物半 導體層與金屬基板接合時之金屬基板之熱膨脹量與化合 物半導體層之熱膨脹量之差會減少,化合物半導體層與 金屬基板之間產生的界面應力降低;結果,分別存在於 金屬基板之化合物半導體層側與化合物半導體層之相反 側之界面應力在雷射切斷時,其中一者的界面應力會先 被釋放’而使得金屬基板之變形減少。 根據本發明之發光二極體之製造方法,因為是將複 數個金屬層設成三層的金屬層的構成,所以僅蝕刻除去 雷射照射面之相反側的一層金屬層,即可降低切判線之 偏離或切割間距寬度之變動。此外,僅蝕刻除去雷射照 射面側的一層金屬層,即可減少所產生的碎屑量,同時 可防止碎屑附著於化合物半導體層而造成短路,可使良 -13- 201220382 根據本發明之發光二極體之製、生 數個金屬層設成三層的金屬層之構^方法,因為是將複 層之中挾著/層的金屬層之二層的成’其令三層的金屬 材料形成,所以可使用相同蝕刻劑金屬層係由相同金屬 之二層的金屬層進行蝕刻,因此具恥执著一層的金屬層 外,因為亦可同時蝕刻除去-居里濟效益且簡單;此 製程時間。 m屬層,所以可縮短 根據本發明之發光二極體之製α 、 金屬層採用三層的金屬層,其中三坆方法,因為複數個 -層的金屬層之二層的金屬層係二的金屬層之中挾著 金屬層係由鉬形成,所以因鉬之二形成’前述-層的 由銅形成之金屬層钱刻得較深,亦::強度強,即使將 定性。 了,、隹持金.屬基板的穩 根據本發明之切斷方法,因 去複數個金屬層之中雷射照射面側:具有利用蝕刻除 斷預定線上的部分之步驟以及 切 分昭M + Μ而+ « 百主屬層之已除去的部 刀,、,、射由射而切斷金屬基板之步驟 Λ. m Α 9構成,利用钮刻預 先除去…、射给射之側的金屬層之 所以Φ +此 乃所預定線上的部分, 雷射切斷之金屬基板的量變少, 屑量。 了減少所產生之碎 此外,因為採用此構成,纟雷射 層之介人私屯播 ’、、、射面為包含發光 曰之化口物丰導體層侧的情況, 被蝕刻,所U & 於6亥面側之金屬層已 趿蝕到所以開始進行雷射切斷之金Μ Α 4 μ 離化合物半導體…士类Μ金屬基板的位置會遠 "導體層。結果,碎屑不會到達化 層’可防止料,使良率提升。 导燈 -14- 201220382 根據本發明之 之步驟之前另且備w ,,因為採用在切斷金屬基板 照射面之相反側==去複數個金屬層之中雷射 驟,利用蝕刻預先r 曰切斷預定線上的部分之步 之切斷預定線上的;射之側的相反側的金屬層 屬層的界面瘅力,所釋放與該金屬層隣接之金 應力的平衡崩解之程声…射切斷中金屬基板内之 程度’可減低切割線金屬基板變形之 地維持晶片之分割性,並叮:置偏離的程度,可良好 變異常。 可防止發光二極體晶片之形狀 分界面廡/為疋在將複數個界面的界面應力之中的部 由此點ί力0以釋放的狀態下對位而進行雷射七刀斷,故 由此點亦可減低切割線自期望之位置偏離的程度。 的邱:者兹因為利用蝕刻除去該金屬層之切斷預定線上 雷射切斷中Γ雷射切斷之金屬基板的厚度,所以可降低 脹处 產生之熱量,抑制發熱所致的金屬基板之膨 ,結果,可減低切割之間距寬度的變動,並可防止埶 的影響導致發光二極體晶片之背面侧的形狀改變。’、、、 更甚者’因為採用金屬基板由複數個金屬層形成之 構成,所以可利用蝕刻選擇性依各金屬層進行蝕刻,將 易於控制金屬基板之触刻深度。 ,根據本發明之發光二極體,即具備由複數個金屬層 .成之金屬基板與包含形成於該金屬基板上之發光層的 化合物半導體層之發光二極體,因為採用金屬基板之側 面係由並列於該金屬基板之厚度方向而配置之濕式蝕刻 -15- 201220382 面與雷射切斷面形成、且複數個金屬層之中的化合物半 導體層側之至少一層的金屬層之側面與化合物半導體層 之相反側之至少一層的今屬廢夕相丨丨二丄上 耵孟屬層之側面由濕式蝕刻面形成 、且利用雷射照射所產生之副生成物僅沉積於金屬基板 之側面之構成,所以碎屑不會附著於金屬基板之正=及 背面,外觀比起習知的發光二極體的外觀較為改盖 【實施方式】 。 實 施 形 光 __ Ι·> 極 ,nuk 體 圖 式 中 的 尺 寸 比 率 或 尺 寸 等 省 略 力0 同 符 以下,利用圖式詳細說明為應用本發明之—〜 態的發光二極體之製造方法、切斷方法以及發光I · 。此外,A求易於了解特徵,以下說明所用:顿 部分圖式係放大顯示特徵部分,各構成要素之/中的 等不-定等同實際者…卜,具體顯示之材料:寸比率 之條件僅供例不。&外,同一構件附加相同符^尺 說明或使說明簡略化。此外,同一構件酌情附:: 號或省略符號,省略說明或使說明簡略化。 同 (第1實施形態) [發光二極體] 圖1係顯示為本發明之實施形態的發光一 例的圖。 〜_題之〜 如圖1所示,本發明之實施形態的發光 (LED)l係具備由複數個金屬層21A、22、21fi 〜核趲 屬基板5以及包含形成於金屬基板5上之發光屙之金 合物半導體層3而成之發光二極體1,其中金屬2的化Jt, if the occupant is formed in the midnight to form a light-emitting portion; when the chip is on the side of the light-emitting portion, the contact may cause a short-circuit such as a side surface of the body layer of the light-emitting diode, and the selectivity is lowered. In order to avoid related problems, the miscellaneous soil + is more. However, in this case, the number of cuts made by the cut to the cut portion is reduced. The light-emitting diode that can be manufactured by the film is a metal layer with a boundary layer. Deterioration pitch Cut width This type of shape can be reduced by the amount of non-polarity 201220382 In addition, the influence of heat when cutting a metal substrate by laser cutting is a problem. Specifically, in the case where the different kinds of metals (for example, in the substrate) are joined in a state in which the width is different depending on the heat of each metal during bonding, the surface has a stress state. In the case where three metal layers are formed, the laser is cut by the laser: when the first metal layer is released, the stress is released in the second metal layer on the third metal layer, but the stress is cut off because of the stress on the third metal layer side. It will disintegrate, and the gold result will produce a problem that the cutting line deviates from the desired position, the crystal, and the light-emitting diode wafer becomes abnormal. In addition, there is a problem that the metal substrate expands due to heat generation and the width becomes incorrect. That is, the substrate is inflated. 'If it becomes normal temperature after cutting, the ruler will return to the original one. It will be different from the cutting time. The thicker the metal substrate, the more heat problem will change. In addition, if the crystal of the light-emitting diode changes due to the influence of heat, it will The present invention has been made in view of the above problems, a method for manufacturing a target photodiode, a cutting method, and a method for cutting a metal substrate by laser cutting The good influence of the raw material, and the prevention of the heat generated by the cutting, and the like. The expansion coefficient of the Cu) produced at the time of cutting is the first to third gold profit at room temperature (the laser cut off The surface of the layer side still remains the segmentation problem of the substrate being deformed. When the cutting state is in the inch, the spacing is larger, so the back side of the sheet is provided with a light diode, which is brought by the debris. In order to solve the above problems, the present invention provides the following means. (1) A method of manufacturing a light-emitting diode, which is obtained by irradiating a laser onto a wafer to produce a wafer shape. A method of emitting a diode, comprising: a step of fabricating a wafer having a metal substrate formed of a plurality of metal layers; and a compound semiconductor layer including a light-emitting layer formed on the metal substrate; removing by etching a step of cutting a portion of the compound semiconductor layer on a predetermined line; and removing the at least one of the plurality of metal layers from the laser irradiation surface side by etching And a step of cutting a portion of the metal layer that is removed in a plan view and cutting the metal substrate to form a predetermined processing to be cut. The "predetermined line" refers to an imaginary line that includes the actual implementation line on the substrate or the like and the actual processing is not performed. "The portion where the predetermined line is cut off the predetermined line is cut." I also asks Yahs/Hundreds of 彳曰 彳曰 彳曰 彳曰 彳曰 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : is a single - formed of a different kind of metal material. Metal layer to (2) according to the above-mentioned (1) of the production of the light-emitting diode, &, before the step of cutting off the metal substrate, 'other profitable & And a step of irradiating the portion of the predetermined line on the cutting line of the etching-etching layer among the plurality of metal layers. At least 201220382 method, semiconductor has a layer of alloys such as expansion system, nickel, and body expansion system. Wherein, the gold of the layer, wherein the layer is made of a body (3), wherein the plurality of metal layers comprise a coefficient of thermal expansion greater than that of the compound layer. A material having a large coefficient of thermal expansion and a thermal expansion material having a small coefficient of thermal expansion of the compound semiconductor layer. (4) The method of producing a light-emitting diode according to any one of the preceding claims, wherein the material having a thermal expansion coefficient larger than a heat number of the compound semiconductor layer is aluminum, copper, silver, or the like. Gold titanium or any of these alloys is formed. (5) The method of producing a light-emitting diode according to any one of the preceding claims, wherein the material having a thermal expansion coefficient smaller than a heat number of the compound semiconductor layer is molybdenum, tungsten, chromium or Any of these is formed. (6) The method of producing a light-emitting diode according to any one of the preceding claims, wherein the plurality of metal layers are three-layered metal (7), and the light-emitting diode according to the above item (6) In the manufacturing method, among the three metal layers, the two metal layers of the metal layer next to each other are formed of the same metal material. (8) The method for producing a light-emitting diode according to the above item (7), wherein the metal layer of the one layer is formed of indium, and the two layers of metal copper are formed. (9) The method of producing a light-emitting diode according to any one of the preceding aspects, wherein the metal layer of the metal layer of the three layers of the metal layer of the three layers is removed by I. Layer and use a laser to cut the metal layer of the previous layer. The method for manufacturing a light-emitting diode according to any one of the items (1) to (9), wherein the light-emitting layer comprises an A1GaInP layer or an A1GaAs layer (in the month of the month) (1) to (10) In the method for producing a light-emitting diode according to the above aspect, the 'reflective structure is provided between the compound semiconductor layer and the metal substrate. (12) A method for cutting a wafer by irradiating a laser to cut a wafer-shaped light-emitting diode. The wafer has a metal substrate formed of a plurality of gold layers and formed on the metal substrate. In the above compound semiconductor layer, the cutting method is characterized in that: a step of removing a portion on the line to cut of the compound semiconductor layer by etching; and removing at least one layer of the laser irradiation surface side among the plurality of metal layers by etching a step of cutting a portion on the predetermined line; and a step of severing the metal substrate by irradiating a portion of the metal layer with the removed portion in a plan view. (1) The cutting method according to the above item (12), further comprising: cutting the at least one layer on the opposite side of the laser irradiation surface among the plurality of metal layers by etching before the step of cutting the metal substrate The step of breaking the part of the line. (14) A light-emitting diode manufactured by the method for producing a light-emitting body according to any one of the items (1) to (13) above. (15) A light-emitting diode comprising a metal substrate formed of a plurality of metal layers and a compound semiconductor layer including a light-emitting layer formed on the metal substrate, wherein the light-emitting diode is characterized by: The side surface of the substrate is formed by a wetted etched surface and a laser cut surface which are arranged in the thickness direction of the metal substrate; and at least one metal layer on the side of the compound semiconductor layer among the plurality of metal layers The side surface of the metal layer on the side opposite to the compound semiconductor layer on the side surface is formed by a wet rice facet, and the by-product generated by the irradiation of the laser adheres only to the side surface of the metal substrate. (16) The light-emitting diode according to the item (15), wherein the plurality of metal layers are three-layer metal layers, and the side faces of the metal layers of the two layers of the metal layer are formed by wet etching surfaces. The side surface of the metal layer of the foregoing layer is formed by a laser cut surface. (17) The light-emitting diode according to the above (16), wherein the metal layer of the one layer is formed of 19, and the metal layer of the two layers is made of copper. [Effect of the Invention] Much like the manufacturing method of the light-emitting diode of the present invention, by 丨丨 丨 丨 丨 U U U U U 作 作 用 用 用 用 用 用 用 J J J J J J J J J J J J J J J J At least the step of the part on the front side of the surface of the surface and the part of the layer of the shovel of the shovel of the shovel The metal on the side of the laser shot is # i i #分, so the laser b ^ S cuts the amount of raw shoulders on the cut line. 里.楚少' can reduce the ten sides of the body to be included The position of the substrate of the metal layer is as far as the composition of the compound semiconductor v. In the case of the semiconductor layer of the compound semiconductor of a, the shoulder is subjected to laser cutting off the compound half-mole layer. The result is 'debris layer, which can prevent the short road' from increasing the yield. 201220382 Cut off the side of the genus layer and the number of the metal engraving.: , The secant cut surface of the cut line should be cut low The composition of the lightning expansion heat is easy:: the manufacturing method of the light-emitting diode, In order to adopt a configuration in which at least the layer of the opposite side of the irradiation surface of the plurality of golds is removed by the use of the residue before the step of gold=, the portion of the line to be cut is removed by the engraving. The portion of the metal layer on the side of the cut line pre-releases the interfacial stress of the metal layer that is instantaneously connected to the metal layer, thereby reducing the degree of equilibrium disintegration of the stress in the substrate during the laser cutting, although it is necessary to consider the The mechanical strength is reduced, and if the metal screen of the etching is increased, the balance of the stress in the laser cutting can be further reduced to reduce the mechanical strength of the remaining metal layer without etching ( For example, the more the amount of metal layer can be engraved, and the result of 'reduce the degree of equilibrium collapse of the stress in the metal substrate during laser cutting' can reduce the degree of deformation of the metal substrate, and can reduce the deviation from the desired position. The degree 'is well maintained by the wafer, and prevents the shape of the light-emitting diode wafer from becoming abnormal. In addition, since a part of the boundary force among a plurality of interface stresses is released, In addition, the extent to which the laser beam is deviated from the desired position is performed. Further, since the metal cutting of the metal layer is removed by etching to reduce the thickness of the laser-cut metal substrate, the thickness of the metal substrate can be reduced. The heat generated during the cutting is reduced, and the metal substrate caused by the heat generation is suppressed. As a result, the variation in the width between the cuts can be reduced, and the influence of the shape on the back side of the light-emitting diode wafer can be prevented from being affected. Since the metal substrate is formed of a plurality of metal layers, etching can be performed according to each metal layer by etching selectivity, and the etching depth of the metal substrate is controlled. -12- 201220382 Further, 'because it is not a laser to cut all metal layers, By removing the ° minute by etching, the amount of metal cut by the laser is reduced, so that the amount of debris generated during the laser cut can be reduced, and the short circuit caused by the adhesion of the debris to the side of the compound semiconductor layer including the light-emitting layer can be prevented. . Further, since the debris can be prevented from adhering to the front surface and the back surface of the metal substrate, or the amount of adhesion can be reduced, appearance defects can be reduced, and wire bonding failure or wafer bonding failure can be reduced. According to the manufacturing method of the light-emitting diode of the present invention, since the plurality of metal layers are composed of a material having a thermal expansion coefficient larger than that of the compound semiconductor layer and a material having a thermal expansion coefficient smaller than that of the compound semiconductor layer, the entire metal substrate The thermal expansion coefficient (the ratio of the length/volume expansion of the metal substrate which actually appears corresponding to the temperature rise) is close to the thermal expansion coefficient of the compound semiconductor layer, so the thermal expansion amount of the metal substrate when the compound semiconductor layer is bonded to the metal substrate and the compound semiconductor layer The difference in the amount of thermal expansion is reduced, and the interfacial stress generated between the compound semiconductor layer and the metal substrate is lowered. As a result, the interfacial stress on the opposite side of the compound semiconductor layer side of the metal substrate and the compound semiconductor layer is respectively at the time of laser cutting. The interfacial stress of one of them will be released first, and the deformation of the metal substrate is reduced. According to the method for producing a light-emitting diode of the present invention, since a plurality of metal layers are formed as three metal layers, only one metal layer on the opposite side of the laser irradiation surface can be etched away, thereby reducing the cut-off. The deviation of the line or the variation of the width of the cutting pitch. In addition, by etching only one metal layer on the side of the laser irradiation surface, the amount of generated debris can be reduced, and at the same time, the debris can be prevented from adhering to the compound semiconductor layer to cause a short circuit, and the light can be made according to the present invention. The method of forming a light-emitting diode and forming a metal layer of three metal layers is because the two layers of the metal layer of the layer are laminated/layered into three layers of metal The material is formed, so the same etchant metal layer can be etched from the metal layer of the same metal layer, so that the metal layer with a shameful layer can be removed by etching at the same time - the benefit of the Curie is simple and simple; time. The m-genus layer can shorten the α of the light-emitting diode according to the present invention, and the metal layer of the metal layer adopts three layers, wherein the three-layer method, because the metal layer of the second-layer metal layer is two Among the metal layers, the metal layer is formed of molybdenum, so that the metal layer formed of copper formed by the second layer of molybdenum is deeply engraved, and the strength is strong, even if it is qualitative. According to the cutting method of the present invention, the laser irradiation surface side is removed from the plurality of metal layers: the step of removing the portion on the predetermined line by etching and the cutting Μ和+ « The removed knives of the hexa-layer layer, and the steps of cutting the metal substrate by the shot Λ. m Α 9 structure, using the button to remove the metal layer on the side of the shot The reason why Φ + is the part of the line on the line is that the amount of the metal substrate cut by the laser is small and the amount of the chip is small. In addition, the use of this configuration, the 纟 纟 纟 之 纟 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 U U U U U U U U U U U U U U U U U U U U The metal layer on the side of the 6th surface has been eroded to the point where the laser cutting is started. 4 μ From the compound semiconductor, the position of the metal substrate of the class is far away. As a result, the debris does not reach the layer, which prevents the material from being produced and improves the yield. The light guide-14-201220382 is further prepared according to the steps of the present invention, because the laser beam is used among the plurality of metal layers on the opposite side of the cut surface of the metal substrate, and the etching is performed by etching. Breaking the part of the predetermined line on the cut line; the interface of the metal layer on the opposite side of the side of the shot, the release of the equilibrium stress of the gold stress adjacent to the metal layer... The degree of breaking in the metal substrate can reduce the segmentation property of the wafer by reducing the deformation of the metal substrate of the dicing line, and the degree of deviation can be excellent. It is possible to prevent the shape interface 庑 of the light-emitting diode wafer from being aligned by the portion of the interfacial stress of the plurality of interfaces, and the laser is aligned in a state of being released. This also reduces the extent to which the cutting line deviates from the desired position. Qiu: Because the thickness of the metal substrate cut by the laser cutting in the laser cutting of the metal layer by etching is removed by etching, the heat generated by the expansion can be reduced, and the metal substrate caused by the heat generation can be suppressed. As a result, the variation in the width between the cuts can be reduced, and the influence of the flaws can be prevented from causing a change in the shape of the back side of the light-emitting diode wafer. Since the metal substrate is formed of a plurality of metal layers, it is possible to etch the respective metal layers by etching selectivity, and it is easy to control the depth of contact of the metal substrate. A light-emitting diode according to the present invention, that is, a light-emitting diode having a metal substrate formed of a plurality of metal layers and a compound semiconductor layer including a light-emitting layer formed on the metal substrate, because a side surface of the metal substrate is used a side surface of the metal layer formed by the wet etching -15-201220382 surface and the laser cut surface which are arranged in the thickness direction of the metal substrate, and at least one of the compound semiconductor layer side among the plurality of metal layers At least one layer of the opposite side of the semiconductor layer is formed on the side of the ruthenium layer by the wet etched surface, and the by-product generated by the laser irradiation is deposited only on the side of the metal substrate. Since the crumb does not adhere to the positive and negative sides of the metal substrate, the appearance is changed to the appearance of the conventional light-emitting diode [Embodiment]. The method of manufacturing the light-emitting diode of the present invention is described in detail with reference to the size ratio or size of the nuk body pattern, and the following is a detailed description of the method for manufacturing the light-emitting diode of the present invention. , cutting method and illuminating I · . In addition, A seeks to easily understand the features, and the following description is used: the partial part of the diagram is a magnified display of the characteristic part, and the / of the constituent elements are not equal to the actual one... The specific display material: the condition of the inch ratio is only for No. In addition to the &, the same component is attached with the same symbol or the description is simplified. In addition, the same components are attached with the :: or ellipsis, and the description is omitted or the description is simplified. (Embodiment 1) [Light Emitting Diode] Fig. 1 is a view showing an example of light emission according to an embodiment of the present invention. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a light-emitting diode 1 made of a gold compound semiconductor layer 3, wherein the metal 2 is formed
之側面5aa係由並列於金屬基板5之厚度方,基板S 濕式蝕刻面與雷射切斷面形成,複數個金屬層 夏之 之中靠延 -16- 201220382 化合物半導體層之側起至少一層的金屬層之側面 係由濕式钱刻面形成’金屬層之側面22a以及離化 半導體層較遠之側的金屬層之側面21Ba係由雷射 面形成,利用雷射照射所產生之副生成物係僅附著 屬基板5之側面5 a a » 離化合物半導體層較遠之侧的金屬層之側面 亦可由濕式姓刻面形成。 <化合物半導體層〉 化合物半導體層3係包含發光層2之化合物半 的積層構造體,為層疊複數個磊晶成長之層而形成 晶積層構造體。 作為化合物半導體層3,可利用例如發光效率 基板接合技術已確立的AlGalnP層或A1GaAs層 AlGalnP 層係由 _ 般式(AlxGai_ χ)γΙηι— γρ(〇$ < Y $ 1)所表示之材料形成的層。此組成係依發光二 之發光波長而決定。製作紅及紅外光的發光二極體 使用的AlGaAs層之情況亦相同’構成材料之組成 發光二極體之發光波長而決定。 化合物半導體層3係η型或p型之任—者的傳 化合物半導體’内部形成ρη接合。此外,化合物半 層3表面之極性係ρ型、η塑任一者皆可。 如圖1所示,化合物半導體層3係由例如接觸/ 、包覆層10a、發光層2、包覆層l〇b以及GaP層 成。 2Ua 合物 切斷 於金 2 1 B a 導體 的磊 rij 、 等。 1 ’ 0 極體 時所 係依 導型 導體 \ 12c 13形 -17- 201220382 接觸層12c係用於減低歐姆(Ohmic)電極之接觸電阻 之層,由例如掺雜Si之η型GaAs形成,載體濃度採取 lxl018cnT3,層厚採取 〇·〇5μπι。 包覆層10a係由例如摻雜Si之η型Al〇 5Ιη〇 5ρ形成 ,載體濃度採取3xl〇18cnT 3 ’層厚採取〇.5μιη。 發光層2係由例如無摻雜之(AluGau)。5ΐη() 5ρ/ (Al〇.7Ga〇.3)Q.5In〇_5P的10對積層構造形成,層厚採取 0.2 μηι 〇 發光層2係具有雙異質構造(Double Hetero : DH)、 單一量子井構造(Single Quantum Well : SQW)或多重量 子井構造(Multi Quantum Well : MQW)等之構造。在此, 雙異質構造係將擔負放射再結合之載體封入的構造。此 外,量子井構造係具有井層與挾住前述井層之2個障壁 層的構造’ SQW係井層為一個者,MQW係井層為2個 以上者。4乍為化合物半導體層3之形成方法,可採用 MOCVD法等。 為了自發光層2獲得在單色性方面優異的發光,較 佳為採用MQW構造作為發光層2。 包覆層10 b係由例如捩μ A, 匕復 〗如摻雜Mg之P型Al0.5In〇.5P形 成,載體濃度採取8xi〇17 3The side surface 5aa is formed by juxtaposed on the thickness of the metal substrate 5, and the wet etching surface of the substrate S is formed with the laser cut surface, and the plurality of metal layers are extended in the summer by at least one layer from the side of the compound semiconductor layer. The side surface of the metal layer is formed by a wet money facet forming side surface 22a of the metal layer and a side surface 21Ba of the metal layer farther from the ionized semiconductor layer, which is formed by a laser surface, and is generated by laser irradiation. The system is attached only to the side surface of the substrate 5 5 aa » The side of the metal layer on the side farther from the compound semiconductor layer can also be formed by the wet type facet. <Compound semiconductor layer> The compound semiconductor layer 3 is a laminated structure including a compound half of the light-emitting layer 2, and is formed by laminating a plurality of layers of epitaxial growth to form a crystal layer structure. As the compound semiconductor layer 3, an AlGalnP layer or an A1GaAs layer AlGalnP layer which has been established by, for example, a light-emitting efficiency substrate bonding technique, is formed of a material represented by a general formula (AlxGai_ χ) γΙηι- γρ (〇$ < Y $ 1). Layer. This composition is determined by the wavelength of the light emitted by the second light. The case of the AlGaAs layer used for the production of red and infrared light-emitting diodes is also determined by the composition of the constituent materials of the light-emitting diode. The compound semiconductor layer 3 is formed of a pn-junction in the compound semiconductor of either the n-type or the p-type. Further, the polarity of the surface of the compound half layer 3 may be either p-type or η-plastic. As shown in Fig. 1, the compound semiconductor layer 3 is formed of, for example, a contact/cover layer 10a, a light-emitting layer 2, a cladding layer 10b, and a GaP layer. The 2Ua compound is cut off from the rij, etc. of the gold 2 1 B a conductor. Conductor type conductor for 1 ' 0 pole body \ 12c 13 shape -17- 201220382 Contact layer 12c is a layer for reducing the contact resistance of an ohmic electrode, formed of, for example, n-type GaAs doped with Si, carrier The concentration is taken as lxl018cnT3, and the layer thickness is taken as 〇·〇5μπι. The cladding layer 10a is formed of, for example, n-type Al 〇 5 Ι 〇 〇 5 ρ doped with Si, and the carrier concentration is taken as 3. 5 μιη by a layer thickness of 3 x 10 〇 18 cn T 3 。. The luminescent layer 2 is made of, for example, undoped (AluGau). 5ΐη() 5ρ/ (Al〇.7Ga〇.3) Q.5In〇_5P has 10 pairs of laminated structures formed with a layer thickness of 0.2 μηι 〇 luminescent layer 2 series with double heterostructure (Double Hetero: DH), single quantum Construction of a well structure (Single Quantum Well: SQW) or a multiple quantum well structure (Multi Quantum Well: MQW). Here, the double heterostructure is a structure in which a carrier for radiation recombination is enclosed. In addition, the quantum well structure has one structure of the well layer and the two barrier layers of the well layer, the SQW system well layer, and the MQW system has two or more well layers. 4乍 is a method of forming the compound semiconductor layer 3, and an MOCVD method or the like can be employed. In order to obtain excellent light emission in terms of monochromaticity from the light-emitting layer 2, it is preferable to use an MQW structure as the light-emitting layer 2. The coating layer 10b is formed of, for example, 捩μ A, 匕, such as Mg-doped P-type Al0.5In〇.5P, and the carrier concentration is 8xi〇17 3
Cm ’層厚採取0.5μπι。 G a Ρ層1 3係例如摻雜Α/Γ ^雜Μ§之Ρ型GaP層,載體濃度 採取5x10 cm— ’層厚採取2_。 化合物半導體層3之M τ 耩成不一定為上述記載之構造 ,亦可具有例如使元件,酿氣$τ ’*動電k平面地擴散於整個化合 物半導體層3的電流擴耑 '文層、用於限制元件驅動電流所 -18- 201220382 流通的丨 confined <第1電 第1 形狀及配 物半導體 形狀之電 狀配置複 作為 為接觸層 ,使用p 如 AuBe、 此外 提升引線 以第 作為GaP 等,使用 如 A u B e、 <反射構 如圖 式形成於 反射構造 〇 金屬 金等構成 邑域之電流阻止層或電流限制層(current layer)等。 極、第2電極> 電極6及第2電極8係皆為歐姆電極,其等之 置不特別限定,只要係使電流均勻擴散於化合 層3者即可。例如,可採用俯視時為圓狀或矩 極,可採用一個電極的方式配置,亦可以格子 數個電極β 第1電極6之材料,使用η型化合物半導體作 12c時’可採用例如AuGe、AuGeNi、AuSi等 型化合物半導體作為接觸層1 2 c時,可採用例 AuZn 等。 ’可進一步層積Au等於其上以防止氧化,同時 接合。 2電極8之材料而言,使用η型化合物半導體 層13時’可採用例如AuGe、AuGeNi、AuSi P型化合物半導體作為Gap層1 3時,可採用例 AuZn 等。 造體> 1所示’反射構造體4以覆蓋第2電極8的方 化合物半導體層3之反射構造體4側的面3b。 體4係層積金屬膜15與透明導電膜14而形成 膜15係由銅、銀、金、鋁等金屬以及其等之合 此專材料的光反射率.高,可使來自反射構造 -19- 201220382 體4之光反射率成為90%以上。藉由形成金屬膜15,使 來自發光層2之光藉由金屬膜15向正面方向f反射,可 使正面方向f之光取出效率提升。藉此,可使發光二極 體之進一步向亮度化。 金屬膜15較佳為從透明導電膜μ側由 障壁層、Au系之共晶金屬(連接用金屬)形成的積層構造 ,π似·^仍汉侧的面 1 5b之前述連接用金屬,係電性阻抗低、且在低溫下會 溶融之金屬。因為使用前述連接用金屬,所以不會對化 合物半導體層3施予熱壓,可連接金屬基板。 作為連接用金屬’可使用化學性穩定、融點低之Au 系的共晶金屬等。作為前述Au系的共晶金屬,可舉例如The thickness of the Cm' layer is 0.5 μm. The G a Ρ layer 1 3 is, for example, a ruthenium-type GaP layer doped with Α/Γ Μ ,, and the carrier concentration is taken as 5×10 cm—the layer thickness is taken as 2_. The M τ 耩 of the compound semiconductor layer 3 is not necessarily the structure described above, and may have, for example, a current-expansion layer of the entire compound semiconductor layer 3 in which the elemental energy is generated by the elemental energy kτ '* Used to limit the component drive current -18- 201220382 丨 丨 confined < 1st electric 1st shape and the shape of the semiconductor structure of the compound is used as a contact layer, using p such as AuBe, and lifting the lead to the first as GaP For example, a current blocking layer or a current limiting layer or the like which is formed in a region such as a reflective structure of ruthenium metal or the like is formed by using a structure such as A u B e and a reflection structure. The electrode and the second electrode are both ohmic electrodes, and the like are not particularly limited as long as the current is uniformly diffused to the compound layer 3. For example, it may be arranged in a circular shape or a rectangular pole in a plan view, and may be arranged by one electrode. Alternatively, a plurality of electrodes may be latticed. The material of the first electrode 6 may be, for example, AuGe or AuGeNi may be used when the n-type compound semiconductor is used as 12c. When a compound semiconductor such as AuSi is used as the contact layer 1 2 c, an example of AuZn or the like can be used. The layer can be further laminated with Au to prevent oxidation while bonding. When the n-type compound semiconductor layer 13 is used as the material of the second electrode 8, for example, an AuGe, AuGeNi, or AuSi P type compound semiconductor can be used as the Gap layer 13 as an example, and AuZn or the like can be used. The reflective structure 4 shown in Fig. 1 covers the surface 3b on the side of the reflective structure 4 of the compound semiconductor layer 3 of the second electrode 8. The body 4 is formed by laminating the metal film 15 and the transparent conductive film 14 to form a film 15 which is made of a metal such as copper, silver, gold or aluminum, and the like. The light reflectance is high and can be derived from the reflection structure-19. - 201220382 The light reflectance of the body 4 is 90% or more. By forming the metal film 15, the light from the light-emitting layer 2 is reflected by the metal film 15 in the front direction f, and the light extraction efficiency in the front direction f can be improved. Thereby, the luminance of the light-emitting diode can be further increased. The metal film 15 is preferably a laminated structure formed of a barrier layer and an Au-based eutectic metal (joining metal) from the side of the transparent conductive film μ, and the connection metal of the surface 15b of the π-like surface. A metal that has low electrical impedance and that melts at low temperatures. Since the metal for connection described above is used, the compound semiconductor layer 3 is not subjected to hot pressing, and the metal substrate can be connected. As the metal for connection, an Au-based eutectic metal having a chemical stability and a low melting point can be used. As the Au-based eutectic metal, for example,
AuSn、驗、AuSl等之合金的共晶組成(Au系的共晶金 屬)。 此外’連接用金屬中較佳為 — 钓添加鈦、鉻、鎢等金屬 。措此’鈦、鉻、鎢等之金屬作 用為1^壁金屬,金屬基 板中所含的雜質等擴散至金屬 联15側,可抑制反應。 透明導電膜14係由ITO骐' IZ〇 应舢堪、土遍 勝寺構成。此外’ 反射構k體4亦可僅由金屬膜丨5構成。 此外,亦可代替透明導電 一 职14,或與透明導電膜14 一起’採用利用透明材料之折射 T对羊差之所謂的冷光鏡( 例士氧化鈦膜、氧化矽膜之多層 .,^ 夕層膜或白色的氧化鋁、A1N) ’而組合於金屬膜15中。 -20- 201220382 <金屬基板> 金屬基板5係由访〜 节田複數個金屬層形成。 金屬基板5之技人 货5面5a接合於構成反射構造體4之 金屬膜15之與化合物主.皆 D物+導體層3相反側的面1 5b。 金屬基板5之屋疮“ ·度車父佳為採用50μιη以上15〇 以 下。 在金屬基板5之厚度比150μιη厚之情況,發光二極 體之製造成本上升而不佳。此外,在金屬基板5之厚度 比5〇μηΐ薄之情況,處理時容易產生破裂、碎片、翹= ’會存在製造良率降低之虞。 作為複數個金屬層之構成,較佳為2種類之金屬層( 即第1金屬層21#第2金屬層22)交互層積而形成者曰。 每一金屬基板的第i金屬層21與第2金屬層。之 層數合計較佳為採取3〜9層,更佳為3〜5層。 第1金屬層21與第2金屬層22之層數合計若採取 2層,則厚度方向之熱膨脹會變不均衡,金屬基板^會 產生翹曲。反之,第i金屬層21與第2金屬層22之層 數合計若採取多於9層,則必須使第丨金屬層S2i與第2 金厲層22之層厚薄化。在薄化由第1金屬層2ι或第2 金屬層22形成之單層基板的層厚來進行製作係困難的 ,會產生各層厚不均勻、發光二極體之特性參差不齊之 虞。再者,因為前述單層基板之製造困難,亦會產” 光二極體之製造成本劣化之虞。 x 第1金屬層21與第2金屬層22之層數人 採取奇數。 胃數。叶較佳為 -21 - 201220382 特別是以3層而+ ^ ^ s ’且設成挾著一層金屬層之二層 金屬層係由相同金屬奸刺_ + 屬材料形成者。於此情況,可使用相 同Ί虫刻劑對挟著—層金屬@ + ^ 至屬層之二層金屬層進行濕式蝕刻 ,藉以除去相當於切斷預定線之部分。 <第1金屬層> *採用熱膨脹係數較化合物半導體層3小之材料作為 第2金屬層時’較佳為至少採用熱膨脹係數較化合物半 導體層3大之材料作金屬層2ι(2ια、2ιβ卜藉由 採用此種構成,由於金屬基板全體之熱膨脹係數接‘於 化口物半導體層之熱膨脹係數,所以可抑制接合化合物 半導體層與金屬基板時的金屬基板之翹曲或破裂,可使 發光二極體之製造良率提升。因此,採用熱膨脹係數較 化合物半導體層3大之材料作為第2金屬層時,較佳為 至少採用熱膨脹係數較化合物半導體層3小之材料作為 第 1 金屬層 21(21 A、21Β)。 —作為第1金屬層21,較佳為採用例如銀(熱膨脹係數 =U.9Ppm/K)、銅(熱膨脹係數=16 5^m/K) '金(熱膨脹 係數=14.2PPm/K)、鋁(熱膨脹係數=23 lppm/K)、鎳( 熱膨脹係數=13_4ppm/K)及此等之合金等。 ” 第1金屬層21之厚度較佳為設成5μπι以上以 下’更佳為設成5μιη以上20μηι以下。 此外’亦可第1金屬㉟21之厚度與第2金屬層η 之厚度不同。再者,金屬基板5由複數個第丨金屬二Μ 與第2金屬層22形成之情況,亦可各層之严 — 曰 Χ各自不同 -22- 201220382 較佳為於金屬基板5之接合面5a以及相反側的面 5 b形成使電性接觸穩定化的接合輔助膜或晶片接合用 的共晶金屬。 使用Au系之共晶金屬作為反射構造體之金屬膜^ $ 的連接用金屬時,較佳為在金屬基板5之接合面“從金 屬基板5側形成Ni/Au膜。& Ni膜以及Au膜可藉 敷形成。 & 藉此,可簡單地進行接合步驟。作為前述接合輔助 膜’可採用Au、AuSn等。 此外,將金屬基板5接合於化合物半導體層3之方 去不限於上述記載之方法,亦可應用例如擴散接合、接 著劑、常溫接合方法等週知的技術。 第1金屬層21之合計厚度較佳為金屬基板5之厚卢 的5%以上5〇%以下,更佳為10%以上30%以下,再: 佳為15%以上25%以下。第1金屬層21之合計厚度未 達金屬基板5之厚度的5%時,熱膨脹係數高之第1金 屬層21的效果減小,散熱功能降低。反之帛工金屬層 21之厚度超過金屬基板5之厚度的5〇%時無法抑制使 金屬基板5與化合物半導體層3連接時的熱所造成之金 屬基板5之破裂。亦即’因為第i金屬層21與化合物半 導體層3之間的大熱膨脹係數差,產生因熱所造成之金 屬基板5之破裂,招致發生接合不良。 ^尤其,採用銅作為第1金屬層21時,銅之合計厚度 車父佳為金屬基板5之厚度的5%以上40%以下,更佳為 1〇%以上3〇%以下’再更佳4 15%以上25%以下。 -23- 201220382 弟1金屬層21之厚度較佳為5μιη以上以下, 更佳為5μηι以上20μιη以下。 <第2金屬層> 採用熱膨脹係數較化合物半導體層3的熱膨脹係數 大之材料作為第1金屬層時,第2金屬層22較佳為由熱 膨脹係數較化合物半導體層3的熱膨脹係數小之材料所 構成。藉由採用此種構成’金屬基板全體之熱膨脹係數 接近於化合物半導體層之熱膨脹係數,所以可抑制接合 化合物半導體層與金屬基板時的金屬基板之翹曲或破裂 ’可使發光二極體之製造良率提升。因此,採用熱膨脹 係數較化合物半導體層3的熱膨脹係數小之材料作為第 1金屬層時’第2金屬層22較佳為由膨脹係數較化合物 半導體層3的熱膨脹係數大之材料所構成。 例如’採用AlGalnP層(熱膨脹係數=約5 3ppm/K) 作為化合物半導體層3時,較佳為採用鉬(熱膨脹係數= 5 .1 ppm/K)、鎢(熱膨脹係數=4.3 ppm/K)、鉻(熱膨脹係數 =4.9ppm/K)及此等之合金等作為第2金屬層22。 本發明一實施形態的發光二極體丨,為將金屬基板5 接合於包含發光層2之化合物半導體層3而成的發光二 極體1,金屬基板5若採用交互層積第】金屬層21與第 2金屬層22而形成、且第i金屬層21由熱膨脹係數較 化合物半導體層3之材料大的材料形成、且第2金屬層 22由熱膨脹係數較化合物半導體層3之材料小的材料开\ 成之構成,則散熱性優良' 可抑制接合時之基板的破裂 ’可施加南電壓而以南免度發光。 24 - 201220382 作為本發明一實施形態的發光二極 金屬層22之材料為具有熱膨脹係數在介 之熱膨脹係數的± 1 · 5 p p m / K以内之構成 優良’可抑制接合時之基板的破裂,可 高亮度發光。 作為本發明一實施形態的發光二極 金屬層21是由鋁、銅、銀、金、鎳或此 成’則可使散熱性優良,可抑制接合時 可施加高電壓而以高亮度發光。 作為本發明一實施形態的發光二極 金屬層22是由鉬、鎢、絡或此等合金形 使散熱性卓越,可抑制接合時之基板的 電壓而以高亮度發光。 作為本發明一實施形態的發光二極 金屬層21由鋼形成、第2金屬層22由 屬層21與第2金屬層22之層數合計為 下之構成,則可使散熱性卓越,可抑制 破裂’可施加高電壓而以高亮度發光。 [發光二極體之製造方法] 接著’針對本發明之實施形態的發 方法進行說明。 本發明之實施形態的發光二極體之 :製作—晶圓之步驟,該晶圓係具備由 成之金屬基板以及包含形成於該金屬基 化合物半導體層;利用蝕刻除去前述化 體1,若採用第2 i合物半導體層3 ’則可使散熱性 施加高電壓而以 體1,若採用第1 等合金形成之構 之基板的破裂, 體卜若採用第2 成之構成,則可 破裂,可施加高 體1,若採用第1 鉬形成、第1金 3層以上9層以 接合時之基板的 光二極體之製造 製造方法係具有 複數個金屬層形 板上之發光層的 合物半導體層之 -25- 201220382 切斷預定線上的部分之步驟.w m w鄉,利用蝕刻除去前述複數個 金屬層之中雷射照射面之s ,丨、 、主y —層的前述切斷預定線上 的部分;以及沿著俯視A箭.+·入 為則返金屬層之前述已除去的部 分照射雷射而切斷前述金屬基板之步驟。 首先,針對金屬某把+也』ί 羁丞板之製造步驟進行說明。 <金屬基板之製造步驟> 以金屬基板5而言,在m 1 係抓用熱膨脹係數較化合物半 導體層3之材料的私膨胳彳έ^ v y脹係數大之第1金屬層與熱膨脹 係數較化合物半導體層^ 4 續3之材料的熱膨脹係數小的第2 金屬層’並進行熱壓而形成。 首先,準備2個大致孚把社^ & 蚁十板狀的第1金屬板21與1個 大致平板狀的第2金屬板22 Cu作為第1金屬板21,採用 金屬板22。 。例如,採用厚度ΙΟμπι之 厚度75 μπι之Mo作為第2 其次’如圖2A所千,收二、上μ 尸汀不’將别述第2金屬板22插入前 述2個第1金屬板21 双2 ί之間,並將此等重疊配置。 然後,將前述某;^@ ^ _ &扳配置於既定的加壓裝置,在高溫 下,對第1金屬板21斑笛。人 1與第2金屬板22朝箭頭方向施加 負重。藉此,如圖2Β所示,形成第i金屬層21為Cu 第2金屬層22為M〇之由 CU(l〇nm)之3層形成的金屬基板5。 至屬基板5係例如熱膨脹係數成為5_7ppm/K ,熱傳 導率成為220W/m · κ。 此外’之後,配合化合物半導體層3之接合面大小Eutectic composition of alloys of AuSn, Au, and AuSl (Au-based eutectic metal). Further, it is preferable that the metal for connection is a metal such as titanium, chromium or tungsten. In the case where the metal such as titanium, chromium or tungsten is used as the metal, the impurities contained in the metal substrate are diffused to the side of the metal group 15 to suppress the reaction. The transparent conductive film 14 is composed of ITO 骐 ' IZ 〇 舢 、 、 、 、 、 、 、 、 、 、 、 、 、 Further, the reflective k body 4 may be composed only of the metal film crucible 5. In addition, instead of the transparent conductive member 14, or together with the transparent conductive film 14, a so-called cold mirror using a refraction of a transparent material T (a titanium oxide film or a multilayer of a yttrium oxide film) may be employed. The film or white alumina, A1N)' is combined in the metal film 15. -20- 201220382 <Metal substrate> The metal substrate 5 is formed by a plurality of metal layers of the visit to the field. The surface 5a of the metal substrate 5 is bonded to the surface 15b of the metal film 15 constituting the reflective structure 4 on the side opposite to the compound main body + the conductor layer 3. When the thickness of the metal substrate 5 is thicker than 150 μm, the manufacturing cost of the light-emitting diode is not good. Further, in the metal substrate 5, the thickness of the metal substrate 5 is 15 μm or less. When the thickness is thinner than 5〇μη, cracking, chipping, and warpage are likely to occur during processing. 'There will be a decrease in manufacturing yield. As a constituent of a plurality of metal layers, preferably two types of metal layers (ie, the first one) The metal layer 21# second metal layer 22) is formed by alternately laminating. The number of layers of the i-th metal layer 21 and the second metal layer of each metal substrate is preferably 3 to 9 layers, more preferably When the number of layers of the first metal layer 21 and the second metal layer 22 is two, the thermal expansion in the thickness direction becomes uneven, and the metal substrate is warped. Conversely, the i-th metal layer 21 is formed. When the number of layers of the second metal layer 22 is more than nine, the thickness of the second metal layer S2i and the second gold layer 22 must be thinned. The first metal layer 2 or the second metal is thinned. If the layer thickness of the single-layer substrate formed by the layer 22 is difficult to fabricate, the thickness of each layer will not be generated. Uniform, the characteristics of the light emitting diodes varies danger. Further, because the manufacturing difficulties of the single layer substrate, will yield danger of deterioration "of the manufacturing cost of a light diode. x The number of layers of the first metal layer 21 and the second metal layer 22 is odd. The number of stomachs. Preferably, the leaves are -21 - 201220382, in particular, three layers and + ^ ^ s ', and the two layers of metal layers which are formed with a metal layer are formed of the same metal traits. In this case, the same metal smear can be used to wet-etch the two metal layers of the bismuth metal layer + + ^ to the genus layer, thereby removing the portion corresponding to the line to be cut. <First Metal Layer> * When a material having a thermal expansion coefficient smaller than that of the compound semiconductor layer 3 is used as the second metal layer, it is preferable to use at least a material having a thermal expansion coefficient larger than that of the compound semiconductor layer 3 as the metal layer 2 (2ια, 2ιβ) By adopting such a configuration, since the thermal expansion coefficient of the entire metal substrate is connected to the thermal expansion coefficient of the chemical conversion semiconductor layer, warpage or cracking of the metal substrate when the compound semiconductor layer and the metal substrate are bonded can be suppressed, and light emission can be suppressed. Therefore, when a material having a thermal expansion coefficient larger than that of the compound semiconductor layer 3 is used as the second metal layer, it is preferable to use at least a material having a thermal expansion coefficient smaller than that of the compound semiconductor layer 3 as the first metal layer 21. (21 A, 21 Β) - As the first metal layer 21, for example, silver (thermal expansion coefficient = U.9 Ppm/K) and copper (thermal expansion coefficient = 16 5 m/m) 'gold (thermal expansion coefficient = 14.2 PPm/K), aluminum (coefficient of thermal expansion = 23 lppm/K), nickel (coefficient of thermal expansion = 13_4 ppm/K), and the like, etc. The thickness of the first metal layer 21 is preferably set to 5 μm or less. It is preferable to set it to 5 μm or more and 20 μm or less. Further, the thickness of the first metal 3521 may be different from the thickness of the second metal layer η. Further, the metal substrate 5 is formed of a plurality of second metal bismuth and second metal layer 22. In other cases, the thickness of each layer may be different from each other. -22 - 201220382 It is preferable to form a bonding auxiliary film or wafer bonding for stabilizing electrical contact on the bonding surface 5a of the metal substrate 5 and the surface 5b on the opposite side. When a eutectic metal of Au is used as the metal for connection of the metal film of the reflective structure, it is preferable to form a Ni/Au film from the side of the metal substrate 5 on the bonding surface of the metal substrate 5. The Ni film and the Au film can be formed by a coating. The bonding step can be easily performed. As the bonding auxiliary film, Au, AuSn, or the like can be used. Further, the metal substrate 5 is bonded to the compound semiconductor layer 3 The above-described method is not limited, and a well-known technique such as a diffusion bonding, an adhesive, or a room temperature bonding method can be applied. The total thickness of the first metal layer 21 is preferably 5% or more of the thickness of the metal substrate 5; % below, more It is preferably 10% or more and 30% or less, and more preferably 15% or more and 25% or less. When the total thickness of the first metal layer 21 is less than 5% of the thickness of the metal substrate 5, the first metal layer 21 having a high thermal expansion coefficient is used. The effect is reduced, and the heat dissipation function is lowered. When the thickness of the metal layer 21 is more than 5% by the thickness of the metal substrate 5, the crack of the metal substrate 5 caused by the heat when the metal substrate 5 and the compound semiconductor layer 3 are connected cannot be suppressed. That is, because of the large thermal expansion coefficient difference between the i-th metal layer 21 and the compound semiconductor layer 3, cracking of the metal substrate 5 due to heat occurs, causing joint failure. In particular, when copper is used as the first metal layer 21, the total thickness of copper is preferably 5% or more and 40% or less, more preferably 1% by weight or more and 3% by weight or less of the thickness of the metal substrate 5. 15% or more and 25% or less. -23- 201220382 The thickness of the metal layer 21 is preferably 5 μm or less, more preferably 5 μm or more and 20 μm or less. <Second metal layer> When a material having a thermal expansion coefficient larger than that of the compound semiconductor layer 3 is used as the first metal layer, the second metal layer 22 preferably has a thermal expansion coefficient smaller than that of the compound semiconductor layer 3. Made up of materials. By adopting such a configuration, the thermal expansion coefficient of the entire metal substrate is close to the thermal expansion coefficient of the compound semiconductor layer, so that the warpage or cracking of the metal substrate when the compound semiconductor layer and the metal substrate are bonded can be suppressed, and the fabrication of the light-emitting diode can be performed. Yield improvement. Therefore, when a material having a thermal expansion coefficient smaller than that of the compound semiconductor layer 3 is used as the first metal layer, the second metal layer 22 is preferably made of a material having a larger coefficient of thermal expansion than that of the compound semiconductor layer 3. For example, when the AlGalnP layer (thermal expansion coefficient = about 5 3 ppm/K) is used as the compound semiconductor layer 3, molybdenum (thermal expansion coefficient = 5.1 ppm/K) and tungsten (thermal expansion coefficient = 4.3 ppm/K) are preferably used. Chromium (coefficient of thermal expansion = 4.9 ppm/K), and the like are used as the second metal layer 22. The light-emitting diode of one embodiment of the present invention is a light-emitting diode 1 in which a metal substrate 5 is bonded to a compound semiconductor layer 3 including a light-emitting layer 2, and the metal substrate 5 is alternately laminated with a metal layer 21 The second metal layer 22 is formed of a material having a thermal expansion coefficient larger than that of the compound semiconductor layer 3, and the second metal layer 22 is made of a material having a thermal expansion coefficient smaller than that of the compound semiconductor layer 3. In the case of the composition, the heat dissipation property is excellent 'the crack of the substrate at the time of bonding can be suppressed', and the south voltage can be applied to emit light in the south. 24 - 201220382 The material of the light-emitting diode metal layer 22 according to the embodiment of the present invention is such that the thermal expansion coefficient is within ±1 · 5 ppm / K of the thermal expansion coefficient of the present invention, and the crack of the substrate during the bonding can be suppressed. High brightness illumination. The light-emitting diode metal layer 21 according to the embodiment of the present invention is made of aluminum, copper, silver, gold, nickel or the like, so that heat dissipation is excellent, and high voltage can be suppressed and light can be emitted with high luminance. The light-emitting diode metal layer 22 according to the embodiment of the present invention has excellent heat dissipation properties by molybdenum, tungsten, or the like, and can suppress light emission of a substrate at the time of bonding and emit light with high luminance. The light-emitting diode metal layer 21 according to the embodiment of the present invention is formed of steel, and the total number of layers of the second layer 22 and the second metal layer 22 of the second metal layer 22 is as follows. The crack 'can apply a high voltage and emit light with high brightness. [Method of Manufacturing Light Emitting Diode] Next, a method of carrying out the embodiment of the present invention will be described. In the light-emitting diode according to the embodiment of the present invention, the wafer-forming step includes forming a metal substrate and forming a metal-based compound semiconductor layer; and removing the chemical body 1 by etching, if In the second i-semiconductor layer 3', a high voltage can be applied to the heat dissipating body to form the body 1. If the substrate is formed by the first alloy, the body can be broken if the second structure is used. A method of manufacturing a photodiode of a substrate which is formed by using a first molybdenum and a first layer of molybdenum, and a first layer of three or more layers of a first gold layer to be bonded to each other is a compound semiconductor having a plurality of light-emitting layers on a metal layer plate.层层-25-201220382 The step of cutting the portion on the predetermined line. The wmw township is etched to remove the portion of the above-mentioned plurality of metal layers, the s, y, and the main y-layer on the aforementioned cutting line. And a step of severing the metal substrate by irradiating a portion of the metal layer with the removed portion along the arrow A in the plan view. First, the manufacturing steps of the metal + 』 ί 羁丞 plate will be described. <Manufacturing Step of Metal Substrate> In the case of the metal substrate 5, the first metal layer having a thermal expansion coefficient larger than that of the compound semiconductor layer 3 and the coefficient of thermal expansion are larger in the m 1 system. The second metal layer 'having a smaller thermal expansion coefficient than the material of the compound semiconductor layer 4 is formed by hot pressing. First, two first metal plates 21 and a substantially flat second metal plate 22 Cu are prepared as the first metal plate 21, and a metal plate 22 is used. . For example, Mo having a thickness of ΙΟμπι of 75 μm is used as the second second. 'As shown in FIG. 2A, the second and the upper gu are not inserted. The second metal plate 22 is inserted into the two first metal plates 21. Between and will overlap this configuration. Then, the above-mentioned ^^^ _ & is placed in a predetermined pressurizing device, and the first metal plate 21 is spotted at a high temperature. The person 1 and the second metal plate 22 apply a load in the direction of the arrow. Thereby, as shown in FIG. 2A, the i-th metal layer 21 is formed of a metal substrate 5 formed of three layers of CU (10 nm) in which the second metal layer 22 of Cu is M. The substrate 5 is, for example, a thermal expansion coefficient of 5-7 ppm/K, and a thermal conductivity of 220 W/m·κ. Further, after that, the size of the joint surface of the compound semiconductor layer 3 is matched.
進行切斷後,亦可斟矣&、社"& I 對表面進行鏡面加工。 -26- 201220382 卜亦可於金屬基板5之接合面5a形成用於使電 ’接觸穩定化的接合輔助膜。作為前述接合輔助膜,可 使用金、白金、鎳等。例如,利用鍍敷於金屬基板5之 接合面5a上形成2μηι之鎳膜後,於前述錄上形成 之金膜。 再#亦可代替前述接合輔助骐,形成晶片接合用 S η專的共ΒΒ金屬。藉此,可使接合步驟簡單化。 <化合物半導體層及第2電極形成步驟〉 百先,如圖3所示,使複數個磊晶層成長於半導體 基板11之一面Ua上而形成磊晶積層體17。 半導體基板1 1係磊晶積層體丨7形成用基板,為作 成例如一面11&從(100)面傾斜15。的面之摻雜有以之n 型GaAs單晶基板。如此一來,採用AmaInp層或 層作為磊晶積層體17時,可採用砷化鎵(GaAs)單晶基板 作為形成磊晶積層體1 7之基板。 作為化合物半導體層3之形成方法,可採用有機金 屬化學氣相沉積(Metal 〇rganic Chemical Vapor Deposition : MOCVD)法、分子束磊晶(M〇lecular Beam Epitaxy. MBE)法或液相轰晶(Liquid Phase Epitaxy: LPE) 法等。 本實施形態係採用將三曱基鋁((CH3)3Al)、三曱基鎵 ((CH3)3Ga)以及三曱基銦((CH3)3in)使用於ΙΠ族構成元 素之原料的減壓MOCVD法,而使各層磊晶成長。 此外,Mg的掺雜原料是使用雙環戊二烯鎂 ((CsH^Mg)。此外’ Si的摻雜原料是使用二矽烷(Si2H6) -27- 201220382 。此外,使用膦(PH3)或胂(AsHs)作為v族構成元素之原 料。 此外,p型GaP層13是在例如750。C下成長,其他 蠢晶成長層是在例如7 3 0。C下成長。 具體而言,首先,使由掺雜。之11型GaAs形成之 緩衝層12a成膜於半導體基板η的一面"a上。作為緩 衝層12a,採用例如摻雜Si之n型GaAs,將載體濃度設 成2xl〇18cm- 3 ’將層厚設成〇 2_。 其次,使由摻雜Si之n型(A1〇 5Ga〇 5)〇 5ln〇 5p形成 之触刻阻止層12b成膜於緩衝層} 2a上。 蝕刻阻止層1 2b係為在蝕刻除去半導體基板時防止 連包覆層及發光層都被蝕刻而使用的層,由例如摻雜以 之(Al〇.5GaQ.5)Q5ln()5p 形成,層厚採取 然後’使由摻雜Si之d GaAs形成之接觸層l2c 成膜於蝕刻阻止層1 2b上。 之後’使由摻雜S!之n型A1〇 5ln〇 5p形成之包覆層 10a成膜於接觸層i2c上。 再來,使由無摻雜之(AlQ 2Ga。8)(j 5lnQ 5p/ (AlG.7Ga().3)G5InQ5P2 1〇對積層構造形成之發光層2成 膜於包覆層l〇a上。 接著,使由摻雜⑽之?型A1〇5ln〇5p形成之包覆 層1 成膜於發光層2上。 ^後,使摻雜Mg之p型GaP層13成膜於包覆層 10b 上。 -28- 201220382 然後’對P型Gap層i 3之與半導體基板丨丨相反側 的面13a進行鏡面研磨至從表面起算ιμιη的深度,表面 之粗縫度設成例如〇. 1 8nm以内。 之後,如圖4所示,將第2電極(歐姆電極)8形成於 p型GaP層13之與半導體基板π相反側的面1^上。 第2電極8係例如層積〇.2μηι之厚度的Au於〇.4μηι之 厚度的AuBe上而形成。第2電極8係例如俯視時為 20μιηφ之圓形,以60μιη之間隔形成。 <反射構造體形成步驟> 再來,如圖5所示,以覆蓋ρ型GaP層13之與半導 體基板Π相反側的面13a及第2電極8的方式形成由 ITO膜形成之透明導電膜14。接著,施予4501之熱處 理而於第2電極8與透明導電膜1 4之間形成歐姆接觸。 隨後,如圖6所示,在使用蒸鑛法於透明導電膜! 4 之與晶積層體1 7相反側的面1 4 a ,使由銀(A g)合金形 成之膜成膜〇.7μηι後,使由鎳(Ni)/鈦(Ti)形成之膜成膜 0.5μπι ’使由金(Au)形成之膜成膜ΐμηι,而作成金屬膜 15 ° 藉此’形成由金屬膜15與透明導電膜14形成之反 射構造體4 » <金屬基板接合步驟> 然後’如圖7所示’將形成有反射構造體4與磊晶 積層體17之半導體基板11以及利用前述金屬基板之製 造步驟形成之金屬基板5搬入減壓裝置内,配置成反射 構造體4之接合面4a與金屬基板5之接合面5a相對疊 合0 -29- 201220382 之後’將前述減壓裝置内排氣至3 x ;[ 〇 _ 5pa後,在將 半導體基板11與金屬基板5加熱至40 01:之狀態下,施 加5〇〇kg之負重而將反射構造體4之接合面4a與金屬基 板5之接合面5a接合,而形成接合構造體18。 <半導體基板及緩衝層除去步驟> 再來’如圖8所示,利用氨系蝕刻劑從接合構造體 18選擇性除去半導體基板11以及緩衝層12a。 <银刻阻止層除去步驟> 接著’利用鹽酸系蝕刻劑選擇性除去蝕刻阻止層12b 。藉此’形成具有發光層2之化合物半導體層3。 〈第1電極形成步驟> 其後’利用真空蒸鍍法使電極用導電膜成膜於化合 物半導體層3之與反射構造體4相反側的面3a。作為前 述電極用導電膜,可採用例如由AuGe/Ni/Au形成之金屬 層構造。例如,使AuGe(Ge質量比12%)成膜〇15μηι之 厚度後,使Ni成膜0·05μη1之厚度,再使Au成膜1μπ1 之厚度。 然後,利用一般的光刻手段將前述電極用導電膜圖 案化成例如俯視上呈圓形’作為η型歐姆電 )6,製作發光二極體之晶圓。 使用在上述第1電極形成步驟之圖案化所使用的遮 j ’利用例如氨水(ΝΗ4〇Η)/過氧化氫(Η2〇2)/純水(Η2〇) 叱合液,將接觸層12c之中η型歐姆電極(第1電極)6下 面以外的部分加以蝕刻去除。藉此’ η型歐姆電極(第i 電極)6與接觸層i 2c之平面形狀係如圖i所示,實質上 成為相同形狀。 -30- 201220382 卜軏佳為之後以例如42〇°C進行3分鐘 而使η型歐姆電極(第1電極之各金屬合金化。 可使η型歐姆電極(第1電極)6低電阻化。 參照圖9Α〜!n or λ, tl 圖9C ’針對化合物半導體層以 金屬層之切斷預定線上的部分之除去步驟(正面 驟)進行說明。 <化合物半導體層除去步驟〉 首先,如圖9A所示,將阻劑塗布於發光二極 圓的化合物半導體層3上,利用光刻形成包含寬 δ〇μΓη之切斷預定線圖案的阻劑圖案η。 ”後利用蝕刻除去露出之化合物半導體層 疋線上的部分(參照符號3Α)。 去官择0物半導體層之除去寬度決定之後的金屬 «又因此,為了減低之後雷射切斷時所產生 半導體層之除去寬度較佳為比採用雷 街寬度還寬的寬产,., 切 又例如,從正面照射雷射而i| 。 月况,較佳為比採用雷射之切斷寬度寬大 二此外’從背面照射雷射而進行雷射切斷 為比採用雷射之切斷寬度寬大約2 — <正面金屬層除去步驟> 其次,如圖9ft π - , 圓β所不,將該晶圓浸潰於三氯化 蝕刻除去1TO層14與Ni層33之化合物半導 承去部=之下方的部分(參照符號14A、33a)。 接¥如圖9C所示,將晶圓浸潰於氣化氣系 P浸潰於將水加入例如2〜3%之氟化氫錄、〇〇卜 熱處理 藉此, 及正面 钱刻步 L體之晶 *度大約 之切斷 層之除 -之碎屑 ‘射之切 L行雷射 約 4 0 μ m >,較佳 鐵溶液 體層的 溶液, ,0.1% -31- 201220382 之氟化銨溶液,蝕刻除去Ti層34之上述除去部分之下 方的部分(參照符號34A)。 隨後,將晶圓浸潰於Au系蝕刻液,即浸潰於例如氰 系之蝕刻液’蝕刻除去Au層3 5、3 6之上述除去部分的 下方之部分(參照符號3 5 A、3 6 A)。 然後,將晶圓浸潰於對Ni、Cu之蝕刻速度比對Mo 之蝕刻速度快且可選擇性蝕刻Ni ' Cu之三氣化鐵溶液, 触刻除去Ni層37以及Cu層21A之上述除去部分的下 方之部分,直到露出Mo層22(參照符號37A、21 AA)。 利用以上步驟,可除去切斷預定線上之化合物半導 體層以及正面金屬層。 <背面金屬層除去步驟 >(背面蝕刻步驟) 參照圖1 〇A〜圖1 〇c針對背面金屬層之切斷預定線 上的部分之除去步驟進行說明。 首先,如圖1 0 A所示,將阻劑塗布於在發光二極體 之晶圓背面的金屬基板5上所形成的Au/Ni層上,利用 光刻形成包含例如寬度大約40μηι之切斷預定線圖案的 阻劑圖案4 1。 其次,如圖10Β所示,將晶圓浸潰於au系錄刻液 ’即浸潰於例如氰系之蝕刻液,蝕刻除去Au層42之上 述除去部分的下方之部分(符號42A所示之部分)。 接著,如圖10 C所示,將晶圓浸潰於對N丨、c u之 钱刻速度比對Mo之蝕刻速度快且可選擇性蝕刻Ni、Cu 之三氯化鐵溶液,蝕刻除去Ni層43以及Cu層21B之 上述除去部分的下方之部分,直到露出Mo層(符號43A 、21BB所示之部分)。 -32- 背 射 面 側 使 步 層 驟 依 驟 層 屬 除 步 昭 除 < 預 切 201220382 利用以上步驟,可除去切斷預定線上之背面Cu 化合物半導體層除去步驟、正面金屬層除去步 面金屬層除去步驟宜全部進行,但從正面進行雷 之情況,即使僅進行化合物半導體層除去步驟以 金屬層除去步驟,亦可減少雷射切斷時所產生的 之碎屑量。同樣地,從背面進行雷射照射之情況 僅進行化合物半導體層除去步驟以及背面金屬層 驟,亦可減少雷射切斷時所產生的背面側之碎屑 於進行所有的除去步驟之情況,可依化合物半 除去步驟、正面金屬層除去步驟、背面金屬層除 之順序進行,亦可先進行背面金屬層除去步驟, 序進行化合物半導體層除去步驟、正面金屬層除 。此外,亦可依化合物半導體層除去步驟、背面 除去步驟、正面金屬層除去步驟之順序進行。背 層除去步驟以及正面金屬層除去步驟亦可同時進 但是,從正面進行雷射照射之情況,依背面金 去步驟、化合物半導體層除去步驟、正面金屬層 驟之順序進行較為簡單。另一方面,從背面進行 射之情況,依化合物半導體層除去步驟、正面金 去步驟、背面金屬層除去步驟之順序進行較為簡 雷射切割步驟> 例如,在進行所有的除去步驟後,沿著背面之 定線上的除去金屬層之部分照射雷射,切入Mo 斷金屬基板。 層。 驟、 射照 及正 正面 ,即 除去 量。 導體 去步 之後 去步 金屬 面金 行。 屬層 除去 雷射 屬層 單。 切斷 層而 -33- 201220382 以利用雷射之切斷條件而言,可採取LED元件 步驟所使用之條件。 例士 "^採雷射波長設為355nm、放送速度 20mm/seC之條件來切斷金屬基板。 雷射切割之雷射掃描可分成複數次進行。這種 下,可改變雷射光束之寬度來進行切割。 金屬基板之雷射切斷面較佳為在之後鍍上Au。 <發光二極體燈> 針對具備為本發明之實施形態的發光二極體 二極體燈進行說明。 圖1 1係顯示本發明之實施形態的發光二極 一例的剖面模式圖。如圖11所示,本發明之實施 發光二極體燈 你具有封裝基板55、2個形成於 板55上之電極端子53、54、奴:讲认和上 ^ J 搭載於電極端子54 光一極體1以及由石々@ jjy Ο·、Ώ „ 荨开> 成且以覆蓋發光二極體 式形成的透明樹脂(密封樹脂)51。 發光二極體1 a u , i ”有化&物半導體層3、反射賴 、金屬基板5、第1雷托(〜杜 乐ί電極ό與第2電極8,立中 板5配置成與電極端 鸲子53連接。此外,第1電極 極端子54引綠技八 匕 、、’策接。。轭加於電極端子$ 3、54之 過第1電極6與第 電極8施加於化合物半導_ =半導體層3中所包含之發光層發光= 於正面方向f被取出。 封裝基板5 5的执[j日ρ 上、,Λ。 , J热阻抗设成ίο c /w以下。μ 使施加1 w以上之雷士认於, 稽 力於發光層2進行|纟, 散熱之功能,可進—牛摇古八丄 仃發先亦 V棱间發光二極體i之散熱 製造 設為 情況 發光 燈之 態的 裝基 之發 之方 :部4 屬基 與電 壓透 3, 之光 ,即 發才軍 -34- 201220382After cutting, you can also mirror the surface with 斟矣&,社"& I. -26-201220382 A bonding auxiliary film for stabilizing the electric contact can be formed on the joint surface 5a of the metal substrate 5. As the bonding auxiliary film, gold, platinum, nickel or the like can be used. For example, a gold film formed on the above-mentioned recording is formed by forming a nickel film of 2 μm on the bonding surface 5a of the metal substrate 5. Further, in place of the bonding assistant, the ytterbium metal for S η for wafer bonding may be formed. Thereby, the joining step can be simplified. <Compound semiconductor layer and second electrode forming step> As shown in Fig. 3, a plurality of epitaxial layers are grown on one surface Ua of the semiconductor substrate 11 to form an epitaxial layered body 17. The semiconductor substrate 1 1 is a substrate for forming an epitaxial layered body 7 and is formed to have an inclination of 15 from the (100) plane, for example, on one surface 11 & The surface is doped with an n-type GaAs single crystal substrate. As a result, when an AmaInp layer or a layer is used as the epitaxial layered body 17, a gallium arsenide (GaAs) single crystal substrate can be used as the substrate on which the epitaxial layered body 17 is formed. As a method of forming the compound semiconductor layer 3, a metal 化学rganic Chemical Vapor Deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a liquid phase pulverization (Liquid) may be employed. Phase Epitaxy: LPE) method. In this embodiment, decompression MOCVD using a material of a tritium aluminum ((CH3)3Al), a trisyl gallium ((CH3)3Ga), and a tridecyl indium ((CH3)3in) for a lanthanum constituent element is used. The law, and the layers of the epitaxial growth. Further, the doping raw material of Mg is made of dicyclopentadienyl magnesium ((CsH^Mg). In addition, the doping raw material of 'Si is dioxane (Si2H6) -27-201220382. In addition, phosphine (PH3) or hydrazine is used ( AsHs) is a raw material of the group V constituent element. Further, the p-type GaP layer 13 is grown at, for example, 750 ° C, and the other staggered growth layer is grown at, for example, 730 ° C. Specifically, first, by A buffer layer 12a formed of doped type 11 GaAs is formed on one side of the semiconductor substrate η. As the buffer layer 12a, for example, n-type GaAs doped with Si is used, and the carrier concentration is set to 2 x 10 〇 18 cm - 3 'The layer thickness is set to 〇2_. Next, the etch stop layer 12b formed of the Si-doped n-type (A1〇5Ga〇5) 〇5ln〇5p is formed on the buffer layer} 2a. The etch stop layer 1 2b is a layer which is used to prevent both the cladding layer and the light-emitting layer from being etched when the semiconductor substrate is removed by etching, and is formed, for example, by doping (Al〇.5GaQ.5) Q5ln()5p, and the layer thickness is taken then ' A contact layer 12c formed of doped Si-doped GaAs is formed on the etch stop layer 12b. After that, the n-type A1〇5ln〇 by doping S! The cladding layer 10a formed of 5p is formed on the contact layer i2c. Further, the undoped (AlQ 2Ga. 8) (j 5lnQ 5p / (AlG.7Ga().3) G5InQ5P2 1 〇 layered structure The formed light-emitting layer 2 is formed on the cladding layer 10a. Next, a cladding layer 1 formed of doped (10) type A1〇5ln〇5p is formed on the light-emitting layer 2. The p-type GaP layer 13 of the impurity Mg is formed on the cladding layer 10b. -28- 201220382 Then, the surface 13a of the P-type Gap layer i 3 opposite to the semiconductor substrate 丨丨 is mirror-polished to be ιμιη from the surface. The depth and the roughness of the surface are set to, for example, 〇18 nm. Thereafter, as shown in FIG. 4, the second electrode (ohmic electrode) 8 is formed on the surface 1 of the p-type GaP layer 13 opposite to the semiconductor substrate π. The second electrode 8 is formed, for example, by depositing Au having a thickness of 2 μm, which is formed on AuBe having a thickness of 4 μm, and the second electrode 8 is formed into a circular shape of 20 μm in a plan view at intervals of 60 μm. <Reflecting Structure Forming Step> Next, as shown in Fig. 5, the surface of the p-type GaP layer 13 opposite to the semiconductor substrate 的 surface 13a and the second electrode 8 is covered. A transparent conductive film 14 formed of an ITO film is formed in a pattern. Then, a heat treatment of 4501 is applied to form an ohmic contact between the second electrode 8 and the transparent conductive film 14. Subsequently, as shown in Fig. 6, a steaming method is used. In transparent conductive film! 4, the surface of the opposite side of the crystal layer body 17 is 1 4 a , and the film formed of the silver (A g) alloy is formed into a film of 〇.7μηι, and then a film formed of nickel (Ni)/titanium (Ti) is formed into a film. 0.5 μπι 'film formed of gold (Au) is formed into a film ΐμηι, and a metal film 15° is formed to thereby form a reflective structure 4 formed of the metal film 15 and the transparent conductive film 14 » <Metal substrate bonding step> Then, as shown in FIG. 7, the semiconductor substrate 11 on which the reflective structure 4 and the epitaxial layered body 17 are formed and the metal substrate 5 formed by the manufacturing process of the above-described metal substrate are carried into a decompression device, and the reflective structure 4 is disposed. After the bonding surface 4a and the bonding surface 5a of the metal substrate 5 are overlapped with each other 0 -29-201220382, 'the inside of the decompression device is exhausted to 3 x ; [ 〇 _ 5pa, after heating the semiconductor substrate 11 and the metal substrate 5 In the state of 40 01:, a load of 5 〇〇 kg is applied, and the joint surface 4a of the reflection structure 4 is joined to the joint surface 5a of the metal substrate 5 to form the joint structure 18. <Semiconductor Substrate and Buffer Layer Removal Step> As shown in Fig. 8, the semiconductor substrate 11 and the buffer layer 12a are selectively removed from the bonded structure 18 by an ammonia-based etchant. <Silver engraving preventing layer removing step> Next, the etching stopper layer 12b is selectively removed by a hydrochloric acid-based etchant. Thereby, the compound semiconductor layer 3 having the light-emitting layer 2 is formed. <First electrode forming step> Thereafter, a conductive film for an electrode is formed on the surface 3a of the compound semiconductor layer 3 opposite to the reflecting structure 4 by a vacuum deposition method. As the conductive film for an electrode, for example, a metal layer structure formed of AuGe/Ni/Au can be used. For example, when AuGe (Ge mass ratio: 12%) is formed into a film thickness of 15 μm, Ni is formed into a film having a thickness of 0·05 μη1, and Au is formed into a film having a thickness of 1 μπ1. Then, the conductive film for an electrode is patterned into a circular shape as a n-type ohmic electric power in a plan view by a general photolithography method to produce a wafer of a light-emitting diode. The contact layer 12c is used by using, for example, ammonia water (ΝΗ4〇Η)/hydrogen peroxide (Η2〇2)/pure water (Η2〇) chelating solution used in the patterning of the first electrode forming step. A portion other than the lower surface of the n-type ohmic electrode (first electrode) 6 is removed by etching. Thereby, the planar shape of the 'n-type ohmic electrode (i-electrode) 6 and the contact layer i 2c is substantially the same as shown in Fig. i. -30-201220382 After the enthalpy is carried out for 3 minutes, for example, at 42 ° C for 3 minutes, the n-type ohmic electrode (each metal of the first electrode is alloyed. The n-type ohmic electrode (first electrode) 6 can be made low-resistance. Referring to Fig. 9A to !n or λ, tl, Fig. 9C' is a description of the removal step (front step) of the portion on the line to cut of the metal layer of the compound semiconductor layer. <Compound semiconductor layer removal step> First, as shown in Fig. 9A As shown, a resist is applied onto the compound semiconductor layer 3 of the light-emitting diode, and a resist pattern η including a predetermined line pattern of the cut of a wide δ〇μΓη is formed by photolithography. The exposed compound semiconductor layer is removed by etching. The part on the 疋 line (refer to the symbol 3Α). The removal width of the semiconductor layer is determined by the removal width. Therefore, in order to reduce the removal width of the semiconductor layer generated after laser cutting, it is better to use the street. Wide width, wide, and cut, for example, from the front of the laser and i|. The monthly condition is preferably wider than the cutting width of the laser. In addition, the laser is irradiated from the back. Broken as The cutting width using the laser is about 2 - < front metal layer removing step > Next, as shown in Fig. 9 ft π - , the circle β is not, the wafer is immersed in the trichloride etching to remove the 1TO layer 14 and Ni The portion of the layer 33 is semiconductive under the portion = (reference numerals 14A, 33a). As shown in Fig. 9C, the wafer is immersed in the gasification gas system P and immersed in water, for example, 2~ 3% of the hydrogen fluoride recording, 〇〇 热处理 heat treatment, and the front face of the L-shaped crystal * degree of the cutting layer removed - the debris 'shooting cut L line laser about 40 μ m >, Preferably, the solution of the iron solution layer, 0.1% -31 - 201220382 ammonium fluoride solution, is etched away from the portion of the Ti layer 34 below the removed portion (see reference numeral 34A). Subsequently, the wafer is immersed in the Au system. The etching liquid, that is, the portion which is immersed in, for example, a cyanide-based etching solution, is removed from the removed portion of the Au layer 35, 36 (refer to reference numeral 3 5 A, 3 6 A). Then, the wafer is immersed. The etching rate of Ni and Cu is faster than that of Mo, and the three-iron solution of Ni'Cu can be selectively etched. The lower portion of the Ni layer 37 and the Cu layer 21A are removed until the Mo layer 22 is exposed (reference numerals 37A and 21 AA). By the above procedure, the compound semiconductor layer and the front metal layer on the line to be cut can be removed. (Back surface metal layer removing step) (Back surface etching step) Referring to FIG. 1A to FIG. 1C, the removal step of the portion on the line to cut of the back metal layer will be described. First, as shown in FIG. A resist is applied onto the Au/Ni layer formed on the metal substrate 5 on the back surface of the wafer of the light-emitting diode, and a resist pattern 41 including, for example, a planned cutting line pattern having a width of about 40 μm is formed by photolithography. Next, as shown in FIG. 10A, the wafer is immersed in the au-based recording liquid, that is, immersed in, for example, a cyanide-based etching liquid, and the portion below the removed portion of the Au layer 42 is removed by etching (the symbol 42A is shown). section). Next, as shown in FIG. 10C, the wafer is immersed in a solution of N, cu, which is faster than the etching speed of Mo, and selectively etches the ferric chloride solution of Ni and Cu, and etches away the Ni layer. 43 and a portion of the Cu layer 21B below the removed portion until the Mo layer (the portion indicated by the symbols 43A and 21BB) is exposed. -32- Back surface side step layer step by step layer step by step < precut 201220382 With the above steps, the back side Cu compound semiconductor layer removal step and front metal layer removal step metal removal step can be removed It is preferable that the layer removing step be carried out entirely, but in the case where the laser is applied from the front side, even if only the compound semiconductor layer removing step is performed in the metal layer removing step, the amount of debris generated at the time of laser cutting can be reduced. Similarly, when the laser irradiation is performed from the back surface, only the compound semiconductor layer removing step and the back metal layer step are performed, and the debris on the back side generated at the time of laser cutting can be reduced, and all the removing steps can be performed. The compound semiconductor removal step, the front metal layer removal step, and the back metal layer removal may be performed in the order of the back metal layer removal step, and the compound semiconductor layer removal step and the front metal layer removal may be sequentially performed. Further, it may be carried out in the order of the compound semiconductor layer removing step, the back surface removing step, and the front metal layer removing step. The back layer removing step and the front metal layer removing step may be simultaneously performed. However, in the case of performing laser irradiation from the front side, the steps of the back gold removing step, the compound semiconductor layer removing step, and the front metal layer step are relatively simple. On the other hand, in the case of shooting from the back surface, the thin laser cutting step is performed in the order of the compound semiconductor layer removing step, the front gold removing step, and the back metal layer removing step. For example, after performing all the removing steps, The portion of the back line on which the metal layer is removed is irradiated with a laser and cut into a Mo-cut metal substrate. Floor. The shot, the shot and the front side are removed. After the conductor goes back, go to the metal surface gold line. The genus layer removes the laser genus layer. Cutting the layer -33- 201220382 In order to utilize the cutting condition of the laser, the conditions used for the LED element step can be taken. The ruler "^ uses a laser with a wavelength of 355 nm and a delivery speed of 20 mm/seC to cut the metal substrate. Laser scanning of laser cutting can be performed in multiples. In this case, the width of the laser beam can be changed to perform the cutting. The laser cut surface of the metal substrate is preferably plated with Au afterwards. <Light Emitting Diode Lamp> A light-emitting diode diode lamp according to an embodiment of the present invention will be described. Fig. 1 is a schematic cross-sectional view showing an example of a light-emitting diode according to an embodiment of the present invention. As shown in FIG. 11, the light-emitting diode lamp of the present invention has a package substrate 55, two electrode terminals 53 and 54 formed on the board 55, and a slave: the speaker and the upper surface are mounted on the electrode terminal 54. The body 1 and a transparent resin (sealing resin) 51 formed of a shovel @ jjy Ο·, Ώ „ & 且 覆盖 覆盖 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The layer 3, the reflective substrate, the metal substrate 5, the first Leito (the Dulle ό electrode ό and the second electrode 8, the standing plate 5 is disposed to be connected to the electrode terminal scorpion 53. Further, the first electrode terminal 54 is cited The green yoke, the 'connection'. The yoke is applied to the electrode terminals $3, 54 through the first electrode 6 and the first electrode 8 is applied to the compound semiconductor _ = the luminescent layer included in the semiconductor layer 3 emits light = on the front side The direction f is taken out. The encapsulation of the package substrate 5 5 [j ρ 上 , , Λ . , J thermal impedance is set to ίο c / w or less. μ makes it possible to apply 1 Hz or more of the NVC, and the illuminating layer 2 Performing | 纟, heat-dissipating function, can be entered - the cow shakes the ancient gossip hair first and also the V-edge light-emitting diode i The installed base of hair state lamp side: an optical unit 4 and the base metal 3 through voltage,, i.e. sent only the military -34-201220382
此外’封裝基板之形狀不限於此,亦可採用其他形 狀之封袭基板。即使係採用其他形狀之封裝基板之LED 燈製品’亦可充分確保散熱性所以可作成高輸出、高 壳度的發光二極體燈。 [實施例] 首先’製作依序形成有下列構成的晶圓:發光層’ 其由(A1〇 2Ga〇.8)〇.5ln0.5P/(Al0,7Ga0.3)0.5In0.5P 之 10 對的 積層構造形成且厚度為4μπι ;厚度2μη1的GaP層;反射 構造體’其包含0 7μηι的Ag層、0.5μπι的Ni/Ti障壁層 、Ιμιη的Au層;金屬基板,其包含ι〇μηι的&層/75μπι 的Mo層/ΐ〇μιη的Cu層之三層構造;以及形成於該金屬 基板兩側之2μιη的Ni層、1μιη的Au層。 對於此晶圓之正面,將金屬基板之正面側以蝕刻方 式去除至Cu層為止’形成寬度60μιη之溝。此外,對於 背面’利用#刻除去金屬基板之背面側的Cu層,形成寬 度40μηι之溝。 然後’採雷射波長355nm、放送速度20mm/sec之條 件’攸晶圓之正面將金屬基板之M〇層進行雷射切斷。 利用雷射顯微鏡觀察以此方式製作之晶片狀的發光 二極體。 碎屑雖附著於金屬基板之正面側的Cu層之側面以 及背面側的Cu層之側面,但並未觀察到附著於正面側的 Cu層以及背面側的Cu層之露出的表面之碎屑。 [產業上之可利用性] •35- 201220382 本勒明尤其在利用將金屬基板作 體之製造方法、切斷方法以及發光二 有可利用性。 【圖式簡%說明】 圖1係顯示本發明之實施形態的 的剖面圖。 圖2A係顯示本發明之實施形態 用之金屬基板的製造少驟之一例的步 圖2B係顯示本發明之實施形態 用之金屬基板的製造夕癖之一例的步 圖3係顯示本發明之實施形態的 方法之一例的步驟剎面圖。 Λ 之實施形悲的 圖4係顯示本發明 方法之一例的步驟剎面圖。 a 之實施形態的 圖5係顯示本發明 方法之一例的步驟剎面圖。 0 « a日之實施形態的 圖6係顯示本發明 方法之/例的步驟剖面圖。 « B曰之實施形態的 圖7係顯示本發明之’ 方法之一例的步驟剎面圖。 β < afl之實施形態的 圖8係顯示本發明Further, the shape of the package substrate is not limited thereto, and other shapes of the sealed substrate may be employed. Even in the case of an LED lamp product using a package substrate of another shape, it is possible to sufficiently ensure heat dissipation, so that a high-output, high-shell LED light can be produced. [Examples] First, a wafer having the following composition was formed in sequence: a light-emitting layer of 10 pairs of (A1〇2Ga〇.8)〇5ln0.5P/(Al0,7Ga0.3)0.5In0.5P a GaP layer having a thickness of 4 μm; a thickness of 2 μη1; a reflective structure comprising an Ag layer of 0 7 μm, a Ni/Ti barrier layer of 0.5 μm, an Au layer of Ιμηη, and a metal substrate comprising ι〇μηι a three-layer structure of a Cu layer of a layer/75 μm Mo layer/ΐ〇μιη; and a 2 μη Ni layer formed on both sides of the metal substrate, and a 1 μηη Au layer. On the front side of the wafer, the front side of the metal substrate was removed by etching to the Cu layer to form a groove having a width of 60 μm. Further, on the back surface, the Cu layer on the back side of the metal substrate was removed by engraving, and a groove having a width of 40 μm was formed. Then, the conditions of the laser light source wavelength of 355 nm and the discharge speed of 20 mm/sec were used to perform laser cutting of the M layer of the metal substrate on the front side of the wafer. A wafer-shaped light-emitting diode fabricated in this manner was observed using a laser microscope. Although the chips adhered to the side faces of the Cu layer on the front side of the metal substrate and the side faces of the Cu layer on the back side, no debris was observed on the exposed surface of the Cu layer on the front side and the exposed Cu layer on the back side. [Industrial Applicability] • 35- 201220382 Benlem is particularly useful in the production method, cutting method, and light-emitting method of using a metal substrate as a body. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an embodiment of the present invention. 2A is a step showing an example of manufacturing a metal substrate for use in an embodiment of the present invention. FIG. 2B is a view showing an example of manufacturing a metal substrate according to an embodiment of the present invention. FIG. 3 is a view showing the implementation of the present invention. A step-by-step diagram of an example of a method of morphology.实施 Implementation of the sorrow Figure 4 is a step view showing a step of an example of the method of the present invention. Fig. 5 of the embodiment of a is a step view showing a step of an example of the method of the present invention. Fig. 6 is a cross-sectional view showing the steps of the method of the present invention. Fig. 7 of the embodiment of the present invention is a step view showing a step of an example of the method of the present invention. Figure 8 of the embodiment of β < afl shows the invention
方法之一例的步驟剎面圖。 A , U洛明之實施形態1 圖9A係顯示本毛 造方法之一例的步鄉剖面圖 為基板之發光二極 極體之產業方面具 發光二極體之一例 的發光二極體所使 驟剖面圖。 的發光二極體所使 驟剖面圖。 發光二極體之製造 發光二極體之製造 發光二極體之製造 發光二極體之製造 發光二極體之製造 發光二極體之製造 的發光二極體之製 -36- 201220382 圖9B係顯示本發明之實施形態的發光二極體之製 造方法之一例的步驟剖面圖。 圖9C係顯示本發明之實施形態的發光二極體之製 造方法之一例的步驟剖面圖。 圖1 0 A係顯示本發明之實施形態的發光二極體之·製 造方法之一例的步驟剖面圖。 圖1 0B係顯示本發明之實施形態的發光二極體之製 造方法之一例的步驟剖面圖。 圖1 0C係顯示本發明之實施形態的發光二極體之製 造方法之一例的步驟剖面圖。 圖1 1係顯示具備本發明之實施形態的發光二極體 之發光二極體燈之一例的剖面圖。 【主要元件符號說明】 1 發 光 -— 極 體(發光二極體晶片) 2 發 光 層 3 化 合 物 半 導體層 4 反 射 構 造 體 5 金 屬 基 板 14 透 明 導 電 膜 15 金 屬 接 合 膜 21(21 A ' 21B) 第 1 金 屬 層 22 第 2 金 屬 層 50 發 光 — 極 體燈 55 金 屬 基 板 -37-A step-by-step diagram of an example of a method. A, U Luoming's Embodiment 1 FIG. 9A is a cross-sectional view showing a light-emitting diode of an example of a light-emitting diode of an industrial aspect of a light-emitting diode of a substrate. . A cross-sectional view of the light-emitting diode. Manufacture of light-emitting diodes, manufacture of light-emitting diodes, manufacture of light-emitting diodes, manufacture of light-emitting diodes, manufacture of light-emitting diodes, manufacture of light-emitting diodes, light-emitting diodes -36-201220382 Fig. 9B A cross-sectional view showing a step of an example of a method for producing a light-emitting diode according to an embodiment of the present invention. Fig. 9C is a cross-sectional view showing the steps of an example of a method of manufacturing a light-emitting diode according to an embodiment of the present invention. Fig. 10 A is a cross-sectional view showing a step of an example of a method of manufacturing a light-emitting diode according to an embodiment of the present invention. Fig. 10B is a cross-sectional view showing the steps of an example of a method of manufacturing a light-emitting diode according to an embodiment of the present invention. Fig. 10C is a cross-sectional view showing the steps of an example of a method for producing a light-emitting diode according to an embodiment of the present invention. Fig. 1 is a cross-sectional view showing an example of a light-emitting diode lamp including a light-emitting diode according to an embodiment of the present invention. [Description of main component symbols] 1 illuminating--polar body (light-emitting diode wafer) 2 luminescent layer 3 compound semiconductor layer 4 reflective structure 5 metal substrate 14 transparent conductive film 15 metal bonding film 21 (21 A ' 21B) 1 Metal layer 22 second metal layer 50 light-emitting body lamp 55 metal substrate-37-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010156721A JP5605032B2 (en) | 2010-07-09 | 2010-07-09 | Light emitting diode manufacturing method, cutting method, and light emitting diode |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201220382A true TW201220382A (en) | 2012-05-16 |
TWI464797B TWI464797B (en) | 2014-12-11 |
Family
ID=45441163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100123974A TWI464797B (en) | 2010-07-09 | 2011-07-07 | Process for producing light emitting diode, process for cutting light emitting diode and light emitting diode |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5605032B2 (en) |
TW (1) | TWI464797B (en) |
WO (1) | WO2012005184A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102275441B1 (en) * | 2018-01-08 | 2021-07-13 | 인겐텍 코포레이션 | Vertical type light emitting diode die and method for fabricating the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001144126A (en) * | 1999-11-12 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method |
JP2004207508A (en) * | 2002-12-25 | 2004-07-22 | Shin Etsu Handotai Co Ltd | Light emitting element and its manufacturing method thereof |
JP4982948B2 (en) * | 2004-08-19 | 2012-07-25 | 富士電機株式会社 | Manufacturing method of semiconductor device |
JP2007081010A (en) * | 2005-09-13 | 2007-03-29 | Matsushita Electric Ind Co Ltd | Light-emitting device |
JP3862737B1 (en) * | 2005-10-18 | 2006-12-27 | 栄樹 津島 | Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material |
US8242387B2 (en) * | 2006-07-28 | 2012-08-14 | Kyocera Corporation | Electronic component storing package and electronic apparatus |
US20080290349A1 (en) * | 2007-05-24 | 2008-11-27 | Hitachi Cable, Ltd. | Compound semiconductor wafer, light emitting diode and manufacturing method thereof |
JP2011082362A (en) * | 2009-10-07 | 2011-04-21 | Showa Denko Kk | Metal substrate for light-emitting diode, light-emitting diode, and method of manufacturing the same |
-
2010
- 2010-07-09 JP JP2010156721A patent/JP5605032B2/en active Active
-
2011
- 2011-07-01 WO PCT/JP2011/065175 patent/WO2012005184A1/en active Application Filing
- 2011-07-07 TW TW100123974A patent/TWI464797B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2012019136A (en) | 2012-01-26 |
WO2012005184A1 (en) | 2012-01-12 |
JP5605032B2 (en) | 2014-10-15 |
TWI464797B (en) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI600182B (en) | Light emitting diode and production method thereof | |
TWI284431B (en) | Thin gallium nitride light emitting diode device | |
TWI305960B (en) | Light emitting diode and method manufacturing the same | |
JP5148647B2 (en) | Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device | |
WO2006082687A1 (en) | GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE | |
JP2008091862A (en) | Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device | |
TW201044632A (en) | Light emitting diode and method for producing the same, and lamp | |
JP2010192701A (en) | Light emitting diode, light emitting diode lamp, and method of manufacturing the light emitting diode | |
JP2007158133A (en) | Method of manufacturing group iii nitride-based compound semiconductor element | |
JP5557649B2 (en) | Light emitting diode, light emitting diode lamp, and lighting device | |
TW201034240A (en) | Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element | |
TW201212283A (en) | Light-emitting diode, light-emitting diode lamp, and lighting equipment | |
KR101499954B1 (en) | fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods | |
TWI489651B (en) | Process for producing light emitting diode and process for cutting light emitting diode | |
TWI414076B (en) | Manufacturing method of light-emitting element and light-emitting element | |
TW201220382A (en) | Process for producing light emitting diode, process for cutting light emitting diode and light emitting diode | |
KR101526566B1 (en) | fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods | |
TW200822389A (en) | Light emitting diode and method manufacturing the same | |
JP5520638B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP2012222033A (en) | Light-emitting diode manufacturing method and cutting method and light-emitting diode | |
JP4918245B2 (en) | Light emitting diode and manufacturing method thereof | |
KR101499953B1 (en) | fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods | |
JP2004235506A (en) | Light emitting element and its fabricating process | |
JP5438806B2 (en) | Semiconductor light emitting device and semiconductor light emitting device | |
KR20090115903A (en) | Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods |