201225216 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種具有多閘極(multi-gate)電晶體元件之 製作方法’尤指一種具有不同晶面定向(crystal plane orientation)之多閘極電晶體元件之製作方法。 【先前技術】 半導體產業持續研發之重要目標,係在於增加半導體元 件的效能,以及減少半導體元件之功率消耗,如何持續增加 半導體元件效能仍為半導體業者所欲解決的問題。 【發明内容】 因此,本發明之一目的係在於提供一將具有立體通道的η 型金軋半導體(n-channel metal-oxide-semiconductor,nMOS) 電晶體元件與立體通道的pMOS電晶體成長於可提升載子 遷移率的晶面定向之多閘極電晶體元件及其製作方法。 根據本發明所提供之申請專利範圍,係提供一種多閘極 電晶體兀件之製作方法。該方法首先提供一半導體基底,該 半導體基底上形成有一用以定義至少一第一鰭片結構之第 一圖案化硬遮罩。隨後於該半導體基底上形成該第一鰭片結 構(fin),且該第一鰭片結構具有一第一晶面定向。形成該第 201225216 一鰭片結構之後,係於該半導體基底上形成一用以定義至少 一第二鰭片結構之第二圖案化硬遮罩,隨後於該半導體基底 形成S亥第二鰭片結構,該第二鰭片結構具有一第二晶面定 向’且該第二晶面定向不同於該第—晶面定向。形成該第二 鰭片結構之後’係於該第— 片結構與該第二縛片結構上形 成-閘極介電層與-閘極層’該閘極介電層與該閘極層覆蓋 部分該m 結構與部分該第H结構。最後分別於該 第-韓片結構内形成-第—源極/汲極與於該第二縛片結構 内形成一第二源極/汲極。 根據本發明所提供之中請專利範圍,更提供一種多問極 互補式金氧半導體㈣爪咖刪町助^⑽叫元件該多 閘極CMOS το件包含有—半導體基底、—設置於該半導體基 底上且具有-第-晶面定向之第—歸片結構、—設置於該半 導體基底上且具有一第二晶面定向第二鰭片結構、以及設置 於該半導體基底上且覆蓋部分該第一轉片結構與部分該第 二鰭片結構之一閘極層與一閘極介電層,其中該第一晶面定 向與該第二晶面定向不同。 ^根據本發明所提供之Μ極電㈣元件及其製作方法, 係於半導體基底上分別形成具有第一晶面定向的第一轉片 :構與具有第二晶面定向的第二趙片結構,而第一晶面定向 14第二晶面定向可為⑽)與⑴0)定向。(110)定向與⑽)定 201225216 向則可分別提升pMOS多閘極電晶體元件與11厘〇8多閘極電 晶體元件的載子遷移率,因此本發明所提供之多閘極電晶體 元件之製作方法係可k供具南效率的CMOS元件。 【實施方式】 凊參閱第1圖至第3圖與第5圖至第8圖,第1圖至第3 圖與第5圖至第8圖係本發明所提供之多閘極電晶體元件之 製作方法之一第一較佳實施例之示意圖。如第1圖所示,本 較佳實施例首先提供一半導體基底2〇〇,半導體基底2〇〇可 包含一矽覆絕緣(41丨(:011_011_丨11阳1咖1>,8〇1)基底。如熟習該 技藝之人士所知,SOI基底由下而上可依序包含一矽基底 202、一底部氧化(bottom oxide,BOX)層204、以及一形成 於底部氧化層204上的半導體層,如一矽層206,而此一石夕 層206具有一晶面定向為(100)。然而為了提供較好的散熱與 接地效果,並有助於降低成本與抑制雜訊,本較佳實施例提 供之半導體基底200亦可包含一塊石夕(bulk silicon)基底。如 苐1圖所示’半導體基底200上係形成有一圖案化硬遮罩 210a,圖案化遮罩21〇a係用以定義一多閘極電晶體元件之 賴片(Fin)部分。 請繼續參閱第1圖。形成圖案化硬遮罩21〇a後,係進行 一第一蝕刻製程’透過圖案化硬遮罩21〇a蝕刻半導體基底 200的矽層206 ’形成一鰭片結構(fin)212a。且如第1圖所 201225216 不,鰭片結構212a具有一對相對的側壁214a。值得注意的 疋,在本較佳實施例中第一蝕刻製程係為一乾蝕刻(心乂 ejchmg)製程’乾㈣製程係包含六氟化硫肌)和/或三氣化 氮(NF3)。乾蝕刻製程非等向性地(anis〇tr〇pic)蝕刻矽層, 因此縛片結構212a的側壁214a係垂直於半導體基底2〇〇 ; 換句活忒,鰭片結構2i2a之截面係具有一矩形。更重要的 是,在乾蝕刻製程之後,鰭片結構212a的側壁2Ma具有一 第一晶面定向,而在本較佳實施例中,第一晶面定向係為 (100) 〇 請參閱第2圖與第3圖。接下來係於半導體基底200上 形成-圖案化硬遮罩210b,用以定義一多閘極電晶體元件之 耆片(Fin)#刀。如第2圖與·第3圖所示,圖案化硬遮罩21〇a 與圖案化硬遮罩21 〇b係共平面(co_planar)。隨後進行一第二 蝕刻製程,透過圖案化硬遮罩21〇b|虫刻半導體基底綱,形 成另一轉片結構2 i 2 b。熟習該技藝之人士應知,為保護歸片 結構2Ua的輪廟免受第二㈣製程的影響,本較佳實施例 更於轉片結構212a上形成—保護層,例如用以定義圖案化 硬遮罩210b的光阻層,但不限於此。值得注意的是,在本 較佳實施例中第二姓刻製程包含一祕刻㈣咖㈣製 私。舉例來說,本較佳實_之濕⑽製程 ⑽綱溶液,且氫氧化銨與水(_)之比例為丨:7其中 X小於250。另外,本較佳實施例之濕钱刻製程另可包含氫 201225216 氧化四曱基敍(tetramethylammonium hydroxide,TMAH)溶 液,其中ΤΜΑΗ的濃度為小於2.5%。且本較佳實施例中, 濕蝕刻製程之實施溫度係介於20-6(TC。濕蝕刻製程係等向 性地(isotropic)蝕刻矽層206,因此鰭片結構212b的側壁214b 係不垂直於半導體基底2〇〇。詳細地說,鰭片結構212b之截 面係可如第2圖所示,呈一梯形形成於半導體基底200上; 或如第3圖所示,呈一倒梯形形成於半導體基底200上。更 重要的是,在濕蝕刻製程之後,不論鰭片結構212b的截面 為梯形或倒梯形,鰭片結構212b的側壁214b皆具有一第二 晶面定向’且第二晶面定向不同於鰭片結構212a的側壁214a 的第一晶面定向,在本較佳實施例中,第二晶面定向係為 (110)。 另外’在本較佳實施例中,第二蝕刻製程較佳包含一二 步驟(two-stepped)蝕刻製程,首先利用包含SF6和/或NF3的 乾蝕刻製程非等向性地蝕刻矽層206而形成鰭片結構 212b,此時鰭片結構212b的側壁係垂直於半導體基底200。 接下來利用包含氫氧化銨溶液或TMAH溶液的濕蝕刻製程 於20-60°C等向性地蝕刻垂直於半導體基底200的鰭片結構 212b的側壁’而獲得如第3圖或第4圖所示的,傾斜於半導 體基底200表面的側壁214b。如前所述,在濕钱刻製程之 饺,不論鳍片結構212b的截面為梯形或倒梯形’轉片結構 212b的側壁214b皆具有一第二晶面定向,且第二晶面定向 201225216 ’在本較 不=轉片結構212a的側壁214a的第—晶面定向 佳貫把例中,第二晶面定向係為⑴〇)。 請參閱第4圖,第4圖係本發明所提供之多閘極電晶體 :件之$1作方法之n佳實施例之示意圖。在本發明的 一第二較佳實施例中,第-钱刻製程可為上述單—濕钱刻製 私程亦可以是如上所述之依序進行乾敍刻盘渴 蝕刻的二步驟蝕刻製程。第一蝕刻製程係透過圖案化硬遮罩 夕層206’而以於半導體基底200表面先形成截面 為梯形或倒梯形(如第3圖所示)的韓片結構簡。且如前所 述’在祕刻製程之後,不論則結構⑽的截面為梯形 或倒梯形’鰭片結構212b的側壁2Mb皆具有—晶面定向, 而此晶面定向在本較佳實施例中為(11 〇)。 而第二較佳實施例中’第二關製程則為一乾敍刻製201225216 VI. Description of the Invention: [Technical Field] The present invention relates to a method for fabricating a multi-gate transistor element, particularly a gate with different crystal plane orientations. A method of fabricating a polar crystal element. [Prior Art] The important goal of continuous research and development in the semiconductor industry is to increase the efficiency of semiconductor components and reduce the power consumption of semiconductor components. How to continuously increase the performance of semiconductor components remains a problem that semiconductor manufacturers are trying to solve. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a pMOS transistor having a n-channel metal-oxide-semiconductor (nMOS) transistor element having a stereo channel and a stereo channel. A multi-gate transistor element for crystal plane orientation that enhances carrier mobility and a method of fabricating the same. According to the patent application scope provided by the present invention, a method of fabricating a multi-gate transistor element is provided. The method first provides a semiconductor substrate having a first patterned hard mask defining at least one first fin structure. The first fin structure is then formed on the semiconductor substrate, and the first fin structure has a first crystal plane orientation. After forming the second fin structure of the 201225216, a second patterned hard mask for defining at least one second fin structure is formed on the semiconductor substrate, and then a second fin structure is formed on the semiconductor substrate. The second fin structure has a second crystal plane orientation 'and the second crystal plane orientation is different from the first crystal plane orientation. Forming the second fin structure to form a gate dielectric layer and a gate layer on the first die structure and the second die structure. The gate dielectric layer and the gate layer cover portion The m structure and a portion of the Hth structure. Finally, a -first source/drain is formed in the first-Korean structure and a second source/drain is formed in the second die structure. According to the scope of the patent application provided by the present invention, a multi-question complementary metal oxide semiconductor (4) is provided, and the multi-gate CMOS device includes a semiconductor substrate, and is disposed on the semiconductor. a first-to-slice structure having a -plane-plane orientation on the substrate, disposed on the semiconductor substrate and having a second crystal plane oriented second fin structure, and disposed on the semiconductor substrate and covering the portion a rotor structure and a gate layer and a gate dielectric layer of the second fin structure, wherein the first crystal plane orientation is different from the second crystal plane orientation. According to the present invention, a terrestrial electric (four) component and a method of fabricating the same, are respectively formed on a semiconductor substrate to form a first rotor having a first crystal plane orientation: a second Zhao structure having a second crystal plane orientation And the second crystal plane orientation of the first crystal plane orientation 14 may be (10)) and (1) 0) oriented. (110) Orientation and (10)) 201225216 direction can respectively improve the carrier mobility of pMOS multi-gate transistor elements and 11 centistokes and 8 gates of transistor elements, so the multi-gate transistor element provided by the present invention The manufacturing method is to provide a CMOS component with south efficiency. [Embodiment] 第 FIGS. 1 to 3 and 5 to 8 , FIGS. 1 to 3 and 5 to 8 are multi-gate transistor elements provided by the present invention. A schematic diagram of one of the first preferred embodiments of the fabrication method. As shown in FIG. 1, the preferred embodiment first provides a semiconductor substrate 2, and the semiconductor substrate 2 can include a germanium insulation (41丨(:011_011_丨11阳1咖1>, 8〇1) The substrate, as known to those skilled in the art, includes a substrate 202, a bottom oxide (BOX) layer 204, and a semiconductor formed on the bottom oxide layer 204 from bottom to top. The layer, such as a layer 206, and the layer 206 has a crystal plane orientation of (100). However, in order to provide better heat dissipation and grounding effects, and to help reduce cost and suppress noise, the preferred embodiment The semiconductor substrate 200 may also include a bulk silicon substrate. As shown in FIG. 1 'the semiconductor substrate 200 is formed with a patterned hard mask 210a, and the patterned mask 21a is used to define a The Fin section of the multi-gate transistor component. Please continue to refer to Figure 1. After the patterned hard mask 21〇a is formed, a first etching process is performed, which is etched through the patterned hard mask 21〇a. The germanium layer 206' of the semiconductor substrate 200 forms a fin structure (fin) 2 12a. And as shown in Fig. 1 of 201225216, the fin structure 212a has a pair of opposing side walls 214a. It is noted that in the preferred embodiment, the first etching process is a dry etching process. The dry (four) process system includes sulphur hexafluoride muscle and/or three gasified nitrogen (NF3). The dry etching process etches the germanium layer anisotropically, so that the sidewall 214a of the die structure 212a is perpendicular to the semiconductor substrate 2〇〇; the cross-section of the fin structure 2i2a has one rectangle. More importantly, after the dry etching process, the sidewall 2Ma of the fin structure 212a has a first crystal plane orientation, and in the preferred embodiment, the first crystal plane orientation is (100) 〇 see the second Figure and Figure 3. Next, a patterned hard mask 210b is formed on the semiconductor substrate 200 for defining a Fin# knife of a multi-gate transistor element. As shown in FIGS. 2 and 3, the patterned hard mask 21〇a and the patterned hard mask 21 〇b are coplanar (co_planar). A second etching process is then performed to form another wafer structure 2 i 2 b through the patterned hard mask 21〇b|insect semiconductor substrate. It will be appreciated by those skilled in the art that in order to protect the wheel temple of the slab structure 2Ua from the second (four) process, the preferred embodiment forms a protective layer on the rotator structure 212a, for example to define a patterned hard The photoresist layer of the mask 210b is not limited thereto. It should be noted that in the preferred embodiment, the second surname engraving process includes a secret engraving (four) coffee (four) manufacturing. For example, the preferred embodiment of the wet (10) process (10) is a solution, and the ratio of ammonium hydroxide to water (_) is 丨: 7 wherein X is less than 250. In addition, the wet etching process of the preferred embodiment may further comprise hydrogen 201225216 tetramethylammonium hydroxide (TMAH) solution, wherein the concentration of cerium is less than 2.5%. In the preferred embodiment, the wet etching process is performed at a temperature of 20-6 (TC. The wet etching process is isotropically etched the layer 206, so that the sidewall 214b of the fin structure 212b is not vertical. In detail, the cross-section of the fin structure 212b may be formed in a trapezoidal shape on the semiconductor substrate 200 as shown in FIG. 2; or as shown in FIG. On the semiconductor substrate 200. More importantly, after the wet etching process, regardless of whether the fin structure 212b has a trapezoidal or inverted trapezoidal shape, the sidewall 214b of the fin structure 212b has a second crystal plane orientation and a second crystal plane. The orientation is different from the first crystal plane orientation of the sidewall 214a of the fin structure 212a. In the preferred embodiment, the second crystal plane orientation is (110). In addition, in the preferred embodiment, the second etch process Preferably, a two-stepped etch process is first performed by first etching the ruthenium layer 206 anisotropically using a dry etch process comprising SF6 and/or NF3 to form the fin structure 212b, the sidewall of the fin structure 212b. Is perpendicular to the semiconductor substrate 200. Next utilized A wet etching process comprising an ammonium hydroxide solution or a TMAH solution isotropically etched at a side wall ' perpendicular to the fin structure 212b of the semiconductor substrate 200 at 20-60 ° C to obtain a film as shown in FIG. 3 or FIG. 4, The side wall 214b is inclined to the surface of the semiconductor substrate 200. As described above, the dumpling in the wet etching process has a second crystal face regardless of whether the fin structure 212b has a trapezoidal or inverted trapezoidal shape. Orientation, and the second crystal plane orientation 201225216 'in this comparison = the first plane orientation of the sidewall 214a of the rotor structure 212a is better, the second crystal plane orientation is (1) 〇). Please refer to FIG. 4, which is a schematic diagram of a preferred embodiment of the multi-gate transistor of the present invention. In a second preferred embodiment of the present invention, the first-money engraving process may be the two-step etching process of the above-mentioned single-wet money engraving process or the dry quenching thirst etching as described above. . The first etching process is performed by patterning the hard mask layer 206' so that the surface of the semiconductor substrate 200 is first formed into a trapezoidal or inverted trapezoidal shape (as shown in Fig. 3). And as described above, after the secret engraving process, the sidewalls 2Mb of the structure (10) having a trapezoidal or inverted trapezoidal fin structure 212b have a plane orientation, and the crystal plane orientation is in the preferred embodiment. For (11 〇). In the second preferred embodiment, the second process is a dry process.
程’用以透過圖案化硬遮罩21Ga射㈣層裏,而於半導體 ,底200上形成如第2圖所示之鰭片結構2i2a。由於乾餘刻 製程非等向性地姓刻石夕層施,因此轉片結構2】&的側壁 214a係垂直於半導體基底2〇〇 ;換句話說,鰭片結構η。 之戴面係具有—矩形。更重要的是,在乾細彳製程之後,歸 片結構2Ua的側壁214a具有一晶面定肖,且此晶 為(100)。 你 201225216 接下來請參閱第5圖至第8圖。值得注意的是,由於本 發=中在元成韓片結構212a與韓片結構212匕之後,第一較 佳實知例與第二較佳實施例皆具有相同的步驟,因此該等步 驟於第5圖至第8圖後一併敘述,而不分開贅述。如第5圖 所:,在元成鰭片結構212a與鰭片結構212b之製作後,係 於半導體基底2GG上依序形成—介電層(圖未示)、一閘極 Z成層(圖未示)與一圖案化硬遮罩216,隨後圖案化上述 ㈣層與閘極形成層,而於半導體基底2〇0上形成-覆蓋部 分轉片結構212a與部分雜片結構212b的一問極介電層218 · "閘極層220。如第5圖所示,閘極介電層218與閘極層 220之延伸方向係與鰭片結構212a及鰭片結構21沘之延伸 方向垂直,且閘極介電層218與閘極層22〇係覆蓋鰭片結構 212a的部分側壁2】4a及鰭片結構212b的部分側壁214b。 間極介電層218可包含習知介電材料如氧化石夕(SiO)、氮化矽 (SiN)、氮氧化矽(Si〇N)等介電材料。而在本較佳實施例中’ 閘極介電層218更可包含高介電常數(high-K)材料,例如氧 # 化铪(Hf〇)、矽酸铪(HfSi〇)或、鋁、鍅、鑭等金屬的金屬氧 化物或金屬石夕酸鹽(metal silicates)等,但不限於此。另外, 當本較佳實施例之閘極介電層218採用high_K材料時,本 叙明可與金屬閘極(metal gate)製程整合’以提供足以匹配 high-K閘極介電層的控制電極。據此,閘極層22〇可配合金 屬閘極的前閘極(gate_first)製程或後閘極(gate_last)製程採用 不同的材料。舉例來說,當本較佳實施例與前閘極製程整合 10 201225216 時,閘極層220係可包含金屬如组(Ta)、鈦(丁丨)、釕(Ru)、鉬 (Mo)、或上述金屬之合金、金屬氮化物如氮化鈕(TaN)、氮 化欽(TiN)、氮化鉬(MoN)等、金屬碳化物如碳化鈕(丁ac)等。 且該等金屬之選用係以所欲獲得的多閘極電晶體元件之導 電形式為原則,即以滿足N型或p型電晶體所需功函數要求 的金屬為選用原則,且閘極層22〇可為單層結構或複合層 (multi-layer)結構。而當本較佳實施例與後閘極製程整合時, 鲁閘極層220係作為一虛置閘極(dummy gate),其可包含半導 體材料如多晶石夕等。 另外,在本較佳實施例中,由於鰭片結構2123與鰭片結 構212b的頂部係如帛5圖所示,分別被圖案化硬遮罩2心 與圖案化硬遮罩雇覆i,因此無法形成通道區⑽咖^ reg1〇n)。換句話說’本較佳實施例中電晶體的通道區係形成 於閘極層220與閘極介電層218覆蓋轉片結構仙的側壁 • 2143之處與覆蓋轉片結構212b的側壁214b之處。因此,本 較佳實施例所提供的多閘極電晶體元件係為一雙問極 咖齡挑)電晶體元件。更重要的是,由於鰭片結構仙 之:壁214a被閘極層22〇與閘極介電層218覆蓋之處且有 第一晶面定向,即⑽)晶面定向,因此有利於議沉電晶體 通道區的載子遷移率。同理,由於結構2Ub被間㈣ 細與間極介電層218覆蓋之處具有第二晶面定向,即 晶面定向’因此有利於pMOS電晶體通道區的載子遷移率。 201225216 另外,本發明亦不限於形成鰭片結構212a、212b之後移 除圖案化硬遮罩210a、210b,而於後續完成源極/汲極等元 件之製作後獲得三閘極(tri-gate)電晶體元件。雖然移除圖案 化硬遮罩210b後,鰭片結構212b之側壁與頂部係具有不同 的晶面定向,但鰭片結構212b之側壁214b因具有第二晶面 定向’即(110)晶面定向,因此仍有利於pMOS電晶體通道區 的載子遷移率。 請參閱第6圖。在完成閘極介電層218與閘極層220的 製作後,利用不同的導電型式的斜角離子佈植等方式分別於 鰭片結構212a與鰭片結構212b内形成一 η型輕摻雜汲極 (lightly-doped drain,LDD) 222a 與一 ρ 型輕換雜沒極 222b (示於第8圖)。值得注意的是,由於鰭片結構212a的側壁 214a具有有利於nMOS電晶體元件的(100)晶向;而縛片結 構212b的側壁214b則具有有利於pMOS電晶體元件的(no) φ 晶向,因此不論鰭片結構212a、212b的形成順序為何,在 進行LDD的製作時,具有(1〇〇)晶向的鰭片結構212a係為η 型LDD 222a的形成場所;而具有(110)晶向的鰭片結構212b 則為P型LDD 222b的形成場所。在形成η型輕摻雜沒極222a 與P型輕摻雜汲極222b之後,係於閘極層220與閘極介電 層218之兩相對側壁形成側壁子224,側壁子224可以是單 層結構或複合層結構。 12 201225216 請參閱第7圖。形成側壁子之後,本發明係可進行一選 擇性蠢晶成長(selective epitaxial growth,SEG)製程,以於暴 露在圖案化硬遮罩210a、210b、216外的鰭片結構210a之 侧壁214a與鰭片結構210b之側壁214b分別形成一磊晶層 226a與磊晶層226b。如前所述,由於鰭片結構212a的側壁 214a具有有利於nMOS電晶體元件的(100)晶向;而鰭片結 構212b的側壁214b則具有有利於pMOS電晶體元件的(110) 鲁 晶向’因此在形成遙晶層226a與蟲晶層226b時’蟲晶層226a 係包含矽碳(SiC);而磊晶層226b則包含矽鍺(SiGe),用以 提供後續形成之nMOS電晶體元件與pMOS電晶體元件所需 之應力。此外,亦可在SEG製程之前選擇性地於鰭片結構 210a之側壁214a與鰭片結構210b之側壁214b分別形成一 凹槽(recess),使後續成長的磊晶層226a與磊晶層226b所提 供的應力更有效地作用於nMOS電晶體元件與pMOS電晶體 φ 元件的通道區。 請參閱第8圖,請注意第8圖為第7圖中沿A-A’切線獲 得之剖面圖。隨後,係利用不同的導電型式的離子佈植等方 法分別於於鰭片結構212a内形成一 η型源極/汲極228a與於 鰭片結構212b内形成一 p型源極/汲極228b。如前所述,由 於鰭片結構212a的側壁214a具有有利於nMOS電晶體元件 的(100)晶向;而鰭片結構212b的側壁214b具有有利於 13 201225216 pMOS電晶體元件的(110)晶向,因此在進行源極/汲極的製作 時,具有(100)晶向的鰭片結構212a係為η型源極/汲極228a 的形成場所;而具有(110)晶向的鰭片結構212b則為p型源 極/汲極228b的形成場所。另外值得注意的是,本較佳實施 例所述<離子佈植製程亦不限於SEG製程之前進行,甚或 在SEG製程中同位(in-situ)地摻入η型源極/汲極228a與p 型源極/汲極228b所需之摻雜質,以取代取代上述的離子佈 植與所需的回火製程。如第8圖所示,在完成η型源極/汲極 鲁 228a與ρ型源極/汲極228b之製作後,係於半導體基板200 上完成一具有nMOS電晶體230a與一 pMOS電晶體230b之 CMOS元件之製作。 根據本發明所提供之多晶矽閘極電晶體元件之製作方 法’ pMOS電晶體230b之通道區域係形成於藉由濕蝕刻製 程姓刻矽層206所獲得的(110)晶面定向上,因此有助於提升 其載子遷移率。而nMOS電晶體230a則設置於僅藉由乾蝕 φ 刻製程触刻矽層206所獲得的(100)晶面定向上,因此有助於 提升其載子遷移率。此外,如第7圖所示,本發明所提供之 多晶石夕閘極之製作方法係更適合用於提供包含nMOS電晶 體與pMOS電晶體的CMOS元件。 請參閱第9A圖與第9B圖,第9A圖係為一典型六電晶 體靜悲 & 機存取記憶體(six-transistor static random access 14 201225216 memory ’ 6T-SRAM)記憶單元之電路圖;第9B圖則為 6T-SRAM之佈局(iayout)圖。一般6T-SRAM記憶單元100 係由一個作為上拉電晶體(pUll_Up transist〇r)的pM〇s電晶體 112/114、一個作為下拉電晶體(pull-down transistor)的 nMOS 電晶體122/124、以及二個作為存取電晶體(accesstransist〇r) 的nMOS電晶體126/128所構成。pMOS電晶體112與nMOS 電晶體122串聯,pM〇S電晶體114與nMOS電晶體124串 聯。上述電晶體112、114、122、124係構成一拴鎖電路 鲁(latch),用以儲存資料。如第9A圖與第9B圖所示,在製作 需串聯的nMOS電晶體與pM〇S電晶體時,係可利用本發明 所提供之多閘極電晶體元件之製作方法。請同時參閱第7圖 至第9B圖,根據本發明所提供之多閘極電晶體元件之製作 方法’閘極層220係可作為串聯pMOS電晶體丨12與nM〇s 電晶體122的閘極,而nM〇s電晶體23〇a即作為下拉電晶 體122,pMOS電晶體230b即作為上拉電晶體112。同理, •閘極層220係可作為串聯pMOS電晶體114與nMOS電晶體 124的閘極,而nMOS電晶體230a即作為下拉電晶體124 ; pMOS電晶體230b即作為上拉電晶體! 14。如前所述,由於 pMOS電晶體230b之通道區域係形成於藉由濕蝕刻製程蝕 刻石夕層206所獲彳于的(11 〇)晶面定向上;而ηΜ〇§電晶體23〇a 則設置於僅藉由乾蝕刻製程蝕刻矽層206所獲得的(丨00)晶 面定向上,因此根據本發明所提供之多閘極電晶體元件之製 作方法,係可同時提升兩種導電型式電晶體元件的載子遷移 15 201225216 率,而不造成相反導電型式電晶體元件的特性退化的目的。 另外,在完成nMOS電晶體230a與pMOS電晶體230b 之製作後,係可進行一金屬矽化物(silicide)製程,於磊晶層 226a與蟲晶層226b表面形成一金屬石夕化物(圖未示),用以 降低η型源極/汲極228a與p型源極/汲極228b的片電阻 (sheet resistance)。接下來,可於半導體基底200上形成一内 層介電(inter-layer dielectric,ILD)層(圖未示)。如前所述, 當本較佳實施例與金屬閘極之後閘極製程整合時,更可於形 鲁 成内層介電層後移除作為虛置閘極的閘極層220,並於其内 依nMOS電晶體230a與pMOS電晶體230b之不同的電性需 求填入滿足其所需功函數要求的金屬,以及具低電阻值或較 佳填洞能力的金屬,並配合可調整金屬功函數的金屬後退火 (卩(^11^313111^3卜?]^八)處理。另外,本較佳實施例亦可與 後閘極介電層(high-K last)製程整合,即於移除閘極層220 後亦將閘極介電層218移除,而於其内重新形成一具有高介 鲁 電常數材料之閘極介電層,之後再進行金屬閘極製程。 而在完成金屬閘極的製作後,則可移除原本的ILD層, 於具有金屬閘極的nMOS電晶體230a與pMOS電晶體230b 與半導體基底200表面形成一接觸洞飯刻停止層(contact etch stop layer,CESL)或應力層。換句話說,本發明係可整 合 CESL 等選擇性應力系統(selective strain scheme,SSS), 16 201225216 更提高具有金屬閘極之nMOS電晶體230a與pMOS電晶體 230b的性能。而在完成選擇性應力系統之製作後,係於半導 體基底200表面重新形成.一 ILD層(圖未示),並於其内形 成暴露源極/汲極228a/228b的接觸洞。值得注意的是,由於 金屬矽化物較容易受到上述金屬沈積與金屬後退火的高熱 預算的製程影響,因此在本發明中,金屬矽化物製程亦可延 後至移除ILD層之後、形成CESL或應力層之前,甚或延後 φ f重新形成ILD層以及形成接觸洞之後才進行,以避免上述 尚溫製程對金屬石夕化物的影響。 。由於上述金屬魏物製程、ILD層形成製程、金屬問極製 程與選擇性應力系統等製程係為熟習該項技藝之人士所熟 知,因此於此皆不再贅述。 ,’’、 二上所述,根據本發_提供之多閘極電晶體元件及其 ^方=利用第一_製程與第二崎程分別形成具 ^結構與具有第二晶面定向的轉片結 曰曰面疋向與第二晶面定向分別為(100)盥⑴0)定 電晶面定向之―㈣简 电日日粒之基體。換句話說,ηΜ0 ;體:㈣移率係可藉由形成於本發明二=電 ㈣㈣。因此,本發料提供之2=;晶 17 201225216 體兀件之製作方法係更可提供具高效率的CMOS元件。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範:。 【圖式簡單說明】 第1圖至第3圖與第5圖至第8圖係本發明所提供之多 閘極電晶體元件之製作方法之一第一較佳實施例之示意 圖,其中第8圖為第7圖中沿A-A,切線獲得之剖面圖; 鲁 第4圖係本發明所提供之多閘極電晶體元件之製作方法 之一第二較佳實施例之示意圖; 第9 A圖係為一典型六電晶體靜態隨機存取記憶體記憶單 元之電路圖;以及 心 第9B圖為6T-SRAM之佈局圖。 【主要元件符號說明】 100 六電晶體靜態隨機存取記憶體單元 112、114 上拉電晶體 122 > 124 下拉電晶體 126、128 存取電晶體 200 半導體基底 202 矽基底 204 底部氧化層 206 矽層 210a 圖案化硬遮罩 210b 圖案化硬遮罩 212a 鰭片結構 212b 鰭片結構 18 201225216 214a 側壁 214b 側壁 216 圖案化硬遮罩 218 閘極介電層 220 閘極層 222a η型輕摻雜没極 222b ρ型輕掺雜沒極 224 側壁子 226a 蟲晶層 226b 蟲晶層 228a η型源極/没極 228b P型源極/没極 230a NMOS電晶體 230b PMOS電晶體 19The process is used to form a fin structure 2i2a as shown in Fig. 2 on the semiconductor substrate 200 by patterning the hard mask 21Ga (4) layer. The sidewall 214a of the rotor structure 2]& is perpendicular to the semiconductor substrate 2〇〇; in other words, the fin structure η, since the dry-engraving process is anisotropically etched. The wearing system has a rectangle. More importantly, after the dry fine boring process, the sidewall 214a of the singular structure 2Ua has a crystal plane and the crystal is (100). You 201225216 Next, please refer to Figure 5 to Figure 8. It should be noted that, since the first preferred embodiment and the second preferred embodiment have the same steps after the present invention has the same steps as the second preferred embodiment, the steps are 5 to 8 are described later without being separately described. As shown in FIG. 5, after the fabrication of the element fin structure 212a and the fin structure 212b, a dielectric layer (not shown) and a gate Z layer are sequentially formed on the semiconductor substrate 2GG (Fig. And a patterned hard mask 216, and then patterning the (4) layer and the gate forming layer, and forming a pattern on the semiconductor substrate 2〇0 covering the partial rotor structure 212a and the partial chip structure 212b Electrical layer 218 · " gate layer 220. As shown in FIG. 5, the gate dielectric layer 218 and the gate layer 220 extend in a direction perpendicular to the extending direction of the fin structure 212a and the fin structure 21, and the gate dielectric layer 218 and the gate layer 22 The tether covers a portion of the sidewall 2] 4a of the fin structure 212a and a portion of the sidewall 214b of the fin structure 212b. The inter-electrode dielectric layer 218 may comprise a dielectric material such as a oxidized stone (SiO), a tantalum nitride (SiN), or a bismuth oxynitride (Si〇N). In the preferred embodiment, the gate dielectric layer 218 may further comprise a high-k material, such as oxygen (Hf〇), HfSi(R) or aluminum, Metal oxides such as ruthenium and osmium, or metal silicates, etc., but are not limited thereto. In addition, when the gate dielectric layer 218 of the preferred embodiment is made of high_K material, the present description can be integrated with a metal gate process to provide a control electrode sufficient to match the high-K gate dielectric layer. . Accordingly, the gate layer 22 can be provided with a different gate material for the gate-first process or the gate_last process of the alloy gate. For example, when the preferred embodiment is integrated with the front gate process 10 201225216, the gate layer 220 may comprise a metal such as a group (Ta), titanium (butadiene), ruthenium (Ru), molybdenum (Mo), Or an alloy of the above metals, a metal nitride such as a nitride nitride (TaN), a nitrided (TiN), a molybdenum nitride (MoN), or the like, a metal carbide such as a carbonized button (butyl ac), or the like. And the selection of the metals is based on the principle of the conductive form of the multi-gate transistor element to be obtained, that is, the metal satisfying the required work function of the N-type or p-type transistor is the selection principle, and the gate layer 22 The crucible may be a single layer structure or a multi-layer structure. When the preferred embodiment is integrated with the back gate process, the gate layer 220 is used as a dummy gate, which may include a semiconductor material such as polycrystalline stone. In addition, in the preferred embodiment, since the tops of the fin structure 2123 and the fin structure 212b are as shown in FIG. 5, the patterned hard mask 2 and the patterned hard mask are respectively employed, so Unable to form the channel area (10) coffee ^ reg1〇n). In other words, the channel region of the transistor in the preferred embodiment is formed in the gate layer 220 and the gate dielectric layer 218 covering the sidewalls of the rotor structure 2143 and the sidewall 214b covering the rotor structure 212b. At the office. Therefore, the multi-gate transistor component provided by the preferred embodiment is a double-pole transistor. More importantly, because the fin structure is such that the wall 214a is covered by the gate layer 22 〇 and the gate dielectric layer 218 and has a first crystal plane orientation, that is, (10) crystal plane orientation, it is advantageous for the sinking. Carrier mobility in the transistor channel region. Similarly, since the structure 2Ub is covered by the (4) fine and inter-electrode dielectric layer 218, the second crystal plane orientation, i.e., the crystal plane orientation, is advantageous for the carrier mobility of the pMOS transistor channel region. 201225216 In addition, the present invention is not limited to removing the patterned hard masks 210a, 210b after forming the fin structures 212a, 212b, and obtaining a tri-gate after subsequent fabrication of components such as source/drain electrodes. Transistor element. Although the sidewalls of the fin structure 212b have different crystal plane orientations after the patterned hard mask 210b is removed, the sidewalls 214b of the fin structure 212b have a second crystal plane orientation, ie, a (110) crystal plane orientation. Therefore, the carrier mobility of the pMOS transistor channel region is still favorable. Please refer to Figure 6. After the fabrication of the gate dielectric layer 218 and the gate layer 220 is completed, an n-type lightly doped germanium is formed in the fin structure 212a and the fin structure 212b by using different conductivity types of oblique ion implantation. Light-doped drain (LDD) 222a and a p-type light-changing pole 222b (shown in Figure 8). It is worth noting that the sidewall 214a of the fin structure 212a has a (100) crystal orientation that favors the nMOS transistor element; and the sidewall 214b of the tab structure 212b has a (no) φ crystal orientation that favors the pMOS transistor component. Therefore, regardless of the order in which the fin structures 212a and 212b are formed, the fin structure 212a having a (1 〇〇) crystal orientation is a formation place of the n-type LDD 222a at the time of LDD fabrication; and has a (110) crystal. The fin structure 212b is the formation site of the P-type LDD 222b. After the n-type lightly doped 222a and the P-type lightly doped 222b are formed, the sidewalls 224 are formed on the opposite sidewalls of the gate layer 220 and the gate dielectric layer 218, and the sidewall 224 may be a single layer. Structure or composite layer structure. 12 201225216 Please refer to Figure 7. After forming the sidewalls, the present invention can perform a selective epitaxial growth (SEG) process to expose the sidewalls 214a of the fin structures 210a outside the patterned hard masks 210a, 210b, 216 and The sidewall 214b of the fin structure 210b forms an epitaxial layer 226a and an epitaxial layer 226b, respectively. As previously mentioned, since the sidewall 214a of the fin structure 212a has a (100) crystal orientation that favors the nMOS transistor element; the sidewall 214b of the fin structure 212b has a (110) lure orientation that favors the pMOS transistor element. 'Therefore, when the crystal layer 226a and the worm layer 226b are formed, the worm layer 226a contains bismuth carbon (SiC); and the epitaxial layer 226b contains germanium (SiGe) for providing the subsequently formed nMOS transistor element. The stress required with the pMOS transistor component. In addition, a recess may be selectively formed on the sidewall 214a of the fin structure 210a and the sidewall 214b of the fin structure 210b before the SEG process, so that the subsequently grown epitaxial layer 226a and the epitaxial layer 226b are respectively formed. The stress provided acts more effectively on the channel regions of the nMOS transistor elements and the pMOS transistor φ elements. Please refer to Figure 8. Please note that Figure 8 is a cross-sectional view taken along line A-A' in Figure 7. Subsequently, an n-type source/drain 228a is formed in the fin structure 212a and a p-type source/drain 228b is formed in the fin structure 212b by means of ion implantation of different conductivity types. As previously mentioned, since the sidewall 214a of the fin structure 212a has a (100) crystal orientation that favors the nMOS transistor element; the sidewall 214b of the fin structure 212b has a (110) crystal orientation that favors the 201225216 pMOS transistor component. Therefore, when the source/drain is fabricated, the fin structure 212a having a (100) crystal orientation is a formation place of the n-type source/drain 228a; and the fin structure 212b having a (110) crystal orientation is formed. Then, it is a formation place of the p-type source/drain 228b. It is also worth noting that the <ion implantation process described in the preferred embodiment is not limited to the SEG process, or even in-situ incorporation of the n-type source/drain 228a in the SEG process. The dopants required for the p-type source/drain 228b are substituted for the ion implantation described above and the desired tempering process. As shown in FIG. 8, after the fabrication of the n-type source/drain 228a and the p-type source/drain 228b is completed, an nMOS transistor 230a and a pMOS transistor 230b are completed on the semiconductor substrate 200. The manufacture of CMOS components. The method for fabricating a polysilicon gate transistor device according to the present invention 'the channel region of the pMOS transistor 230b is formed on the (110) crystal plane orientation obtained by the wet etching process by the surname layer 206, thus facilitating To improve its carrier mobility. The nMOS transistor 230a is disposed on the (100) crystal plane orientation obtained only by the dry etching etch process, thereby contributing to the improvement of carrier mobility. Further, as shown in Fig. 7, the method for fabricating the polycrystalline silicon gate of the present invention is more suitable for providing a CMOS device including an nMOS transistor and a pMOS transistor. Please refer to FIG. 9A and FIG. 9B. FIG. 9A is a circuit diagram of a typical six-transistor static random access 14 201225216 memory '6T-SRAM memory unit; The 9B diagram is a 6T-SRAM layout (iayout) diagram. The general 6T-SRAM memory cell 100 is composed of a pM〇s transistor 112/114 as a pull-up transistor (pUll_Up transist〇r) and an nMOS transistor 122/124 as a pull-down transistor. And two nMOS transistors 126/128 as access transistors (access transistors). The pMOS transistor 112 is connected in series with the nMOS transistor 122, and the pM〇S transistor 114 is connected in series with the nMOS transistor 124. The above transistors 112, 114, 122, and 124 form a latch circuit for storing data. As shown in Figs. 9A and 9B, in the fabrication of nMOS transistors and pM〇S transistors to be connected in series, the method of fabricating the multi-gate transistor of the present invention can be utilized. Please refer to FIG. 7 to FIG. 9B simultaneously. The gate electrode layer 220 can be used as the gate of the series pMOS transistor 丨12 and the nM〇s transistor 122 according to the method for fabricating the multi-gate transistor device according to the present invention. The nM〇s transistor 23〇a serves as the pull-down transistor 122, and the pMOS transistor 230b serves as the pull-up transistor 112. Similarly, the gate layer 220 can serve as the gate of the series pMOS transistor 114 and the nMOS transistor 124, and the nMOS transistor 230a serves as the pull-down transistor 124; the pMOS transistor 230b acts as the pull-up transistor! 14. As described above, since the channel region of the pMOS transistor 230b is formed in the (11 〇) crystal plane orientation obtained by etching the lithographic layer 206 by the wet etching process; and the ηΜ〇§ transistor 23〇a It is disposed on the (丨00) crystal plane orientation obtained by etching the germanium layer 206 only by the dry etching process. Therefore, the method for fabricating the multi-gate transistor device according to the present invention can simultaneously improve the two types of conductivity type. The carrier of the crystal element migrates 15 201225216 without the purpose of degrading the characteristics of the opposite conductivity type transistor element. In addition, after the fabrication of the nMOS transistor 230a and the pMOS transistor 230b is completed, a metal silicide process can be performed to form a metallization on the surface of the epitaxial layer 226a and the crystal layer 226b (not shown). ) for reducing the sheet resistance of the n-type source/drain 228a and the p-type source/drain 228b. Next, an inter-layer dielectric (ILD) layer (not shown) may be formed on the semiconductor substrate 200. As described above, when the preferred embodiment is integrated with the gate process after the metal gate, the gate layer 220, which is a dummy gate, is removed after being formed into the inner dielectric layer. According to the different electrical requirements of the nMOS transistor 230a and the pMOS transistor 230b, a metal that satisfies the required work function, a metal with a low resistance value or a better hole filling capability, and an adjustable metal work function are filled. The metal is post-annealed (卩(^11^313111^3b?)^8). In addition, the preferred embodiment can also be integrated with the high-K last process, that is, the gate is removed. After the pole layer 220, the gate dielectric layer 218 is also removed, and a gate dielectric layer having a high dielectric constant material is newly formed therein, and then a metal gate process is performed. After the fabrication, the original ILD layer can be removed, and a contact etch stop layer (CESL) or a contact etch stop layer (CESL) is formed on the surface of the semiconductor substrate 200 between the nMOS transistor 230a and the pMOS transistor 230b having metal gates. Stress layer. In other words, the present invention can integrate selective stress such as CESL Selective strain scheme (SSS), 16 201225216 improves the performance of the nMOS transistor 230a and the pMOS transistor 230b with metal gates, and is formed on the surface of the semiconductor substrate 200 after the fabrication of the selective stress system is completed. An ILD layer (not shown) is formed therein to form a contact hole exposing the source/drain 228a/228b. It is worth noting that the metal telluride is more susceptible to the high thermal budget of the metal deposition and metal post-annealing. Process influence, therefore, in the present invention, the metal telluride process can be postponed until after removing the ILD layer, before forming the CESL or stress layer, or even after the φ f reforms the ILD layer and forming the contact hole, to avoid The effect of the above-mentioned warm-temperature process on the metal lithium compound. Because the above-mentioned process of metal-week process, ILD layer formation process, metal-question process and selective stress system are well known to those skilled in the art, No longer repeat them. , '', two above, according to the hair _ provided by the multi-gate transistor element and its ^ side = using the first _ process and the second saki The formation of the structure and the orientation of the second crystal plane with the second crystal plane orientation is (100) 盥 (1) 0) the orientation of the fixed crystal plane is respectively - (4) the base of the simple electric solar particle . In other words, ηΜ0; body: (iv) mobility can be formed by the invention according to the invention two = electricity (four) (four). Therefore, the 2#; crystal 17 201225216 body manufacturing method provided by the present invention provides a highly efficient CMOS component. The above is only the preferred embodiment of the present invention, and all changes and modifications made to the patent scope of the present invention should be covered by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 3 and FIG. 5 to FIG. 8 are schematic diagrams showing a first preferred embodiment of a method for fabricating a multi-gate transistor device according to the present invention, wherein the eighth embodiment Figure 7 is a cross-sectional view taken along line AA, tangential; Figure 4 is a schematic view of a second preferred embodiment of the method for fabricating a multi-gate transistor element provided by the present invention; A circuit diagram of a typical six-crystal SRAM memory cell; and a 9B-SRAM layout of the heart. [Major component symbol description] 100 Six-transistor SRAM cell 112, 114 Pull-up transistor 122 > 124 Pull-down transistor 126, 128 Access transistor 200 Semiconductor substrate 202 矽 Substrate 204 Bottom oxide layer 206 矽Layer 210a patterned hard mask 210b patterned hard mask 212a fin structure 212b fin structure 18 201225216 214a sidewall 214b sidewall 216 patterned hard mask 218 gate dielectric layer 220 gate layer 222a n-type light doping Pole 222b ρ-type lightly doped 235 side wall 226a worm layer 226b worm layer 228a n-type source / immersion 228b P-type source / immersion 230a NMOS transistor 230b PMOS transistor 19