Nothing Special   »   [go: up one dir, main page]

TW201140850A - Thin-film field-effect transistor and method for manufacturing the same - Google Patents

Thin-film field-effect transistor and method for manufacturing the same Download PDF

Info

Publication number
TW201140850A
TW201140850A TW100108322A TW100108322A TW201140850A TW 201140850 A TW201140850 A TW 201140850A TW 100108322 A TW100108322 A TW 100108322A TW 100108322 A TW100108322 A TW 100108322A TW 201140850 A TW201140850 A TW 201140850A
Authority
TW
Taiwan
Prior art keywords
layer
film
source
active layer
concentration
Prior art date
Application number
TW100108322A
Other languages
Chinese (zh)
Other versions
TWI515909B (en
Inventor
Masaya Nakayama
Yoshihiro Aburaya
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201140850A publication Critical patent/TW201140850A/en
Application granted granted Critical
Publication of TWI515909B publication Critical patent/TWI515909B/en

Links

Classifications

    • H01L29/78693
    • H01L29/78606

Landscapes

  • Thin Film Transistor (AREA)
  • Weting (AREA)

Abstract

A thin-film field-effect transistor with good TFT characteristics and high reliability, and a method for manufacturing the same are provided. In the thin-film field-effect transistor, at least a gate electrode, an insulating film, an active layer, an etching stop layer, a source electrode, and a drain electrode are formed on a substrate. The etching stop layer is formed on the active layer, and the source electrode and the drain electrode are formed on the etching stop layer. The etching stop layer comprises an amorphous oxide of In, Ga and Zn, wherein the concentration of Zn is less than 20%. The active layer comprises an amorphous oxide semiconductor of In, Ga and Zn, wherein the concentration of Zn is higher than that of the etching stop layer.

Description

201140850 JOZUipif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種使用非晶形氧化物半導體的薄膜 場效電晶體及其製造方法,且制是有關於-種具有侧 P且擋層、TTFT特性良好、且可靠性也高的薄膜場效電晶 體及其製造方法。 【先前技術】 目前,場效電晶體被廣泛用作半導體記憶體積體電 路、高頻信號擴增元件等。 此外,場效電晶體中,薄膜場效電晶體(以下也稱作 TFT)被用作液晶顯示裝置(lcd)、電致發光顯示裝置 (EL)、場致發光顯示器(fED)等平面薄型圖像顯示裝 置(Flat Panel Display : FPD)的切換元件。FPD中使用的 TFT,其於玻璃基板上形成有作為活性層的非晶石夕薄膜或 多晶矽薄膜。 上述的在活性層中使用非晶矽薄膜或多晶矽薄膜的 TFT需要較高溫度的熱製程。因此,tft雖然可以使用玻 璃基板’但難以使用耐熱性低的樹脂製基板。 此外,對於FPD,則要求更進一步的薄型化、輕量化、 以及耐破損性’人們還在研究使用輕量且具可撓性的樹脂 製基板來代替玻璃基板。因此,人們正在積極地進行使用 在低溫下可以成膜的非晶形氧化物的TFT的開發。 使用非晶形氧化物的TFT具有:基板、閘極(gate electrode)、閘絕緣膜、由非晶形氧化物半導體構成的活 4 ⑤ 201140850 JDZUipif 性層、源極(source electrode)和汲極(drainelectr〇de), 並於活性層上形成有源極和汲極。 在使用非晶形氧化物的TFT中,源極和沒極藉由侧 導電膜而形成1此,在活性層上沒有形成保護其的姓刻 阻擔層(etChingStopperlayer)的情況下,在形成源極和及 極時活性層有時也會被蝕刻,有時會發生TFT的特性不良 ^性不穩。在極_情盯,活性層完全魏刻,還有 時會無法顯示TFT特性^於上述情況,設有用於活 ί!層2〇Γ^Γ等的TFT被提案(例如參照日本專利特 :20(^166716號公報、日本專利特開2_i6i2號公 報、曰本專利特開2009-141342號公報)。 eate t日本f Γ開綱8·166716號公報之下閘極型⑽⑽ 缘晶體,其於基板上具有閉極、作為間絕 =膜的第i絕緣膜、作為通道層的氧化物半導體層=备 於活性層)、作為保護層的第2絕緣膜 : 導體層包含含有二^ 導體層;一成 =:一藉由升溫脫離分析作為“測= -部被設置成覆蓋 201140850 JUZ.Uipif 曰本專利特開2009-21612號公報中公開了一種通道 保濩型薄膜電晶體。在該薄膜電晶體中,於基板上形成有 閘極,並形成有第1閘絕緣膜使覆蓋該閘極,並且於該第 1閘絕緣膜上形成有第2 _緣膜。此外,於第2閉絕緣 膜上形成有氧化物半導體膜(相當於活性層),使覆蓋閘 極。於該氧化物半導體膜上,在與_重㈣區域形成有 通道保護膜。並且,於氧化物半導_上職有源極和沒 〇 通道保護膜在形成源極、汲極時防止通道部的半導患 。該通道保護膜由氧化石夕(si0x)、氮化石夕(siNJ 化矽(SiOxNy) (x>y)、氮氧化矽(SiNx〇y) 等構成。 :本專利特開2__141342號公報中記載著一種薄磨 2】= (TFT),該m於基板上至少具有閘極、開 =膜^有非晶形氧化物半導體的活性層、源極和沒極。 3膜場效電晶體’其閘絕緣職活性層的界面的均方根 ί度小於2 nm,活性層的载體漠度大於等於M0丨5/cm3, ^活性層的膜厚大於等於0.5 mn而小於2〇 nm。此外, 層積層有由载體濃度小於等於ig1W的非晶形 ===的低載體濃度層。該低載體漠度層發 ’、」層免又衣境(水分、氧)影響的保護膜的作用。 閘極型^本2特開2_-166716號公報之下 絕緣U 士、有發揮蝕刻阻擋層的作用的第2 、’、卜’在日本專购開2_·21612號公報之薄膜 ⑧ 6 201140850 ^O^Ulpif 電晶體中也設有防止通道部的半導體層的姓刻的通道保護 膜。這樣,在曰本專利特開2〇〇8_166716號公報、日本 利特開2GG9-21612號公報中,設有作為_阻擋層的層。 如上所述,蝕刻阻擋層形成於活性層之上,而且,源 極和錄也形絲雜層之上。目此,形歧姉祕時,' 必需對蝕刻阻擋層進行加工。 但是,如日本專利特開2008-166716號公報、日本專 利特開2〇09福12號公報所示,以非晶形峨、 形成⑽P讀層時’必需以乾式侧的方式進行加工、或 者在濕式侧的情況下必需使麟衝驗進行加工,仙 阻擋層的加工難以進行。 ^ 此外,於活性層上形成叫膜、叫膜作為侧阻擒 層時’活性層糾損傷。由於該損傷,活性層 生低電阻化,TFT的·㈣負值,或者TF ^ 的情況下未顯示TFT動作。 需要說㈣是’在高濃度的氧環境下,以減鍵法 (puttermg Method)形成作為蝕刻阻擋層的幻〇2膜 根據成膜條件,可以防止上述活性層的低電阻化。 :使可 Z低電阻化’底層的活性層之反向通道 子引^的縣,卿價所柯靠_,/值^大氧離 在曰本專利特開2009_141342號公報中,形成 層的組成相_低健濃度層,作為還發娜伽^作 的層。但是’根據形成源極和汲極時的㈣條件,該低載 201140850 【發明内容Λ 或者tft的可靠性降低。 提供22目的在於解決基於上述現有技術的問題點, 及i製造方法特性良好、且可#性也高的薄膜場效電晶體 場效到土述目的’本發明之第1方案提供-種薄膜 層、蝕:阻浐層於Ϊ板上至少形成有閘極、絕緣膜、活性 i源極以及沒極,於上述活性層上形成有 及上L、f=擒層’於上述侧阻擋層上形成有上述源極以 二’該薄膜場效電晶體的特徵在於:上述侧阻 :物播^3 Zn濃度小於2()%的In、Ga及Zn的非晶形氧 ’而上述活性層由包含In、Ga及Zn的非晶形氧 产物半導體構成,且Zn漠度高於上述银刻阻檔層的Zn濃 這裡’在本發明中,活性射的Zn濃度是指除氧原 以外的非晶形氧化物半導體膜中所含的Zn原子量濃 度。作為該Zn濃度的計算方法,可以採用·· Zn濃度=[非 =曰=氧化物半導體财所含的Zn原子量/(非晶形氧化物 2導體膜中所含的In原子量+非晶形氧化物半導體膜中所 3的Ga原子量+非晶形氧化物半導體膜中所含的Zn原子 量^]。關於活性層中的In濃度及Ga濃度,也與Zn濃度 ,定義相同’In濃度及Ga濃度也與Zn濃度囉地計算而 求得。 201140850 JOZUipif 需要說明的是’在本發明巾,_阻擋層中的Zn濃 度、In農度及Ga濃度與上述活性層❸Zn濃度、In濃度及201140850 JOZUipif VI. Description of the Invention: [Technical Field] The present invention relates to a thin film field effect transistor using an amorphous oxide semiconductor and a method for fabricating the same, and the method has a side P and a block A thin film field effect transistor having good layer and TTFT characteristics and high reliability, and a method of manufacturing the same. [Prior Art] At present, field effect transistors are widely used as semiconductor memory bulk circuits, high frequency signal amplification elements, and the like. Further, in the field effect transistor, a thin film field effect transistor (hereinafter also referred to as TFT) is used as a planar thin pattern of a liquid crystal display device (lcd), an electroluminescence display device (EL), and a field emission display (fED). A switching element such as a display device (Flat Panel Display: FPD). A TFT used in FPD is formed with an amorphous iridium film or a polycrystalline germanium film as an active layer on a glass substrate. The above-described TFT using an amorphous germanium film or a polycrystalline germanium film in the active layer requires a higher temperature thermal process. Therefore, although the glass substrate can be used for tft, it is difficult to use a resin substrate having low heat resistance. Further, for FPD, further reduction in thickness, weight reduction, and breakage resistance are required. It has been studied to use a lightweight and flexible resin substrate instead of a glass substrate. Therefore, development of a TFT using an amorphous oxide which can form a film at a low temperature has been actively carried out. A TFT using an amorphous oxide has a substrate, a gate electrode, a gate insulating film, a living oxide composed of an amorphous oxide semiconductor, a semiconductor layer, a source electrode, and a drain electrode (drainelectr〇). De), and forms a source and a drain on the active layer. In a TFT using an amorphous oxide, the source and the electrode are formed by the side conductive film, and in the case where the active layer does not form an etChing Stopperlayer which protects it, the source is formed. At the same time, the active layer may be etched at some time, and the characteristics of the TFT may be unstable. In the extreme case, the active layer is completely engraved, and sometimes the TFT characteristics are not displayed. In the above case, a TFT for the active layer layer 2 is provided (for example, refer to Japanese Patent Special: 20 (Japanese Unexamined Patent Publication No. Hei No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. 2009-141342). a second insulating film having a closed electrode, an ith insulating film as a film, an oxide semiconductor layer as a channel layer, an active layer, and a protective layer: the conductive layer includes a second conductive layer; In the case of a temperature-dependent detachment analysis, a channel-protected thin film transistor is disclosed in the Japanese Patent Publication No. 2009-21612, which is incorporated herein by reference. A gate is formed on the substrate, and a first gate insulating film is formed to cover the gate, and a second edge film is formed on the first gate insulating film. Further, the second gate insulating film is formed on the second insulating film. An oxide semiconductor film (corresponding to an active layer) is formed to cover the gate On the oxide semiconductor film, a channel protective film is formed in the _heavy (four) region, and the channel is prevented when the source semiconductor and the ruthenium channel protective film form a source and a drain. The semi-conducting part of the channel. The protective film of the channel is composed of oxidized stone (si0x), nitrite (siNJ yttrium (SiOxNy) (x>y), yttrium oxynitride (SiNx〇y), etc.: Japanese Patent Publication No. 2__141342 describes a thin grinding machine 2]= (TFT) having at least a gate electrode, an open film, an active layer of an amorphous oxide semiconductor, a source electrode and a gate electrode. The average root mean square of the interface of the transistor's active layer is less than 2 nm, the carrier depth of the active layer is greater than or equal to M0丨5/cm3, and the film thickness of the active layer is greater than or equal to 0.5 mn and less than 2 〇. In addition, the laminated layer has a low carrier concentration layer of amorphous === with a carrier concentration of less than or equal to ig1W. The protective film of the low carrier desert layer is free from the environment (moisture, oxygen) The role of the gate type ^本2 special open 2_-166716 under the insulation U, has the role of an etch barrier 2nd, ', and Bu' are purchased exclusively in Japan. The film of the publication No. 2_21612 is also provided with a channel protection film for preventing the semiconductor layer of the channel portion from being etched. In Japanese Laid-Open Patent Publication No. Hei. No. 2-166716, Japanese Laid-Open Patent Publication No. Hei No. 2 GG9-21612, a layer as a barrier layer is provided. As described above, an etching stopper layer is formed on the active layer, and the source and It is also recorded on the wire-like layer. In this case, when the shape is secret, the etching barrier must be processed. However, as disclosed in Japanese Laid-Open Patent Publication No. 2008-166716, Japanese Patent Application Publication No. Hei. No. Hei. In the case of the side, it is necessary to process the Lin test, and the processing of the fairy barrier layer is difficult to carry out. ^ In addition, when the film is formed on the active layer, and the film is called a side-stop layer, the active layer is damaged. Due to this damage, the active layer is reduced in resistance, and the (4) negative value of the TFT or TF ^ does not show the TFT operation. It is to be noted that (4) is that the illusion 2 film which is an etch barrier layer is formed by a sputtering method in a high-concentration oxygen atmosphere. According to the film formation conditions, the reduction in resistance of the active layer can be prevented. : The county that makes the Z low-resistance 'reverse channel of the active layer of the bottom layer', the price of the layer is composed of _, / value ^ large oxygen in the Japanese Patent Laid-Open No. 2009_141342 Phase _ low-concentration layer, as a layer that also produces Naga. However, according to the (four) condition when the source and the drain are formed, the low load 201140850 [the content of the invention or the reliability of the tft is lowered. The purpose of providing 22 is to solve the problem based on the above prior art, and the method of the i manufacturing method is good, and the method is also high, and the field effect of the thin field effect transistor is high. The first aspect of the present invention provides a thin film layer. Eclipse: the barrier layer is formed on the yoke plate at least with a gate electrode, an insulating film, an active source and a immersion electrode, and an upper L, f=擒 layer formed on the active layer is formed on the side barrier layer The above-mentioned source is characterized by: the above-mentioned side resistance: the amorphous oxygen of In, Ga and Zn having a concentration of less than 2% of Zn and the above active layer is composed of In containing An amorphous oxygen product semiconductor composed of Ga and Zn, and the Zn concentration is higher than the Zn concentration of the silver-etched barrier layer. In the present invention, the active Zn concentration refers to an amorphous oxide other than the oxygen source. The atomic concentration of Zn contained in the semiconductor film. As a method of calculating the Zn concentration, Zn concentration = [non = 曰 = amount of Zn atoms contained in the oxide semiconductor / (a amount of In atoms contained in the amorphous oxide 2 conductor film + amorphous oxide semiconductor) The amount of Ga atoms in the film 3 + the amount of Zn atoms contained in the amorphous oxide semiconductor film. The In concentration and the Ga concentration in the active layer are also the same as the Zn concentration, and the 'In concentration and the Ga concentration are also related to Zn. The concentration is determined by the calculation of the earth. 201140850 JOZUipif It should be noted that 'the concentration of Zn, the degree of Ino and Ga in the barrier layer of the present invention, the concentration of Zn in the active layer, and the concentration of In and

Ga Ί度的^義相同’在上述活性層的Zn濃度、In濃度及 Ga =度的定義、計算方法中,將“非晶形氧化物半導體” 換成“非晶形氧化物膜,,即可。 上述蝕刻阻擋層,較佳的是,In濃度大於等於40%、 Ga濃度大於等於37〇/〇。 此外,上述源極和上述汲極較佳的是由鉬或鉬合金構 成,特別佳的是銷。 此外,上述薄膜場效電晶體可以是頂部接觸型下閘極 (bottom-gate)結構或頂部接觸型上閘極(t〇p_gate)結構 中的任一種。 此外,上述活性層與上述蝕刻阻擋層較佳的是形狀相 同。 本發明之第2方案提供一種薄膜場效電晶體的製造方 法’所述薄膜場效電晶體於基板上至少形成有間極、絕緣 膜、活性層、蝕刻阻擋層、源極、以及汲極,並於上述活 性層上形成有上述钱刻阻擋層,於上述侧阻擔層上形成 有上述源極和上述汲極,該製造方法的特徵在於:具有使 用含有填酸、醋酸及石織的混酸水溶液作為姓刻液,'來形 成上述源極和上述汲極的製程,上述蝕刻阻擋層由含有Zn 濃度小於20%的ln、Ga&amp;Zn的非晶形氧化物構成,而上 述活性層由含有Ga及Zn的非晶形氧化物半導體構 成,且Zn濃度尚於上述钱刻阻擋層的zn濃度。 201140850 1 jJif* 這種情況下,上述银刻阻檔層較佳的是 於·、Ga航大於等於37%。 展度大於等 此外,上述混酸水溶液較佳的是含有7〇 質量%㈣酸、5質量%〜1G質量%的醋酸、 質量%的硝酸。 篁/。〜5 程之前 =下述製程:於上述基板上形成上述閘極的製程; 述基板上戦上賴賴使覆蓋上簡_製程;於丄 絕緣膜上形成上述活性層的製程;以及於上述活性層上形 較佳的疋,在形成上述源極和上述沒極的製 刻阻擋層的製程,在形成上述源極和上述沒極的 製,中’於上述基板上形成上述源極和上述汲極 一部分上述蝕刻阻擋層❶ 风復盈 之後此’在形成上述源極和上述汲極的製程 進仃於上縣板上形成賴層使覆蓋上舰刻阻撐 層、上述源極和上述汲極的製程。 田 ,且,作為另—種方式,較佳的是,在形成上述源極 製程之前,進行下述製程:於上述基板上形 的製程;以及於上述活性層上形成上糊 阻擒層的1程’在形成上述源極和上述沒極的製程中,於 士述基板上形成上述祕和上紐極,使覆蓋_部分上述 刻阻層’並且,在形成上述源私上述汲極的製程之 i卜述製程:於上述基板上形成上述絕緣膜,使覆 '&gt;· d阻播層、上述源極和上述汲極的製程;以及於 上述絕緣膜上形成上述閘極的製程。 201140850 J02Ulpif 亚且 ,較佳的疋,上述活性層與上述蝕 相同的形狀。此外,上述各剪敍赫社从β 的溫度下進行。各製程較佳的疋在小於等於200t 基,上述’根據本㈣,藉Μ含有&amp;濃度小於聊。 、n、a及Zn的非晶形氧化物構成侧阻擋層,與用含 ,In、Ga及Zn _晶形氧化物半導體構成的活性層的电 成相近,活性層不會受到損傷,也不會發生低電阻化。因 會變為負值、而顯示出良好的-動 =外,藉由使_阻彻為上述組成,相對於用於形 成源極以及祕的含有猶、_及猶的⑽水溶液, 可以使源極以及汲極與姓刻阻擔層的钱刻速度比變得足夠 大。因此’在形成源極和汲極時’活性層受到侧阻擔層 的保護,活性層不會受職傷。藉此,可以得到TFT特性 良好、且可靠性也高的薄膜場效電晶體。 並且’本發明之_阻擋層與活性層組成相近,可以 使用與活性層相同的_液進行钱刻。因此,與細阻擋 層中使用膜時相比,可以容易地對侧阻擋層進行加 工。而且,即使設有姓刻阻擋層,活性層也不會受到損傷, 也不會發生低電阻化,所以無需在高濃度的氧環境下進行 濺鍍’可以提供閾值偏移小、可靠性好的tft。 為讓本發明之上述特徵和優點能更明顯易僅,下文特 舉實施例,並配合所附圖式作詳細說明如下。 201140850 ouz-uipif 【實施方式】 以下,根據所附圖式所示的適合的實施方式,來 說明本發明之薄膜場效電晶體。 、、田 電二=明之第1實施方式所涉及的_場致 且古圖1所示的薄膜場效電晶體1。(以下只記作TFTl(n 用12、閘極14、閘絕緣膜16、發揮通道層的作 用的活性層18,刻阻擋層(以下記作Es層)^ 加、沒極2〇b、以及保護層22。該π·是主動=極 2對閘極14施加電a,以控制流人活性層18的 Z,、2Ga與汲極2%間的電流的功能1 !所二 10疋通常被稱作頂部接觸型下閘極結構的TFT。、 纽^TFT1()中於基板12之表面12a上形成有閘麵14, pm】板12之表面12a上形成有閘絕緣膜16,以覆蓋兮 纟_ 16之表面16a上形成有 = 於該活性層18之表面18a上設有即層3〇。 層18。 、壬祕ΐ閘絕緣膜16之表面16a上形成有源極20a,β覆莫 =層18之表面18a及Es層3〇之表面3〇a的一部八處 右盘兮於閘絕緣膜16之表面16a上,與源極20a相對:: =該源極20a形成對的沒極挪,以覆蓋活 $ 面收及ES層30之表面地的 = 空出州〇之表面3。•方, 之表面18a及ES層30之表面3〇a的一部分 成。形成有保護層22,以覆蓋源極咖、則30綠極 201140850 iWUipif 20b。 基板12沒有特別限疋。在基板i2中,例如可以使用 YSZ (氧錄穩定及玻料無機材料。此外,基板 12中還可以使用.聚對本一曱酸乙二g旨(pet)、聚對苯 二曱酸丁二醇酯(PBT)、聚萘二曱酸乙二酯(pEN)等 聚酯;聚苯乙烯、聚碳酸酯、聚醚砜、聚芳酯、烯丙基二 甘醇碳酸醋、聚醯亞胺、聚環烯烴、降冰片烯樹脂、聚^ 二氟*乙婦)等合成樹脂等有機材料。 基板12中使用有機材料時,較佳的是,耐熱性、尺寸 穩定性、耐溶劑性、電絕緣性、加工性、低通氣性、以及 低吸濕性等優異。 此外,基板12中使用玻璃時,為了減少來自玻璃的溶 出離子,較佳的是使用無鹼玻璃。需要說明的是,基板12 中使用鈉鈣玻璃(soda-lime glass)時,較佳的是使用施行 了二氧化梦等的隔離塗層(barrier coat)的納飼玻璃。 基板12還可以使用可撓性基板。該可撓性基板較佳的 是厚度為50 //m〜500 //m。這是由於,當可撓性基板的厚 度小於50/mi時’基板本身難以保持足夠的平坦性。若可 撓性基板的厚度超過500//m,則基板本身的可撓性變得不 足,難以自由彎曲基板本身。 作為可撓性基板’較佳的是透過率高的有機塑勝薄 膜。作為該有機塑膠薄膜,例如使用:聚對苯二曱酸乙二 酯(PET)、聚鄰苯二曱酸丁二醇酯(PBT)、聚萘二曱 酸乙二酯(PEN)等聚酯、聚笨乙烯、聚碳酸酯、聚醚硬、 13 201140850 36201pif 聚芳酯、聚醯亞胺、聚環烯烴、降冰片烯樹脂、或聚(氣 三氟乙烯)等的塑膠薄膜。 基板12中使用塑膠薄膜等時,如果電絕緣性不充分, 則形成絕緣層後使用。 基板12中,可以於其表面或反面設置防透濕層(阻氣 層)’以防止水蒸氣及氧的透過。 作為防透濕層(阻氣層)的材料’氮化矽、氧化矽等 無機物適合使用。防透濕層(阻氣層)例如可以利用高頻 濺鍍法等形成。 问’ 需要說明的是,使用熱塑性基板時,根據需要,更可 以設置硬塗層、下塗層等。 閘極14例如使用A卜Mo、Cr、Ta、Ti、Au或Ag等 金屬或它們的合金、Al-Nd、APC等合金、氧化錫、氧化 鋅、氧化銦、氧化銦錫(ITO)、氧化銦鋅(IZ〇)等金屬 氧化物導電物質、聚苯胺、聚噻吩、聚吡咯等有機導電性 化合物、或它們的混合物來形成。作為閘極14,從TFT 特性的可靠性馳點考慮,餘的是㈣MQ、MQ合金或 C”該閘極14的厚度例如為1〇nm〜1〇〇〇nm。 閘極14的形成方法沒有特別限定。閘極μ例如採用 印刷方式、塗佈方式等濕式方式、真空蒸錢法、減鍵法、 離子電鍍法(I〇n Plating methGd)等物理方式化學氣相 沈積(Chemical Vapor Deposition,CVD)、電漿 CVD 法 等化學方式等來形成。考慮到與構成閘極14的材料的適 性,從上述方法中選擇適當的形成方法。例如,使用Mo 201140850 362Ulpif 或M〇合金來形成閘極14時,採用DC濺鍍法。當閘極14 中使用有機導電性化合物時,利用濕式製膜法。 閘絕緣膜 16 中使用 Si〇2、SiNx、SiON、Al2〇3、Ys〇3、 Τ^〇5、或Hf〇2等絕緣體、或包括至少兩種以上上述化合 物的混晶化合物。此外,閘絕緣膜16中還可以使用聚醯亞 胺這樣的高分子絕緣體。 閘絕緣膜16的厚度較佳的是10nm〜10//m。為了減 少漏電流、提高電壓耐性,閘絕緣膜16必需達到一定程度 的膜厚。但是’若閘絕緣膜16的膜厚變厚,則導致TFT1〇 的驅動電壓升高。因此,當為無機絕緣體時,閘絕緣膜16 的厚度更佳的是50 nm〜1〇〇〇 nm ;當為高分子絕緣體時, 閘絕緣膜16的厚度更佳的是0 5 〜5芦m。 需要說明的是,在閘絕緣膜16中使用Hf〇2這樣的高 介電常數絕緣體時,即使膜厚變厚,也可以以低電壓驅動 電晶體,所以特別佳的是,在閘絕緣膜16中使用高介電常 數絕緣體。 關於源極2(^及汲極2〇b,例如使用A卜Mo、Cr、Ta、 Ti、Au或Ag等金屬或它們的合金、A1_Nd、Apc;等合金、 氧化錫、氧化鋅、氧化銦、氧化銦錫(ΠΌ)、氧化銦鋅 (IZO)等金屬氧化物導電物質來形成。 作為源極20a及没極2〇b,從TFT特性的可靠性以及 與ES層30的蝕刻速度比的觀點考慮’較佳的是使用M〇 或Mo合金,特別佳的是M〇。需要說明的是,源極2〇a 及汲極20b的厚度例如為1〇 nm〜1000 腿。 15 201140850 JO/Uipif 源極20a及汲極20b如下形成:形成上述的膜,再利 用光刻法(photolithography)於該臈上形成光阻圖案,之 後蝕刻該膜,即可形成。 、 需要說明的是,構成源極20a及汲極2〇b的上述膜的 形成方法沒有特別限定《上述膜例如採用印刷方式、塗佈 方式等濕式方式、真空蒸鍍法、濺鍍法、離子電鍍法等物 理方式、CVD、電漿CVD法等化學方式等來形成。 例如’使用Mo或Mo合金來形成源極2〇a及汲極2〇b 時,例如利用DC濺鍍法形成Mo膜或Mo合金膜。 然後,利用光刻法,於Mo膜或合金膜上形成光 阻圖案’再利用蝕刻液蝕刻Mo膜或Mo合金膜,以形成 源極20a及汲極20b。 作為触刻液,使用含有鱗酸、醋酸及頌酸的混酸水溶 液。該混酸水溶液例如含有7〇質量%〜75質量%的峨酸、 5質量%〜1〇質量%的醋酸、i質量%〜5質量%的硝酸, 剩餘部分為水。 活性層18由含有In、Ga及Zn的非晶形氧化物半導 體構成。活性層18的Zn濃度高於ES層30的Zn濃度。 在活性層18中’當以除氧以外的原子量全體為i〇〇〇/0 時’較佳的是,Zn濃度(Zn/(Zn+In+Ga))為20%〜50%。 ES層30保護活性層18’使活性層18在形成源極20a 及汲極20b時不被蝕刻。該ES層30由含有In、Ga及Zn 的非晶形氧化物構成。 在ES層30中,當以除氧以外的原子量全體為1〇〇〇/0 201140850 JDZUipif 時,Zn濃度(Zn/ (Zn+In+Ga))小於2〇%。在該Es層 30中,進一步較佳的是,In濃度(In/ (Zn+In+Ga))大 於等於40%、Ga濃度(Ga/(Zn+In+Ga))大於等於37%。 如上所述’這裡所說的活性層18及挞層3〇中的Zn 》農度疋心除氧原子以外的非晶形氧化物半導體膜或非晶 形氧化物膜中所含的Zn原子量濃度。 曰 作為活性層18及ES層30中的Zn濃度的計算方法, T以採用· Zn濃度=[非晶形氧化物半導體膜(非晶形氧 化物膜)中所含的Zn原子量/(非晶形氧化物半導體膜(非 晶形氧化物膜)中所含的In原子量+非晶形氧化物半導體 膜(非晶形氧化物膜)中所含的Ga原子量+非晶形氧化物 半導體膜(非晶形氧化物膜)中所含的Zn原子量)]。關 於活性層18及ES層30中的In濃度及Ga濃度,也與Zn 濃度的定義相同,In濃度及Ga濃度也與Zn濃度同樣計算 而求得。 需要說明的是,非晶形氧化物半導體膜(非晶形氧化 物膜)中的Zn原子量、ln原子量及Ga原子量使用藉由 XRF (螢光X射線分析)而求得的值。 ES層30中的Zn濃度、In濃度及Ga濃度,可以是整 個劭層30中的濃度,也可以是ES層30與源極20a及汲 極20b接觸的表面3〇a部分、或上面的濃度。 需要說明的是,關於ES層30的Zn濃度,較佳的是 大於等於5%而小於20%。這是由於’ Zn濃度小於5%時, 氧化物半導體膜的非晶形性變差,容易發生結晶化的緣故。 17 201140850 302Ulpif 關於ES層30的In濃度,較佳的是40%〜58%,而關 於ES層30的Ga濃度,較佳的是37%〜55%。 使用上述混酸水溶液作為蝕刻液,形成由Mo或Mo 合金製成的源極20a及没極20b時,ES層30也與姓刻液 接觸。此時,若ES層30對蝕刻液不具有耐性,則ES層 30也被蝕刻。因此’在本發明中,降低ES層3〇相對於混 酸水溶液的蝕刻速率,使ES層3〇不被蝕刻。即,關於挞 層30 ’使其與構成源極2〇a及汲極2〇b的Mo的蝕刻速率 比(選擇比)足夠高。 在本發明中,若ES層30的Zn濃度小於20%,則如 圖2所不,相對於含有磷酸、醋酸及硝酸的混酸水溶液, 其與鉬的蝕刻速率比超過1〇。因此,在形成源極2〇a及汲 極20b時,活性層18的蝕刻得到抑制, 若ES層30的Ga濃度大於等於37%,則如圖3所示, 相對於含有魏、醋酸及概的混酸水溶液,其與钥的钮 ^速率比超過10。因此,在形成源極20a及汲極2〇b時, 妨層30的蝕刻得到抑制。 即使ES層30的ιη濃度大於等於4〇%,如圖3所示, 2於含有雜、醋酸及猶的混酸水溶液,其與钥的触 率比也超過1〇。因此,在形成源極2〇a及沒極2〇b時, 邱層30的蝕刻得到抑制。 戶,丨^樣在本發明中’調節ES層30的組成,使Zn濃 極m二0丨以使相對於混酸水溶液的、與源極20a及没 、刻速率比足夠高、例如超過10。藉此,在形成 18 ⑧ 201140850The same applies to the definition of the Zn concentration, the In concentration, and the Ga = degree in the active layer, and the "amorphous oxide semiconductor" is replaced by the "amorphous oxide film." Preferably, the etching barrier layer has an In concentration of 40% or more and a Ga concentration of 37 Å/〇. Further, the source and the drain are preferably made of molybdenum or a molybdenum alloy, and particularly preferably Further, the above-mentioned thin film field effect transistor may be any one of a top contact type bottom-gate structure or a top contact type upper gate (t〇p_gate) structure. Further, the above active layer and the above etching Preferably, the barrier layer has the same shape. The second aspect of the present invention provides a method for fabricating a thin film field effect transistor. The thin film field effect transistor has at least a via, an insulating film, an active layer, and an etch barrier formed on the substrate. a layer, a source, and a drain, and the money encapsulating layer is formed on the active layer, and the source and the drain are formed on the side resist layer, and the manufacturing method is characterized in that it has a use-containing fill And an aqueous solution of acetic acid and stone mixed acid as a surname, 'to form the source and the above-mentioned drain, the etching barrier layer is composed of an amorphous oxide containing ln, Ga&amp;Zn having a Zn concentration of less than 20%. The active layer is composed of an amorphous oxide semiconductor containing Ga and Zn, and the Zn concentration is still at the zn concentration of the above-mentioned barrier layer. 201140850 1 jJif* In this case, the silver-etched barrier layer is preferably The gas mixture is greater than or equal to 37%. The exhibitivity is greater than or equal to the above. Further, the mixed acid aqueous solution preferably contains 7% by mass of (tetra) acid, 5% by mass to 1% by mass of acetic acid, and % by mass of nitric acid. Before the process of the following steps: the process of forming the gate on the substrate; the process of forming the substrate on the substrate; the process of forming the active layer on the germanium insulating film; and the active layer Preferably, the top surface is formed by forming the source and the gateless forming layer, and forming the source and the drain on the substrate in the process of forming the source and the gate. Part of the above eclipse After the encapsulation layer ❶ wind replenishing, the process of forming the source and the above-mentioned drain electrode forms a layer on the upper plate to cover the barrier layer, the source and the drain. And, as another method, preferably, before the forming of the source process, the following process is performed: a process formed on the substrate; and a paste-forming layer formed on the active layer In the process of forming the source and the above-mentioned electrodeless, the above-mentioned secret upper pole is formed on the substrate, so as to cover the portion of the above-mentioned etched layer 'and in the process of forming the source of the above-mentioned bungee The process of forming the insulating film on the substrate to cover the underlayer, the source and the drain, and the process of forming the gate on the insulating film. 201140850 J02Ulpif, and preferably, the active layer has the same shape as the above-mentioned etch. In addition, each of the above-mentioned scissels is carried out at a temperature of β. The preferred enthalpy of each process is less than or equal to 200t base, and the above-mentioned according to (4), the concentration of &amp; The amorphous oxides of n, a and Zn constitute a side barrier layer, which is similar to the electroforming of an active layer composed of an In, Ga and Zn-crystalline oxide semiconductor, and the active layer is not damaged or occurred. Low resistance. Since it becomes a negative value and shows good-movement=, by making _ the above-mentioned composition, the source can be made with respect to the (10) aqueous solution containing yttrium, y, and yue for forming the source and the secret. The speed of the poles and the bungee and the surnames of the engraved layer are sufficiently large. Therefore, the active layer is protected by the side resist layer when the source and the drain are formed, and the active layer is not injured. Thereby, a thin film field effect transistor having excellent TFT characteristics and high reliability can be obtained. Further, the barrier layer of the present invention is similar in composition to the active layer, and can be etched using the same liquid as the active layer. Therefore, the side barrier layer can be easily processed as compared with when the film is used in the fine barrier layer. Moreover, even if the surname is provided with a barrier layer, the active layer is not damaged and the resistance is not reduced, so that it is not necessary to perform sputtering in a high concentration of oxygen environment, which can provide a small threshold shift and good reliability. Tft. The above described features and advantages of the present invention will become more apparent and obvious. 201140850 ouz-uipif [Embodiment] Hereinafter, a thin film field effect transistor of the present invention will be described based on a suitable embodiment shown in the drawings. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; (The following is only referred to as TFT1 (n, 12, gate 14, gate insulating film 16, active layer 18 functioning as a channel layer, engraved barrier layer (hereinafter referred to as Es layer) ^, immersed 2 〇 b, and The protective layer 22. The π· is active = the pole 2 applies an electric a to the gate 14 to control the function of the current between the Z, 2Ga and the drain 2% of the active layer 18; A TFT called a top contact type lower gate structure, and a gate surface 14a is formed on the surface 12a of the substrate 12, and a gate insulating film 16 is formed on the surface 12a of the board 12 to cover the germanium. The surface 16a of the 纟16 is formed with a layer 3 on the surface 18a of the active layer 18. The layer 18 is formed on the surface 16a of the insulating film 16 to form a source electrode 20a. = a surface 18a of the layer 18 and a portion 8 of the surface 3〇a of the Es layer 3〇 are rightly wound on the surface 16a of the gate insulating film 16, opposite to the source 20a:: = the source 20a forms a pair The pole is moved to cover the surface of the surface of the ES layer 30 and the surface of the surface of the ES layer 30. The surface 18a and the surface of the surface layer 3a of the ES layer 30 are formed. A protective layer 22 is formed. To cover the source 30 green LED 201140850 iWUipif 20b. The substrate 12 is not particularly limited. In the substrate i2, for example, YSZ (oxygen recording and glass inorganic materials can be used. In addition, the substrate 12 can also be used. Polyesters such as pet, polybutylene terephthalate (PBT), polyethylene naphthalate (pEN), polystyrene, polycarbonate, polyethersulfone, polyaryl An organic material such as a synthetic resin such as ester, allyl diglycol carbonate, polyimine, polycycloolefin, norbornene resin, or polydifluoroethylene/ethene. When an organic material is used for the substrate 12, it is preferably It is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulating properties, workability, low air permeability, and low moisture absorption. Further, when glass is used for the substrate 12, in order to reduce eluted ions from the glass, It is preferable to use an alkali-free glass. In the case where soda-lime glass is used for the substrate 12, it is preferable to use a barrier coat which is subjected to a dioxide dream or the like. Feed glass. The substrate 12 can also use a flexible substrate. The thickness of the substrate is preferably from 50 //m to 500 //m. This is because when the thickness of the flexible substrate is less than 50/mi, it is difficult to maintain sufficient flatness of the substrate itself. When the thickness exceeds 500/m, the flexibility of the substrate itself is insufficient, and it is difficult to freely bend the substrate itself. The flexible substrate is preferably an organic plastic film having a high transmittance. For example, the organic plastic film is used. Use: Polyethylene terephthalate (PET), polybutylene phthalate (PBT), polyethylene naphthalate (PEN) and other polyesters, polystyrene, polycarbonate Ester, polyether hard, 13 201140850 36201pif polyarylate, polyimine, polycycloolefin, norbornene resin, or poly (gas trifluoroethylene) plastic film. When a plastic film or the like is used for the substrate 12, if the electrical insulating property is insufficient, an insulating layer is formed and used. In the substrate 12, a moisture-proof layer (gas barrier layer) may be provided on the surface or the reverse surface to prevent the passage of water vapor and oxygen. As the material of the moisture-proof layer (gas barrier layer), an inorganic substance such as tantalum nitride or cerium oxide is suitably used. The moisture-proof layer (gas barrier layer) can be formed, for example, by a high-frequency sputtering method or the like. Q. It should be noted that when a thermoplastic substrate is used, a hard coat layer, a lower coat layer, or the like may be provided as needed. For the gate electrode 14, for example, a metal such as A, Mo, Cr, Ta, Ti, Au, or Ag or an alloy thereof, an alloy such as Al-Nd or APC, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), or oxidation is used. A metal oxide conductive material such as indium zinc (IZ〇), an organic conductive compound such as polyaniline, polythiophene or polypyrrole, or a mixture thereof is formed. As the gate 14, considering the reliability of the TFT characteristics, the remainder is (4) MQ, MQ alloy or C". The thickness of the gate 14 is, for example, 1 〇 nm to 1 〇〇〇 nm. The formation method of the gate 14 is not The gate electrode μ is, for example, a wet method such as a printing method or a coating method, a vacuum vapor deposition method, a subtractive bonding method, or an ion plating method (I〇n Plating methGd), or a chemical vapor deposition (Chemical Vapor Deposition, It is formed by a chemical method such as CVD) or plasma CVD. Considering the suitability of the material constituting the gate 14, an appropriate formation method is selected from the above methods. For example, a gate is formed using Mo 201140850 362Ulpif or M〇 alloy. At 14 o'clock, DC sputtering is used. When an organic conductive compound is used in the gate 14, a wet film formation method is used. Si 〇 2, SiN x , SiON, Al 2 〇 3, Ys 〇 3 are used in the gate insulating film 16. An insulator such as 〇5, or Hf〇2, or a mixed crystal compound including at least two or more of the above compounds. Further, a polymer insulator such as polyimide may be used for the gate insulating film 16. The thickness is preferably 10 nm~ 10/m. In order to reduce leakage current and improve voltage resistance, the gate insulating film 16 must have a certain thickness. However, if the film thickness of the gate insulating film 16 becomes thick, the driving voltage of the TFT1 turns is increased. When it is an inorganic insulator, the thickness of the gate insulating film 16 is more preferably 50 nm to 1 〇〇〇 nm; and when it is a polymer insulator, the thickness of the gate insulating film 16 is more preferably 0 5 〜5 芦 m. In the case where a high dielectric constant insulator such as Hf 〇 2 is used for the gate insulating film 16, the transistor can be driven at a low voltage even if the film thickness is increased. Therefore, it is particularly preferable that the gate insulating film 16 is provided. A high dielectric constant insulator is used. For the source 2 (^ and the drain 2〇b, for example, a metal such as A, Mo, Cr, Ta, Ti, Au, or Ag or an alloy thereof, A1_Nd, Apc, or the like is used. It is formed of a metal oxide conductive material such as tin oxide, zinc oxide, indium oxide, indium tin oxide (Indium Oxide) or indium zinc oxide (IZO). As the source electrode 20a and the electrodeless electrode 2b, reliability of the TFT characteristics and From the viewpoint of the etching rate ratio of the ES layer 30, it is preferable to use M〇 or Mo alloy, What is more preferable is M. It should be noted that the thickness of the source 2〇a and the drain 20b is, for example, 1〇nm~1000 leg. 15 201140850 JO/Uipif Source 20a and drain 20b are formed as follows: The film is formed by forming a photoresist pattern on the crucible by photolithography, and then etching the film to form the film. The method of forming the film constituting the source 20a and the drain 2〇b is described. The film is not particularly limited, and is formed by, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD. For example, when the source 2a and the drain 2〇b are formed using Mo or a Mo alloy, for example, a Mo film or a Mo alloy film is formed by a DC sputtering method. Then, a photoresist pattern is formed on the Mo film or the alloy film by photolithography, and the Mo film or the Mo alloy film is etched by an etching solution to form a source electrode 20a and a drain electrode 20b. As the contact liquid, a mixed acid aqueous solution containing scalylic acid, acetic acid and citric acid is used. The mixed acid aqueous solution contains, for example, 7〇% by mass to 75% by mass of citric acid, 5% by mass to 1% by mass of acetic acid, and 1% by mass to 5% by mass of nitric acid, and the remainder is water. The active layer 18 is composed of an amorphous oxide semiconductor containing In, Ga, and Zn. The Zn concentration of the active layer 18 is higher than the Zn concentration of the ES layer 30. In the active layer 18, when the total atomic weight other than oxygen is i 〇〇〇 / 0, it is preferable that the Zn concentration (Zn / (Zn + In + Ga)) is 20% to 50%. The ES layer 30 protects the active layer 18' so that the active layer 18 is not etched when the source 20a and the drain 20b are formed. The ES layer 30 is composed of an amorphous oxide containing In, Ga, and Zn. In the ES layer 30, when the total atomic weight other than oxygen is 1 〇〇〇 / 0 201140850 JDZUipif, the Zn concentration (Zn / (Zn + In + Ga)) is less than 2%. In the Es layer 30, it is further preferred that the In concentration (In / (Zn + In + Ga)) is greater than or equal to 40% and the Ga concentration (Ga / (Zn + In + Ga)) is 37% or more. As described above, the concentration of Zn atom contained in the amorphous oxide semiconductor film or the amorphous oxide film other than the Zn in the active layer 18 and the ruthenium layer 3 这里.曰 As a method of calculating the Zn concentration in the active layer 18 and the ES layer 30, T is used in the Zn concentration = [amount of Zn atoms contained in the amorphous oxide semiconductor film (amorphous oxide film) / (amorphous oxide) The amount of In atoms contained in the semiconductor film (amorphous oxide film) + the amount of Ga atoms contained in the amorphous oxide semiconductor film (amorphous oxide film) + the amorphous oxide semiconductor film (amorphous oxide film) The amount of Zn atoms contained)). The In concentration and the Ga concentration in the active layer 18 and the ES layer 30 are also the same as the definition of the Zn concentration, and the In concentration and the Ga concentration are also calculated in the same manner as the Zn concentration. In addition, the amount of Zn atoms, the amount of ln atoms, and the amount of Ga atoms in the amorphous oxide semiconductor film (amorphous oxide film) are values obtained by XRF (fluorescence X-ray analysis). The Zn concentration, the In concentration, and the Ga concentration in the ES layer 30 may be the concentration in the entire ruthenium layer 30, or may be the surface 3 〇 a portion of the ES layer 30 in contact with the source 20a and the drain 20b, or the concentration above. . It is to be noted that the Zn concentration of the ES layer 30 is preferably 5% or more and less than 20%. This is because when the Zn concentration is less than 5%, the amorphous nature of the oxide semiconductor film is deteriorated, and crystallization tends to occur. 17 201140850 302Ulpif The In concentration of the ES layer 30 is preferably 40% to 58%, and the Ga concentration of the ES layer 30 is preferably 37% to 55%. When the above mixed acid aqueous solution is used as an etching liquid to form the source 20a and the nonpolar electrode 20b made of Mo or a Mo alloy, the ES layer 30 is also in contact with the surname. At this time, if the ES layer 30 is not resistant to the etching liquid, the ES layer 30 is also etched. Therefore, in the present invention, the etching rate of the ES layer 3 〇 with respect to the aqueous mixed acid solution is lowered, so that the ES layer 3 〇 is not etched. That is, the etch rate ratio (selection ratio) of the ruthenium layer 30' to Mo constituting the source electrode 2a and the drain electrode 2b is sufficiently high. In the present invention, if the Zn concentration of the ES layer 30 is less than 20%, as shown in Fig. 2, the etching rate with molybdenum is more than 1 Å with respect to the aqueous mixed acid solution containing phosphoric acid, acetic acid and nitric acid. Therefore, when the source electrode 2a and the drain electrode 20b are formed, the etching of the active layer 18 is suppressed. If the Ga concentration of the ES layer 30 is 37% or more, as shown in FIG. 3, it is relative to containing Wei, acetic acid and The mixed acid aqueous solution has a button ratio of more than 10 to the key. Therefore, when the source electrode 20a and the drain electrode 2b are formed, the etching of the layer 30 is suppressed. Even if the ip concentration of the ES layer 30 is 4% or more, as shown in Fig. 3, the ratio of the contact ratio with the key in the mixed acid solution containing impurities, acetic acid and helium exceeds 1 〇. Therefore, when the source 2a and the gate 2b are formed, the etching of the layer 30 is suppressed. In the present invention, the composition of the ES layer 30 is adjusted so that the Zn concentration m is 20,000 Å so as to be sufficiently high, for example, more than 10, with respect to the mixed acid aqueous solution to the source 20a and the etch rate. With this, in the formation of 18 8 201140850

Jo/υιριί 源極20a及汲極20b時,可以抑制ES層30的蝕刻,可以 充分發揮作為蝕刻阻擋層的功能。 需要說明的是,關於ES層30的組成,藉由使ζιι濃 度小於20%,並且使ιη濃度大於等於4〇%、使Ga濃度大 於等於37%,可以進一步充分提高相對於混酸水溶液的、 與源極20a及沒極20b的钱刻速率比。藉此,可以更確實 地抑制ES層30的蝕刻。 保護層22是為了保護活性層18、ES層30、源極20a 及汲極20b不因大氣而劣化、為了與在電晶體上製作的電 子器件絕緣而形成的。 本實施方式之保護層22,例如在氮氣環境下對感光性 丙烯酸樹脂進行加熱硬化處理而形成。 保護層22除了使用上述感光性丙烯酸樹脂以外,還可 以使用·例如 MgO、SiO、Si02、Al2〇3、GeO、NiO、CaO、 BaO、Fe2〇3、γ2〇3、叫〇3或Ti〇2等金屬氧化物;別队、 SiNxOy等金屬氮化物;MgI?2、UF、Α1Ι?3或CaF2等金屬氟 化物,聚乙烯、聚丙烯、聚曱基丙烯酸曱酯、聚醢亞胺、 聚脲、聚四氟乙烯、聚氣三氟乙烯、聚二氣二氟乙烯、氯 一氟乙婦與一氣二氟乙烯的共聚物、使包含四氟乙稀和至 少一種共聚單體的單體混合物共聚而得到的共聚物、共聚 主鏈上具有環狀結構的含氟共聚物、吸水率大於等於1% 的吸水性物質、吸水率小於等於0.1%的防濕性物質等。 ,濩層22的形成方法沒有特別限定。保護層22例如 可以採用真空蒸鑛法、濺鐘法、反應性濺鑛法、MBE (分 201140850 JOXVipif 子,線外延)*、簇離子束法、離子麵法 (尚頻激發離子電鍍法)、電漿CVD法、雷射/ ^ σ / 熱=法、氣體源CVD法、塗佈法、印刷法、或轉印^ 接下來,根據圖4a〜圖4c,對本實施方式 的製造方法進行說明。 首先,作為基板12,例如準備玻璃基板。 、接下來,利用DC濺鍍法,於基板12之表面i2a 成例如厚度為4〇 nm的鉬膜(沒有圖示)。 接下來,於鉬膜上形成光阻膜(沒有圖示), 刻法形成光阻圖案。 』用光 接下來,例如使用含有70質量%〜75質量%的磷酸、 5質量%〜1〇質量%的醋酸、i質量%〜5質量%的确酸、 且剩餘部分由水構成的混酸水溶液,以蝕刻鉬膜。之 剝離光阻膜。藉此,如圖4a所示,於基板12之表面ΐ2’&amp; 上形成由鉬製成的閘極14。 接下來,利用RF濺鍍法,於基板12之表面12a的整 個面上,例如以200 rnn的厚度形成作為閘絕緣膜16的 Sl〇2膜(沒有圖示),以覆蓋閘極14。 接下來,利用DC濺鍍法,於Si〇2膜的表面以例如3〇 nm的厚度形成作為活性層18的第UGZ〇膜(沒有圖示 接下來’利用DC濺鏡法,在壓力為〇.37Pa的條件下, 於第1 IGZO膜的表面以例如2〇nm的厚度形成作為Es層 30的第2 IGZO膜(沒有圖示)。這樣,於基板12上依序 連續形成Si〇2膜、第1IGZO膜及第2IGZO膜。 201140850 iO^UIpif 接下來,於第2IGZO膜上形成光阻膜(沒有圖示)。 然後’利用光刻法形成光阻圖案。之後,例如使用5%的 草酸水來钱刻第2 IGZO膜和第i IGZ〇膜。之後,剝離光 阻膜。藉此,形成活性層18。 接下來,於第2IGZO膜上形成光阻膜(沒有圖示)。 然後,利帛光刻法形成光阻圖案。之後,例如使用5%的 草酉文水,來隻姓刻第2 IGZO膜❶之後,剝離光阻膜。藉 此,形成ES層30。 再次於Si〇2膜/第iIGZ〇膜/第2IGZ〇膜上形成光阻 膜(沒有圖不)’利用光刻法形成光阻圖案。然後,例如 使用緩衝氟酸來蝕刻Si〇2膜。之後,剝離光阻膜。如此操 作’如圖4b所示,形成ES層3〇、活性層18及閘絕緣膜 16的圖案。 需要說明的是,構成活性層18的第1 IGZO膜包含When Jo/υιριί source 20a and drain 20b, the etching of the ES layer 30 can be suppressed, and the function as an etching stopper can be sufficiently exhibited. It is to be noted that, with respect to the composition of the ES layer 30, by making the concentration of ζι 1 less than 20%, and making the concentration of ηη4% or more and the concentration of Ga of 37% or more, the aqueous solution with respect to the mixed acid can be further sufficiently improved. The source engraving rate ratio of the source 20a and the poleless 20b. Thereby, the etching of the ES layer 30 can be more surely suppressed. The protective layer 22 is formed to protect the active layer 18, the ES layer 30, the source 20a, and the drain 20b from deterioration by the atmosphere, and is insulated from the electronic device fabricated on the transistor. The protective layer 22 of the present embodiment is formed, for example, by heat-hardening a photosensitive acrylic resin under a nitrogen atmosphere. In addition to the above-mentioned photosensitive acrylic resin, the protective layer 22 may be, for example, MgO, SiO, SiO 2 , Al 2 〇 3, GeO, NiO, CaO, BaO, Fe 2 〇 3, γ 2 〇 3, 〇 3 or Ti 〇 2 Metal oxides; metal nitrides such as SiNxOy; metal fluorides such as MgI?2, UF, Α1??3 or CaF2, polyethylene, polypropylene, decyl acrylate, polyimine, polyurea , a copolymer of polytetrafluoroethylene, polygas trifluoroethylene, polydifluoroethylene fluoride, chlorofluoroethylene and monofluoroethylene, copolymerization of a monomer mixture comprising tetrafluoroethylene and at least one comonomer The obtained copolymer, a fluorinated copolymer having a cyclic structure in a copolymerization main chain, a water-absorbent substance having a water absorption of 1% or more, a moisture-proof substance having a water absorption of 0.1% or less, or the like. The method of forming the ruthenium layer 22 is not particularly limited. The protective layer 22 can be, for example, a vacuum distillation method, a sputtering clock method, a reactive sputtering method, an MBE (201140850 JOXVipif sub-line extension)*, a cluster ion beam method, an ion surface method (still frequency-excited ion plating method), Plasma CVD method, laser / ^ σ / heat = method, gas source CVD method, coating method, printing method, or transfer ^ Next, the manufacturing method of the present embodiment will be described with reference to Figs. 4a to 4c. First, as the substrate 12, for example, a glass substrate is prepared. Next, a molybdenum film (not shown) having a thickness of 4 Å is formed on the surface i2a of the substrate 12 by DC sputtering. Next, a photoresist film (not shown) is formed on the molybdenum film to form a photoresist pattern. In the light, for example, a mixed acid solution containing 70% by mass to 75% by mass of phosphoric acid, 5% by mass to 1% by mass of acetic acid, i% by mass to 5% by mass of acid, and the balance of water is used. To etch molybdenum film. Strip the photoresist film. Thereby, as shown in Fig. 4a, a gate electrode 14 made of molybdenum is formed on the surface ΐ2'&amp; of the substrate 12. Next, a Sl 〇 2 film (not shown) as a gate insulating film 16 is formed on the entire surface of the surface 12a of the substrate 12 by RF sputtering, for example, to a thickness of 200 rnn to cover the gate electrode 14. Next, the UGZ ruthenium film as the active layer 18 is formed on the surface of the Si 〇 2 film by a DC sputtering method, for example, at a thickness of 3 〇 nm (not shown in the following 'Using the DC sputtering method, the pressure is 〇 Under the condition of .37 Pa, a second IGZO film (not shown) as the Es layer 30 is formed on the surface of the first IGZO film at a thickness of, for example, 2 Å. Thus, Si 2 film is continuously formed on the substrate 12 in this order. The first IGZO film and the second IGZO film. 201140850 iO^UIpif Next, a photoresist film (not shown) is formed on the second IGZO film. Then, a photoresist pattern is formed by photolithography. Thereafter, for example, 5% oxalic acid is used. The second IGZO film and the i-th IGZ film are engraved with water, and then the photoresist film is peeled off, thereby forming the active layer 18. Next, a photoresist film (not shown) is formed on the second IGZO film. The photoresist pattern is formed by a photolithography method. Thereafter, for example, 5% of the sputum water is used, and after the second IGZO film is implanted, the photoresist film is peeled off. Thereby, the ES layer 30 is formed. 2 film / iIGZ 〇 film / 2IGZ 〇 film formed on the photoresist film (not shown) 'Photolithography to form a photoresist Then, for example, buffered hydrofluoric acid is used to etch the Si〇2 film. Thereafter, the photoresist film is peeled off. Thus, as shown in Fig. 4b, a pattern of the ES layer 3, the active layer 18, and the gate insulating film 16 is formed. It is to be noted that the first IGZO film constituting the active layer 18 contains

In、Ga及Zn ’且Zn濃度大於等於20%,高於ES層30 的Zn濃度。 構成ES層30的第2 IGZO膜包含In、Ga及Zn,且 Zn濃度小於20% ’較佳的是,In濃度大於等於4〇%、^ 濃度大於等於37%。 此外,利用DC賤錢法形成第1 IGZO膜、第2 IGZO 膜時,使用預先已調整組成的乾材,使達到上述第丄丨 膜、第2ΚΪΖΟ膜的各組成。 〇 接下來,利用DC濺鍍法,在壓力為〇·37 pa的條件下, 於閘絕緣膜16之表面!6a上以1〇〇 nm的厚度形成作為源 21 201140850 ίοζυιριίIn, Ga, and Zn' and the Zn concentration is 20% or more, which is higher than the Zn concentration of the ES layer 30. The second IGZO film constituting the ES layer 30 contains In, Ga, and Zn, and the Zn concentration is less than 20%. Preferably, the In concentration is 4% by mass or more, and the concentration is 37% or more. Further, when the first IGZO film and the second IGZO film are formed by the DC saving method, the dry materials having the composition adjusted in advance are used to achieve the respective compositions of the second film and the second film. 〇 Next, using the DC sputtering method, under the condition of a pressure of 〇·37 pa, on the surface of the gate insulating film 16! 6a is formed as a source with a thickness of 1〇〇 nm 21 201140850 ίοζυιριί

以覆蓋ES 極2〇a及祕20b的例如_ (沒有圖示) 層30及活性層18。 u t下來1’於鉬膜上形成光阻膜(沒有圖示),與閘極 二用光刻法形成光阻圖案。之後,例如使用含有 。75質量%的碌酸、5質量%〜10質量%的醋酸、 〜5 f4%的硝酸'且剩餘部分由水構成的混酸水 :液^刻贿。需要.朗的是,_較佳岐在触刻時 的混酸水溶_液溫小料於35ΐ下進行,而且,更佳的 ^在,溫為饥〜25。(:下進行_。侧後,剝離光阻 。藉此,如圖4c所示,得到以覆蓋挞層 30之表面30a ,心及活性層18之表面18a的一部分的方式形成的源 極20a及汲極20b。 接下來’例如塗佈感光性丙稀酸樹脂,以覆蓋砂層 30、源極20a及汲極20b。然後,利用光刻法形成丙職 樹脂膜®案。需要朗的是,_戦時的丙烯酸樹脂的 硬化條件例如為溫度180〇c、3〇分鐘。 接下來,在氮氣環境下、l8(rc的溫度下,進行!小時 的後期退火(post anneal)。如上操作,可以形 示的TFT10。 在本實施方式之TFT10中,即使於活性層18之表面 18a上設置保護活性層18使其不被蝕刻的Es層扣,因既 層30與活性層18的組成相近,所以活性層18不會受到損 傷,也不會發生低電阻化。因此,TFT1G的_不會變為 負值,而是顯示出良好的TFT動作。 22 ⑧ 201140850 302Ulpif 此外,使相對於蝕刻液的源極2〇a及汲極2%與es 層30的蝕刻速率比高達1〇或1〇以上,提高挞層邛的 蝕刻耐性。藉此’在形成源極20a及汲極20b時的蝕刻時, 減少底層的ES層30的蝕刻,不會給底層的活性層18帶 來任何損傷。因此’可以於面内均勻地形成顯示出良好的 TFT特性、且可靠性也高的TFT1〇。 並且,在TFT10的製造製程中,ES層3〇可以利用與 活性層18相同的蝕刻液進行蝕刻,與使用Si〇2膜作為蝕 刻阻擋層時相比’可以容易地對ES層3〇進行加工。而且, 即使設置ES層30,活性層18也不會受到損傷、也不會發 生低電阻化,所以無需在高濃度的氧環境下利用濺鍍法形 成ES層,可以提供閾值偏移小、可靠性好的τρΓ。 此外,在TFT10的製造製程中,光阻膜的形成、光阻 圖案的形成、各種膜的形成、以及保護層22的形成均在溫 度小於等於200°C下進行。這樣,由於在小於等於2〇〇。^的 溫度下進行各製程,所以基板12中可以使用耐熱性低的、 例如PET、PEN等。由於這些PET、PEN具有可撓性,所 以可以得到具有可撓性的電晶體。 接下來,對第2實施方式進行說明。 圖5是繪示本發明之第2實施方式所涉及的薄膜場效 電晶體的模式截面圖。 需要說明的是,在本實施方式中,與圖1所示的第1 實施方式之TFT10相同的構成物上帶有相同的符號,其詳 細說明則省略。 23 201140850 與圖1所示的TFT10相比,圖5所示的TFTlOa的不 同之處在於:ES層32與活性層18形狀相同,除此以外的 構成與圖1所示的TFT10的構成相同。需要說明的是,Es 層32除了形狀不同以外,其與第1實施方式之ES層3〇 相同,所以其詳細說明省略。 接下來,對本實施方式之TFTlOa的製造方法進行說 明。 圖6a〜圖6c是以製程順序繪示本發明之第2實施方 式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 需要說明的是,在TFTlOa的製造方法中,關於與圖 4a〜圖4c所示的第1實施方式之TFT1〇的製造方法相同 的製程,其詳細說明省略。 在本實施方式之TFTlOa的製造方法中,除Es層&amp; 的形成製程與第1實施方式之TFT1G的製造方法不同以 外,與第1實施方式之TFT1G的製造方法的製程相同。因 此,關於除ES層32的形成製程以外的圖如、圖&amp; 程’其詳細說明省略。 成 在本實施方式之TFTlOa 與第1實施方式相同的操作, 表面12a上形成閘極14。 的製造方法中,首先,進行 如圖6a所示,於基板12之 24 201140850 36201pif 缺後,利用糸Ti^2lGZ〇膜上形成光阻膜(沒有圖示)。 形成光阻圖案,之後飯刻第2瓶〇膜 32及活性層18、。 剝離光阻膜。藉此,形成郎層 後利tZ2IGZQ膜上形成光阻膜(沒有圖示),之 it 形成光阻圖案。然後,_ _膜。之後, 二光阻膜。藉此’如圖6b所示,於間絕緣膜16之表面 性1形成耶層32及活性層18的圖案。此時,形成於活 18之表面18a上的邱層艾形成了與活性層ι8相同 的形狀。 需要說明的是’閘絕緣膜16、ES層32及活性層18 的钱刻可以與第1實施方式同樣地進行。 此外,構成ES層32的第2 IGZO膜與構成第1實施 方式之ES層3G的第2IGZ0賴組成相同。 與第1實施方式一樣,利用DC濺鍍法形成第i IGZ0 膜及第2IGZG膜時’仙預先已酿組成的把材。 接下來’進行與第1實施方式相同的操作,於閘絕緣 膜16之表面16&amp;上形成作為源極20a及汲極20b的鉬膜(沒 有圖不),以覆蓋ES層32及活性層18。然後,利用光刻 法形成光阻圖案。之後,使用與第1實施方式成分相同的 混酸水溶液來蝕刻鉬膜。藉此,如圖6c所示’得到以覆蓋 ES層32之表面32a的一部分的方式形成的源極20a及汲 極 20b。 接下來,進行與第1實施方式相同的操作,形成覆蓋 25 201140850 JWUlplf ES層32、源極20a及汲極20b的保護層22。如上操作, 可以形成圖5所示的TFTlOa。 、 需要說明的是,雖然一次統一形成£3層32及活性層 W,但並不限於此。也可以利用光刻法形成光阻圖案,之 後進行蝕刻,從而分別形成Es層32及活性層18。、 在本實施方式中,即使使Es層32與活性層18形狀 相同,ES層32與活性層18的組成也相近,挞層32還發 揮活性層的作用,作為TFT進行工作。 藉由使ES層32與活性層18的形狀相同,可以使用 以相同罩幕形成的光阻圖案,形成ES層32和活性層18。 藉此’可以減少形成光賴案所需的罩幕的數量,可以降 低成本’同時可以簡化製造製程。藉此,還可以提高生產 除此之外,在本實施方式中,還可以得到與第 =式之而0及其製造方法相同的效果。因此,本實施力 ^之Tmoa的閾值不會變為負值,而是顯示出良好的顶 ί作。此外’可以於面内均勻地形成顯示出良好的TFT相 性、且可靠性也高的TFTlOa。 並且,與以往相比’可以容易地形成砂層Μ,而卫 加工也可以容易地進行。 :外’在TFT10a的製造製程中,光阻膜的形成、失 圖案的形成、各種膜的形成、以及保護層22的形成也长 =显度小於料2贼下進行。這樣,由於在小於_ 咖⑶溫度下進行各製程,_可以制ρΕτ、卿筹 26 201140850 耐熱性低的基板12。藉此,可以得到具有可挽性的電晶體。 接下來,對第3實施方式進行說明。 圖7是繪示本發明之第3實施方式所涉及的薄膜場效 電晶體的模式截面圖。 需要說明的是’在本實施方式中,與圖1所示的第1 實施方式之TFT10相同的構成物上帶有相同的符號,其詳 細說明則省略。 圖7所示的TFTlOb通常是被稱作頂部接觸型上閘極 結構的TFT。與圖i所示的TFT1〇相比,該TFn〇b的不 同之處在於:閘極14的配置位置與Es層3〇及活性層18 以及源極20a及汲極20b的配置位置上下顛倒,除此以外 的構成與圖1所示的TFT10的構成相同。 、圖7所示的TFTlOb,於基板12之表面12a上形成有 活性層18。於該活性層is之表面18a上形成有耶層3〇。 並於基板12之表面12a上形成有源極2〇a,以覆蓋活性層 18之表面18a及ES層30之表面30a的一部分。此外,於 基板12之表面i2a上,與源極20a相向形成有與該源極 2〇a形成對的汲極2〇b’以覆蓋活性層18之表面1如及es 層30之表面3〇a的一部分。於基板12上形成有絕緣膜24, 以覆蓋ES層30及活性層18以及源極2〇a及汲極20b。於 該絕緣膜24之表面24a上形成有閘極14。於絕緣膜24之 表面24a上形成有保護層22,以覆蓋該閘極14。 需要說明的是’絕緣瞑24用於使ES層30及活性層 18以及源極2〇a及汲極2〇b與閘極14絕緣。由於絕緣膜 27 201140850 ^與圖1所示&amp;TFT10之閘絕緣層16的構成相同,故其 詳細說明省略。 、 接下來,對本實施方式之TFTlOb的製造方法進行說 明0 圖8a〜圖8d是以製程順序繪示本發明之第3實施方 式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 需要說明的是,在TFTl〇b的製造方法中,關於與圖 4a〜圖4c所示的第i實施方式之TFT1〇的製造方法相同 的製程,其詳細說明省略。 在本實施方式之TFTlOb的製造方法中,首先,作為 基板12,準備例如玻璃基板。 接下來,利用DC濺鑛法,於基板12之表面i2a上以 例如30 nm的厚度形成作為活性層μ的第1 IGZ〇膜(沒 有圖示)。 接下來’利用DC濺鍍法,在壓力為〇 37Pa的條件下, 於第1 IGZO膜之表面以例如2〇11111的厚度形成作為£|§層 30的第2IGZO膜(沒有圖示)。這樣,連續形成第i IGZ〇 膜及第2沿20膜。 接下來,於第2IGZO膜上形成光阻膜(沒有圖示)。 然後,利用光刻法形成光阻圖案,之後使用例如5%的草 酸水來蝕刻第2 IGZO膜及第丨IGZ〇膜。之後,剝離光阻 膜。 再次於第2IGZO膜上形成光阻膜(沒有圖示),之 後利用光刻法形成光阻圖案。然後,例如使用的草酸 ⑧ 201140850 ^ozuipif 水僅蝕刻第2 IGZO膜。之後,剝離光阻骐。藉此,如圖 8a所不,於基板12之表面12a上形成活性層18,並於其 表面18a上形成ES層30。 接下來’利用DC濺鍍法’在〇.37Pa的條件下,於美 板12之表面12a上以100 nm的厚度形成作為源極2加^ 汲極2(^&gt;的例如鉬膜(沒有圖示),以覆蓋£8層3〇 性層18。 / 接下來’於钥膜上形成光阻膜(沒有圖示),並利用 光刻法形成光阻圖案。然後,使用與第!實施方式成分相 同的混酸水溶液來侧翻膜。姓刻後,剝離光阻膜。藉此, 如圖8b所示,得到以覆蓋ES層3〇之表面3〇&amp;及活性層 18之表面i8a的一部分的方式形成的源極2〇&amp;及汲極2此0。 接下來,如圖8c所示’利用rf錢鑛法形成作為絕緣 膜*24的、例如厚度為2〇〇11111的別〇2膜(沒有圖示),使 ,蓋活性層18、源極20a及汲極2〇b。於該si〇2膜上形成 光阻膜(沒有圖示),之後利用光刻法形成光阻圖案。然 後,例如使用緩衝氟酸來_叫膜,以形成絕緣膜24。 ,接下來,利用DC濺鍍法,於絕緣膜24之表面2扣上 形成例如厚度為40 nm的、作為問極14的翻膜(沒有圖 示)〇 接下來,於鉬膜上形成光阻膜(沒有圖示),之後利 用光刻法形成光阻圖案。 接下來’使用與第i實施方式成分相同的混酸水溶液 侧銷臈。之後,獅光峨。藉此,如® 8d所示,於 29 201140850 JUZUipif 絕緣膜24之表面24a上形成由銷製成的間極14 β 稀二:來:t緣膜24之表面施上例如塗佈感光性丙 1=安閉極14,後’利用光刻法形成丙稀酸 樹膜®案。需要朗的是,®案形成時的叫酸樹脂的 硬化條件例如為溫度180°C、30分鐘。 接下來,在氮氣環境下、在180。(:的溫度下,進行1 小時的後期退火。如上操作,可以形成圖7所示的tfti讥。 在本實施方式中,也可以得到與第!實施方式之 TFT10及其製造方法相同的效果。因此,本實施方式之 TFTlOb’其閾值不會變為負值,而是顯示出良好的叮丁 動作此外’可以於面内均勻地形成顯示出良好的TFT 性、且可靠性也高的TFTlOb。 並且,與以往相比,可以容易地形成ES層32,而且 加工也可以容易地進行。 在本實施方式之TFT1〇b㈣造製程中,光阻膜的形 成、光阻圖案的形成、各種膜的形成、以及保護層22的形 成均在溫度小於等於2(ΚΓς:τ進行。這樣,由於在小於等 ,200C的溫度下進行各製程,所以可以使用ρΕΤ、醜 等財熱性低的基板12。藉此,可以得到具有可撓性的tft。 接下來,對第4實施方式進行說明。 圖9是繪示本發明之第4實施方式所涉及的薄膜場效 電晶體的模式截面圖。 需要說明的是,在本實施方式中,與圖7所示的第3 實施方式之TFTIGb相同的構成物上帶有相⑽符號,其 30 ⑧ 201140850 似 Ulpif 詳細說明則省略。 與圖7所示的TFTlOb相比,圖9所示的TFTlOc的不 同之處在於:ES層32與活性層18形狀相同,除此以外的 構成與圖7所示的TFTlOb的構成相同。需要說明的是, 如上所述,ES層32與第1實施方式之ES層30組成相同。 因此,其詳細說明省略。 接下來,對本實施方式之TFTlOc的製造方法進行說 明。 。 圖10a〜圖10d是以製程順序繪示本發明之第4實施 方式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 需要說明的是,在TFTlOc的製造方法中’關於與圖 圖8d所示的第3實施方式之爪1%的製造方法相同 的製程,其詳細說明省略。 在本實施方式之TFT1〇c的製造方法中,除es層U 、形成製程與第3實施方式之TFT1Gb的製造方法不同以 與第3 f施方式之TFT1Gb的製造方法的製程相同。 ’關於除ES層η的形成製程以外的圖1〇b 的製程,其詳細說明省略。 间i〇d 與第之TFT1〇e的製造方法中,首先,進行 切点Γί式同的操作’連續地於基板12之表面12a =1作為活性層18的第u咖膜 a =r。膜之表面形成作為-㈣的第“ 接下來於第2IGZ0膜上形成光阻膜(沒有圖示), 20114085α 然後,利用光刻法形成光阻圖_ 草酸水來侧第21咖膜及 5%的 u胰夂弟1 IGZO膜。之後,劎雜夹 阻膜。藉此,如圖1〇a所示,形成ES層32及活性層18The layer 30 and the active layer 18, for example, _ (not shown) covering the ES pole 2〇a and the secret 20b. A resist film (not shown) is formed on the molybdenum film by 1', and a photoresist pattern is formed by photolithography using the gate electrode. After that, for example, use contains. 75 mass% of citric acid, 5% by mass to 10% by mass of acetic acid, ~5 f4% of nitric acid' and the remaining part of mixed acid water composed of water: liquid ^ bribe. Need. Lang's is that _ is better at the time of contact with the mixed acid water _ liquid temperature small material is carried out under 35 ,, and, better, at, the temperature is hungry ~ 25. (: after the side is performed, the photoresist is peeled off. Thereby, as shown in FIG. 4c, the source 20a formed to cover the surface 30a of the ruthenium layer 30, the core and a part of the surface 18a of the active layer 18, and The drain 20b. Next, for example, a photosensitive acrylic resin is applied to cover the sand layer 30, the source 20a, and the drain 20b. Then, a propylene resin film is formed by photolithography. The curing conditions of the acrylic resin in the case of ruthenium are, for example, a temperature of 180 〇 c, 3 〇 minutes. Next, in a nitrogen atmosphere, at a temperature of rc (the temperature of rc, post-annealing is performed for hours; as described above, it can be formed In the TFT 10 of the present embodiment, even if the Es layer is provided on the surface 18a of the active layer 18 to protect the active layer 18 from being etched, since the composition of the layer 30 and the active layer 18 are similar, the active layer is 18 is not damaged, and low resistance does not occur. Therefore, the _ of TFT1G does not become a negative value, but shows a good TFT operation. 22 8 201140850 302Ulpif In addition, the source 2 with respect to the etching liquid is made蚀刻a and bungee 2% and es layer 30 etch rate The rate ratio is as high as 1 〇 or more, which improves the etching resistance of the ruthenium layer. Thus, when etching the source 20a and the drain 20b, the etching of the underlying ES layer 30 is reduced, and the activity of the underlayer is not caused. The layer 18 causes any damage. Therefore, it is possible to uniformly form the TFT 1 which exhibits good TFT characteristics and high reliability in the plane. Further, in the manufacturing process of the TFT 10, the ES layer 3 can be utilized with the active layer. 18 etching is performed on the same etching liquid, and the ES layer 3 can be easily processed compared to when an Si 2 film is used as an etching stopper. Further, even if the ES layer 30 is provided, the active layer 18 is not damaged. Since the low resistance does not occur, it is not necessary to form the ES layer by sputtering in a high-concentration oxygen atmosphere, and it is possible to provide a τρΓ having a small threshold shift and good reliability. Further, in the manufacturing process of the TFT 10, the photoresist film is provided. The formation of the photoresist pattern, the formation of various films, and the formation of the protective layer 22 are all performed at a temperature of 200 ° C or less. Thus, since each process is performed at a temperature of 2 小于 or less, In the substrate 12 For example, PET, PEN, or the like having low heat resistance is used. Since these PET and PEN have flexibility, a flexible transistor can be obtained. Next, a second embodiment will be described. A schematic cross-sectional view of the thin film field effect transistor according to the second embodiment of the present invention. In the present embodiment, the same configuration as the TFT 10 of the first embodiment shown in FIG. 1 has the same configuration. The detailed description of the symbols is omitted. 23 201140850 The TFT 10a shown in FIG. 5 is different from the TFT 10 shown in FIG. 1 in that the ES layer 32 has the same shape as the active layer 18, and other configurations and figures are shown. The configuration of the TFT 10 shown in Fig. 1 is the same. It is to be noted that the Es layer 32 is the same as the ES layer 3A of the first embodiment except for the shape, and therefore detailed description thereof will be omitted. Next, a method of manufacturing the TFT 10a of the present embodiment will be described. Fig. 6a to Fig. 6c are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to a second embodiment of the present invention in a process sequence. In the method of manufacturing the TFT 10a, the same processes as those of the TFT1A of the first embodiment shown in Figs. 4a to 4c will be omitted. In the manufacturing method of the TFT 10a of the present embodiment, the manufacturing process of the TFT 1G of the first embodiment is the same as the manufacturing process of the TFT 1G of the first embodiment, except that the manufacturing process of the Es layer &amp; Therefore, the detailed description of the drawings and the drawings other than the forming process of the ES layer 32 will be omitted. In the same operation as in the first embodiment, the TFT 10a of the present embodiment has the gate electrode 14 formed on the surface 12a. In the manufacturing method, first, as shown in Fig. 6a, a photoresist film (not shown) is formed on the ruthenium film of 糸Ti^2lGZ after the absence of the substrate 12, 201140850, 36201pif. A photoresist pattern is formed, and then the second bottle of the ruthenium film 32 and the active layer 18 are engraved. The photoresist film is peeled off. Thereby, a photoresist film (not shown) is formed on the galvanized tZ2IGZQ film, and it forms a photoresist pattern. Then, _ _ membrane. After that, two photoresist films. Thereby, as shown in Fig. 6b, the pattern of the layer of the yeah layer 32 and the active layer 18 is formed on the surface 1 of the interlayer insulating film 16. At this time, the layer formed on the surface 18a of the living 18 has the same shape as the active layer ι8. In addition, the description of the gate insulating film 16, the ES layer 32, and the active layer 18 can be performed in the same manner as in the first embodiment. Further, the second IGZO film constituting the ES layer 32 is the same as the second IGZ0 ray composition constituting the ES layer 3G of the first embodiment. In the same manner as in the first embodiment, when the i-th IGZ0 film and the second IGZG film are formed by the DC sputtering method, the material which has been previously composed of the scent is formed. Next, the same operation as in the first embodiment is performed, and a molybdenum film (not shown) as a source 20a and a drain 20b is formed on the surface 16&amp; of the gate insulating film 16 to cover the ES layer 32 and the active layer 18. . Then, a photoresist pattern is formed by photolithography. Thereafter, the molybdenum film was etched using the same mixed acid aqueous solution as the components of the first embodiment. Thereby, the source 20a and the drain 20b which are formed so as to cover a part of the surface 32a of the ES layer 32 are obtained as shown in Fig. 6c. Next, the same operation as in the first embodiment is performed to form a protective layer 22 covering the 25 201140850 JWUlplf ES layer 32, the source 20a, and the drain 20b. As described above, the TFT 10a shown in Fig. 5 can be formed. It should be noted that although the £3 layer 32 and the active layer W are uniformly formed at one time, it is not limited thereto. The photoresist pattern may be formed by photolithography, and then etched to form the Es layer 32 and the active layer 18, respectively. In the present embodiment, even if the Es layer 32 and the active layer 18 are formed in the same shape, the composition of the ES layer 32 and the active layer 18 are similar, and the ruthenium layer 32 also functions as an active layer to function as a TFT. By making the ES layer 32 the same as the shape of the active layer 18, the ES layer 32 and the active layer 18 can be formed using a photoresist pattern formed by the same mask. By this, the number of masks required to form a light-receiving case can be reduced, the cost can be reduced, and the manufacturing process can be simplified. Thereby, it is also possible to improve the production. In addition to this, in the present embodiment, the same effects as in the above formula 0 and the manufacturing method thereof can be obtained. Therefore, the threshold of the Tmoa of this implementation does not become a negative value, but shows a good top. Further, the TFT 10a which exhibits good TFT phase characteristics and high reliability can be formed uniformly in the plane. Further, the sand layer can be easily formed as compared with the prior art, and the processing can be easily performed. : Outer In the manufacturing process of the TFT 10a, the formation of the photoresist film, the formation of the missing pattern, the formation of various films, and the formation of the protective layer 22 are also long = less significant than the material 2 thief. Thus, since each process is performed at a temperature less than _ coffee (3), it is possible to produce a substrate 12 having low heat resistance. Thereby, a transistor having a manageability can be obtained. Next, a third embodiment will be described. Fig. 7 is a schematic cross-sectional view showing a thin film field effect transistor according to a third embodiment of the present invention. In the present embodiment, the same components as those of the TFT 10 of the first embodiment shown in Fig. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. The TFT 10b shown in Fig. 7 is usually a TFT called a top contact type upper gate structure. Compared with the TFT1〇 shown in FIG. 1, the TFn〇b is different in that the arrangement position of the gate electrode 14 and the position of the Es layer 3 and the active layer 18 and the source 20a and the drain 20b are reversed. The other configuration is the same as that of the TFT 10 shown in Fig. 1 . The TFT 10b shown in Fig. 7 has an active layer 18 formed on the surface 12a of the substrate 12. A layer of germanium 3 is formed on the surface 18a of the active layer is. A source electrode 2a is formed on the surface 12a of the substrate 12 to cover a surface 18a of the active layer 18 and a portion of the surface 30a of the ES layer 30. Further, on the surface i2a of the substrate 12, a drain electrode 2b' forming a pair with the source electrode 2a is formed opposite to the source electrode 20a to cover the surface 1 of the active layer 18 and the surface of the es layer 30. Part of a. An insulating film 24 is formed on the substrate 12 to cover the ES layer 30 and the active layer 18, and the source 2a and the drain 20b. A gate electrode 14 is formed on the surface 24a of the insulating film 24. A protective layer 22 is formed on the surface 24a of the insulating film 24 to cover the gate 14. It should be noted that the 'insulator 24' is for insulating the ES layer 30 and the active layer 18 and the source 2a and the drain 2〇b from the gate 14. Since the insulating film 27 201140850 is the same as the gate insulating layer 16 of the &amp; TFT 10 shown in Fig. 1, the detailed description thereof will be omitted. Next, a method of manufacturing the TFT 10b of the present embodiment will be described. Fig. 8a to Fig. 8d are schematic cross-sectional views showing a method of manufacturing the thin film field effect transistor according to the third embodiment of the present invention in a process sequence. In the method of manufacturing the TFT 10b, the same processes as those of the TFT1A of the i-th embodiment shown in Figs. 4a to 4c will be omitted. In the method of manufacturing the TFT 10b of the present embodiment, first, for example, a glass substrate is prepared as the substrate 12. Next, a first IGZ ruthenium film (not shown) as an active layer μ is formed on the surface i2a of the substrate 12 by a DC sputtering method at a thickness of, for example, 30 nm. Next, a second IGZO film (not shown) as a layer of 30 Å 11111 is formed on the surface of the first IGZO film by a DC sputtering method under the conditions of a pressure of 〇 37 Pa. Thus, the i-th IGZ〇 film and the second edge 20 film are continuously formed. Next, a photoresist film (not shown) was formed on the second IGZO film. Then, a photoresist pattern is formed by photolithography, and then the second IGZO film and the second IGZ film are etched using, for example, 5% of oxalic acid water. Thereafter, the photoresist film was peeled off. A photoresist film (not shown) was formed again on the second IGZO film, and then a photoresist pattern was formed by photolithography. Then, for example, oxalic acid 8 201140850 ^ozuipif water is used to etch only the 2nd IGZO film. After that, the photoresist is peeled off. Thereby, as shown in Fig. 8a, the active layer 18 is formed on the surface 12a of the substrate 12, and the ES layer 30 is formed on the surface 18a thereof. Next, 'DC sputtering method' is used to form, for example, a molybdenum film as a source 2 plus a gate 2 (^> on a surface 12a of the sheet 12 at a thickness of 100 nm under the condition of 37.37 Pa. The figure is shown to cover the £8 layer of the erbium layer 18. Next, a photoresist film (not shown) is formed on the key film, and a photoresist pattern is formed by photolithography. The aqueous solution of the mixed acid having the same composition is used to roll the film. After the last name, the photoresist film is peeled off. Thereby, as shown in FIG. 8b, the surface 3〇&amp; and the surface i8a of the active layer 18 are covered to cover the surface of the ES layer. The source 2 〇 &amp; and the drain 2 are formed by a part of the method. Next, as shown in FIG. 8c, 'the thickness of 2 〇〇 11111 is formed as the insulating film *24 by the rf money ore method. 2 film (not shown), cover active layer 18, source 20a and drain 2〇b. A photoresist film (not shown) is formed on the Si〇2 film, and then a photoresist is formed by photolithography. Then, for example, a buffered hydrofluoric acid is used to form a film 24, and then, on the surface 2 of the insulating film 24, by DC sputtering. For example, a film (not shown) as a thickness of 40 nm is formed. Next, a photoresist film (not shown) is formed on the molybdenum film, and then a photoresist pattern is formed by photolithography. 'Use the same mixed acid aqueous solution side pin as the composition of the i-th embodiment. Thereafter, the lion's ray is used. Thus, as shown in Fig. 8d, a pin made of a pin is formed on the surface 24a of the JUZUipif insulating film 24 of 29 201140850. 14 β dilute: Come: the surface of the t-edge film 24 is applied, for example, by coating photosensitive C 1 = amperate pole 14 , and then by photolithography to form the acrylic acid tree film ® case. The curing condition of the acid resin at the time of formation is, for example, a temperature of 180 ° C for 30 minutes. Next, a post-annealing is performed for 1 hour under a nitrogen atmosphere at a temperature of 180 ° C. As described above, FIG. 7 can be formed. In the present embodiment, the same effects as those of the TFT 10 of the first embodiment and the method of manufacturing the same can be obtained. Therefore, the threshold value of the TFT 10b of the present embodiment does not become a negative value but is displayed. Out of good Kenting action, 'can be in-plane The TFT 10b which exhibits excellent TFT characteristics and high reliability is formed uniformly. Further, the ES layer 32 can be easily formed as compared with the related art, and the processing can be easily performed. In the TFT1〇b(4) of the present embodiment, In the process, the formation of the photoresist film, the formation of the photoresist pattern, the formation of various films, and the formation of the protective layer 22 are all performed at a temperature of 2 or less (ΚΓς:τ. Thus, since it is performed at a temperature of 200 C or less, etc. Since each process is used, it is possible to use a substrate 12 having a low heat-generating property such as ρΕΤ or ugly, whereby a flexible tft can be obtained. Next, a fourth embodiment will be described. Fig. 9 is a schematic cross-sectional view showing a thin film field effect transistor according to a fourth embodiment of the present invention. In the present embodiment, the same constituents as the TFT IGb of the third embodiment shown in Fig. 7 are provided with a phase (10) symbol, and the description of the 30 8 201140850 like Ulpif is omitted. The TFT 10C shown in Fig. 9 is different from the TFT 10b shown in Fig. 7 in that the ES layer 32 has the same shape as the active layer 18, and the other configuration is the same as that of the TFT 10b shown in Fig. 7. It should be noted that, as described above, the ES layer 32 has the same composition as the ES layer 30 of the first embodiment. Therefore, the detailed description is omitted. Next, a method of manufacturing the TFT 10c of the present embodiment will be described. . 10a to 10d are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to a fourth embodiment of the present invention in a process sequence. In the manufacturing method of the TFT 10c, the same process as the manufacturing method of the claw 1% of the third embodiment shown in Fig. 8d will be omitted. In the method of manufacturing the TFT 1 〇 c of the present embodiment, the es layer U and the forming process are different from the manufacturing method of the TFT 1Gb of the third embodiment in the same manner as the manufacturing method of the TFT 1Gb of the third embodiment. The process of FIG. 1B except for the formation process of the ES layer η is omitted. In the manufacturing method of the first 〇d and the first TFT1 〇e, first, the tangent point Γί is performed in the same manner 'continuously on the surface 12a of the substrate 12=1 as the ith film a = r of the active layer 18. The surface of the film is formed as -(4). "Next, a photoresist film is formed on the second IGZ0 film (not shown), 20114085α. Then, a photoresist pattern _ oxalic acid water is used to form the 21st coffee film and 5%. The u 夂 夂 1 1 IGZO film. Thereafter, the doped iridium film, thereby forming the ES layer 32 and the active layer 18 as shown in FIG.

的圖案。此時’形成於活性層18之表面…上的挞層W 形成了與活性層18相同的形狀。 第i ES層32㈣2 IGZ〇膜與構成 第1貫施方式之ES層30的第2IGZ〇膜的組成相同。 f第3實施方式-樣,利用Dc崎法形成第服〇 膜及第2IGZQ膜時,使用預先已調整組成的乾材。 接下來’進行與第3實施方式相同的操作,於基板Η 之表面12a上形成作為源極2〇a及汲極2%的鉬膜(沒 圖示)’以覆蓋ES層32及活性層18。然後,利用光刻法 形成光阻圖案》之後’與第3實施方式—樣,使用與第i 實施方式成分相同的混酸水溶絲膜。藉此,如 l〇b所示,得到以覆蓋ES層32之表面仏的一部分的方 式形成的源極20a及汲極2〇b。 接下來,進行與第3實施方式相同的操作,如圖l〇c 所示,形成覆蓋ES们2、源極2〇a及沒極2〇b的絕緣膜 24。 接下來,進行與第3實施方式相同的操作,如圖1〇d 所示,於絕緣膜24之表面2如上形成由鉬製成的閘極14, 然後,於絕緣膜24之表面24a上形成保護層22,以覆蓋 閘極14。之後,在氮氣環境下、在18〇它的溫度下,進行 1小時的後期退火’從而可以形成TFTlOc。 32 201140850 36201pif 需要說明的是,雖然一次統一形成Es層32 18,但並稀於I也可關用光刻法形成光阻及活性層 後進行蝕刻’從而分別形成ES層32及活性層^'8圖案’之 在本實施方式中’即使使ES層32與活料a 狀相同,ES層32與活性層18的組成也相近 ^的形 揮活性層的作用,作為TFT進行工作。 層32發 此外,藉由使ES層32與活性層18的形狀 ,口 以使用以相同的罩幕形成的光阻圖案,形成 性層18。藉此,可以減少形成妹圖案所需的罩數 量’可崎減本’㈣可IX簡化製造餘 以提高生產效率。 #此’還可 除此之外,在本實施方式中,與第3實施 可以得到與第i實施方式之TFTl〇及其製 = 果。因此,TF·的閾值不會變為負值,而是顯 與以往相比,可以容易地形成挞層 加工也可以容易地進行。 且 =卜在TFTlOc的製造製程中,光阻膜的形成、光 各種膜的形成、以及保護層22的形成也均 在&gt;皿度小於等於200C下進行。-搂,^ ^ 200t的溫度下進行各製程,^足樣,由於在小於等於 祕㈣二L 所以可以使用PET、醜等 12。藉此,可以得到具有可撓性的TFT。 本發月基本如上所述。以上,對本發明之薄膜場效電 33 201140850 JO/Ulplf 晶體及其製造方法進行了詳細說明,但本發明並不限於上 述實施方式,在不脫離本發明之主旨的範圍内,當然可以 進行各種改良或變更。 [實施例1] 以下,對本發明之薄膜場效電晶體之實施例進行具體 說明。 在本實施例中,製作以下的實施例1、實施例2及比 較例1〜比較例3所示的TFT,並對各實施例1、實施例2 及比較例1〜比較例3的TFT進行評價。需要說明的是, 實施例1、實施例2及比較例1〜比較例3的TFT使用圖1 所示的構成的TFT10。 實施例1、實施例2及比較例1〜比較例3的各TFT 基本上利用上述圖4a〜圖4c所示的製造方法來製造。 在實施例1、實施例2、比較例1及比較例2的各TFT 中,閘極14如下形成:利用DC濺鍍法形成厚度為40 nm 的鉬膜,之後利用光刻法於該鉬膜上形成光阻圖案,再使 用含有73質量%的磷酸、7質量%的醋酸、3質量%的硝酸、 且剩餘部分為水的混酸水溶液(液溫為35。〇進行蝕刻, 即可形成。 接下來,利用RF濺鍍法形成作為閘絕緣膜16的、厚 度為200 nm的Si〇2膜。接下來,利用DC濺鑛法,於Si〇2 膜的表面以30 nm的厚度形成作為活性層18的下述組成 的第1 IGZO膜。利用DC濺鍍法,於該第j IGZ〇膜的表 面以30 nm的厚度形成作為ES層3〇的下述各組成的第2 34 ⑧ 201140850 36201pif IGZO膜。然後,利用光刻法於第2IGZ〇膜上形成光阻圖 案。然後,使用5%的草酸水來蝕刻第2 IGZ〇膜及第1 IGZO膜,即形成。 活性層18使用Zn濃度(Zn/In+Ga+Zn)為26 9%、picture of. At this time, the ruthenium layer W formed on the surface of the active layer 18 is formed in the same shape as the active layer 18. The i-th ES layer 32 (four) 2 IGZ tantalum film has the same composition as the second IGZ tantalum film constituting the ES layer 30 of the first embodiment. f. In the third embodiment, when the first service film and the second IGZQ film are formed by the Dc-salt method, a dry material having a composition adjusted in advance is used. Next, in the same operation as in the third embodiment, a molybdenum film (not shown) as a source electrode 2a and a drain electrode 2% is formed on the surface 12a of the substrate 以 to cover the ES layer 32 and the active layer 18 . Then, after the photoresist pattern is formed by photolithography, the same aqueous acid-soluble silk film as the component of the i-th embodiment is used as in the third embodiment. Thereby, as shown by l 〇 b, the source 20a and the drain 2 〇b which are formed to cover a part of the surface 仏 of the ES layer 32 are obtained. Next, the same operation as in the third embodiment is performed, and as shown in Fig. 10c, an insulating film 24 covering the ES 2, the source 2a, and the step 2b is formed. Next, the same operation as in the third embodiment is performed. As shown in FIG. 1A, the gate electrode 14 made of molybdenum is formed on the surface 2 of the insulating film 24, and then formed on the surface 24a of the insulating film 24. The layer 22 is protected to cover the gate 14. Thereafter, a post-annealing was performed for 1 hour under a nitrogen atmosphere at a temperature of 18 Torr to form a TFT 10c. 32 201140850 36201pif It should be noted that although the Es layer 32 18 is uniformly formed at one time, it is also rare to use I to form a photoresist and an active layer by photolithography, and then etched to form the ES layer 32 and the active layer ^8 pattern, respectively. In the present embodiment, even if the ES layer 32 is formed in the same shape as the material a, the ES layer 32 and the active layer 18 have a composition similar to that of the active layer 18, and operate as a TFT. Layer 32 Further, the formation layer 18 is formed by using the photoresist pattern formed by the same mask by using the shape of the ES layer 32 and the active layer 18. Thereby, the number of covers required to form the sister pattern can be reduced, and the amount can be reduced. (4) IX can be simplified to improve the production efficiency. In addition to this, in the present embodiment, the TFTs of the i-th embodiment and the system thereof can be obtained in the third embodiment. Therefore, the threshold value of TF· does not become a negative value, but it can be easily formed into a ruthenium layer process as compared with the prior art. Further, in the manufacturing process of the TFT 10C, the formation of the photoresist film, the formation of various light films, and the formation of the protective layer 22 are also performed at a degree of &gt; -搂, ^ ^ 200t temperature for each process, ^ foot sample, because it is less than or equal to secret (four) two L, so you can use PET, ugly, etc. 12 Thereby, a TFT having flexibility can be obtained. This month is basically as described above. The thin film field effect electric power 33 201140850 JO/Ulplf crystal of the present invention and the method for producing the same have been described in detail above, but the present invention is not limited to the above embodiment, and various modifications can of course be made without departing from the gist of the invention. Or change. [Example 1] Hereinafter, examples of the thin film field effect transistor of the present invention will be specifically described. In the present Example, the TFTs shown in the following Example 1, Example 2, and Comparative Example 1 to Comparative Example 3 were produced, and the TFTs of Example 1, Example 2, and Comparative Example 1 to Comparative Example 3 were produced. Evaluation. In the TFTs of the first embodiment, the second embodiment, and the comparative examples 1 to 3, the TFT 10 having the configuration shown in FIG. 1 was used. Each of the TFTs of Example 1, Example 2, and Comparative Example 1 to Comparative Example 3 was basically produced by the above-described manufacturing method shown in Figs. 4a to 4c. In each of the TFTs of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the gate electrode 14 was formed by forming a molybdenum film having a thickness of 40 nm by DC sputtering, and then photolithographically coating the molybdenum film. A resist pattern is formed thereon, and a mixed acid aqueous solution containing 73% by mass of phosphoric acid, 7% by mass of acetic acid, 3% by mass of nitric acid, and the remainder of water is used (the liquid temperature is 35. The etching is performed to form.) Next, a Si 2 film having a thickness of 200 nm as a gate insulating film 16 was formed by RF sputtering. Next, an active layer was formed on the surface of the Si 2 film by a DC sputtering method at a thickness of 30 nm. a first IGZO film having the following composition of 18: The second layer of the following composition as the ES layer 3〇 is formed on the surface of the j-th IGZ yttrium film by a DC sputtering method at a thickness of 30 nm; 20114850 36201pif IGZO Then, a photoresist pattern is formed on the second IGZ ruthenium film by photolithography, and then the second IGZ ruthenium film and the first IGZO film are formed by using 5% oxalic acid water, and the active layer 18 is formed using Zn concentration ( Zn/In+Ga+Zn) is 26 9%,

Ga 濃度(Ga/In+Ga+Zn)為 34.6%、In 濃度(In/In+Ga+Zn) 為38.5%的第1 IGZO膜。需要說明的是,關於第i IGZ〇 膜的濃度分析,如上所述,藉由XRF分析來進行。 ES層30如下形成:在形成活性層18之後,利用光刻 法於第2 IGZO膜上形成光阻圖案。然後,使用 5%的草酸 水來僅蝕刻第2 IGZO膜,即可形成ES層3〇。 閘絕緣膜16如下形成:利用光刻法於別〇2膜/第i IGZO膜/¾ 2 IGZO膜上形成紘目案,讀使用緩衝氣 酸來蝕刻si〇2膜,即可形成閘絕緣膜16。 源極20a及汲極20b如下形成:利用DC濺鍍法,在 壓力為0.37Pa的條件下,以1〇〇 nm的厚度形成錮膜。利 用光刻法於該鉬膜上形成光阻圖案。然後,使用含有乃 質量%的礙酸、7質量%的醋酸、3質量%的猶、且剩餘 部分為水的混酸水溶液(液溫為25〇c )作為蝕刻液,來蝕 刻鉬膜,即可形成。 關於保護層22,塗佈感光性丙烯酸樹脂(pC4〇5G (JSR(股)公司製))’使覆蓋活性層18、源極2〇a及沒極 20b’之後利用光刻法形成丙烯酸樹脂膜圖案。圖案形成時 的丙烯酸樹脂的硬化條件為:溫度l8〇〇c、3〇分鐘β之後, 在氮氣環境下、在180°C的溫度下進行丨小時的後期退火, 35 201140850 JOZUlplf 以形成TFT10。 在實施例1中,ES層使用Zn濃度(Zn/In+Ga+Zn) 為 14.6%、Ga 濃度(Ga/In+Ga+Zn)為 41.6%、In 濃度 〇/111+0&amp;+211)為43.8%的第21020膜。需要說明的是, 關於第2 IGZO膜的濃度分析,如上所述,藉由xrf分析 來進行。 在實施例1中’利用上述蝕刻液(73質量%的磷酸、 7質量%的醋酸及3質量%的硝酸的混酸水溶液(液溫為 25°C))進行的、ES層與構成源極、汲極的鉬的蝕刻速率 比(IGZO:Mo)為1:13.8。實施例1相當於圖2所示的符 號A 〇 在實施例2中,ES層使用Zn濃度(Zn/In+Ga+Zn) 為 19.2%、Ga 濃度(Ga/In+Ga+Zn)為 38.8%、In 濃度 (In/In+Ga+Zn)為 42.0%的第 2 IGZO 膜。 在實施例2中,利用上述蝕刻液(73質量%的磷酸、 7質量的醋酸及3質量%的硝酸的混酸水溶液(液溫為 25 C ))進行的、ES層與構成源極、没極的鉬的飯刻速率 比(IGZO:Mo)為1:10.6。實施例2相當於圖2所示的符 號B。 在比較例1中,使用厚度為20 nm的si〇2膜作為Es 層。在比較例1中,除ES層的構成及形成方法不同以外, 與實施例1相同。在比較例1中,如下操作,形成Es層。 在比較例1中,形成第1 IGZ0膜後,形成活性層18 的圖案。之後’利用RF濺鍍法,於閘絕緣膜16之表面16&amp; ⑤ 201140850 JOZUipif 上形成厚度為20 nm的Si〇2膜,以覆蓋活性層18。接下 來’於Si〇2膜上形成光阻圖案,再使用緩衝氟酸來蝕刻 Si02膜,以形成ES層。 在比較例2中,ES層使用Zn濃度(Zn/In+Ga+Zn) 為 34.7%、Ga 濃度(Ga/In+Ga+Zn)為 30_3%、In 濃度 (In/In+Ga+Zn)為 35.0%的第 2 IGZO 膜。 在比較例2中,利用上述蝕刻液(73質量%的磷酸、 7質量%的醋酸及3質量%的硝酸的混酸水溶液(液溫為 25°C ))進行的、ES層與構成源極、汲極的鉬的蝕刻速率 比(IGZO:Mo)為1:3.1。比較例2相當於圖2所示的符號 C。 在比較例3中,ES層使用Zn濃度(Zn/In+Ga+Zn) 為 25.1%、Ga 濃度(Ga/In+Ga+Zn)為 36.5%、In 濃度 (In/In+Ga+Zn)為 35%的第 2 IGZO 膜。 在比較例3中,利用上述蝕刻液(73質量%的磷酸、 7質量%的醋酸及3質量%的硝酸的混酸水溶液(液溫為 25°C ))進行的、ES層與構成源極、汲極的鉬的蝕刻速率 比(IGZO:Mo)為1:9.0。比較例3相當於圖2所示的符號 D。 對於實施例卜實施例2及比較例1〜比較例3的電晶 體,分別測定移動度。其結果,實施例1、實施例2的電 晶體的移動度大於等於l〇cm2/Vs,TFT特性的均勻性良好。 另一方面,在比較例1中,由於形成ES層時的蚀刻, 底層的活性層也被钱刻,與源極、沒極的接觸不充分,接 37 201140850 JOZUipif 通電流惡化’即使是可靠性試驗’也得到了較實施例i、 實施例2差的結果。 此外,在比較例2中,ES層不起作用’由於形成源極、 汲極時的蝕刻,活性層消失,無法形成TFT,沒有進行TFT 動作。在比較例3中’ ES層功能不充分’雖然進行TFT 動作,但TFT特性的面内均勻性差。 [實施例2] 在本實施例中,製作以下的實施例3及實施例4所示 的TFT,對各實施例3及實施例4的TFT進行評價。需要 說明的是,實施例3及比較例4的TFT使用圖5所示的構 成的 TFTlOa。 在本實施例中,與第1實施例相比,除ES層和活性 層形成相同的形狀以外,與第1實施例相同,故其詳細說 明省略。 在實施例3中,ES層和活性層形成相同的形狀。除 ES層和活性層形成相同的形狀以外,該實施例3與第1 實施例之實施例1相同。 在比較例4中’ ES層和活性層形成相同的形狀。除 ES層和活性層形成相同的形狀以外,該比較例4與第1 實施例之比較例1相同。 對於實施例3及比較例4的TFT ’分別測定移動度。 其結果,實施例3的TFT的移動度大於等於l〇cm2/Vs, TFT特性的均勻性良好。而比較例4沒有顯示出TFT動作。 需要說明的是,由於實施例3可以使用相同的罩幕形 38 ⑤ 201140850 JOZUipif 成ES層和活性層,所以可以減少罩幕的數量,可以降低 成本。 雖然本發明已以實施例揭露如上’然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内’當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是繪示本發明之第1實施方式所涉及的薄膜場效 電晶體的模式截面圖。 圖2是繪示在#刻液中使用含有73質量%的鱗酸、7 質量°/。的醋酸、3質量%的硝酸、且溫度為25。〇的混酸水 溶液時’與Zn濃度有關的IGZO膜相對於鉬的飯刻速度比 的圖。 圖3是繪示在蝕刻液中使用含有73質量%的磷酸、7 質量%的醋酸、3質量%的硝酸、且溫度為25。〇的混酸水 溶液時,與In濃度、Ga濃度有關的lGz〇膜相對於鉬的 餘刻速度比的圖。 圖4a〜圖4c是以製程順序繪示本發明之第i實施方 式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 圖5是繪不本發明之第2實施方式所涉及的薄膜場效 電晶體的模式截面圖。 圖6a〜圖6c是以製程順序繪示本發明之第2實施方 式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 圖7是繪示本發明之第3實施方式所涉及的薄膜場效 39 201140850 電晶體的模式截面圖。 圖8a〜圖8d是以製程順序繪示本發明之第3實施方 式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 圖9是繪示本發明之第4實施方式所涉及的薄膜場效 電晶體的模式截面圖。 圖10a〜圖10d是以製程順序繪示本發明之第4實施 方式所涉及的薄膜場效電晶體的製造方法的模式截面圖。 【主要元件符號說明】 10、10a、10b、10c :薄膜場效電晶體(TFT) 12 :基板 12a、16a、18a、24a、30a、32a :表面 14 :閘極 16 :閘絕緣膜 18 :活性層 20a :源極 20b :汲極 22 :保護層 24 :絕緣膜 30、32 :蝕刻阻擋層(ES層)The first IGZO film having a Ga concentration (Ga/In+Ga+Zn) of 34.6% and an In concentration (In/In+Ga+Zn) of 38.5%. It should be noted that the concentration analysis of the i-th IGZ〇 film was carried out by XRF analysis as described above. The ES layer 30 is formed by forming a photoresist pattern on the second IGZO film by photolithography after the active layer 18 is formed. Then, using only 5% of oxalic acid water to etch only the second IGZO film, the ES layer 3 can be formed. The gate insulating film 16 is formed by forming a pattern on the other film 2 / ith IGZO film / 3⁄4 2 IGZO film by photolithography, and etching the si 〇 2 film by using buffer gas acid to form a gate insulating film. 16. The source electrode 20a and the drain electrode 20b were formed by forming a ruthenium film at a thickness of 1 〇〇 nm under a condition of a pressure of 0.37 Pa by a DC sputtering method. A photoresist pattern is formed on the molybdenum film by photolithography. Then, the molybdenum film is etched by using an aqueous mixed acid solution containing a mass% of acid, 7% by mass of acetic acid, 3% by mass, and the balance of water (liquid temperature: 25 〇c) as an etching solution. form. The protective layer 22 is coated with a photosensitive acrylic resin (pC4〇5G (manufactured by JSR Co., Ltd.)) to form an acrylic resin film by photolithography after covering the active layer 18, the source 2a and the electrode 20b'. pattern. The curing conditions of the acrylic resin at the time of pattern formation were post-annealing at a temperature of 180 ° C under a nitrogen atmosphere at a temperature of 18 ° C for 3 〇 minutes, and 35 201140850 JOZUlplf to form the TFT 10 . In Example 1, the ES layer used a Zn concentration (Zn/In+Ga+Zn) of 14.6%, a Ga concentration (Ga/In+Ga+Zn) of 41.6%, and an In concentration of 〇/111+0&amp;+211). It is 43.8% of the 21020 film. Incidentally, the concentration analysis of the second IGZO film was carried out by xrf analysis as described above. In the first embodiment, the ES layer and the constituent source are formed by using the above etching liquid (73 mass% phosphoric acid, 7 mass% acetic acid, and 3% by mass aqueous mixed acid solution of nitric acid (liquid temperature: 25 ° C)). The etch rate of the molybdenum of the bungee is 1:13.8 (IGZO:Mo). Example 1 corresponds to the symbol A shown in Fig. 2. In the second embodiment, the ES layer has a Zn concentration (Zn/In+Ga+Zn) of 19.2% and a Ga concentration (Ga/In+Ga+Zn) of 38.8. The %, In concentration (In/In+Ga+Zn) was 42.0% of the second IGZO film. In the second embodiment, the ES layer and the constituent source and the immersion electrode are formed by using the above etching liquid (73 mass% phosphoric acid, 7 masses of acetic acid, and 3% by mass of a mixed acid solution of nitric acid (liquid temperature: 25 C)). The molybdenum meal rate ratio (IGZO:Mo) is 1:10.6. Embodiment 2 corresponds to the symbol B shown in Fig. 2 . In Comparative Example 1, a Si〇2 film having a thickness of 20 nm was used as the Es layer. In Comparative Example 1, the same as Example 1 except that the configuration and the formation method of the ES layer were different. In Comparative Example 1, an Es layer was formed as follows. In Comparative Example 1, after the first IGZ0 film was formed, a pattern of the active layer 18 was formed. Thereafter, an Si 2 film having a thickness of 20 nm was formed on the surface 16 &amp; 5 201140850 JOZUipif of the gate insulating film 16 by RF sputtering to cover the active layer 18. Next, a photoresist pattern was formed on the Si 2 film, and the SiO 2 film was etched using buffered hydrofluoric acid to form an ES layer. In Comparative Example 2, the ES layer used Zn concentration (Zn/In+Ga+Zn) of 34.7%, Ga concentration (Ga/In+Ga+Zn) of 30_3%, and In concentration (In/In+Ga+Zn). It is 35.0% of the 2nd IGZO film. In Comparative Example 2, the ES layer and the constituent source were formed by the etching liquid (73 mass% phosphoric acid, 7 mass% acetic acid, and 3% by mass aqueous mixed acid solution of nitric acid (liquid temperature: 25 ° C)). The etch rate ratio (IGZO:Mo) of the molybdenum of the bungee is 1:3.1. Comparative Example 2 corresponds to the symbol C shown in Fig. 2 . In Comparative Example 3, the ES layer used a Zn concentration (Zn/In+Ga+Zn) of 25.1%, a Ga concentration (Ga/In+Ga+Zn) of 36.5%, and an In concentration (In/In+Ga+Zn). It is 35% of the 2nd IGZO film. In Comparative Example 3, the ES layer and the constituent source were formed by the etching liquid (73 mass% phosphoric acid, 7 mass% acetic acid, and 3% by mass aqueous mixed acid solution of nitric acid (liquid temperature: 25 ° C)). The etch rate ratio (IGZO:Mo) of the molybdenum of the bungee is 1:9.0. Comparative Example 3 corresponds to the symbol D shown in Fig. 2 . The mobility of each of the electrochemical crystals of Example 2 and Comparative Example 1 to Comparative Example 3 was measured. As a result, the mobility of the crystals of Example 1 and Example 2 was 10 〇 cm 2 /Vs or more, and the uniformity of TFT characteristics was good. On the other hand, in Comparative Example 1, the active layer of the underlayer was also etched due to the etching at the time of forming the ES layer, and the contact with the source and the immersion pole was insufficient, and the current of the JOZUipif current was deteriorated even if it was reliability. The test 'has also obtained poor results compared to Example i and Example 2. Further, in Comparative Example 2, the ES layer did not function. The etching of the source and the drain disappeared, and the active layer disappeared, and the TFT could not be formed, and the TFT operation was not performed. In Comparative Example 3, the 'ES layer function was insufficient', although the TFT operation was performed, but the in-plane uniformity of the TFT characteristics was poor. [Example 2] In the present Example, the TFTs shown in the following Examples 3 and 4 were produced, and the TFTs of Examples 3 and 4 were evaluated. It is to be noted that the TFTs of the third embodiment and the comparative example 4 use the TFT 10a formed as shown in Fig. 5 . In the present embodiment, the ES layer and the active layer have the same shape as the first embodiment, and the same as the first embodiment, the detailed description thereof will be omitted. In Example 3, the ES layer and the active layer formed the same shape. This embodiment 3 is the same as the first embodiment of the first embodiment except that the ES layer and the active layer form the same shape. In Comparative Example 4, the 'ES layer and the active layer formed the same shape. This Comparative Example 4 is the same as Comparative Example 1 of the first embodiment except that the ES layer and the active layer have the same shape. The mobility of each of the TFTs of Example 3 and Comparative Example 4 was measured. As a result, the mobility of the TFT of Example 3 was 10 〇cm 2 /Vs or more, and the uniformity of TFT characteristics was good. Comparative Example 4 did not show TFT operation. It should be noted that since the embodiment 3 can use the same mask shape 38 5 201140850 JOZUipif into the ES layer and the active layer, the number of masks can be reduced, and the cost can be reduced. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make a few changes and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a thin film field effect transistor according to a first embodiment of the present invention. Fig. 2 is a view showing the use of 73% by mass of scaly acid and 7 mass% in the #刻液. Acetic acid, 3 mass% nitric acid, and a temperature of 25. A plot of the ratio of the IGZO film relative to the molybdenum in the case of a mixed acid water solution. 3 is a view showing that 73% by mass of phosphoric acid, 7% by mass of acetic acid, 3% by mass of nitric acid, and a temperature of 25 are used in the etching solution. A plot of the ratio of the lGz ruthenium film relative to molybdenum at the In concentration and the Ga concentration in the case of a mixed acid water solution. 4a to 4c are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to an i-th embodiment of the present invention in a process sequence. Fig. 5 is a schematic cross-sectional view showing a thin film field effect transistor according to a second embodiment of the present invention. Fig. 6a to Fig. 6c are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to a second embodiment of the present invention in a process sequence. Fig. 7 is a schematic cross-sectional view showing a film field effect 39 201140850 transistor according to a third embodiment of the present invention. 8a to 8d are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to a third embodiment of the present invention in a process sequence. Fig. 9 is a schematic cross-sectional view showing a thin film field effect transistor according to a fourth embodiment of the present invention. 10a to 10d are schematic cross-sectional views showing a method of manufacturing a thin film field effect transistor according to a fourth embodiment of the present invention in a process sequence. [Description of main component symbols] 10, 10a, 10b, 10c: Thin film field effect transistor (TFT) 12: Substrate 12a, 16a, 18a, 24a, 30a, 32a: Surface 14: Gate 16: Gate insulating film 18: Active Layer 20a: source 20b: drain 22: protective layer 24: insulating film 30, 32: etching barrier layer (ES layer)

Claims (1)

201140850f 七、申請專利範圍: 1. -種薄膜場效電晶體,其於基板上至少形成有問 極、絕緣膜、活性層、糊㈣層、源極以及祕,並於 所述活性層上軸:t所述侧輯層,於所馳刻阻擔層 上形成有所述源極以及所述祕,所述薄膜場效電晶^ 特徵在於: 所述蝕刻阻擋層由包含Zn濃度小於20%的In、及 Zn的非晶形氧化物構成; 所述活性層由包含In、Ga及Zn的非晶形氧化物半導 體構成’且Zn濃度高於所述蝕刻阻擋層的Zn濃度。 2·如申請專利範圍第i項所述之薄膜場效電^體,其 中所述蝕刻阻擋層的In濃度大於等於4〇%、Ga濃度大於 等於37%。 、 3. 如申請專利範圍第i項所述之薄膜場效電晶體,其 中所述源極和所述没極由錮或钥合金構成。 4. 如申請專利範圍第1項所述之薄膜場效電晶體,其 中所述活性層與所述蝕刻阻擋層為相同的形狀。 、 5. 如申睛專利$&amp;圍第1項〜第4項中任—項所述之薄 膜場效電晶體’其巾所述薄騎效電晶縣頂部接觸 閘極結構。 6. 如申請專利範圍第i項〜第4項中任一項所述之薄 膜場效電晶體,其中所述薄膜場效電晶體為頂部接觸型上 閘極結構。 7. -種薄膜場效電晶體的製造方法,所述薄膜場效電 201140850 JOZUlpif 晶體於基板上至少形成有閘極、絕緣膜、活性層、飯刻阻 擋層、源極、以及汲極,並於所述活性層上形成有所述姓 刻阻擋層’於所述蝕刻阻擋層上形成有所述源極和所述沒 極,所述製造方法的特徵在於: 具有使用包含磷酸、醋酸及硝酸的混酸水溶液作為飯 刻液,來形成所述源極和所述沒極的製程; 所述钱刻阻擔層由包含Zn濃度小於20%的In、Ga及 Zn的非晶形氧化物構成; 所述活性層由包含In、Ga及Zn的非晶形氧化物半導 體構成,且Zn濃度高於所述蝕刻阻擋層的Zn濃度。 8. 如申請專利範圍第7項所述之薄膜場效電晶體的 製造方法,其中所述蝕刻阻擋層的In濃度大於等於4〇%、 Ga濃度大於等於37%。 9. 如申請專利範圍第7項所述之薄膜場效電晶體的 製造方法,其中所述混酸水溶液包含70質量%〜75質量〇/〇 的磷酸、5質量%〜10質量%的醋酸、1質量%〜5質量% 的端酸。 10. 如申請專利範圍第7項所述之薄膜場效電晶體的 製造方法,其中所述活性層和所述蝕刻阻擂層形成相同的 形狀。 11. 如申請專利範圍第7項〜第1〇項中任一項所述之 薄膳場效電晶體的製造方法,其中, 在形成所述源極和所述汲極的製程之前,具有下述製 程:於所述基板上形成所述閘極的製程;於所述基板上形 ⑧ 42 201140850 成所述絕緣膜使覆蓋所述閘極的製程;於所述絕緣膜上形 成所述活性層的製程;以及於所述活性層上形成所述蝕刻 阻擋層的製程; 在形成所述源極和所述汲極的製程中,於所述基板上 形成所述源極和所述汲極’使覆蓋一部分所述姓刻阻擋層。 12. 如申請專利範圍第11項所述之薄膜場效電晶體 的製造方法,其中,在形成所述源極和所述沒極的製程之 後,具有於所述基板上形成保護層使覆蓋所述蝕刻阻擋 層、所述源極和所述汲極的製程。 13. 如申請專利範圍第7項〜第10項中任一項所述之 薄膜場效電晶體的製造方法,其中, 在形成所述源極和所述汲極的製程之前,具有下述製 程:於所述基板上形成所述活性層的製程;以及於所述活 性層上形成所述#刻阻檔層的製程; 在形成所述源極和所述汲極的製程中,於所述基板上 形成所述源極和所述汲極,使覆蓋一部分所述蝕刻阻擋層; 在形成所述源極和所述没極的製程之後,具有下述製 程:於所述基板上形成所述絕緣膜,使覆蓋所述蝕刻阻擋 層、所述源極和所述汲極的製程;以及於所述絕緣膜上形 成所述閘極的製程。 43201140850f VII. Patent application scope: 1. A thin film field effect transistor, which has at least a problem layer, an insulating film, an active layer, a paste layer, a source and a secret on the substrate, and an upper axis of the active layer : the side layer, the source and the secret are formed on the resistive layer, and the thin film field effect is characterized in that: the etching barrier layer comprises a Zn concentration of less than 20%. The In and Zn are formed of an amorphous oxide; the active layer is composed of an amorphous oxide semiconductor containing In, Ga, and Zn and the Zn concentration is higher than the Zn concentration of the etching stopper. 2. The thin film field effect device of claim i, wherein the etching barrier layer has an In concentration of 4% or more and a Ga concentration of 37% or more. 3. The thin film field effect transistor of claim i, wherein the source and the gate are composed of a tantalum or a key alloy. 4. The thin film field effect transistor of claim 1, wherein the active layer and the etch stop layer have the same shape. 5. The thin film field effect transistor as described in the application of the patent &lt;RTI ID=0.0&gt;&gt;&gt;&gt; 6. The thin film field effect transistor of any one of clauses 1-4, wherein the thin film field effect transistor is a top contact type upper gate structure. 7. A method for fabricating a thin film field effect transistor, wherein the thin film field effect electric power 201140850 JOZUlpif crystal has at least a gate electrode, an insulating film, an active layer, a rice crack barrier layer, a source electrode, and a drain electrode formed on the substrate, and Forming the source and the electrode on the etch stop layer on the active layer, the manufacturing method is characterized by: using phosphoric acid, acetic acid, and nitric acid a mixed acid aqueous solution as a rice engraving liquid to form the source electrode and the immersion process; the etch resist layer is composed of an amorphous oxide containing In, Ga, and Zn having a Zn concentration of less than 20%; The active layer is composed of an amorphous oxide semiconductor containing In, Ga, and Zn, and the Zn concentration is higher than the Zn concentration of the etch barrier layer. 8. The method of producing a thin film field effect transistor according to claim 7, wherein the etching barrier layer has an In concentration of 4% by weight or more and a Ga concentration of 37% or more. 9. The method for producing a thin film field effect transistor according to claim 7, wherein the mixed acid aqueous solution comprises 70% by mass to 75 mass% of rhodium/phosphoric acid, and 5% by mass to 10% by mass of acetic acid, 1 Mass % to 5 mass% of terminal acid. 10. The method of producing a thin film field effect transistor according to claim 7, wherein the active layer and the etch stop layer form the same shape. The method for producing a thin-working field effect transistor according to any one of the preceding claims, wherein, before the process of forming the source and the drain, the method has the following a process of forming the gate on the substrate; forming a pattern on the substrate to form the insulating film to cover the gate; forming the active layer on the insulating film a process of forming the etch stop layer on the active layer; forming the source and the drain on the substrate in a process of forming the source and the drain Covering a portion of the surnamed barrier layer. 12. The method of manufacturing a thin film field effect transistor according to claim 11, wherein after forming the source and the electrodeless process, a protective layer is formed on the substrate to cover the substrate. The process of etching the barrier layer, the source and the drain. The method for producing a thin film field effect transistor according to any one of claims 7 to 10, wherein, before the process of forming the source and the drain, the process is as follows a process of forming the active layer on the substrate; and a process of forming the #etch resist layer on the active layer; in a process of forming the source and the drain, Forming the source and the drain on the substrate to cover a portion of the etch barrier layer; after forming the source and the gateless process, having a process of forming the An insulating film covering a process of etching the etch stop layer, the source and the drain; and a process of forming the gate on the insulating film. 43
TW100108322A 2010-03-31 2011-03-11 Thin-film field-effect transistor and method for manufacturing the same TWI515909B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083990A JP5496745B2 (en) 2010-03-31 2010-03-31 Thin film field effect transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201140850A true TW201140850A (en) 2011-11-16
TWI515909B TWI515909B (en) 2016-01-01

Family

ID=44946134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108322A TWI515909B (en) 2010-03-31 2011-03-11 Thin-film field-effect transistor and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP5496745B2 (en)
KR (1) KR101811257B1 (en)
TW (1) TWI515909B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483344B (en) * 2011-11-28 2015-05-01 Au Optronics Corp Array substrate and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716292B2 (en) * 1988-08-12 1995-02-22 株式会社テック Wire drive
US9082861B2 (en) * 2011-11-11 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with oxide semiconductor channel having protective layer
KR20130117558A (en) 2012-04-18 2013-10-28 삼성디스플레이 주식회사 Thin film transistor, thin film transistor array panel and manufacturing method for a thin film transistor array panel
KR20140043526A (en) 2012-09-21 2014-04-10 삼성디스플레이 주식회사 Thin film transistor array and method of manufacturing the same
TWI620323B (en) * 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
TWI661553B (en) * 2012-11-16 2019-06-01 日商半導體能源研究所股份有限公司 Semiconductor device
TWI624949B (en) * 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 Semiconductor device
KR102169571B1 (en) * 2014-03-31 2020-10-23 동우 화인켐 주식회사 Manufacturing method of an array substrate for liquid crystal display
JP6607013B2 (en) 2015-12-08 2019-11-20 株式会社リコー Field effect transistor, display element, image display device, and system
US10424672B2 (en) 2016-02-19 2019-09-24 Silicon Display Technology Oxide semiconductor transistor
WO2018016456A1 (en) 2016-07-20 2018-01-25 Ricoh Company, Ltd. Field-effect transistor, method for producing the same, display element, image display device, and system
JP2018022879A (en) 2016-07-20 2018-02-08 株式会社リコー Field-effect transistor, method for manufacturing the same, display element, image display device, and system
CN116864510A (en) * 2019-03-19 2023-10-10 群创光电股份有限公司 Operating module with transistor elements
CN112234072B (en) * 2020-09-30 2024-05-14 福建华佳彩有限公司 Flexible TFT array substrate structure and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785038B1 (en) * 2006-04-17 2007-12-12 삼성전자주식회사 Amorphous ZnO based Thin Film Transistor
TWI453915B (en) 2007-09-10 2014-09-21 Idemitsu Kosan Co Thin film transistor
JP5489446B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP2009130209A (en) * 2007-11-26 2009-06-11 Fujifilm Corp Radiation imaging device
JP5250322B2 (en) * 2008-07-10 2013-07-31 富士フイルム株式会社 Metal oxide film, method for manufacturing the same, and semiconductor device
JP5345456B2 (en) 2008-08-14 2013-11-20 富士フイルム株式会社 Thin film field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483344B (en) * 2011-11-28 2015-05-01 Au Optronics Corp Array substrate and manufacturing method thereof

Also Published As

Publication number Publication date
TWI515909B (en) 2016-01-01
KR101811257B1 (en) 2017-12-21
JP5496745B2 (en) 2014-05-21
KR20110110021A (en) 2011-10-06
JP2011216694A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
TW201140850A (en) Thin-film field-effect transistor and method for manufacturing the same
JP5852307B2 (en) Thin film transistor and manufacturing method thereof
JP5467728B2 (en) Thin film field effect transistor and method of manufacturing the same
JP5322530B2 (en) Thin film field effect transistor manufacturing method and thin film field effect transistor manufactured by the manufacturing method
JP5371467B2 (en) FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
JP5339792B2 (en) Thin film field effect transistor, method of manufacturing the same, and display device using the same
JP5512144B2 (en) Thin film transistor and manufacturing method thereof
JP2011124532A (en) Thin film transistor and method of fabricating the same
US20120286265A1 (en) Amorphous oxide thin film, thin film transistor using the same, and method for manufacturing the same
JP2007150158A (en) Transistor and its manufacturing method
JP2007281486A (en) ZnO THIN FILM TRANSISTOR
US20160343739A1 (en) Thin film transistor, method of manufacturing thin film transistor, array substrate and display device
JP2010123913A (en) Thin-film transistor and method of manufacturing the same
US8785243B2 (en) Method for manufacturing a thin film transistor array panel
US20220140114A1 (en) Method for manufacturing oxide semiconductor thin film transistor
TW201218384A (en) Thin film transistor and method for manufacturing the same
JP2009010348A (en) Channel layer and its forming method, and thin film transistor including channel layer and its manufacturing method
JP5507133B2 (en) Manufacturing method of bottom gate thin film transistor
JP5828911B2 (en) Semiconductor device, display device, and method of manufacturing semiconductor device
JP2012028481A (en) Field-effect transistor and manufacturing method of the same
Yoon et al. Flexible Nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel
US9917205B2 (en) Oxide semiconductor thin film, thin film transistor, manufacturing method and device
JP2010182929A (en) Manufacturing method of field effect transistor
JP2022121355A (en) Thin-film transistor and method for manufacturing thin-film transistor
JP2012186383A (en) Manufacturing method of thin-film transistor