Nothing Special   »   [go: up one dir, main page]

TW201044341A - Shaped frontlight reflector for use with display - Google Patents

Shaped frontlight reflector for use with display Download PDF

Info

Publication number
TW201044341A
TW201044341A TW99103230A TW99103230A TW201044341A TW 201044341 A TW201044341 A TW 201044341A TW 99103230 A TW99103230 A TW 99103230A TW 99103230 A TW99103230 A TW 99103230A TW 201044341 A TW201044341 A TW 201044341A
Authority
TW
Taiwan
Prior art keywords
reflector
rim
edge
substrate
display module
Prior art date
Application number
TW99103230A
Other languages
Chinese (zh)
Inventor
Kenneth W Baar
Original Assignee
Qualcomm Mems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/365,755 external-priority patent/US20100195310A1/en
Priority claimed from US12/399,798 external-priority patent/US8172417B2/en
Application filed by Qualcomm Mems Technologies Inc filed Critical Qualcomm Mems Technologies Inc
Publication of TW201044341A publication Critical patent/TW201044341A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3522Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element enabling or impairing total internal reflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

In order to minimize the footprint of a display module, a frontlight system positioned over a first surface of a substrate may be used. The frontlight system may include an edgebar positioned over the first surface of a display substrate, and a Z-shaped reflector having a first planar portion overlying the edgebar and a second planar portion adhered to the first surface of the substrate or layers overlying the first surface of the substrate. Such a reflector may be located wholly within the footprint of the display substrate, minimizing the footprint of the display module.

Description

201044341 六、發明說明: 【先前技術】 微機電系統(MEMS)包括微機械元件、致動器及電子裝 置。可使用蝕刻掉基板及/或所沈積材料層之部分或者添 加層的沈積、蝕刻及/或其他微機械加工製程來產生微機 械元件以形成電氣裝置及機電裝置。一種類型之裝 置被稱為干涉調變器。如本文中所使用,術語「干涉調變 器」或「干涉光調變器」指代使用光學干涉原理來選擇性 地吸收及/或反射光的裝置。在某些實施例中,干涉調變 器可包含一對導電板,該對導電板中之一者或兩者可為完 全或部分透明及/或反射性的,'且能夠在施加適當電信號 後即相對運動。在-特定實施例中,一塊板可包含沈積於 基板上之固定層,且另一塊板可包含藉由氣隙而與該固定 層分離的金屬膜。如本文中更詳細描述,一塊板相對於另 一塊板之位置可改變入射於干涉調變器上之光的光學干 涉。此等裝置具有廣泛應用,且在此項技術中利用及/或 修改此等類型之裝置的特性以使得其特徵可用於改良現有 產品及產生尚未開發出之新產品,此將為有益的。 【發明内容】 在一態樣中,提供一種顯示模組,其包括一包括一第一 表面及一第二表面之透光基板;一與一光源光學通信之緣 桿(edgebar)其中该緣桿位於該基板之該第一表面上方; 鄰近緣彳干且與該緣桿光學通信之前光膜,其中該前光 膜經組態以料光穿過該透光基板;及—反射器,該反射 146039.doc 201044341 窃包括一上覆該緣桿之第一實質上平坦部分及一第二實質 上平坦刀,邊第二實質上平坦部分位於該基板之該第〆 . 表面上方且自該緣桿橫向移位。 在另一態樣中,提供一種經組態以用於一顯示模組中之 • 轉次總成’該緣桿线成包括-緣桿,該緣桿經組態以 經由-第-纟面接收光且將光反射穿㉟一與該第一表面正 交之第二表面,及一經組態以夾持該緣桿之反射器該反 〇 射器包括一經組態以上覆該緣桿之第一實質上平坦部分及 一經組態以黏附至一下伏層之第二實質上平坦部分,其中 該第二實質上平坦部分之一下纟面實質上與該緣桿之一下 表面共面,且該緣桿係藉由該反射器來夾持。 在另態樣中,提供一種組裝一顯示模組之方法,該方 . 法包括:提供一具有一第一表面及一第二表面之基板,該 基板包括一形成於該第一表面上方之顯示陣列及一位於該 第二表面上方之導光層,其中該導光層與該顯示陣列相對 Ο 而定位;相對於該基板定位一緣桿,以使得該緣桿之—第 一表面鄰近該導光層之一側表面而定位;及在該基板之該 第一表面上方提供一反射器,以使得該反射器將該緣桿夾 ’ 持於適當位置中’該反射器包括一上覆該緣桿之第一實質 • 上平坦部分及一自該緣桿移位且黏附至一下伏層之第二實 質上平坦部分。 • 【實施方式】 以下詳細描述係針對某些特定實施例。然而,可以多種 不同方式來應用本文中之教示。在此描述中,參看諸圖 146039.doc 201044341 式,其中相似零件始終用相似數字 顯示影像(無論是運動影像(例…可在經組態以 如,靜態影像),且並論是文〜 )抑或靜止影像(例 梦w φ I ^ '.,、 文予影像抑或圖片影像)之任何 哀置中貫施S亥等實施例。 一 尺将弋吕之,預期該等實施例可 …堵如(但不限於)以下各者之各種 寺電子裝置相關聯:行動電話 巾或一亥 (ΡΠΑ\ ^ L …線衣置、個人資料助理 機丄攜帶型電腦、GPS接收器/導航器、相 :放益、攝錄一體機、遊戲控制台、腕錶、鐘 錶、计异态、電視監視器、平板 卞极顯不态、電腦監視器 車顯示器(例如,里程錶顯示器 一 寺)馬駛艙控制器及/或顯 、相機視野顯示嶋,車輛中的後視相機之顯示 ')、電子照片、電子廣告牌或電子標記、投影儀、建築 :構、封裝及美學結構(例如,一件珠寶上之影像顯示): /、本文中所描述之彼等MEMS裝置結構類似的MEMS裝置 亦可用於諸如電子開關裝置之非顯示器應用中。 在將干涉調變器用作顯示裝置之實施例中,可能需要律 可能地將顯示模組之佔據面積最小化。—可增加二模: ::占據面積的組件為一用於前光式系統中之緣桿。藉由將 、·表梓及相關聯之反射器完全地定位於顯示破璃或其他基板 之相同側面上,可藉由避免包括延伸超過顯示玻璃之周邊 :額外剛性組件而減少顯示模組之佔據面積。具有上覆緣 杯之第一平坦部分及黏附至基板或其他下伏層之第二平土曰 部分的實質上Z形反射器適合於與以此方式組態之顯二 組一起使用。 146039.doc 201044341 圖1中說明一包含一干涉Mem s韶-_ MS顯不兀件之干 顯示器實施例。在此等裝置中,德各士 像素處於明亮或黑暗狀 態。在明亮(「鬆弛」或「打開」)狀態中,顯示元件將入 射可見光之大部分反射至使㈣。#處於黑暗(「_ 或「關閉」)狀態中時,顯示元件幾乎不向使用者反射丄 射可見光。視實施例而定,可_「接通」及「關斷」狀 態之光反射性質。MEMS像素可經組態以主要在選定色命 下反射’從而允許除了黑色及白色之外的彩色顯示。^ 像素中之兩個鄰近像 MEMS干涉調變器。 素 圖1為描繪一視覺顯示器之一系列 的等角視圖,其中每一像素包含一 在-些實施例中,一干涉調變器顯示器包含此等干涉調變 器之一列/行陣列。每一干涉調變器包括一對反射層,該 對反射層α彼此間相隔一可變及可控的距離定位,以形成 具有至少一可變尺寸之諧振光學間隙。在一實施例中,該201044341 VI. Description of the Invention: [Prior Art] Microelectromechanical systems (MEMS) include micromechanical components, actuators, and electronic devices. Micromechanical components can be created to form electrical and electromechanical devices using etching, etching, and/or other micromachining processes that etch away portions of the substrate and/or deposited material layers or add layers. One type of device is called an interference modulator. As used herein, the term "interferometric modulator" or "interferometric light modulator" refers to a device that uses optical interference principles to selectively absorb and/or reflect light. In some embodiments, the interference modulator can include a pair of conductive plates, one or both of which can be fully or partially transparent and/or reflective, and capable of applying an appropriate electrical signal After the relative movement. In a particular embodiment, one plate may comprise a fixed layer deposited on the substrate and the other plate may comprise a metal film separated from the fixed layer by an air gap. As described in more detail herein, the position of one plate relative to the other can change the optical interference of light incident on the interferometric modulator. It would be beneficial for such devices to have a wide range of applications and to utilize and/or modify the characteristics of such devices in the art such that their features can be used to retrofit existing products and to create new products that have not yet been developed. SUMMARY OF THE INVENTION In one aspect, a display module includes a transparent substrate including a first surface and a second surface, and an edge bar optically communicating with a light source. Located above the first surface of the substrate; adjacent to the edge of the film and optically communicating with the edge before the light film, wherein the front film is configured to pass light through the light transmissive substrate; and - the reflector, the reflection 146039.doc 201044341 The thief includes a first substantially flat portion overlying the rim and a second substantially flat knive, the second substantially flat portion being above the surface of the substrate and from the rim Lateral shift. In another aspect, a pivoting assembly is provided for use in a display module. The edge rod is comprised of a rim rod configured to pass through the -th surface Receiving light and reflecting light 35 through a second surface orthogonal to the first surface, and a reflector configured to clamp the edge rod, the back reflector comprising a configuration configured to cover the edge a substantially planar portion and a second substantially planar portion configured to adhere to the underlying layer, wherein one of the second substantially planar portions is substantially coplanar with a lower surface of the rim and the rim The rod is held by the reflector. In another aspect, a method of assembling a display module is provided, the method comprising: providing a substrate having a first surface and a second surface, the substrate including a display formed over the first surface An array and a light guiding layer above the second surface, wherein the light guiding layer is positioned opposite to the display array; positioning an edge rod relative to the substrate such that the first surface of the edge is adjacent to the guiding Positioning a side surface of the light layer; and providing a reflector over the first surface of the substrate such that the reflector holds the rim clip in position. The reflector includes an overlying edge The first substantial portion of the rod • an upper flat portion and a second substantially flat portion displaced from the edge rod and adhered to the underlying layer. • [Embodiment] The following detailed description is directed to certain specific embodiments. However, the teachings herein can be applied in a number of different ways. In this description, see Figure 146039.doc 201044341, where similar parts always display images with similar numbers (whether moving images (for example, can be configured, for example, still images), and the text is ~) Or any embodiment of a still image (such as a dream w φ I ^ '., a text image or a picture image). One foot will be 弋吕之, it is expected that these embodiments can be blocked, such as (but not limited to) the following various electronic devices associated with the temple: mobile phone towel or one hai (ΡΠΑ \ ^ L ... line clothing, personal data Assistant computer, portable computer, GPS receiver/navigator, phase: benefit, camcorder, game console, watch, clock, meter, TV monitor, tablet, display, computer monitoring Vehicle display (for example, odometer display one temple) horse cabin controller and / or display, camera field of view display 后, rear view camera display in the vehicle '), electronic photos, electronic billboards or electronic markers, projectors , Architecture: Construction, packaging, and aesthetics (eg, imagery on a piece of jewelry): / MEMS devices similar in structure to their MEMS devices described herein can also be used in non-display applications such as electronic switching devices. In embodiments where an interference modulator is used as the display device, it may be desirable to minimize the footprint of the display module. - Two modes can be added: :: The component occupying the area is a rim for use in a front-light system. By completely locating the , and associated reflectors on the same side of the display glass or other substrate, the occupation of the display module can be reduced by avoiding extending beyond the perimeter of the display glass: additional rigid components. area. A substantially Z-shaped reflector having a first flat portion of the overlying edge cup and a second flat soil portion adhered to the substrate or other underlying layer is suitable for use with the second set configured in this manner. 146039.doc 201044341 An embodiment of a dry display including an interference Mem s韶-_ MS display is illustrated in FIG. In these devices, the Decoshi pixels are in a bright or dark state. In the bright ("relaxed" or "open") state, the display element reflects most of the incident visible light to (4). # When in the dark ("_ or "off") state, the display element reflects almost no visible light to the user. Depending on the embodiment, the light reflection properties of the "on" and "off" states can be made. MEMS pixels can be configured to reflect 'mainly at selected color' to allow for color display in addition to black and white. ^ Two of the pixels are adjacent to a MEMS interferometric modulator. Figure 1 is an isometric view depicting a series of visual displays in which each pixel includes an array of interferometric modulators comprising one of these interferometric modulators. Each of the interference modulators includes a pair of reflective layers positioned at a variable and controllable distance from one another to form a resonant optical gap having at least one variable dimension. In an embodiment, the

等反射層中之一者可在兩個位置之間移動。在第一位置 (本文中稱作鬆弛位置)中,可移動反射層定位於距一固定 的部分反射層相對較大的距離處。在第二位置(本文中稱 作致動位置)中,可移動反射層的定位更鄰近該部分反射 層。自兩個層反射之入射光視可移動反射層之位置而相長 干涉或相消干涉,從而針對每一像素產生一整體反射或非 反射狀態。 圖1中之所描繪的像素陣列部分包括兩個鄰近干涉調變 器12a及12b。在左邊之干涉調變器1以中,將可移動反射 層14&說明為處於距光學堆疊16a —預定距離之鬆弛位置 146039.doc 201044341 中°亥光本堆疊l6a包括一部分反射層。在右邊之干涉調 變器12b中,將可移動反射層14b說明為處於鄰近光學堆疊 16b之致動位置中。 如本文中所弓丨用之光學堆疊16a及i6b(統稱為光學堆疊 16)通常包含若干融合層,該等融合層可包括一諸如氧化 銦錫(ITO)之電極層、一諸如鉻之部分反射層及一透明介 電質。光學堆疊16因此為導電的、部分透明的且部分反射 性的,且可(例如)藉由將上述層中之一或多者沈積於透明 基板20上來製得。部分反射層可由部分反射性之多種材料 (諸如’各種金屬 '半導體及介電質)形成。部分反射層可 由一或多個材料層形成,且該等層中之每一者可由單一材 料或材料之組合形成。 在一些實施例中,光學堆疊16之諸層經圖案化為平行條 帶,且可形成如下文進一步描述之顯示裝置中之列電極。 可移動反射層14a、14b可形成為—或多個沈積金屬層之一 系列平行條帶(與列電極16a、16b正交)以形成沈積於_ 及介入犧牲材料(沈積於柱18之間)之頂部上的多個行。當 蝕刻掉該犧牲材料時,可移動反射層14a、14b與光學堆疊 16a 16b則由-界定之間隙19分離。諸如鋁之高導電性且 反射性材料可用於反射層14,且此等條帶可形成顯示裝置 中之行電極。&意’圖Η不按比例繪製。在一些實施例 中’柱18之間的間隔可為約跑⑽um,而間隙19可為約 <1000埃。 藉由圖1中之像素丨2a說明,在未施加電壓之情況下, 146039.doc 201044341 間隙19保持在可移動反射層14a與光學堆疊16a之間,其中 可移動反射層14a處於機械鬆弛狀態。然而,當將一電位 .(電壓)差施加至選定列及行時,在對應像素處的列電極與 行電極之相交處形成之電容器變得帶電,且靜電力將電極 拉到一起。若電壓足夠高,則可移動反射層丨4變形且壓抵 光學堆疊16。光學堆疊16内之一介電層(此圖中未說明)可 防止短路且控制層14與16之間的分離距離,如藉由在圖1 ❹ 中右邊之致動像素12b說明。此性質無關於所施加之電位 差之極性。 圖2至圖5說明一用於在顯示器應用中使用干涉調變器陣 列之例示性方法及系統。 圖2為說明可併有干涉調變器之電子裝置之一實施例的 系統方塊圖。該電子裝置包括一處理器21,該處理器2丨可 為任何通用單晶片或多晶片微處理器(諸如,ARM®、 ❹One of the isotropic layers can move between two positions. In the first position (referred to herein as the relaxed position), the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position (referred to herein as the actuated position), the movable reflective layer is positioned closer to the partially reflective layer. The incident light reflected from the two layers is constructively interfered or destructively interposed depending on the position of the movable reflective layer, thereby producing an overall reflective or non-reflective state for each pixel. The pixel array portion depicted in Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 1 on the left, the movable reflective layer 14& is illustrated as being in a relaxed position 146039.doc 201044341 from the optical stack 16a by a predetermined distance. The light-emitting stack l6a includes a portion of the reflective layer. In the interference modulator 12b on the right, the movable reflective layer 14b is illustrated as being in an actuated position adjacent the optical stack 16b. Optical stacks 16a and i6b (collectively referred to as optical stacks 16) as used herein generally comprise a plurality of fused layers, which may comprise an electrode layer such as indium tin oxide (ITO), a partial reflection such as chrome Layer and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and can be fabricated, for example, by depositing one or more of the above layers on a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective, such as 'various metal' semiconductors and dielectrics. The partially reflective layer can be formed from one or more layers of material, and each of the layers can be formed from a single material or a combination of materials. In some embodiments, the layers of optical stack 16 are patterned into parallel strips and may form column electrodes in a display device as described further below. The movable reflective layer 14a, 14b can be formed as - or a series of parallel strips of a plurality of deposited metal layers (orthogonal to the column electrodes 16a, 16b) to form a deposition on _ and an intervening sacrificial material (deposited between the pillars 18) Multiple rows on top of it. When the sacrificial material is etched away, the movable reflective layers 14a, 14b and the optical stacks 16a 16b are separated by a - defined gap 19. A highly conductive and reflective material such as aluminum can be used for the reflective layer 14, and such strips can form row electrodes in a display device. & 'Yu' is not drawn to scale. In some embodiments, the spacing between the posts 18 can be about (10) um and the gap 19 can be about < 1000 angstroms. Illustrated by the pixel 丨 2a in Fig. 1, the gap 19 is held between the movable reflective layer 14a and the optical stack 16a without applying a voltage, wherein the movable reflective layer 14a is in a mechanically relaxed state. However, when a potential (voltage) difference is applied to the selected column and row, the capacitor formed at the intersection of the column electrode and the row electrode at the corresponding pixel becomes charged, and the electrostatic force pulls the electrodes together. If the voltage is sufficiently high, the movable reflective layer 变形4 is deformed and pressed against the optical stack 16. A dielectric layer (not illustrated in this figure) within optical stack 16 prevents shorting and separates the separation distance between layers 14 and 16, as illustrated by actuating pixel 12b on the right in Figure 1 . This property is irrelevant to the polarity of the applied potential difference. 2 through 5 illustrate an exemplary method and system for using an array of interference modulators in a display application. 2 is a system block diagram illustrating one embodiment of an electronic device that can incorporate an interference modulator. The electronic device includes a processor 21, which can be any general purpose single or multi-chip microprocessor (such as ARM®, ❹

Penti⑧、8。51、MIPS㊣、p_ pc ②或 ALpH^),或任何 專用微處理器(諸如,數位信號處理器、微控制器或可程 式化閘陣列)。如此項技術中所習知,處理器幻可經組態 以執行-或多個軟體模組。除執行作f系統外,處理器可 經組態以執行一或多個軟體應用程式,包括網頁瀏覽程 式、電話應用程式、電子郵件程式或任何其他軟體應用程 式。 在-實:,處理器21亦經组態以與—陣列驅動器22 通信。在-實施例中’陣列驅動器22包括 圖 示陣列或面板3〇之列驅動器電_亍驅動器電路26 J46039.doc 201044341 1中所說明之陣列之橫截面藉由圖2中之線1-1展示。注 意,雖然為了清晰起見圖2說明干涉調變器之3χ3陣列,但 顯不陣列30可含有大量干涉調變器,且顯示陣列3〇的列中 的干涉調變器之數目與行中干涉調變器之數目不同(例 如,每列300個像素乘每行i 9〇個像素)。 圖3為圖i之干涉調變器之一例示性實施例的可移動鏡面 位置對施加電壓的圖。對於MEMS干涉調變器,列/行致動 協定可利用如圖3中所說明之此等裝置之滯後性質。干涉Penti 8, 8. 51, MIPS positive, p_ pc 2 or ALpH^), or any dedicated microprocessor (such as a digital signal processor, microcontroller or programmable gate array). As is known in the art, the processor can be configured to execute - or multiple software modules. In addition to executing the f system, the processor can be configured to execute one or more software applications, including web browsing programs, telephony applications, email programs, or any other software application. In the real: processor 21 is also configured to communicate with the array driver 22. In the embodiment, the array driver 22 includes the array of panels or the panel of the panel. The cross section of the array illustrated in Figure 6 is shown by line 1-1 in FIG. . Note that although the 3χ3 array of interferometric modulators is illustrated for clarity in Figure 2, the display array 30 can contain a large number of interferometric modulators, and the number of interferometric modulators in the columns of the display array 3〇 and inter-row interference The number of modulators is different (for example, 300 pixels per column by 9 pixels per row). 3 is a diagram of movable mirror position versus applied voltage for an exemplary embodiment of the interference modulator of FIG. For MEMS interferometric modulators, the column/row actuation protocol can utilize the hysteresis properties of such devices as illustrated in FIG. put one's oar in

調變器可需要(例如)1G伏特電位差來使可移動層自鬆弛狀 態變形至致動狀態。然而,當電壓自彼值減小時,隨著電 壓降回1〇伏特以下,該可移動層維持其狀態。在圖3之: 不性實施例中,可移動層直至電麼降至2伏特以下時才會 完全鬆弛。因此,存在一電壓範圍(在圖3中所說明之實例 二:、.々3 V至7 V) ’在該情況下,存在一施加電壓窗,在 電壓窗内,裝置穩定於鬆弛狀態或致動狀態。此窗The modulator may require, for example, a 1 G volt potential difference to deform the movable layer from a relaxed state to an actuated state. However, as the voltage decreases from the value, the movable layer maintains its state as the voltage drops back below 1 volt. In Figure 3: In the non-limiting embodiment, the movable layer is completely relaxed until it drops below 2 volts. Therefore, there is a voltage range (example 2: 々3 V to 7 V illustrated in Figure 3). In this case, there is an applied voltage window in which the device is stable in a relaxed state or Dynamic state. This window

在本文中被稱作「滯後窗」或「穩定窗」。對於具有圖^ 滯後特性之顯示陣列而言, J仃致動協疋可經設許以伯 传在列選通期間,所選通之列中待致動之 伏特之電壓差,且待馭弛 ” +路於約10 M 象素曝露於接近零伏特之電壓 差。在遥通之後,使像素曝露於約5伏特之 壓電壓差,以傕得J:徂姑认1 〜疋狀匕、或偏 吏仵其保持於被列選通所置 此實例中,在被寫入後,每—傻音…饤狀恶。在 「< 像素經歷3伏特至7件姐夕 穩定窗」内之電位差。此特徵使圖ι中所 冬 計在相同施加電壓條件下穩 D月之像素設 預先存在之致動或鬆弛狀 146039.doc 10 201044341 態。因為干涉調轡哭 合 像素(無論處於致動狀能物戎 鬆弛狀態)本質上為—由 動狀態抑或 電容器,所以π 移動反射層形成之 電“戶斤u可在滯後窗内之一電壓下保 而幾乎無功率耗散。若祐Λ + Hi 流入像素中。"加之電位固定,則本質上無電流 如下文進一步描述,在並也丨廄田Α 仕/、i應用中,可精由根據第一 中之所要致動像素集合跨 r夂木次w ㈣仃電極集合發达貧料信號集合In this paper, it is called "hysteresis window" or "stability window". For a display array with a hysteresis characteristic, the J仃 actuation protocol can be set to pass the voltage difference of the volts to be actuated in the selected column during the column strobe, and is to be relaxed. The circuit is exposed to a voltage difference of approximately zero volts at approximately 10 M. After the pass-through, the pixel is exposed to a voltage difference of approximately 5 volts to obtain a J: 徂 认 1 疋 疋 匕, or partial吏仵 It stays in the example of being strobed, and after being written, every stupid sound is stunned. The potential difference in "< pixel experiences 3 volts to 7 pieces of stability window". This feature allows the pre-existing actuation or slack in the pixels of the graph that are stable under the same applied voltage conditions. 146039.doc 10 201044341 State. Because the interference 辔 辔 像素 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质 本质There is almost no power dissipation. If you want + Hi to flow into the pixel. " Plus the potential is fixed, there is essentially no current as described further below, and also in the application of 丨廄田Α仕/,i According to the first in the first to actuate the pixel set across the r 夂 wood times w (four) 仃 electrode set developed poor material signal set

❹ (每一者貝料j呂號有—转定雪厭 ^特疋電壓位準),來產生影像圖框。 接著將列脈衝施加至第一刻恭 主弟列电極,從而致動對應於該資料 信號集合之像素。接著改變該資料信號集合以使其對應於 第一列中之所要致動像素集合。接著將脈衝施加至第二列 電極’從而根據資料信號致動第二列中之適當像素。第一 列像素不受第二列脈衝影響,且保持處於在第—列脈衝期 間其被設定在之狀態。可以順序方式對整個系列之列重複 此過程以產生圖框。大體上,藉由以每秒某一所要數目個 圖框不斷地重複此過程而以新影像資料來再新及/或更新 圖框。可使用用於驅動像素陣列之列電極及行電極以產生 影像圖框之廣泛種類的協定。 圖4及圖5說明用於在圖2之3x3陣列上產生顯示圖框之一 可能的致動協定。圖4說明可供展現出圖3之滯後曲線之像 素使用的行電壓位準及列電壓位準的可能集合。在圖4實 施例中,致動一像素涉及將適當行設定為_Vbias且將適當 列设定為+AV,-Vbias& +AV可分別對應於_5伏特及+5伏 特。藉由將適當行設定為+ Vbias且將適當列設定為相同的 146039.doc 201044341 ^△V(從而像素產生零伏特電位差)來實現像素鬆弛。在列 電壓保持於零伏特之彼等财,像素穩定於其最初所處之 任何狀態、,而丨管行是處於+Wp或_ν_。亦如圖4中所 說明,可使用與上文所描述之彼等㈣之極性相反的電 麼’例如’致動-像素可涉及將適當行設定為+U將 適當列設定為Μ。在此實施例中,藉由將適當行設定 為-vbias且將適當列設定為相同的_Λν(從而像素產生零伏 特電位差)來實現像素釋放。 圖5Β為展示施加至圖2之3 3束 口 j陣列之—糸列列及行信號的 %序圖’其將導致圖5a中所碭明夕游_亦 口 at所況明之顯不配置(其令經致動 之像素為非反射性的)。在窝入岡< a + _ ’隹冩入圖5A中所說明之圖框之 如’該等像素可處於任何狀能 、 ^- 且在此實例中,所有列最 初處於0伏特且所有行處於5 地孓5伙特。糟由此等施加電壓, 所有像素穩定於其現有的致動或鬆弛狀態。 在圖5A圖框中,像素〇〗) ;U,2) (2,2)、(3,2)及(3,3) 被致動。為實現此情形,在 線時間」期間,將行1 及行2设定為-5伏特,且將杆q < 主卜 將仃3δ又疋為+5伏特。因為所有像 素1^保持在3至7伏特之穩定窗内, 門所以此情形並不改變任 何像素之狀態。接著,藉由— 文1 目0伙特上升至5伏特且再返 回至0之脈衝對列丨進行選通。 冉返 隋开夕致動(U)及(1,2)像素 且使(1,3)像素鬆弛。陣列中 需要…2 ^ 像素不受影響。為了按 V 定為-5伏特且將行1及行3設定為+5 伙特。…列2之相同選通將接 素(2,υ及弛。此外,陣.#動像素(2,2)且使像 丨早列之其他像素不受影響。藉 146039.doc 201044341 由將行2及行3設定為-5伏特且將行丨設定為+5伏特而類似 地設定列3。列3選通設定列3像素,如圖5八中所展示。在 . 寫入圖框之後,列電位為零,且行電位可保持於+5伏特 . 或_5伏特,且顯示器接著穩定於圖5A之配置。相同程序可 • 用於數打或數百個列及行之陣列。可在上文所概述之一般 性原理内廣泛地變化用以執行列及行致動之時序、序列及 電塵位準,且_h述實例僅為例示性#,且任何致動電壓方 0 法皆可與本文中所描述之系統及方法一起使用。 圖6A及圖6B為說明一顯示裝置4〇之一實施例的系統方 塊圖。舉例而言,顯示裝置4〇可為蜂巢式或行動電話。然 而,顯示裝置40之相同組件或其輕微變化亦說明各種類型 ' 之顯示裝置(諸如,電視及攜帶型媒體播放器)。 ' 11示裝置4〇包括外殼41、顯示器30、天線43、揚聲器 45、輸入裝置48及麥克風46。大體上藉由多種製造製程 (包括射出成形及真空成形)中之任一者來形成外殼心。另 ❹夕卜,外殼可由多種材料中之任—材料製成,多種材料包 括(但不限於)塑膠、金屬、玻璃、橡膠及陶竞,或 合。在-實施例中,外殼41包括可與具有不同色彩或含有 不同私識、圖片或符號之其他可移除部分互換的可移除部 分(未圖示)。 例示性顯示裝置40之顯示器3〇可為多種顯示器(包括如 本文中所描述之雙穩態顯示器)令之任一者。在其他實施 例中,顯#器30包括平板顯示器(諸&,如上文所描述之 電衆m STN LCD或TFT LCD),或非平板顯示 I46039.doc •13· 201044341 器(諸如,CRT或其他營4 存丨夕曰沾» 式鏟置)。然而’為了描述本實施 例之目的,顯示器3〇包括 顯示器。 不又中所描述之干涉調變器 例示性顯示裝置4〇 ^ , G之1施例的組件示意性地說明於圖 6B中。所說明之例 _ ” ‘項不装置4〇包括外殼41且可包括至 少部分地封閉於j:中之雜^ ^ _ ,、中之額外組件。舉例而言,在一實施例 ,例不性顯示裝置4G包括網路介面27,該網路介面27包 括耦接至收發器47之天線43。收發器47連接至處理器2卜 處理器21連接至調節硬體52。調節硬體52可經組態以調節 W(例如’對信號進行濾波)。調節硬體52連接至揚聲器 似麥克風46。處理器21亦連接至輸入裝置似驅動器控 :益29 °驅動器控制器29叙接至圖框缓衝器28及陣列驅動 陣列驅動益22又搞接至顯示陣列3〇。冑源供應器% 按特定例示性顯示|置40設計之需要將電力提供至所有电 件。 、 網路介面27包括天線43及收發器47 ’以使得例示性顯示 裝置40可在一網路上與一或多個裝置通信。在一實施例 中’網路介面27亦可具有減輕處理器2 1之要求的一些處理 能力。天線43為用於傳輸及接收信號之任何天線。在一實 施例中,天線根據IEEE 802.11標準(包括IEEE 8〇2 u(a)、 (b)或(g))來傳輸及接收RF信號。在另一實施例中,天線根 據藍芽(BLUET00TH)標準傳輸及接收RF信號。在蜂巢式 电11舌之狀況下’天線經設計以接收CDMA、GSM、 AMPS、W-CDMA或用以在無線手機網路内通信的其他已 146039.doc -14- 201044341 知信號。收發器47預處理自天線43所接收之信號,以使得 該等信號可由處理器21接收且由處理器㈣―步操縱。收 .亦處則處理⑽所純之錢1使得該等信號 可經由天線43自例示性顯示裝置40而傳輸。 • 在—替代實施例中,可藉由-接收器#換收發器47。在 又一替代實施例令,可藉由一影像源替換網路介面27,該 影㈣可儲存或產生待發送至處理器21之影像資料。舉例 〇 >^言,影像料為數位視訊碟(DVD)或含有影像資料之硬 碟機或者產生影像資料之軟體模組。 處理器21大體上控制例示性顯示裝置4〇之整體操作。處 ㈣接收資料(諸如,來自網路介面27或影像源之塵縮 "像資料)且將貝料處理成原始影像資料或處理成易於 .4理成原始影像資料之格式。處理器21接著將經處理之資 料發送至驅動器控制器29或發送至圖框緩衝器Μ以供儲 存。原始資料通常指代識別一影像内之每一位置處之影像 ❹特性的資訊。舉例而言,此等影像特性可包括色彩、飽和 度及灰度階。 實包例中處理器21包括微控制器、cpu或邏輯單 W控制例示性顯示裝置40之操作。調節硬體52大體上包 括用於,信號傳輸至揚聲器45及用於自麥克風46接收信號 之放大器及據波器。調節硬體52可為例示性顯示裝置40内 之離散組件,或可併入處理器21或其他组件内。 驅動器控制器2 9直接自處理器2!或自圖框緩衝器2 8取得 由處理器21產生之原始影像資料’且適當地將原始影像資 146039.doc • 15- 201044341 料重新格式化以用於高速傳輸至陣列驅動器22。具體言 之’驅動器控制器29將原始影像資料重新格式化成具有光 栅狀格式之資料流,以使得其具有適合於跨越顯示陣列3 〇 而掃描之時間次序。接著,驅動器控制器29將經格式化之 資訊發送至陣列驅動器22。雖然諸如LCd控制器之驅動器 控制器29常常作為單獨積體電路(IC)而與系統處理器以相 關聯,但可以許多方式來實施此等控制器。其可作為硬體 嵌入於處理器21中,作為軟體嵌入於處理器21中,或以硬 體形式與陣列驅動器22完全整合。 通常,陣列驅動器22自驅動器控制器29接收經格式化之 資訊,且將視訊資料重新格式化成—組平行㈣,該組波 形每秒許多次地被施加至來自顯示器之x_y像素矩陣之數 百且有時甚至數千條引線。 在-貫施例中,驅動器控制器29、陣列驅動器22及顯; 陣列30適合於本文中所描述之諸類型之顯示器中的任-者。舉例而言’在—實施例中’驅動器控制器29為習知為 :控:器或雙穩態顯示控制_如,干涉調變器控讳 在另-實施財,陣列驅動㈣為習知驅動器或售 p顯示驅動器(例如,干涉調變器顯示器在一實施命 中,驅動器控制器29與陣列驅動哭入 如蜂巢式電話、手… U整合。此實施_ 蜂臬式U手錶及其他小面積顯 Γ常見的。在又一實顿,顯示陣列斗= 陣列或一雙穩態顯示陣列 列之顯示器)。例如’―包括—干涉調變器陣 J46039.doc 201044341 輪入裝置4 8允許使用者控制例示 在一眚浐為丨λ ^ 生頌不裝置40之操作。 在貫轭例中,輪入裝置48包括小鍵❹ (Everyone has a material, and the singularity of the singularity of the singularity of the singularity of the singularity of the singularity). A column pulse is then applied to the first column of the column electrode to actuate the pixel corresponding to the set of data signals. The set of data signals is then changed to correspond to the set of desired pixels in the first column. A pulse is then applied to the second column electrode ' to actuate the appropriate pixel in the second column based on the data signal. The first column of pixels is unaffected by the second column of pulses and remains in the state it was set to during the first column pulse. This process can be repeated for the entire series in a sequential manner to produce a frame. In general, the frame is renewed and/or updated with new image data by continuously repeating the process at a desired number of frames per second. A wide variety of protocols for driving the column electrodes and row electrodes of the pixel array to produce an image frame can be used. Figures 4 and 5 illustrate one possible actuation protocol for producing a display frame on the 3x3 array of Figure 2. Figure 4 illustrates a possible set of row voltage levels and column voltage levels that can be used to exhibit the pixel of the hysteresis curve of Figure 3. In the Figure 4 embodiment, actuating a pixel involves setting the appropriate row to _Vbias and the appropriate column to +AV, -Vbias& +AV may correspond to _5 volts and +5 volts, respectively. Pixel relaxation is achieved by setting the appropriate row to +Vbias and setting the appropriate column to the same 146039.doc 201044341 ^ΔV (so that the pixel produces a zero volt potential difference). In the case where the column voltage is maintained at zero volts, the pixel is stable in any state in which it was originally located, and the row is at +Wp or _ν_. As also illustrated in Figure 4, the use of the opposite of the polarity of the (4) described above, such as 'actuation-pixels, may involve setting the appropriate row to +U to set the appropriate column to Μ. In this embodiment, pixel release is achieved by setting the appropriate row to -vbias and setting the appropriate column to the same _Λν (and thus the pixel produces a zero volt potential difference). Figure 5A shows the % sequence diagram of the column array and row signals applied to the array of 3 ports of Figure 2, which will result in the apparent configuration of the 砀 夕 _ 亦 图 图 图 in Figure 5a ( It makes the actuated pixels non-reflective). In the frame illustrated in Figure 5A, the pixels can be in any shape, ^- and in this example, all columns are initially at 0 volts and all rows In the 5 mantle 5 gang. The voltage is thus applied, and all pixels are stabilized in their existing actuated or relaxed state. In the frame of Fig. 5A, the pixels 〇 〗 〖; U, 2) (2, 2), (3, 2) and (3, 3) are actuated. To achieve this, during line time, line 1 and line 2 are set to -5 volts, and the rod q < master 仃3δ is again reduced to +5 volts. Since all pixels 1^ remain in a stable window of 3 to 7 volts, the situation does not change the state of any of the pixels. Next, the column is gated by a pulse that rises to 5 volts and returns to zero.冉 隋 隋 致 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Requires 2^ pixels in the array to be unaffected. In order to set V to -5 volts and set line 1 and line 3 to +5 plex. ...the same strobe of column 2 will be connected to the element (2, υ and relaxation. In addition, the array. #moving pixels (2, 2) and making other pixels like the early columns are not affected. By 146039.doc 201044341 by the line 2 and row 3 are set to -5 volts and the row 丨 is set to +5 volts and column 3 is similarly set. Column 3 strobe sets the column 3 pixels, as shown in Figure 5 VIII. After writing the frame, The column potential is zero and the row potential can be maintained at +5 volts or _5 volts, and the display is then stabilized in the configuration of Figure 5A. The same procedure can be used for arrays of dozens or hundreds of columns and rows. The general principles outlined herein are widely varied to perform the timing, sequence, and dust levels of column and row actuation, and the examples are merely exemplary #, and any actuating voltage method can be used. Used in conjunction with the systems and methods described herein.Figures 6A and 6B are system block diagrams illustrating one embodiment of a display device 4. For example, the display device 4 can be a cellular or mobile phone. The same components of the display device 40 or slight variations thereof also illustrate various types of display devices (such as televisions) And a portable media player. '11 The display device 4 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. Generally, in various manufacturing processes (including injection molding and vacuum forming) Either of them can form the outer shell. Alternatively, the outer casing can be made of any of a variety of materials including, but not limited to, plastic, metal, glass, rubber, and ceramics. In an embodiment, the housing 41 includes a removable portion (not shown) that can be interchanged with other removable portions having different colors or containing different private identities, pictures or symbols. The display 3 of the exemplary display device 40 can be Any of a variety of displays, including bi-stable displays as described herein, in any other embodiment, the display device 30 includes a flat panel display (the &, as described above, the m STN LCD or TFT LCD), or non-flat panel display I46039.doc •13· 201044341 (such as CRT or other camp 4), however, for the purpose of describing the embodiment, the display 3 includes The components of the embodiment of the interferometric modulator exemplary display device 4A, G are schematically illustrated in Figure 6B. The illustrated example _" 41 and may include additional components at least partially enclosed in j:, for example, in an embodiment, the exemplary display device 4G includes a network interface 27, the network interface 27 An antenna 43 coupled to the transceiver 47 is included. The transceiver 47 is coupled to the processor 2 and the processor 21 is coupled to the conditioning hardware 52. The conditioning hardware 52 can be configured to adjust W (e.g., 'filter the signal'). The adjustment hardware 52 is connected to the speaker like a microphone 46. The processor 21 is also coupled to the input device-like driver control: the 29° driver controller 29 is coupled to the frame buffer 28 and the array drive array driver 22 is coupled to the display array 3A.胄 Source Provider % is shown in a specific example | The 40 design needs to provide power to all of the components. The network interface 27 includes an antenna 43 and a transceiver 47' such that the illustrative display device 40 can communicate with one or more devices over a network. In an embodiment, the network interface 27 may also have some processing power to alleviate the requirements of the processor 21. Antenna 43 is any antenna for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals in accordance with the IEEE 802.11 standard, including IEEE 8〇2 u(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals in accordance with the Bluetooth (BLUET00TH) standard. In the case of a cellular ellipse, the antenna is designed to receive CDMA, GSM, AMPS, W-CDMA, or other signals that are used to communicate within the wireless handset network. Transceiver 47 preprocesses the signals received from antenna 43 such that the signals are received by processor 21 and are manipulated by the processor (four). Also, the pure money 1 is processed (10) so that the signals can be transmitted from the exemplary display device 40 via the antenna 43. • In an alternative embodiment, the transceiver 47 can be replaced by a - receiver #. In still another alternative embodiment, the network interface 27 can be replaced by an image source that can store or generate image material to be sent to the processor 21. For example, 影像 >^, the image material is a digital video disc (DVD) or a hard disk drive containing image data or a software module for generating image data. The processor 21 generally controls the overall operation of the exemplary display device 4A. (4) Receiving data (such as dust from the network interface 27 or image source) and processing the material into original image data or processing it into a format that is easy to use. Processor 21 then sends the processed data to drive controller 29 or to the frame buffer for storage. Raw material usually refers to information that identifies the characteristics of an image at each location within an image. For example, such image characteristics may include color, saturation, and gray scale. The processor 21 in the actual package includes the operation of a microcontroller, cpu or logic unit W to control the exemplary display device 40. The conditioning hardware 52 generally includes an amplifier and a data filter for transmitting signals to the speaker 45 and for receiving signals from the microphone 46. The conditioning hardware 52 can be a discrete component within the exemplary display device 40 or can be incorporated into the processor 21 or other components. The drive controller 29 directly retrieves the original image data generated by the processor 21 from the processor 2! or from the frame buffer 28 and reformats the original image material 146039.doc • 15- 201044341 as appropriate. Transfer to the array driver 22 at high speed. In particular, the drive controller 29 reformats the raw image material into a stream of data in a raster format such that it has a temporal order suitable for scanning across the display array 3. Driver controller 29 then sends the formatted information to array driver 22. While the driver controller 29, such as an LCd controller, is often associated with the system processor as a separate integrated circuit (IC), such controllers can be implemented in a number of ways. It can be embedded in the processor 21 as a hardware, embedded in the processor 21 as a software, or fully integrated with the array driver 22 in a hardware form. Typically, array driver 22 receives the formatted information from driver controller 29 and reformats the video data into a set parallel (four) that is applied to the x-y pixel matrix from the display hundreds of times per second and Sometimes even thousands of leads. In the embodiment, driver controller 29, array driver 22, and display array 30 are suitable for any of the types of displays described herein. For example, in the embodiment, the driver controller 29 is conventionally known as: control: or bistable display control. For example, the interference modulator is controlled by another, and the array driver (4) is a conventional driver. Or sell the p display driver (for example, the interference modulator display in an implementation hit, the drive controller 29 and the array drive cry into a cellular phone, hand ... U integration. This implementation _ bee-style U watch and other small area display ΓCommon. In another solid, display array bucket = array or a bistable display array column display). For example, the "includes" interferometric array J46039.doc 201044341 The wheeling device 4 8 allows the user to control the operation of the device 40 at the same time. In the yoke example, the wheeling device 48 includes a small key

铋船斗、兩 硬盤(諸如,QWERTY铋 boat bucket, two hard drives (such as QWERTY

鍵盤或電話小鍵盤)、按鈕、開關 Y 啊蚁愛綦、壓敏或埶 敏膜。在一實施例中,麥克 ^ a+ 马例不性顯示裝置40之於 入衣置。當麥克風46用以將資料輪 別 . 王衣置野,可由伟爾 提供用於控制例示性顯示裝置4〇之操作的語音命令。Keyboard or phone keypad), buttons, switches Y ant love 綦, pressure sensitive or sensitive film. In one embodiment, the microphone is used to enter the garment. When the microphone 46 is used to wheel the data, Wang Yi is provided with a voice command for controlling the operation of the exemplary display device 4 by Weir.

電=器5。可包括如此項技術中所熟知之多種能量儲 ^ 1也例中電源供應器5〇為諸如 錄“池或鐘離子電池之可再充電電池。在另—實施例 中,電源供應器5〇為可再生能源、電容器或太陽能電池 (包括塑谬太陽能電池及太陽能電池塗料)。在另一實施例 中’電源供應H5G經組態以自壁式插座接收電力。 如上文所插述,在一些實施中,控制可程式化性駐留於 可位於電子顯示系統中之若干處的驅動器控制器中。在一 些狀況下,控制可程式化性駐留於陣列驅動器辦。上文 所描述之最佳化可實施於任何數目個硬體及/或軟體組件 中且可以各種組態來實施。 根據上文所闡述之原王里操作之干涉調變器的結構之細節 可廣泛地變化。舉例而言,圖7A至圖7£說明可移動反射 層14及其支撐結構之五個不同實施例。圖7A為圖1之實施 例之橫截面,其中金屬材料條帶14沈積於正交地延伸的支 撐件18上。在圖7B中’每一干涉調變器之可移動反射層14 為方形或矩形形狀且僅在繋栓32上之轉角處附接至支撐 件。在圖7C中,可移動反射層14為方形或矩形形狀且自可 146039.doc •17· 201044341 變形層34懸掛,可變形層34可包含可撓性金屬。可變形層 34在可變形層34之周邊周圍直接或間接地連接至基板2〇。 此等連接在本文中被稱作支撐柱。圖7D中所說明之實施例 具有支撐柱插塞42 ’可變形層34擱置於該等支撐柱插塞42 上。可移動反射層14保持懸掛於間隙上方(如圖7A至圖7C 中)’但可變形層34並不藉由填充可變形層34與光學堆疊 16之間的孔而形成支撐柱。更確切而言,支撐柱係由平坦 化材料形成’該平坦化材料用以形成支撐柱插塞42。圖7E 中所a兒明之貫施例係基於圖7 D中所展示之實施例,但亦可 經調適以與圖7 A至圖7 C中所說明之實施例中之任一者以 及未展示之額外實施例一起起作用。在圖7E中所展示之實 施例中’使用金屬或其他導電材料之額外層形成匯流排結 構44。此情形允許沿干涉調變器之背部導引信號,從而消 除否則可能必須形成於基板2〇上之若干電極。 在諸如圖7中所示之彼等實施例的實施例中,干涉調變 器充當直視裝置,其中自透明基板20之前侧檢視影像,該 側與上面配置有調變器之彼側相對。在此等實施例中,反 射層14光學地屏蔽反射層之與基板2〇相對之側面上的干涉 調變器之部分(包括可變形層34)。此情形允許在不消極地 影響影像品質之情況下組態及操作經屏蔽區。舉例而言, 此屏蔽允許圖7E中之匯流排結構44,該結構提供將調變器 之光學性質與調變器之機電性質(諸如,定址與由彼定址 產生的移動)分離的能力。此可分離之調變器架構允許用 於調變器之機電態樣及光學態樣之結構設計及材料彼此獨 146039.doc -18- 201044341 立地選擇及起作用。此外,圖7C至圓7E中所展示之實施例 具有自反射層之光學性f與其機械性f (由可變形層^ 執打)之解㈣出的額外益處。此情形允許用於反射層Μ 之結構設計及材料關於光#性質而最佳化,且用於可變形 層34之結構設計及材料關於所要機械性質而最佳化。 在某些實施財’干涉調變轉列可用作顯示模組中之 顯示陣列。干涉調變器陣列可形成於透光或實質上透明之 基板之第-表面上或上方,且該陣列可經由基板之與第一 表面相對之第二表面來檢視。Electric = device 5. A plurality of energy storages as are well known in the art may be included. Also in the example, the power supply 5 is a rechargeable battery such as a "pool or a clock ion battery. In another embodiment, the power supply 5" is Renewable energy, capacitors or solar cells (including plastic solar cells and solar cell coatings). In another embodiment 'power supply H5G is configured to receive power from a wall outlet. As explained above, in some implementations Controllability resides in a driver controller that can be located in several places in an electronic display system. In some cases, control programmability resides in the array driver. The optimization described above can be implemented. It can be implemented in any number of hardware and/or software components and can be implemented in a variety of configurations. The details of the structure of the interference modulator operating in accordance with the original teachings described above can vary widely. For example, Figure 7A Figure 5A illustrates a cross-section of the movable reflective layer 14 and its support structure. Figure 7A is a cross section of the embodiment of Figure 1 with the strip of metal material 14 deposited in orthogonal extension On the support member 18. In Fig. 7B, the movable reflective layer 14 of each of the interference modulators has a square or rectangular shape and is attached to the support only at the corners on the tie bolt 32. In Fig. 7C, The moving reflective layer 14 is square or rectangular in shape and is suspended from a deformable layer 34. The deformable layer 34 can comprise a flexible metal. The deformable layer 34 is directly or indirectly around the periphery of the deformable layer 34. The ground is connected to the substrate 2. These connections are referred to herein as support posts. The embodiment illustrated in Figure 7D has support post plugs 42 'the deformable layer 34 rests on the support post plugs 42. The moving reflective layer 14 remains suspended above the gap (as in Figures 7A-7C) 'but the deformable layer 34 does not form a support post by filling the hole between the deformable layer 34 and the optical stack 16. More specifically The support column is formed of a planarizing material to form the support post plug 42. The embodiment of Figure 7E is based on the embodiment shown in Figure 7 D, but can also be adapted And with any of the embodiments illustrated in Figures 7A through 7C And the additional embodiments not shown work together. In the embodiment shown in Figure 7E, 'the busbar structure 44 is formed using an additional layer of metal or other conductive material. This situation allows the signal to be directed along the back of the interference modulator. , thereby eliminating a number of electrodes that may otherwise have to be formed on the substrate 2 . In embodiments such as those shown in Figure 7, the interference modulator acts as a direct view device, wherein the image is viewed from the front side of the transparent substrate 20 The side is opposite the other side on which the modulator is disposed. In these embodiments, the reflective layer 14 optically shields portions of the interfering modulator on the side of the reflective layer opposite the substrate 2 (including deformable Layer 34) This situation allows the shielded area to be configured and operated without negatively affecting image quality. For example, this shielding allows the busbar structure 44 of Figure 7E to provide the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and movement resulting from the addressing. This detachable modulator architecture allows the structural design and materials used for the electromechanical and optical aspects of the modulator to be selected and functioning. Moreover, the embodiment shown in Figures 7C through 7E has the added benefit of the optical property f of the self-reflecting layer and its mechanical f (executed by the deformable layer). This situation allows the structural design and materials for the reflective layer to be optimized with respect to the nature of the light, and the structural design and materials for the deformable layer 34 are optimized with respect to the desired mechanical properties. In some implementations, the interference modulation transition can be used as a display array in a display module. The array of interferometric modulators can be formed on or above the first surface of the light transmissive or substantially transparent substrate, and the array can be viewed through a second surface of the substrate opposite the first surface.

因為干涉調變器陣列可為反射性顯示器,所以可藉由一 前光系統提供照明,該前光系統經組態以允許光通常借助 於全内反射(TIR)而傳播遍及位於干涉調變器陣列與檢視 者之間的透光導引層,且在遍及前光膜之多個位置處將光 朝向陣列反射以跨越陣列之表面提供實質上均勻照明。可 接著干涉地調變朝向干涉調變器陣列反射之光且將其經由 導光層並朝向檢視者反射回去。 在某些實施例中,透光基板可用作導光層,且在其他實 施例中,可提供單獨的導光層。在特定實施例中,如下文 將更詳細地論述,導光層可包含位於基板之表面上或上方 的專用前光膜。導光層可包含在導光層内或鄰近導光層以 將光朝向干涉調變器陣列反射之反射特徵。 圖8A及圖8B說明顯示模組1〇〇之實施例,其中基板用作 ‘光層。如本說明書中上文所註釋及下文更詳細描述地, 在其他實施例中’可鄰近基板提供專用導光層。在圖8A中 146039.doc -19- 201044341 可見’顯示模組100包含基板102,其支撐位於基板之第一 表面1〇4上之干涉調變器陣列丨1〇。密封至基板ι〇〇之第一 表面104的背板112上覆干涉調變器陣列11〇並保護干涉調 變器陣列U0。干涉調變器陣列110可由檢視者經由基板 100之第二表面106來檢視。 在某些實施例中,蚰光系統包含一點光源(諸如, LED)。應理解,雖然被描述為點源,但光源可包含彼此鄰 近之一或多個LED或其他光源。自光源發射之光可被引導 至緣桿中,其中緣桿經組態以將點光源轉換成線光源。在 圖8B中,可見顯示模組100包括鄰近緣桿12〇之側表面K6b 而定位的成LED MO之形式的光源。 一緣桿(諸如,圖8A及圖8B之緣桿12〇)可接近導光層而 定位,以使得光將自緣桿反射至導光層中,且在朝向^涉 調變器陣列反射之前傳播過整個導光層。因此,諸如[ED 或其他點A源之光源可㈣緣桿之射入表自或區域而定 位’以使得自&源發射之光將進入緣桿中。緣桿之射出表 :或區域可鄰近該或該等導光層之射入表面而定位,以使 知可將光引導至緣桿以外而到達導光層中。 在某些實施例中’可將緣桿^位至透光基板之側面,且 可經由框架而緊㈣適當位置中。鄰近透光基板之前表面 因此可用作緣桿之射出區域,且正交於射出表面之表面或 表面之—部分可用作射人區域。在特定實施例中,緣桿之 側表面(非上表面或下表面)的整體或-部分用作射入區 域。成LED形式之光源因此可鄰近此緣桿之側表面而定 146039.doc -20· 201044341 位。 在圖8 A之實施例中,可見顯示模組1 〇〇之緣桿12〇鄰近基 板102之側表面ι〇8而定位,基板ι〇2用作導光層。緣桿12〇 之前表面124a與基板102光學通信,以使得前表面124&用 作緣桿120之射出區域。鄰近LED 140之緣桿側表面126b之 部分用作緣桿射入區域。 因為來自點光源之光可以寬範圍角度進入緣桿中,所以 0 當光未被全内反射時可發生一定量的光損失,此量是不符 合要求的。如在圖8A及圖8B中可見’諸如反射器13〇之反 射器可鄰近緣桿之不用作射入或射出區域的一或多個表面 而定位。在特定實施例中,一或多個反射器可鄰近所有或 : 貫質上所有此等表面而定位,以便將來自緣桿之光損失最 小化。 可提供一反射器,該反射器覆蓋緣桿之整個或大部分剩 餘表面,且該反射器可在基板之至少一部分上方延伸而會 〇 不阻擋干涉調變器陣列之一部分。當緣桿之側表面用作緣 桿之射入區域時,反射器可覆蓋緣桿之至少上表面及下表 面以及緣桿之背表面(其與射出表面相對而定位)。應理 解,雖然反射器亦可覆蓋與射入區域及光源相對之側表 面’但此反射器可被稱作「(:形J反射器。 關於圖8A,可見反射器130覆蓋緣桿上表面122&、緣桿 背表面124b及緣桿下表面122b之至少—部分,從而形成在 横截面中所見之C形狀。在圖犯中亦可見,反射器13〇覆 蓋緣桿側表面126a之至少一部分以及緣桿側表面12补之不 146039.doc •21 201044341 用作緣桿射入部分之一部分。 將反射器130說明為部分地延伸至基板1〇2上,但在一些 實施例中,反射器130可僅在緣桿上方延伸或可在大於或 小於圖8之實施例的基板1〇2之—部分上方延伸,且反射器 130之上部部分及下部部分可具有不同長度。驅動器電路 (未圖示)亦可置放於顯示模組之表面上,且在某些實施例 中可置放於基板之與干涉調變器陣列相同之側面上。如上 文所論述,在某些實施例中,框架(未圖示)可用以將反射 器130及緣桿12〇緊固於適當位置中。 在所說明之實施例中,自LED 14〇發射之光經由側表面 126b進入緣桿120中,且被緣桿12〇内之組件反射而穿過前 表面124a。光接著傳播穿過用作導光層之基板1〇2,直至 其被朝向陣列11 〇反射為止。光朝向干涉調變器陣列11 〇反 射,此可由位於導光層内或在導光層之上表面104上或鄰 近導光層之上表面104的反射元件進行。在某些實施例 中,具有此等反射元件之額外層(未圖示)可形成於基板102 之上表面104上。 可見,沿基板之側表面106置放緣桿120擴大了顯示模組 100之佔據面積。在諸如電子裝置用之顯示模組的實施例 中,可此需要藉由改變緣桿120之置放及反射器J3〇之形狀 來將顯示器之佔據面積最小化。 圖9為顯示模組200之替代實施例的部分橫截面。顯示模 組包含一具有一背板112,之基板1〇2,,該背板ιι2,緊固至基 板102’之第一側面104,以形成用於保護干涉調變器陣列(未 I46039.doc -22- 201044341 圖示)之空腔114’。緣桿120'位於基板1〇2,之第二側面ι〇6上 方,且鄰近前光膜250而定位,前光膜250在基板102,之第 二表面106上方、至少在干涉調變器陣列之一部分上方延 伸。 反射器230上覆緣桿120,且朝向基板1〇2,之邊緣延伸超過 背緣124b'。與圖8A至圖8B之反射器130對比,反射器230 可位於基板102之單一側面上。反射器230包含上覆緣桿 0 120之第一實質上平坦部分232及一第二平坦部分2;34。可 見,第二平坦部分204自緣桿120,橫向移位,以使得第二平 坦部分204不上覆緣桿120,,而是在基板1〇2,之位於緣桿 120'與基板邊緣之間的一部分上方延伸。過渡部分236(其 : 在所§兒明之實施例中為彎曲的)連接第一平坦部分2 3 2與第 - 二平坦部分234。可見,第一平坦部分232可在前光膜250 之至少一部分上方延伸’以便將額外光朝向前光膜250反 射’從而進一步將來自緣桿120'之光損失最小化。在某些 〇 實施例中’第一平坦部分232並不延伸至干涉調變器陣列 之檢視將模糊之點。 顯示模組200可包含以類似於圖8B中所描繪之方式的方 式鄰近緣桿120,之側奏面而定位的LED或其他光源(圖9中 未展示)。可藉由可位於反射器230之第一平坦部分232上 方之可撓性印刷電路(FPC)242來提供與LED之電連接,且 ' 可藉由上覆FPC 242之加強構件244來提供對於LED之機械 支撐。LED因此可懸掛於FPC 242及加強構件244之下方, 以使得LED鄰接緣桿120,之側表面或鄰近緣桿120,之側表 146039.doc -23· 201044341 面而定位。 亦可見,在所說明之實施例中,諸如反射性條帶之反射 性材料層260位於緣桿120,與基板102,之第二表面1〇6之 間。反射條帶用作反射器以防止來自緣桿12〇,之底部的光 損失。另外,反射條帶屏蔽驅動器積體電路27〇以使其免 受由LED發射或自緣桿120,逸出之光,從而允許ic 27〇直 接安裝於基板102’之第一側面1〇4,上或上方鄰近干涉調變 器陣列(未圖示)。此定位可促進IC 27〇與干涉調變器陣列 之間的電連接的形成。在缺乏下伏反射條帶之情況下由 LED發射之光可干擾1C之操作(例如,藉由使1(:重設)。 圖10為類似於圖9之模組200的顯示模組300之分解組裝 圖。顯示模組300包括一基板102,,,該基板1〇2,,具有黏附 至基板102"之下側的干涉調變器陣列及保護性背板ιΐ4,,。 1C 270可連同可撓性條帶372之—端一起黏附至基板 之下側,可撓性條帶372可包含印刷電路或用於與外部組 件介接之其他電連接件。可提供黏接層38〇&及38补以在組 裝過程期間將某些元件緊固於適當位置_。可提供不透明 膜382,以便屏蔽1〇27〇,以保護其免受雜散光。 上覆基板102的為前光膜25〇,及反射性條帶26〇,,且保護 性膜390可形成於前光膜25〇,及反射性條帶26〇,上方。在某 些實施例中’保護性膜可包含—可在組裝顯示模組^ 後移除的層。在此實施例中,保護性膜39〇不可下伏於顯 示模組300之任何其他組件之下(此將抑制該膜之移除卜, 包含緣桿及反射器之緣桿次總成32〇上覆反射性條帶 146039.doc -24- 201044341 260'。在所說明之實施例中,緣桿次總成320包含一經由熱 溶柱(heat stake)而緊固至反射器之緣桿。下文更詳細地論 述該緣桿次總成。包含加強件244'及LED可撓性印刷電路 242'之LED次總成340可支撐下伏LED(未圖示)。經組裝之 ‘模組可緊固於保護性框架392内。 圖11A至圖11C為用於圖10之緣桿次總成320中的反射器 3 3 0之各種視圖。反射器3 3 0包含一經組態以上覆緣桿之第 ❹ 一平坦部分402及一經組態以鄰近緣桿而定位之第二平坦 部分404。第一平坦部分402藉由一過渡部分4〇6而連接至 第二平坦部分404,該過渡部分406在一大體上向上之方向 上自第二平坦部分404延伸至第一平坦部分402。如最佳在 ' 圖11C中可見,所說明之實施例中之過渡部分406包含彎曲 ‘ 部分,在該等彎曲部分中,過渡部分406與第一平坦部分 402及第二平坦部分404交會。 反射斋330亦包含自第一平坦部分4〇2之側面大體上向下 〇 延伸的突出部。詳言之,可見,第一平坦部分402之第一 側面41 8a包含一自一鄰近過渡部分4〇6之位置自第二平坦 部分向下延伸的突出部41 0,而第一平坦部分4〇2之相對側 面418b包含一與過渡區域4〇6間隔開之突出部4丨2。側面 418b上之相對突出部412為一在過渡區域與向下延伸之突 ’出部412之邊緣之間延伸的開口區域414。此開口區域414 允5午LED或其他光源鄰近一夾持於反射器33〇内之緣桿而 定位,以便將光發射至緣桿中。 應理解,反射器330之特定組態為一例示性組態,且反 146039.doc -25· 201044341 射器33 0之組態可以多種方式變化。舉例而言,在其他實 施例中,反射器330之側面418a可包含一較長的向下延伸 之突出部或一對向下延伸之突出部,而非圖11A至圖llc 中所描繪的鄰近過渡區域406而定位之單一向下延伸之突 出部410。在其他實施例中,無突出部4 1 2可位於反射器 330之側面418b上。 反射益330亦包含一延伸穿過第一平坦部分之孔々Μ。此 孔416可用以相對於反射器33〇緊固緣桿。圖12描繪一適合 於與反射器330 —起使用之緣桿420。如可見的,緣桿420 包含一向上延伸部分422。至少緣桿420之向上延伸部分 422包含一當被加熱時可變形的材料。緣桿42〇亦包括一自 緣桿420之側面部分延伸之突出部424。 圖13A至圖13C說明緣桿總成32〇之各種視圖,在緣桿總 成320中,緣桿420係相對於反射器33〇而緊固。詳言之, 圖13A以透視圖說明緣桿總成32〇之分解組裝圖,其中可見 緣桿總成320包含一上覆緣桿42〇之反射器33〇及—黏接層 322。反射器330之第一平坦部分4〇2上覆緣桿330,且黏接 層322下伏於第二平坦部分4〇2之下。藉由將第二平坦部分 404黏附至下伏層,可將反射器33〇固定地耦接至下伏層, 從而約束第一平坦部分402及緊固於第—平坦部分4〇2之下 方之緣桿420而無需直接將緣桿42〇黏附至任何下伏層。 亦可見,緣桿420之向上延伸部分在加熱後變形以使 得其變平並向外延伸。雖然在分解圖中描繪,但此變形可 在穿過反射器330之第一平坦部分4〇2中的孔419(參見圖 146039.doc -26- 201044341 11A)插入向上延伸部分422(參見圖ι2)之後發生。該向上延 伸部分可接著向外變形至一大於孔419之彼大小的大小, 從而形成熱熔柱422a並相對於反射器330緊固緣桿420。 在圖13B中,可見,沿反射器33〇之側面418b的空間414 經設定尺寸以准許緣桿420之側表面426延伸至空間414 中,以使知側表面426得以曝露。如上文所論述,[ED或Because the interferometric modulator array can be a reflective display, illumination can be provided by a front light system configured to allow light to propagate throughout the interference modulator, typically by means of total internal reflection (TIR). A light transmissive guiding layer between the array and the viewer, and reflecting light toward the array at a plurality of locations throughout the front light film to provide substantially uniform illumination across the surface of the array. The light reflected towards the array of interferometric modulators can then be interferingly modulated and reflected back through the light guiding layer and toward the viewer. In some embodiments, a light transmissive substrate can be used as the light directing layer, and in other embodiments, a separate light directing layer can be provided. In a particular embodiment, as will be discussed in more detail below, the light directing layer can comprise a dedicated front light film on or above the surface of the substrate. The light directing layer can comprise reflective features in or adjacent to the light directing layer to reflect light toward the array of interferometric modulators. 8A and 8B illustrate an embodiment of a display module 1 in which a substrate is used as a 'light layer. As noted above in the specification and as described in more detail below, in other embodiments, a dedicated light guiding layer may be provided adjacent to the substrate. In Fig. 8A, 146039.doc -19-201044341 shows that the display module 100 includes a substrate 102 that supports an array of interference modulators 位于1〇 on the first surface 1-4 of the substrate. The backing plate 112 sealed to the first surface 104 of the substrate 10 overlies the interferometric array 11 and protects the interferometric array U0. Interferometric modulator array 110 can be viewed by a viewer via second surface 106 of substrate 100. In some embodiments, the calendering system includes a point source (such as an LED). It should be understood that although described as a point source, the light source can include one or more LEDs or other light sources adjacent one another. Light emitted from the light source can be directed into the rim, where the rim is configured to convert the point source into a line source. In Fig. 8B, it can be seen that the display module 100 includes a light source in the form of an LED MO positioned adjacent to the side surface K6b of the rim 12. A rim (such as the rim 12 of Figures 8A and 8B) can be positioned proximate to the light guiding layer such that light is reflected from the rim into the light guiding layer and before being reflected toward the array of modulators Spread through the entire light guide layer. Thus, a source such as [ED or other point A source can be positioned "from the or region of the edge" such that light emitted from the & source will enter the edge. The exiting table of the rim: or the region may be positioned adjacent to the incident surface of the or each of the light guiding layers such that light is directed out of the rim to reach the light guiding layer. In some embodiments, the rim can be positioned to the side of the light transmissive substrate and can be tightly placed in the appropriate position via the frame. The surface adjacent to the front surface of the light-transmissive substrate can thus be used as an exit area of the edge rod, and a portion orthogonal to the surface or surface of the exit surface can be used as an injection area. In a particular embodiment, the entirety or - portion of the side surface (not the upper or lower surface) of the rim serves as the injection zone. The light source in the form of an LED can thus be placed adjacent to the side surface of the edge rod 146039.doc -20· 201044341 bit. In the embodiment of Fig. 8A, it can be seen that the edge of the display module 1 is positioned adjacent to the side surface ι 8 of the substrate 102, and the substrate 〇2 serves as a light guiding layer. The rim 12 〇 front surface 124a is in optical communication with the substrate 102 such that the front surface 124 & serves as the exit region of the rim 120. A portion of the edge side surface 126b adjacent to the LED 140 serves as an edge entry region. Since light from a point source can enter the rim at a wide range of angles, a certain amount of light loss can occur when the light is not totally internally reflected. This amount is not satisfactory. As can be seen in Figures 8A and 8B, a reflector such as reflector 13 can be positioned adjacent one or more surfaces of the rim that are not used as an injection or exit region. In a particular embodiment, one or more reflectors can be positioned adjacent to all or all of these surfaces in order to minimize light loss from the rim. A reflector can be provided that covers all or most of the remaining surface of the rim and the reflector can extend over at least a portion of the substrate to not block a portion of the array of interferometric modulators. When the side surface of the rim is used as the injection area of the rim, the reflector may cover at least the upper surface and the lower surface of the rim and the back surface of the rim (which is positioned opposite the exit surface). It should be understood that although the reflector may also cover the side surface opposite the incident region and the light source, the reflector may be referred to as "(:J-shaped reflector.) With respect to Figure 8A, it can be seen that the reflector 130 covers the upper surface of the edge rod 122 & At least a portion of the rim back surface 124b and the rim lower surface 122b, thereby forming a C shape as seen in the cross section. It can also be seen that the reflector 13 〇 covers at least a portion of the rim side surface 126a and The rim side surface 12 is not filled 146039.doc • 21 201044341 is used as part of the lance injection portion. The reflector 130 is illustrated as extending partially onto the substrate 1 〇 2, but in some embodiments, the reflector 130 It may extend only over the rim or may extend over a portion of the substrate 1 〇 2 that is larger or smaller than the embodiment of Figure 8, and the upper and lower portions of the reflector 130 may have different lengths. ) may also be placed on the surface of the display module, and in some embodiments may be placed on the same side of the substrate as the array of interferometric modulators. As discussed above, in some embodiments, the frame (not shown It can be used to secure the reflector 130 and the rim 12〇 in position. In the illustrated embodiment, light emitted from the LED 14A enters the rim 120 via the side surface 126b and is slid into the rim 12 The component reflects through the front surface 124a. The light then propagates through the substrate 1〇2, which acts as a light guiding layer, until it is reflected toward the array 11. The light is reflected toward the interference modulator array 11, which can be located Reflecting elements within or adjacent to the light guiding layer upper surface 104 or adjacent to the light guiding layer surface 104. In some embodiments, additional layers (not shown) having such reflective elements can be formed On the upper surface 104 of the substrate 102. It can be seen that placing the edge rod 120 along the side surface 106 of the substrate enlarges the occupied area of the display module 100. In an embodiment such as a display module for an electronic device, it is necessary to borrow The footprint of the display is minimized by changing the shape of the rim 120 and the shape of the reflector J3. Figure 9 is a partial cross-section of an alternative embodiment of the display module 200. The display module includes a backing plate 112 , the substrate 1〇2, the back Ιι2, fastened to the first side 104 of the substrate 102' to form a cavity 114' for protecting the array of interferometric modulators (not shown in I46039.doc -22-201044341). The rim 120' is located on the substrate 1〇 2. The second side of the second side ι 6 is positioned adjacent to the front light film 250, and the front light film 250 extends over the second surface 106 of the substrate 102, at least over a portion of the array of interference modulators. The upper edge of the rim 120 and toward the substrate 1 〇 2, the edge extends beyond the back edge 124 b ′. In contrast to the reflector 130 of FIGS. 8A-8B , the reflector 230 can be located on a single side of the substrate 102 . The reflector 230 includes a first substantially flat portion 232 and a second flat portion 2; 34 of the upper cover rod 0 120. It can be seen that the second flat portion 204 is laterally displaced from the edge rod 120 such that the second flat portion 204 does not overlie the edge rod 120, but is located between the substrate 1〇2 and the edge of the substrate 120' and the edge of the substrate. Part of the extension extends. The transition portion 236 (which is curved in the embodiment shown) connects the first flat portion 2 3 2 and the second - flat portion 234. As can be seen, the first flat portion 232 can extend over at least a portion of the front light film 250 to reflect additional light toward the front light film 250 to further minimize light loss from the edge rod 120'. In some embodiments, the first flat portion 232 does not extend to the point where the view of the array of interferometric modulators will be blurred. The display module 200 can include LEDs or other light sources (not shown in Figure 9) positioned adjacent the edge 120 in a manner similar to that depicted in Figure 8B. The electrical connection to the LED can be provided by a flexible printed circuit (FPC) 242 that can be positioned over the first flat portion 232 of the reflector 230, and can be provided for the LED by the stiffening member 244 overlying the FPC 242 Mechanical support. The LED can thus be hung below the FPC 242 and the stiffening member 244 such that the LED is positioned adjacent the edge of the rim 120, the side surface or adjacent edge 120, the side surface 146039.doc -23. 201044341. It can also be seen that in the illustrated embodiment, a layer of reflective material 260, such as a reflective strip, is located between the rim 120 and the second surface 〇6 of the substrate 102. The reflective strip acts as a reflector to prevent light loss from the bottom of the rim 12,. In addition, the reflective strip shields the driver integrated circuit 27 from the light emitted by the LED or from the edge rod 120, thereby allowing the ic 27A to be directly mounted on the first side 1b of the substrate 102', The interference modulator array (not shown) is adjacent to the upper or upper side. This positioning facilitates the formation of electrical connections between the IC 27 and the array of interferometric modulators. Light emitted by the LED in the absence of an underlying reflective strip can interfere with the operation of 1C (eg, by making 1 (: reset). Figure 10 is a display module 300 similar to module 200 of Figure 9; The display module 300 includes a substrate 102, and the substrate 1〇2 has an array of interference modulators attached to the lower side of the substrate 102" and a protective backplane ι4, 1C 270 can be The ends of the flexible strip 372 are adhered together to the underside of the substrate, and the flexible strip 372 can comprise printed circuitry or other electrical connections for interfacing with external components. An adhesive layer 38 can be provided. And 38 supplemented to secure certain components in place during the assembly process. An opaque film 382 may be provided to shield the 〇27〇 to protect it from stray light. The overlying substrate 102 is a front film 25 〇, and a reflective strip 26〇, and a protective film 390 can be formed on the front light film 25〇, and the reflective strip 26〇, above. In some embodiments, the 'protective film can include—in The layer after the display module ^ is assembled. In this embodiment, the protective film 39 is not under the display Below any other component of group 300 (this will inhibit the removal of the film, including the rim and the edge of the reflector, 32 〇 overlying reflective strips 146039.doc -24 - 201044341 260'. In the illustrated embodiment, the rim subassembly 320 includes a rim that is fastened to the reflector via a heat stake. The rim subassembly is discussed in more detail below. The reinforcement 244' is included The LED sub-assembly 340 of the LED flexible printed circuit 242' can support an underlying LED (not shown). The assembled 'module can be secured within the protective frame 392. Figures 11A through 11C are for Figure 10 shows various views of the reflector 305 in the rim assembly 320. The reflector 303 includes a first flat portion 402 of the lapped rod configured and positioned to be positioned adjacent the rim a second flat portion 404. The first flat portion 402 is coupled to the second flat portion 404 by a transition portion 4〇6 that extends from the second flat portion 404 to the first in a generally upward direction A flat portion 402. As best seen in Figure 11C, the transition portion 40 of the illustrated embodiment 6 includes a curved portion in which the transition portion 406 meets the first flat portion 402 and the second flat portion 404. The reflection 330 also includes a generally downwardly flank from the side of the first flat portion 4〇2 An extended protrusion. In detail, it can be seen that the first side surface 418a of the first flat portion 402 includes a protrusion 41 0 extending downward from the second flat portion from a position adjacent to the transition portion 4〇6, and The opposite side 418b of a flat portion 4〇2 includes a projection 4丨2 spaced apart from the transition region 4〇6. The opposing projection 412 on the side 418b is an open region 414 that extends between the transition region and the edge of the downwardly extending projection 412. This open area 414 allows the 5 o'clock LED or other source to be positioned adjacent to a rim clamped within the reflector 33 to emit light into the rim. It should be understood that the specific configuration of the reflector 330 is an exemplary configuration, and the configuration of the counter 134039.doc - 25· 201044341 can be varied in a number of ways. For example, in other embodiments, the side 418a of the reflector 330 can include a longer downwardly extending projection or a pair of downwardly extending projections rather than the proximity depicted in Figures 11A through 11c. The transition region 406 is positioned as a single downwardly extending projection 410. In other embodiments, the non-protrusion 4 1 2 can be located on the side 418b of the reflector 330. The reflection benefit 330 also includes an aperture extending through the first flat portion. This aperture 416 can be used to secure the rim relative to the reflector 33. Figure 12 depicts a rim 420 suitable for use with the reflector 330. As can be seen, the rim 420 includes an upwardly extending portion 422. At least the upwardly extending portion 422 of the rim 420 includes a material that is deformable when heated. The rim 42A also includes a projection 424 extending from a side portion of the rim 420. Figures 13A-13C illustrate various views of the rim assembly 32, in which the rim 420 is fastened relative to the reflector 33. In particular, Figure 13A is a perspective view of an exploded assembly view of the rim assembly 32, wherein the rim assembly 320 includes a reflector 33 〇 and an adhesive layer 322. The first flat portion 4〇2 of the reflector 330 is covered with the edge rod 330, and the adhesive layer 322 is under the second flat portion 4〇2. By adhering the second flat portion 404 to the underlying layer, the reflector 33 can be fixedly coupled to the underlying layer, thereby constraining the first flat portion 402 and being fastened below the first flat portion 4〇2 The rim 420 does not need to directly attach the rim 42 〇 to any underlying layer. It can also be seen that the upwardly extending portion of the rim 420 deforms after heating to flatten and extend outwardly. Although depicted in an exploded view, this deformation can be inserted into the upwardly extending portion 422 (see Figure 146039.doc -26-201044341 11A) through the aperture 419 in the first flat portion 4〇2 of the reflector 330 (see Figure ι2). ) happened afterwards. The upwardly extending portion can then be outwardly deformed to a size greater than the size of the aperture 419 to form the heat stake 422a and secure the rim 420 relative to the reflector 330. In Figure 13B, it can be seen that the space 414 along the side 418b of the reflector 33 is sized to permit the side surface 426 of the rim 420 to extend into the space 414 to expose the immersive surface 426. As discussed above, [ED or

其他光源可鄰近側表面426而定位以准許來自LED之光進 入緣桿426中。 緣枰U0之另一側表面延伸 在圖13C中,可見 部424可經組態以與反射器33()之向下延伸之突出部彻相 互作用以將緣桿固持於適當位置令。亦可見,緣桿42〇包 3刖表面428 ’該前表面428將面對前光膜(未圖示),光 在被引導朝向前表面428之後將穿過該前光膜射出。 雖然可使用廣泛多種其他反射性材料或塗布以反射性塗 層之材料,但在某些實施例中,諸如反射器33〇之 射率=了 經由電拋光製程維持或增加反射器之反 :反:二":多種其他製造製程,但在某些實施例 中反射时可猎由壓印製程而成形。 在某些實施例中,緣桿盔 哭之面針的声& , 而/口特疋側面之長度鄰接反射 时之面對的表面。確切言之,緣桿可 持於適當位置中的幾點虛 少在足以將緣桿固 W4點處鄰接反射器 反射器間隔開。藉由在*些點處將緣桿處與 至少些微地間隔開, ,、反射以内表面 对於緣桿之彼等部分上的光 146039.doc -27· 201044341 之全内反射,從而減少在光被反射器部分地吸收之情況下 可能發生的光損失。 圖14A至圖14C描繪圖10之LED FPC次總成340。詳言 之,圖14A以透視圖說明LED次總成340之分解組裝圖。 LED次總成340包含加強件244'、LED可撓性印刷電路242' 及LED 140'。LED次總成340亦包括一經組態以將加強件 244'黏附至LED FPC 242'之黏接層342a,及一經組態以將 LED次總成340黏附至諸如緣桿次總成之下伏結構的黏接 層342b。亦可提供黏接區域342c以將LED FPC 242'之向外 延伸部分243緊固於適當位置中。如在圖14C中可見的,向 外延伸部分243可包含陽極344a及陰極344b之形式之連接 器以用於形成與LED 140’之電連接。 在所說明之實施例中,當LED FPC次總成黏附或以其他 方式緊固至下伏反射器次總成時,加強件244’包含一實質 上平行於緣桿(未圖示)延伸的縱向延伸部分246。加強件 244亦包括一在加強件244’之將附接LED 140’之側面上的橫 向延伸部分247。在所說明之實施例中,縱向延伸部分246 實質上比橫向延伸部分247長,但應理解,在其他實施例 中,部分246及247中之任一者的長度可變化,且在其他實 施例中,加強件244’可採用不同形狀(諸如,實質上矩形形 狀)。 因為加強件244’可僅基於其機械性質(諸如,剛性)來選 擇,所以可使用廣泛多種材料,包括非反射性的或並非高 度反射的材料。在一實施例中,加強件244’可包含不鏽 146039.doc -28- 201044341 鋼但可使用其他合適之材料。亦應理解,可視加強件 244,之材料及厚度而變更加強件之大小及形狀。 到=★上述實施例之各種組合係可能的。亦應認識 ^ 文另外特別地且清楚地陳述,否則視實施例而 二可以其他序列執行本文中所描述之任何方法之動作或 可⑧加、合併或完全嗜去該等動作或事件(例如, 並非所有動作或事件為該等方法之實踐所必要的)。 ❹ 〇 之=而言’在某些實施例中’反射器可包含—上覆緣桿 ,千坦部分及一在平行於緣桿之方向上自緣桿移位的 平^ 4刀’以使得第二平坦部分與一點源相對而定 立者且第二平坦部分及光源位於緣桿之相對側面上。在其 、只施例中’基板可為光學不透明的,以使得IMOD形成 中之表面106上且背板112'為光學透明材料,以使得 :由背板112|檢視細D(亦即,在此等實施例中可能較佳 '板112’稱作前板)°冑板112,附接至表面106,且插入於前 先與基板之間。上述描述之其他更改係可能的。 雖然上述【實施方式】已展示、描述且指出了本發明在 應用於各種實施例時之新穎特徵,但應理解,熟習此項技 办者可在不偏離本發明之精神之情況下對所說明之裝置或 過程之形式及細節作出各種省略、取代及改變。如將認識 到本發明可以並不提供本文中所闡述之所有特徵及益處 的$式來體現’因為一些特徵可與其他特徵分離地使用或 實踐。 【圖式簡單說明】 146039.doc -29· 201044341 圖1為描繪一干涉調變器顯示器之一實施例之—部分的 等角視圖’其中第—干涉調變器之可移動反射層處於鬆弛 位置中,且第二干涉調變器之可移動反射層處於致動位 中。 直 圖2為說明併有3x3干涉調變器顯示器之電子裝置之—實 施例的系統方塊圖。 圖3為圖1之干涉調變器之一例示性實施例的可移動鏡面 位置對施加之電壓的圖。 圖4為可用以驅動一干涉調變器顯示器之一組列電壓及❹ 行電屡的說明。 圖5 A及圖5B說明可用以將顯示資料之圖框寫入至圖2之 3 χ3干涉調變器顯示器的列信號及行信號之一例示性時序 圖。 : 圖όΑ及圖6Β為說明一包含複數個干涉調變器之視覺顯 _ 不裝置之實施例的系統方塊圖。 圖7Α為圖1之裝置之橫截面。 圖7B為一干涉調變器之一替代實施例之橫截面。 ϋ 圖7C為一干涉調變器之另一替代實施例之橫截面。 圖70為一干涉調變器之又一替代實施例之橫截面。 圖7Ε為一干涉調變器之一額外替代實施例之橫截面。 圖8 Α為顯示模組之實施例的橫截面圖,其中緣桿鄰近顯 不基板之側表面而定位。 圖8B為沿圖8A之線8B-8B所獲取的圖8A之顯示模組之橫 截面的俯視平面圖。 146039.doc •30· 201044341 圖9為顯示模組之另一實施例的部分橫截面,該顯示模 組包括一上覆緣桿之Z形反射器。 圖10為顯示模組之透視分解組裝圖,該顯示模組包括一 上覆緣桿之Z形反射器。 圖11A為圖10之反射器之透視圖。 圖11B為圖11A之反射器之仰視平面圖。 圖11C為圖11A之反射器之侧面正視圖。 0 圖12為適合於與圖11A之反射器一起使用之緣桿的透視 圖。 圖13A為包含圖11A之反射器之緣桿次總成的透視分解 組裝圖。 • 圖13B為圖13A之組裝之緣桿次總成的透視圖。 . 圖13C為圖13A之組裝之緣桿次總成的自下方檢視的透 視圖。 圖14A為圖1 〇之LED次總成的自下方檢視的透視分解組 ❹ 裝圖。 圖14B為圖14A之LED次總成的仰視平面圖。 圖14C為圖14A之LED次總成的自上方檢視的透視圖。 【主要元件符號說明】 12a 干涉調變器 12b 干涉調變器 14 反射層 14a 可移動反射層 14b 可移動反射層 146039.doc 201044341 16 光學堆疊 16a 光學堆疊 16b 光學堆疊 18 柱 19 間隙 20 透明基板 21 處理器 22 陣列驅動器 24 列驅動器電路 26 行驅動器電路 27 網路介面 28 圖框緩衝器 29 驅動器控制器 30 顯示陣列 32 繫栓 34 可變形層 40 顯示裝置 41 外殼 42 支樓柱插塞 43 天線 44 匯流排結構 45 揚聲器 46 麥克風 47 收發器 146039.doc ·32· 201044341Other light sources can be positioned adjacent side surface 426 to permit light from the LED to enter rim 426. The other side surface of the edge U0 extends. In Figure 13C, the visible portion 424 can be configured to interact fully with the downwardly extending projection of the reflector 33() to hold the rim in place. It can also be seen that the rim 42 刖 3 刖 surface 428 ′ the front surface 428 will face the front light film (not shown) through which the light will exit after being directed toward the front surface 428. While a wide variety of other reflective materials or materials coated with a reflective coating can be used, in some embodiments, such as the reflectivity of the reflector 33 = maintaining or increasing the inverse of the reflector via an electropolishing process: : Two ": A variety of other manufacturing processes, but in some embodiments, the reshaping can be shaped by an imprint process. In some embodiments, the edge of the helmet is the sound of the needle of the crying needle, and the length of the side of the mouth is adjacent to the surface that is facing the reflection. Specifically, the few points at which the rim can be held in place are sufficient to space the edge reflector at the W4 point adjacent to the reflector reflector. By spacing the rim at least slightly at some point, the internal surface of the 146039.doc -27· 201044341 is reflected on the inner surface of the rim, thereby reducing the light Light loss that may occur in the case of partial absorption by the reflector. 14A-14C depict the LED FPC sub-assembly 340 of FIG. In particular, Figure 14A illustrates an exploded assembly view of the LED sub-assembly 340 in a perspective view. The LED sub-assembly 340 includes a stiffener 244', an LED flexible printed circuit 242', and an LED 140'. The LED subassembly 340 also includes an adhesive layer 342a that is configured to adhere the stiffener 244' to the LED FPC 242' and is configured to adhere the LED subassembly 340 to a sub-assembly such as the edge sub-assembly. The adhesive layer 342b of the structure. An adhesive region 342c may also be provided to secure the outwardly extending portion 243 of the LED FPC 242' in place. As can be seen in Figure 14C, the outwardly extending portion 243 can include a connector in the form of an anode 344a and a cathode 344b for forming an electrical connection with the LED 140'. In the illustrated embodiment, when the LED FPC subassembly is adhered or otherwise secured to the underlying reflector subassembly, the stiffener 244' includes a substantially parallel extension of the rim (not shown). The longitudinal extension portion 246. Reinforcing member 244 also includes a laterally extending portion 247 on the side of reinforcing member 244' to which LED 140' will be attached. In the illustrated embodiment, the longitudinally extending portion 246 is substantially longer than the laterally extending portion 247, although it should be understood that in other embodiments, the length of any of the portions 246 and 247 can vary, and in other embodiments The stiffener 244' can take a different shape (such as a substantially rectangular shape). Because the stiffener 244' can be selected based solely on its mechanical properties, such as stiffness, a wide variety of materials can be used, including materials that are non-reflective or not highly reflective. In an embodiment, the stiffener 244' may comprise stainless steel 146039.doc -28- 201044341 steel but other suitable materials may be used. It should also be understood that the size and shape of the reinforcement member can be varied depending on the material and thickness of the reinforcement member 244. Various combinations of the above embodiments are possible. It is also to be understood that the text is specifically and clearly stated otherwise, or that the actions of any of the methods described herein may be performed in other sequences, or that the actions or events may be added, merged, or completely immersed (eg, Not all actions or events are necessary for the practice of such methods).而言 = = 'In some embodiments' the reflector may comprise an upper flange, a thousand and a flat knife that is displaced from the rim in a direction parallel to the rim to make The second flat portion is opposite the one-point source and the second flat portion and the light source are located on opposite sides of the rim. In its example, only the substrate may be optically opaque such that the surface of the IMOD is formed on the surface 106 and the backing plate 112' is an optically transparent material such that: the backsheet 112| is inspected by the thin D (ie, at It may be preferred in these embodiments that the 'plate 112' is referred to as a front plate), the weir 112, attached to the surface 106, and interposed between the front and the substrate. Other variations of the above description are possible. While the above-described embodiments have been shown and described, it is intended to be illustrative of the embodiments of the invention Various omissions, substitutions, and changes are made in the form and details of the device or process. It will be appreciated that the present invention may be embodied in a variety of features and benefits that are not described herein, as some features may be used or practiced separately from other features. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric view of a portion of an embodiment of an interference modulator display in which the movable reflective layer of the first-interference modulator is in a relaxed position. And the movable reflective layer of the second interference modulator is in the actuating position. Figure 2 is a system block diagram illustrating an embodiment of an electronic device having a 3x3 interferometric modulator display. 3 is a graph of movable mirror position versus applied voltage for an exemplary embodiment of the interference modulator of FIG. 1. Figure 4 is an illustration of the voltages that can be used to drive an array of interferometric modulator displays. 5A and 5B illustrate an exemplary timing diagram of one of the column and row signals that can be used to write a frame of display data to the 3 χ3 interferometric modulator display of FIG. 2. Figure 6 and Figure 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators. Figure 7 is a cross section of the apparatus of Figure 1. Figure 7B is a cross section of an alternate embodiment of an interference modulator. ϋ Figure 7C is a cross section of another alternative embodiment of an interference modulator. Figure 70 is a cross section of yet another alternative embodiment of an interference modulator. Figure 7 is a cross section of an alternate embodiment of one of the interference modulators. Figure 8 is a cross-sectional view of an embodiment of a display module in which the rim is positioned adjacent to the side surface of the display substrate. Figure 8B is a top plan view of a cross section of the display module of Figure 8A taken along line 8B-8B of Figure 8A. 146039.doc • 30· 201044341 Figure 9 is a partial cross-section of another embodiment of a display module including a Z-shaped reflector with an overlying edge. Fig. 10 is a perspective exploded assembly view of the display module, the display module including a Z-shaped reflector with an upper flange. Figure 11A is a perspective view of the reflector of Figure 10. Figure 11B is a bottom plan view of the reflector of Figure 11A. Figure 11C is a side elevational view of the reflector of Figure 11A. 0 Figure 12 is a perspective view of a rim suitable for use with the reflector of Figure 11A. Figure 13A is a perspective exploded assembly view of the secondary assembly of the rim including the reflector of Figure 11A. • Figure 13B is a perspective view of the assembled sub-assembly of Figure 13A. Figure 13C is a perspective view from below of the assembled sub-assembly of the assembly of Figure 13A. Fig. 14A is a perspective exploded view of the LED sub-assembly of Fig. 1 from the bottom view. Figure 14B is a bottom plan view of the LED sub-assembly of Figure 14A. Figure 14C is a perspective view from the top of the LED sub-assembly of Figure 14A. [Main component symbol description] 12a interference modulator 12b interference modulator 14 reflective layer 14a movable reflective layer 14b movable reflective layer 146039.doc 201044341 16 optical stack 16a optical stack 16b optical stack 18 pillar 19 gap 20 transparent substrate 21 Processor 22 Array Driver 24 Column Driver Circuit 26 Row Driver Circuit 27 Network Interface 28 Frame Buffer 29 Driver Controller 30 Display Array 32 Tie 34 Deformable Layer 40 Display Device 41 Housing 42 Branch Post Plug 43 Antenna 44 Bus structure 45 Speaker 46 Microphone 47 Transceiver 146039.doc ·32· 201044341

48 輸入裝置 50 電源供應Is 52 調節硬體 100 顯示模組 102 基板 102' 基板 102" 基板 104 基板之第一表面 104' 基板之第一側面 106 基板之第二表面 106' 表面 108 基板之側表面 110 干涉調變器陣列 112 背板 112' 背板 114' 空腔 114" 保護性背板 120 緣桿 120' 緣桿 122a 緣桿上表面 122b 緣桿下表面 124a 緣桿之前表面 124a' 緣桿之前表面 124b 緣桿背表面 146039.doc -33- 201044341 126a 緣桿側表面 126b 緣桿側表面 130 反射器 140 LED 200 顯示模組 230 反射器 232 第一實質上平坦部分 234 第二平坦部分 236 過渡部分 242 可撓性印刷電路(FPC) 242, LED可撓性印刷電路 243 向外延伸部分 244 加強構件 244' 加強件 246 縱向延伸部分 247 橫向延伸部分 250 前光膜 250' 前光膜 260 反射性材料層 270 驅動器積體電路 270' 1C 300 顯示模組 320 緣桿次總成 322 黏接層 146039.doc -34- 201044341 330 反射器 340 LED次總成 342a 黏接層 342b 黏接層 342c 黏接區域 344a 陽極 344b 陰極 372 可撓性條帶 380a 黏接層 380b 黏接層 382 不透明膜 390 保護性膜 402 第一平坦部分 404 第二平坦部分 406 過渡部分 410 向下延伸之突出部 412 突出部 414 開口區域 418a 第一平坦部分之第一側面 418b 第一平坦部分之相對側面 419 孔 420 緣桿 422 向上延伸部分 422a 熱熔柱 146039.doc -35- 201044341 424 突出部 426 緣桿之側表面 428 前表面 146039.doc -3648 Input device 50 Power supply Is 52 Adjusting hardware 100 Display module 102 Substrate 102' Substrate 102" Substrate 104 First surface of substrate 104' First side of substrate 106 Second surface of substrate 106' Surface 108 Side surface of substrate 110 Interferometric Array 112 Backplane 112' Backplane 114' Cavity 114" Protective Backplane 120 Edge Rod 120' Edge Rod 122a Edge Rod Upper Surface 122b Edge Rod Lower Surface 124a Edge Front Surface 124a' Before Edge Surface 124b rim back surface 146039.doc -33- 201044341 126a rim side surface 126b rim side surface 130 reflector 140 LED 200 display module 230 reflector 232 first substantially flat portion 234 second flat portion 236 transition portion 242 Flexible Printed Circuit (FPC) 242, LED Flexible Printed Circuit 243 Outwardly Extending Portion 244 Reinforcing Member 244' Reinforcement 246 Longitudinal Extension Portion 247 Lateral Extension Portion 250 Front Light Film 250' Front Light Film 260 Reflective Material Layer 270 driver integrated circuit 270' 1C 300 display module 320 edge rod sub-assembly 322 adhesive layer 146039.doc -34- 201044341 330 reflector 340 LED sub-assembly 342a adhesive layer 342b adhesive layer 342c bonding area 344a anode 344b cathode 372 flexible strip 380a adhesive layer 380b adhesive layer 382 opaque film 390 protective film 402 first flat Portion 404 second flat portion 406 transition portion 410 downwardly extending projection 412 projection 414 opening region 418a first flat portion first side 418b first flat portion opposite side 419 aperture 420 edge rod 422 upwardly extending portion 422a heat Stud 146039.doc -35- 201044341 424 Projection 426 Side surface 428 of the rim Front surface 146039.doc -36

Claims (1)

201044341 七、申請專利範圍: 1. 一種顯示模組,其包含: 一透光基板,其包含一第一表面及一第二表面. 一緣桿,其與一光源光學通信,其中該緣桿位於該基 板之该第一表面上方; 一前光膜,其鄰近該緣桿且與該緣桿光學通信,其十 該前光膜經組態以引導光穿過該透光基板;及 一反射器,該反射器包含一上覆該緣桿之第一實質上 平坦部分及一第二實質上平坦部分,該第二實質上平坦 部分位於該基板之該第一表面上方且自該緣桿橫向移 位。 2. 如請求項1之顯示模組,其中該緣桿包含一面對該前光 膜之—側表面的前表面及一實質上正交於該前表面而定 向之第二表面。 3. 如請求項2之顯示模組,其中該反射器之該第一平坦部 分在該緣桿之該前表面上方延伸。 4. 如請求項3之顯示模組,其中該反射器之該第一平坦部 分實質上正交於該緣桿之該前表面而定向。 5. 如請求項2之顯示模組,其進一步包含一光源,該光源 鄰近該緣桿之該第二表面而定位且經組態以將光發射至 該緣桿中。 6‘如請求項5之顯示模組,其中該光源包含至少一 [ED。 7_如請求項6之顯示模組,其中該至少一 LED係藉由一加強 件來支撐,該加強件在該反射器之該第一平坦部分之至 146039.doc 201044341 少一部分上方延伸。 8. 如請求項1之顯示模 反射器之至少一孔, 之連接器部分。 組’其中該反射器包含延伸穿過該 且其中該緣桿包含一延伸穿過該孔 9‘如請求項8之顯示模組’其中該連接器部分包含一位於 該反射器之與該緣桿之剩餘部分相對的側面上的遠端 區,且其中該运端區之至少一 + 王夕。卩分具有一大於該孔之橫 截面大小的橫載面大小。 1 0.如請求項8之顯示模組 柱0 其中該連接器部分包含一熱熔 11. 如請求項1之顯示模組,其進—步 該基板之間的反射性材料層。 包含一位於該緣桿與 步包含一位於該基板之 中該反射性材料層安置 12.如請求項U之顯示模組,其進— 該第二表面上方的驅動器ic,其 於該緣桿與該驅動器1C之間。 步包含一安置於該基板 其中該顯示陣列與該前 13.如請求項〗之顯示模組,其進— 之該第二表面上方的顯示陣列, 光膜相對而定位。 14_如請求項13之顯示模組 變器陣列。 其中該顯示陣列包含一干涉調 15.如請求項13之顯示模組,其進_步包含: 一 2态其經組悲以與該顯示陣列通信,該處理器 經組悲以處理影像資料,·及 一記憶體裝置,其經组離以鱼 ,、、、工',且心Μ興该處理器通信。 146039.doc 201044341 16. 如請求項15之顯示模組’其進一步包含一經組態以將至 少一信號發送至該顯示陣列之驅動器電路。 17. 如請求項16之顯示模組,其進一步包含一經組態以將該 - 影像資料之至少一部分發送至該驅動器電路的控制器。 18. 如請求項Μ之顯示模組,其進一步包含一經組態以將該 影像資料發送至該處理器之影像源模組。 19_如請求項18之顯示模組,其中該影像源模組包含一接收 0 器、一收發器及一傳輸器中之至少一者。 20.如請求項15之顯示模組,其進一步包含一經組態以接收 輸入資料且將该輸入資料傳達至該處理器之輸入裝置。 2L -種經組態以用於一顯示模財之緣桿次總成,該緣桿 - 次總成包含: • 一緣桿,其經組態以經由一第一表面接收光且將光反 射穿過一正交於該第一表面之第二表面;及 一反射器經組態以夾持該緣桿,該反射器包含: 〇 —第-實質上平坦部分,其經組態以上覆該緣 桿;及 -第二實質上平坦部分,其經組態以黏附至 成· 丨八 層, 其中該第二實曾卜、 貫處上千坦部分之-下表面實質上與該緣 干、'面共面,且該緣桿係藉由該反射器來夾持。 22. 如請求項21之緣桿次始忐 干人…成,其中該反射器之該第二平土日 部分相對於該緣桿橫向移值。 一十一 23. 如請求項21之緣桿次蛐忐 .,^ ^ 干人〜成,其中該緣桿之該下表面實質 146039.doc 201044341 上正交於該緣桿之該第一表面及該第二表面中之每一 者。 24.如請求項2 1之緣桿次總成,其中該反射器包含一延伸穿 過s亥反射器之孔,另外包含一熱熔柱,該熱熔柱自該緣 桿延伸穿過該孔以相對於該反射器夾持該緣桿。 2 5 · —種組裝一顯示模組之方法,其包含: 提供一具有一第一表面及一第二表面之基板,該基板 包含一开> 成於該第一表面上方之顯示陣列及一位於該第 二表面上方之導光層,其中該導光層與該顯示陣列相對 而定位; 相對於該基板定位一緣桿,以使得該緣桿之一第一表 面鄰近該導光層之一側表面而定位;及 在該基板之該第一表面上方提供一反射器,以使得該 反射器將該緣桿夹持於適當位置中,該反射器包含一上 覆該緣桿之第一實質上平坦部分及一第二實質上平坦部 为,該第二實質上平坦部分自該緣桿移位且黏附至一下 伏層。 26. 如請求項25之方法,其另外包含在將該反射器緊固於該 基板之該第一表面上方之前於該基板之該第一表面上方 形成一反射層,其中該反射層安置於該緣桿與該基板之 間。 27. 如請求項25之方法,其另外包含鄰近該緣桿之一第二表 面定位一光源,其中該緣桿之該第二表面實質上正交於 ό亥緣和之該第一表面。 146039.doc -4 · 201044341 28.如請求項27之方法,其中鄰近該緣桿之—第二表面定位 一光源包含將一 LED次總成黏附至該反射器之該第一平 坦部分之一上表面,其中該LED次總成包含: 至少一 LED ; 一與該LED電通信之可撓性電路板;及 一上覆該可撓性電路板之加強件。 〇 146039.doc201044341 VII. Patent application scope: 1. A display module comprising: a transparent substrate comprising a first surface and a second surface. An edge rod optically communicating with a light source, wherein the edge rod is located a front surface of the substrate; a front light film adjacent to the edge rod and in optical communication with the edge rod, wherein the front light film is configured to direct light through the light transmissive substrate; and a reflector The reflector includes a first substantially flat portion overlying the rim and a second substantially flat portion, the second substantially flat portion being over the first surface of the substrate and laterally offset from the rim Bit. 2. The display module of claim 1, wherein the edge comprises a front surface facing the side surface of the front film and a second surface oriented substantially orthogonal to the front surface. 3. The display module of claim 2, wherein the first flat portion of the reflector extends over the front surface of the rim. 4. The display module of claim 3, wherein the first flat portion of the reflector is oriented substantially orthogonal to the front surface of the rim. 5. The display module of claim 2, further comprising a light source positioned adjacent the second surface of the rim and configured to emit light into the rim. 6 'A display module as claimed in claim 5, wherein the light source comprises at least one [ED. The display module of claim 6, wherein the at least one LED is supported by a stiffener extending over a portion of the first flat portion of the reflector to 146039.doc 201044341. 8. The connector portion of claim 1 wherein at least one of the apertures of the display reflector is present. Group [wherein the reflector comprises an extension of the reflector and wherein the edge includes a display module extending through the aperture 9' as claimed in claim 8 wherein the connector portion includes a reflector located between the reflector and the edge The remaining portion of the remaining portion is on the opposite side of the distal end region, and wherein at least one of the transport end regions is + eve. The split has a cross-sectional surface size greater than the cross-sectional size of the aperture. 1 0. The display module of claim 8 wherein the connector portion comprises a hot melt 11. The display module of claim 1 further comprises a layer of reflective material between the substrates. Included in the edge of the rod and the step comprises a layer of the reflective material disposed in the substrate. 12. The display module of claim U, wherein the driver ic above the second surface is at the edge Between the drives 1C. The step includes a display array disposed on the substrate, wherein the display array and the display module of the front portion, such as the request item, are positioned opposite to the display array above the second surface. 14_ Display module transformer array as in claim 13. The display array includes an interference modulation. 15. The display module of claim 13 includes: a 2-state group communicating with the display array, the processor processing the image data through the group sorrow, · and a memory device, which is separated from the fish,,,, and workers, and communicates with the processor. 146039.doc 201044341 16. The display module of claim 15 which further comprises a driver circuit configured to transmit at least one signal to the display array. 17. The display module of claim 16, further comprising a controller configured to send at least a portion of the image data to the driver circuit. 18. The display module of claim 1, further comprising an image source module configured to send the image data to the processor. The display module of claim 18, wherein the image source module comprises at least one of a receiver, a transceiver, and a transmitter. 20. The display module of claim 15, further comprising an input device configured to receive input data and communicate the input data to the processor. The 2L-type is configured for a display of the marginal sub-assembly, the edge-sub-assembly comprising: • a rim that is configured to receive light through a first surface and reflect the light Passing through a second surface orthogonal to the first surface; and a reflector configured to clamp the rim, the reflector comprising: 〇-a substantially flat portion configured to overlie a second substantially flat portion configured to adhere to a layer of eight layers, wherein the second surface of the second portion is substantially opposite the edge The 'face is coplanar and the edge is held by the reflector. 22. As claimed in claim 21, the second person's day portion of the reflector is laterally shifted relative to the edge.十一23. If the margin of claim 21 is 蛐忐., ^ ^ 干人〜成, wherein the lower surface of the edge is substantially 146039.doc 201044341 is orthogonal to the first surface of the rim and Each of the second surfaces. 24. The ejector assembly of claim 2, wherein the reflector comprises a hole extending through the s-reflector, and further comprising a heat-melting column extending through the hole from the rim The rim is clamped relative to the reflector. A method for assembling a display module, comprising: providing a substrate having a first surface and a second surface, the substrate comprising an opening; a display array formed over the first surface; a light guiding layer located above the second surface, wherein the light guiding layer is positioned opposite to the display array; positioning an edge relative to the substrate such that a first surface of the edge is adjacent to the light guiding layer Positioning a side surface; and providing a reflector over the first surface of the substrate such that the reflector clamps the rim in position, the reflector including a first substantial covering the rim The upper flat portion and a second substantially flat portion are such that the second substantially flat portion is displaced from the rim and adheres to the underlying layer. 26. The method of claim 25, further comprising forming a reflective layer over the first surface of the substrate prior to fastening the reflector over the first surface of the substrate, wherein the reflective layer is disposed Between the edge rod and the substrate. 27. The method of claim 25, further comprising positioning a light source adjacent the second surface of the rim, wherein the second surface of the rim is substantially orthogonal to the rim and the first surface. The method of claim 27, wherein positioning the light source adjacent to the edge of the edge comprises adhering an LED subassembly to one of the first flat portions of the reflector a surface, wherein the LED sub-assembly comprises: at least one LED; a flexible circuit board in electrical communication with the LED; and a stiffener overlying the flexible circuit board. 〇 146039.doc
TW99103230A 2009-02-04 2010-02-03 Shaped frontlight reflector for use with display TW201044341A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/365,755 US20100195310A1 (en) 2009-02-04 2009-02-04 Shaped frontlight reflector for use with display
US12/399,798 US8172417B2 (en) 2009-03-06 2009-03-06 Shaped frontlight reflector for use with display

Publications (1)

Publication Number Publication Date
TW201044341A true TW201044341A (en) 2010-12-16

Family

ID=42045455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103230A TW201044341A (en) 2009-02-04 2010-02-03 Shaped frontlight reflector for use with display

Country Status (2)

Country Link
TW (1) TW201044341A (en)
WO (1) WO2010090877A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172417B2 (en) 2009-03-06 2012-05-08 Qualcomm Mems Technologies, Inc. Shaped frontlight reflector for use with display

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288993A (en) * 1996-04-19 1997-11-04 Sharp Corp Lighting system, and display device utilizing it
JP2001035230A (en) * 1999-07-26 2001-02-09 Minebea Co Ltd Flat lighting system
TWI293706B (en) * 2004-03-24 2008-02-21 Au Optronics Corp Backlight module
JP2006086075A (en) * 2004-09-17 2006-03-30 Alps Electric Co Ltd Surface-emitting device, back surface-lighting system and liquid crystal display
US7855827B2 (en) * 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
JP2008175926A (en) * 2007-01-17 2008-07-31 Hitachi Displays Ltd Liquid crystal display module

Also Published As

Publication number Publication date
WO2010090877A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
TWI357884B (en) Microelectromechanical device with optical functio
US8172417B2 (en) Shaped frontlight reflector for use with display
KR101276274B1 (en) Method and device for multi-state interferometric light modulation
TWI480223B (en) Mems display devices and methods of fabricating the same
RU2397519C2 (en) Reflecting device for display, having viewable display on both sides
KR101168646B1 (en) Device having a conductive light absorbing mask and method for fabricating same
TWI353337B (en) Systems and methods of actuating mems display elem
TWI402536B (en) Microelectromechanical device with optical function separated from mechanical and electrical function
TWI424191B (en) Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
CN102976260A (en) System and method for protecting microelectromechanical systems array using back-plate with non-flat portion
TW201003592A (en) Edge shadow reducing methods for prismatic front light
TW200846697A (en) MEMS device and interconnects for same
TW200834484A (en) Internal optical isolation structure for integrated front or back lighting
KR20060089610A (en) Method and post structures for interferometric modulation
TW200817745A (en) Angle sweeping holographic illuminator
TW200903125A (en) Method and apparatus for providing a light absorbing mask in an interferometric modulator display
TW200903105A (en) Dual film light guide for illuminating displays
JP2011527028A (en) Illumination device with holographic light guide
KR20060092926A (en) Method of making prestructure for mems systems
JP2008514987A (en) Device and method for modifying the operating voltage threshold of a deformable membrane in an interferometric modulator
JP2008514993A (en) Method for producing free-standing microstructures
TW200930655A (en) Decoupled holographic film and diffuser
KR20060092924A (en) System and method for implementation of interferometric modulator displays
TW200907527A (en) Interferometric modulator displays with reduced color sensitivity
JP2013506160A (en) Interference display device with interference reflector