Nothing Special   »   [go: up one dir, main page]

TW201036722A - Method and cooling device for cooling the rollers of a roll stand - Google Patents

Method and cooling device for cooling the rollers of a roll stand Download PDF

Info

Publication number
TW201036722A
TW201036722A TW099106104A TW99106104A TW201036722A TW 201036722 A TW201036722 A TW 201036722A TW 099106104 A TW099106104 A TW 099106104A TW 99106104 A TW99106104 A TW 99106104A TW 201036722 A TW201036722 A TW 201036722A
Authority
TW
Taiwan
Prior art keywords
cooling
roller
pressure
coolant
shell
Prior art date
Application number
TW099106104A
Other languages
Chinese (zh)
Inventor
Juergen Seidel
Matthias Kipping
Rolf Franz
Original Assignee
Sms Siemag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42270463&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201036722(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sms Siemag Ag filed Critical Sms Siemag Ag
Publication of TW201036722A publication Critical patent/TW201036722A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

In order to solve the problem of providing a method and a cooling device by means of which the rollers of a roll stand can be optimally cooled, wherein energy aspects, such as minimizing the required cooling fluid stream and the cooling fluid pressure, as well as construction and manufacturing costs, are to be taken into account, the invention proposes cooling the rollers using a combined low-pressure/high-pressure cooling device.

Description

201036722 六、發明說明: 【發明所屬之技術領域】 本發明關於一種用於將滾子—特別是一滚壓架的工 作滾子—冷卻的方法與裝置。 在將金屬滾壓時,該參與滚壓程序的滚子——工作滚 子一一被加熱。為了作保護滚子以防損壞以及將使用壽命 儘ϊ延長,故將該滾子冷卻。在大多數的滾壓廒中,使用 現代的冷卻系統,它們利用噴嘴〔且宜為扁平喷流喷嘴 (Flachstrahlduse,英:natjetnozzle)〕將一冷卻液喷灑 到滾子表面。這種冷卻作用稱為「噴灑冷卻」。所選設的 壓力位準,各依滚子長度而定,在6巴〜12巴範圍,且在 例情形可為20巴。除了將滾子儘量密集地冷的目的外為 了將其熱負荷和幾何膨脹作限制,該工作滾子的冷卻作用 須做到使滾子保持不帶污染物、氧化物及銹垢粒子。冷卻 作用隨著冷卻劑的量增加及冷卻劑的壓力增加而上升。此 系統之缺點為需要大量之能量,且在較高壓力時,泵的維 修成本較高。 【先前技術】 工作/袞子的一種可能之冷卻方式為低壓冷卻。在國際 專利W〇 200 8/104037 A1發表了一種在低壓範圍用高紊流 冷部方式的冷卻襄置,其中利用喷嘴或孔(它們設在一凹 幵y的冷卻梯上)喷出冷卻劑將一滚子冷卻。藉著冷卻樑的 β又置以及利用側板(它們設在冷卻樑的端側)可形成一均 201036722 二、κ墊並有股奮流式無定向性的液流。但只有當滾 子的直&範圍〔它係'利用研磨(Absehiff)而造成者〕配人 冷卻裝置的曲率設定,該冷卻裝置才能以令人滿意及可; 現(rePn>dueible)的方式卫作。由於今日滚子_般的㈣ 範圍、,々最大滾子直控的1 ,因此需要數個滾壓裝置以供 不同之滾子直徑之用,這點使得滾子需要有整套系列規 則,其一缺點為:對於各滾壓架以及在每次更換工作滚子 後’不可能調整冷卻裝置的曲率以配合滾子直徑的改變, 因此噴嘴或孔距滾子表面的距離(且因此還有冷卻效果) 在滾壓程序時從-线子更換相下:欠滾子更換時都會改 在德專利DE 3616070 C2提到一種呈流動冷卻 (s⑽則ngsk謝ung,英:fl〇w c〇〇iing)形式的低壓冷卻方 法,其中,在工作滾子表面與冷卻殼之間一個一定之較狹 窄的縫隙中,將冷卻液以一定朝向的方式用外界壓力在滾 ◎子表面導肌過去。这種方式的壓力位準較小且與縫隙寬度 及液流速度有關。此處,較高之冷卻效果係利用較高流速 達成。由於壓力位準較低,茈糸 ^ 此糸統對滾子表面並沒有洗淨 效果。此裝置的一缺點為,對各、、步 ,、 2了谷,衷子需要有一個自己的冷 卻塊’因為冷卻塊係安裝力「; 2 , π:展在1滾子建入件」 (wal腦einbau仙ck,英:r〇Ubuiltinpiece)中。因此一 傳統的熱滚壓機需要多數的i言錄、人% ^ 種冷部塊。縫隙寬度要配合 不同的工作滾子直徑以及各作 邪,哀子位置的冷卻塊的順 序,這一點同樣地顯得不利且報斿 引且很麻煩’因為須用手在滾壓 5 201036722 架外調整該縫隙。 【發明内容】 本發明係針對上述先前技術著手,其目的在提供一種 方法與一種冷卻裝置,藉之可將一滾壓架的滾子最適當地 冷卻’俾保護滾子以免受到熱機械性疲勞及磨損,其中要 考慮到節能的觀點(如將所需之冷卻液流量及冷卻液壓力 減到最少)’以及考慮到相關之結構與製造成本。 上述目的在方法方面係利用申請專利範圍第1項的方 法的特徵達成,而在裝置方面則利用申請專利範圍第24項 的裝置的特徵達成:即,該滾子在作低壓冷卻的同時也作 一道高壓冷卻,其中該滚子在高壓冷卻時,直接用一股在 高壓下的冷卻液喷灑。 基本上一滚壓機的所有滾子可利用本發明的冷卻裝置 冷卻’但本發明特別用於工作滾子的場合。 最好將全部冷卻液體量的總量的約20%送到高壓冷卻 級,並且將全部冷卻液體量的總量的約80%送到該產生主 冷卻作用的低壓冷卻級。此冷卻液舉例而言,可從一 7到 12 公尺两的高液面槽(H〇chbehalter,英:highievei tank) 取出或由低壓泵直接產生。該低壓冷卻的冷卻液之所需壓 力範圍與滾子的熱負荷有關,舉例而言,在從〇 5巴〜小於 5巴的範圍。所使用之結構實施例可為一種喷灑冷卻級、冷 卻劑簾幕、縫隙冷卻或流動冷卻、高紊流式冷卻(圖2)系 統、或各種不同低壓冷卻系統的組合。 201036722 要作高壓滾子冷卻(它同時可達成滚子表面洗淨或除 去銹垢的目的),可一如在傳統系統的場合使用單列式或 雙列式的喷灑喷嘴樑。全部冷卻液量的一小部分(約2〇% ) 已足夠作這種目的,其中所需之冷卻液的壓力範圍在5〜5〇 巴’且宜巴。高壓的滾子冷卻方式之冷卻液之所用壓力 範圍和以下滚壓參數有關:厚度縮減、滾壓縫隙中的比面 積壓力(Spezifische Flachenpressung,英:Specific area pressure )、滾壓速度、鋼帶溫度、滚子材料、以及被滾壓 的材料的種類。 基於環保觀點’要將泵消耗的總能量減少,同時就「綠 色工廠技術」(Green-Plant_Technology )的方向實現所有 系統目的,乃是报有利者。如果我們將具較高壓力之傳統 滾子冷卻之使用的泵能量與所主張之組合或低壓_高壓冷卻 系統比較,則有以下的不同: 泉的能量需求(不考慮泵效率),在具5000立方米/ 小時的總滾子冷卻劑流的2米熱鋼帶滾壓道的例子〔泵功 率=體積流X®力升高(指示:36為一換算因數)〕 <傳統?袞子冷卻方式> : 壓力位準例如12巴 泵功率=5000立方米/小時χ12巴 泵功率=1667仟瓦 <組合式低壓-高壓冷卻方式〉 壓力位準例如1 2巴 高壓冷卻劑| τ λλλ . . 兩里10〇〇立方米/小時,以及 7 201036722 壓力位準例如2巴 低壓冷卻劑量 4000立方米/小時 果功率= 1000立方米/小時χ12巴/ 36+4000立方米 /小時X2巴/36 泵功率=333仟瓦+ 222仟瓦=555仟瓦 $ 利用此組合式低壓-高壓冷卻所需之能量的量少得多, 依此’對於上述例子,泵的驅動功率減少約1 ·丨百萬瓦。 當污染物或銹垢粒子增加以及例如滾子表面粗糙或在 一燒裂痕模型(Brandrissmuster)的場合,壓力位準可對應 也提问利用攝景夕機可觀察滾子表面,俾由此推演出壓 力位準的變化。此外,& 了影響滾子上氧化物層的厚度, 壓力位準可用分段式(例如將各泵啟動或關掉)或無段式 個別地匹配。 此組合式低壓-高壓冷卻舉例而言可用於一熱鋼帶滾壓 =的前滾如此在後滾壓架也可使用純低壓冷卻的方 此高壓冷卻樑可在近 、、JL办危士 i 子整個樑長度的範圍作用或設計 .—.一,小队y又叼犯園 使用一簡 專利申請 馬達將二 工作滾子 馬達或油 也可採另 多節式關 成可沿寬度方向移動並作局部冷卻作用。 單的低壓冷卻殼冷卻方式, " 飞貝]可考慮及設置斑 案JP 07-290120的冷卻方^ 卩万式的組合。此處利用一 個喷灑喷嘴樑部段沿軸向或沿寬度方向移動並將 作局部不同的冷卻。如果不 壓馬達或對應地用二個 有累#的一電 -變更m“、 別在左右側調整, 支更方式,做成一用油壓 方式運動之單節式或 201036722 即擺桿(Gelenkschwinge)(它具有固定在其上的嘴壤標) 或可轉動的噴嘴單元的方式,以將冷卻劑噴流偏轉到工作 滚子之所要區肖(在鋼帶範圍之内或之旁),以對鋼帶的 廊幵> (Bandprofil )及平坦度產生正面影響。 與可沿寬度方向移行的喷灑樑部段的實施例相似者, 舉例而言,對於低壓殼冷卻系統的一個片段而言,舉例而 s,可將寬150毫米的短段殼部分設計成可沿軸向沿寬度 方向調整且只局部地(例如對稱地在工作滾子的二個位置) 工用。 依本發明使用的低壓工作滾子冷卻系統的目的在於作 取佳及有效的冷卻,其中,儘管冷卻液壓力低,但冷卻效 果(熱從滾子傳到冷卻液)仍要高。這點可造成較低的滚 ㈣·度或可用於減少冷卻液量。所用之有效低壓式滚子 冷卻系統宜為流動冷卻系統,其中冷卻液在工作滾子與一201036722 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method and apparatus for cooling a roller, particularly a work roller of a rolling frame. When the metal is rolled, the rollers involved in the rolling process, the working rollers, are heated one by one. The roller is cooled in order to protect the roller from damage and to extend the service life. In most rolling crucibles, modern cooling systems are used which spray a coolant onto the surface of the roller using a nozzle (and preferably a flat jet nozzle). This cooling effect is called "spray cooling." The selected pressure levels are each dependent on the length of the roller, ranging from 6 bar to 12 bar, and in the case of 20 bar. In addition to limiting the heat load and geometric expansion of the rollers as densely as possible, the cooling of the working rollers must be such that the rollers are kept free of contaminants, oxides and rust particles. The cooling effect increases as the amount of coolant increases and the pressure of the coolant increases. The disadvantage of this system is that it requires a lot of energy, and at higher pressures, the pump has a higher maintenance cost. [Prior Art] One possible cooling method for the work/tweezers is low pressure cooling. A cooling device in the form of a high turbulent cold section in the low pressure range is disclosed in the international patent W 〇 200 8/104037 A1, in which a coolant is sprayed using nozzles or holes which are arranged on a cooling ladder of a recess y Cool a roller. By means of the β of the chilled beam and the side plates (they are arranged on the end side of the chilled beam), a liquid flow can be formed which is both 201036722 and has a non-directional flow. However, only when the straight & range of the roller [which is caused by 'Absehiff') is used to match the curvature setting of the cooling device, the cooling device can be satisfactorily and ready; now (rePn>dueible) Wei Zuo. Since today's roller _-like (four) range, 々 maximum roller direct control of 1, so several rolling devices are needed for different roller diameters, which makes the roller need a complete set of rules, one The disadvantage is that it is not possible to adjust the curvature of the cooling device to match the change in the diameter of the roller for each rolling frame and after each replacement of the working roller, so the distance of the nozzle or hole from the surface of the roller (and therefore the cooling effect) In the rolling process, the line is replaced by the line: when the roller is replaced, the German patent DE 3616070 C2 refers to a form of flow cooling (s(10) ngsk thank ung, English: fl〇wc〇〇iing) The low-pressure cooling method, in which a certain narrow gap is formed between the surface of the working roller and the cooling shell, and the coolant is guided by the external pressure on the surface of the roller in a certain direction. The pressure level in this way is small and is related to the gap width and flow velocity. Here, a higher cooling effect is achieved with a higher flow rate. Due to the low pressure level, this system does not have a cleaning effect on the roller surface. One disadvantage of this device is that for each, step, and 2 valleys, the son needs to have a cooling block of its own 'because the cooling block is installed"; 2, π: spreads in 1 roller built-in piece ( Wal brain einbau immortal ck, English: r〇Ubuiltinpiece). Therefore, a conventional hot roller press requires a large number of i words, people, and cold parts. The width of the gap should match the diameter of the different working rollers and the order of the cooling blocks in the sinister position. This is equally unfavorable and cumbersome and troublesome because the hand must be adjusted by hand on the roll 5 201036722 Gap. SUMMARY OF THE INVENTION The present invention has been made in view of the above prior art, and an object thereof is to provide a method and a cooling device by which a roller of a rolling frame can be optimally cooled to protect the roller from thermal mechanical fatigue and Wear, which takes into account the point of view of energy savings (such as minimizing the required coolant flow and coolant pressure) and taking into account the associated structural and manufacturing costs. The above object is achieved in terms of method by the features of the method of claim 1 and in the device aspect by means of the device of claim 24: that is, the roller is also used for low pressure cooling A high pressure cooling in which the roller is directly sprayed with a coolant under high pressure during high pressure cooling. Essentially all of the rollers of a roller press can be cooled using the cooling device of the present invention. However, the present invention is particularly useful in the context of working rollers. Preferably, about 20% of the total amount of total cooling liquid is sent to the high pressure cooling stage, and about 80% of the total amount of total cooling liquid is sent to the low pressure cooling stage which produces primary cooling. For example, the coolant can be taken from a 7 to 12 m high level tank (H〇chbehalter, English: highievei tank) or directly produced by a low pressure pump. The required pressure range of the low pressure cooled coolant is related to the heat load of the rollers, for example, in the range from 〇 5 bar to less than 5 bar. The structural embodiment used may be a spray cooling stage, a coolant curtain, a gap cooling or flow cooling, a high turbulent cooling (Fig. 2) system, or a combination of various low pressure cooling systems. 201036722 For high-pressure roller cooling (which also achieves the purpose of cleaning or removing rust on the roller surface), it can be used as a single-row or double-row spray nozzle beam in the case of conventional systems. A small fraction (about 2%) of the total amount of coolant is sufficient for this purpose, wherein the pressure of the desired coolant is in the range of 5 to 5 Å and yaba. The pressure range of the high-pressure roller cooling coolant is related to the following rolling parameters: thickness reduction, specific area pressure in the rolling gap (Spezifische Flachenpressung, Specific area pressure), rolling speed, strip temperature, The type of roller material and the material being rolled. Based on the environmental perspective, it is good to reduce the total energy consumed by the pump and to achieve all system objectives in the direction of Green-Plant_Technology. If we compare the pump energy used for conventional roller cooling with higher pressure to the claimed combination or low pressure _ high pressure cooling system, there are the following differences: The energy demand of the spring (regardless of pump efficiency), with 5000 Example of 2 m hot steel belt rolling track for cubic roller / hour total roller coolant flow [pump power = volume flow X® force rise (indicator: 36 is a conversion factor)] <Traditional? Mode > : Pressure level such as 12 bar pump power = 5000 cubic meters / hour χ 12 bar pump power = 1667 watts < combined low pressure - high pressure cooling mode > Pressure level such as 1 2 bar high pressure coolant | τ λλλ . Two miles 10 〇〇 cubic meters / hour, and 7 201036722 Pressure level such as 2 bar low pressure cooling dose 4000 cubic meters / hour fruit power = 1000 cubic meters / hour χ 12 bar / 36 + 4000 cubic meters / hour X2 bar / 36 Pump power = 333 watts + 222 watts = 555 watts $ The amount of energy required to use this combined low pressure - high pressure cooling is much less, so for the above example, the pump's drive power is reduced by about 1 · 丨10,000 watts. When the particles of contaminants or rust particles increase and, for example, the surface of the roller is rough or in the case of a burnt crack model (Brandrissmuster), the pressure level can be correspondingly also asked to use the camera to observe the surface of the roller. Level change. In addition, & affects the thickness of the oxide layer on the roller, and the pressure level can be individually matched in a segmented manner (e.g., each pump is turned on or off) or in a segmentless manner. The combined low pressure-high pressure cooling can be used for example for a hot steel strip rolling = front roll so that the low pressure cooling can also be used in the rear rolling frame, and the high pressure cooling beam can be used in the near, JL office The scope or design of the length of the entire beam length.—1, the squad y and the smashing garden use a simple patent application motor. The two working roller motors or oil can also be cut into multiple sections to move in the width direction. Local cooling effect. Single low-pressure cooling shell cooling method, "Feibei] can consider and set the combination of the cooling method of JP 07-290120. Here, a spray nozzle beam section is moved axially or in the width direction and will be locally cooled differently. If you do not press the motor or correspondingly use two electric-change m" with tired #", do not adjust on the left and right sides, support the way, make a single-section motion with hydraulic pressure or 201036722 that is a pendulum (Gelenkschwinge ) (which has a mouth-marked on it) or a rotatable nozzle unit to deflect the coolant jet to the desired area of the working roller (within or around the steel strip), to The strips of the steel strip & (Bandprofil) and flatness have a positive effect. Similar to the embodiment of the spray beam section that can be moved in the width direction, for example, for a segment of the low pressure shell cooling system, For example, a short-section shell portion having a width of 150 mm can be designed to be axially adjustable in the width direction and only partially (for example symmetrically at two positions of the working roller). The purpose of the working roller cooling system is to achieve good and effective cooling, wherein the cooling effect (heat transfer from the roller to the coolant) is high despite the low coolant pressure. This can result in a lower roll (4). · Degree or can be used to reduce Low pressure roller effective cooling system should coolant volume. The use of a flow of a cooling system in which cooling fluid with a working roller

弧形0X S十的冷卻殼之間的一較狹的縫隙中在滾子表面導流 過去。 依本發明’該冷卻裝置主要由互相樞接之可運動的冷 却殼片段構成。宜使用三個,但一般使用二個冷卻殼片段。 但在特別情形也可只使用一冷卻殼片段。個別的冷卻殼片 &amp;且在側面或末端具有關節或關節半部。在中間的冷卻殼 片段上至少有一旋轉點,它至少容納一個(且宜二個)壓 缸(油壓缸或氣壓缸)。壓缸的二個保持點接在相鄰之冷 卹殼片段的另外元件上。壓缸可設在冷卻樑中點或在邊緣 兩側如不用虹將冷卻般調整’舉例而言,也可考慮用油 9 201036722 壓馬達或電馬達調整。在中間的冷卻殼片段上有控制台 (Konsole )或具有固定孔的冷卻樑載體。利用冷卻樑載體, 可使中間之冷卻殼片段以及所有它連接的構件運動,其中 其作水平、垂直及旋轉的運動。位置的調整利用一多節式 關節聯動器實施,它用氣壓、油壓、或電機械方式動作。 也可經由例如一縱導引件或長孔導引件及氣壓缸或油壓缸 將中間的冷卻樑載體沿水平方向有利地調移。 壓缸具有路徑測量系統及壓力測量感測器,缸的位 置、以及冷卻殼片段與滾子間的縫隙調整或距離測定、以 及所調整的位置的監視作業可肖以下不㈣方法求出及實 施’其中以下所述方法也可組合: 〈冷卻殼的校準(Kalibrieren,英:calibrating) &gt; 要調整冷卻成片丰又的位置,將冷卻襟載體調移件及冷 卻殼片段利用相關之壓缸及關節聯動器用一定的壓力壓向 滚子。在此位置時’路徑感測器設定到零。由此開始,並 要:悉幾何的關係,隨後可將冷卻殼片段及滾子之間調整 :定的縫隙。此冷卻系統的校準程序可在滾壓架較準過程 &lt;計算位置&gt; 由於幾何關係(滾子直徑、滾子沿垂直方向的位置、 ::置、嶋旋轉點的距離、多節或關節聯動器的位置 專)係已知,故可用很好的趨近(,英. 方式計算出殼位置或平均縫隙寬度。因此在 程%,滾子位置的每個相m (例如在鋼帶厚度 201036722 改變時)可以換算。 &lt;使用感測器&gt; 藉著使用距離感測器,可直接測量縫隙,且缸與關節 驅動器可對應地用一調節系統作調整。 不同於先剛技術的冷卻系統,本發明的冷卻系統可利 用既有的關節機構配合各種滾子直徑及滾子位置,因為冷 卻樑的調移系統與厚度調整手段連接,且(例如在厚度轉 變時)追循工作滚子的垂直運動。當滾壓架上移行時〔例 如在一種緊急上移(N〇t-Auf,英:emergency-up)〕時, 冷卻殼自動地略枢轉回去。 在一結構實施例中,冷卻裝置利用一密封功能形成一 空間,只有極少冷卻液能由該空間出來到周圍環境中。此 密封作用係由殼在上方及下方倚在工作滾子上達成,該工 作滾子可利用一預定壓力頂壓,及/或藉著施一種堆積壓 力在冷卻殼邊緣而成此密封作用,利用這種設置可形成一 種近乎封閉的冷卻循環。 ,、 冷卻樑可隨冷卻殼及傳統的高壓及/或低壓噴灑襟固 疋在冷卻裝置上。藉著將殼定位在滾子前方不遠處可形成 一縫隙’冷卻劑流過該缝隙,冷卻殼與工作滾子之間的縫 隙寬度在操作時,依標的以可重現(reproducible)的方式 (不受滾子直徑影響地)調整成2〜40毫米之間,例如5 毫米、工作滾子與冷卻殼之間的縫隙——沿切向看〜—可 以大約和出口相同或該殼調整成向出口變窄。 當使用本發明的流動冷卻系統時,可有二種不同之冷 11 201036722 卻變更方向一-部段式流動(abschnittsweise,英: sectionwise )冷卻及連接式(zusammenhangend,英: connecting)流動冷卻。 部段式流動冷卻分成多數部段。冷卻劑由一(例如為 漏斗形的)長方形槽孔流出到冷卻殼之各別區域流向滾子 且向兩側(分別向上及向下)或也可主要只向一側偏轉, 其中冷卻殼迫使液體沿滾子流動。藉著使液流轉向以及沿 滾子以較高相對速度流動,該冷卻液有效地吸收滚子的 熱。此受熱之冷卻液隨後向下流回,並留下空間給新而冷 的冷卻液來填補。在此,冷卻樑做成使該向下(離開滾子) 流動的滾子主要可隨著斜地勢(Gefall )順利地流走。利用 轉向金屬板,使流回的冷卻劑在上侧另外向旁邊偏轉,以 減少刮器(Abstreifer )上的水池效應(p0〇ieffekt)。個別 的冷卻區域利用對側的遮護件互相隔開,因此相鄰之冷卻 樑的冷卻液幾乎不會互相對向作干擾。 在連接式流動冷卻的場合,冷卻液經滾子的一較大的 連接角度Ιε»圍導進。此處需要一個可配合的小縫隙度及大 的流速,以產生良好的熱傳遞作用。因此,縫隙寬度和冷 卻液量須互相配合設定。連接式流動冷卻系統可用逆流原 理或順流原理操作。由於入口側及出口側之間路徑長,故 冷卻殼須作側面密封。如不用逆流或順流原理,也可用另 -操作方式’纟中冷卻液在上方及下方冷卻樑管路供應。 如此,液體依標的流出到側面。在此原理,和滾子成切向 流動之流卻液先吸收熱然後向側面偏轉。如此,熱的冷卻 12 201036722 液將鋼帶跑動範圍附近的滚子區域加熱且在該處對於熱凸 度(Crown )造成所要的正面影響,如果作區域加熱(其中 在鋼帶旁的區域不直接冷卻),則這種系統特別有效。 在作此區域冷卻作業時,在滾子長度中在冷卻樑的冷 卻劑供應通道中只有特定的區域開放供流過,或者狹小的 冷卻殼相鄰設置’互相隔著縫隙寬度(該縫隙寬度調整成 不同大小)。受到不同的缝隙寬度影響,對於狹小的冷卻A narrow gap between the arcuate 0X S ten cooling shells is deflected over the surface of the roller. According to the invention, the cooling device is mainly composed of movable cooling shell segments which are pivotally connected to each other. Three should be used, but two cooling shell segments are generally used. However, in a special case, only one cooling shell segment can be used. Individual cooling shells &amp; and have joints or joint halves at the sides or ends. At least one rotating point is provided in the middle of the cooling shell segment, which accommodates at least one (and preferably two) cylinders (hydraulic cylinders or pneumatic cylinders). The two holding points of the cylinder are attached to the other elements of the adjacent chiller shell segments. The cylinder can be placed at the midpoint of the chilled beam or on both sides of the rim if it is cooled without the need of a rainbow. For example, oil 9 9 367 222 pressure motor or electric motor adjustment can also be considered. On the middle of the cooling shell segment there is a console (Konsole) or a chilled beam carrier with fixed holes. With the chilled beam carrier, the intermediate cooling shell segments and all of the components connected thereto are moved, with horizontal, vertical and rotational movements. The position adjustment is carried out using a multi-joint joint coupling that operates pneumatically, hydraulically, or electromechanically. The intermediate chilled beam carrier can also be advantageously shifted in the horizontal direction via, for example, a longitudinal or elongated guide and a pneumatic or hydraulic cylinder. The pressure cylinder has a path measurement system and a pressure measurement sensor. The position of the cylinder, the gap adjustment or distance measurement between the cooling shell segment and the roller, and the monitoring operation of the adjusted position can be determined and implemented by the method (4). 'The following methods can also be combined: <Calibrieren (English: calibrating) &gt; To adjust the cooling to a rich position, the cooling crucible carrier transfer member and the cooling shell segment use the relevant pressure cylinder And the joint coupler presses the roller with a certain pressure. At this position the path sensor is set to zero. Starting from this, it is necessary to: know the geometric relationship, and then adjust the cooling shell segment and the roller: a fixed gap. The calibration procedure for this cooling system can be used in the calibration process of the rolling frame &lt;calculation position&gt; due to the geometric relationship (roller diameter, position of the roller in the vertical direction, :: setting, distance of the 嶋 rotation point, multi-section or joint) The position of the actuator is known, so a good approach can be used to calculate the shell position or the average gap width. Therefore, in phase %, each phase of the roller position m (for example, in the thickness of the strip 201036722 When changing) can be converted. &lt;Using the sensor&gt; By using the distance sensor, the gap can be directly measured, and the cylinder and the joint driver can be adjusted correspondingly by an adjustment system. System, the cooling system of the present invention can utilize existing joint mechanisms to accommodate various roller diameters and roller positions because the transfer system of the chilled beam is coupled to the thickness adjustment means and (eg, during thickness transition) follows the working roller Vertical movement. When moving on the rolling frame (for example, in an emergency-up), the cooling shell is automatically pivoted back slightly. In a structural embodiment, However, the device uses a sealing function to form a space, and only a small amount of coolant can be discharged from the space to the surrounding environment. The sealing action is achieved by the shell being placed on the working roller above and below, and the working roller can utilize a predetermined schedule. Pressure topping, and/or by applying a build-up pressure on the edge of the cooling shell to form a sealing effect, this arrangement can form a nearly closed cooling cycle. The cooling beam can be cooled with the cooling shell and the conventional high pressure and / Or low-pressure spray tamping on the cooling device. By positioning the shell not far in front of the roller, a gap can be formed. 'The coolant flows through the gap, and the gap width between the cooling shell and the work roller is in operation. Adjusted according to the standard in a reproducible manner (not affected by the diameter of the roller) between 2 and 40 mm, for example 5 mm, the gap between the working roller and the cooling shell - looking tangentially ~ - may be about the same as the outlet or the shell is adjusted to narrow towards the outlet. When using the flow cooling system of the present invention, there may be two different types of cold 11 201036722 but changing the direction of a one-section flow (a Bschnittsweise, English: sectionwise ) Cooling and connection (zusammenhangend, English: connecting) flow cooling. Segmental flow cooling is divided into a number of sections. The coolant flows from a rectangular slot (for example, a funnel) to the cooling shell The other areas flow to the rollers and are deflected to the sides (upward and downward respectively) or also mainly to one side, wherein the cooling shell forces the liquid to flow along the rollers. By turning the flow and the rollers are relatively high The velocity flows, the coolant effectively absorbs the heat of the roller. The heated coolant then flows back down and leaves room for new and cold coolant to fill. Here, the chilled beam is made to make the downward ( Leaving the roller) The flowing roller can flow smoothly along with the oblique terrain (Gefall). With the steering metal plate, the flowing coolant is deflected sideways on the upper side to reduce the pool effect on the scraper (Abstreifer). The individual cooling zones are separated from one another by the opposite side shields so that the coolant of adjacent cooling beams hardly interfere with each other. In the case of connected flow cooling, the coolant is guided through a large connection angle Ιε» of the rollers. Here, a small gap that can be matched and a large flow rate are required to produce good heat transfer. Therefore, the gap width and the amount of coolant must be set to match each other. Connected flow cooling systems can be operated with countercurrent principles or downstream principles. Since the path between the inlet side and the outlet side is long, the cooling shell must be sealed sideways. If the countercurrent or downstream principle is not used, the coolant supply can also be supplied to the upper and lower cooling beam lines in the other way. In this way, the liquid flows out to the side according to the standard. In this principle, the flow of the tangential flow with the roller first absorbs heat and then deflects to the side. Thus, the hot cooling 12 201036722 fluid heats the roller zone near the running range of the steel strip and has the desired positive effect on the heat crown (Crown) if it is zone heated (where the zone next to the steel strip does not This system is particularly effective when cooled directly. In the cooling operation in this area, only a specific area is opened for flow in the coolant supply passage of the chilled beam in the length of the roller, or a narrow cooling shell is disposed adjacent to each other with a gap width (the gap width is adjusted) Into different sizes). Affected by different gap widths for narrow cooling

Ο 设’產生對應之不同的比冷卻液流過量,因此各冷卻殼有 不同之工作滾子的冷卻作用’各依結構而定,將一種阻斷 冷卻液加入在狹冷卻殼間以將縫隙的不同通過量的冷卻液 互相隔開。 為了最佳地控制該冷卻裝置,故使用一計算模型(程 序模型,位準1-模型),該模型達成以下目的: __依鋼帶厚度減少程度、滾壓縫隙中的比面積壓力 (Spezifische Flachenpressung,英:设 Set 'the corresponding different ratio of coolant flow, so each cooling shell has different cooling action of the working roller'. Depending on the structure, a blocking coolant is added between the narrow cooling shells to seal the gap. Different throughput coolants are separated from one another. In order to optimally control the cooling device, a calculation model (program model, level 1 - model) is used, which achieves the following objectives: __ depending on the degree of thickness reduction of the steel strip, the specific area pressure in the rolling gap (Spezifische Flachenpressung, English:

Pressure)、滾壓速度、鋼帶溫度、滾子材料、被滾壓 的材料、所測量到的及/或所計算出來的滾子溫度及 (或觀察到的滾子表面而定以及同樣地依所調節的冷 部劑作用寬度而定,調節該低壓部分及高壓部分用的 冷卻劑量及壓力位準; 藉著調整供應通道的出口開口(拋物線形、其他曲線 或區域性)及/或依鋼帶寬度而定調整冷卻殼與滾子 之間的缝隙寬度及/或調整該可沿寬度方向調整的喷 遲嘴樑部段的位置及/或沿鋼帶寬度範圍的所測量的 13 201036722 而調整沿鋼帶寬度範圍的冷卻 廓形狀態及平坦度狀態 劑的量; ――與厚度調節級作信號交換(滾壓架調移); 描述該冷卻裝置的可動的部分# n # μ # v I刀q戍何闞係以及考膚 調移位置、配合線位置、及滚 〜 直及澴子直徑以便最佳地求出 位置,或計算位置的變化;以及 --使用該壓力-及路徑感測器信號,利用該壓缸以確定該 冷卻桿載體的柩轉位置以及冷卻殼調移位置; —控制冷卻殼位置之校準過程。 本發明之其他有利的實施例係為申請專利範圍依附項 的標的。 ' 本發明的其他細節在以下配合示意圖式中所示的實施 例詳細說明。 【實施方式】 圖1中顯示先前技術的一種喷灑冷卻系統,其中—冷 卻液(7)利用噴嘴(27)噴灑到工作滾子(1)(2)的滾子表面上。 由到喷嘴與滚子之間的距離較大,故選設一種較高之冷卻 劑壓力範圍(例如6巴......15巴)。設置在入口侧及出口 側的刮除器(17)用於使儘量少的冷卻液能與滾壓物(4)接觸。 圖2顯示另一種習知之冷卻工作滚子(1)(2)的可能方 式。它係在低壓範圍的一種高紊流式冷卻系統。利用單側 設置的噴嘴(27)以及利用在出口側設在彎成凹形的相關冷 卻殼(11)中的孔將水噴射到工作滚子(1 )(2)的表面,並在工 14 201036722 作滾子前方形成一道具有紊流狀無定向液流的水塾。在這 種結構,水的交換較慢,這點對冷卻效率有不良影響。 依本發明之具有一相關冷卻殼(11)的相關之流動冷卻 系統示於圖3中。此處,本發明的冷卻裝置(1〇)主要由互相 極接的冷卻般片段(13 )構成’它們隔一段距離圍住工作滾子 (1)(2),形成一較大角度範圍的縫隙(3〇)。 利用一冷卻殼的個別冷卻片段之間之受應力的樞接 部,可以有利地使冷卻殼最適當地配合滚子的個別的直 〇 徑’且因此使滚子的冷卻作用更節省能量,該樞接部的關 節軸宜平行於滚子的縱軸。 冷卻液(7)沿著與滾子旋轉方向(5)相反的流向經由—供 應管(25)與入口開口(29)流入該縫隙(30)中,俾隨後經出口 開口(24)及導離管(26)再流出。如果導離管(26)或出口開口 (24)在一特別情形關閉或不導出,則可依標的使冷卻劑垂直 於該滾子流出。如此,在此處,側邊的密封件只部分地存 ❹在。冷卻殼片段(13)之-些片段長度部分〔它們步成縫隙 (30)〕要近乎一樣大,因此為工作滾子〇)直徑改變時,冷卻 殼片段(13)可最佳地追隨滾子函殼面⑹的曲率的改變。_ 的冷卻殼諸(13)的末端有_或關節半部,它們互相連接 形成對應的數目的關節旋轉點(22)及㈣點(21),它們利用 壓缸㈣(例如油壓缸或氣壓缸)互相連接。在中間的冷卻 殼片段(13)上有冷卻樑載體(16),它具有—樞接點⑼,藉 此可使冷部喊片段(13)以及所有與該片段連接的構件沿圖 式之冷卻樑載體的調整方向(45)(水平、垂直及旋轉)利用 15 201036722 -多節式關節聯動器(此處未圖式)料動。一設在冷卻 殼(11)下方的刮除裝置(17)用於使跑到滾壓物(4)上的冷卻 液(7)儘量少^ 利用測距離的感測器7)及缸接頭管路中的壓力計 以及設在壓缸(20)之上或之内的路徑測量器(39),可將整個 冷卻殼(11)作定位。利用溫度感測器(38)(在滾子十央或沿 寬度範圍)連續地測量滾子溫度以將縫隙(3〇)的尺寸對應地 調節以得到所要的冷卻作用。 以下所述的冷卻裝置的結構係用相似方式建構,因此 相關之結構細節不再贅述,而只在各情形使用上文已述的 圖號。 在圖4中的冷卻裝置中顯示在縫隙(3〇χ它由冷卻殼(ιι) 的冷卻殼片段(13)及滾子函殼面(6)形成〕内冷卻液用異於圖 3所示之液流的導引方式作導引。此處,要使用低壓冷卻液 供應管(ND)的冷卻液(7)用的供應管(25)各設在上、下冷卻 殼片段(13)上,因此在這裡冷卻液的各部分量分別和滾子旋 轉方向成逆向及順向流過縫隙(30),流動方向用箭頭(43)表 示。為了將縫隙(30)密封,冷卻殼(11)的上、下邊緣設有一 倚靠面(46),例如一硬布板,它對滾子函殼面(6)呈密封方式 導進。因此,因於冷卻液(7)只能有一側流出道從縫隙(3〇) 出來(導離管不存在),故缝隙(3〇)比圖3的縫隙寬度更大。 個別冷卻殼的調整作用係一如圖3的情形利用壓缸(2〇)達 成。如不用壓缸,該處也可較簡單地使用螺旋彈簧。除了 在出口側利用設在該處的冷卻殼(1丨)作冷卻外,各工作滾子 16 201036722 (1)(2)也在人口側作冷卻。由於此處能達成之冷卻作用並非 最重要者’因此,舉例而士,|(+_盘4丨丨田‘》 平』吨。此處利用喷嘴(27)用低壓作嗜 灑冷卻即足夠。 圖5中顯示具有一部段式低麼流動冷卻系統的冷卻裝 置。與圖3及圖4不同者〔其中冷卻殼⑴)固然由冷卻般片 段03)組成,但組合在—起形成單—個可動的冷卻殼(⑴〕, 在此處該冷卻殼(12)(此處沿徑向分開)的冷卻殼片段㈤ 也局部互相分開且形成分別的流動冷卻區域⑽㈣⑹。此 處,冷卻液由低壓冷卻液供應管⑽)供應管(25)流出經過冷 卻片段(13)的中央區域中的—漏斗形輸出槽孔㈣從一出口 開口(24)出來流向工作滾子〇)(2)並向兩邊向下及向下偏 轉。為了將橫向(沿寬度方向)流動的水量限制,可設機 械式侧密封件。各冷卻殼片段(13)迫使液流對應於圖示箭頭 (43)沿滾子函殼面(6)流動,然後向後流回。在此,冷卻殼片 段(13)設計成使得(從滾子離開)向後流動的冷卻液可用斜 》坡(Gef犯)順利流走。利用轉向金屬板(圖未示)將流回 的冷卻液在上侧另外偏轉到旁邊,以減少刮除器(17)上方的 水池效應。冷卻殼片段(13)的出口開口(24)可設以一可更換 的嘴件(例如長方形喷嘴)’如此在必要時,橫截面與形 狀可很容易地配合改變的條件。在此實施例中,在刮除器G7) 與冷卻设(12)之間設有高壓冷卻液供應管(HD)噴嘴,利用它 們可實施本發明之組合式低壓_高壓冷卻作用。高壓喷灑樑 可如圖所示分別設在冷卻樑載體(16)上或固定在一冷卻殼 片段上,如此它可隨冷卻樑載體或冷卻殼片段作調整。 17 201036722 圖6中顯示:有一可完全更換的冷卻殼板(47)固定在冷 卻裝置⑽的冷卻樑上。由於此處,出口開口(24)的喷嘴開 =的嘴件也可更換,因此可將整個冷卻殼隨嘴件更換,也 可,—者分別地更換。—流動冷卻區域的冷卻殼也可分成 P刀因此將該一半部作相對移動然後再固定,可很容 易將出口開口(24)作調整。此外可很容易調整不同的殼厚度 或縫隙寬度/每個冷卻樑,且影響向上及向下流的冷卻液 的量。 圖7中不採如圖3〜® 6的實施例的方式使用應缸將個 別殼作調移,在圖7中的冷卻裝置係揭示及顯示另一解決 方式此處冷卻樑載體(16)隨中間的冷卻殼片段(丨3)定位在 滾子如方。一個另外的冷卻殼片(丨3)利用一直或彎曲的橫樑 (48)(它可在一小的限定範圍内旋轉)用彈簧之對應的「彈 簧壓迫壓力」倚靠住。如不採此方式,也可在壓缸的區域 中(見圖3〜6)將螺旋彈簧(8)用對應的保持件設在末端。 在此’縫隙(30)係利用冷卻殼〇 3)與工作滾子(〖)(2)間的間隔 板(49)測定。適合作間隔板的材料,舉例而言,為硬布、鋁、 鑄鐵、自身潤滑的金屬或塑膠。間隔板(49)只設在冷卻樑邊 緣區域,俾不致干擾中央的冷卻劑流。也可視需要使間隔 板(49)延伸過冷卻樑的長度範圍。這些間隔板可用於調整間 隔或改變冷卻劑的流動方向。這些間隔板也可設在中央之 冷卻樑片段(1 3)上(圖未示)’藉著所產生之向側邊流過去 的冷卻劑流’使工作滾子的邊緣區域(在鋼帶附近)受到 該加熱過的冷卻劑依標的由中心加熱。 18 201036722 如果工作滾子之作冷卻的直徑範圍报小,或者對每個 滾壓架都在相同區域,則特別的情形係設一種剛性的冷卻 系統’亦即具有不能動的冷卻殼〔或不具有殼之間的壓缸 或不具有彈簧(8)〕。如此也可用有利的方式使用剛性間隔 桿代替可動的壓紅(2〇)。如此,滾子與冷卻殼間的縫隙略: 改變’但該有部段式流動冷卻作用㈣統仍有效且此系统 製造上較簡單。只需將冷卻«龍工作滾子直徑和工作 滾子位置而疋’疋位在該滚子前方,如此該縫隙最適當地 設置,亦即出口開口較密封地設在滾子前方。因此該結構 對數個滾壓架都設計成相同’且只要利用該長度可調整的 桿來配合一條滾壓道的不同的滾壓架直徑範圍。 在圖8的裝置中除了上述之組合式低壓.高壓冷卻系統 外,在入口側還設一個具有整合的「滚壓縫隙潤滑手段」(Μ) 及「滾壓縫隙冷卻手段」(18)的低壓流動冷卻系统。同時在 圖8中揭示··不同的高壓及低壓系統如何互相組合。冷卻 液(7)的液流可在一冷卻殼下方分開,或者一如此處在入口 側及出口側所例示者,宜將較大量的冷卻劑偏轉到一方 向。為了加強熱傳遞,故一股液流宜逆著旋轉方向流動。 設有「滚壓縫隙潤滑手段」(19)的那個區域受到工作滾 子冷卻系統產生的流動方向以及受到設有彈性塑膠表面的 冷卻殼(50)或具有彈性塑膠板或硬布板的冷卻殼(5 u保持乾 燥,為此,由冷卻樑載體機構產生一股輕的壓迫壓力經由 板壓到滾子上。板本身做成延伸過該寬度範圍,且由於其 結構設計(圖未示)而具有彈性作用。在施加「滾子縫隙 19 201036722 潤滑劑」之前,滾子表面區域可視需要地設以一壓縮空氣 噴霧手段(圖未示)’以將滾子表面吹氣作一定之乾二: 用。 ’、 如果不使用例如具有長方形噴嘴的三個冷卻樑,也可 依圖9的冷卻裝置(10)將該三個冷卻樑設以可更換的冷卻 殼(47),將許多交錯設置的洞(52)鑽到該冷卻殼(47)中,個 別的冷卻劑喷流由這些洞出來從短距離處喷向滾子〇)(2)。 如此也可建構成一種部段式的流動冷卻系統。在此,這些 洞沿寬度方向交錯設置,使得沿寬度範圍產生的冷卻作用 儘量均勻。洞(52)的橫截面與距離可沿滾子體寬度範圍做成 同,俾可利用這種系統產生像滾子體的凸度(Cr〇wn) 一樣 的冷卻劑分佈的拱起曲線。在此,洞(52)可垂直地朝向滾子 (1 )(2)或也可將冷卻劑斜斜喷向滾子(1 )(2)。 在一個圖未示的變更例中,冷卻殼設計成使冷卻劑出 口開口同时做成利用一長方形槽(24)或(44)與板中的孔(15) 組合,以提高該流動縫隙中的奈流度。 噴嘴及殼的設計的其他細節見於圖l〇a〜l〇f,其中喷 嘴設在殼中央,或者在不對稱的設置方式中設有在一側(例 如&quot;X在上側)縮短之設計的殼。藉著改變上方/下方之喷 嘴的調移角度或不同的冷卻殼厚度(圖未示),可同樣地 影響向上及向上的冷卻液流的分佈。此處也顯示不同的噴 流形式(將喷流聚集或「噴霧分散」)。冷卻殼之朝向滾 子的那一側可另外做成平滑狀或設有溝槽或框條(9),以利 用所造成之奈流對冷卻效果造成正面影響。詳細言之,這 20 201036722 些圖中: 圖1(^係在冷卻殼(11)(12)上的、人,、^1^/1、 八^上的冷郃樑(54)下部的對稱設 置,具有可更換的噴嘴; 圖l〇b係由喷嘴(27)出來的冷卻液開口,對滾子斜斜成一角 度α ; 圖1 〇c係具有變更之橫截面形狀的嘴嘴(27)以及該框條或溝 槽(9)之可能之實施例; 圖1〇d係以對喷嘴(27)呈不對稱方式縮短或延長的冷卻殼。 該漏斗形出口開口(它沿流動方向形成)在必要時可 設有「引導金屬片」,以將冷卻劑瞄準向内,向外或直線 狀轉向,如此最後沿冷卻樑寬度範圍跑出一股封閉而均勻 的冷卻液喷流。也可在冷卻樑寬側上將冷卻液供應通道設 計成漏斗形,以將在殼下方側邊(樑邊緣)流的冷卻液的 量減少。 此外也可將冷卻樑呈部段式地沿冷卻樑長度範圍設以 冷卻液供應通道中的縫隙寬度調整作用,且因此可沿滾子 長度範圍改變冷卻劑的分佈以及冷卻作用。為了要能更簡 單地沿寬度範圍將出口開口的縫隙寬度作拋物線式的變 化’故依圖10e (側視圖)及圖l〇f (上視圖)的例子,在 漏斗形供應通道(55)内設以「彈簧金屬片」(53),它可利用 一調整機構(圖未示)彎曲。此處在正常位置時,彈簧金 屬片倚靠在出口開口的侧面上。如果在一側將中心調移, 則該處縫隙變小。在此,邊緣保持固定在一長孔導引件中。 另一方式中。當彈簧金屬片在二邊作調移時,在該處縫隙 21 201036722 寬度變小。圖l0e及圖1〇f的實施例只顯示原理。也可有其 他具相同作用的結構。 在供應通道(55)中,縫隙調整的實施例的細節在圖lla 〜1 lc以側視圖顯示,在12中以相關之上視圖顯示。此 處,冷部樑的長形出口橫截面(58)分成個別之寬度部段 ()對於各寬度部段(59),冷卻液的流動開口 b及體積流 可5周整。寬度部段(59)舉例而言可做成50〜500毫米寬。如 不採此方式,也可將區域冷卻的控制手段成對殁置對滚壓 架中央設成對策(縫隙調整)。-滾壓架的所有冷卻樑可 5又以冷钾橫截面的區域式控制,且這些區域可對應地連 接,或將一滾壓架的個別的樑分別控制。對於圖丨1的實施 例,所設之出口橫截面的封閉機構係為一個用空氣壓力或 液體塵力操作的系統,依系統的功力位準或依所測量的體 積流而定,該流動開口 b可調整成從開放到部分開放或封 閉。如不採用部段式設置的可拉伸的塑膠舌片(60),也可使 用可拉伸或可移動的翻動蓋片或推桿、偏心輪調移手段或 其他機械式最終控制元件’以呈片段式方式影響出口開口 的橫截面。 在圖1 la〜1 lc的實施例中,在供應通道(55)的側面設 有一壓力室(56)當作封閉元件,其可拉伸的塑膠軟管(6〇)形 成供應通道(5 5)的一部分。在圖Ua的起始狀態中,空氣室 (5 6)係在無壓力狀態,因此,如圖12在寬度部段(5所示 者,流動開口(b)完全開放。在圖Ub中,壓力室(56)經一壓 笞路(57)用壓細空氣或一液體部分地充滿,如此,塑膠軟 22 201036722 管(60)部分地被壓人供應通道(55)進去,且該流動開口(6〇) 此時部分地封閉,如圖12在寬度部段⑽)所示者。圖12 在寬度部段(59c)顯示完全關閉的流動開口⑻。此處,依圖 1 lc ’壓力至(56)疋全充滿,且因此供應通道(5幻在此區域被 阻塞。藉著將這些區域封閉,可對滾子的熱膨脹及鋼帶廊 形及鋼帶平坦度造成正面影響。將鋼帶旁的冷卻區域關閉 同時配合(減少)水的需求量,可有利地進—步減少能量。 在圖13中顯示區域冷卻的另一作用原理。在此,沿滾 子長度範圍有狹窄的冷卻殼(14)相鄰設置’其縫隙 (3 1)(32)(33)可調整成不同縫隙寬度W1、W2、w3。因此, 利用不同㈣隙寬纟’以及將縫隙(3 1)(32)(33)施以不同壓 力及冷卻液的體積流,可沿滚子長度範圍產生不同的「比 冷卻液流過量(41)/每單位時間」。要將具不同「冷卻流通 過量(41)/每單位時間」的個別區域隔開,可將一種「阻斷 冷卻液」(它產生一堵塞的壓力)加入冷卻殼(14)之間的縫 隙(34)〇也可不用調整裝置較簡單地造成一種冷卻殼,使冷 卻殼與滾子之間的縫隙沿滾子長度範圍可任意地不一樣 大。 所用之冷部殼(13)(14)地材料可有利地使用—種可倚靠 在滾子上而不損害滾子的彈性材料。舉例而言,可為一種 無砂鑄鐵、可滑動的塑膠、自身潤滑的金屬、鋁、或硬布。 圖14中顯示在縫隙將工作滚子(1)與冷卻殼(14)形成的 縫隙(30)密封的一種可能方式,利用一管(25)或一噴嘴(2乃 將一股&quot;IL體(例如空氣或冷卻劑)的喷流瞄準吹入縫隙(3 〇) 23 201036722 的開口中。因此流體喷流(28)產生一股堵塞壓力,它防止冷 卻液(7)從縫隙(30)出來。 圖15a及15b顯示一種局部作用之可軸向調整的工作滚 子喷灑冷卻系統,它可做成高壓及低壓冷卻方式。這種冷 卻系統係一種附加冷卻系統,且可和圖未示的低壓殼冷卻 系統組合操作。冷卻喷嘴的局部定位作用或冷卻液(7)的施 加宜依廓形及平坦度的控制或調整而定而達成此。為此, 在圖15a中,該喷灑噴嘴樑部段(4〇,)在一導引桿(63)上移 動。此處’該二噴灑噴嘴樑部段(4G’)的定位係對滚子中心 成對稱利用—油麼缸(62)、關節桿(62)及喷嘴樑載體(64)達 成。如不用此方式也可用另一方式考慮二個油壓缸(61),它 們將兩侧⑽個另〇也定位。喷灑喷嘴樑部段㈣,)的供應係右 邊及左邊個別地用供應管路(25)達成。圖W顯示局部作用 的工作滾子冷卻系統之一種類似的設置。此處,利用一油 壓飯⑽將關節桿及關節擺桿(62)隨固定在其上的喷麗喷嘴 樑部段(40,)經-旋轉點(66)在—圓形路線(64)上運動,因此 將冷卻液噴流⑺偏轉到鋼帶範圍内或附近偏轉到工作滾子 ⑴上。另-種與樞接的關節擺桿不同的變更方式(圖未示) 係將二噴麓喷嘴樑(40,)各用一聯接聯動器(心關節弧形)運 動〔如果要避免在-圓形路線(64)上運動的話〕。也 灑噴嘴樑部段㈣’)上的噴嘴單元使用電的或油^ 達以經由圓形路線(64)上的—桿使噴嘴單元直接在圓形路 線(軌道)(64)上運動。 按隹圓形路Pressure), rolling speed, strip temperature, roller material, rolled material, measured and/or calculated roller temperature and (or observed roller surface and the same Adjusting the cooling agent dose and pressure level for the low pressure part and the high pressure part depending on the width of the cold acting agent; by adjusting the outlet opening of the supply channel (parabolic shape, other curve or regionality) and/or steel Adjusting the width of the gap between the cooling shell and the roller with a width and/or adjusting the position of the spray nozzle section that can be adjusted in the width direction and/or the measured 13 201036722 along the width of the strip The amount of cooling profile along the width of the strip and the amount of flatness state agent; - handshake with the thickness adjustment stage (roller shift); describes the movable part of the cooling device # n # μ # v I刀 戍 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考 考Signal Pressing cylinder to determine the tumbling position of the cooling rod carrier and cooling housing shifting position; - calibrating process for controlling the position of the cooling shell. Other advantageous embodiments of the invention are the subject matter of the scope of the patent application. Further details are described in detail below with reference to the embodiment shown in the schematic. [Embodiment] A spray cooling system of the prior art is shown in Fig. 1, wherein - the coolant (7) is sprayed to the working roller by means of a nozzle (27) (1) On the surface of the roller of (2). Since the distance between the nozzle and the roller is large, a higher coolant pressure range (for example, 6 bar...15 bar) is selected. A scraper (17) disposed on the inlet side and the outlet side is used to allow as little coolant as possible to contact the rolling material (4). Figure 2 shows another conventional cooling work roller (1) (2) Possible way. It is a high turbulent cooling system in the low pressure range. The nozzle is provided on one side (27) and the water is sprayed using a hole in the associated cooling shell (11) which is bent in the concave shape on the outlet side. To the surface of the work roller (1)(2), and at work 14 201 036722 A raft with a turbulent unoriented liquid flow is formed in front of the roller. In this structure, the exchange of water is slow, which has an adverse effect on the cooling efficiency. According to the invention, there is a related cooling shell (11) The associated flow cooling system is shown in Fig. 3. Here, the cooling device (1〇) of the present invention is mainly composed of cooling-like segments (13) which are connected to each other, and they surround the working roller at a distance (1). (2) forming a gap of a large angular extent (3〇). With the stressed pivotal portion between the individual cooling segments of a cooling shell, it is advantageously possible to optimally fit the cooling shell to the individual rollers. The straight diameter 'and thus the cooling effect of the roller is more energy efficient, the joint axis of the pivoting portion being preferably parallel to the longitudinal axis of the roller. The coolant (7) flows into the gap (30) via the supply pipe (25) and the inlet opening (29) in a flow direction opposite to the direction of rotation of the roller (5), and then passes through the outlet opening (24) and leads away The tube (26) flows out again. If the lead-off tube (26) or the outlet opening (24) is closed or not exported in a particular case, the coolant can be discharged perpendicular to the roller by the target. Thus, here, the side seals are only partially hidden. The length of the segments of the cooling shell segment (13) (they are stepped into a gap (30)) is nearly as large, so that the cooling shell segment (13) can best follow the roller when the diameter of the working roller is changed. The change in the curvature of the shell surface (6). The ends of the cooling shells (13) have _ or joint halves which are connected to each other to form a corresponding number of joint rotation points (22) and (four) points (21), which utilize a pressure cylinder (4) (for example, a hydraulic cylinder or air pressure). Cylinders are connected to each other. On the middle of the cooling shell segment (13) there is a cooling beam carrier (16) having a pivoting point (9) whereby the cold shouting segment (13) and all components connected to the segment can be cooled along the pattern. The adjustment direction (45) (horizontal, vertical and rotational) of the beam carrier is utilised by 15 201036722 - multi-joint joint coupling (not shown here). A scraping device (17) disposed below the cooling casing (11) is used to minimize the amount of coolant (7) running on the rolling object (4). Using the distance measuring sensor 7) and the cylinder joint pipe The pressure gauge in the road and the path measurer (39) placed on or in the cylinder (20) position the entire cooling jacket (11). The temperature of the roller is continuously measured using a temperature sensor (38) (in the range of the roller or along the width) to adjust the size of the slit (3〇) correspondingly to obtain the desired cooling effect. The structure of the cooling device described below is constructed in a similar manner, and thus the relevant structural details will not be described again, and the above-mentioned reference numerals are used only in each case. In the cooling device of Fig. 4, the coolant is shown in the gap (3) which is formed by the cooling shell segment (13) of the cooling shell (1) and the roller shell surface (6). The guiding mode of the liquid flow is guided. Here, the supply pipes (25) for the cooling liquid (7) of the low-pressure coolant supply pipe (ND) are respectively disposed on the upper and lower cooling shell segments (13). Therefore, the amount of each part of the coolant here flows backward and forward through the slit (30) in the direction of the rotation of the roller, respectively, and the flow direction is indicated by an arrow (43). In order to seal the gap (30), the cooling shell (11) The upper and lower edges are provided with a resting surface (46), such as a hard cloth plate, which guides the roller shell surface (6) in a sealed manner. Therefore, since the coolant (7) can only have one side outflow path From the gap (3〇) (the guide tube does not exist), the gap (3〇) is wider than the gap of Figure 3. The adjustment effect of the individual cooling shell is as shown in Figure 3 using a pressure cylinder (2〇) If the cylinder is not used, the coil spring can be used relatively simply. In addition to the cooling shell (1丨) located at the outlet side. However, each work roller 16 201036722 (1) (2) is also cooling on the population side. Because the cooling effect can be achieved here is not the most important one. Therefore, for example, Shishi, | (+_盘4丨丨田'" Flat" ton. It is sufficient to use the nozzle (27) for low-pressure cooling. It is shown in Figure 5 that there is a cooling device with a low-flow cooling system. It is different from Figure 3 and Figure 4 The cooling shell (1)) is composed of a cooled section 03), but is combined to form a single movable cooling shell ((1)), where the cooling shell (12) (here radially separated) is cooled. The segments (5) are also partially separated from each other and form separate flow cooling zones (10) (4) (6). Here, the coolant flows from the low pressure coolant supply pipe (10)) supply pipe (25) out through the central region of the cooling segment (13) - the funnel-shaped output slot The hole (4) flows from an outlet opening (24) to the working roller (2) and is deflected downward and downward toward both sides. In order to limit the amount of water flowing in the lateral direction (in the width direction), a mechanical side seal can be provided. Each of the cooling shell segments (13) forces the flow to flow along the roller envelope surface (6) corresponding to the illustrated arrow (43) and then flows back. Here, the cooling shell segment (13) is designed such that the coolant flowing backwards (from the roller) can be smoothly flowed away by the oblique slope (Gef). The returning coolant is additionally deflected to the side on the upper side by means of a steering metal plate (not shown) to reduce the pooling effect above the scraper (17). The outlet opening (24) of the cooling shell section (13) may be provided with a replaceable mouthpiece (e.g., a rectangular nozzle) so that, if necessary, the cross-section and shape can be easily adapted to changing conditions. In this embodiment, a high pressure coolant supply pipe (HD) nozzle is provided between the scraper G7) and the cooling device (12), by which the combined low pressure_high pressure cooling effect of the present invention can be implemented. The high pressure spray beams can be placed on the chilled beam carrier (16) or attached to a cooling shell segment as shown, such that it can be adjusted with the chilled beam carrier or the cooling shell segments. 17 201036722 Figure 6 shows a fully replaceable cooling shell (47) attached to the cooling beam of the cooling unit (10). Since the nozzle opening of the outlet opening (24) is also replaceable, the entire cooling casing can be replaced with the nozzle, or it can be replaced separately. - The cooling shell of the flow cooling zone can also be divided into P-knife so that the half is relatively moved and then fixed, and the outlet opening (24) can be easily adjusted. In addition, it is easy to adjust different shell thicknesses or gap widths/each chilled beam and affect the amount of coolant flowing up and down. In Fig. 7, the embodiment of Fig. 3 to Fig. 6 is not used to transfer the individual shells using the cylinder, and the cooling device in Fig. 7 reveals and displays another solution where the chilled beam carrier (16) is The middle cooling shell segment (丨3) is positioned on the roller as a square. An additional cooling shell (丨3) is held against the corresponding "spring compression pressure" of the spring using a straight or curved beam (48) which can be rotated within a small defined range. If this is not the case, the coil spring (8) can also be placed at the end with the corresponding retaining member in the region of the cylinder (see Figures 3 to 6). Here, the slit (30) is measured by a partition plate (49) between the cooling shell 〇 3) and the working roller (2). Suitable materials for the spacer, for example, hard cloth, aluminum, cast iron, self-lubricating metal or plastic. The spacers (49) are located only in the edge of the chilled beam so as not to interfere with the central coolant flow. It is also possible to extend the spacer (49) over the length of the chilled beam as desired. These spacers can be used to adjust the spacing or change the direction of flow of the coolant. These spacers may also be provided on the central chilled beam section (13) (not shown) 'by the resulting flow of coolant flowing to the side' to make the edge area of the working roller (near the steel strip) The heated coolant is heated by the center according to the standard. 18 201036722 If the diameter range of the cooling of the working roller is small, or if each rolling frame is in the same area, the special case is a rigid cooling system 'that is, it has a non-movable cooling shell [or no There is a pressure cylinder between the shells or no spring (8). It is thus also possible to use a rigid spacer bar instead of a movable red (2〇) in an advantageous manner. Thus, the gap between the roller and the cooling shell is slightly changed: but the segmented flow cooling effect (4) is still effective and the system is relatively simple to manufacture. It is only necessary to position the cooling «long working roller diameter and the working roller position 疋' in front of the roller so that the gap is most appropriately arranged, that is, the outlet opening is relatively sealed in front of the roller. Therefore, the structure is designed to be the same for a plurality of rolling frames, and as long as the length adjustable rod is used to match the different rolling frame diameter ranges of one rolling track. In addition to the above-described combined low-pressure and high-pressure cooling system, the apparatus of Fig. 8 is provided with a low pressure on the inlet side with integrated "rolling gap lubrication means" (") and "rolling gap cooling means" (18). Flow cooling system. At the same time, it is revealed in Fig. 8 how different high pressure and low voltage systems are combined with each other. The flow of the cooling liquid (7) may be separated under a cooling jacket, or as exemplified herein on the inlet side and the outlet side, it is preferred to deflect a relatively large amount of coolant in one direction. In order to enhance heat transfer, a liquid flow should flow against the direction of rotation. The area with the "rolling gap lubrication means" (19) is subjected to the flow direction generated by the working roller cooling system and by the cooling shell (50) provided with the elastic plastic surface or the cooling shell having the elastic plastic plate or the hard cloth plate. (5 u keep dry, for this purpose, a light compressive pressure generated by the chilled beam carrier mechanism is pressed onto the roller via the plate. The plate itself is made to extend over this width range and due to its structural design (not shown) It has an elastic function. Before applying the "roller gap 19 201036722 lubricant", the surface area of the roller can be optionally provided with a compressed air spray means (not shown) to blow the surface of the roller into a certain dryness: '. If three cooling beams with rectangular nozzles are not used, the three cooling beams can also be provided with replaceable cooling shells (47) according to the cooling device (10) of Fig. 9, a plurality of staggered Holes (52) are drilled into the cooling jacket (47), and individual coolant jets are ejected from these holes from a short distance to the rollers (2). This can also be constructed to form a segmental flow cooling system. Here, the holes are staggered in the width direction so that the cooling effect along the width range is as uniform as possible. The cross-section and distance of the hole (52) can be made along the width of the roller body, and the system can be used to produce a curve of the coolant distribution like the crown of the roller body (Cr〇wn). Here, the hole (52) can be directed perpendicularly towards the roller (1) (2) or it can also be sprayed obliquely towards the roller (1) (2). In a variant not shown, the cooling jacket is designed such that the coolant outlet opening is simultaneously combined with a hole (15) in the plate by a rectangular groove (24) or (44) to increase the flow gap. Nai flow. Further details of the design of the nozzle and the casing are shown in Figures l〇a~l〇f, in which the nozzle is located in the center of the casing or in asymmetrical arrangement with a shortened design on one side (for example, &quot;X on the upper side) shell. The distribution of the upward and upward coolant flow can be similarly affected by changing the upper/lower nozzle transfer angle or different cooling shell thickness (not shown). Different jet patterns are also shown here (gathering the jets or "spraying"). The side of the cooling shell facing the roller can be additionally smoothed or provided with grooves or frame strips (9) to positively affect the cooling effect by the resulting flow. In detail, this 20 201036722 in some figures: Figure 1 (^ is the symmetry of the lower part of the cold 郃 beam (54) on the cooling shell (11) (12), man, ^1^/1, 八^ Provided with a replaceable nozzle; Figure l〇b is a coolant opening from the nozzle (27), which is inclined at an angle α to the roller; Figure 1 〇c is a mouthpiece with a modified cross-sectional shape (27) And a possible embodiment of the frame or groove (9); Figure 1〇d is a cooling shell that is shortened or elongated in an asymmetric manner to the nozzle (27). The funnel-shaped outlet opening (which is formed along the flow direction) If necessary, a "guide metal piece" may be provided to aim the coolant inwardly, outwardly or linearly, so that a closed and uniform coolant jet is finally traversed along the width of the chilled beam. The coolant supply channel is designed to be funnel-shaped on the wide side of the chilled beam to reduce the amount of coolant flowing down the side of the shell (beam edge). The chilled beam can also be sectioned along the length of the chilled beam. Set the gap width adjustment effect in the coolant supply channel, and thus can be along the roller length Changing the distribution of the coolant and the cooling effect. In order to make the gap width of the outlet opening more parabolically along the width range, the examples according to Fig. 10e (side view) and Fig. l〇 (top view), A "spring metal piece" (53) is provided in the funnel-shaped supply passage (55), which can be bent by an adjusting mechanism (not shown). Here, in the normal position, the spring metal piece rests on the side of the outlet opening. If the center is shifted on one side, the gap becomes smaller. Here, the edge remains fixed in a long hole guide. In another way, when the spring metal piece is moved on both sides, The width of the gap 21 201036722 becomes smaller. The embodiment of Fig. 10e and Fig. 1f shows only the principle. There are other structures having the same function. In the supply channel (55), the details of the embodiment of the gap adjustment are shown in the figure. Lla ~ 1 lc is shown in side view, shown in the associated top view in 12. Here, the elongated exit cross section (58) of the cold beam is divided into individual width sections () for each width section (59) , the flow opening b and volume flow of the coolant It can be 5 weeks. The width section (59) can be made 50 to 500 mm wide by way of example. If this method is not used, the control means of the area cooling can also be set in pairs to set the center of the rolling frame. Gap adjustment) - All cooling beams of the rolling frame can be controlled by the area of the cold potassium cross section, and these areas can be connected correspondingly or individually controlled by individual beams of a rolling frame. In the embodiment, the closing mechanism of the outlet cross section is a system operated by air pressure or liquid dust force, and the flow opening b can be adjusted according to the power level of the system or according to the measured volume flow. From open to partially open or closed. If you do not use a stretchable plastic tongue (60), you can also use a stretchable or movable flip cover or pusher, eccentric transfer or Other mechanical final control elements 'affect the cross section of the outlet opening in a fragmented manner. In the embodiment of Figures 1 la to 1 lc, a pressure chamber (56) is provided on the side of the supply passage (55) as a closing member, and a stretchable plastic hose (6〇) forms a supply passage (5 5 )a part of. In the initial state of Fig. Ua, the air chamber (56) is in a no-pressure state, and therefore, as shown in Fig. 12 in the width section (5, the flow opening (b) is completely open. In Fig. Ub, the pressure The chamber (56) is partially filled with compressed air or a liquid via a pressure tunnel (57), such that the plastic soft 22 201036722 tube (60) is partially partially pressurized by the supply passage (55), and the flow opening ( 6〇) This is partially closed, as shown in Figure 12 in the width section (10). Figure 12 shows the fully closed flow opening (8) in the width section (59c). Here, according to Fig. 1 lc 'pressure to (56) 疋 full, and therefore the supply channel (5 illusion is blocked in this area. By closing these areas, the thermal expansion of the roller and the steel strip shape and steel The flatness of the belt causes a positive effect. The cooling zone next to the steel strip is closed while the amount of water required to be mixed (reduced) can advantageously further reduce the energy. Another principle of operation of the zone cooling is shown in Figure 13. A narrow cooling shell (14) along the length of the roller is disposed adjacent to its gap (3 1) (32) (33) and can be adjusted to different slit widths W1, W2, w3. Therefore, different (four) gaps are used. And the gap (3 1) (32) (33) is applied with different pressures and volume flow of the coolant, which can produce different "excess coolant flow (41) / unit time" along the length of the roller. Separate individual areas with different "cooling excess (41) / unit time" to add a "blocking coolant" (which creates a plugging pressure) to the gap between the cooling shells (14) (34) 〇 It is also possible to create a cooling shell with a cooling shell without the need for an adjustment device. The gap between the roller and the roller can be arbitrarily different depending on the length of the roller. The material of the cold shell (13) (14) used can be advantageously used - a type that can rest against the roller without damaging the roller Elastomeric material. For example, it may be a sand-free cast iron, a slidable plastic, a self-lubricating metal, aluminum, or a hard cloth. Figure 14 shows the formation of a working roller (1) and a cooling shell (14) in the gap. One possible way of sealing the gap (30) is to use a tube (25) or a nozzle (2 to blow a jet of &quot;IL body (such as air or coolant) into the gap (3 〇) 23 201036722 The fluid jet (28) thus creates a clogging pressure that prevents the coolant (7) from exiting the gap (30). Figures 15a and 15b show a locally acting axially adjustable working roller spray. The cooling system, which can be made into a high pressure and low pressure cooling system. This cooling system is an additional cooling system and can be operated in combination with a low pressure shell cooling system not shown. The local positioning of the cooling nozzle or the cooling liquid (7) Apply appropriate control and flatness control This is achieved by adjustment. To this end, in Fig. 15a, the spray nozzle beam section (4〇,) is moved over a guide rod (63). Here, the two spray nozzle beam sections (4G) The positioning of the ') is achieved by symmetric use of the center of the roller—the oil cylinder (62), the joint rod (62) and the nozzle beam carrier (64). If this method is not used, the other two hydraulic cylinders can be considered ( 61), they also position the two sides (10) of the other side. The supply line of the spray nozzle beam section (4),) is individually connected to the right and left side by the supply line (25). Figure W shows the local action of the work roller cooling A similar arrangement of the system. Here, the hydraulic rod (10) is used to rotate the joint rod and the joint swing rod (62) with the spray nozzle section (40,) via the - rotation point (66). - The circular path (64) is moved so that the coolant jet (7) is deflected into or near the extent of the steel strip and deflected onto the working roller (1). Another type of change with the pivot joint joint pendulum (not shown) is to use two coupling nozzle beams (40,) each with a coupling link (heart joint arc) movement [if you want to avoid in-circle If you move on the line (64). The nozzle unit on the nozzle beam section (4)') is also used to move the nozzle unit directly over the circular path (track) (64) via a rod on the circular path (64). Press the round road

低壓冷卻系統也可星思&amp;, + B 早獨地(亦即不與高壓冷卻系統組 24 201036722 合)使用。 之冷卻殼片段(13) 圖16顯示之彎曲彈簧(8)係當作相鄰 之間的彈性連接手段。 【圖式簡單說明】 圖1係依先前技術的一喷灑冷卻系統; 圖2係依先前技術的—種高奈流式流動冷卻裝置; 圖3係本發明的一冷卻裝置,具有數個冷卻殼片段, 它們互相樞接; 圖4 圖5 殼; 圖6 板; 固 产 圖i 段; 圖ί 隙潤滑手 係圖3的裝置,具有另一種變更的冷卻液流; 係-本發明的冷卻裝置,具有沿徑向分開的冷卻 係圖5的冷卻裝置,具有可更換的冷卻殼或冷卻 係一種冷卻裝置’具有利用彈簧壓迫的冷卻殼片 〇 係一冷卻裝置,具有滾子縫隙冷卻手段/滾子縫 段以及組合式低壓-高壓滾子冷卻系統; 圖9係一種冷卻裝置,具有設入在冷卻殼中的孔; 圖10a〜1 〇f為喷嘴及冷卻殼的設計; 圖11a〜lie為一種缝隙寬度調整手段; 圖12為一種縫隙寬度調整手段; 圖1 3為一種區域冷卻系統; 圖14為一縫隙密封手段; 25 201036722 圖15a與15b為一種&amp;卹从 M 局。W用之可軸向調整的滾子冷卻 仵; 圖16為彎曲彈簧,它作為相鄰之冷卻毅片段之間的關 節式/彈性方式連接件。 【主要元件符號說明】 〇)(2) 工作滾子 (3) 滾子寬度 (4) 滾壓物 (5) 滾子旋轉方向 (6) 滾子函殼面 (7) 冷卻液 (8) 彈簧 (9) 槽或框條 (10) 冷卻裝置 〇1) 相關之冷卻殼 02) 沿徑向分開的冷卻殼 (13) 冷卻殼片段 (14) 狹窄之冷卻殼 (15) 冷卻殼的樞接點 06) 冷卻樑載體 (17) 刮除器 (18) 滾壓缝隙冷卻手段 (19) 滚壓縫隙潤滑手段 26 201036722 (20) 壓缸 (21) 壓缸的旋轉點 (22) 冷卻殼片段的關節旋轉點 (23) 冷卻樑載體的樞接點 (24) 出口開口 (25) 供應管 (26) 導離管 (27) 喷嘴The low-pressure cooling system can also be used by Xingsi &amp;, + B (but not with the high-pressure cooling system group 24 201036722). Cooling shell segment (13) The bending spring (8) shown in Fig. 16 serves as a means of elastic connection between adjacent ones. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a spray cooling system according to the prior art; Figure 2 is a high-flow flow cooling device according to the prior art; Figure 3 is a cooling device of the present invention having several cooling Shell segments, which are pivotally connected to each other; Figure 4 Figure 5 shell; Figure 6 plate; solid production diagram i section; Figure ί gap lubrication hand system of Figure 3, with another modified coolant flow; system - cooling of the present invention The device has a cooling device that is radially separated and has a cooling device of FIG. 5, with a replaceable cooling shell or a cooling system. A cooling device has a cooling shell that is pressed by a spring, and has a cooling device for the roller gap/ Roller slit section and combined low pressure-high pressure roller cooling system; Fig. 9 is a cooling device having a hole provided in the cooling shell; Fig. 10a~1 〇f is the design of the nozzle and the cooling shell; Fig. 11a~lie Fig. 12 is a slit width adjusting means; Fig. 13 is a zone cooling system; Fig. 14 is a slit sealing means; 25 201036722 Figs. 15a and 15b are a &amp; W can be axially adjusted for roller cooling 仵; Figure 16 is a bending spring that acts as a joint/elastic connection between adjacent cooling segments. [Main component symbol description] 〇) (2) Working roller (3) Roller width (4) Rolling object (5) Roller rotation direction (6) Roller shell surface (7) Coolant (8) Spring (9) Slot or frame strip (10) Cooling device 〇 1) Related cooling shell 02) Radial cooling shell (13) Cooling shell segment (14) Narrow cooling shell (15) Cooling shell pivot joint 06) Cooling beam carrier (17) Scraper (18) Rolling gap cooling means (19) Rolling gap lubrication means 26 201036722 (20) Cylinder (21) Cylinder rotation point (22) Cooling the joint of the shell segment Rotation point (23) pivot joint of cooling beam carrier (24) outlet opening (25) supply tube (26) outlet tube (27) nozzle

(28) 流體喷流 (29) 入口開口 (30) 滾子函殼面與冷卻殼之間的缝隙 (31) 具缝隙寬度W1的缝隙 (32) 具缝隙寬度W2的缝隙 (33) 具缝隙寬度W3的缝隙 (34) 在狹窄冷卻殼間的縫隙 (36) 壓力測量計 (37) 測量距離用的感測器 (38) 溫度感測器 (39) 路徑測量器 (40) 高壓冷卻用的喷灑喷嘴 (40’) 喷灑喷嘴樑部段 (41) 每單位時間的比冷卻液通過量 (42) 用於隔開冷卻殼條帶的阻斷冷卻液 (43) 冷卻液的流動方向 27 201036722 (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (b) 漏斗形輸出槽孔 冷卻樑載體之可能的調整方向 倚靠面 可更換的冷卻板 橫樑 間隔板 具有彈性塑膠表面的冷卻殼 具有彈性塑膠板的冷卻殼 具有洞的冷卻殼 彈簧金屬板 冷卻樑的下部 漏斗形供應通道 壓力室 壓力管路 出口橫截面 出口橫截面的寬部段 可拉伸的塑膠軟管 壓缸 關節桿 導引桿 運動執道(路線) 可動之喷嘴樑載體 旋轉點 流動開口 28 201036722 (ND) 冷卻液供應管(低壓冷卻系統) (HD) 冷卻液供應管(高壓冷卻系統) (si)〜(S3)冷卻殼片段的冷卻區域(28) Fluid jet (29) Inlet opening (30) Slot between the roller shell surface and the cooling shell (31) Slot with slit width W1 (32) Slot with slit width W2 (33) Width of slit W3 gap (34) Gap between narrow cooling shells (36) Pressure gauge (37) Sensor for measuring distance (38) Temperature sensor (39) Path measuring device (40) Spray for high pressure cooling Sprinkler Nozzle (40') Spray nozzle beam section (41) Specific coolant throughput per unit time (42) Blocking coolant (43) for cooling the shell strip Coolant flow direction 27 201036722 (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60 (61) (62) (63) (64) (65) (66) (b) Funnel-shaped output slots Cooling beam carrier Possible adjustment direction Relief surface Replaceable cooling plate Beam spacers with elastic plastic surface Cooling shell Cooling shell with elastic plastic sheet Cooling shell with holes Spring metal plate Cooling beam Lower funnel-shaped supply channel Pressure chamber Pressure line outlet Cross section Outlet cross section Wide section Stretchable plastic hose cylinder Rod guide rod movement (route) movable nozzle beam carrier rotation point flow opening 28 201036722 (ND) Coolant supply tube (low pressure cooling system) (HD) Coolant supply tube (high pressure cooling system) (si) ~ (S3) Cooling area of the cooling shell segment

2929

Claims (1)

201036722 七、申請專利範圍: 1 · 一種將一滚壓架的滚子(1 )(2)冷卻的方法,利用低壓 冷卻的方式作冷卻,其中將滚子施以低壓下的冷卻液,其 特徵在: 該滾子在作低壓冷卻的同時也作一道高壓冷卻,其中 該滾子在高壓冷卻時直接利用一在高壓下的冷卻液體喷 灑。 2.如申請專利範圍第1項之方法,其中: 該在低壓下的冷卻液體與該高壓下的冷卻液體在材料 上係同類者。 3_如申請專利範圍第1或2項之方法,其中: 將全部冷卻液體量的約20%送到壓冷卻級,並且將全 部冷卻液體量的約80%送到該產生主冷卻作用的低壓冷卻 級。 4.如申請專利範圍第1或2項之方法,其中: 依以下滾壓參數而定:厚度減少、在滾壓缝隙中的比 面積壓力、滾壓速度、金屬帶溫度、滚子材料、以及被滾 壓材料--對該低壓滚子冷卻作業宜將冷卻液(7)的壓力範 圍調整成0.5〜5巴間,對該高壓滾子冷卻作業將冷卻液(7) 的壓力範圍調整成5〜50巴之間,且宜為12巴,且利用— 種程序模型作調整。 5 _如申請專利範圍第1或2項之方法,其中: 該低壓冷卻級設計成低壓喷灑冷卻級、低壓冷卻幕、 或低壓流冷卻級、紊流低壓冷卻級(依圖2)、或呈上述冷 30 201036722 卻級方式的組合’其中在該低壓流冷卻級的場合,、 頌部液 在該滾子表面與至少一冷卻殼片段之間的—縫隙 (30)(3 1)(32)(33)中流動,該縫隙(30)(31)(32)(33)和該滾子表 面的一個部分區域對立。 6.如申請專利範圍第5項之方法,其中: 將該冷卻殼片段(13)的位置合各滾子直徑及/或、穿子 位置以產生一種可重現的冷卻效果。 7 ·如申請專利範圍第5項之方法,其中: 〇 在低壓流冷卻級的場合時使用一種相關的流動冷卻作 用,其中冷卻液(7)經由一個被數個冷卻般片段蓋住的較大 的相關角度範圍沿逆流方向及/或順流方向〔相對於滚子 (1)(2)的轉動方向〕送到滾子(丨)(2)。 8.如申請專利範圍第5項之方法,其中: 在低壓流冷卻級的場合,使用片段式的流動冷卻作 用’其中冷卻液⑺分別向滾子⑴⑺導入該由個別的冷卻殼 〇片段(13)形成的冷卻區域(44)中,且各向兩側偏轉或者主要 向-方向導進,特別是逆著滾子轉動的方向,其中該相關 的冷卻殼片段(13)迫使冷卻液沿各滾子(1)(2)流動。 9 ·如申請專利範圍第5項之方法,其中: 利用該冷卻殼(13)主要沿切向沿著滾子表面⑴⑺產生 一股冷卻劑流(43),或者利用㈣向密封的間隔板或間隔棱 條(4 9)視需要地使—股冷卻劑流向側邊通過或將冷卻劑流 向側邊導離,俾使邊緣的滾子區域在鋼帶區域附在中央用 熱的冷卻液(7)加溫。 31 201036722 10.如申請專利範圍第9項之方法,其中: 當冷卻劑特別平行於滾子軸導進而流離的場合,在鋼 帶區域附近的冷卻劑的供應係利用區域冷卻的特徵(例如 冷卻殼距滾子(1)(2)或距離冷卻劑供應通道的距離)而阻挣。 1 1 ·如申請專利範圍第1或2項之方法,其中: 田 使用組合之低壓-高壓冷卻方式以將一部分的滾壓架 (例如一多滚壓架式的熱鋼帶滾壓道的較前面的滾子架) 作冷卻,而在其他的滾壓架也用純低壓式的滾子冷卻方式。 12. 如申請專利範圍第丨或2項之方法,其中: 該低壓冷卻級(特別是在低壓冷卻幕或低壓流動冷卻 級的場合)的冷卻強度利用滾子長度作不同之調整。 13. 如申請專利範圍第12項之方法,其中: 在冷卻劑供應管路(55)中,對於冷卻樑長度範圍的冷卻 劑的出口開口作區域性的關閉。 14. 如申請專利範圍第13項之方法,其中: 沿冷卻樑長度範圍的冷卻劑供應通道(55)的出口開口 設計成不同寬度及/或可連續調整。 15. 如申請專利範圍第1或2項之方法,其中: 該滾子表面(6)與一冷卻殼(12)(47)之間的距離在冷卻 殼(12)(47)的寬度範圍中設計成不同及/或可在冷卻殼 (12)(47)的寬度範圍中連續調整。 1 6.如申請專利範圍第1或2項之方法,其中: 將該高壓冷卻系統之可視需要沿寬度方向移動的喷灑 喷嘴樑拉出來以作區域冷卻’且沿軸向利用電馬達或油壓 32 201036722 馬利用螺紋桿或利用油壓方式運動之單節式或多節式關節 聯動器(62)〔它具有固定在其上的喷灑喷嘴樑部段(40,)或可 轉動的噴嘴單元〕導出,以將冷卻液(7)呈方向性喷流方式 偏轉到滚子(1)(2)之所要區域。 1 7.如申請專利範圍第1或2項之方法,其中: 該低壓流冷卻作用沿軸向沿寬度方向且宜為可對稱地 調整的冷卻殼片段造成,以產生區域性冷卻效果。201036722 VII. Patent application scope: 1 · A method of cooling a roller (1) (2) of a rolling frame, using a low-pressure cooling method for cooling, wherein the roller is subjected to a cooling liquid under a low pressure, and its characteristics The roller is also subjected to high pressure cooling while being subjected to low pressure cooling, wherein the roller is directly sprayed with a cooling liquid under high pressure during high pressure cooling. 2. The method of claim 1, wherein: the cooling liquid at a low pressure and the cooling liquid at the high pressure are the same in material. The method of claim 1 or 2, wherein: about 20% of the total amount of cooling liquid is sent to the pressure cooling stage, and about 80% of the total amount of cooling liquid is sent to the low pressure for generating the main cooling effect. Cooling level. 4. The method of claim 1 or 2, wherein: according to the following rolling parameters: thickness reduction, specific area pressure in the rolling gap, rolling speed, metal strip temperature, roller material, and Rolled material--The pressure range of the cooling liquid (7) should be adjusted to 0.5~5 bar for the low-pressure roller cooling operation, and the pressure range of the cooling liquid (7) is adjusted to 5 for the high-pressure roller cooling operation. Between ~50 bar, and preferably 12 bar, and use the program model to make adjustments. 5 _ The method of claim 1 or 2, wherein: the low pressure cooling stage is designed as a low pressure spray cooling stage, a low pressure cooling screen, or a low pressure flow cooling stage, a turbulent low pressure cooling stage (Fig. 2), or In the combination of the above-mentioned cold 30 201036722 but in the case of the low-pressure flow cooling stage, the crevice is between the surface of the roller and at least one of the cooling shell segments (30) (3 1) (32 In (33), the slit (30) (31) (32) (33) is opposed to a partial region of the surface of the roller. 6. The method of claim 5, wherein: the position of the cooling shell segment (13) is combined with the diameter of each roller and/or the position of the piercing to produce a reproducible cooling effect. 7. The method of claim 5, wherein: 〇 in the case of a low-pressure flow cooling stage, an associated flow cooling effect is used, wherein the coolant (7) is covered by a plurality of cooling-like segments. The relevant angular range is sent to the roller (丨) (2) in the countercurrent direction and/or the downstream direction [relative to the direction of rotation of the rollers (1) (2)]. 8. The method of claim 5, wherein: in the case of a low-pressure flow cooling stage, a segmental flow cooling action is used, wherein the coolant (7) is introduced into the roller (1) (7), respectively, by the individual cooling crust segments (13). The cooling zone (44) formed, and deflected to either side or mainly in the - direction, in particular against the direction of rotation of the roller, wherein the associated cooling shell segment (13) forces the coolant along each roll Sub (1) (2) flows. 9. The method of claim 5, wherein: the cooling shell (13) is used to generate a coolant flow (43) mainly along the tangential direction along the roller surface (1) (7), or by using (iv) a sealed spacer or The spacer ribs (49) optionally flow the coolant toward the sides or direct the coolant to the sides, so that the roller regions of the edges are attached to the central portion of the steel strip with hot coolant (7) ) Warm up. 31 201036722 10. The method of claim 9, wherein: where the coolant is particularly parallel to the roller guide and then displaced, the supply of coolant in the vicinity of the strip zone utilizes zone cooling features (eg, cooling) The shell is offset from the roller (1) (2) or the distance from the coolant supply channel. 1 1 · The method of claim 1 or 2, wherein: the field uses a combined low pressure-high pressure cooling method to convert a portion of the rolling frame (for example, a multi-roller type hot steel belt rolling track) The front roller frame is used for cooling, while the other roller frames are also cooled by pure low pressure roller. 12. The method of claim 2 or 2, wherein: the cooling strength of the low pressure cooling stage (especially in the case of a low pressure cooling curtain or a low pressure flow cooling stage) is adjusted differently by the length of the roller. 13. The method of claim 12, wherein: in the coolant supply line (55), a regional closure of the outlet opening of the coolant over the length of the chilled beam is made. 14. The method of claim 13, wherein: the outlet opening of the coolant supply passage (55) along the length of the chilled beam is designed to have a different width and/or to be continuously adjustable. 15. The method of claim 1 or 2, wherein: the distance between the roller surface (6) and a cooling shell (12) (47) is in the width of the cooling shell (12) (47) It is designed to be different and/or continuously adjustable over the width of the cooling jacket (12) (47). 1. The method of claim 1 or 2, wherein: the spray nozzle beam of the high pressure cooling system that is required to move in the width direction is pulled out for zone cooling and the electric motor or oil is utilized in the axial direction. Pressure 32 201036722 The single-section or multi-joint joint (62) with a threaded rod or a hydraulically movable joint (which has a spray nozzle beam section (40) or a rotatable nozzle fixed thereto) The unit is derivatized to deflect the coolant (7) in a directional jet to the desired area of the roller (1) (2). The method of claim 1 or 2, wherein: the low-pressure flow cooling is caused in the axial direction along the width direction and preferably in a symmetrically adjustable cooling shell segment to produce a regional cooling effect. 1 8 ·如申請專利範圍第1或2項之方法,其中: 這些冷卻殼片段(14)有數個呈狭窄形式相鄰設置,其距 滾子表面的縫隙距離(3 1)(32)(33)係視需要調整成不同,且 其沿滾子長度範圍的比冷卻液通過量視需要而調成不同, 俾在每單位時間沿滾子長度範圍作一種區域性冷卻。 19_如申請專利範圍第μ項之方法,其中: 將一種阻斷冷卻液加入在冷卻殼(14)間以將縫隙 (3 1)(32)(3 3)的不同通過量的冷卻液(41)互相隔開。 20.如申請專利範圍第丨或2項之方法,其中 該模型 使用一計算模型(程序模型,位準丨_模型) 達成以下目的: ' 依鋼帶厚度減少度、滾壓縫隙中 、φ存一 哭1&quot;的比面積壓力、滾壓 速度、鋼帶溫度、滚子材料、祐 袞壓的材料、所測量的及 /或所叶异的滾子溫度及/或觀 同樣地依所調節的冷卻劑作用寬^ κ表面而疋以及 及高壓部分用的冷卻量及壓力=定,_節該低壓部分 藉著調整供應通道的出口門 開口(拋物線形、其他曲線 33 201036722 或區域性)及/或依鋼帶寬唐 見度而疋調整冷卻殼與滾子之間 的縫隙寬度及/或調整該可VL宮择 Q寬度方向調整的噴灑喷嘴樑 部段的位置及/或沿鋼帶宫奋# 、, 寬度範圍的所測量的廓形狀態及 平坦度狀態而調整沿鋼帶寬度範圍的冷卻劑的量; 與厚度調節級作信號交換(滾壓架調移); 描述該冷卻裝置的可動的部分的幾何關係以及考慮該 調移位置、配合線位置'及滾子直徑以便最佳地求出位置 或計算位置的變化;以及 使用該壓力-及路徑感測器信號,利用該屋缸以確定該 冷卻樑載體的樞轉位置以及冷卻殼調移位置。 21.如申請專利範圍第2〇項之方法,其中: 作道校準過程,以將滾子表面(6)前的冷卻樑載體(16) 及冷卻殼片段(13)的準確位置作調整。 22_如申請專利範圍第1或2項之方法,其中: 該滾子的溫度,特別是滾子表面的溫度及/或冷卻劑 的脈度在一溫度調節手段的範圍中作調節,其中將滚子的 一個或數個溫度感測器(3 8)的一個或數個測量值及/或冷 部劑供應官及/或冷卻劑導離管中的冷卻劑的溫度測量值 與預设的溫度標稱值作比較,並依調節偏差的值的設定而 定將冷卻殼或冷卻殼片段(13)距滚子表面(6)的距離及/或 出口開口(24)的開口寬度(b)作調整,以將該溫度之標稱值與 實際值間所確認之調節偏差作補償。 23.如申請專利範圍第1或2項之方法,其中: 該調壓冷卻系統與低壓冷卻系統的冷卻劑舉例而言, 34 201036722 為一種乳液、一分散液、煤油或水。 24. —種用於將一滾壓架的滚子(1)(2)冷卻的冷卻裝置 (1 〇),具有一低壓冷卻系統,在該低壓冷卻系統中,將滾子 施以在低壓下的冷卻液’其特徵在: 除了該低壓冷卻系統外,還設有一高壓冷卻系統,該 高壓冷卻系統設有喷灑管與喷嘴,以將高壓下的冷卻液直 接喷灑到滾子上,該高壓下的冷卻液係與利用低壓冷卻系 統作低壓冷卻作用在相同的時間喷灑。 25. 如申請專利範圍第24項之冷卻裝置,其中: 該低壓冷卻系統設計成用於產生一種低壓喷灑冷卻作 用、一種低壓冷卻液幕、或一種低壓流冷卻作用、或一種 高紊流低壓冷卻作用、或上述冷卻方式的組合。 2 6.如申請專利範圍第2 5項之冷卻系統,其中: 該用於產生低壓流冷卻作用的低壓冷卻系統至少有一 冷卻殼(11),該冷卻殼(11)具有至少一(宜為弧形的)冷卻 设片段(13)(52) ’該冷卻殼片段隨著所要冷卻的滾子(1)(2) 的表面形成一個可用流動之冷卻液(7)充填的缝隙(2〇),該縫 隙(20)的縫隙寬度宜呈滾子表面與冷卻殼之間的距離的形 式而可調整。 27.如申請專利範圍第24項之冷卻裝置(1〇),其中: 該高壓冷卻系統有一個單列式或多列式噴灑喷嘴樑 (4〇)(4G’),該錢㈣樑具有㈣以將滾子作高壓冷卻。 28·如申請專利範圍第27項之冷卻裝置(1〇),其7中: 有一固定在—冷卻殼片段(特 了〜疋在中間的那個冷卻 35 201036722 殼片段)上的冷卻樑載體(1 (例如經由調整元件連接)的元件 该冷卻樑裁體連接 殼片段或該喷灑喷嘴樑—— 特別疋相鄰的冷卻 動或作旋轉運動。 °方向(45)水平、垂直運 3〇.如申請專利範圍第24〜29 中: 項之冷卻裝置,其 有二個或三個冷卻殼片段互相連接 31.如申請專利範圍第24項之冷卻裝置,兑中方式。 該冷卻殼片段t間的可動 及/或一彈簧的形^ 〇 按万式。又叶成旋轉關節 弹簀的形式及/或一種彈性連接的形 一 種多節式關節聯動設置的形式。 β A如申請專利範圍第3“戈31項之冷卻裂置,其中. 該弧形之個別的冷卻片段03)宜在其側面或末端且有 2即或關節半部’該關節或關節半部互相連接,形成對應 數目的關係旋轉點或枢接點(22)(15),·且 該個別的冷卻㈣段⑴)(52)各有__枢接點,呈一旋轉 的形式’其中,個別的冷卻殼片段的旋轉點利用至少 —调整元件(20)互相連接,該調整元件(2〇)的長度可變。 33.如申請專利範圍第32項之冷卻裝置(1〇),其中·· 該調整元件設有一路徑測量系統及/或壓力測量感測 器。 中: 34.如申請專利範圍第32或33項之冷卻裝置…,其 利用該調整手件(20)可將冷卻殼片段(1 3)個別地互成傾 36 201036722 斜,如此可配合各滾子直徑。 35. 如申請專利範圍第32項之冷卻裝置⑽,其中: 該調^件(20)設計成壓缸(例如㈣缸或氣邀缸)或 一桿的形式’其長度在考慮到各㈣架的滾子直徑的情形 下可用手或例如用油壓馬達或電馬達作適當調整。 36. 如申請專利範圍第28項之冷卻裝置(1〇),其中: 至少一冷卻殼片段(13)(52)(例如中間的那個冷卻殼片 段)可利用冷卻樑載體⑽或滾子⑴(2)前枝位,且另外 的冷卻樑片段(1 3)(52)可利用㈤隔板間隔地經由彈夢(8)向 滚子(1)(2)頂壓。 37. 如申請專利範圍第24項之冷卻裝置(1〇),其中: 該冷卻殼或冷卻殼元件(13)在冷卻殼中有—宛如長方 形的喷嘴開口或出口開口(24)及/或洞或孔(52),冷卻劑由 該開口或洞或孔流出流向滾子(1)(2)。 38·如申請專利範圍第37項之冷卻裝置(1〇),其中: 該喷嘴開口或出口開口(24)的嘴件及/或該冷卻殼板 (47)設計成可更換者。 39·如申請專利範圍第24項之冷卻裝置(1〇),其中: -流動冷卻區域的冷卻殼片段(47)分成二部分因此將 其二個半部先作相對移動然後再固定,可將該噴嘴開口或 出口開口(24)很容易地調整並因此使冷卻劑量报可容易調 整。 40.如申請專利範圍第24項之冷卻裝置(1〇),其中: 利用-種密封功能或—密封手段,藉著施—預定壓力 37 201036722 頂向滾子(1)(2),在冷卻殼(11)(12)或冷卻殼片段(13)與滾子 表面(1)(2)之間形成一空間,冷卻液(7)幾乎不會由此空間流 出到周圍環境。 41. 如申睛專利範圍第24項之冷卻裝置(1〇),其中: 該冷卻殼(11)(12)由數個沿滚子縱向相鄰間隔設置的冷 卻殼(14)或冷卻殼片段(13形成,該冷卻殼或冷卻殼片段具 有不同的縫隙(31)(32)(33) ’且因此可用不同的比冷卻液通 過流量(41)/每單位時間施加。 42. 如申請專利範圍第24項之冷卻裝置(1〇),其中: 該高壓冷卻系統的喷嘴設計成扁平喷流喷嘴的形式。 43. 如申請專利範圍第24項之冷卻裝置(1〇),其中: 該高壓冷卻系統設在滾壓架的出口側。 44·如申請專利範圍第24項之冷卻裝置(1〇),其中: 該滾壓架的滾子為其工作滾子。 八、圖式: (如次頁) 381 8 The method of claim 1 or 2, wherein: the cooling shell segments (14) are arranged adjacent to each other in a narrow form, the gap distance from the roller surface (3 1) (32) (33) The system is adjusted to be different as needed, and its ratio of coolant throughput along the length of the roller is adjusted as needed, and a regional cooling is performed along the length of the roller per unit time. 19_ The method of claim 5, wherein: a blocking coolant is added between the cooling shells (14) to pass different amounts of coolant of the slits (3 1) (32) (3 3) ( 41) Separated from each other. 20. The method of claim 2 or 2, wherein the model uses a calculation model (program model, level 丨_model) to achieve the following objectives: 'depending on the thickness reduction of the steel strip, the rolling gap, φ The ratio of area pressure, rolling speed, strip temperature, roller material, material of the pressure, measured and/or leaf temperature and/or view of the same The coolant acts to widen the surface of the κ and the amount of cooling and pressure used for the high pressure portion. The low pressure portion is adjusted by the outlet opening of the supply passage (parabolic shape, other curve 33 201036722 or regional) and / Or adjust the gap width between the cooling shell and the roller according to the width of the steel band and/or adjust the position of the spray nozzle beam section adjusted by the width direction of the VL valve and/or along the steel belt Gongfen# Adjusting the amount of coolant along the width of the strip in the width of the measured profile state and the flatness state; exchanging signals with the thickness adjustment stage (roller shifting); describing the cooling device The geometric relationship of the moving part and considering the shifting position, the mating line position 'and the roller diameter to optimally determine the position or the change in position; and using the pressure-and path sensor signal to utilize the tank A pivot position of the chilled beam carrier and a cooling shell transfer position are determined. 21. The method of claim 2, wherein: the calibration process is performed to adjust the exact position of the chilled beam carrier (16) and the cooling shell segment (13) in front of the roller surface (6). The method of claim 1 or 2, wherein: the temperature of the roller, in particular the temperature of the roller surface and/or the pulse of the coolant, is adjusted in the range of temperature adjustment means, wherein One or more measured values of one or more temperature sensors (38) of the roller and/or temperature measurements of the coolant in the cold agent supply and/or coolant outlet tube and preset The temperature nominal value is compared, and the distance of the cooling shell or cooling shell segment (13) from the roller surface (6) and/or the opening width of the outlet opening (24) (b) is determined according to the setting of the adjustment deviation value. The adjustment is made to compensate for the adjustment deviation confirmed between the nominal value of the temperature and the actual value. 23. The method of claim 1 or 2, wherein: the regulator of the pressure regulating cooling system and the low pressure cooling system, for example, 34 201036722 is an emulsion, a dispersion, kerosene or water. 24. A cooling device (1 〇) for cooling a roller (1) (2) of a rolling frame, having a low pressure cooling system in which the roller is applied at a low pressure The cooling liquid is characterized in that: in addition to the low-pressure cooling system, a high-pressure cooling system is provided, which is provided with a spray pipe and a nozzle to directly spray the coolant under high pressure onto the roller. The coolant under high pressure is sprayed at the same time as the low pressure cooling system using a low pressure cooling system. 25. The cooling device of claim 24, wherein: the low pressure cooling system is designed to generate a low pressure spray cooling, a low pressure coolant curtain, or a low pressure flow cooling, or a high turbulent low pressure A combination of cooling action or cooling as described above. 2 6. The cooling system of claim 25, wherein: the low pressure cooling system for generating low pressure flow cooling has at least one cooling shell (11), the cooling shell (11) having at least one (suitable arc) Cooling section (13) (52) 'The cooling shell section forms a gap (2〇) which can be filled with the flowing coolant (7) as the surface of the roller (1)(2) to be cooled, The slit width of the slit (20) is preferably adjustable in the form of the distance between the roller surface and the cooling shell. 27. The cooling device (1) of claim 24, wherein: the high pressure cooling system has a single row or multi-row spray nozzle beam (4 ') (4G'), and the (four) beam has (four) The roller is cooled by high pressure. 28. The cooling device (1〇) of claim 27, in which: there is a cooling beam carrier fixed on the cooling shell segment (the cooling coil 35 201036722 shell segment in the middle) The element of the chilled beam is connected to the shell segment or the spray nozzle beam - in particular to the adjacent cooling or rotary motion. The direction (45) is horizontal and vertical. Patent application No. 24 to 29: The cooling device of the item, which has two or three cooling shell segments connected to each other 31. The cooling device according to claim 24 of the patent application, the medium-receiving method. Movable and / or a spring shape ^ 万 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Cooling of the 31th item, wherein the individual cooling segments of the arc 03) are preferably at their sides or at the end and have 2 or joint halves. The joints or joint halves are connected to each other to form a corresponding number of relationships. Points or pivot points (22) (15), and the individual cooling (four) segments (1)) (52) each have a __ pivot point in the form of a rotation 'where the individual cooling shell segments are rotated At least the adjusting elements (20) are connected to each other, and the length of the adjusting element (2〇) is variable. 33. The cooling device (1〇) of claim 32, wherein the adjusting element is provided with a path measuring system And/or a pressure measuring sensor. Medium: 34. A cooling device according to claim 32 or 33, which can use the adjusting hand (20) to tilt the cooling shell segments (13) individually 36 201036722 Oblique, so as to match the diameter of each roller. 35. The cooling device (10) of claim 32, wherein: the adjustment member (20) is designed as a pressure cylinder (for example, (four) cylinder or gas cylinder) or The form of the rod 'the length thereof can be appropriately adjusted by hand or by, for example, a hydraulic motor or an electric motor, in consideration of the diameter of the roller of each (four) frame. 36. Cooling device (1〇) as claimed in claim 28 , where: at least one cooling shell segment (13) (52) (eg the middle of the cold The shell segment) may utilize the chilled beam carrier (10) or the roller (1) (2) front branch, and the additional chilled beam segments (13) (52) may be spaced through the (5) to the roller using the (5) partition ( 1) (2) Top pressure 37. A cooling device (1〇) according to claim 24, wherein: the cooling shell or cooling shell element (13) has a rectangular nozzle opening or outlet in the cooling shell The opening (24) and/or the hole or hole (52) through which the coolant flows out to the roller (1) (2) 38. The cooling device (1〇) as claimed in claim 37 Wherein: the mouthpiece of the nozzle opening or outlet opening (24) and/or the cooling shell (47) are designed to be replaceable. 39. The cooling device (1〇) of claim 24, wherein: - the cooling shell segment (47) of the flow cooling zone is divided into two parts, so that the two halves are first moved relative to each other and then fixed. The nozzle opening or outlet opening (24) is easily adjusted and thus the cooling dose report can be easily adjusted. 40. The cooling device (1) of claim 24, wherein: by means of a sealing function or a sealing means, by applying a predetermined pressure 37 201036722 to the top roller (1) (2), cooling A space is formed between the shell (11) (12) or the cooling shell segment (13) and the roller surface (1) (2), and the coolant (7) hardly flows out of the space to the surrounding environment. 41. The cooling device (1) of claim 24, wherein: the cooling shell (11) (12) is comprised of a plurality of cooling shells (14) or cooling shell segments spaced longitudinally adjacent the rollers. (13 is formed, the cooling shell or the cooling shell segment has different slits (31) (32) (33)' and thus can be applied by a different specific coolant flow rate (41) / per unit time. 42. The cooling device (1) of item 24, wherein: the nozzle of the high-pressure cooling system is designed in the form of a flat jet nozzle. 43. The cooling device (1〇) of claim 24, wherein: the high-pressure cooling The system is located on the outlet side of the rolling frame. 44. The cooling device (1〇) of claim 24, wherein: the roller of the rolling frame is its working roller. Page) 38
TW099106104A 2009-03-03 2010-03-03 Method and cooling device for cooling the rollers of a roll stand TW201036722A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009011111 2009-03-03
DE102009011110 2009-03-03
DE102009014125 2009-03-24
DE102009036696 2009-08-07
DE102009053074A DE102009053074A1 (en) 2009-03-03 2009-11-13 Method and cooling device for cooling the rolls of a roll stand

Publications (1)

Publication Number Publication Date
TW201036722A true TW201036722A (en) 2010-10-16

Family

ID=42270463

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099106110A TW201036721A (en) 2009-03-03 2010-03-03 Method and cooling device for cooling the rollers of a roll stand
TW099106104A TW201036722A (en) 2009-03-03 2010-03-03 Method and cooling device for cooling the rollers of a roll stand

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099106110A TW201036721A (en) 2009-03-03 2010-03-03 Method and cooling device for cooling the rollers of a roll stand

Country Status (7)

Country Link
US (1) US20120031159A1 (en)
EP (1) EP2403663B2 (en)
CN (1) CN102421541B (en)
DE (2) DE102009053074A1 (en)
RU (1) RU2483817C1 (en)
TW (2) TW201036721A (en)
WO (2) WO2010099924A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011104735A1 (en) * 2011-06-16 2012-12-20 Sms Siemag Ag Method and device for cooling a work roll
DE102011112519A1 (en) 2011-09-07 2013-03-07 Gottfried Wilhelm Leibniz Universität Hannover Device for applying a medium to an object and method for detecting deviations of a spray field
DE102012202340A1 (en) 2011-12-23 2013-06-27 Sms Siemag Ag Method and device for cooling rolls
DE102012201157B4 (en) * 2012-01-26 2017-06-01 Achenbach Buschhütten GmbH & Co. KG Method and device for relative positioning of a nozzle beam of a roll stand inlet fitting
DE102012216570A1 (en) 2012-05-11 2013-11-14 Sms Siemag Ag Device for cooling rolls
EP2676744A1 (en) * 2012-06-22 2013-12-25 Siemens VAI Metals Technologies GmbH Device for sprinkling a rolling plant and method for extracting/inserting said system from/in said rolling cage
KR101653515B1 (en) * 2013-03-15 2016-09-01 노벨리스 인크. Manufacturing methods and apparatus for targeted cooling in hot metal rolling
CN103481198B (en) * 2013-09-03 2015-12-02 中冶南方工程技术有限公司 Based on rolling cooling device and the cooling means thereof of grinder roll management system
EP2881186A1 (en) * 2013-12-09 2015-06-10 Linde Aktiengesellschaft Method and apparatus to isolate the cold in cryogenic equipment
DE102014224318A1 (en) * 2014-11-27 2016-06-02 Sms Group Gmbh Apparatus and method for cooling a roll
JP6249007B2 (en) * 2015-02-19 2017-12-20 Jfeスチール株式会社 Rolling oil injection device in perforated rolling
DE102015210680A1 (en) * 2015-06-11 2016-12-15 Sms Group Gmbh Method and device for controlling a parameter of a rolling stock
DE102015219053A1 (en) * 2015-10-01 2017-04-06 Achenbach Buschhütten GmbH & Co. KG Method and device for cooling a roll arranged in a roll stand
DE102016223131A1 (en) * 2016-09-06 2018-03-08 Sms Group Gmbh Apparatus and method for applying a liquid medium to a roll and / or to a rolling stock and / or for removing the liquid medium
EP3308868B1 (en) 2016-10-17 2022-12-07 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
CN107470363B (en) * 2017-06-28 2020-06-12 柳州钢铁股份有限公司 Positioning method and positioning device of rolling mill anti-winding guide plate capable of realizing automatic positioning
BE1025125B1 (en) * 2017-09-04 2018-10-31 Centre de Recherches Métallurgiques asbl-Centrum voor Research in de Metallurgie vzw CONTACTLESS TUMBLER AND INDUSTRIAL INSTALLATION COMPRISING SUCH A TUMBLER
US10814365B2 (en) 2018-06-13 2020-10-27 Novelis Inc. Systems and methods for cooling a roll in metal processing
CA3098201C (en) 2018-06-13 2023-02-21 Novelis Inc. Systems and methods for removing viscous materials in metal article processing
DE212019000107U1 (en) 2018-06-13 2020-02-20 Novelis Inc. Systems for taking up viscous materials in roller processing
EP3599036B1 (en) 2018-07-26 2022-06-15 Primetals Technologies Austria GmbH Mill stand with hybrid cooling device
FI3898020T3 (en) 2018-12-19 2024-01-31 Tata Steel Ijmuiden Bv Cooling device for a hot-rolling mill
DE102020204309A1 (en) * 2020-04-02 2021-10-07 Sms Group Gmbh Method and device for cooling a roller
CN114571702B (en) * 2022-03-17 2024-03-26 广东易聚源塑业科技有限公司 Plastic masterbatch processing and preparing system
CN114522982B (en) * 2022-04-02 2023-02-24 燕山大学 Sectional cooling device for fine adjustment of transverse roll gap of hot rolled strip
WO2023242613A1 (en) * 2022-06-13 2023-12-21 Arcelormittal Device and method for cooling rolls used for rolling in a highly turbulent environment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU651862A1 (en) * 1977-05-23 1979-03-15 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов, Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Rolling-mill roll and rolled stock cooling method
SU749472A1 (en) * 1978-04-12 1980-07-25 Днепропетровский Металлургический Институт Apparatus for cooling rolls
DE3425129A1 (en) * 1984-07-07 1986-01-16 Brown, Boveri & Cie Ag, 6800 Mannheim Method for roll cooling in a cold rolling mill
KR930000465B1 (en) 1985-05-17 1993-01-21 가부시기가이샤 히다찌세이사꾸쇼 Method and apparatus for cooling rolling mill rolls
GB8514598D0 (en) * 1985-06-10 1985-07-10 Davy Mckee Poole Lubrication of rolling mills
JPH0757368B2 (en) * 1987-06-03 1995-06-21 株式会社日立製作所 Roll cooling device for rolling mill
CH675974A5 (en) * 1987-10-23 1990-11-30 Lauener Eng Ag
US5212975A (en) * 1991-05-13 1993-05-25 International Rolling Mill Consultants, Inc. Method and apparatus for cooling rolling mill rolls and flat rolled products
JPH07284820A (en) * 1994-04-14 1995-10-31 Hitachi Ltd Device and method for cooling roll for rolling mill
JPH07290120A (en) 1994-04-28 1995-11-07 Kawasaki Steel Corp Cooling device for roll
DE10206244A1 (en) * 2002-02-15 2003-08-28 Sms Demag Ag Device for keeping cold strip dry in the outlet of strip rolling plants
DE102004025058A1 (en) * 2004-05-18 2005-12-08 Sms Demag Ag Method and device for cooling and / or lubrication of rolls and / or rolling stock
RU2287384C1 (en) * 2005-03-09 2006-11-20 Открытое акционерное общество "Северсталь" Bar rolling stand rolls cooling method
BE1017462A3 (en) 2007-02-09 2008-10-07 Ct Rech Metallurgiques Asbl DEVICE AND METHOD FOR COOLING ROLLING CYLINDERS IN HIGHLY TURBULENT.

Also Published As

Publication number Publication date
RU2011139995A (en) 2013-04-10
CN102421541A (en) 2012-04-18
WO2010099924A1 (en) 2010-09-10
EP2403663B2 (en) 2021-03-10
TW201036721A (en) 2010-10-16
WO2010099925A1 (en) 2010-09-10
CN102421541B (en) 2014-10-29
DE102009053073A1 (en) 2010-09-09
US20120031159A1 (en) 2012-02-09
EP2403663B1 (en) 2014-04-30
RU2483817C1 (en) 2013-06-10
DE102009053074A1 (en) 2010-09-09
EP2403663A1 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
TW201036722A (en) Method and cooling device for cooling the rollers of a roll stand
JPH06198314A (en) Method and device for cooling mill roll and flatly rolled product
KR101650819B1 (en) Method for cleaning and/or descaling a slab or a preliminary strip by means of a descaling device, and descaling device
CN102027142B (en) Device for blowing gas on surface of material in form of running strip
US7121323B2 (en) Method and device for the continuous casting and direct shaping of a metal strand, in particular a steel cast strand
US8511126B2 (en) Cooling device for cooling a metal strip
CN106311763B (en) A kind of hot rolled seamless steel tube control is cooling to use annular jet cooling device
KR20140088620A (en) Method and device for cooling rolls
CN202224453U (en) Complete device of after-rolling ultra-fast cooling system for hot-rolled strip steel production line
KR20160119873A (en) Method for casting metal strip with dynamic crown control
US4905753A (en) Twin belt type casting machine
CN104874614A (en) Emulsion fine cooling system control method and control device
JPH09225613A (en) Method for cooling roll for strip continuous casting
CN104801545B (en) A kind of roll cooling sparge pipe
CN102189131B (en) Lower spraying laminar flow cooling device
JP2710392B2 (en) Roller roll water jacket cooling system
ZA200404048B (en) Method and device for the continuous casting and direct shaping of a metal strand in particular a steel cast strand
CN2633447Y (en) Adjustable width water curtain type working roller cooler
CA3037539A1 (en) Continuous caster roll having a spiral fluted axle
CN202700981U (en) Online closed-loop cooling device for high-speed wire rod spinning head
RU2067901C1 (en) Strip hot rolling method
JPS6027458A (en) Continuous casting machine
AU624044B2 (en) Twin belt type continuous casting
CN1319679C (en) Equipment for conveying and cooling metal blank
JPS60231508A (en) Cooling device for rolling roll