201006118 九、發明說明: 【發明所屬之技術領域】 本發明係為-種舰馬達轉子初 裝置,特別是關於-種無刷精密2=::: =偵測轉子與定㈣縣定位角度的定位方法及其定位 裝置,以平滑地啟動伺服馬達轉動。 、 【先前技術】 按’馬達的用途廣泛,種類繁多,主要可分為轉速控 制型馬達及精密控制型馬達,轉速控制型馬達較簡單,可 控制馬達的_職,精馳㈣馬達财钱控制馬達 的轉速,亦可控制馬達轉動的角度(或位置),如步進馬達 或伺服馬達。 就無刷伺服馬達而言’如圖丨所示係為—f知伺服馬達 的向量控制系統,包括一馬達i、一用以感測角度的增量型 光學編碼器2及三組提供換相信號3、4、5的相位感測器(HaU sensor) ’ 一位置3十數器6、一電氣換相表7、一初始位置暫 存器8、一速度計算器9、一速度控制器1〇、一電流控制器 11、一三相旋轉座標對直角座標轉換模組12,一直角座標 對二相旋轉座標轉換模組13,一脈波寬度調變模組14及一 二相電力變頻器15。而該增量型光學編瑪器2,如圖2所示 係將換相信號直接製作在增量型光學編瑀器的光學盤上。 201006118 當該圖1的無刷伺服馬達在初始驅動系統送電時,系統 先經由該電氣換相表7將轉子電氣角度的初始位置放入該 初始位置暫存器8,後此時,初始化便完成;接下來當有一 轉速命令巧輸入時,該速度控制器1〇會將該轉速命令巧與 該速度計算器9得到的誤差值計算出所需要的一電流命令 ie: .e* ,此時該電流控制器11會將該電流命令V與該三相旋轉 ❹ 座標對直角座標轉換模組12所算出來的電流命令ζ的誤差 值計算出需要的一電壓命令在經由該直角座標對三相旋轉 座標轉換模組13,將需要的該電壓命令由直流轉換成一三 相交流電壓命令,並透過該脈波寬度產生模組14產生控制 訊號給該三相電力變頻器15,再由該三相電力變頻器15驅 動馬達1,而馬達1此時的轉子位置資訊由增量型光學編碼 ❹ 盤2上的A、Β相刻線16回授A、Β相的脈波信號到該位置計 數器6。 在圖1控制系統中,其中該三相旋轉座標對直角座標轉 換模組12與該直角座標對三相旋轉座標轉換模組13在叶算 時需要轉子的電氣角度,而轉子的電氣角度需由該位置1 數器6取得’但是在開機前由於該位置計數器6的值為μ 所以需要從該換相信號3、4、5與電 氣角度。 氣換相表7得到初始電 201006118 其中該換相信號3、4、5與該電氣換相表7得到初始電 氣角度的對應關係用圖3來說明,該換相信號3、4、5如果 對應為Hu、Hv、Hw,則可由邏輯丨或邏輯〇的狀態,來辦 應轉子的電氣角度,因此只需將其邏輯狀態查表即可知到 當時轉子所在的位置,以供該三相旋轉座標對直角座標轉 換模組12與該直角座標對三相旋轉座標轉換模組13在馬達 轉子初始轉動前計算出轉子的電氣角度。 然而此種習如馬達轉子初始電氣角度的取得方法,在 系統回授上馬達需多出3組訊號,多出六條配線,在可靠度 與維護上增加難度,且為了配置該換相信號3、4、5的感測 器使的馬達體積變大,結構相當複雜。如本國本國新型專 利第M302831號,即顯示出其複雜的結構。 再如本國發明公開公報200736868號,是利用一微處理 器將所讀取的Hu、Hv、Hw邏輯狀態用通訊的方式送回馬 ❹ 、去 達控制器中’以得到對應的馬達轉子的電氣角度,雖然減 少換相信號的配線,但是卻增加在馬達端設置微處理器的 成本。 職是,本案發明人針對上述現有無刷伺服馬達轉子初 始電氣角度的取得方法之需求與缺失,乃特潛心研究並配 合學理之運用,提出一種利用光學反射訊號的初始電氣角 度的取得方法及其裝置,可有效解決上述習知技術的缺失 201006118 ,更具有結構及原理簡單’安裝容易且成本低廉的優點 【發明内容】 本發明之主要目的係在於提供一種祠服馬達轉子初始 電氣角度的取得方法及裝置,利用簡單的正弦波原理侧 出馬達轉子的初始電氣角度,以解決習知技術之電氣角度 感測器需要使用多組配線及結構複雜,使馬達體積變大的 ❺ 缺失。 為達成上述目的,本發明之主要技術特徵係在於提供 一種飼服馬達轉子初始電氣角度的取得方法,首先建置一 連動於馬達轉子之光學編補,其上佈設對應於胁§磁極 對之線條圖形’該線條圖形由複數圍繞圓心呈放射狀排列 7線條組成;並建置二相隔—9G。夾角之光學感測器用以 ❿ < 測該光學編碼盤上之一組線條圖形,產生二組相差一如。 ^之弦波電壓訊號’·因此,於馬達初始啟動轉子轉動前, 二=學角感:器:測:光學編碼盤之-組線條圓形, 角之一第一弦波信號㈣)及一第二弦波信號 (cose);利用公式 tan' 计算出一正 ^多一弦波信號 L第一弦波信號(cos0) 弦波Θ角度’即為馬達轉子的初始電氣角度。 為達成上述目的,太溢^ 上述他料轉子技術特徵係在於提供 轉子純電氣角度的取得方法,其中該光學 201006118 編碼盤上之線條圖形,係由複數線條以等密度而不等寬度 形態組成,即該些線條在等距下由粗線漸漸變化到細線, 再漸漸變化到粗線。 為達成上述目的,本發明之另一技術特徵係在於提供 上述伺服馬達轉子初始電氣角度的取得方法,其中該光學 編碼盤上之線條圖形,係由複數線條以等寬度而不等密度 的形態組成,即該些線條在等線寬下以相距較密集漸漸疏 ® 遠,再漸漸密集。 為達成上述目的,本發明之又一技術特徵係在於提供 上述伺服馬達轉子初始電氣角度的取得方法,其中讓光學 感測器係由一光電晶體及一發光二極體所組成,使該發光 二極體發光照射於該光學編碼盤,該光電晶體接收由光學 編碼盤反射的光線,藉由該線條圖形的反光多募,使憤測 一整組線條圖形後產生一組正弦波電壓信號。 春 為達成上述目的,本發明之再一技術特徵係在於提供 上述伺服馬達轉子初始電氣角度的取得方法,其中該光學 編碼盤係為一可透光材質製成,而該光學感測器係由一光 電晶體及一發光二極體所組成,使該發光二極體發光穿透 該光學編碼盤,該光電晶體接收穿透光線,藉由光線穿透 該線條圖形的多募,使偵測一整組線條圖形產生一組正弦 波電壓信號。 201006118 【實施方式】 為了使貴審查委員能更進一步瞭解本發明為達成預 定目的所採取之技術、手段及功效’請參閱以下有關本發 明之詳細說明與附圖’相信本發明之目的、特徵與特點, 當可由此得一深入且具體之瞭解’然而所附圖式僅提供參 考與說明用,並非用來對本發明加以限制者。 請參閱圖4所示,係為本發明伺服馬達之向量控制系統 @ 實施例方塊示意圖。而圖5係為本發明馬達轉子磁極定位裝 置之實施例立體分解圖,本發明之馬達轉子係設有至少一 組N-S磁極對,本發明主要是取消習知馬達向量控制系統中 該換相信號3、4、5與電氣換相表7,改採用二組光學感測 器17 ’並將設置於馬達1側的習知光學編碼盤2改為具有 A、B相刻線16與黑白相間的線條圖形21之一新式光學編碼 盤20,該光學編碼盤20之轴心係連接於馬達1轉子,轉子轉 φ 動可連動該光學編碼盤20轉動。 而除了該光學感測器Π本發明更設有一類比/數位轉 換器18及一電氣角度計算器19’皆配設於一編碼器電路板 24上’該編碼器電路板24可藉由一顆螺絲鎖固於馬達1本體 的電路板固定柱25上。 如圖6所示,係為本發明光學編碼盤之第一實施例示意 圖’該光學編碼盤20呈圓盤狀,其上佈設至少一組對應於 該N-S磁極對之線條圖形21’該線條圖形係由複數圍繞圓心 呈放射狀排列的線條所組成,且該些線條是以等密度而不 201006118 等寬度的形態組成,意即該些線條相鄰間皆等距離的情況 下,由粗線漸漸變化到細線,再由細線漸漸變化到粗線的 方式呈現,而一組線條圖形21係對應一組馬達轉子的N_s 磁極對,如一馬達轉子具有5組N-S磁極對,則該光學編碼 盤20上則對應有5組線條圖形21。 如圖7所示,係為本發明光學編碼盤之第二實施例示 意圖,該光學編碼盤20上佈設之線條圖形21,同樣由複數 圍繞圓心呈放射狀排列的線條所組成,但該些線條是以等 ❹ 寬度而不等密度的形態組成,意即該些線條皆是相同寬度 的細線,但是以線條間相鄰距離由近漸漸變化到遠,再由 遠漸漸變化到近,或者可解釋為相距較密集漸漸疏遠,再 由疏遠漸漸密集的方式呈現。 如圖8所示,係為本發明光學感測器之電路示意圖,該 光學感測器17是由一光電晶體23及一發光二極體22所組 成,如圖9所示係為該光學感測器照射光學編碼盤之第一實 施例示意圖,該發光二極體22發光照射於該光學編碼盤20 ® 上,該光電晶體23可接收由光學編碼盤20上線條圖形21反 射的光線,由於線條圖形21上線條的粗細(或密度)會影響 光電晶體23接收反射光線的多寡,線條越粗(或越密集)反 射光線越少則光電晶體23的輸出電壓越高,反之線條越細 (或越疏遠)反射光線越多,則光電晶體的輸出電壓越低, 因此可由該光學感測器17偵測一整組線條圖形後,輸出的 電壓訊號產生如同一組正弦波訊號,如圖10所示即為本發 明線條圖形與輸出電壓的對應關係示意圖。 11- 201006118 如圖11所示,係為該光學感測器照射光學編碼盤之第 二實施例示意圖,本發明之光學編碼盤20亦可為一可透光 材質,而該光學感測器17之發光二極體22發光穿透該光學 編碼盤20,讓光電晶體23接收光線,由於光學編碼盤20上 線條圖形21的粗細(或密度)會影響光線穿透該光學編碼盤 20的多寡,亦影響光電晶體23接收光線的多寡,線條越粗 (或越密集)穿透光線越少則光電晶體23的輸出電壓越高, 反之線條越細(或越疏遠)穿透光線越多,則光電晶體的輸 〇 出電壓越低,因此可由該光學感測器17偵測一整組線條圖 形21後,輸出的電壓訊號產生如同一組正弦波訊號,如圖 10 ° 本發明係使用二組光學感測器17,且該二組光學感測 器17間相隔一特定夾角,恰可因偵測一組線條圖形21後而 產生二組相差一特定角度的第一弦波信號及第二弦波信 號,較佳地,假設該第一弦波信號為一正弦波(sin),而第 二弦波信號為一餘弦波(cos),如圖12所示,亦即該二組光 ® 學感測器17相距一組線條圖形21之90°位置處,亦因此可藉 由該二組光學感測器17偵測該光學編碼盤2 0上之線條圖形 21產生二組電壓值,再由該二組電壓值對應出該第一弦波 信號Θ角度及第二弦波信號Θ角度,其對應關係如圖13所示。 因此當馬達1初始啟動轉子轉動前,即可藉由該光學感 測器17得到一第一弦波電壓值及一第二弦波電壓值,並透 過該類比/數位轉換器18將二組電壓值轉換為數位訊號,後 至該電氣角度計算器19,且由圖13的輸出電壓與弦波訊號 • 12· 201006118 的對應關係可得出該第一弦波信號(sine)及該第二弦波信 號(cose)的角度,因此該電氣角度計算器19將該二組弦波電 壓值轉換為該第一弦波信號(sine)及該第二弦波信號(COS0) ’第一弦波信號(sine) i .¾二弦波信號(cos0) tan-201006118 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a naval motor rotor initial device, in particular, relating to a kind of brushless precision 2=::: = detecting the positioning angle of the rotor and the fixed (four) county The method and its positioning device are used to smoothly start the rotation of the servo motor. [Prior Art] According to the 'motor's wide range of uses, the main types can be divided into speed control type motor and precision control type motor, speed control type motor is relatively simple, can control the motor's position, fine (4) motor money control The speed of the motor can also control the angle (or position) at which the motor rotates, such as a stepper motor or a servo motor. In the case of a brushless servo motor, as shown in Fig. f, the vector control system of the servo motor includes a motor i, an incremental optical encoder 2 for sensing the angle, and three groups providing commutation. Phase sensor (HaU sensor) of signal 3, 4, 5 'a position 3 tens 6 , an electrical commutation table 7 , an initial position register 8 , a speed calculator 9 , a speed controller 1 〇, a current controller 11, a three-phase rotating coordinate pair right angle coordinate conversion module 12, a straight-angle coordinate to two-phase rotary coordinate conversion module 13, a pulse width modulation module 14 and a two-phase power inverter 15. The incremental optical coder 2, as shown in Fig. 2, directly produces the commutation signal on the optical disk of the incremental optical splicer. 201006118 When the brushless servo motor of FIG. 1 is powered by the initial drive system, the system first places the initial position of the rotor electrical angle into the initial position register 8 via the electrical commutation table 7, after which the initialization is completed. Next, when there is a speed command, the speed controller 1 will calculate the required current command ie: .e* by the speed command and the error value obtained by the speed calculator 9. The controller 11 calculates the error value of the current command V and the current command 算出 calculated by the three-phase rotary yoke against the rectangular coordinate conversion module 12 to calculate a required voltage command via the right angle coordinate to the three-phase rotary coordinate The conversion module 13 converts the required voltage command from DC to a three-phase AC voltage command, and generates a control signal to the three-phase power inverter 15 through the pulse width generation module 14, and the three-phase power is further The frequency converter 15 drives the motor 1, and the rotor position information of the motor 1 at this time is fed back to the position counter 6 by the pulse signals of A and Β phase from the A and Β phase reticle 16 on the incremental optical encoder disk 2. In the control system of FIG. 1, wherein the three-phase rotating coordinate pair right angle coordinate conversion module 12 and the right angle coordinate to three-phase rotary coordinate conversion module 13 require an electrical angle of the rotor during the blade calculation, and the electrical angle of the rotor needs to be The position of the counter 6 is obtained 'but since the value of the position counter 6 is μ before the power-on, the commutation signals 3, 4, 5 and the electrical angle are required. The gas commutation table 7 obtains the initial electric power 201006118, wherein the correspondence relationship between the commutation signals 3, 4, 5 and the electrical commutation table 7 is obtained by using FIG. 3, and the commutation signals 3, 4, 5 correspond to each other. For Hu, Hv, Hw, the electrical angle of the rotor can be determined by the state of logic or logic, so it is only necessary to look up the logic state to know the position of the rotor at that time for the three-phase rotary coordinate. The right angle coordinate conversion module 12 and the right angle coordinate pair three-phase rotary coordinate conversion module 13 calculate the electrical angle of the rotor before the initial rotation of the motor rotor. However, such a method of obtaining the initial electrical angle of the motor rotor requires three more signals in the system to feed back the motor, and six more wirings, which increases the difficulty in reliability and maintenance, and in order to configure the commutation signal 3 The sensors of 4, 5 make the motor larger in size and the structure is quite complicated. For example, the national new patent No. M302831 shows its complicated structure. In another example, the domestic invention publication No. 200736868 uses a microprocessor to send the read logic states of Hu, Hv, and Hw back to the horse by communication, and to obtain the electrical of the corresponding motor rotor. Angle, although reducing the wiring of the commutation signal, increases the cost of installing the microprocessor at the motor end. At the job, the inventor of the present invention has focused on the need and lack of the method for obtaining the initial electrical angle of the existing brushless servo motor rotor, and has devoted himself to the application of the theory, and proposed an initial electrical angle acquisition method using optical reflection signals and The device can effectively solve the above-mentioned lack of the prior art 201006118, and has the advantages of simple structure and principle, easy installation and low cost. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for obtaining an initial electrical angle of a motor rotor. And the device uses a simple sine wave principle to side out the initial electrical angle of the motor rotor, so as to solve the conventional technology, the electrical angle sensor needs to use multiple sets of wiring and the structure is complicated, so that the motor is enlarged in size. In order to achieve the above object, the main technical feature of the present invention is to provide a method for obtaining an initial electrical angle of a rotor of a feeding motor, firstly constructing an optical complement of the rotor of the motor, and laying a line corresponding to the pair of magnetic poles The graphic 'the line pattern consists of a plurality of lines arranged radially around the center of the circle; and two layers are separated - 9G. The angled optical sensor is used to detect a set of line patterns on the optical encoder disc, resulting in a difference between the two groups. ^Sinusoidal voltage signal'· Therefore, before the motor starts the rotor rotation, the second = the sense of angle: the device: the measurement: the optical encoder disk - the group line is round, the corner one of the first sine wave signal (four)) and one The second sine wave signal (cose); using the formula tan' to calculate a positive sine wave signal L first sine wave signal (cos0) sine wave Θ angle ' is the initial electrical angle of the motor rotor. In order to achieve the above objectives, the above-mentioned rotor technology is characterized by providing a pure electrical angle of the rotor, wherein the optical 201006118 code line pattern on the disc is composed of a plurality of lines in an equal density and an equal width. That is, the lines are gradually changed from a thick line to a thin line at an equal distance, and then gradually changed to a thick line. In order to achieve the above object, another technical feature of the present invention is to provide a method for obtaining an initial electrical angle of a servo motor rotor, wherein a line pattern on the optical encoder disk is composed of a plurality of lines having an equal width and an equal density. That is, the lines are gradually spaced apart from each other under the equal line width, and then gradually become denser. In order to achieve the above object, another technical feature of the present invention is to provide a method for obtaining an initial electrical angle of a servo motor rotor, wherein the optical sensor is composed of a photoelectric crystal and a light-emitting diode, so that the light-emitting diode The polar body illuminates the optical encoder disk, and the photo crystal receives the light reflected by the optical encoder disk, and the reflection of the line pattern is used to generate a set of sine wave voltage signals after a whole set of line patterns. In order to achieve the above object, another technical feature of the present invention is to provide a method for obtaining an initial electrical angle of the servo motor rotor, wherein the optical encoder disk is made of a light transmissive material, and the optical sensor is An optoelectronic crystal and a light-emitting diode are arranged to cause the light-emitting diode to emit light through the optical encoder disk, and the photoelectric crystal receives the transmitted light, and the light is transmitted through the multi-strength of the line pattern to enable detection The entire set of line patterns produces a set of sinusoidal voltage signals. 201006118 [Embodiment] In order to enable the reviewing committee to better understand the technology, means and effects of the present invention for achieving the intended purpose, please refer to the following detailed description of the invention and the accompanying drawings. It is to be understood that the invention is not to be construed as a limitation Please refer to FIG. 4, which is a block diagram of a vector control system of the servo motor of the present invention. 5 is a perspective exploded view of an embodiment of the motor rotor pole positioning device of the present invention. The motor rotor of the present invention is provided with at least one set of NS magnetic pole pairs. The present invention mainly cancels the commutation signal in the conventional motor vector control system. 3, 4, 5 and electrical commutation table 7, the use of two sets of optical sensors 17 ' and the conventional optical encoder disk 2 set on the side of the motor 1 is changed to have A, B phase engraved line 16 and black and white A new optical encoder disk 20 of the line pattern 21, the axis of the optical encoder disk 20 is coupled to the rotor of the motor 1, and the rotor is rotatably coupled to rotate the optical encoder disk 20. In addition to the optical sensor, the present invention further includes a analog/digital converter 18 and an electrical angle calculator 19' are disposed on an encoder circuit board 24. The encoder circuit board 24 can be provided by a single The screw is locked to the circuit board fixing post 25 of the body of the motor 1. As shown in FIG. 6, it is a schematic view of a first embodiment of an optical encoder disk of the present invention. The optical encoder disk 20 has a disk shape, and at least one set of line patterns corresponding to the line pattern 21' of the NS magnetic pole pair is disposed thereon. It consists of a plurality of lines arranged radially around the center of the circle, and the lines are composed of equal density and other widths such as 201006118, meaning that the lines are gradually equidistant, and the thick lines gradually The change to the thin line, and then the thin line is gradually changed to the thick line, and the set of line patterns 21 corresponds to the N_s magnetic pole pair of the motor rotor. If a motor rotor has 5 sets of NS magnetic pole pairs, the optical encoder disc 20 is There are five sets of line patterns 21 corresponding to each other. FIG. 7 is a schematic view showing a second embodiment of the optical encoder disk of the present invention. The line pattern 21 disposed on the optical encoder disk 20 is also composed of a plurality of lines arranged radially around the center of the circle, but the lines are formed. It is composed of equal width and non-equal density, meaning that the lines are all thin lines of the same width, but the adjacent distance between the lines is gradually changed from far to far, and then gradually changed to near, or can be explained In order to become more intensive and gradually alienated, it will be presented in a way that is increasingly intensive. As shown in FIG. 8 , it is a schematic circuit diagram of the optical sensor of the present invention. The optical sensor 17 is composed of a photoelectric crystal 23 and a light-emitting diode 22, as shown in FIG. A schematic diagram of a first embodiment of an illuminating optical encoder disk, the illuminating diode 22 is illuminating on the optical encoder disk 20®, and the photo transistor 23 can receive light reflected by the line pattern 21 on the optical encoder disk 20 due to The thickness (or density) of the lines on the line pattern 21 affects the amount of reflected light received by the photo-crystal 23, and the thicker (or denser) the line is, the less the reflected light is, the higher the output voltage of the photo-crystal 23 is, and the thinner the line is (or The more distant the reflected light, the lower the output voltage of the photoelectric crystal. Therefore, after the optical sensor 17 detects a complete set of line patterns, the output voltage signal is generated as a set of sinusoidal signals, as shown in FIG. The diagram shows the corresponding relationship between the line pattern and the output voltage of the present invention. 11-201006118 As shown in FIG. 11, a schematic diagram of a second embodiment of illuminating an optical encoder disk with the optical sensor, the optical encoder disk 20 of the present invention may also be a light transmissive material, and the optical sensor 17 The light-emitting diode 22 emits light through the optical encoder disk 20, allowing the photo-crystal 23 to receive light. Since the thickness (or density) of the line pattern 21 on the optical encoder disk 20 affects the amount of light penetrating the optical encoder disk 20, It also affects the amount of light received by the photo-crystal 23, and the thicker (or denser) the line is, the less the output light of the photo-crystal 23 is. The thinner the line (or the more distant) the more light is transmitted, the more the optoelectronics The lower the output voltage of the crystal, the lower the line pattern 21 can be detected by the optical sensor 17, and the output voltage signal is generated as a set of sinusoidal signals, as shown in FIG. 10 °. The sensor 17 and the two sets of optical sensors 17 are separated by a specific angle, so that two sets of first sine wave signals and second sine waves which are different by a specific angle are generated after detecting a set of line patterns 21 Signal, preferably Ground, the first sine wave signal is a sine wave (sin), and the second sine wave signal is a cosine wave (cos), as shown in FIG. 12, that is, the two sets of optical sensors 17 are separated. A set of line patterns 21 at a 90° position, so that the two sets of optical sensors 17 detect the line pattern 21 on the optical encoder disk 20 to generate two sets of voltage values, and then the two sets of voltage values. Corresponding to the first sine wave signal Θ angle and the second sine wave signal Θ angle, the corresponding relationship is shown in FIG. 13 . Therefore, before the motor 1 initially starts the rotation of the rotor, a first sine wave voltage value and a second sine wave voltage value are obtained by the optical sensor 17, and the two sets of voltages are transmitted through the analog/digital converter 18. The value is converted into a digital signal, and then to the electrical angle calculator 19, and the first sine wave signal (sine) and the second string are obtained from the correspondence between the output voltage of FIG. 13 and the sine wave signal • 12· 201006118 The angle of the wave signal (cose), so the electrical angle calculator 19 converts the two sets of sinusoidal voltage values into the first sine wave signal (sine) and the second sine wave signal (COS0) 'first sine wave signal (sine) i .3⁄4 two-string signal (cos0) tan-
V 即 ❹ ❹ 代入電氣角度計算公式 可將正弦波(sin0)訊號之Θ角度給反推出來,又因為正弦波 (sine)訊號之Θ角度與轉子轉一圈的電氣角度是相等的,所 以即可得到需要的電氣角度,以供給該三相旋轉座標對直 角座標轉換模組12與該直角座標對三相旋轉座標轉換模組 13在初始計算時的電氣角度。 職是,本發明不論馬達轉子有多少N-S磁極對數,皆可 利用此一事先設定好的光學編碼盤及二組光學感測器,偵 測出馬達轉子的電氣角度’完全不需要使用換相信號Hu、 Hv、Hw以取得初始電氣角度,且實施結構簡單,故而本發 明確能藉上述所揭露之技術,提供一種迥然不同於習知者 的設計’堪能提高整體之使用價值,又其申請前未見於刊 物或公開使用,誠已符合發明專利之要件,爰依法提出發 明專利申請。 惟,上述所揭露之圖式、說明,僅為本發明之實施例 而已,凡精于此項技藝者當可依據上述之說明作其他種種 之改良,而這些改變仍屬於本發明之創作精神及以下所界 定之專利範圍中。 -13- 201006118 【圖式簡單說明】 圖1係為習知伺服馬達的向量控制系統。 圖2係為習知換相信號之增量型光學編碼器的光學盤 示意圖。 圖3係為習知換相信號與電氣角度之對應關係示意圖 〇 圖4係為本發明伺服馬達之向量控制系統實施例方塊 ⑮ 示意圖。 圖5係為本發明馬達轉子磁極定位裝置之實施例立體 分解圖。 圖6係為本發明光學編碼盤之第一實施例示意圖。 圖7係為本發明光學編碼盤之第二實施例示意圖。 圖8係為本發明光學感測器之電路示意圖。 圖9係為本發明光學感測器照射該光學編碼盤之第一 ❹ 實施例示意圖。 圖10係為本發明線條圖形與輸出電壓的對應關係示 意圖。 圖11係為本發明光學感測器照射該光學編碼盤之第二 實施例示意圖。 圖12係為本發明二組光學感測器相距一組線條圖形 之90。位置處的實施例示意圖。及 圖13係為本發明反射式光學感測器感測之弦波信號 201006118 與電氣角度之關係圖。 【主要元件符號說明】 1 馬達 2 含換相信號之增量型光學編碼器 3 換相信號Hu 4 換相信號Hv 5 換相信號Hw 6 位置計數器 7 電氣換相表 8 初始位置暫存器 9 速度計算器 10 速度控制器 11 電流控制器 12 三相旋轉座標對直角座標轉換模組 13 直角座標對三相旋轉座標轉換模組 14 脈波寬度調變模組 15 三相電力變頻器 16 A、B相刻線 17 反射式光學感測器 18 類比/數位轉換器 19 電氣角度計算器 20 光學編碼盤 21 線條圖形 -15- 201006118 22 發光二極體 23 光電晶體 24 編碼器電路板 25 電路板固定柱V ie ❹ 代 Substituting the electrical angle calculation formula can reverse the sine wave (sin0) signal angle, and because the sine wave (sine) signal angle is equal to the electrical angle of the rotor one turn, so The required electrical angle can be obtained to supply the electrical angle of the three-phase rotary coordinate pair right angle coordinate conversion module 12 and the right angle coordinate to the three-phase rotary coordinate conversion module 13 in the initial calculation. In the present invention, regardless of the number of NS pole pairs in the motor rotor, the optical encoder and the two sets of optical sensors can be used to detect the electrical angle of the motor rotor. Hu, Hv, Hw to obtain the initial electrical angle, and the implementation structure is simple, so the present invention can provide a design that is quite different from the prior art by the above-mentioned disclosed technology, which can improve the overall use value, and before the application Not found in the publication or public use, Cheng has already met the requirements of the invention patent, and filed an invention patent application according to law. However, the above-mentioned drawings and descriptions are only examples of the present invention, and those skilled in the art can make other various improvements according to the above description, and these changes still belong to the creative spirit of the present invention. The scope of the patents defined below. -13- 201006118 [Simplified Schematic] FIG. 1 is a vector control system of a conventional servo motor. Fig. 2 is a schematic view of an optical disk of an incremental optical encoder of a conventional commutation signal. 3 is a schematic diagram showing the correspondence between a conventional commutation signal and an electrical angle. FIG. 4 is a block diagram showing an embodiment of a vector control system for a servo motor of the present invention. Fig. 5 is a perspective exploded view of the embodiment of the motor rotor pole positioning device of the present invention. Figure 6 is a schematic view of a first embodiment of an optical encoder disk of the present invention. Figure 7 is a schematic view showing a second embodiment of the optical encoder disk of the present invention. Figure 8 is a circuit diagram of the optical sensor of the present invention. Figure 9 is a schematic view showing a first embodiment of the optical sensor of the present invention for illuminating the optical encoder disk. Fig. 10 is a view showing the correspondence relationship between the line pattern and the output voltage of the present invention. Figure 11 is a schematic view showing a second embodiment of the optical sensor of the present invention illuminating the optical encoder disk. Figure 12 is a perspective view of a set of line patterns of two sets of optical sensors of the present invention. A schematic of an embodiment at the location. 13 is a diagram showing the relationship between the sinusoidal signal 201006118 and the electrical angle of the reflective optical sensor of the present invention. [Main component symbol description] 1 Motor 2 Incremental optical encoder with commutation signal 3 Commutation signal Hu 4 Commutation signal Hv 5 Commutation signal Hw 6 Position counter 7 Electrical commutation Table 8 Initial position register 9 Speed calculator 10 speed controller 11 current controller 12 three-phase rotating coordinate pair right angle coordinate conversion module 13 right angle coordinate to three-phase rotary coordinate conversion module 14 pulse width modulation module 15 three-phase power inverter 16 A, B-phase engraving 17 Reflective optical sensor 18 Analog/digital converter 19 Electrical angle calculator 20 Optical encoder disk 21 Line pattern-15- 201006118 22 Light-emitting diode 23 Photoelectric crystal 24 Encoder circuit board 25 Board fixed column