201004110 九、發明說明: 【發明所屬之技術領域】 本發明是關於-種備用電源備用 一種應用磁性電容做為儲電元件 ’、 ,寺別是指 【先前技術】 的備用電源裝置。 隨著電力應用科技的發展, 子設備不斷被開發出來,使得人們對於的電 增,以致於突然的斷電常常給人們的生活帶來衝擊盘= ,尤其是對於工廠產線或生活中特別重要備— 旦炒中斷供電,往往會對業者或使用者造成重大的經濟損: …、而’即使現在的電網設施再先進,意 難免,因此能夠在市電斷電時,及時提供負 2 的不斷電系統⑽s)和廣泛應用於建築電氣領域及特殊= 供^合的應急供電系統(Eps)遂成為供電系統中的 備之一。 如圖1所示,B B A从扯二、τττ^ 夺,開關早凡13會將市電提供給後端 負載’同時’市電經由交流/直流轉換器(充電器)1〇輸出直 流電對儲能單元(錯酸電池組)11預充電。當市電(Vin)突然 中斷夺開關單几13會切換一直流/交流轉換器(逆變器 )12同時儲此單元(鉛酸電池組)11輸出直流電經由直流/ 又机轉換器(逆變器)12進行直/交流轉換後輸出—交流電供 後端負載使用。 而目前的UPS + h 〜或Eps中皆普遍使用鉛酸蓄電池做為其 201004110 儲$元件,但是船酸蓄電池具有體積A'重4重、能量儲 存:度低、成本高、需要維護、使用壽命短等缺點,並且 對環境溫度要求較高(溫度太低影響電池容量,溫度高影響 電池壽命)’充放電電壓電流有限制(過高電壓、深度放二 等都會嚴重影響電池的壽命,甚至造成永久損壞),且對充 電過程要求高、充電時間長。 *古另外,热酸蓄電池在UPS《EPS中所占的成本比例相 s回’使設備價格昂貴。而且錯酸蓄電池並非環保產品, 處理不當易對環境造成嚴重的污染。因此,在_或奶 糸統中有必要尋求新型的儲能元件來取代錯酸蓄電池。 現今應用上大都利用電池、電容或超級電容(Super 作為能量儲存的元件。電容雖然在製程上較為簡 早,但因其儲存容量小,只能當做短暫儲能使用。而傳統 電池,主要是利用化學能的方式來進行能量儲存,因此盆 能量儲存密度明顯優於一般電容,而可應用於各種電力供 應’裝置#疋’缺點是:其所能產生之瞬間電力輸出會受 限於化學反應速率,而無法快速的充放電或進行高功率輸 出’且f放電次數有限,過度充放時易滋生各種問題’·例 ::目前:使用的蓄電池,雖然標榜著可重複使用,但 °° ”可P之限制。在多次充放電或長時間不使用的情 況下,蓄電池的容量會下降,且容易損壞,原因在於蓄電 池是利用化學能轉換為電能,化學物質要常保其活性,才 不至於失效變質,當原來的化合物活性都作用完或將近用 完時’便無法再進行新的化學反應,進而導致蓄電池老化 201004110 而宣告壽終。 超級電容是一種介於電池與電容間的元件,又稱雙電 層電容(Electrical Double_Layer,因同時透 物理儲能、部分化學儲能架構,故其具有比普通電容更大的 容量,但其缺點是:因有化學材料而具化學特性, 如電池的漏電缺點,又加上因還有部份是物理特性之 速度快的現象,如此一來就產生很快就會沒電的現象,益 法達到有效蓄電功能。甚至,超級電容的耐壓度不高,内、 阻較大,因而不可以用於交流電路,且如果使用不當會造 成電解質泄漏等現象。 *上述習广儲能元件並無法同時達到ups & Eps所要求 充放電次數)、高能量儲存密度、瞬間高功率輸 出及快逮充放電等優點。 【發明内容】 一發明之目的,係在提供一種應用具有低成本 :用本度南、體積小、重量輕、容量大、無需維護 裝=哥命長、環保低污染等優點的儲能元件之備用電源 ,本發明之備用電源裝置,用以連接在一交流市 L一負栽之間,以對該負載供電,該備用電源裝置包括 拖:用以將該交流市電轉換成一直流電輸出的交流/直流轉 之2,—與該交流/直流轉換單元連接,以接受該直流電 „ :以儲能的磁性磁性電容單元…與該磁性磁性電容 早70接’用以對該磁性磁性電容之一放電電壓進行升/降 201004110 壓轉換’以輸出一定電壓的吉、、A /亩 &电㈣直"il/直流轉換單元;一與該直 流/直流轉換單元連接,用以將該 x疋電壓轉換成一交流電並 輸出的直 >瓜/交流轉換單元;以及— 了選擇連接該交流市電 或該直流/交流轉換單元,以適時輪 迥箱出該父流市電或該交流 電、,.s 5亥負載的控制單元。 本發明另-借用電源裝置,包括—用以將一交流市電 轉換成-直流電輸出的交流/直流轉換單元;一盘該交流/直 ;轉換單元連接:以接受該直流電之充電以儲能的磁性電 谷單元,一與§亥磁性電宏嚴开 电谷早兀連接,用以對該磁性電容之 :::電壓進行升/降壓轉換,以輸出-定電壓的直流/直流 轉換早兀,以及-與該直流/直流轉換單元連接用以將該 疋電壓轉換成一交流電輸出的直流/交流轉換單元。 較佳地,該磁性電容罝分a 早凡匕括由複數個磁性電容以串 聯、並聯或串並聯方式組成的-磁性電容組。 較佳地,該磁性電容包含有_第一磁性電極、一第二 磁性電極以及設於其間之一介 丨电層,其中該第一磁性電極 J一磁性電極内具有磁偶極以抑制該磁性電容之漏電流 0 較佳地’該第一磁性電極包含有:-第-磁性層,具 有排列成第一方向之磁偶極;_ 苐一磁性層,具有排列成 第一方向之磁偶極;以及—隐 隔離層,包含有非磁性材料, 設於該第-磁性層與該第二磁性層之間;其中該第一方向 與8玄第—方向互為反向’以抑制該磁性電容之漏電流。 較佳地’該第-磁性電極與第二磁性電極係包含有稀 201004110 體心氧化鈦π。3)、氧化鋇鈦(一) 較佳地,該半導體層為氧化矽。 較佳地,該直流/直流轉換單元包括—電感,一愈電感 =第-端及制性電容單元連接㈣—電晶體一盘 ^感之該第-端連接的第二電晶體開關,—控制該第一電晶 體開關及第二電晶體開關的開關頻率及pwM週期,以對磁 性電容早福放f電壓進行降㈣降壓控制電路,與電感之 -第二端連接的一第三電晶體開關及一第四電晶體開關,一 控制該第三電晶體開關及第四電晶體開關的開關頻率及 PWM週期,㈣磁性電容單元的放電電壓進行升壓的升麼 控制電路,以及一對該電感之輸出電流進行遽波整 電路。 較佳地,該磁性電容單元更包括一過電流保護電路, 其連接在該巨磁電⑽之正、負㈣端之間,用以保護該巨 磁電容組不致因充/放電電流過大而燒燬。 較佳地,該過電流保護電路包含一與磁性電容組的正 極端連接的保險絲及—保護電路,—串接在磁性電容组的負 極端並受祕護電路控㈣„,以及_連接㈣㈣電路 與磁性電容組的負極端之間的電阻,該電阻偵測該磁性電容 組的輸出電流並送給該㈣電路,該保護電路可根據該輪出 電流決定是否切斷該開關,使該磁性電容組停止供電。 本發明利用磁性電容做為儲能元件,並搭配—直流/直 流轉換單元對磁性電容之放電„進行適當升降M轉換,以 10 201004110 輸出一固定直流電壓供直流/交流轉換單元進行交/直流轉換 ,能減少備用電源裝置的整體體積、重量和製造成本,並提 高能量儲存效率、儲存容量和使用壽命,實現免維護,避免 化學儲能存在的記憶效應和污染問題,改善習知備用電源裝 置(UPS)及緊急供電裝置(EPS)的整體性能。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之兩個較佳實施例的詳細說明中,將可 清楚的呈現。這兩個實施例主要不同處在於其中一實施例 是以需要一個切換開關(控制單元)的不斷電裝置(UPS)為例 ,另外一實施例則是以不需要切換開關(控制單元)的緊急供 電裝置(EPS)為例。 請參見圖2,是本發明備用電源裝置的第一較佳實施例 之電路方塊示意圖。 本實施例的備用電源裝置200是做為不斷電裝置(UPS) 使用,其主要包括依序串接的一交流/直流轉換單元(充電器 )21、一磁性電容單元22、一直流/直流轉換單元23、一直 流/交流轉換單元(逆變器)24及一控制單元25。 其中交流/直流轉換單元21主要將輸入的交流市電 (ACllOV)Vin經過其中的自耦變壓器降壓、全波整流以及濾 波轉換為一直流電壓後輸出。而直流/交流轉換單元24則可 採用習知大功率 IGBT(Insulated Gate Bipolar Transistor,絕 緣柵雙極電晶體)模組全橋逆變電路,其具有很大的功率富 餘量,在輸出動態範圍内輸出阻抗很小以及快速反應的特 11 201004110 性。由於交流/直流轉換單元21錢直流/交流轉換單元μ 皆可錢採U知電路,且非本案重點,於此不詳述。 又抓/直/爪轉換單元21提供一直流電壓對磁性電容單元 22充電。本實施例之磁性電容單元22可以由複數個磁性電 谷(cap)^串〜 '並聯或串並聯方式組成,讓備用電源裝置 200可以因應不同場合的應用或需求,提供不同的輸出電壓 、電流和功率等級。磁性電容是—種以♦半導體為原料, 在一定的磁場作用下透過物理儲能方式實現高密度、大容 量儲存電能的儲能元件。且磁性電容具有輸出電流大、體 積小、重#輕、超長使用壽命、充放電能力佳以及沒有充 電記憶效應等特性,因此拿來做為備用電源裝i 的蓄 電元件以取代習知鉛酸蓄電池組,除了可以減少備用電源 裝置200的體積、重量和製造成本而且可以實現系統免 維護以及提高系統制壽命等優點。所以,本發明之—特 :在:使用磁性電容作為能量儲存裝置以及電力來源。值 得注意的是,相較於一般電容,磁性電容可藉由於上、下 $極處形成之磁場,來抑制漏電流,並大幅提升能量儲存 密度丄故可作為-極佳之能量儲存裝置或電力供應來源。 π參考圖3,圖3為本實施例之磁性電容與其他習知能 量儲存媒介之比較示意圖。如圖3所示,由於習知能量儲 存媒介(例如傳統電池或超級電容)主要是利用化學能的方式 j行能量儲存,因此其能量儲存密度將會明顯優於—般 電容,而可應用於各種電力供應裝置,但在此同時,其所 月匕產生之瞬間電力輸出亦會受限於化學反應it帛,而無法 12 201004110 快速的充放電或p古 声奋放眛总—回力率輸出,且充放電次數有限,過 度充放時易滋生各籀M ^ .t ^ π 。相較於此,由於磁性電容中儲 存的肖b置全部传以f μ + ^ 省 有可虚一般式進行錯存,因此,除了具 #八:右φ 超級電容匹配的能量儲存密度外,更因 充分保有電容的特性,而且 更因 情对廡、Α 八有哥°卩長(尚充放電次數)、無記 :紐:」〃面功率輸出、快速充放電等特點,故可有 _ 種問4。st參考® 4,圖4為本 發明一貫把例中之磁性電容的結構示意圖。如圖〇斤 不,磁性電容彻係包含有—第—磁性電極uq、 :電?。,以及位於其間之一介電層13〇。其中第= ϋ與第二磁性電極120係由具磁性的導電材料所構成 广由適當的外加電場進行磁化,使第一磁性電極η〇盘 性電極12G内分別形成磁偶極(magenetie dipole)115 與125 ’、以於磁性電容400内部構成一磁場,對帶電粒子的 移動造成影響,從而抑制磁性電容彻之漏電流。 所需要特別強調的是,圖4中的磁偶極ιΐ5肖125的箭 頭方向僅為一示意圖。對熟習該項技藝者而言,應可瞭解 到磁偶極1 15盘125音隊· μ /么丄# , 實示上係由夕個整齊排列的微小磁偶極 所疊加而成,且在本發明中,磁偶極ιΐ5與125最後形成的 方向並無限定,例如可指向同一方向或不同方向。介電層 130則係用來分隔第"'磁性電極1H)與第二磁性電極12〇, 乂於第磁性電極110與第二磁性電極12〇處累積電荷,儲 存電位此纟本發明之—實施例_,第—磁性電極與第 一磁性電㉟120係包含有磁性導電材質,例如稀土元素, 13 201004110 介電層130則係由氧化鈦(Ti〇3)、氧化鋇鈦(如乃〇3)或一半 導體層,例如氧化矽(silicon 0Xide)所構成,然而本發明並 不限於此,因此第一磁性電極110、第二磁性電極12〇與介 電層130均可視產品之需求而選用適當之其他材料。 比喻說明本發明磁性電容之操作原理如下。物質在一 定磁場下電阻改變的現象,稱為「磁阻效應」,磁性金屬和 合金材料一般都有這種磁電阻現象,通常情況下,物質的 電阻率在磁場中僅產生輕微的減小;纟某種條件下,電阻 率減小的幅度相當大,比通常磁性金屬與合金材料的磁電 阻值高出10倍以上,而能夠產生很龐大的磁阻效應。若是 進一步結合Maxweii-Wagner電路模型,磁性顆粒複合介質 中也可能會產生很龐大的磁電容效應。 、 在習知電容中’電容值C係由電容之面積a、介電層 之介電常數从及厚度d決定,如下式一。然而在本發明中 ’磁性電容侧主要利用第—磁性電極m與第二磁性電極 ⑶中整齊排列的磁偶極來形成磁場來,使内部儲存的電子 朝同-自旋方向轉動,進行整齊的排列,故可在同樣條件 下’容納更多的電荷’進而増加能量的儲存密度。類比於 習知電容,磁性電容400 3- au a: 电合0之運作原理相當於藉由磁場之 用來改變介…30之介電常數,故而造成 提升。 加 c = £〇M ~~d~ —Μ _ _ _ Ο} 此外, 在本實鉍例中,第_磁性電極丨丨〇與介電層 130 14 201004110 之間的介面131以及第二磁性電極12〇與介電層13〇之間 的介面132均為一不平坦的表面,使得介面131與介面132 的面積相較於一般平坦的表面其表面積A更大,而能進一 步提升磁性電容400之電容值c。 請參考圖5,圖5為本發明之另_實施例中第一磁性電 極m之結構示意圖。如圖5所示,第—磁性電極11〇係為 一多層結構’包含有-第-磁性層112、—隔離層114以及 與1Π的方向係為反向,而能進一步抑制磁性電容彻之漏 電流。此外’需要強調的是,磁性電極㈣之結構並不限於 前述之三層結構’而可以類似之方式,以複數個磁性層斑 / 一第二磁性層116。其中隔離層114係由非磁性材料所構成 ’而第-磁性層U2與第二磁性層116則包含有具磁性的導 電材料,並在磁化時’ #由不同的外加電場,使得第一磁 性層112與第二磁性層m中的磁偶極ιΐ3與ιΐ7分別具有 不同的方向’例如在本發明之—較佳實施例中,磁偶極’、ιΐ3 非磁性層不斷交錯堆疊,再藉由各磁性層内磁㈣方向的 調整來進-步抑制磁性電纟4〇〇 <漏電流,甚至達 無漏電流的效果。 此夕,由於習知儲能元件多半以化學能的方式進行健 存,因此都需要有一定的尺寸,否則往往會造成儲量效率 的大幅下降。相較於此,本發明之磁性電$侧係以電位 能的方式進行儲存,且因所使用之材㈣適⑽_ 程’故可藉由適當的半導體製程來形成磁性^ _ 周邊電路連接,進而縮小磁性電纟_之體_重量,由 15 201004110 於此製作方法可使用 贅述。 一般半導體製程達成 的,故在此不予 4号圖6’圖6為本發明另一實施例中一磁性電容组 谓之不意圖。承前所述,在本實施例中,係利用半導體製 程於-碎基板上製作複數個小尺寸的磁性電容儀,並藉由 適當的金屬化製程’於該複數個磁性電容侧間形成電連 接,從而構成—個包含有多個磁性電容400的磁性電容植 ’再以磁性電容組作為能量儲存裝置或外部裝置的 電力供應來源。在本實施例中,磁性電容挺5⑼内的複數 個磁性電纟係以類似陣列的方式電連接、然而本發明 並不限於此,而可根據不同的電壓或電容值需求,進行適 田的串聯或並聯’以滿足各種不同裝置的電力供應需求。 再參見圖7所示,是本實施例之磁性電容單元的一 ,放電特性示意圖,由圖中顯示的放電曲線可知,磁性電 容單元22放電時的電壓並非如同一般蓄電池維持在一定值 而疋呈現心著放電時間迅速遞減的趨勢。因此,在本實 】中必耑搭配直流/直流轉換單元23對磁性電容單元 22放電時輪出的電壓進行適當的升/降壓轉換,使直流/直流 轉換單70 23可以輸出維持在一定值的直流電壓給直流/交流 轉換單元24。 因此,如圖8所示,本實施例之直流/直流轉換單元23 ^接磁性電容單元22,並包括一電感L,一連接磁性電容 單元22與電感£的第—端P1的第一電晶體開關,一連 接電感L的第一端P1的第二電晶體開關Q2,一控制第一 16 201004110 及第二電晶體開關Q1、q2作動 ,-連接電…第-端。=降壓(W制電路231 端2的第三電晶體開關Q3, -連 接電感=二端P2與一遽波電路232的第四電晶體開關 Q4,一控制第三及第 控制電路233。 電曰日體開關Q3,的升塵(b〇〇st) 、Q2降:Η控:電路Μ1藉由控制第—及第二電晶體開關Q1 關頻率及PWM週期,對磁性電容單元Μ的輸出 電=订降壓’升塵(b。。啦制電路232藉由控制第三及第 電曰曰體開關Q3、Q4的開關頻率及pwM週期對磁性電容 =2的輸出電壓進行升壓動作。亦即,假設直流/交流轉 、早凡24接受的輸入電壓是心,而磁性電容單元”儲存 :壓為30V,則在磁性電容單元22從一開始放電時的電壓 p 30V逐漸下降至15V的這段時間,由於放電電塵範圍 ( V)遠大於12V,所以如W 9所示,降麼控制電路 會根據放電電壓控制第—及第二電晶體開關q卜如的 關頻率及PWM週期’同時升塵控制電路233令第三電晶 1關Q3 OFF,令第四電晶體開關Q4 〇N以進行降壓,而 將放電電壓(30V〜15V)_12V輸出。 、”而在磁J·生電容單元22的放電電麗從15V降低至12乂的 、言夺門如圖10所示,降壓控制電路231及升壓控制電 2 B同時作動,以對應放電電壓分別控制第一、第二 p第及第四電晶體開關Qi、q2、Q3及Q4的開關頻率及 使進行小幅度的升降壓調整’以使輸出電I維 17 201004110 接著,當磁性電容單元22的放電電壓從12V下降至接 近但小於12V,例如12y〜10V的這段時間,如圖u所示 降壓控制電路231及升壓控制電路232亦會同時作動以對 應放電電壓分別控制第一、第二、第三及第四電晶體開關201004110 IX. Description of the Invention: [Technical Field] The present invention relates to a standby power supply standby, and an application of a magnetic capacitor as a power storage element, and a temple is a backup power supply device of the prior art. With the development of power application technology, sub-equipment has been continuously developed, which makes people's electricity increase, so that sudden power failure often brings shock to people's lives = especially for factory production line or life. Preparation - Once the power supply is interrupted, it will cause significant economic losses to the operators or users: ... and 'even if the current power grid facilities are advanced, it is inevitable that they can provide negative 2 in a timely manner when the utility power is cut off. The electrical system (10) s) and the emergency power supply system (Eps), which are widely used in the building electrical field and special = supply, are one of the preparations in the power supply system. As shown in Figure 1, the BBA is taken from the second, τττ^, and the switch will provide the mains supply to the back-end load 'at the same time'. The mains supply AC power to the energy storage unit via the AC/DC converter (charger). The wrong acid battery pack) 11 pre-charged. When the mains (Vin) suddenly interrupts the switch, a few 13 will switch the DC/AC converter (inverter) 12 while storing this unit (lead-acid battery pack) 11 output DC through the DC/converter converter (inverter) 12) Direct/AC conversion output - AC power for back-end load use. In the current UPS + h ~ or Eps, lead-acid batteries are commonly used as their 201004110 storage components, but the ship acid battery has a volume A' weight of 4, energy storage: low degree, high cost, maintenance, service life Short-term shortcomings, and high requirements on ambient temperature (temperature is too low affects battery capacity, high temperature affects battery life) 'charge and discharge voltage and current limit (excessive high voltage, deep release second will seriously affect battery life, or even cause Permanent damage), and requires high charging process and long charging time. *In addition, the price of the thermal acid battery in the UPS "EPS" is expensive. Moreover, the wrong acid battery is not an environmentally friendly product, and improper handling can cause serious pollution to the environment. Therefore, it is necessary to seek new energy storage components in _ or milk systems to replace the wrong acid battery. Most of today's applications use batteries, capacitors or supercapacitors (Super as an energy storage component. Although the capacitor is relatively simple in the process, because of its small storage capacity, it can only be used for short-term energy storage. The traditional battery is mainly used. Chemical energy is used for energy storage, so the energy storage density of the basin is significantly better than that of the general capacitor, but the disadvantage of being applicable to various power supply 'devices' is that the instantaneous power output that can be generated is limited by the chemical reaction rate. , and can not quickly charge and discharge or high-power output 'and f discharge times are limited, easy to breed problems when over-charged and discharged'. Example: Currently: the battery used, although advertised as reusable, but ° ° ” The limitation of P. Under the condition of multiple charging and discharging or not used for a long time, the capacity of the battery will decrease and it is easy to be damaged. The reason is that the battery is converted into electric energy by using chemical energy, and the chemical substance should always keep its activity, so as not to fail. Deterioration, when the original compound activity is used or nearly used up, it is impossible to carry out a new chemical reaction. The battery is aging 201004110 and declares its end. Supercapacitor is a component between the battery and the capacitor, also known as electric double layer capacitor (Electrical Double_Layer, due to the simultaneous physical energy storage, part of the chemical energy storage architecture, so it has a ratio Ordinary capacitors have a larger capacity, but the disadvantages are: chemical properties due to chemical materials, such as the leakage of the battery, plus the fact that some of the physical properties are fast, which is very The phenomenon that there will be no electricity soon, the beneficial method achieves the function of effective power storage. Even the super capacitor has low pressure resistance, large internal resistance and large resistance, so it can not be used in AC circuits, and if it is used improperly, it will cause electrolyte leakage. *The above-mentioned Xiguang energy storage components can not achieve the advantages of ups & Eps required charge and discharge times, high energy storage density, instantaneous high power output, fast charge and discharge, etc. [Summary of the Invention] Providing an application with low cost: using the south, small size, light weight, large capacity, no maintenance, long life, low environmental pollution, etc. A backup power supply for the energy storage component of the present invention, the standby power supply device of the present invention is connected between an AC city and a negative power plant to supply power to the load, and the standby power supply device includes a drag: for converting the AC mains power AC/DC conversion 2, which is a continuous current output, is connected to the AC/DC conversion unit to receive the DC power: a magnetic magnetic capacitor unit for storing energy... and the magnetic magnetic capacitor is 70 early to be used for the magnetic One of the magnetic capacitors discharge voltage is raised/decreased 201004110. The voltage conversion 'is a certain voltage of the JI, A / mu & electric (four) straight " il / DC conversion unit; a connection with the DC / DC conversion unit, Converting the x疋 voltage into an alternating current and outputting a direct > melon/alternating conversion unit; and - selectively connecting the alternating current mains or the direct current/alternating conversion unit to timely out the parental power supply or the alternating current, ,.s 5 Hai load control unit. The invention further comprises a power supply device comprising: an AC/DC conversion unit for converting an AC mains power into a DC output; a DC/DC conversion unit; and a conversion unit connection: receiving the DC charging to store magnetic energy The electric valley unit is connected to the magnetic circuit of the magnetic capacitor to perform the ascending/step-down conversion of the magnetic capacitor::: the output voltage-constant DC/DC conversion is early, And a DC/AC conversion unit connected to the DC/DC conversion unit for converting the 疋 voltage into an AC output. Preferably, the magnetic capacitance component a includes a magnetic capacitor group consisting of a plurality of magnetic capacitors in series, parallel or series-parallel. Preferably, the magnetic capacitor comprises a first magnetic electrode, a second magnetic electrode and a dielectric layer disposed therebetween, wherein the first magnetic electrode J has a magnetic dipole in the magnetic electrode to suppress the magnetic capacitance Leakage current 0 preferably 'the first magnetic electrode comprises: - a first magnetic layer having magnetic dipoles arranged in a first direction; - a magnetic layer having magnetic dipoles arranged in a first direction; And a hidden isolation layer comprising a non-magnetic material disposed between the first magnetic layer and the second magnetic layer; wherein the first direction and the first meta-direction are opposite each other to suppress the magnetic capacitance Leakage current. Preferably, the first magnetic electrode and the second magnetic electrode system contain a thin body of titanium oxide π of 201004110. 3) Titanium Oxide Titanium (I) Preferably, the semiconductor layer is ruthenium oxide. Preferably, the DC/DC conversion unit includes an inductor, a cathode inductor, a first terminal, and a capacitive capacitor unit (four)—a second transistor switch connected to the first end of the transistor. The switching frequency and the pwM period of the first transistor switch and the second transistor switch are used to lower the magnetic capacitor early b voltage (four) step-down control circuit, and a third transistor connected to the second end of the inductor a switch and a fourth transistor switch, a switching frequency and a PWM period of the third transistor switch and the fourth transistor switch, (4) a rising voltage of the discharge voltage of the magnetic capacitor unit, and a pair of the control circuit The output current of the inductor is chopped and integrated. Preferably, the magnetic capacitor unit further comprises an overcurrent protection circuit connected between the positive and negative (four) terminals of the giant magnetoelectric (10) for protecting the giant magnetic capacitor group from being burnt due to excessive charging/discharging current. Preferably, the overcurrent protection circuit comprises a fuse and a protection circuit connected to the positive terminal of the magnetic capacitor group, connected in series to the negative terminal of the magnetic capacitor group and controlled by the secret circuit (4), and _connected (four) (four) circuit And a resistance between the negative terminal of the magnetic capacitor group, the resistor detecting the output current of the magnetic capacitor group and sending the current to the (4) circuit, and the protection circuit can determine whether to cut the switch according to the current of the wheel to make the magnetic capacitor The invention stops the power supply. The invention utilizes the magnetic capacitor as the energy storage component, and cooperates with the DC/DC conversion unit to discharge the magnetic capacitor „ to perform appropriate lifting M conversion, and outputs a fixed DC voltage for the DC/AC conversion unit at 10 201004110. AC/DC conversion can reduce the overall size, weight and manufacturing cost of the backup power supply unit, and improve energy storage efficiency, storage capacity and service life, achieve maintenance-free, avoid memory and pollution problems in chemical energy storage, and improve the conventional knowledge. Overall performance of the backup power unit (UPS) and emergency power unit (EPS). The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. The two embodiments are mainly different in that one embodiment is an example of a UPS that requires a switch (control unit), and another embodiment does not require a switch (control unit). An emergency power supply (EPS) is an example. Referring to Figure 2, there is shown a circuit block diagram of a first preferred embodiment of the standby power supply unit of the present invention. The backup power supply device 200 of the present embodiment is used as an uninterruptible power device (UPS), and mainly includes an AC/DC conversion unit (charger) 21, a magnetic capacitor unit 22, and a DC/DC in series. The conversion unit 23, the DC/AC conversion unit (inverter) 24, and a control unit 25. The AC/DC conversion unit 21 mainly converts the input AC mains (ACllOV) Vin through the autotransformer, the full-wave rectification, and the filter into a DC voltage. The DC/AC conversion unit 24 can be a full-bridge inverter circuit of a conventional high-power IGBT (Insulated Gate Bipolar Transistor) module, which has a large power margin and is within the output dynamic range. The output impedance is small and the fast response of the 11 201004110. Since the AC/DC conversion unit 21 money DC/AC conversion unit μ can be used for the U know circuit, and is not the focus of this case, it will not be described in detail here. The catch/straight/claw switching unit 21 supplies a DC voltage to charge the magnetic capacitor unit 22. The magnetic capacitor unit 22 of the embodiment can be composed of a plurality of magnetic electric valleys (caps) ~ 'parallel or series-parallel, so that the standby power supply device 200 can provide different output voltages and currents according to applications or requirements of different occasions. And power level. Magnetic capacitors are energy storage components that use ♦ semiconductors as raw materials to achieve high-density and large-capacity storage of electrical energy through physical energy storage under a certain magnetic field. The magnetic capacitor has the characteristics of large output current, small volume, light weight, long life, good charge and discharge capability, and no charge memory effect. Therefore, it is used as a backup power source to replace the conventional lead acid. In addition to reducing the size, weight, and manufacturing cost of the backup power supply unit 200, the battery pack can achieve the advantages of system maintenance free and system life. Therefore, the present invention is characterized in that magnetic capacitors are used as energy storage devices and power sources. It is worth noting that, compared to the general capacitance, the magnetic capacitor can suppress the leakage current by the magnetic field formed at the upper and lower poles, and greatly increase the energy storage density, so it can be used as an excellent energy storage device or power. Source of supply. π Referring to Fig. 3, Fig. 3 is a schematic view showing the comparison of the magnetic capacitor of the present embodiment with other conventional energy storage media. As shown in FIG. 3, since conventional energy storage media (such as conventional batteries or supercapacitors) mainly use chemical energy to store energy, the energy storage density will be significantly better than the general capacitance, and can be applied. Various power supply devices, but at the same time, the instantaneous power output generated by the new moon will be limited by the chemical reaction, and it will not be able to 12 201004110 fast charge and discharge or p ancient sound 眛 total-return rate output, Moreover, the number of charge and discharge cycles is limited, and it is easy to breed each M ^ .t ^ π when overcharged. In contrast, since the Schiff b stored in the magnetic capacitor is all transmitted with f μ + ^, there is a virtual general error, so in addition to the energy storage density of #八: right φ supercapacitor matching, Because it fully retains the characteristics of the capacitor, and more because of the situation, Α 有 有 有 有 ( ( ( ( ( 尚 尚 尚 尚 尚 尚 尚 ( ( ( ( ( ( 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽Q4. St Reference® 4, Fig. 4 is a schematic view showing the structure of a magnetic capacitor in the conventional example of the present invention. As shown in the figure, the magnetic capacitance includes - the first magnetic electrode uq, : electricity? . And a dielectric layer 13〇 located between them. The first magnetic field and the second magnetic electrode 120 are magnetized by a magnetic conductive material and magnetized by an appropriate applied electric field to form a magnetic dipole 115 in the first magnetic electrode η 〇 disk electrode 12G. With 125 ', a magnetic field is formed inside the magnetic capacitor 400, which affects the movement of the charged particles, thereby suppressing the leakage current of the magnetic capacitor. It is particularly emphasized that the arrow direction of the magnetic dipole ΐ5 125 125 in Fig. 4 is only a schematic view. For those skilled in the art, it should be possible to understand that the magnetic dipole 1 15 disk 125 sound team · μ / 丄 丄 #, the actual display is superimposed by a neatly arranged tiny magnetic dipole, and In the present invention, the direction in which the magnetic dipoles ΐ5 and 125 are finally formed is not limited, and may be, for example, directed in the same direction or in different directions. The dielectric layer 130 is used to separate the first magnetic electrode 1H from the second magnetic electrode 12H, and accumulates electric charges at the magnetic electrode 110 and the second magnetic electrode 12, and stores the potential. Embodiment _, the first magnetic electrode and the first magnetic electric 35120 comprise a magnetic conductive material, such as a rare earth element, 13 201004110 The dielectric layer 130 is made of titanium oxide (Ti〇3), titanium ruthenium oxide (such as Nai 3) Or a semiconductor layer, such as silicon oxide (silicon oxide), however, the present invention is not limited thereto, so the first magnetic electrode 110, the second magnetic electrode 12 and the dielectric layer 130 can be appropriately selected according to the needs of the product. Other materials. The analogy shows that the operating principle of the magnetic capacitor of the present invention is as follows. The phenomenon that the resistance of a substance changes under a certain magnetic field is called the "magnetoresistive effect". Magnetic metal and alloy materials generally have such a magnetoresistance phenomenon. Generally, the resistivity of a substance is only slightly reduced in a magnetic field; Under certain conditions, the resistivity is reduced by a considerable amount, which is more than 10 times higher than that of the usual magnetic metal and alloy materials, and can produce a very large magnetoresistance effect. If the Maxweii-Wagner circuit model is further combined, a large magnetic capacitance effect may also occur in the magnetic particle composite medium. In the conventional capacitor, the capacitance value C is determined by the area a of the capacitor, the dielectric constant of the dielectric layer, and the thickness d, as shown in the following equation 1. However, in the present invention, the magnetic capacitor side mainly uses the magnetic poles arranged in the first magnetic electrode m and the second magnetic electrode (3) to form a magnetic field, so that the internally stored electrons are rotated in the same-spin direction, and are neatly arranged. Arranged, so that under the same conditions, 'accommodate more charge' and then increase the storage density of energy. Analogous to the conventional capacitor, the magnetic capacitor 400 3- au a: The operation principle of the electric zero is equivalent to the change of the dielectric constant of the dielectric 30 by the magnetic field, thus causing an increase. Adding c = £〇M ~~d~ —Μ _ _ _ Ο 此外 In addition, in this embodiment, the interface 131 between the _ magnetic electrode 丨丨〇 and the dielectric layer 130 14 201004110 and the second magnetic electrode The interface 132 between the 12 〇 and the dielectric layer 13 均为 is an uneven surface, so that the area of the interface 131 and the interface 132 is larger than the surface of the generally flat surface, and the magnetic capacitance 400 can be further improved. Capacitance value c. Please refer to FIG. 5. FIG. 5 is a schematic structural diagram of a first magnetic electrode m according to another embodiment of the present invention. As shown in FIG. 5, the first magnetic electrode 11 is a multilayer structure including a -first magnetic layer 112, an isolation layer 114, and a direction opposite to the direction of 1 ,, which can further suppress the magnetic capacitance. Leakage current. Further, it is to be emphasized that the structure of the magnetic electrode (4) is not limited to the above-described three-layer structure', and a plurality of magnetic layer spots/a second magnetic layer 116 may be similarly formed. Wherein the isolation layer 114 is composed of a non-magnetic material and the first magnetic layer U2 and the second magnetic layer 116 comprise a magnetic conductive material, and when magnetized, the first magnetic layer is caused by a different applied electric field. 112 and the magnetic dipoles ι 3 and ι 7 in the second magnetic layer m have different directions respectively. For example, in the preferred embodiment of the present invention, the magnetic dipoles, ι 3 non-magnetic layers are continuously staggered and stacked, and then by each The magnetic (four) direction adjustment in the magnetic layer further inhibits the magnetic current 4 〇〇 < leakage current, even to the effect of no leakage current. On the eve of this, since most of the conventional energy storage components are stored in a chemical energy manner, they all need to have a certain size, otherwise the storage efficiency will be greatly reduced. In contrast, the magnetic power side of the present invention is stored in the form of potential energy, and the material (4) is suitable for (10) process, so that the magnetic circuit can be formed by a suitable semiconductor process. Reducing the magnetic 纟 _ body _ weight, by 15 201004110 This production method can be used to describe. Generally, the semiconductor process is achieved, and therefore, FIG. 6 is not referred to. FIG. 6 is a schematic view of a magnetic capacitor group according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic capacitance meters are fabricated on a fragmented substrate by a semiconductor process, and an electrical connection is formed between the plurality of magnetic capacitor sides by a suitable metallization process. Thus, a magnetic capacitor comprising a plurality of magnetic capacitors 400 is used to supply the magnetic capacitor group as an energy storage device or an external device. In this embodiment, the plurality of magnetic wires in the magnetic capacitor 5(9) are electrically connected in an array-like manner. However, the present invention is not limited thereto, and the series connection of the field may be performed according to different voltage or capacitance value requirements. Or parallel 'to meet the power supply needs of a variety of different devices. Referring to FIG. 7 again, it is a schematic diagram of the discharge characteristics of the magnetic capacitor unit of the present embodiment. As can be seen from the discharge curve shown in the figure, the voltage when the magnetic capacitor unit 22 is discharged is not maintained at a certain value as in the case of a general battery. The tendency of the heart to discharge rapidly decreases. Therefore, in the present embodiment, the DC/DC conversion unit 23 must be properly boosted/step-down converted when the magnetic capacitor unit 22 is discharged, so that the DC/DC conversion unit 70 23 can maintain the output at a certain value. The DC voltage is applied to the DC/AC conversion unit 24. Therefore, as shown in FIG. 8, the DC/DC conversion unit 23 of the present embodiment is connected to the magnetic capacitor unit 22, and includes an inductor L, a first transistor connecting the magnetic capacitor unit 22 and the first end P1 of the inductor £. The switch, a second transistor switch Q2 connected to the first end P1 of the inductor L, controls the first 16 201004110 and the second transistor switches Q1, q2 to operate, and - connects the ... terminal. = buck (the third transistor switch Q3 of the 231 terminal 2 of the circuit 231, - the fourth transistor switch Q4 that connects the inductor = the two terminals P2 and a chopper circuit 232, and the third and the second control circuit 233.升Japanese body switch Q3, dust (b〇〇st), Q2 drop: Η control: circuit Μ1 by controlling the first and second transistor switch Q1 off frequency and PWM period, the output of the magnetic capacitor unit 电= set the step-down's dust (b. The circuit 232 boosts the output voltage of the magnetic capacitor = 2 by controlling the switching frequency of the third and the first body switches Q3, Q4 and the pwM period. That is, it is assumed that the DC/AC turn, the input voltage accepted by the 24th is the heart, and the magnetic capacitor unit "storage: the voltage is 30V, then the voltage p 30V when the magnetic capacitor unit 22 is discharged from the beginning gradually drops to 15V. During the period of time, since the discharge dust range (V) is much larger than 12V, as shown by W9, the control circuit will control the off frequency and the PWM period of the first and second transistor switches according to the discharge voltage. The dust control circuit 233 causes the third transistor 1 to turn off Q3, so that the fourth transistor switch Q4 〇N The voltage is stepped down, and the discharge voltage (30V~15V) is outputted as _12V. "And the discharge of the magnetic capacitor J of the magnetic capacitor unit 22 is reduced from 15V to 12", and the gate is as shown in FIG. The control circuit 231 and the boost control circuit 2 B are simultaneously operated to respectively control the switching frequencies of the first, second, p, and fourth transistor switches Qi, q2, Q3, and Q4 corresponding to the discharge voltage, and to perform a small-amplitude buck-boost Adjust 'to make the output electric I dimension 17 201004110 Next, when the discharge voltage of the magnetic capacitor unit 22 drops from 12V to near but less than 12V, for example 12y~10V, the buck control circuit 231 and liter as shown in FIG. The voltage control circuit 232 also operates to simultaneously control the first, second, third, and fourth transistor switches corresponding to the discharge voltage.
Ql、Q2、Q3及Q4的開關頻率及PWM週期,使進行小中5 度的升降壓調整,讓輸出電壓維持在12 V。 而當磁性電容單元22的放電電壓下降至丨0V以下例 如l〇V〜4V的這段時間,如圖12所示,降壓控制電路231 令第一電晶體開關Q1 ON,令第二電晶體開關Q2 〇FF,且 升壓控制電路232根據放電電壓控制第三及第四電晶體開 關Q3、Q4的開關頻率及pwm週期以進行升壓,使輸出電 壓維持在12V。 上述直流/直流轉換單元23可以直接採用現有的例如 UNEAR TECHN0L0GY生產之型號為LTC378〇的升降壓轉 換器來實現。 藉由直流/直流轉換單元23搭配磁性電容單元21,就 可以克服磁性電容單元21輸出電壓(放電電壓)不穩定的情 況,而能提供一固定電壓給後端的直流/交流轉換單元24, 使據以產生一交流電輸出。 且控制單元25在本實_中是__⑽關,其可選擇 連接交流市電或直流/交流轉換單元24,在交流市電正常供 電情況下’開關25會與交流市電連接,以提供交流市電认 後端的負載,而當交流市電突然斷電時,開關25會被觸發 並切換至與直流/交流轉換單元24連接,以使用磁性電容單 18 201004110 元22儲存之電力所轉換之交流電給負載。 再者為了保4磁性電谷單元22中的磁性電容(組), 使不致因輪出/入電流過大而燒燬,如圖13所示,本實施例 之磁性電容單元22中除了磁性電容(組)221外,還包括一過 電流保護電路222。過電流保護電路222中包含—與磁性電 容(組)221的正極端連接的保險絲223及一保護電路 一串接在磁性電容(組)221的負極端並受保護電路224控制 的碣關225以及連接在保護電路224與磁性電容(組)221 的負極端之間的電阻226。其中保險絲223在磁性電容(組 )221充/放電過程中流經電流過大時會過熱燒斷,以保護磁 性電容(組)22!;電阻226彳貞測磁性電 電)電流罐賴⑷24M_⑷24發現== 流突然變大時可以立即切斷開關225,使磁性電容(組如 停止供電以保護磁性電容(組)221不致因輸出電流過大而燒 燦0 此外’參見圖14所示,是本發明之備用電源裝置的第 二較佳實施例’本實施例之備用電源裝置彻可做各 供電裝置(EPS)使用,且與上述第-實施例唯-不同的是: 本實施例之備用電源裝署q Ο。A 1 t 电尽衮置300不包含控制單元25, :裝V::直單:接受交流市電輸入,並經交流/直流轉: 二轉成直&電後對磁性電容單元32充電,使磁性 容早疋32儲存一定電力,當需要使用備用電源裝置 電時,磁性電容單元& 1,' 33 t皮放電,並透過直流/直流轉換 …3轉換成一疋電虔輸出給直流/交流轉換單Α 34,使 19 201004110 據以產生-交流電輪出給與其連接的負載使用。 …‘上所述’上述實施例利用磁性電容做為儲能元件, 並搭配-直流/直流轉換單元對磁性電容之放電電塵進行適 當升降壓轉換,以輸出一固定直流電壓供直流/交流轉換單 兀24進行交/直流轉換,而能達到減少備用電源裝置細及 備用電源裝置300的整體體積、重量和製造成本,並提高 能量儲存效率、儲存容量和㈣壽命,實現免維護,避免 化學儲能存在的記憶效應和污染問題,改善習知備用電源 裝置(UPS)及緊急供電裝置(EPS)的整體性能。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請:利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖; 圖 1繪示習知-種後備式不斷電系統的電路方塊示意 電源裝置的一較佳實施例之電路 圖2繪示本發明備用 方塊不意圖; 圖3繪示本實施例之磁性電容與其他習知能量儲存媒 介之比較示意圖; ' 圖4繪示本實施例中磁性電容之結構示意圖; 圖5繪示本實施狀磁性電容另一實施例巾第一磁性 電極之結構示意圖; 圖6繪示本發明另一實施例中一磁性電容組之示意圖 20 201004110 圖7繪示本實施例之磁性電容單元的充放電特性曲線圖 圖8繪示本實施例之直流/直流轉換單元的細部電路圖 9The switching frequency and PWM period of Ql, Q2, Q3 and Q4 enable the buck-boost adjustment of 5 degrees in the middle to maintain the output voltage at 12 V. When the discharge voltage of the magnetic capacitor unit 22 drops below 丨0 V, for example, 10 〇 V 〜 4 V, as shown in FIG. 12, the buck control circuit 231 turns on the first transistor switch Q1 to make the second transistor The switch Q2 〇 FF, and the boost control circuit 232 controls the switching frequency and the pwm period of the third and fourth transistor switches Q3 and Q4 according to the discharge voltage to perform boosting, and maintains the output voltage at 12V. The above-described DC/DC converting unit 23 can be directly realized by an existing LWR378 〇 buck-boost converter such as UNEAR TECHN0L0GY. By the DC/DC conversion unit 23 being matched with the magnetic capacitor unit 21, the output voltage (discharge voltage) of the magnetic capacitor unit 21 can be overcome, and a fixed voltage can be supplied to the DC/AC conversion unit 24 at the rear end. To produce an AC output. And the control unit 25 is __(10) off in the actual _, which can be connected to the AC mains or DC/AC conversion unit 24, and the switch 25 will be connected with the AC mains in the case of normal AC power supply to provide the AC mains. The load on the terminal, and when the AC mains power is suddenly turned off, the switch 25 is triggered and switched to be connected to the DC/AC conversion unit 24 to use the AC power converted by the power stored in the magnetic capacitor single 18 201004110 22 to the load. In addition, in order to protect the magnetic capacitors (groups) in the magnetic field unit 22, the burn-in/in current is not excessively burned, as shown in FIG. 13, the magnetic capacitor unit 22 of the present embodiment is replaced by a magnetic capacitor (group). In addition to 221, an overcurrent protection circuit 222 is also included. The overcurrent protection circuit 222 includes a fuse 223 connected to the positive terminal of the magnetic capacitor (group) 221 and a protection circuit connected in series to the negative terminal of the magnetic capacitor (group) 221 and controlled by the protection circuit 224. A resistor 226 is connected between the protection circuit 224 and the negative terminal of the magnetic capacitor (set) 221. The fuse 223 will overheat and blow when the current exceeds the current during the charging/discharging process of the magnetic capacitor (group) 221 to protect the magnetic capacitor (group) 22!; the resistance 226 is measured by the magnetic electric current) (4) 24M_(4)24 found == flow When the switch suddenly becomes large, the switch 225 can be cut off immediately, so that the magnetic capacitor (the group stops power supply to protect the magnetic capacitor (group) 221 from being burnt due to excessive output current. Further, see FIG. 14 is the backup power supply of the present invention. The second preferred embodiment of the device 'the standby power supply device of the present embodiment can be used as the power supply device (EPS), and is different from the above-mentioned first embodiment: the standby power supply assembly of the present embodiment is Ο A 1 t power exhaust device 300 does not include control unit 25, : install V:: straight single: accept AC mains input, and exchange AC/DC: two turn into direct & electric, charge magnetic capacitor unit 32, The magnetic capacity is stored earlier than 32 to store a certain amount of power. When it is necessary to use the standby power supply device, the magnetic capacitor unit & 1, '33 t skin discharge, and through DC / DC conversion ... 3 converted into a power output to DC / AC Conversion order 34, 19 201004110 According to the production - the AC wheel is used for the load connected to it. The above embodiment uses the magnetic capacitor as the energy storage component, and the DC/DC conversion unit is used to discharge the electrostatic dust of the magnetic capacitor. Appropriate buck-boost conversion to output a fixed DC voltage for DC/AC conversion unit 24 for AC/DC conversion, thereby reducing the overall size, weight and manufacturing cost of the backup power supply unit and the backup power supply unit 300, and increasing energy Storage efficiency, storage capacity and (IV) life, maintenance-free, avoiding memory effects and pollution problems in chemical energy storage, improving the overall performance of conventional backup power supply units (UPS) and emergency power supply units (EPS). It is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the application of the present invention and the scope of the invention are still Within the scope of the invention patent. [Simplified illustration of the diagram] Figure 1 shows a conventional-type backup UPS system 2 is a circuit diagram showing a preferred embodiment of a power supply device. FIG. 2 is a schematic diagram of a spare block of the present invention; FIG. 3 is a schematic diagram showing a comparison between the magnetic capacitor of the present embodiment and other conventional energy storage media; FIG. 5 is a schematic structural view of a first magnetic electrode of another embodiment of the magnetic capacitor of the embodiment; FIG. 6 is a schematic diagram of a magnetic capacitor group according to another embodiment of the present invention. 7 is a graph showing the charge and discharge characteristics of the magnetic capacitor unit of the embodiment. FIG. 8 is a detailed circuit diagram of the DC/DC converter unit of the embodiment.
圖9〜圖12 _示本實施例之直流/直流轉換單元 刼作杈式下的控制訊號波形圖; J 圖 13给-丄+ :及 、、’g不本貫施例之一過電流保護電路的詳細電路圖 方塊圖 圖14繪不本發明備用電源裝置的一較佳實施例 之電路 21 201004110 【主要元件符號說明】 200備用電源裝置 21 交流/直流轉換單元 23 直流/直流轉換單元 25 控制單元 23 1降壓控制電路 233升壓控制電路 300備用電源裝置 31 交流/直流轉換單元 33 直流/直流轉換單元 110第一磁性電極 11 2第一磁性層 115、125、113、117 磁偶極 120第二磁性電極 132介面 P1 第一端 400磁性電容 221磁性電容組 223保險絲 225開關 22 磁性電容單元 24 直流/交流轉換單元 232濾波電路 32 磁性電容單元 34 直流/交流轉換單元 114隔離層 116第二磁性層 130介電層 P2 第二端 5 0 0磁性電容組 222過電流保護電路 224保護電路 226電阻 229 to FIG. 12 show the control signal waveform diagram of the DC/DC conversion unit of the present embodiment; J FIG. 13 gives -丄+ : and ,, and the 'g is not one of the embodiments. Detailed circuit diagram of the circuit FIG. 14 illustrates a circuit 21 of a preferred embodiment of the standby power supply device of the present invention. 201004110 [Explanation of main components] 200 standby power supply unit 21 AC/DC conversion unit 23 DC/DC conversion unit 25 Control unit 23 1 buck control circuit 233 boost control circuit 300 backup power supply device 31 AC/DC conversion unit 33 DC/DC conversion unit 110 first magnetic electrode 11 2 first magnetic layer 115, 125, 113, 117 magnetic dipole 120 Two magnetic electrodes 132 interface P1 first end 400 magnetic capacitor 221 magnetic capacitor group 223 fuse 225 switch 22 magnetic capacitor unit 24 DC / AC conversion unit 232 filter circuit 32 magnetic capacitor unit 34 DC / AC conversion unit 114 isolation layer 116 second magnetic Layer 130 dielectric layer P2 second end 5 0 0 magnetic capacitor group 222 overcurrent protection circuit 224 protection circuit 226 resistor 22