200947182 九、發明說明: 【發明所屬之技術領域】 本發明係指一種用來進行溫度補償之參考電壓調整電路及相 關傳送機’尤指一種藉由產生溫度補償電流以調整後級放大器參 考電壓之參考電壓調整電路及相關傳送機。 【先前技術】 〇 在常見的無線通訊系統中,射頻信號係透過傳送機來傳送,以 進行無線通訊。請參考第〗圖,第丨圖為一習知傳送機10之功能 方塊圖。傳送機10包含有一基頻處理單元110、-數位至類比轉 換器120、一調變單元13〇及一功率放大器14〇。基頻處理單元 用來產生數娜式之細錢,並透魏位至_讎器12〇將 數位形式之基齡轉換細比形式之基號。罐單元⑽ 用來將數位至類比轉換器12〇所輸出之基頻訊號與一高頻載波進 ❹行調變’經由功率放大器⑽將調變信號之功率放大後,透過天 線發送射頻信號。 在實際傳送機電路中,由於電阻及電晶體元件常會因溫度變化 ,改變其電路·,因此傳職巾各電料元之放大器增益亦會 文到溫度影響’導致輸出功率飄移或產生錯誤的射頻_。 因此,習知技術—般會藉由定轉導電路,產生固定的共模參考 電壓’以避免放大H增益受麻度變化的影響。舉例來說,請參 200947182 考第2圖’第2圖為習知傳送機中之一調變單元230之架構示意 圖。調變單元230包含有一第一濾波器231、一第二濾波器232、 一定轉導電路233以及一放大器234。第一濾波器231及第二濾波 器232主要用來作為波形整形之用,以使一前級數位至類比轉換 器輸出之訊號符合所需之頻譜型式。定轉導電路233透過一電阻 R1耦接於放大器234之一輸入端(即電晶體Ml之閘極),用來提 供放大器固定大小的共模參考電壓Vx,以避免溫度效應對放大器 〇 的增益產生影響。定轉導電路之詳細運作方式係本領域具通常知 識者所知,於此不贅述。放大器234則可以是各種形式之放大器 電路(如共源級放大器),用來實現混波器(Mixer)等調變電路, 以對濾波器所輸出之基頻訊號進行調變處理。 在調變單元230中,電阻R1主要用來作為阻擂交流形式之基 頻訊號之用,以避免交流信號流入定轉導電路而造成信號衰減, Q 因此其一般需以大電阻值實現,然而如此將導致晶片面積及成本 的提高。 為了節省晶片面積及耗電量,習知技術另可藉由被動濾波器取 代主動濾波器’以節省晶片中運算放大器的數量。請參考第3圖, 第3圖為習知傳送機中之一調變單元33〇之架構示意圖。相較於 第2圖’调變單元33〇係藉由一電阻μ及一電容a實現一低通 濾波器332,以取代第2圖中之低通濾波器232,進而達到相同波 形整形的目的。在此情況下,透過分壓定律,放大器334之偏壓 200947182 其中Vcm表示第一濾200947182 IX. Description of the invention: [Technical field of the invention] The present invention relates to a reference voltage adjustment circuit for performing temperature compensation and a related conveyor 'in particular, a method for generating a temperature compensation current to adjust a reference voltage of a subsequent stage amplifier Reference voltage adjustment circuit and related conveyor. [Prior Art] 〇 In a common wireless communication system, RF signals are transmitted through a transmitter for wireless communication. Please refer to the figure, which is a functional block diagram of a conventional conveyor 10. The transmitter 10 includes a baseband processing unit 110, a digital to analog converter 120, a modulation unit 13A, and a power amplifier 14A. The baseband processing unit is used to generate the fine money of the number Na, and the base number of the digit form is converted to the base number of the fine form. The tank unit (10) is used to modulate the digital frequency signal output from the digital to analog converter 12A with a high frequency carrier. The power of the modulated signal is amplified by the power amplifier (10), and the RF signal is transmitted through the antenna. In the actual conveyor circuit, since the resistor and the transistor component often change their circuit due to temperature changes, the amplifier gain of each energy element of the transmission towel will also affect the temperature, causing the output power to drift or generate an erroneous RF. _. Therefore, conventional techniques generally generate a fixed common mode reference voltage by means of a fixed transconductance circuit to avoid the amplification H gain being affected by changes in the hemp. For example, please refer to Figure 2 of the 200947182 test. Figure 2 is a schematic diagram of the structure of one of the modulation units 230 in the conventional conveyor. The modulation unit 230 includes a first filter 231, a second filter 232, a certain transconductance circuit 233, and an amplifier 234. The first filter 231 and the second filter 232 are mainly used for waveform shaping so that the signal output from a pre-stage to analog converter conforms to the desired spectral pattern. The fixed transconductance circuit 233 is coupled to one input of the amplifier 234 (ie, the gate of the transistor M1) through a resistor R1 for providing a fixed-size common-mode reference voltage Vx of the amplifier to avoid the gain of the amplifier by the temperature effect. Have an impact. The detailed operation of the fixed transducing circuit is known to those skilled in the art and will not be described herein. The amplifier 234 can be any type of amplifier circuit (such as a common source amplifier) for implementing a modulation circuit such as a mixer to modulate the fundamental frequency signal output by the filter. In the modulation unit 230, the resistor R1 is mainly used as a baseband signal in the form of a blocking AC to avoid the signal attenuation caused by the AC signal flowing into the constant conducting circuit, so Q generally needs to be realized with a large resistance value. This will result in an increase in wafer area and cost. In order to save wafer area and power consumption, the prior art can replace the active filter by a passive filter to save the number of operational amplifiers in the wafer. Please refer to FIG. 3, which is a schematic diagram of the structure of a modulation unit 33〇 in a conventional conveyor. Compared with the modulation unit 33 in FIG. 2, a low-pass filter 332 is implemented by a resistor μ and a capacitor a instead of the low-pass filter 232 in FIG. 2, thereby achieving the same waveform shaping. . In this case, the bias voltage of the amplifier 334 is transmitted through the voltage division law 200947182 where Vcm represents the first filter
Vx 可藉由下式表示:1/r_(R2xVb) + (RUVCrn) RI + R2 波器331所輸出之共模電壓。然而,由於電阻R1仍需以大電阻實 現(即R1»R2),此時放大器之偏壓Vx將趨近第一遽波器别 所輸出之賴電壓Vem ’如此料致定轉導電路失去作用。 【發明内容】 本發明之目的即在域供—種絲進行溫度鶴之參考電壓 ❹調整電路及其相關傳送機裝置。 本發明係揭露-種用來進行溫度補償之參考麵調整電路, 其包含有-接收端用來接收一共模電壓;一輸出端用來輸出一參 考賴,·-爾電流產生單元用來根據溫度變化,產生一溫度補 償電流;以及-電阻,其一端輕接於該接收端,另一端輕接二亥 輸出端及該補償電流產生單元,用來根據該溫度補償電流,產生 ❹-補賴;其巾職出断輸出之該參考輕係 該補償電壓之一總和。 、电爱畀 本發明另猶-種具溫度補償舰之舰機裝置,其包含 -濾、波器、-放大器以及—參考電壓調整電路。該參寺電壓· 電路搞接賊舰$無放A|f ,其包含有Vx can be expressed by the following equation: 1/r_(R2xVb) + (RUVCrn) RI + R2 The common mode voltage output by the waver 331. However, since the resistor R1 still needs to be realized with a large resistance (ie, R1»R2), the bias voltage Vx of the amplifier will approach the voltage Vem of the output of the first chopper, so that the transduction circuit is disabled. . SUMMARY OF THE INVENTION The object of the present invention is to provide a reference voltage ❹ adjustment circuit for temperature cranes and a related conveyor device in a field supply and seeding. The invention discloses a reference plane adjusting circuit for temperature compensation, which comprises a receiving-receiving end for receiving a common mode voltage, an output terminal for outputting a reference, and a current generating unit for using the temperature according to the temperature. Changing, generating a temperature compensation current; and - resistance, one end is lightly connected to the receiving end, the other end is lightly connected to the second output end and the compensation current generating unit for compensating the current according to the temperature, generating a ❹-compensation; The reference for the output of the towel is the sum of the compensation voltages. The invention is also a weapon device for a temperature compensation ship, which comprises a filter, a wave filter, an amplifier and a reference voltage adjustment circuit. The temple voltage circuit is connected to the thief ship $ no release A|f, which contains
收誠波器所輸出之一共模電壓’·一輸出端用來輸出 塵,以驅_放大H ;-顺電流赵單元織於 來根據溫度變化,產生―溫度補償電流;以及H 200947182 接於該魏端,另-_接_輪㈣ 用來根據該溫度麵賴,產生—靖_電4生卓兀 輸出之該參考賴制共模f_ 、巾屬出端所 行溫度補償 |貝电壓之一總和,用以進 【實施方式】 請參考第4圖,第4圖為本發明用於—傳送機之一調變單元4〇 ❹之不意圖。調變單元40包含有一渡波器41、一放大器42以及一 參考電壓調整電路43。濾、波器41用來對1級數位比轉換器 輸出之訊號進行滤波,以達到波形整形的作用。放大器42可以是 各種形式之放大H電路(如共職放大器),用來實現混波器 (Mixer)等調變電路,以對渡波器41所輸出之基頻訊號進行混 波或放大等調魏理。參考賴調整電路43输_波器41與 放大器42之間,用來根據溫度變化,調整放大器42之一共模參 考電壓Vx,以補彳員溫度效應對放大器增益所產生的影響。 其中,參考電壓調整電路43另包含有一補償電流產生單元435 及一電阻R3。補償電流產生單元435用來根據溫度變化,產生一 溫度補償電流Ic。電阻R3之一端耦接於濾波器41,另一端耦接 於補償電流產生單元435及放大器42之輸入端(即電晶體Ml之 閘極)’用來根據補償電流產生單元435所輸出之溫度補償電流 Ic ’產生一補償電壓Vc。在此情形下,放大器42之共模參考電壓 Vx將等於濾波器41所輸出之共模電壓vcm與補償電壓Vc之一 200947182 總和。 因此’本發明可藉由補償電流產生單元435所產生之溫度補償 電流Ic ’調整放大器之共模參考電壓νχ,以補償溫度效應對放大 器增益所產生之影響。此外,在本發明中,電阻们不是作為阻擋 父流訊號之用,因此其可藉由電路中既有的電阻或額外的一小電 阻實現,以節省晶片生產成本。 ❹ 舉例來說,請參考第5圖,第5圖為第4圖中參考電壓調整電 路43之實施例示意圖。如第5圖所示,補償電流產生單元435可 由一第一電流源CS1及一第二電流源CS2所組成。第一電流源 CS1用來提供與絕對溫度成正比(Pr〇p〇rti〇nalt〇Abs〇luteReceive one of the common mode voltages output by the CV. · One output is used to output dust to drive _ to amplify H; - The forward current is woven to generate a temperature compensation current according to the temperature change; and H 200947182 is connected to the Wei Duan, another - _ _ _ wheel (four) is used to generate the _ _ _ electric 4 sheng 兀 output of the reference based on the temperature of the common mode f_, the towel is the end of the temperature compensation | one of the shell voltage Sum. For the purpose of referring to FIG. 4, FIG. 4 is a schematic diagram of the modulation unit 4 for one of the conveyors of the present invention. The modulation unit 40 includes a ferrite 41, an amplifier 42, and a reference voltage adjustment circuit 43. The filter and waver 41 is used to filter the signal outputted by the 1-stage digital ratio converter to achieve waveform shaping. The amplifier 42 can be various forms of amplifying H circuits (such as a common-purpose amplifier) for implementing a modulation circuit such as a mixer to mix or amplify the fundamental frequency signal outputted by the waver 41. Wei Li. The reference adjustment circuit 43 is connected between the wave converter 41 and the amplifier 42 for adjusting the common mode reference voltage Vx of the amplifier 42 according to the temperature change to compensate for the influence of the temperature effect on the amplifier gain. The reference voltage adjustment circuit 43 further includes a compensation current generating unit 435 and a resistor R3. The compensation current generating unit 435 is for generating a temperature compensation current Ic in accordance with the temperature change. One end of the resistor R3 is coupled to the filter 41, and the other end is coupled to the compensation current generating unit 435 and the input end of the amplifier 42 (ie, the gate of the transistor M1) for compensating the temperature according to the output of the compensation current generating unit 435. The current Ic' produces a compensation voltage Vc. In this case, the common mode reference voltage Vx of the amplifier 42 will be equal to the sum of the common mode voltage vcm outputted by the filter 41 and one of the compensation voltages Vc 200947182. Therefore, the present invention can adjust the common mode reference voltage ν 放大器 of the amplifier by compensating the temperature compensation current Ic ′ generated by the current generating unit 435 to compensate for the influence of the temperature effect on the gain of the amplifier. Moreover, in the present invention, the resistors are not used as blocking parent signals, so they can be implemented by existing resistors or an additional small resistor in the circuit to save wafer production costs. ❹ For example, please refer to FIG. 5, which is a schematic diagram of an embodiment of the reference voltage adjusting circuit 43 in FIG. As shown in FIG. 5, the compensation current generating unit 435 can be composed of a first current source CS1 and a second current source CS2. The first current source CS1 is used to provide a proportional to the absolute temperature (Pr〇p〇rti〇nalt〇Abs〇lute
Temperature,PTAT)之一第一電流IPTAT ;第二電流源⑶用來 汲取與絕對溫度成無關之一第二電流XBG,或稱參考能隙電流 (BandGapCurrent);而第一電流IPTAT與第二電流IBG之一差 值則流向電阻R3形成溫度補償電流Ic。其中,與絕對溫度成正比 之電流及參考能隙電流之產生方式,係本領域具通常知識者所 知,於此不贅述。在此情形下,第一電流JPTAT與第二電流迅G 之差值所形成之溫度補償電流1〇亦與絕對溫度成正比,或稱溫度 補償電流Ic具有正溫度係數。 一般來說,放大器之增益會隨著溫度上升而降低,例如電晶體 Ml之轉導會隨著溫度上升而降低,因此本發明可藉由具有正:度 200947182 係數之溫度補償電流,補償溫度效應對放大器增益所造成的影 響,以避免傳送機產生錯誤的射頻訊號或輸出功率飄移的情形發 生。 此外,在實際實現補償電流產生單元435時,本發明另可藉由 適當地配置第一電流源CS1或第二電流源CS2之電晶體大小或數 量,以調整溫度補償電流之溫度係數,進而達到放大器增益的補 〇 償效果。 請注意,上述實施例僅用來作為本發明之一舉例說明,本領域 具通常知識者當可根據實際需求作適當地修改,而不限於此。例 如’第一電流源CS1所產生之第一電流可以是一與絕對溫度無關 之參考能隙電流,而第二電流源CS2所產生之第二電流可以是一 與絕對溫度成正比之電流。如此一來,第一電流與第二電流之差 值將產生一具負溫度係數之溫度補償電流。或者,第一電流及第 0 - 一電流皆可藉由與絕對溫度成正比之電流實現,以增加調整補償 電流溫度係數之彈性。如此相對應變化,皆屬本發明之範圍。 此外’本發明參考電壓調整電路並非侷限於傳送機之應用,而 可應用於任何需對放大器增益進行溫度補償之電路架構,其亦屬 於本發明之範圍。另一方面,請參考第6圖,第6圖為本發明用 於一傳送機之—調變單元60之實施例示意圖。相較於第4圖,調 變單το 60另包含有一電容C3,用來搭配電阻R3實現一被動濾波 200947182 ==__觀蝴量,進而節省晶片 μ上所述’本發㈣藉由產生隨溫度變化之溫度補償電流,控 制=大11之越參考電壓,_償溫度效朗放大n增益所產生 之办曰此外’本發明之電路架構可同時節省習知傳送機架構中 所需使用運算放大器的數量,進而節省晶片面積及耗電量。 Ο 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為一習知傳送機之功能方塊圖。 =2圖及第3圖為習知傳送機中之調變料之架構示意圖。 =4圖為本發日賴於—傳送機之一調變單元之示意圖。 U = 5圖為第4圖中參考電壓調整電路之實施例示意圖。 6圖為本發_於-傳送機之—調變單元之實施例示意圖。 【主要元件符號說明】 10 110 120 傳送機 基頻處理單元 數位至類比轉換器 s周變單元 130 200947182Temperature, PTAT) one of the first currents IPTAT; the second current source (3) is used to draw a second current XBG, or reference energy gap current (BandGapCurrent), which is independent of the absolute temperature; and the first current IPTAT and the second current A difference in IBG flows to resistor R3 to form a temperature compensation current Ic. Among them, the manner in which the current and the reference bandgap current are proportional to the absolute temperature are known to those skilled in the art and will not be described herein. In this case, the temperature compensation current 1〇 formed by the difference between the first current JPTAT and the second current fast G is also proportional to the absolute temperature, or the temperature compensation current Ic has a positive temperature coefficient. In general, the gain of the amplifier decreases as the temperature rises. For example, the transduction of the transistor M1 decreases as the temperature rises. Therefore, the present invention can compensate the temperature effect by the temperature compensation current having a positive:200947182 coefficient. The effect on the gain of the amplifier is to avoid the situation where the transmitter generates an erroneous RF signal or the output power drifts. In addition, when the compensation current generating unit 435 is actually implemented, the present invention can further adjust the temperature coefficient of the temperature compensation current by appropriately configuring the size or the number of the transistors of the first current source CS1 or the second current source CS2. The complement compensation effect of the amplifier gain. It should be noted that the above-described embodiments are only used as an example of the present invention, and those skilled in the art can appropriately modify them according to actual needs, and are not limited thereto. For example, the first current generated by the first current source CS1 may be a reference band current independent of the absolute temperature, and the second current generated by the second current source CS2 may be a current proportional to the absolute temperature. As a result, the difference between the first current and the second current will produce a temperature compensation current with a negative temperature coefficient. Alternatively, the first current and the zeroth current can be achieved by a current proportional to the absolute temperature to increase the flexibility of adjusting the temperature coefficient of the compensation current. Such corresponding changes are within the scope of the invention. Further, the reference voltage adjusting circuit of the present invention is not limited to the application of the transmitter, but can be applied to any circuit architecture that requires temperature compensation of the amplifier gain, which is also within the scope of the present invention. On the other hand, please refer to Fig. 6, which is a schematic view of an embodiment of a modulation unit 60 for a conveyor of the present invention. Compared with the fourth figure, the modulation single το 60 further includes a capacitor C3, which is used to implement a passive filtering with the resistor R3. The 4747182 ==__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The temperature compensates the current as the temperature changes, the control = the reference voltage of the larger 11 , the temperature effect is increased by the amplification of the n gain, and the circuit structure of the present invention can simultaneously save the required operation in the conventional transmitter architecture. The number of amplifiers, which in turn saves wafer area and power consumption. The above is only the preferred embodiment of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention. [Simple description of the drawing] Fig. 1 is a functional block diagram of a conventional conveyor. The Fig. 2 and Fig. 3 are schematic diagrams showing the structure of the modulated material in the conventional conveyor. The =4 picture is a schematic diagram of the modulation unit of one of the transmitters. U = 5 is a schematic diagram of an embodiment of the reference voltage adjustment circuit in FIG. 6 is a schematic diagram of an embodiment of a modulation unit of the present invention. [Main component symbol description] 10 110 120 Transmitter Fundamental processing unit Digital to analog converter s Zhou variable unit 130 200947182
140 230、330、40、 23 卜 232、331 '233 > 333 234、334、42 R1 ' R2 > R3 C 卜 C2、C3 © Ml Vx Vcm 43 435 Ic Vc CS1 ' CS2 ❹ IPTAT IBG 功率放大器 60 調變單元 、332、41濾波器 定轉導電路 放大器 電阻 電容 電晶體 共模參考電壓 共模電壓 參考電壓調整電路 補償電流產生單元 溫度補償電流 補償電壓 電流源 與絕對溫度成正比之電流 能隙參考電流 12140 230, 330, 40, 23 Bu 232, 331 '233 > 333 234, 334, 42 R1 ' R2 > R3 C Bu C2, C3 © Ml Vx Vcm 43 435 Ic Vc CS1 ' CS2 ❹ IPTAT IBG Power Amplifier 60 Modulation unit, 332, 41 filter fixed transconductance circuit amplifier resistance capacitance transistor common mode reference voltage common mode voltage reference voltage adjustment circuit compensation current generation unit temperature compensation current compensation voltage current source proportional to absolute temperature current gap reference Current 12