W 21122twf.doc/d 200939339 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種晝素結構、彩色濾光基板及其相 應的製方法’且特別是有關於一種以廢印(imprinting)方 式來製造各種晝素結構與彩色濾光基板之製造方法。 【先前技術】 液BB顯示器由於具有高畫質、空間利用效率佳、低消 ❹ 耗功率、無輻射等優越特性,因而已逐漸成為市場之主流。 般液日日顯示器可分為穿透式(transmissive)、反射式 (―)’以及半穿透半反射(transflec㈣式三大類。以 半穿透半反射式液晶顯示器來說,其顯示區之晝素一般都 會有穿透區與反射區。通常半穿透半反射式液晶顯示器主 要包3半穿透半反射式液晶顯示面板,此一液晶顯示面 板則通常由一對互相疊合的主動元件陣列基板與對向基 板、以及兩基板間所夾的液晶層所組成,並且具有分別對 應於各主動兀件的多個晝素,各畫素通常同時具有穿透區 與反射II ’主動元件為—控制各晝素接收信號的開關元 件,通常為—薄膜電晶體(TFT)。特別的是,半穿透半 反射式液晶顯示面板各畫素之穿透區與反射區通常是分別 對應兩種不同之晶穴間距(eellgap),即液晶層厚度,此 種結,-般亦稱為雙重間距(dualgap)的晝素結構。 詳田地說,主動元件陣列基板在反射區中會形成 ,化層與反射電極,而平坦化層之表面會形成凸起物 mnph其中,反射電極配置於凸祕上並在剖面結構 5 V 21122twf.doc/d 200939339 上呈現凸起/凹陷的波浪狀’以利將光線充分地散射至外 界。此外’主動元件陣列基板在穿透區中會有透明之畫素 電極’一般而言,在穿透區與在反射區光線穿過的光程 (opticalpath)不同’在反射區光線由於入射液晶層後再經過 反射而出射液晶層’故在穿透區與反射區兩個區域的液晶 層厚度相同時’其光程大約會是穿透區的光線經過液晶層 直接出射液晶層的兩倍,故光線的相位延遲(phase ❹ retardatlon)也是穿透區的兩倍’如此一來為了使穿透區與 反射區能顯示同樣的灰階,透明之晝素電極所對應之晶穴 間距(cell gap)與反射電極所對應之晶穴間距並不會相同, 後者通常僅約為前者的1/2。實務上,在半穿透半反射式 液晶顯示器的主動元件陣列基板製造過程中,除了會先對 覆蓋著控制晝素開關的主動元件而具有一定厚度的平坦化 層進行一道光罩製程,以使平坦化層表面呈現凸起/凹陷 狀。然後需對此平坦化層再進行第二道光罩製程,以移除 穿透區内之平坦化膜層。這樣才能使穿透區與反射區分別 ® 對應兩種不同的晶穴間距,並且得到反射區的平坦化膜層 表面的凸起物結構。 、曰 由於進行光罩製程的次數會直接影響到整個液晶顯 示器的製造成本與製程時間、光罩製程的増加更會降低製 程的良率,因此各家製造廠商無不朝向縮減光罩製程的次 數來發展。為了提升產能(thr〇ughput)、增加良率並降低 製造成本,傳統之光罩製程實有改進之必要。 【發明内容】 6 200939339 v 21122twf.doc/d 本發明其中之一目的是提供一種半穿透半反射型畫 素結構的製造方法,以有效縮短製程時間,並提升產能。 本發明其中之一目的是提供一種畫素結構的製造方法以 有效縮短製程時間,並提升產能。 本發明其中之一目的是提供一種彩色濾光基板,其可 提升彩色濾光基板之光學效果。W 21122twf.doc/d 200939339 IX. Description of the Invention: [Technical Field] The present invention relates to a halogen structure, a color filter substrate and a corresponding manufacturing method thereof, and in particular to a waste printing ( Imprinting) method for manufacturing various halogen structures and color filter substrates. [Prior Art] Since the liquid BB display has superior characteristics such as high image quality, good space utilization efficiency, low power consumption, and no radiation, it has gradually become the mainstream of the market. The liquid-liquid daily display can be divided into three types: transmissive, reflective (-), and transflec (four). In the case of a transflective liquid crystal display, the display area is the same. Generally, there are penetrating regions and reflecting regions. Usually, the transflective liquid crystal display mainly comprises a transflective liquid crystal display panel, and the liquid crystal display panel is usually composed of a pair of active device arrays stacked on each other. The substrate and the opposite substrate, and the liquid crystal layer sandwiched between the two substrates, and having a plurality of halogens respectively corresponding to the active elements, each pixel usually has a penetrating region and a reflective II 'active element at the same time- The switching element for controlling the receiving signals of each element is usually a thin film transistor (TFT). In particular, the penetrating area and the reflecting area of each pixel of the transflective liquid crystal display panel generally correspond to two different types respectively. The hole spacing (eellgap), that is, the thickness of the liquid crystal layer, such a junction, is also commonly referred to as a dual-gap matrix structure. In detail, the active device array substrate is formed in the reflective region. And the reflective layer and the reflective electrode, and the surface of the planarization layer forms a protrusion mnph, wherein the reflective electrode is disposed on the convex surface and presents a convex/recessed wave shape on the cross-sectional structure 5 V 21122 twf.doc/d 200939339 In order to fully scatter the light to the outside world. In addition, the active element array substrate has a transparent pixel electrode in the penetration region. Generally, the optical path passes through the penetration region and the light passing through the reflection region. Different 'lights in the reflective area are reflected by the liquid crystal layer and then emitted to reflect the liquid crystal layer'. Therefore, when the thickness of the liquid crystal layer in the two areas of the transmissive area and the reflective area is the same, the optical path of the light-transmitting area is about the light passing through the liquid crystal. The layer directly emits twice as much as the liquid crystal layer, so the phase retardation of the light is also twice that of the penetrating region. Thus, in order to make the penetrating region and the reflecting region display the same gray scale, the transparent germanium electrode The corresponding cell gap is not the same as the cell spacing corresponding to the reflective electrode, and the latter is usually only about 1/2 of the former. In practice, the active in the transflective liquid crystal display is active. In the manufacturing process of the component array substrate, a masking process is performed on the planarization layer having a certain thickness covering the active component of the control pixel switch, so that the surface of the planarization layer is convex/recessed. The planarization layer performs a second mask process to remove the planarization film layer in the penetration region, so that the penetration region and the reflection region respectively correspond to two different hole spacings, and the reflection region is obtained. Flattening the structure of the protrusion on the surface of the film layer. 曰The number of times the mask process is performed directly affects the manufacturing cost and process time of the entire liquid crystal display, and the process of the mask process reduces the yield of the process. Manufacturers are all developing towards reducing the number of reticle processes. In order to increase production capacity (thr〇ughput), increase yield and reduce manufacturing costs, the traditional reticle process is necessary for improvement. SUMMARY OF THE INVENTION 6 200939339 v 21122twf.doc/d One of the objects of the present invention is to provide a manufacturing method of a transflective pixel structure to effectively shorten the process time and increase the productivity. It is an object of the present invention to provide a method of fabricating a pixel structure to effectively shorten process time and increase throughput. It is an object of the present invention to provide a color filter substrate which enhances the optical effect of a color filter substrate.
為達上述或是其他目的,本發明提出一種半穿透半反 射型晝素結構的製造方法,其包括下列步驟:首先,提供 一基板。基板具有至少一穿透區及至少一反射區。接著, 於基板上方形成一彼覆層,覆蓋基板之穿透區與反射區。 之後’進行一壓印製程’以使對應穿透區的披覆層厚度變 得較對應反射區的彼覆層厚度為薄。 在本發明之一實施例中,上述於進行壓印製程時,更 包括一併於彼覆層表面形成多個凸起。 主To achieve the above or other objects, the present invention provides a method of fabricating a transflective halogen structure comprising the steps of: first, providing a substrate. The substrate has at least one penetrating region and at least one reflecting region. Then, a coating layer is formed on the substrate to cover the penetration region and the reflection region of the substrate. Thereafter, an "imprint process" is performed to make the thickness of the cladding layer corresponding to the penetration region thinner than the thickness of the corresponding layer of the corresponding reflection region. In an embodiment of the invention, the embossing process further includes forming a plurality of protrusions on the surface of the cladding layer. the Lord
在本發明之-實施例中,上述之基板係已形成有一 動元件與-晝素電極’且晝素電極與主動元件電性連接 在本發明之一實施例中,上述之半穿透半反射型畫 結構的製造方法更包括於披覆層上形成—反射畫素電&',、 反射晝素電極與主動元件電性連接。 在本發明之一實施例中’上述之半穿透半反射型金辛 結構的製造方法,其中於形成於披覆層時,覆 了主 動元件與畫素電極。 % 括移===== =包 7 200939339 V 21122twf.doc/d 以暴露晝素電極。 在本發明之-實施例中,上述之反射晝素電極藉由暴 露出之晝素電極而與主動元件電性連接。 在本發明之-實施例中,上述之壓印製程係為一孰壓 印製程。 在本發明之一實施例中,上述之壓印製程係更包括一 光阻之曝光固化製程。 ❹ ❹ 本發明提出一種半穿透半反射型晝素結構的製造方 法,其包括下列步驟:首先,提供一基板。基板具有2少 一穿透區及至少一反射區。接著,於基板上形成—彩色光 阻層,覆蓋基板之穿透區與反射區。之後,進行—壓印製 程’以使對應反射區的彩色光阻層厚度變得較對應 的彩色光阻層厚度為薄。 ’ °° 在本發明之-實施例中,上述之壓印製程更包括 -道印有對應至少-畫素範關案的透光區 遮罩,對彩色光阻層進行曝光。 70旱邗為 係採源以射,上述對純光阻層進行曝先 本發明提出-種彩色濾光基板,其包括—基板、 色滤光圖案層與-光^丨膜層。彩色濾光圖案層配置於丄 板上,其中彩色濾、光層之表面上具有多個乂字形之二 陷。此外’光導引膜層配置於彩色遽光_層上並填入凹 陷中。 、 在本發明之-實施例中,上述之光導引膜層之折射率 8 200939339 21122twf.doc/d 大於彩色濾光圖案層之折射率。 在本發明之-實施例中,上述之光導引膜層之折射率 小於彩色濾光圖案層之折射率。 在本發明之-實施例中,上述之彩色滤光圖案層更包 彩色滤光圖案、第二彩色濾細案及第三彩色 圖案。 在本發明之-實施例中’上述之彩色濾光圖案層之材 〇 買係包括一熱固化樹脂。 在本發明之-實施例中,上述之彩色遽光圖案 括—黑色矩陣膜層。 在本發明之-實施例中,上述之彩色濾光基板,其係 作為一主動元件陣列基板。 在本發明之-實關中,上述之彩色濾光基板,其係 作為一對向基板。 ' .本發明提出-種晝素結構的製造方法,其包括下列步 ❹ =^先’提供—基板。接著’於基板上形成—彩色濾光 圖案層。之後,對彩色濾光圖案層進行一壓印製程,以使 彩色濾光圖案層形成多個v字形之凹陷。然後,於彩色濾 光圖案層上形成一光導引膜層,並填入凹陷中。 在本發明之一實施例中,上述之光導引膜層之折射 小於彩色濾光圖案層之折射率。 在本發明之一實施例中,上述之光導引膜層之折射 大於彩色濾光圖案層之折射率。 在本發明之一實施例中,上述之彩色濾光圖案層更包 9 200939339 21122twf.doc/d 括第一彩色濾光圖案、第二彩色濾光圖案及第三彩色濾 圖案。 在本發明之-實施例中,上述之壓印製程係 印製程。 .、、、咬 在本發明之一實施例中’上述之晝素結構製造方法, 其中於形成彩色濾光圖案層,先於基板上形成至少—主動 元件。 ❹ 綜上所述,本發明因在製作4素結構、主動元件陣列 基板、彩色濾光基板階段時,以壓印製程取代傳統之光 製程,而能有效縮短製程時間並降低製造成本、提升製程 良率,進而提升產能。由於本發明之畫素結構在彩色噱光 Μ中具有光導引膜層。因此,光線在穿透彩色滤光^ 後,能有效提升其所呈現之顯示亮度。 *為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉數個實施例,並配合所附圖式,作細 明如下。 °兄In an embodiment of the invention, the substrate is formed with a moving element and a halogen element, and the halogen electrode is electrically connected to the active element. In an embodiment of the invention, the semi-transparent and semi-reflective The manufacturing method of the pattern structure further comprises forming a reflective pixel electricity & ', and the reflective pixel electrode is electrically connected to the active component. In an embodiment of the invention, the method for fabricating a transflective nucleation structure as described above, wherein the active element and the pixel electrode are overlaid when formed on the cladding layer. % Bracket ===== =Package 7 200939339 V 21122twf.doc/d to expose the halogen electrode. In an embodiment of the invention, the reflective pixel electrode is electrically connected to the active device by the exposed halogen electrode. In the embodiment of the invention, the embossing process described above is a embossing process. In an embodiment of the invention, the embossing process further includes a photoresist exposure curing process. ❹ ❹ The present invention provides a method of fabricating a transflective halogen structure comprising the steps of: first, providing a substrate. The substrate has 2 less penetration zones and at least one reflection zone. Next, a color photoresist layer is formed on the substrate to cover the penetration region and the reflection region of the substrate. Thereafter, the imprint process is performed so that the thickness of the color photoresist layer corresponding to the reflective region becomes thinner than the thickness of the corresponding color photoresist layer. In the embodiment of the present invention, the embossing process described above further includes a light-transmissive area mask corresponding to at least a pixel, and the color photoresist layer is exposed. The invention relates to a color filter substrate comprising a substrate, a color filter pattern layer and a light film layer. The color filter pattern layer is disposed on the slab, wherein the color filter and the surface of the light layer have a plurality of U-shaped depressions. Further, the 'light guiding film layer is disposed on the color calender layer and filled in the recess. In the embodiment of the invention, the refractive index of the light guiding film layer 8 200939339 21122 twf.doc/d is greater than the refractive index of the color filter pattern layer. In an embodiment of the invention, the refractive index of the light guiding film layer is smaller than the refractive index of the color filter pattern layer. In an embodiment of the invention, the color filter pattern layer further includes a color filter pattern, a second color filter pattern, and a third color pattern. In the embodiment of the invention, the material of the above-mentioned color filter pattern layer comprises a thermosetting resin. In an embodiment of the invention, the color calender pattern described above comprises a black matrix film layer. In the embodiment of the invention, the color filter substrate described above is used as an active device array substrate. In the practice of the present invention, the color filter substrate described above is used as a pair of substrates. The present invention proposes a method of manufacturing a seed crystal structure comprising the following steps: providing a substrate. Next, a color filter pattern layer is formed on the substrate. Thereafter, an embossing process is performed on the color filter pattern layer so that the color filter pattern layer forms a plurality of v-shaped depressions. Then, a light guiding film layer is formed on the color filter pattern layer and filled in the recess. In an embodiment of the invention, the light guiding film layer has a refractive index smaller than a refractive index of the color filter pattern layer. In an embodiment of the invention, the light guiding film layer has a refractive index greater than a refractive index of the color filter pattern layer. In an embodiment of the invention, the color filter pattern layer further includes a first color filter pattern, a second color filter pattern, and a third color filter pattern. In the embodiment of the invention, the imprint process described above is a printing process. In one embodiment of the invention, the method for manufacturing a halogen structure is characterized in that at least the active element is formed on the substrate before forming the color filter pattern layer. In summary, the present invention replaces the conventional optical process with an imprint process in the process of fabricating a 4-cell structure, an active device array substrate, and a color filter substrate, thereby effectively shortening the process time, reducing the manufacturing cost, and improving the process. Yield, which in turn increases production capacity. Since the pixel structure of the present invention has a light guiding film layer in a color fluorescent iridium. Therefore, after the light passes through the color filter ^, the display brightness can be effectively improved. The above and other objects, features, and advantages of the present invention will become more apparent from the understanding of the appended claims. ° brother
【實施方式】 第一實施例 圖1Α至圖1D是本發明第一實施例的半穿透半反射型 畫素結構的製造絲剖面示意圖,_是在其主動元件陣 列基板階段的製造流程。為求圖示清楚,僅以單一個畫素 繪圖示意,此領域具有通常知識者當可知道半穿透半反射 型液晶顯7F H或者液晶顯示面板晝素結構可具有多個此種 200939339 w 21122twf.doc/d 二素。請先參照圖1A,首先,提供已形成有—主動元件 Π0公畫《極12G之基板m。其中,主動元件11〇 ”旦、電極120電性連接。一般來說,在开》成主動元件 110 、 併形成與其電性連接之一掃描配線102 (如圖2 所示)及一資料配線104。 ❹[Embodiment] FIG. 1A to FIG. 1D are schematic cross-sectional views showing a manufacturing process of a transflective pixel structure according to a first embodiment of the present invention, and _ is a manufacturing process at a stage of an active element array substrate. For the sake of clarity of illustration, only a single pixel drawing is shown. Those skilled in the art can know that the transflective liquid crystal display 7F H or the liquid crystal display panel can have a plurality of such 200939339 w 21122twf .doc/d Two. Referring first to FIG. 1A, first, a substrate m on which the active element Π0 public painting "pole 12G" has been formed is provided. The active component 11 is electrically connected to the electrode 120. Generally, it is turned into an active component 110, and a scanning wiring 102 (shown in FIG. 2) and a data wiring 104 are electrically connected thereto. ❹
請繼續參照圖1A,詳細地說,主動元件11〇主要是由 一源極110s、一汲極110d、一閘極u〇g、一通道層u〇c 與一絕緣層11〇ι所構成的一薄膜電晶體(^^^。圖lA所示 之主動元件110為一底閘極結構(b〇tt〇m gate)之TFT, 备然主動元件110也可採用頂閘極(t〇p gate)之結構TFT, 在此並不刻意限制。一般來說,主動元件11〇會被一保護 層112所覆蓋,而絕緣層u〇i可延伸至主動元件no外並 覆盖住基板101。此外’基板上可劃分出~~'穿透區tl 與一反射區rl,而晝素電極120主要位於穿透區tl内之絕 緣層110i上。 承上述,接著於基板101上塗佈形成一坡覆層13〇, 其覆蓋基板101、主動元件110及晝素電極120。披覆層 130的材質可以是熱固性樹脂,例如:聚曱基丙烯酸曱醋 (poly methyl methacrylate,PMMA )、聚碳酸醋 (polycarbonate,PC )或聚苯乙烯(P〇lystyrene , ps )材 質、或者光固化樹脂例如UV感光型(UV curable)光阻等。 之後請參照圖1B ’藉由一壓印模Ml進行一壓印製程,以 使對應穿透區tl之披覆層130厚度相對於反射區ri較薄。 實務上,壓印製程若採用熱壓印製程(hot-imprint 11 200939339 V 2I122twfdoc/d 1—结),則披覆層130之材料可為熱固化樹脂。詳 細地說’壓印製程可包括下列步驟:首先,將基板ι〇ι上 塗佈好坡制13G。之後,將披覆層m加熱至玻態轉換 溫度(glass transition temperature,Tg ),並利用一對應穿 透區ti設有較厚圖案的壓印模M1對披覆層13〇施壓,以 使披覆層130的材料隨著壓印模M1的圖案分佈成形而讓 對應穿透區ti的披覆層130厚度變得相較反射區rl為薄。 ❹ 其中’壓印模M1的材料例如是矽、二氧化梦或金屬。然 後,將披覆層130冷卻至玻態轉換溫度以下。接著,將壓 印模Ml及披覆層130分離。當然,所屬技術領域中具有 通常知識者應知上述之壓印製程也可採用其它類型之壓印 製程來實現’以下再舉一例以供說明。 另一方面,當壓印製程採用快閃步進式壓印製程 (step-and-flash imprint lithography),則披覆層 130 之材 料可為一 UV感光型光阻的光固化樹脂。實務上,壓印製 程可包括下列步驟·首先,以旋轉塗佈(Spin⑶对匕幻將 ❹ 感光型光阻覆盍於基板上以形成披覆層130,接著利 用一對應穿透區ti設有較厚圖案的壓印模M1對彼覆層 130施壓,以使披覆層130之uv感光型光阻流動分佈使 對應穿透區tl的披覆層130厚度變得相較反射區rl為薄。 其中’壓印模Ml的材料例如是可透光的石英。之後,對 彼覆層130進行曝光、例如使用UV照射,曝光之光束會 穿透壓印模Ml,以使彼覆層130能固化。然後,將壓印 模Ml及披覆層130分離。 12 200939339 - 一一 —-------V 21122twf.doc/d 這裡要說明的是,由於半穿透半反射液晶顯示面板 (未繪示)其穿透區tl及反射區rl之液晶層厚度差會受 到披覆層130之厚度影響,且披覆層13〇之厚度可藉二二 整製程參數來控制,例如是製程之壓力大小、加壓之衝程 或壓印模Ml的圖案厚薄形狀。換言之,利用壓印模Μι 的設計以及加壓的製程設計控制披覆層130之膜厚便可控 制後續液晶顯示面板穿透區tl及反射區rl之液晶層厚度 Ο 差使達到產品設計上需求之雙重間距晝素結構,來對驅動 電壓-穿透率特性曲線(V_T curve)與驅動電壓反射率特 f生曲線(V-R curve )進行同步化(Synchronizati〇n ),以 提升顯示品質。 然後請參照圖1C,於進行壓印製程後移除晝素電極 120上對應於穿透區部分厚度變薄之披覆層13〇,以暴露出 晝素電極120。移除部分披覆層13〇的方法例如是對全部 的披覆層130進行電漿乾式蝕刻製程或反應性離子蝕刻製 程(reactive i〇n etching ’汜幻或是光阻灰化(ashing)製 程使去除一定厚度之披覆層材料。 此外,可視需要選擇性地對凸起130b進行一熱回流 (heat reflow)製程’以使凸起130b能呈現滑順(sm〇〇thly) 之波浪狀。 特別的是’於進行上述壓印製程時,更可將壓印模 Ml設計為對應反射區rl設有凸起物外型反花紋如此於 壓印披覆層130成深淺區時可一併於彼覆層13〇表面形成 多個凸起(bump) 130b。這可使後續形成於凸起13〇b上 13 200939339 ------------V 21122twf.doc/d 之反射晝素電極(詳述於後)能有類似擴散片(diffuser plate)的功能,以使光線充分地散射。值得注意的是,一 般習知之製程需透過兩道光罩製程才能使穿透區tl與反 射區rl分別對應兩種不同的晶穴間距(cell gap)以及反 射區rl的凸起物結構。相較之下’本發明只需藉由一道壓 印製程即可製作完成而可省去此二道光罩製程。因此,本 發明之製造方法可有效縮短製程時間與減少製造成本。 ❹ 之後請參照圖1D,於反射區rl的披覆層130上形成 一反射晝素電極140。在本實施例中’反射晝素電極14〇 可藉由暴露出之畫素電極120而與主動元件11〇電性連 接’另外’反射畫素電極140並未形成於各晝素之間隔區 e區的披覆層130上,換言之,各晝素之反射晝素電極14〇 並未彼此相連。上述至此’已大致完成了本發明的半穿透 半反射型晝素結構P1之主動元件陣列基板1〇〇。 以上述之方法所形成之半穿透半反射型晝素結構P1 之主動元件陣列基板100如圖1D所示,其主要是由基板 ® 101、主動元件110、畫素電極12〇、彼覆層130及反射晝 素電極140所構成。其中,主動元件no會與晝素電極12〇 以及反射晝素電極14〇電性連接。實務上,開關訊號可以 透過掃描配線1〇2(如圖2所示)之傳遞而將主動元件11〇 開啟,在主動元件11〇開啟後顯示訊號可透過資料配線1〇4 而傳遞至晝素電極120及反射畫素電極140中。 以上已說明壓印製程應用在製造半穿透半反射型晝 素結構、特別是在一般的主動元件陣列基板的製造階段。 200939339 ^ 21122twf.doc/d 當然,壓印製程也可應用在製造半穿透半反射型畫素結構 的彩色濾光基板階段與製造晝素結構的彩色濾光基板階段 上’以下將於各實施例中依序介紹。 第二實施你丨 圖3A至圖3C是本發明第二實施例的半穿透半反射型 晝素結構的製造流程剖面示意圖、特別是在其彩色濾光基 板200的製造流程階段。 ❹ 一般而s,半穿透半反射型液晶顯示面板的彩色濾光 圖案層位於與主動元件陣列基板相對的一對向基板上,故 彩色濾光基板通常即為對向基板。通常彩色濾光圖案層由 夕個各原色攄光圖案組成、例如紅、綠及藍色,並且半穿 透半反射型液晶顯示面板的每一畫素通常對應其中一原色 的彩色濾光圖案。在各畫素中,反射區的光線因入射、反 射及出射將通過彩色濾光圖案兩次,然而穿透區的背光光 線僅需出射而通過彩色濾光圖案一次,故若反射區與穿透 區的彩色濾光圖案均具有同一厚度,則會造成各原色'(紅、 綠或藍)晝素在其同-畫素内反射區與穿透區的顯示色光 色度不同,故習知技術有採用同一畫素内對應反射區之彩 色濾光圖案厚度減為對應穿透區之彩色濾光圖案厚度之一 半的没计,如此可使通過反射區的光線與通過穿透區的光 線其通過之彩色濾光圖案厚度相當,可使同—原色畫素的 兩個區域得到較均-的色彩表現。但習知一般需使用前後 兩道光罩製程才能製作出單一晝素之彩色濾光層圖案對應 於反射區與穿透區具有不同厚度,即—道光罩用以定義一 15 200939339 ^ 21122twf.doc/d 個原色晝素的彩色濾光圖案範圍,另一道光罩定義出此彩 色濾光圖案中較薄的反射區範圍。 本發明第二實施例則提供一減少光罩道數的製造方 法。實務上,彩色濾光圖案層主要是由第一彩色濾光圖案 例如:紅(R)、第二彩色濾光圖案例如:綠(G)及第三 彩色濾光圖案例如:藍(B)所構成。第一彩色濾光圖案R 之材質例如是紅色樹脂,第二彩色滤光圖案G之材質例如 0 是綠色樹脂,而第三彩色濾光圖案B之材質例如是藍色樹 脂。當然,所屬技術領域中具有通常知識者應知彩色滤光 圖案層202更可包括以黑色樹脂所形成的黑色矩陣膜層 203,而第一彩色濾光圖案為紅色(r)、第二彩色濾光圖 案為綠色(G)及第三彩色濾光圖案為藍色(B)之排列方 式及原色種類僅用以說明,在此並不刻意侷限。但在此僅 以其中彩色濾光圖案為紅色濾光圖案的一個晝素製程以及 快閃步進式壓印製程為例說明本實施例。 首先,请先參照圖3A,提供一形成有黑色矩陣膜層 ❹ 203的基板201。然後’於基板201上先全面塗佈形成一紅 色uv感光型光阻層202、例如是一摻有紅色染料的 感光型光阻。之後請參照圖3B,藉由一對應紅色濾光圖案 的反射區rR設有較厚圖案的壓印模M2對紅色光阻^ 202202進行加壓,使紅色光阻層2〇2之材料流動分佈^ 對應於反射區rR之凹陷210,以使對應於穿透區tR的^阻 層厚度dt約為對應於反射區rR的光阻層厚度扣的兩倍, 並且在紅色光阻層202流動分佈後,以一道印有紅色^光 16 200939339 W 21122twf.doc/d 圖案的透光區域的光罩204作為遮罩對紅色光阻層202進 行UV照射曝光’壓印模M2的材料例如是可透光的石英。 曝光之UV光線會穿透壓印模M2,以使紅色光阻層2〇2 對應於欲形成紅色濾光圖案的部分能固化。然後請參照圖 3C,將壓印模Ml及紅色光阻層202分離,再進行顯影步 驟將紅色濾光圖案以外的紅色光阻層2〇2移除,而完成一 紅色(R)濾光圖案205。這裡要說明的是,依照實務上的 〇 需求可藉由改變壓印模M2之形狀而可適當調整凹陷210 之分佈位置以對應晝素之反射區rR。當然,圖3B所示凹 210以及反射區以之分佈位置僅用以說明,在此並不刻 意侷限。 接耆’此領域具有通常知識亦可比照圖3A至3C及上 述的製程說明,以重複其他原色例如綠或藍色濾光圖案的 製作,以組成一反射區與穿透區具有不同厚度之彩色濾光 圖案層(未繪示),故在此不再贅述。上述至此,已大致 ❹ 將本發明之彩色濾光基板200製作完成。為了實務上的需 要,本發明之彩色濾、光基板200更可於彩色濾光圖案層上 以透明導電材料形成共用電極(comm〇n electr〇de)(未繪 示)。 另外’在製作半穿透半反射液晶顯示面板或其面板之 晝素結構時,也可與第一實施例一併考量,分別於製造組 成一液晶顯示面板的一對基板時,在形成其中主動元件陣 列基板100階段之披覆層130及彩色濾光基板200階段之 彩色渡光圖案(例如:紅色渡光圖案204)時,將披覆層 17 200939339 W 21122twf.doc/d 透區U厚度與反純fl厚度、錢彩色遽光圖 區的厚度與反射區的厚度分別調整使兩基板組 。後之旦素反射區之晶穴間距約為穿透區之1/2,如此亦 可兼顧並保持半穿透半反射液晶顯示面板良好的光學表 現0 以上述方法形成彩色濾光基板2〇〇或晝素結構僅需使 用-道光罩用以定義-個原色畫素的彩色滤光圖案範圍, ❾並配合壓印製程即可使彩色濾光圖案對應於反射區與穿透 區具有光學設計上所需不同之厚度,即省去另一道次定義 出此彩色濾光圖案中較薄的反射區範圍的光罩,已確實達 到製造顯示器過程中減少光罩製程的目的。。 第三實施例 圖4A至圖4C是本發明第三實施例的一晝素結構,特 別是在其彩色濾光基板300的製造方法局部流程剖面示意 圖。在此實施例中,彩色濾光基板3〇〇可以做為一液晶& 示面板中與主動元件陣列基板相對的一對向基板,或者作 ® 為主動元件陣列基板本身,端視其應用需求,其製程差異 於後詳述。 ' 請先參照圖3A,首先,提供一基板3〇1,主要由一透 光材料例如玻璃材質所構成。接著,若彩色濾光基板3〇〇 是作為一對向基板用’於基板301上形成一彩色遽光圖案 層310 ’若彩色濾光基板300是作為一主動元件陣列基板 用,則先於基板301上形成一主動元件陣列(未綠示),再 形成一彩色濾光圖案層310覆蓋之。具體而言,彩色滤光 18 200939339 ‘W 2ll22twf.doc/d 圖案層310可由第一彩色濾光圖案r、第二彩色滤光圖案 G及第三彩色濾光圖案B所構成。 上述之第一彩色濾光圖案r之材質例如是紅色樹 脂,第二彩色濾光圖案G之材質例如是綠色樹脂,而第三 彩色濾光圖案B之材質例如是藍色樹脂。當然,所屬技術 領域中具有通常知識者應知彩色濾、光圖案層310也可包括 以黑色樹脂所形成的黑色矩陣膜層303,而第一彩色濾、光 圖案R、第二彩色濾光圖案G及第三彩色濾光圖案B之排 列方式僅用以說明’在此並不刻意侷限。 然後請參考圖4B,對彩色濾光圖案層310進行一壓 印製程,以使彩色濾、光圖案層310形成多個V字形的凹陷 310a。詳細地說,壓印製程可採用熱壓印製程,其已詳細 揭露於第一實施例中。彩色濾光圖案層310之材質可依製 程選擇熱固化樹脂,例如:聚曱基丙烯酸曱酯(polymethyl methacrylate ’ PMMA)、聚礙酸g旨(p〇iycarb〇nate,PC) 或聚苯乙烯(Polystyrene ’ PS)材質並視應用需求添加各 〇 色染料。 之後請參考圖4C’於彩色濾光圖案層310上形成一光 導引膜層320,並填入凹陷31〇a中。這裡要說明的是,若 彩色滤光基板300是作為一對向基板用,則光導引膜層32〇 之折射率大於彩色濾、光圖案層310之折射率;若彩色濾光 基板300是作為一主動元件陣列基板用’則光導引膜層32〇 之折射率小於彩色濾光圖案層310之折射率,如此一來, 彩色濾光圖案層310具有稜鏡片(prism)結構’再加上上述 19 W 21122twf.doc/d 200939339 適當折射率材質搭配的選用,使其具有類似增亮膜 (Brightness Enhance Film, BEF)的功能。更詳細而言,若彩 色濾光基板300是作為一對向基板用,則顯示用的光線由 光導引膜層320入射彩色濾光圖案層31〇時能有效地被準 直化進而可提升其呈現之顯示亮度,此一對向基板有集光 增亮的功能;若彩色濾光基板300是作為一主動元件陣列 基板用時,顯示用的光線則反之由彩色濾光圖案層31〇入 ❹ 射光導引膜層320再出射,這些光線亦能有效地被準直化 進而可提升其所呈現之亮度,此一主動元件陣列基板有集 光增亮的功能。這裡要說明的是,依照光學或其他方面設 計上的需求,可藉由改變壓印模M3之形狀而可對凹陷 310a之分佈位置、形狀以及彩色濾光圖案層31〇各區域之 膜厚作適當調整,尤其可以調整所需稜鏡片結構的角度如 圖4B中的0角來得到最佳的增亮效果。上述至此,本發 明之彩色濾光基板300已大致製作完成。 -以上述方法所形成之彩色濾光圖案基板300如圖4C ❹ 戶斤示,其主要包括透光基板301、彩色濾光圖案層31〇與 光導弓丨膜層32G。此外,彩色濾、光圖案層具有多個凹 陷3l〇a,而光導引膜層32〇則填入上述之凹陷3i〇a中。 值得特別注意的是,彩色濾光圖案層310因具有稜鏡片 (prism)結構’使其具有類似增亮片(BEF)的功能,這樣的棱 鏡片,構由於具有實質上v字形(或倒V字形)的剖面形 狀、’延樣具有明顯稜角的形狀,若使用傳統的光罩製程將 、實見或製成,但若採用壓印製程,則可透過設計的壓 20 'W 21122twf.doc/d 200939339 印模則地在彩色縣®案層310完成此-結構,而將彩 色滤絲板3GG同時結合有增亮膜的功能,當然,應用彩 色滤光基板300的晝素結構也具有增亮的功能。 綜上所述,本發明以壓印製程取代傳統之光罩製程, 因而在製作畫素結構、主動元件陣列基板、彩色遽光基板 階段時,都能有效縮短製程時間並降低製造成本、提升製 程良率,進而提升產能。由於本發明之畫素結構在彩色濾 光基板中具有光導引膜層。因此,光線在穿透彩色遽光美 〇 ,能有效提升其所呈現之顯示亮度。 Μ 雖然本發明已以數個實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1Α至圖1D是本發明第一實施例的半穿透半反射型 〇 晝素結構的製造流程剖面示意圖。 圖2是本發明第一實施例的未完成的半穿透半反射型 晝素結構的示意圖。 圖3Α至圖3C是本發明第二實施例的半穿透半反射型 晝素結構的製造流程剖面示意圖。 圖4Α至圖4C是本發明第三實施例的畫素結構的製造 流程剖面示意圖。 【主要元件符號說明】 21 W 21122twf.doc/d 200939339 100 :主動元件陣列基板 101、201、301 :基板 102 :掃描配線 104 :資料配線 110 :主動元件 110d :汲極 110i :絕緣層 ©110g :閘極 110s :源極 112 :保護層 120 :晝素電極 130 :彼覆層 130b :凸起 140、145 :反射晝素電極 200、300 :彩色濾光基板 202 :紅色UV感光型光阻層 ❹ 310:彩色濾光圖案層 203、303 :黑色矩陣膜層 204 :光罩 205 :紅色濾光圖案 210、310a :凹陷 320 :光導引膜層 C1 :接觸窗開口Referring to FIG. 1A in detail, in detail, the active device 11A is mainly composed of a source 110s, a drain 110d, a gate u〇g, a channel layer u〇c and an insulating layer 11〇. A thin film transistor (^^^. The active device 110 shown in FIG. 1A is a bottom gate structure (b〇tt〇m gate) TFT, and the active device 110 can also adopt a top gate (t〇p gate) The structure TFT is not deliberately limited herein. Generally, the active device 11A is covered by a protective layer 112, and the insulating layer u〇i may extend beyond the active device no and cover the substrate 101. The substrate can be divided into a ~~' penetration region t1 and a reflection region rl, and the halogen electrode 120 is mainly located on the insulating layer 110i in the penetration region t1. Then, a coating is formed on the substrate 101. The layer 13A covers the substrate 101, the active device 110 and the halogen electrode 120. The material of the cladding layer 130 may be a thermosetting resin, for example, polymethyl methacrylate (PMMA), polycarbonate (polycarbonate). , PC) or polystyrene (P〇lystyrene, ps) material, or photocurable resin such as UV sensation UV curable photoresist, etc. Then, referring to FIG. 1B', an imprint process is performed by an imprint M1 so that the thickness of the cladding layer 130 corresponding to the transmissive region t1 is thinner with respect to the reflective region ri. In practice, if the imprint process is a hot imprint process (hot-imprint 11 200939339 V 2I122twfdoc/d 1 - junction), the material of the cladding layer 130 may be a thermosetting resin. In detail, the imprint process may include the following Step: First, the substrate ι〇ι is coated on the slope 13G. Thereafter, the cladding layer m is heated to a glass transition temperature (Tg), and is thickened by a corresponding penetration region ti. The patterned imprint M1 presses the cladding layer 13 so that the material of the cladding layer 130 is shaped along with the pattern distribution of the imprint M1 to make the thickness of the cladding layer 130 corresponding to the penetration region ti The reflection area rl is thin. ❹ where the material of the stamp M1 is, for example, tantalum, oxidized dream or metal. Then, the cover layer 130 is cooled to below the glass transition temperature. Next, the stamp M1 and the overlay are applied. Layer 130 is separated. Of course, those of ordinary skill in the art should be aware of the above. The imprint process can also be implemented by other types of imprint processes. 'The following is another example for explanation. On the other hand, when the imprint process uses a step-and-flash imprint lithography, The material of the cladding layer 130 may be a UV-curable photoresist. In practice, the imprint process may include the following steps: First, spin coating (Spin (3) is applied to the substrate to form a cladding layer 130, and then a corresponding penetration region ti is provided. The thicker pattern of the stamp M1 presses the cover layer 130 such that the uv photosensitive resistive flow distribution of the cover layer 130 causes the thickness of the cover layer 130 corresponding to the penetration region t1 to be smaller than that of the reflective region rl. The material of the stamp M1 is, for example, a light transmissive quartz. Thereafter, the cover layer 130 is exposed, for example, using UV irradiation, and the exposed light beam penetrates the stamp M1 so that the cover layer 130 It can be cured. Then, the stamp M1 and the cover layer 130 are separated. 12 200939339 - One by one --- V 21122twf.doc / d Here, due to the transflective liquid crystal display The thickness difference of the liquid crystal layer of the penetration zone t1 and the reflection zone rl of the panel (not shown) is affected by the thickness of the cladding layer 130, and the thickness of the cladding layer 13 can be controlled by two or two whole process parameters, for example, The pressure of the process, the stroke of the pressurization or the pattern thickness of the stamp M1. In other words, the use The design of the stamp 以及ι and the pressurization process design control the film thickness of the clad layer 130 to control the thickness difference of the liquid crystal layer of the subsequent liquid crystal display panel penetration region tl and the reflection region rl to achieve the double spacing of the product design requirements. The structure is used to synchronize the driving voltage-transmittance characteristic curve (V_T curve) with the driving voltage reflectance VR curve (Synchronizati〇n) to improve the display quality. Then, referring to FIG. 1C, After the imprint process, the coating layer 13 on the halogen element 120 corresponding to the thickness of the penetration portion is thinned to expose the halogen electrode 120. The method of removing the partial coating layer 13 is, for example, all The coating layer 130 is subjected to a plasma dry etching process or a reactive ion etching process (reactive i〇n etching) or a photoresist ashing process to remove a certain thickness of the cladding material. Optionally, a heat reflow process is performed on the protrusions 130b to enable the protrusions 130b to exhibit a sm〇〇thly wave shape. In particular, when performing the above imprint process, The stamp M1 is designed to have a convex shape and a reverse pattern corresponding to the reflection area rl. When the embossed coating layer 130 is formed into a deep and shallow area, a plurality of bumps 130b can be formed on the surface of the cover layer 13 This allows the subsequent reflection of the pixel electrode (described later in detail) on the bump 13〇b 13 200939339 ------------V 21122twf.doc/d to have a similar diffusion sheet ( The diffuser plate) functions to scatter light sufficiently. It is worth noting that the conventional process requires two mask processes to allow the penetration zone t1 and the reflection zone rl to correspond to two different cell gaps and a projection structure of the reflection zone rl. In contrast, the present invention can be fabricated by only one imprint process, and the two mask processes can be omitted. Therefore, the manufacturing method of the present invention can effectively shorten the process time and reduce the manufacturing cost. ❹ Referring to FIG. 1D, a reflective halogen electrode 140 is formed on the cladding layer 130 of the reflective region rl. In the present embodiment, the reflective pixel electrode 14 can be electrically connected to the active device 11 by the exposed pixel electrode 120. The other reflective pixel electrode 140 is not formed in the spacer region of each pixel. On the cladding layer 130 of the region, in other words, the reflective pixel electrodes 14 of the respective pixels are not connected to each other. The above has heretofore substantially completed the active device array substrate 1 of the transflective halogen structure P1 of the present invention. The active device array substrate 100 of the transflective halogen structure P1 formed by the above method is as shown in FIG. 1D, and is mainly composed of a substrate® 101, an active device 110, a pixel electrode 12, and a cladding layer. 130 and a reflective halogen electrode 140 are formed. The active element no is electrically connected to the halogen electrode 12A and the reflective halogen electrode 14〇. In practice, the switching signal can be turned on by the transmission of the scanning wiring 1〇2 (shown in FIG. 2), and after the active element 11 is turned on, the display signal can be transmitted to the element through the data wiring 1〇4. The electrode 120 and the reflective pixel electrode 140 are included. It has been described above that the imprint process is used in the fabrication of transflective bismuth structures, particularly in the fabrication stages of conventional active device array substrates. 200939339 ^ 21122twf.doc/d Of course, the imprint process can also be applied to the stage of manufacturing a color filter substrate of a transflective pixel structure and the stage of manufacturing a color filter substrate of a germanium structure. In the example, it is introduced in order. Second Embodiment FIG. 3A to FIG. 3C are schematic cross-sectional views showing a manufacturing process of a transflective fluorene structure according to a second embodiment of the present invention, particularly at a manufacturing process stage of the color filter substrate 200 thereof. Generally, the color filter pattern layer of the transflective liquid crystal display panel is located on a pair of substrates opposite to the active device array substrate, so that the color filter substrate is usually a counter substrate. Generally, the color filter pattern layer is composed of a plurality of primary color calender patterns, such as red, green, and blue, and each pixel of the transflective liquid crystal display panel generally corresponds to a color filter pattern of one of the primary colors. In each pixel, the light in the reflection area will pass through the color filter pattern twice due to incidence, reflection and exit. However, the backlight of the penetration area only needs to be emitted and pass through the color filter pattern once, so if the reflection area and penetration The color filter patterns of the regions all have the same thickness, which causes the color of each primary color '(red, green or blue) element to be different in the reflection color of the same-pixel internal reflection region and the penetration region, so the prior art The thickness of the color filter pattern using the corresponding reflection region in the same pixel is reduced to one-half of the thickness of the color filter pattern corresponding to the penetration region, so that the light passing through the reflection region and the light passing through the penetration region can pass through. The color filter pattern has the same thickness, so that the two regions of the same-primary color pixel can obtain a more uniform color expression. However, it is generally known to use two mask processes before and after to produce a single color. The color filter layer pattern has different thicknesses corresponding to the reflective region and the penetrating region, that is, the mask is used to define a 15 200939339 ^ 21122twf.doc/ The range of color filter patterns of d primary color elements, and the other mask defines the range of thinner reflection areas in the color filter pattern. The second embodiment of the present invention provides a manufacturing method for reducing the number of masks. In practice, the color filter pattern layer is mainly composed of a first color filter pattern such as red (R), a second color filter pattern such as green (G), and a third color filter pattern such as blue (B). Composition. The material of the first color filter pattern R is, for example, a red resin, and the material of the second color filter pattern G is, for example, a green resin, and the material of the third color filter pattern B is, for example, a blue resin. Of course, those skilled in the art should know that the color filter pattern layer 202 may further include a black matrix film layer 203 formed of a black resin, and the first color filter pattern is red (r) and the second color filter. The arrangement of the light pattern in green (G) and the third color filter pattern in blue (B) and the type of primary colors are for illustrative purposes only and are not intended to be limited herein. However, the present embodiment is described by taking only one of the halogen process and the flash step imprint process in which the color filter pattern is a red filter pattern. First, referring to Fig. 3A, a substrate 201 on which a black matrix film layer 203 is formed is provided. Then, a red uv photosensitive photoresist layer 202 is formed on the substrate 201, for example, a photosensitive photoresist doped with a red dye. Referring to FIG. 3B, the red photoresist 202202 is pressurized by a stamper M2 having a thicker pattern corresponding to the reflective region rR of the red filter pattern, so that the material flow distribution of the red photoresist layer 2〇2 is performed. ^ corresponding to the recess 210 of the reflective region rR such that the resistive layer thickness dt corresponding to the transmissive region tR is approximately twice the thickness of the photoresist layer corresponding to the reflective region rR, and is distributed in the red resist layer 202 Then, the reticle 204 of the light-transmissive region printed with the red light 16 200939339 W 21122 twf.doc/d pattern is used as a mask to expose the red photoresist layer 202 to UV exposure. The material of the stamp M2 is, for example, transparent. Light quartz. The exposed UV light penetrates the stamp M2 so that the red photoresist layer 2〇2 can be cured corresponding to the portion where the red filter pattern is to be formed. Then, referring to FIG. 3C, the stamp M1 and the red photoresist layer 202 are separated, and then the developing step is performed to remove the red photoresist layer 2〇2 other than the red filter pattern to complete a red (R) filter pattern. 205. It is to be noted that the distribution position of the recess 210 can be appropriately adjusted to correspond to the reflection region rR of the pixel by changing the shape of the stamp M2 in accordance with the actual 需求 requirement. Of course, the concave 210 and the reflective area shown in Fig. 3B are only used for illustration, and are not intended to be limited herein.耆 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此The filter pattern layer (not shown) is not described here. As described above, the color filter substrate 200 of the present invention has been substantially completed. In order to meet the practical needs, the color filter and optical substrate 200 of the present invention can form a common electrode (not shown) with a transparent conductive material on the color filter pattern layer. In addition, when fabricating a halogen structure of a transflective liquid crystal display panel or a panel thereof, it can also be considered together with the first embodiment, and when forming a pair of substrates constituting a liquid crystal display panel, respectively, active in forming When the element array substrate 100 is coated with the layer 130 and the color filter pattern of the color filter substrate 200 (for example, the red light pattern 204), the thickness of the through layer 17 200939339 W 21122twf.doc/d is The thickness of the anti-pure fl, the thickness of the color illuminating area and the thickness of the reflective area are respectively adjusted to make the two substrate groups. The spacing of the crystal holes in the rear reflection region is about 1/2 of the penetration area, so that the optical performance of the transflective liquid crystal display panel can be balanced and maintained. 0 The color filter substrate 2 is formed by the above method. Or a halogen structure only needs to use a -channel mask to define a range of color filter patterns of a primary color pixel, and the color filter pattern can be optically designed corresponding to the reflective area and the penetration area in conjunction with the imprint process. The different thicknesses required, that is, the elimination of another reticle defining the thinner reflection range in the color filter pattern, have indeed achieved the goal of reducing the mask process during the manufacture of the display. . THIRD EMBODIMENT Figs. 4A to 4C are fragmentary cross-sectional views showing a method of manufacturing a pixel structure of a third embodiment of the present invention, in particular, a method of manufacturing the color filter substrate 300. In this embodiment, the color filter substrate 3 can be used as a pair of substrates in the liquid crystal display panel opposite to the active device array substrate, or as the active device array substrate itself, depending on the application requirements. The process difference is detailed later. Referring first to Figure 3A, first, a substrate 3〇1 is provided, which is mainly composed of a light transmissive material such as glass. Next, if the color filter substrate 3 is used as a pair of substrates, a color light-emitting pattern layer 310 is formed on the substrate 301. If the color filter substrate 300 is used as an active device array substrate, the substrate is preceded by the substrate. An active device array (not shown in green) is formed on the 301, and a color filter pattern layer 310 is formed to cover the 301. Specifically, the color filter 18 200939339 'W 2ll22twf.doc/d pattern layer 310 may be composed of the first color filter pattern r, the second color filter pattern G, and the third color filter pattern B. The material of the first color filter pattern r is, for example, a red resin, the material of the second color filter pattern G is, for example, a green resin, and the material of the third color filter pattern B is, for example, a blue resin. Of course, those skilled in the art should know that the color filter and the light pattern layer 310 may also include a black matrix film layer 303 formed of a black resin, and the first color filter, the light pattern R, and the second color filter pattern. The arrangement of G and the third color filter pattern B is for illustrative purposes only and is not intended to be limited herein. Then, referring to FIG. 4B, the color filter pattern layer 310 is subjected to an imprint process to form the color filter and photo pattern layer 310 to form a plurality of V-shaped recesses 310a. In detail, the imprint process may employ a thermal imprint process, which has been disclosed in detail in the first embodiment. The material of the color filter pattern layer 310 can be selected according to the process of selecting a thermosetting resin, for example, polymethyl methacrylate 'PMMA, polyacid methacrylate 'PC, polystyrene (PC) or polystyrene (p〇iycarb〇nate, PC) or polystyrene ( Polystyrene 'PS) material and add various ochre dyes depending on the application. Then, a light guiding film layer 320 is formed on the color filter pattern layer 310 with reference to FIG. 4C', and is filled in the recess 31a. It is to be noted that, if the color filter substrate 300 is used as a pair of substrates, the refractive index of the light guiding film layer 32 is greater than the refractive index of the color filter and the light pattern layer 310; if the color filter substrate 300 is As an active device array substrate, the refractive index of the light guiding film layer 32 is smaller than the refractive index of the color filter pattern layer 310, and thus, the color filter pattern layer 310 has a prism structure' The above 19 W 21122twf.doc/d 200939339 suitable refractive index material combination is selected to have a similar brightness enhancement film (BEF) function. More specifically, when the color filter substrate 300 is used as a pair of substrates, the light for display can be effectively collimated when the light guiding film layer 320 enters the color filter pattern layer 31, and can be improved. The brightness of the display is such that the pair of substrates has a function of collecting and brightening; if the color filter substrate 300 is used as an active device array substrate, the light for display is reversed by the color filter pattern layer 31.射 The light guiding film layer 320 is further emitted, and the light can be effectively collimated to enhance the brightness of the light. The active device array substrate has the function of light collecting and brightening. It should be noted that, according to optical or other design requirements, the position and shape of the recess 310a and the film thickness of each region of the color filter pattern layer 31 can be made by changing the shape of the stamp M3. With proper adjustment, in particular, the angle of the desired cymbal structure can be adjusted as shown in Fig. 4B to obtain the best brightness enhancement effect. As described above, the color filter substrate 300 of the present invention has been substantially completed. The color filter pattern substrate 300 formed by the above method is mainly shown in Fig. 4C, which mainly includes a light-transmitting substrate 301, a color filter pattern layer 31, and a light guide bow film layer 32G. Further, the color filter and the light pattern layer have a plurality of recesses 31a, and the light guiding film layer 32 is filled in the recesses 3i, a. It is worth noting that the color filter pattern layer 310 has a function of a brightness enhancement sheet (BEF) because of its prism structure, such a prism sheet has a substantially v-shape (or an inverted V shape). The cross-sectional shape, 'the shape of the sample has a sharp angle, if it is used, it can be seen or made using a traditional mask process, but if the imprint process is used, the design pressure can be 20 'W 21122twf.doc/d 200939339 The impression is completed in the color county® layer 310, and the color filter plate 3GG is simultaneously combined with the function of the brightness enhancement film. Of course, the halogen structure of the color filter substrate 300 is also brightened. Features. In summary, the present invention replaces the conventional photomask process with an imprint process, thereby effectively shortening the process time, reducing the manufacturing cost, and improving the process during the stage of fabricating the pixel structure, the active device array substrate, and the color dimming substrate. Yield, which in turn increases production capacity. Since the pixel structure of the present invention has a light guiding film layer in the color filter substrate. Therefore, the light penetrates the color and the beauty of the light can effectively enhance the display brightness. Although the present invention has been disclosed in the above several embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A to Fig. 1D are schematic cross-sectional views showing a manufacturing process of a transflective bismuth crystal structure according to a first embodiment of the present invention. Fig. 2 is a schematic view showing the unfinished transflective type halogen structure of the first embodiment of the present invention. 3A to 3C are schematic cross-sectional views showing a manufacturing process of a transflective honeycomb structure according to a second embodiment of the present invention. 4A to 4C are schematic cross-sectional views showing the manufacturing process of the pixel structure of the third embodiment of the present invention. [Main component symbol description] 21 W 21122twf.doc/d 200939339 100 : Active device array substrate 101, 201, 301: substrate 102: scan wiring 104: data wiring 110: active device 110d: drain 110i: insulating layer ©110g: Gate 110s: source 112: protective layer 120: halogen electrode 130: cover layer 130b: bumps 140, 145: reflective halogen electrodes 200, 300: color filter substrate 202: red UV photosensitive photoresist layer 310: color filter pattern layer 203, 303: black matrix film layer 204: photomask 205: red filter pattern 210, 310a: recess 320: light guiding film layer C1: contact window opening
Ml、M2、M3 :壓印模 22 W 21122twf.doc/d 200939339 PI :半穿透半反射型晝素結構 R :第一彩色濾光圖案 G :第二彩色濾光圖案 B:第三彩色濾光圖案 rl、Γ& ·反射區 11、tR ·穿透區 dt、dr :光阻層厚度Ml, M2, M3: stamping die 22 W 21122twf.doc/d 200939339 PI : semi-transflective type halogen structure R: first color filter pattern G: second color filter pattern B: third color filter Light pattern rl, Γ & · reflection area 11, tR · penetration area dt, dr: thickness of the photoresist layer
❿ 23❿ 23