Nothing Special   »   [go: up one dir, main page]

TW200844631A - Illumination device and image-projecting device - Google Patents

Illumination device and image-projecting device Download PDF

Info

Publication number
TW200844631A
TW200844631A TW096148871A TW96148871A TW200844631A TW 200844631 A TW200844631 A TW 200844631A TW 096148871 A TW096148871 A TW 096148871A TW 96148871 A TW96148871 A TW 96148871A TW 200844631 A TW200844631 A TW 200844631A
Authority
TW
Taiwan
Prior art keywords
light
optical
illumination
light source
optical element
Prior art date
Application number
TW096148871A
Other languages
Chinese (zh)
Other versions
TWI375109B (en
Inventor
Muneharu Kuwata
Tomohiro Sasagawa
Takehsi Utakoji
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW200844631A publication Critical patent/TW200844631A/en
Application granted granted Critical
Publication of TWI375109B publication Critical patent/TWI375109B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Provided is an illumination device illuminating a light-modulating element (3) for optically modulating illumination light entering an efficient surface (31) thereof, including a light source device (1) containing a surface illumination light source (12) and a photonic crystallization body (14), and an illumination optical system (2) consisted of at least two optical elements (21, 22) illuminating the light-modulating element (3) by light beam irradiated from an illumination surface (13) of the surface illumination light source (12). The illumination optical system (2) enlarges the illumination surface (13) of the surface illumination light source (12), and telecentrically forms the image on the efficient surface (31) of the light-modulating element (3).

Description

200844631 九、發明說明: ^ '【發明所屬之技術領域】 ' 本發明係有關一種藉由從面發光光源所射出的光束來 對光調變元件進行照明之照明裝置、以及使用該照明裝置 的影像投射裝置。 ^ 【先前技術】 以往,作為影像投射骏置的照明裝置,已知有一種使 ⑩從燈具damp)光源所射出的光束透過一對微透鏡陣列 (micro lens array)使受度分佈均勻化後,來對光調變元件進 行照明之照明裝置(參照例如專利文獻。 此外已知有一種藉由臨界(critical)型的照明光學系 統使具有大致均勻的亮度分佈之面發光光源的發光部之參 像成像至光調變元件之照明裝置(參照例如專利文獻2)。" ,專利文獻1:曰本特開平11-64977號公報(第3頁、第 專利文獻2:日本特開2〇〇6_126394號公報 第1圖) 兵 【發明内容】 (發明所欲解決之課題) 然而’在專利文獻丨所記载的照明裝置中,由於從 具光源所射出的光束具有不均勻的亮度分佈, 將此光束的亮度分佈予以均勺 而要用 丁 M勺勺化的微透鏡陣列,結果, 使照明裝置的構成複雜化,且合崎涛 、 曰在被透鏡陣列產生光量 失。此外’為了顯示彩色♦彡德 〜象萬要用於將從燈具光源 319830 200844631 =先==顏色分離之先學元件等’而使照 ,匕卜在專利文獻2所記载的照明装置中,由於僅以 3鏡使具有大致均句的亮度分佈之面發光光源的發光部 二影:成像至光調變元件,因此雖能大致均勾地照明光調 =件’但無法確保對於光調變元件的遠心⑽⑽恤⑷性 ^即’照Μ束的射人角度會因光調變元件的有效面的面 位置而不同)。此時,在面發光光源所放射出的光束具有 全擴散面之光束分佈的情形下,光量損失的產生會 1 乂>。相對於此,在面發光光源所放射出的光束具有發 ft方向的光強度最強、且光強度會隨著與法線方 二斤成的角度變大而急遽變小這種指向性高的光束分佈之 下二光量損失會變大’且例如使用液晶面板作為光 凋父兀件日守,由於液晶面板的調變特性會依存於射, 故液晶面板的射出光束(經光調變之影像光)會變得不均 _勻,而導致晝質降低。 在專利文獻2所記載的照明裝置中 斗 ,_ ”/一机且τ ,馮f確 某種程度的遠心性,必須加异读 乂肩加長凸透鏡與液晶面板的距離 而會使照明裝置大型化。 力一 •方面,當使用反射型的DMD(Digital MicMin_ Dev1Ce;數位微型反射鏡元件)等作為光調變元件時,通' 、會產生因上述遠心性的不足而造成射出光束的不均句之汽 題。然而,在使用具有上述指向性高的光束分佈之面^ 光源時’在面發光光源所射出的光束中,朝發光面的_ 319830 200844631 方向射出的主光線备魁 .壯& _ 胃暫B可經由凸透鏡聚焦後,在已發散的 恶下射入至光調轡 ,科—丄 又凡件(苓照後述的第2圖)〇因此,光 调、交7L件的射出光走的 ^ ^ . 末的主光線亦會在發散狀態下射向投射 $子糸統。為了不使這種發散狀態的射出光束產生光量損 而射入至投射光學系統’必須將投射光學系統予以 化。 本發明乃有鏗於上述課題而研創者,其目的係提供一 種能以簡單的構成來抑制光量損失,並可均句地進行昭明 之照明裝置及影像投射裳置。 仃…月 (解決課題的手段) 裝置係對光調變元件進行照明,該光調 “件係對射入至有效區域的照明光進 裝置之構成為具備有:光 又这,、、、明 ,.^ 先源裝置,係包含有面發光光源(較 土 ’、、、仅L 3有光子結晶體(ph〇t〇nic灯河 學系統,係具有至少呈右而徊忠與一从夂…、月先 龜笋由從面於Λ 該等光學元件係 _耩由仗面發光光源所射出的光束來照明光調變元件 :大統係以將面發光光源的發光面㈣ mi為以遠心方式)成像至光調變元件的有效面之 万式來構成。 (發明之效果) 依據本發明的照明裝置,能以簡單的構成均句地 ^變兀件,並能抑制裝置的大型化及光量損失的降低。 像先的不均勻,並提供高晝質的影像。 319830 7 200844631 【實施方式】 • 實施形態一 , =下,呪明本發明實施形態一的照明裝置。 纽:夕Ξ係-不本發明實施形態一的照明裝置的構成及 、隹一明裝置係用以對光調變元件3(被照明體) 、订,、?、明之照明裝置,传呈 直係具有先源裝置1與照明光學系統 光源衣置1係將用以射出例如紅色、藍色、綠色 ^ ^ )t 光源"係於電路=二路/之電路基板11者。固體 固_二 反侧具有矩形的發光面13。 久\/^、糸經由電路基板11接收來自電源的電力供 面13的射出側設置有光子結晶體14。 光子結晶體14传|古丨ν、士 g μ 置折射率不同的電介質;:之:?(。rder)的週期來配 有三維的折射率分佈之三維 射率分佈之二維光子④θ等子,二 具有二維的折 子結晶體所具有之週期性的折射率分佈,來带 成使具有與折射率分佈__ ^ f在之光子能隙(p 一-gap職 =有某特定範圍的波長之光或使行進方向變二;: 自由地控制光。 文化寺方式 ^19830 8 200844631 k發光二極體這種一般 *係具有接近完全 上面以切所放射出的光束 ..擴散面所放:==分!。第2圖係顯示從完全 :=T設為φ,將發光面13的法線與光的放射方向 2的角度設為放射角θ時,放射角θ的光束係表示成^ 源12)所放:t ’員不仗本貫施形態中的面發光光源(固體光 ,)所放射出的光的光束分佈之示意圖。盥第2圖的不 ^為在發光面13的附近(射出側)以與發光面Μ平行之 平面狀的光子結晶體14此點。由於光子結晶體 ㈣光束,綠由控制其 即光子έ士曰二射出光子結晶體14之光束的發光面13(亦 加:;: 射出面)之法線方向的放射成份更為增 I可使從光子結晶體,所射出的光束具有高的指向 ’如圖:示,照明光學系統2係由第一光學元件& ;斤= 所構成,將從光源裝置1的發光面13 狄一二的光束予以照射至光調變元件3。更詳而言之, I Uhl學:件21係將具有大的廣角而從發光面13射出(放 俜藓由―予以大致準直(C〇llimate)化。第二光學元件22 係猎由第一夯聲云也〇 、 元件3的有、文面Ή 吏已準直化的光束聚光於光調變 且iLi 照明光學系統2係臨界型照明系統, 體先源12的發光面13與光調變元件3的有效面η 為相關於照明光學系統2的共輛關係,且成像倍率合 319830 9 200844631 變成負值。 光调變70件3係藉由穿透型或反射型的液晶面板、或 ' DMD所構成,並具有將多數個像素以二維方式配置的有效 光凋變元件3係根據影像信號,依每個像素將藉由 照明光學系統2而照射至有效面31的光束以二維方式進行 強度調變’以產生影像光(圖像光)。 在弟1圖中,符號CR1係顯示從光源裝置】的發光面 =該發光面13的法線方向射㈣光U光線)。符號CR2 係减不上述主光線CR1受到照明光學系統2的作用,而射 入至光調變元件3的有效面31時的光(主光 Π!藉由照明光學系統2的第-光學元…聚焦; 後此父叉。 轉對S’:以構成光學系統之所有的光學元件係具有旋 、無丨,在廷些光學元件的旋轉對稱軸配置在一直線土 二::直線稱為光軸’光瞳(pup·置係定義成在近轴 计开中主光線與光軸交又的 罝…、而在先源裝置1的 =3的中心與光軸一致的情形下,由於第—光學元件 ^象差⑽咖㈣㈣係,在發光面13上從光輛僅離 ㈣的位置所射出的主光線通常係在與藉由近軸古十 开所獲得的光瞳位置不同的位置與光軸交又。 汁 在此’ Α 了方便,將主光線CR1巾、從矩形的發 13的對角端所射出的主 > 署即姑—々 線彼父叉的位置稱為光瞳位 置。即使在發光面的中心位置(或其角 形下,光瞳位置的定義亦相同。此外’例如在第 319830 10 200844631 件21為透鏡等之穿透型元件的情形中,亦可能有在第一光 ··.學元件的射人面與射出面之間存在光瞳位置之情形。 -在第1圖中,符號P1係顯示光瞳位置,從矩形的發 光面13的對角端(未圖示)射出至該發光面13的法線方向 之主光線’係受到第學元件21的作用,而在該光瞳位 置P1彼此交叉。 在光瞳位置Pi的附近彼此交叉的主光線CR1係以已 鲁發散的狀態射人至第二光學元件22,並藉由第二光學元件 22而受到聚焦作用。已穿透第二光學元件以的^線cr2 係分別以大致平行的狀態,以大致平行於有效面31的法線 的方式射入至光調變元件3的有效面31。亦即,大致遠心 性地對光調變元件3進行照明。 第4圖係比較例,且顯示照明光學系統2僅由一片凸 透鏡所構成的照明裝置的構成及光路徑。具有與第^圖所 不的構成要素相同功能之構成要素係附上相同的符號。 鲁 在第4圖所示的比較例中,從固體光源12的發光面 U所射出的主光線CR3係藉由照明光學系統2的凸透鏡 而又到聚焦作用後,在光瞳位置P1的附近彼此交叉,並 如符號CR4所示直接在已發散的狀態下射入至光調變元 件3。亦即,非遠心性地對光調變元件3進行照明。 如上所述,用以射出光子結晶體14之光束的光強度係 在光子結晶體14的射出面的法線方向(亦即主光線)為最 大並具有隨者放射角變大而急遽變小之分佈。 第5圖係顯示使用液晶面板作為光調變元件3時之包 319830 11 200844631 έ啕才又射光學系統4之比較 主光線係在穿透光調變元件3後亦合^於=度最大的 \生光量損失的方式來投射:㈣=不產 大型化。此外,已知、$曰^ Μ㈣射透鏡4予以 入自,液曰曰面板所具有的調變特f生依存於射 角故畜相對於液晶面板的法 、 率越多,晝質會越降低。Γ, 射角大之光線的比 性地對光調變元件3進行i如,4圖所示’在非遠心 第6圖㈣干使月…法獲得良好的影像。 ,性地對光面㈣為光調變元件3且遠心200844631 IX. Description of the invention: ^ 'Technical field to which the invention pertains>> The present invention relates to an illumination device for illuminating a light modulation component by a light beam emitted from a surface light source, and an image using the illumination device Projection device. ^ [Prior Art] Conventionally, as an illumination device for image projection, it is known that a light beam emitted from a light source of a lamp (damp) is transmitted through a pair of micro lens arrays to uniformize the distribution of the intensity. An illumination device for illuminating a light modulation element (refer to, for example, the patent literature. Further, there is known a light-emitting portion of a surface-emitting light source having a substantially uniform luminance distribution by a critical illumination optical system. An illuminating device that is imaged to a light-modulating element (see, for example, Patent Document 2). Patent Document 1: Japanese Patent Application Laid-Open No. Hei 11-64977 (page 3, Patent Document 2: Japanese Patent Laid-Open No. Hei 2-6-126394 (No. 1 of the Japanese Patent Publication No. 1) (Invention) [In the illumination device described in the patent document, the light beam emitted from the light source has a non-uniform brightness distribution. The brightness distribution of the beam is evenly distributed, and the microlens array of the D-spooning is used. As a result, the composition of the illumination device is complicated, and the amount of light generated by the lens array is in the form of the lens array. In addition, in order to display the color ♦ 彡 〜 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In this case, since the light-emitting portion of the surface-emitting light source having the brightness distribution of the substantially uniform sentence is imaged to the light-modulating element by only three mirrors, the light-adjusting member can be substantially uniformly illuminated, but the light cannot be ensured. The telecentricity of the modulation element (10) (10) (4) (that is, the angle of the shot is different depending on the surface position of the effective surface of the light modulation element). At this time, in the case where the light beam emitted from the surface light source has a beam distribution of the full diffusion surface, the generation of the light amount loss is 1 乂>. On the other hand, the light beam emitted from the surface light source has a light beam having the strongest light intensity in the ft direction and a light intensity which is sharply smaller as the angle from the normal square is increased. Under the distribution, the loss of the two light amount will become larger, and for example, the liquid crystal panel is used as the light-shaving father. Since the modulation characteristics of the liquid crystal panel depend on the emission, the emitted light beam of the liquid crystal panel (the light-modulated image light) ) will become uneven _ even, resulting in reduced enamel. In the illuminating device described in Patent Document 2, the _"/one machine and τ, von f have a certain degree of telecentricity, and it is necessary to increase the distance between the convex lens and the liquid crystal panel by the different reading shoulders to increase the size of the illuminating device. In the case of force, when a reflective DMD (Digital MicMin_ Dev1Ce; digital micromirror element) is used as the optical modulation element, the inconsistency of the emitted light beam due to the above-mentioned lack of telecentricity occurs. However, in the case of using the light source having the above-mentioned high directivity beam distribution, the main beam of the light beam emitted from the surface of the light-emitting surface is _ 319830 200844631, and the main light is emitted. After the stomach B is focused by the convex lens, it is injected into the light sputum under the divergent evil, and the 丄 丄 凡 凡 苓 苓 苓 苓 苓 苓 第 第 第 第 第 第 第 第 第 第 第 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 The final principal ray of the ^ ^ . is also emitted to the projection of the sub-system in the divergent state. In order not to cause the amount of light emitted from the divergent beam to be incident on the projection optical system, the projection optical system must be normalized. Ben The present invention has been made in view of the above problems, and an object of the present invention is to provide a lighting device and a video projection device that can be uniformly performed with a simple configuration, and can be uniformly displayed. The device illuminates the light modulation component, and the light modulation device is configured to have an illumination light entrance device that is incident on the effective region: the light source, the light source, the light source, the light source, the light source, the light source, the light source, the light source There is a surface illuminating light source (more soil, ', and only L 3 has photon crystals (the ph〇t〇nic lamp He Xue system, which has at least right and 徊 与 与 一 一 一 、 、 、 、 、 、 、 、 、 、 、 Λ The optical components _ 照明 illuminate the light modulation component by the light beam emitted by the surface illuminating light source: the system is effective for imaging the light emitting surface of the surface illuminating light source (four) mi to the optical modulation component (Effect of the Invention) According to the illuminating device of the present invention, it is possible to reduce the size of the device and reduce the loss of the light amount with a simple configuration. And provide high-quality images 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 For illuminating device 3, illuminating device, illuminating device, illuminating device, illuminating device with direct source device 1 and illumination optical system, 1 system for emitting, for example, red, blue , green ^ ^ ) t light source " is attached to the circuit = two way / circuit board 11 . The solid solid _ two has a rectangular light-emitting surface 13 on the reverse side. The photonic crystal body 14 is provided on the emission side of the power supply surface 13 from the power source via the circuit board 11 for a long time. Photonic crystal 14 transmission|古丨ν,士 g μ Dielectric with different refractive index; The period of (.rder) is a two-dimensional photon 4θ equator with a three-dimensional luminosity distribution of a three-dimensional refractive index distribution, and two have a periodic refractive index distribution of a two-dimensional eclipse crystal to bring The refractive index distribution __ ^ f is in the photonic energy gap (p-gap job = light with a certain range of wavelengths or the direction of travel becomes two;: freely control the light. Cultural Temple Way ^19830 8 200844631 k light two This general* of the polar body has a beam that is nearly completely above and cut out. The diffusing surface is placed: == minutes! The second figure shows the method from the complete: =T to φ, the light-emitting surface 13 When the angle between the line and the radiation direction 2 is set to the radiation angle θ, the beam of the radiation angle θ is expressed as the source 12): t 'the surface light source (solid light) in the present embodiment A schematic representation of the beam distribution of the emitted light. In the vicinity of the light-emitting surface 13 (the emission side), the photon crystal body 14 having a planar shape parallel to the light-emitting surface is not shown. Due to the photon crystal (four) beam, the green is controlled by the photon of the light-emitting surface 13 (also::: the exit surface) of the light beam of the photon crystal 14 In the crystal, the emitted light beam has a high orientation. As shown in the figure, the illumination optical system 2 is composed of the first optical element & jin, and the light beam from the light-emitting surface 13 of the light source device 1 is irradiated. To the light modulation element 3. More specifically, I Uhl: The 21-series will have a large wide angle and will be emitted from the illuminating surface 13 (the 俜藓 予以 is substantially collimated). The second optical element 22 is hunted by the first A sound cloud, a component 3, a surface Ή 吏 a collimated beam is concentrated in the light modulation and iLi illumination optical system 2 is a critical illumination system, the light source 13 of the body source 12 and the light tone The effective surface η of the variable element 3 is a common vehicle relationship with respect to the illumination optical system 2, and the imaging magnification becomes 319830 9 200844631 becomes a negative value. The light modulation 70 piece 3 is made of a transmissive or reflective liquid crystal panel, or The DMD is composed of an effective light-dissipating element 3 in which a plurality of pixels are arranged in two dimensions. The light beam that is irradiated to the effective surface 31 by the illumination optical system 2 is two-dimensionally based on the image signal for each pixel. The image is intensity-modulated to generate image light (image light). In the figure 1 of the first embodiment, the symbol CR1 displays the light-emitting surface from the light source device = the normal direction of the light-emitting surface 13 (four) light U-ray). The symbol CR2 reduces the light when the principal ray CR1 is subjected to the illumination optical system 2 and is incident on the effective surface 31 of the optical modulation element 3 (the main aperture! by the first optical element of the illumination optical system 2... Focusing; after this parent fork. Turning to S': All the optical components that make up the optical system have a spin, no flaw, and the rotational symmetry axes of the optical components are arranged in a straight line: the straight line is called the optical axis' The aperture (pup) is defined as the intersection of the chief ray and the optical axis in the paraxial opening, and in the case where the center of the source 3 of the source device 1 coincides with the optical axis, due to the first optical element ^Aberration (10) Coffee (4) (4), the chief ray emitted from the position where the light vehicle is only separated from (4) on the light-emitting surface 13 is usually at a position different from the position of the pupil obtained by the proximal axis. In addition, the juice is convenient here, and the position of the main light, which is emitted from the diagonal end of the rectangular hair 13 , is called the pupil position. The center position of the light-emitting surface (or its angular shape, the definition of the pupil position is also the same. In addition) In the case where the 219830 10 200844631 piece 21 is a penetrating element such as a lens, there may be a case where a pupil position exists between the face and the exit face of the first optical element. In the first drawing, the symbol P1 indicates the pupil position, and the chief ray ' emitted from the diagonal end (not shown) of the rectangular light-emitting surface 13 to the normal direction of the light-emitting surface 13 is subjected to the function of the learning element 21. At the pupil position P1, the principal rays CR1 crossing each other in the vicinity of the pupil position Pi are incident on the second optical element 22 in a state of being completely diverged, and are received by the second optical element 22. The focusing action. The line cr2 that has penetrated the second optical element is respectively incident on the effective surface 31 of the optical modulation element 3 in a substantially parallel state substantially parallel to the normal to the effective surface 31. The light modulation element 3 is illuminated substantially telecentrically. Fig. 4 is a comparative example, and shows the configuration and optical path of the illumination device in which the illumination optical system 2 is composed of only one single convex lens. The constituent elements of the same function of the constituent elements are attached In the comparative example shown in Fig. 4, the chief ray CR3 emitted from the light-emitting surface U of the solid-state light source 12 is again focused by the convex lens of the illumination optical system 2 at the pupil position. The vicinity of P1 crosses each other and is incident on the light modulation element 3 directly in the diverged state as indicated by the symbol CR4. That is, the light modulation element 3 is illuminated non-telecentrically. The light intensity of the light beam emitted from the photonic crystal body 14 is the largest in the normal direction (i.e., the chief ray) of the emitting surface of the photonic crystal body 14, and has a distribution in which the radiation angle becomes large and becomes sharper and smaller. Fig. 5 shows the use When the liquid crystal panel is used as the light modulation component 3, the package 319830 11 200844631 The comparison of the main light of the optical system 4 is also the way of the maximum light loss of the light after the light modulation component 3 is transmitted. To project: (4) = not large-scale production. In addition, it is known that the 曰^ Μ(4) lens 4 is taken in, and the modulation characteristic of the liquid helium panel depends on the angle of the angle of the animal relative to the liquid crystal panel, and the enamel is lowered. . Γ, the ratio of the light with a large angle of incidence to the light modulation element 3 i, as shown in Fig. 4 in the non-telecentric view (4) dry the moon ... method to obtain a good image. Sexually on the smooth side (4) is the light modulation element 3 and is telecentric

仃明日守的構成。此時,盥第5 R =;可、,投射光編^ 出面1=之光束係含有报多具有相對於光子結晶14之射 出面=線方向傾斜且光強度小的成分,故光量 = 二=卜,為了導入從光源裝置i所放射之具更大心 角々先束,必須將照明光學系統2予以大型化。 相對於此,由於貫施形態—的照明 =心性地對先調變元件3的有效面31進行照明= 口用=強度大且靠近發光面13的法線方向之光束,因 ★’光量損失少’且不會導致投射光學系統的大型化。 外’能將射人至光調變元件3㈣效面31之所有光線相對 々該有效面31的法線之射人角度設定成最小(以用以對有 效面31進行照明之光束的F值為相同之情形下進行比較 之情形)。亦即’大致平行地射人至光調變元件3的有致面 Μ的法線之光線會變多。結果,作為光調變元件3之液晶 面板的調變特性會變得最好,而能獲得良好的晝質。日日 319830 12 200844631 第7圖係顯示在與第4圖相同的比較例中 :廳_等反射型光調變元件作為光調變元件3時的;成與 以及投射光學系統4。具有與第1圖所示的構成 要素相同功能的構成要素係附上相同的符號。 在罘7圖中,從發光面13射出並射入至作為光調變元 件3之DMD之主光線CR4係藉由DMD的各個微型反射 鏡來進行反射。將反射的光線作為主光線CR5。由於主光 線CR5係在維持彼此的角度差之狀態下直線行進,故彼此 的間隔會逐漸增大。 因此,藉由光調變元件3而受到調變作用的影像光係 大範圍地行進,不會完全地射入至投射光學系統4,故會 產生大的光量損失。此外,若欲以無光量損失之方式使影 像光射入至投射光學系統4時,必須將投射光學系統4 ^ 以大型化- 第8圖係顯示藉由實施形態一的照明裝置(第!圖)來 _照明作為光調變元件3的DMD時的構成及光路徑。由於 貫施形態一的照朋裝置係大致遠心性地對光調變元件3進 行照明,故由作為光調變元件3的DMD所反射的影像光 不會麦廣。因此’從弟7圖與弟8圖的比較可得知,在實 施形態一的照明裝置中,不會產生大的光量損失,且無須 將投射光學系統4予以大型化。 在實施形態一的照明裝置(第1圖及第8圖)中,第一 光學元件21及第二光學元件22皆具有正的功率(p0wer)。 相對於此’弟9圖係顯不弟一光學元件23具有負的功率, 319830 13 200844631 且第二光學元件24且 '第9圖中,具有盘第、】圖所 時的構成及其光路徑。在 '要素係附上相同的符號。 料要料目同功能的構成 在第9圖所示的構成中 所射出的主光線〇u係夢由:一面::光源1的發光面13 作用後,藉由第-光μ ^ 先予兀件23而受到發散 心性地射入至光,掛-#。 ]水’、、、作用,而大致运 狀至以^件3的有效面31。此時, i彼此交叉,且成像倍率變成正值。 、、、 進-tL?:示的構成中’由於藉由第-光學元件23 ^^ 角度之方式從發光面13射出(放射)的光 :政’故必須加大第二光學元件24的有效徑,而造成照 月衣置整體之大型化。反, — 反之為了縮小弟二光學元件24 求效徑’亦須縮小第一光學元件23的有效徑,故在從發 …面13所射出的光束中能有效利用的比率會變少。 一此外,為了縮小第二光學元件24的有效徑,須縮小第 /光學兀件23與第二光學元件24的間隔,但該情形係如 後述,係難以在照明光學系統2内確保配置(用以合成來自 奴=個光源裝置之光束的)二向分光鏡(dichr〇ic mirr〇〇等 二間。並且,由於在第一光學元件23與第二光學元件 之間會發散光束,故難以充分地發揮二向分光鏡等之特 性〇 相對於此,在實施形態一的照明裝置(第1圖及第8圖) 中’,由於第一光學元件21與第二光學元件22皆具有正的 功率,故主光線CR1會藉由第—光學元件21而大致準直 319830 14 200844631 上=須加大第二光學元件22的有效徑,故有利於 n置的小型化。此外,藉由在第—光學元件^ ^光學元件22之間設定# $ At ,、牮— · ’又疋先瞳位置,能以保持適當的間隔之方 式配置弟-先孥元件21與第二光學元件22 後 16圖)’容易在兩個光學元…22之間配置二 鏡寻亚且’由於在第一光學元件21與第二光學元件 之間光f:被大致準直化’故二向分光鏡等之特性亦良好。 >生、=賴7L件3的有效面31為矩形形狀,其縱橫比(縱: 棱)通吊為3 . 4或9 : 16。由於實施形態一中的照明光萬 系統2係臨界型照明系統,且光源裝置i的發光面 接成像於光調變元件3的有效面31,故光源裝置i的發光 面13的形狀基本上亦以縱橫比 狀為佳。 4次9. 16的矩形形 如此,將具有大致均自的亮度分佈之光源裳置^ 光面U作成與光調變元件3的有效面31相似形狀的矩ς 形狀,並使發光面13直接成像於光調變元件3的有效面 31 ’藉此,如同使用燈具光源的照明光學系統(例如專^文 獻1)般,無須設置用以將照明光束予以均句化且使燈1光 源影像成像於矩形的有效面之微透鏡陣列等。結果二二# 單地製作照明光學系統的構成。 V I簡 作為設計照明光學系統時所考慮之概念,通常係使用 稱為展度(Etendue)之量。將從固體光源12(發光面13)所 出的光束的配光分佈假定成朗伯(lambenian)分佈(完全擴 散)時之固體光源12及光調變元件3的展度,係以廣 319830 15 200844631 或受光面的面積、與放射或受光的光的立體角度的積來定 •、義,並以下式來表示。 、 、 Es= Asxsin(0 s)a2x7T …⑴The composition of the Guardian Day. At this time, 盥5 R =; Yes, the beam of the projection light is out of the surface 1 = the beam has a component that is inclined with respect to the exit surface of the photonic crystal 14 and has a small light intensity, so the amount of light = two = In order to introduce a larger core angle from the light source device i, it is necessary to increase the size of the illumination optical system 2. On the other hand, due to the illumination of the form--the illumination of the effective surface 31 of the first modulation element 3 is illuminated = the light beam having a large intensity and close to the normal direction of the light-emitting surface 13 is less due to the amount of light loss 'It does not lead to an increase in the size of the projection optical system. The outer 'can be set to the minimum of the normal angle of the light incident to the optical modulation element 3 (four) effect surface 31 with respect to the normal of the effective surface 31 (the F value of the light beam for illuminating the effective surface 31) The case of comparison under the same circumstances). That is, the amount of light that is incident on the normal to the surface of the light modulation element 3 in a substantially parallel manner is increased. As a result, the modulation characteristics of the liquid crystal panel as the light modulation element 3 become the best, and good enamel can be obtained. Day 319830 12 200844631 Fig. 7 is a view showing the same comparative example as Fig. 4: when the hall-isoreflective optical modulation element is used as the optical modulation element 3, and the projection optical system 4. The constituent elements having the same functions as those of the constituent elements shown in Fig. 1 are denoted by the same reference numerals. In Fig. 7, the chief ray CR4 emitted from the light-emitting surface 13 and incident on the DMD as the light-modulating element 3 is reflected by the respective micro-mirrors of the DMD. The reflected light is taken as the chief ray CR5. Since the main light line CR5 travels straight in a state in which the angular difference between the two is maintained, the interval between them gradually increases. Therefore, the image light system that is modulated by the light modulation element 3 travels in a wide range, and does not completely enter the projection optical system 4, so that a large amount of light loss occurs. Further, when the image light is to be incident on the projection optical system 4 in such a manner that the amount of light loss is lost, it is necessary to enlarge the projection optical system 4^ - Fig. 8 shows the illumination device according to the first embodiment (Fig. The configuration and the optical path when the illumination is used as the DMD of the optical modulation element 3. Since the photo-modulating device 3 is illuminating the optical modulation element 3 substantially telecentrically, the image light reflected by the DMD as the optical modulation element 3 is not wide. Therefore, it can be seen from the comparison between the brother 7 and the brother 8 that the illumination device of the first embodiment does not cause a large loss of light amount, and it is not necessary to increase the size of the projection optical system 4. In the illumination device (Figs. 1 and 8) of the first embodiment, both the first optical element 21 and the second optical element 22 have positive power (p0wer). In contrast to this, the optical component 23 has a negative power, 319830 13 200844631 and the second optical element 24 and the ninth figure have the configuration of the disk, and the optical path thereof. . Attach the same symbol to the 'Elements'. The main light ray that is emitted from the configuration shown in Fig. 9 is composed of one side: the light-emitting surface 13 of the light source 1 is acted upon by the first light μ ^ Piece 23 is divergently injected into the light, hanging -#. The water ', ', and the action are substantially transported to the effective surface 31 of the member 3. At this time, i crosses each other, and the imaging magnification becomes a positive value. -, -, -tL?: In the configuration shown, "light emitted (radiated) from the light-emitting surface 13 by the angle of the first-optical element 23 ^^" must increase the effectiveness of the second optical element 24 The diameter is caused by the large size of the overall clothing. Conversely, conversely, in order to reduce the effective diameter of the second optical element 24, the effective diameter of the first optical element 23 must be reduced, so that the ratio of effective use of the light beam emitted from the surface 13 is reduced. Further, in order to reduce the effective diameter of the second optical element 24, the interval between the second optical element 23 and the second optical element 24 must be narrowed. However, as will be described later, it is difficult to ensure the arrangement in the illumination optical system 2 (using In order to synthesize a dichroic beam splitter (a light beam from a light source device), it is difficult to sufficiently dim the light beam between the first optical element 23 and the second optical element. In contrast, in the illuminating device (Figs. 1 and 8) of the first embodiment, since both the first optical element 21 and the second optical element 22 have positive power, the characteristics of the dichroic mirror and the like are exhibited. Therefore, the main light CR1 is substantially collimated by the first optical element 21 319830 14 200844631 = the effective diameter of the second optical element 22 has to be increased, which is advantageous for the miniaturization of the n-position. The component ^ ^ is set between the optical element 22 # $ At , , 牮 — · ' 疋 疋 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Easy in two optical elements...22 And two sub-mirror configuration hunt 'f since the light between the first optical element 21 and the second optical element: a substantially collimated' it is also good to two characteristics of the dichroic mirror and the like. > The effective surface 31 of the raw material 7 is a rectangular shape, and its aspect ratio (longitudinal: rib) is 3.4 or 9:16. In the illumination illumination system 2 of the first embodiment, the illumination system of the light source device i is imaged on the effective surface 31 of the light modulation device 3, so that the shape of the light-emitting surface 13 of the light source device i is basically The aspect ratio is preferred. 4 times the rectangular shape of 9.16, the light source having the substantially uniform brightness distribution is formed into a rectangular shape similar to the effective surface 31 of the light modulation element 3, and the light emitting surface 13 is directly Imaged on the active surface 31' of the light modulating element 3, as in the case of an illumination optical system using a luminaire source (for example, Document 1), it is not necessary to provide for illuminating the illumination beam and imaging the source image of the lamp 1 A microlens array or the like on the effective surface of the rectangle. As a result, the composition of the illumination optical system was made in a single place. V I Jane As a concept to be considered when designing an illumination optical system, it is usually called an amount called etendue. The distribution of the light distribution of the light beam from the solid-state light source 12 (light-emitting surface 13) is assumed to be the lamberian distribution (complete diffusion) of the solid-state light source 12 and the optical modulation element 3, which is 319830 15 200844631 The product of the area of the light-receiving surface and the solid angle of the emitted or received light is defined by the following formula. , , Es= Asxsin(0 s)a2x7T ...(1)

El= Alxsin(0 1)λ2χτγ …(2) 在(1)式中’ Es為固體光源12的展度,As為固體光源 12的發光面13的面積,0 s為從固體光源12的發光面13 所射出的光束的半晝角。在(2)式中,m為光調變元件3 的展度’ A1為光調變元件3的有效面31的面積,0 i為射 入至光調變元件3的有效面31之光束的半晝角。冗為圓周 率。 、 在實施形態一的照明裝置中,雖以固體光源12的展度 與光調變元件3的展度會成為大致相等的方式來設定 規格,但實現高的照明效率則更為理想。例如,當固體光 源12的發光面13為3mmx4mm(對角尺寸5mm),且假設 從該發光面13以半球狀方式所放射的90度)光束^ φ配光分佈為朗伯分佈時,固體光源12的展度會成為約 37.7。此時,當將光調變元件3的有效面31設成 16mm(對角尺寸2〇mm),並將用以照明光調變元件3之光 束=F值設定成2.〇⑷与14 5度)時,光調變元件3的展 f會j為37.7,且能作成與固體光源12的展度相等。此 ^…、明光學系統2的成像倍率的絕對值只要設定成光調 文兀*件3的有效面3〗的對角尺寸除以固體光源u的發光 面13的對角尺寸所得之值(20mm+5mm= 4)即可。 然而,當考慮到從固體光源12的發光面13所放射出 319830 16 200844631 m的空間(角度)性的擴散時,難 ,為〇,亦即難以在_^ _ 1定九里損失成 ,的光束全部照明在光二又乾圍内將從發光面13所射出 ,上更佳為將固周變7^牛3的有效面31。因此,實際 又1土馬知固體光源12的 度還大。 又疋成比先凋變元件3的展 從發全㈣面時料算,但在 •:旨向性時,所放射之光的立體角較小的部== 先面積的完全擴散面相比,;:σ』 此,在光源的指向性^土〜一展度會交小。因 進一步將光 /本只%形恶一的照明裝置中,能 、予…、此/、31化,且能提高光利用效率。此外, =Γ展度設成相同時,與完全擴散面相比,能使發 亮的影像光。 故此獲付更明 •下,::、二光:,立:角變成完全擴散時的-半之情形 U4mmx5.66mm(對角尺寸7〇7mm)。么先面13自又疋成 第10圖係顯示實施形態一的晴置中的發光面13 =狀(弟H)圖⑷)與亮度分佈(第1〇圖⑽以及光調 Γ第=區域的平面形狀(第1G_))與亮度分佈 係指藉由光源裝置!及照 Β„ 4+ λα^ ^ 月尤予糸紅2所產生之照明光束 “射的區域’且包含有效面31之區 光學系統2的像差,固體光源12的發光面13=完= 319830 17 200844631 1像於光調變元件3的有效面 ^ ^ > , u 亦即,虽發先面13的周 少F未砰明地(sharp)成像(模糊)時,如第ι〇圖⑷及⑻所 ::即,發光面13整面的亮度均勾,但如第1〇圖(c)及⑼ *二變疋件3的照明區域中,尤其在周邊部中, 冗度會容易降低。 系統照明光學系統2具有失真像差、或照明光學 徘门本、I素之至少一部分具有偏心之情形等時,即 使固體光源12的私本;·} q1 旳么先面13為矩形,照明區域 矩形,而會變成梯形、桶型、捲綠刑々、二l 攻马 之複雜的形狀。捲線型、或适些形狀的組合 —亚且’在照明農置的安裝與調整時,由於實際上難以 完全地調整固體弁、、原Ί ? A 、 、 及…發光面13、照明光學系統2、以 靜二又凡牛3的有效面31彼此的對準(alignment),故昭 明區域與光調變元件3的右姊 #、、 有效面31的位置關係會從理想的 狀怨產生某程度的偏差。 -杜實際上在考慮到安裝與調整時所產生的光調變 疋兵照明區域相對性的配置誤、 的亮度劣化維持在料蘇円由危 1為以,周邊 才在合泎靶圍内之程度、而使照明區域變得 比先调變7G件3的有效面Μ、詈| j十 統2的倍率。 面1逐大之方式來設定照明光學系 在弟4圖的比較例中,由於照明區域周邊的 绫 CR4朝光調變元株3 aa— 岐日厂土尤綠 當光調織开株3 $有效面31之法線方向傾斜,例如 二、的有效面31於該有效面31的法線方向產 决立置偏差)而配置時’即使有效面31的位置偏差量 319830 18 200844631 Μ, 僅些微,照明區域的面積亦會相對於光調變元件3的有嗖 \面31的面積產生較大之變動。 > ' 相對於此,由於實施形態一的照明裝置係大致遠心性 地對光調變元件3的有效面31進行照明,故用以對光調變 元件3的有效面31進行照明之主光線係大致平行於該有= 面^的法線方向,因此,即使有上述的位置偏差,亦幾乎 不冒產生成像倍率的變動,且照明區域的面積不會大幅度 •地變動。如此,由於不容易產生因光調變元件3的位El=Alxsin(0 1)λ2χτγ (2) In the formula (1), 'Es is the spread of the solid-state light source 12, As is the area of the light-emitting surface 13 of the solid-state light source 12, and 0 s is the light-emitting surface from the solid-state light source 12. 13 The half angle of the beam emitted. In the formula (2), m is the spread of the light modulation element 3 'A1 is the area of the effective surface 31 of the light modulation element 3, and 0 i is the light beam incident on the effective surface 31 of the light modulation element 3. Half-corner. Redundant is the pi. In the illuminating device of the first embodiment, the specification is set such that the spread of the solid-state light source 12 and the spread of the optical modulation element 3 are substantially equal, but it is more preferable to achieve high illumination efficiency. For example, when the light-emitting surface 13 of the solid-state light source 12 is 3 mm×4 mm (diagonal size 5 mm), and it is assumed that the light distribution of the light beam φ φ emitted from the light-emitting surface 13 in a hemispherical manner is a Lambertian distribution, the solid light source The exhibition of 12 will become about 37.7. At this time, when the effective surface 31 of the light modulation element 3 is set to 16 mm (diagonal size 2 〇 mm), and the beam = F value for illuminating the light modulation element 3 is set to 2. 〇 (4) and 14 5 In the case of the degree), the light-modulating element 3 has a spread j of 37.7 and can be made equal to the spread of the solid-state light source 12. The absolute value of the imaging magnification of the optical system 2 is set to a value obtained by dividing the diagonal size of the effective surface 3 of the optical modulo sheet 3 by the diagonal size of the light-emitting surface 13 of the solid-state light source ( 20mm+5mm= 4). However, when considering the spatial (angle) diffusion of 319830 16 200844631 m emitted from the light-emitting surface 13 of the solid-state light source 12, it is difficult, that is, it is difficult to lose the beam in the _^ _ 1 All of the illumination will be emitted from the light-emitting surface 13 in the light and dry areas, and it is more preferable to change the solid surface to the effective surface 31 of the cow 3. Therefore, the actual size of the solid-state light source 12 is still large. It is calculated that the development of the element 3 is the same as that of the first surface, but in the case of the intentionality, the part with a small solid angle of the emitted light == the area of the complete diffusion of the area first. ;: σ』 This, in the directivity of the light source ^ soil ~ a spread will be small. Further, in the illuminating device in which the light/negative % is only one, the light source can be improved, and the light use efficiency can be improved. In addition, when the degree of Γ is set to be the same, the image light can be brightened compared to the full diffusion surface. Therefore, the payment is more clear. •,::, two light:, stand: the angle becomes completely diffused - half of the situation U4mmx5.66mm (diagonal size 7〇7mm). The first surface 13 is also shown in the tenth figure. The light-emitting surface 13 in the clearing of the first embodiment is shown in the form of the light-emitting surface 13 (the shape of the first image (10) and the light distribution. The plane shape (1G_) and the brightness distribution refer to the area of the illumination beam "field" generated by the light source device and the 糸 4 + λα ^ ^ 尤 糸 2 2 and the effective area 31 The aberration of the system 2, the light-emitting surface 13 of the solid-state light source 12 = end = 319830 17 200844631 1 is the effective surface of the light-modulating element 3 ^ ^ > u, that is, although the circumference of the first face 13 is less than F When sharp imaging (blur), as shown in Fig. (4) and (8):: the brightness of the entire surface of the light-emitting surface 13 is hooked, but as shown in Figure 1 (c) and (9) In the illumination area of 3, especially in the peripheral portion, the redundancy is easily reduced. The system illumination optical system 2 has a distortion aberration, or an illumination optical stencil, at least a part of the eigen is eccentric, etc., even if the private light source 12 is private; ???} q1 旳 先 front face 13 is a rectangle, the illumination area The rectangle will become a trapezoidal, barrel-shaped, green-throwing, and complex shape. A combination of a winding type or a suitable shape—in the case of installation and adjustment of a lighting farm, it is actually difficult to completely adjust the solid 弁, the original Ί A , , and the illuminating surface 13 , the illumination optical system 2 Alignment between the effective surface 31 of the static two and the ox 3, so the positional relationship between the Zhaoming area and the right 姊#, and the effective surface 31 of the light modulation element 3 will be somewhat from the ideal grievance. Deviation. - Du actually considers the misalignment of the relative brightness of the light-modulating squad lighting area generated during installation and adjustment, and the brightness degradation is maintained in the vicinity of the target. To the extent that the illumination area is changed, the effective area of the 7G piece 3 is first adjusted, and the magnification of the 詈| j is unified. Face 1 is set to the illumination optical system in the comparative example of the 4th figure, because the 绫CR4 around the illumination area is directed to the light-modulating element 3 aa - 岐日厂土绿绿光光织织3 The normal direction of the effective surface 31 is inclined. For example, when the effective surface 31 of the effective surface 31 is offset from the normal direction of the effective surface 31, the positional deviation amount of the effective surface 31 is 319830 18 200844631 Μ, only slightly The area of the illumination area also varies greatly with respect to the area of the 调\face 31 of the light modulation element 3. > In contrast, since the illumination device of the first embodiment illuminates the effective surface 31 of the optical modulation element 3 substantially telecentrically, the chief ray for illuminating the effective surface 31 of the optical modulation element 3 Since it is substantially parallel to the normal direction of the surface of the surface, even if there is the above-described positional deviation, the fluctuation of the imaging magnification is hardly generated, and the area of the illumination region does not vary greatly. Thus, since the position of the light modulation element 3 is not easily generated

差(誤差)而導致影像周邊的亮度劣化,故製造上的 佳。 J 如上述所說明,依據本發明實施形態一的照明裝置, 由於未使用微透鏡陣列等光均勻化手段(整形手段構成 用以使來自面發光光源(固體光源12的發光面13)的光束 直接成像於光調變元件3之臨界型照明系統,故雖為簡單 的構成,但效率佳,且能均勻地照明光調變元件。 | 此外,由於固體光源12的發光面13係遍及整面具有 大致均勻的亮度分佈,且呈與光調變元件3的有效面Η 為大致相似的形狀,故能使發光面13的影像直接成像於光 調變元件3的有效面31,且在不設置微透鏡陣列等之情形 下即可均勻地對光調變元件3的有效面31進行照明。結 果’能簡單地構成照明光學系統。 亚且,由於在發光面13的附近配置光子結晶體Μ, 且更加增大朝光子結晶體14的法線方向放射的光的光強 度,並大致遠心性地對光調變元件3進行照明,故能抑制 319830 19 200844631 影像光的光量損失,且無須將投射光學系統予以大型化。 )亚旦且,即使f光調變元件3為液晶面板時,亦能2二 的衫像光,猎此能提供高晝質的影像。 =二 ϋ且,由於照明光學系統2係 -光學元件21以及具有正的功率之第二二的:革之弟 能一邊藉由第一光學元件21 予兀 ,故 於第-光學元件21”1:先:予以大致準直化’-邊 ”弟—先學兀件22之間設定光暗,廿 大致遠心性地對光調變元件3進 w 效果外,亦能將第二光學元件 * ’除了上述 有助於照明裝置的㈣化。时效徑抑制到很小,而 此外,在第—光學元件21與第二光學元件22之門-定光瞳位置’藉此保持適當的間隔來第^ 與第二光學元件22,而六且认 尤子疋件21 光學元件.。 4易於兩個光學元件間配置其他的 亚且’在上述的實施形g_巾,亦不 :附近設置光子結晶體14之構成。然而,如上所述先= 光=晶體U能更有效果地抑制光量損失,且能有助於投 射光學系統的小型化,自不待言。 、 此^在^述的實施形態-中,心構成照明光學系 射=*子凡件21與第二光學元件22係只要具有折 、、反射、以及繞射功能的任_種功能或任意組合 能之複合功能者即可。 二77 /此外’第—光學元件21與第二光學元件Μ亦可皆益 須為早獨的光學元件,而為纽合兩個以上的光學元件者。 319830 20 200844631 在此情形下’較第-光學元件21#第二光學元件 ,-部分包含有具有負的功率之光學元件,第—光、 ,第二光學元件22亦皆只要整體具有正的功率即可。一妒 :言:當第-光學元件21及第二光學元件22的構成要素又 增加% ’由於能減低照明光學系統2的像差,故㈣ 裝置1的發光面13的影像良好地成像於光調變元件= 效面31,而能提升照明效率。 、 =由於照明裝置的小型化或佈局(lay〇ut)上 荨’亦可於從光源裝置i至光調變元件3的光路徑中使用 平面鏡或稜鏡(prism)等來折射光路徑。 缴元:在” DMD等反射型光調變元件來作為光調 夂 守,係能於用以構成照明光學系統2之第二光與 元件22與光調變元件3之間配置稜鏡、透鏡、或反射-鏡等二 將知明先束與投射光束良好地分離,㈣免投射光束與照 明光學系統2的構成要素等之干涉。 ,11圖係顯示實施形態一的照明裝置的變形例之 圖。第11圖所示之變形例係在因固體光源12構上 ,或製造偏差科致發光面13存在有亮度不均勻的部分 時尤其有效。在第11圖所示的變形例中,於發光面13的 :近(且為第-光學元件21側)配置光擴散元件5等,而於 Tt*擴政7L件5等之射人面或射出面係具有依據面内位置而 有不同的穿透特性之擴散特性。根據光擴散元件5等之面 ^位置來技制用以穿透光擴散元件5等之光束的穿透率, 藉此能大致均勻地照明光調變元件3的有效面31。 319830 21 200844631 之0第第=係顯示實施形態—的照明裝置的其他變形例 . '弟圖所示的變形例係相對於藉由照 所投射之發光面n的成偾办要 尤予糸、、充 * 像 而將轴變元件3的有效 成徒何肖的前後任一方向錯開配置者。藉由這種構 糊成像13的影像在光調變元件3的有效面31上模 糊成像,域,能降低光調變元件3的有效面 物,而提升光調變元件3的有效面31的照明均;;生。 牵13圖係顯示在實施形態' —的照明裝置的又一變形 原12之_在發光面13的亮度分佈(第13圖 、只散兀件5等之擴散面的亮度分佈(第13圖⑻) 及在先調變元件3的照明區域(包含有效面 佈(第㈣⑹)之圖。在第13圖所示的變形例^又 =的上述光擴散元件5等之擴散面具有例如第二) :不的任4之穿透率分佈,藉此,無關於固體光源12的發 先面13之亮度分佈(第13圖⑷),係以例如第η圖⑹所 不之^望的亮度分佈來對光擴散元件3的有效面Η進行照 月第11圖至第13圖所示的變形例亦可適當地組合使 實施形態二 接著,說明本發明實施形態二的照明裝置。第14圖係 顯示實施形態二的照明裝置的構成及其光路徑之圖。:第 ^圖中,具有與在實施形態—所說明的構成要素相同功能 的構成要素係附上相同的符號。 〜貫施形態二的照明裝置雖大致與實施形態一的照明裝 置(第1圖)相同,但在射入至光擴散元件3之主光線 319830 22 200844631 t 會彼此聚焦之點上與實施形態一不同。此外,在實施形態. '了中’係假設使用DMD等反射型光調變元件作為光調變 J元件3。 第15圖係顯示應用有實施形態二的照明裝置(第14圖) 之汾像才又一射衣置之圖。第i 5圖所示的影像投射裝置係於第 14圖所示的照μ置及光調變元件加上投射光學系統* 者,且為將影像投射至未圖示的螢幕(screen)者。 在上述的實施形態一中,如有關比較例(第4圖)的說 ,,,以主光線(第4圖所示的主光線crs)彼此發散的狀 =射人至投射光學系統4之構成中,會有必須將投射光 子糸統4予以大型化,且會產生光量損失之問題。 才、才於此在貝細开> 態二的照明裝置中日召明光學季 統2(第一光學元件21盥第- 、尤子系 备CR6彼此.聚焦的狀態下射人至光調變元件3的有效面 31 °因此’如第15圖所示’藉由光調變元件3而反射的主 •錢CR7亦會與主光線⑽職地維持彼此的角度差並 聚焦,且會在相對於第與 ^ 乐-先學兀件22具有與光瞳位置P1 為/、辆關係的照明先學糸Μ 9 乃尤予糸統2的射出光瞳ρ2的位置 交叉。 如此’在主光線CR6聚焦的狀態下對光調變元件3進 影像光)的判而并*先件射出光束(經調變的 二i r,能縮小照明光學系統2的射出光 ^射井… "明光學系統2的射出光瞳P2附近配 予系統4時’與第4圖的比較例相比,當然能使 319830 23 200844631 t 投射光學系統4更加小型化及低成本化,且與使用有實施 ★形悲一的照明裝置的情形(第8圖)相比,亦能使投射光學 ♦系統4更加小型化及低成本化。此外,亦能容易進行投射 光學系統4與照明光束的干涉之迴避以及投射光學系統4 與Αν、明光學糸統2的干涉之迴避等。 並且,藉由在照明光學系統2的第二光學元件22與光 調變元件3之間配置稜鏡、透鏡、或反射鏡等,能將照明 _光束與投射光束良好地分離,並避免投射光束與照明光學 系統2的構成要素等之干涉。此外,亦可將實施形態一的 各變形例應用於實施形態二。 如上述說明’依據本發明的實施形態二的照明裝置, 與貫施形態一相同,係構成為無需使用微透鏡陣列等光均 勻化手段(整形手段)而使從固體光源12的發光面13所射 出的光束直接成像於光調變元件3之臨界型照明系統,藉 此能以簡單的構成而效率佳且均勻地照明光調變元件3。 ⑩ 並且,在實施形態二的照明裝置中,係在主光線CH6 聚焦的狀態下對光調變元件3的有效面31進行照明,藉此 旎貫現進一步將投射光學系統4予以小型化及低成本化。 實施形態三 接者’說明本發明實施形態三的影像投射裝置。 第16圖係顯示本發明實施形態三的影像投射裝置的 構成及光路徑之圖。在第16圖中,具有與實施形態一所說 明的構成要素相同功能的構成要素係附上相同的符號。 只%开> 悲二的影像投射裝置係將實施形態一或實施形 319830 24 200844631 態二的照明震置(以及光調變元件3)應用於具備有三個光 ,源裝置的影像投射裝置。 , 如第16圖所示,實施形態三的影像投射裝置係具有用 以射出紅色、綠色、以及藍色的波長帶的光束之光源裝置 。光源裝置m、1G、1B皆各自具有實施形態 一所說明的電路基板η、固體光源12、發光面13、以及 光子結晶體u。在第!圖中,符號^、…、⑶係表示從 光源裝置m、1G、⑺所射出的各個光束中之代表性的光 線。各光線LR、LG、LB係以彼此未重4之方式示意性地 顯示。於光源裝置m、1G、1B的射出側分別配置有第一 光學元件2仪、21(5、21卜第一光學元件21尺、21〇、灿 f具有與實施形態-所說明的第—光學元件21相同的功 月b 〇 元件光裝置1R、1G、1B所射出且已穿透第-光學 、1G、21B的光束所交叉的位置配置有二向分光 二向分光鏡係反射藍色的波長帶的光束,並 的波長帶的光束。二向分光鏡M2係反射 走i皮長/的光束,並穿透綠色及藍色的波長帶的光 ^出二鏡M1及奶係以反射從光源裝置贼 的光束穿透 Γ 學件之方式來配置。 光庳^件、22件22係具有與實施形態一所說明的第二 二Γ相同的功能。亦即,藉由組合第一光學元件 加、加、加的各者與第二光學元件22,來構成與實施 319830 25 200844631 形態一所說明的照明光學系統2相同的照明光學系統π。 -於照明光學系統20的射出側配置有光調變元件3,於光調 •變元件3的射出側配置有投射光學系統4。此外,在第^ 圖所示的構成例中,雖然光調變元件3為穿透型的液晶面 板,但亦可為DMD等。 曰曰 具有大範圍角度而從光源裝置1G的發光面放射出的 綠色波長帶的光束係藉由第一光學元件21g而被大致準直 化後射入至二向分光鏡M1 & M2,並在穿透二向分光鏡The difference (error) causes the brightness of the periphery of the image to deteriorate, so that it is excellent in manufacturing. As described above, according to the illuminating device of the first embodiment of the present invention, the light equalizing means such as the microlens array is not used (the shaping means is configured to directly direct the light beam from the surface light emitting source (the light emitting surface 13 of the solid light source 12) Since it is formed in the critical illumination system of the optical modulation element 3, it is simple in structure, but is excellent in efficiency and can uniformly illuminate the optical modulation element. Further, since the light-emitting surface 13 of the solid-state light source 12 has the entire surface The substantially uniform brightness distribution is substantially similar to the effective surface area of the light modulation element 3, so that the image of the light-emitting surface 13 can be directly imaged on the effective surface 31 of the light modulation element 3 without In the case of a lens array or the like, the effective surface 31 of the optical modulation element 3 can be uniformly illuminated. As a result, the illumination optical system can be easily configured. Further, since the photonic crystal body is disposed in the vicinity of the light-emitting surface 13, and more Increasing the light intensity of the light radiated toward the normal direction of the photonic crystal 14 and illuminating the optical modulation element 3 substantially telecentrically, thereby suppressing the image light of 319830 19 200844631 A light amount loss, and without the projection optical system to be large.) Alkylene denier and, even when the light modulator element 3 f is a liquid crystal panel, two shirt like 2 can also light, this hunting can provide high quality images day. = ϋ, because the illumination optical system 2 - optical element 21 and the second power with positive power: the brother of the leather can be pre-twisted by the first optical element 21, so the first optical element 21"1 : First: to roughly straighten the '-side' brother - first set the light and dark between the pieces 22, and the effect of the light modulation element 3 into the w effect, and the second optical element * ' In addition to the above, it contributes to the (four) of the lighting device. The aging diameter is suppressed to a small extent, and further, the gate-fixed pupil position of the first optical element 21 and the second optical element 22 is thereby maintained at an appropriate interval between the second optical element 22 and the sixth optical element 22 Sub-assembly 21 optical component. 4 It is easy to arrange other sub-and optical elements between the two optical elements, and to configure the photonic crystal 14 in the vicinity. However, as described above, the first = light = crystal U can more effectively suppress the loss of the amount of light, and can contribute to the miniaturization of the projection optical system, and it goes without saying. In the embodiment described above, the heart constitutes an illumination optical system = the sub-piece 21 and the second optical element 22 are any function or any combination of folding, reflection, and diffraction functions. Can be a composite function. Further, the second optical element 21 and the second optical element Μ may both be optical elements of the same time, and may be two or more optical elements. 319830 20 200844631 In this case, the 'optical-optical element 21# second optical element, - part contains optical elements with negative power, and the first light, the second optical element 22 also has a positive power as a whole. Just fine. In other words, when the components of the first optical element 21 and the second optical element 22 are increased by %', since the aberration of the illumination optical system 2 can be reduced, the image of the light-emitting surface 13 of the device 1 is well imaged on the light. Modulation component = effect 31, which can improve lighting efficiency. = = Due to the miniaturization of the illumination device or the layout of the illumination device, a plane mirror, prism or the like may be used to refract the light path in the light path from the light source device i to the light modulation element 3. In the case of "reflective optical modulation elements such as DMD", it is used as a light control, and can be disposed between the second light and the element 22 and the light modulation element 3 for constituting the illumination optical system 2. Or the reflection-mirror or the like will clearly separate the projection beam from the projection beam, and (4) interfere with the interference between the projection beam and the components of the illumination optical system 2. Fig. 11 shows a modification of the illumination device of the first embodiment. The modification shown in Fig. 11 is particularly effective when the solid-state light source 12 is constructed or the portion where the deviation light-emitting surface 13 is uneven in brightness is produced. In the modification shown in Fig. 11, the light is emitted. The light diffusing element 5 and the like are disposed on the surface 13 (near the first optical element 21 side), and the human face or the exit surface of the Tt* expansion 7L member 5 or the like has different wear depending on the in-plane position. Diffusion characteristics of the permeation characteristics. The transmittance of the light beam for penetrating the light diffusion element 5 or the like is made according to the position of the light diffusing element 5 or the like, whereby the effective surface of the light modulation element 3 can be substantially uniformly illuminated. 31. 319830 21 200844631 0th the first = shows the embodiment - the photo Other variants of the device are shown. The variant shown in the figure is effective for the axon-changing element 3 with respect to the illuminating surface n of the projected illuminating surface n. The operator is staggered in either direction before and after. The image of the image-forming image 13 is blurred on the effective surface 31 of the light-modulating element 3, and the effective surface of the light-modulating element 3 can be reduced. The illumination of the effective surface 31 of the optical modulation element 3 is improved; the display of the illumination of the illumination surface 13 of the illumination device of the embodiment of the invention is shown in FIG. The luminance distribution of the diffusing surface of the dummy member 5 (Fig. 13 (8)) and the illumination region of the prior modulation element 3 (including the effective surface cloth (the fourth (6) (6)). The modification shown in Fig. 13 Further, the diffusion surface of the light diffusing element 5 or the like has a transmittance distribution of, for example, the second: no, and thus, the luminance distribution of the front surface 13 of the solid-state light source 12 is not related (Fig. 13 (4)). For example, the effective surface of the light diffusing element 3 is illuminated for the eleventh month, for example, by the luminance distribution which is not required by the ηth diagram (6). The illuminating device according to the second embodiment of the present invention will be described with reference to the second embodiment, and the illuminating device according to the second embodiment of the present invention will be described. In the drawings, the same components as those of the components described in the embodiments are denoted by the same reference numerals. The illumination device of the second embodiment is substantially the same as the illumination device of the first embodiment (Fig. 1) The same, but differs from the first embodiment in that the principal rays 319830 22 200844631 t incident on the light diffusing element 3 are focused on each other. In addition, in the embodiment, the 'medium' is assumed to use a reflective type of light such as DMD. The variable element is used as the light modulation J element 3. Fig. 15 is a view showing the image of the illuminating device (Fig. 14) to which the second embodiment is applied. The video projection device shown in Fig. 5 is the one shown in Fig. 14 and the optical modulation device plus the projection optical system*, and the image is projected onto a screen (not shown). In the first embodiment described above, as in the comparative example (Fig. 4), the main rays (the chief ray crs shown in Fig. 4) are diverged from each other = the composition of the projection to the projection optical system 4 In the case, there is a problem that the projection photon system 4 must be enlarged, and the amount of light loss is generated. Only in this case, in the lighting device of the second state, the Japanese optical genre 2 (the first optical component 21 盥 -, the yuko system CR6 each other. Focus on the state to shoot the light The effective surface 31 of the variable element 3 is thus 'as shown in Fig. 15'. The main money CR7 reflected by the light modulation element 3 also maintains the angular difference and focus with the chief ray (10), and will Compared with the first and second music element 22, the illumination has a relationship with the pupil position P1 of /, and the position of the exit pupil ρ2 of the 糸 system 2 intersects with the position of the exit pupil ρ2. In the state where the CR6 is in focus, the light-modulating element 3 enters the image light) and the first part emits the light beam (the modulated second ir can reduce the emission light of the illumination optical system 2) " When the system 2 is disposed in the vicinity of the exit pupil P2 of 2, it is a matter of course that the projection optical system 4 of the 319830 23 200844631 t can be further reduced in size and cost compared with the comparative example of Fig. 4, and the implementation is inferior to the use. Compared with the case of a lighting device (Fig. 8), the projection optical system 4 can be further miniaturized and low. Further, it is also possible to easily avoid the interference of the projection optical system 4 with the illumination beam and the avoidance of the interference between the projection optical system 4 and the Αν, the optical system 2, and the like, and by the illumination optical system 2稜鏡, a lens, a mirror, and the like are disposed between the second optical element 22 and the optical modulation element 3, so that the illumination beam and the projection beam can be well separated, and interference between the projection beam and components of the illumination optical system 2 can be avoided. In addition, the modification of the first embodiment can be applied to the second embodiment. As described above, the illuminating device according to the second embodiment of the present invention is configured not to use a microlens array or the like as in the first embodiment. The light uniformizing means (shaping means) directly images the light beam emitted from the light-emitting surface 13 of the solid-state light source 12 into the critical illumination system of the light-modulating element 3, whereby the light can be efficiently and uniformly illuminated with a simple configuration. In the illuminating device of the second embodiment, the effective surface 31 of the optical modulation element 3 is illuminated while the chief ray CH6 is in focus. Further, the projection optical system 4 is further reduced in size and cost. The third embodiment of the present invention describes a video projection device according to the third embodiment of the present invention. Fig. 16 is a view showing the image projection of the third embodiment of the present invention. The configuration of the device and the diagram of the optical path. In the sixteenth embodiment, the components having the same functions as those described in the first embodiment are denoted by the same reference numerals. Only the % of the image projection device will be Embodiment 1 or Embodiment 319830 24 200844631 State 2 illumination (and optical modulation element 3) is applied to an image projection apparatus having three light source devices. As shown in Fig. 16, the image of the third embodiment The projection device is a light source device having a light beam for emitting red, green, and blue wavelength bands. Each of the light source devices m, 1G, and 1B has the circuit board η, the solid-state light source 12, the light-emitting surface 13, and the photonic crystal body u described in the first embodiment. In the first! In the figure, the symbols ^, ..., (3) indicate representative light rays among the respective light beams emitted from the light source devices m, 1G, and (7). Each of the rays LR, LG, and LB is schematically displayed so as not to overlap each other by four. The first optical element 2 and 21 are disposed on the emission side of the light source devices m, 1G, and 1B, respectively, and the first optical element 21, 21, and F have the first optical described in the embodiment. The same function of the element 21, the position where the light beams of the optical devices 1R, 1G, and 1B and which have penetrated the first optical, 1G, and 21B intersect with each other, and the two-way spectroscopic dichroic mirror reflects the blue wavelength. The beam with the beam of light, and the beam of the wavelength band. The dichroic mirror M2 reflects the beam of the length of the skin, and penetrates the light of the green and blue wavelength bands to emit the second mirror M1 and the milk system to reflect the light source. The light beam of the device thief is configured to penetrate the element. The optical element 22 and the 22 element 22 have the same functions as the second electrode described in the first embodiment. That is, by combining the first optical element Each of the addition and addition and the second optical element 22 constitutes the same illumination optical system π as the illumination optical system 2 described in the first embodiment of 319830 25 200844631. - The light guide is disposed on the emission side of the illumination optical system 20 The variable element 3 is provided with a projection on the emission side of the light modulation/variable element 3 In the configuration example shown in FIG. 2, the optical modulation element 3 is a transmissive liquid crystal panel, but may be a DMD or the like. The 曰曰 has a wide range of angles from the light source device 1G. The light beam of the green wavelength band emitted from the light emitting surface is substantially collimated by the first optical element 21g, and then incident on the dichroic beam splitter M1 & M2, and penetrates the dichroic beam splitter

Ml及]VI2後射入至第-来風分杜 ★ / 罘—光學兀件22。穿透第二光學元件 22的光束係大致遠,讀地射人至光調變元件3的有效面 31° 一仗光源叙置1R的發光面所射出的紅色波長帶的光束 係藉由第一光學元件2而址士 # | 士 仟111而被大致準直化後,在二向分光 鏡M2被反射且穿透二向方光鏡⑷後射入至第二光學元 件22,已牙透弟二光學元件22的光束係大致遠心性地射 入至光調變元件3的有效面31。 地,從光源裝置1B的發光面所射出的藍色波 π的光束係藉由第一氺與士 ^ 二 八# Ml 1 +疋件21B而被大致準直化後,在 -向刀先鏡⑷被反射且穿透二向方光鏡 光學元件22。穿透筮_止这 ^ 弟一先+兀件22的光束係大致遠心 性地射入至光調變元件3的有效面31。 , 光周又7L件3係根據紅色、綠色、以及 號,以時分割之方式依夂名一 巴b像仏 一放a 口色依序進行光調變。對應光調變 凡件3的各色的調變時岸 么 序、、工色、綠色、以及藍色的光源 319830 26 200844631 裝置1R、1G、1B亦會以時分割之方式 •光調變元件3依序進行光調變後的紅光束在 匕、綠色、以乃较 •的影像光(圖像光)係藉由投射光學系、繞4以所希望之= 放大投射至未圖示的螢幕等。此紅色、 =倍率 影像光係在觀測者的眼中進行積分 = X及|色的 而硯察到彩色影像。 由於-向分光鏡通常係由電介質多層膜所 以使敎波長㈣歧射或穿透之這種分料 时大大地依奸光束朝向二向分光鏡的射人角。亦即,寸 二於發散狀態或聚焦狀態的光束中配置二向分光鏡時,由 於用以射入至二向分光鏡的光束的角度分散會變大盔 ^獲得期望的分光穿透/反射特性,結果,會產生光量損 失、明不均、或者眩料,而無法獲得良好的影像。 例如’在上述實施形態—所說明的比較例(第4圖)中, ;未存在已準直化的光束,故例如在光曈位置pi與 3之間配置有二向分光鏡時,會變成於聚焦狀態 、、:中配置二向分光鏡,而產生上述的光量損失、照明 不均、或眩光等。 、、 相對於此,在實施形態三的影像投射裝置(第16圖) 中,由於在藉由第一光學元件21R、21G、21Β將各色予以 準直化=光束中配置二向分光鏡Ml及从2,故不會產生上 述的光量損失、照明不均、或眩光等,而能獲得良好的影 此外,在本實施形態的照明裝置中,由於具備有用以 單獨射出紅色、綠色、以及藍色的波長帶的光束之光源裝 319830 27 200844631 置,故與使用白色的燈具光源之情形相比不需要用以進行 •顏色分離的光學系統,結果,能簡單地構成照明光學系統, 而實現小型化及低成本化。 此外’第16圖中的1R、1G、1B之配置係未限定於此, 能自由地設定。在第16圖中,雖說明僅使用一個光調變元 件3的單板式的光調變元件3,但亦可採用合計使用有二 個用以將紅色、綠色、以及藍色的波長帶的光束進行光調 變之光調變元件的方式(三板式)。亦可將實施形態一的各 變形例或實施形態二的構成應用於實施形態三。 第17圖至第21圖係顯示實施形態三的影像投射裝置 的各種構成例。 第Π圖所示的影像投射裝置係具有用以射出不同波 長帶的光束之光源裝置101、102、1〇3。光源裝置1〇1、1〇^、 i〇3係分別以第16圖所示的光源裝置1R、1〇、的任一 者所構成。在光源裝置101、102、103中,兩個光源=置 101、102係以配置於剩餘的一個光源裝置1〇3之發光面的 法線方向,且各發光面垂直於光源裝置103的發光面之方 式,。於光源裝置101、102、103的射出側分別配置 有弟了光學70件21卜212、213。第二光學元件22係 一光學元件21相對向配置。 、 一第-光學元件211、212、213冑具有與實施形態一 既明的第-光學元件21相同的功能,並與第二光學元 u共同構成照明光學系統。於光源裝置1〇ι、ι〇2 2者 射出侧配置有二向分光鏡M11與M12,該等二向:光 319830 28 200844631 ’則、觀係排列配置於光源裝置1〇3之發光面的法線方 .:。二向分光鏡Mn、Ml2係具有分別使敎波長帶的 束反射/穿透之分光穿透/反射特性。 二向分光鏡M12係將光源裝置⑽的射自光 射:並讓光源裝置1〇3的射出光束穿透,而分別予以引導 至一向分光鏡Mil。二向分 刀光鏡Mu係讓光源裝置101的 ’出先束穿透’並將二向分光鏡M12的射出光束予 射’而分別予以引導至第二光學树22。穿透第二光學元 =2的光束係射入至光調變元件3(第_),並 的影像貢訊來進行光調變,且藉由投射 圖)進行放大投射。 ^ 16 在第圖所示的影像投射裝置中,在光源裝置斯、 μ先源衣置101之發光面的法線方向,且各發光面垂直 源裝置101的發光面之方式來配置。於光源裝置彻、 、103的射出側分別配置有第一光學元件211、、 幻3。第二光學元件22係與第一光學元件211相對向配置。 於光源裝置102、103各者的射出側 鏡After Ml and ]VI2, the injection into the first-to-wind division Du ★ / 罘 - optical element 22. The light beam penetrating the second optical element 22 is substantially far away, and is read to the effective surface 31 of the light modulation element 3. The light beam of the red wavelength band emitted by the light emitting surface of the light source 1R is first Optical element 2 and 士士士# | After being substantially collimated, the gyroscope 111 is reflected by the dichroic mirror M2 and penetrates the dichroic mirror (4) and then enters the second optical element 22, which has been erected by the second optical element. The beam of element 22 is incident substantially telecentrically into the active face 31 of the light modulation element 3. The beam of the blue wave π emitted from the light-emitting surface of the light source device 1B is substantially collimated by the first 氺 氺 二 二 # M M M M , , , , , , , , , (4) Reflected and penetrated the dichroic optical element 22. The beam of light that penetrates the 筮 止 ^ 先 先 兀 兀 兀 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 光束 光束 光束 。 According to the red, green, and number, the light and the 7L pieces are based on the red, green, and the number, and the light is changed according to the name of the bar. The light source corresponding to the color modulation variable 3, the light source, the color, the green color, and the blue light source 319830 26 200844631 The devices 1R, 1G, 1B will also be divided in time • the light modulation component 3 The image light (image light) of the red light beam which is sequentially modulated by the light in the order of 匕, green, and yin is projected onto the screen (not shown) by the projection optical system, and the desired image is rotated around 4 . This red, = magnification image light system is integrated in the observer's eye = X and | color and a color image is observed. Since the dichroic mirror is usually made of a dielectric multilayer film, such a splitting or penetrating of the 敎 wavelength (4) greatly illuminates the beam toward the angle of incidence of the dichroic beam splitter. That is, when the dichroic beam splitter is disposed in the diverging state or the focused state of the beam, the angular dispersion of the beam for injecting into the dichroic beam splitter becomes larger, and the desired spectral penetration/reflection characteristic is obtained. As a result, light loss, unevenness, or glare is generated, and a good image cannot be obtained. For example, in the comparative example (Fig. 4) described in the above embodiment, there is no collimated beam, and therefore, when a dichroic beam splitter is disposed between the pupil positions pi and 3, for example, The dichroic beam splitter is disposed in the in-focus state, and is caused by the above-described loss of light amount, uneven illumination, or glare. On the other hand, in the video projection device (Fig. 16) of the third embodiment, the respective colors are collimated by the first optical elements 21R, 21G, and 21Β = the dichroic mirror M1 is disposed in the light beam and Since it is 2, the above-described light loss, uneven illumination, glare, and the like are not generated, and a good shadow can be obtained. Further, in the illumination device of the present embodiment, it is useful to separately emit red, green, and blue. Since the light source of the light beam of the wavelength band is installed in 319830 27 200844631, an optical system for performing color separation is not required as compared with the case of using a white light source, and as a result, the illumination optical system can be simply configured to achieve miniaturization. And low cost. Further, the arrangement of 1R, 1G, and 1B in Fig. 16 is not limited thereto, and can be freely set. In Fig. 16, although the single-plate type light modulation element 3 using only one light modulation element 3 is described, it is also possible to use a total of two light beams for wavelength bands of red, green, and blue. A method of performing light modulation of a light modulation element (three-plate type). The configuration of each modification of the first embodiment or the configuration of the second embodiment can be applied to the third embodiment. Fig. 17 through Fig. 21 show various configuration examples of the image projecting device of the third embodiment. The image projection device shown in Fig. 1 has light source devices 101, 102, and 1 3 for emitting light beams of different wavelength bands. The light source devices 1〇1, 1〇, and i〇3 are each constituted by any of the light source devices 1R and 1A shown in Fig. 16 . In the light source devices 101, 102, and 103, the two light sources=101, 102 are disposed in the normal direction of the light emitting surface of the remaining one light source device 1〇3, and each of the light emitting surfaces is perpendicular to the light emitting surface of the light source device 103. The way, Optical elements 70, 212, and 213 are disposed on the emission side of the light source devices 101, 102, and 103, respectively. The second optical element 22 is an optical element 21 disposed oppositely. The first optical element 211, 212, 213 has the same function as the first optical element 21 of the first embodiment, and constitutes an illumination optical system together with the second optical element u. The dichroic beamsplitters M11 and M12 are disposed on the emission side of the light source device 1〇ι, ι〇2 2, and the two directions: light 319830 28 200844631' are arranged in the light-emitting surface of the light source device 1〇3. Normal side.:. The dichroic beamsplitters Mn, Ml2 have spectroscopic penetration/reflection characteristics that reflect/penetrate the beams of the erbium wavelength band, respectively. The dichroic mirror M12 emits the light source device (10) from the light: and causes the light beam of the light source device 1〇3 to penetrate, and is guided to the direct beam splitter Mil, respectively. The dichroic splitting mirror Mu directs the 'first beam penetration' of the light source device 101 and precipits the outgoing beam of the dichroic mirror M12 to be guided to the second optical tree 22, respectively. The beam that penetrates the second optical element = 2 is incident on the optical modulation element 3 (the _), and the image is tuned to perform optical modulation, and is projected by the projection image. In the video projection apparatus shown in the figure, the light source device is arranged in the normal direction of the light-emitting surface of the μ-source device 101, and each of the light-emitting surfaces is perpendicular to the light-emitting surface of the source device 101. The first optical element 211 and the magic 3 are disposed on the emission side of the light source device 103, respectively. The second optical element 22 is disposed opposite to the first optical element 211. Output side mirrors of each of the light source devices 102, 103

Mil與Μ12,且該 另Π刀九鏡 光源裝置一=:::、Μ12係排列配置於 先面的法線方向。二向分光鏡Mil係讓 本击、衣置101的射出光束穿透,並將光源裝置102的射出 3予以反#,而分別予以引導至二向分光鏡Mi2。二 分光鏡M12係謓-a八,μ 光源裳置1〇3的射—出的射出光束穿透,並將 、出光束予以反射,而分別予以引導至第 319830 29 200844631 二光學it件22。穿透第二光學元件22的光束係射入 .^ 4 3(第16並根據各色的影像資訊進行光調 :、欠,且,由投射光學系統4(第16圖)來進行放大投射。 .在第19目所示的影像投射裝置中,在光源裝置101、 1〇2、103 t,兩個光源裝置1〇1、1〇2係以平行地射出光 束之方式來排列配置,且剩餘的一個光源裝i 1〇3係 源褒置102相對向配置。於光源裝置1(η、ι〇2、⑽的射 出側分別配置有第一光學元件211、212、213。第二光學 元件22係與光源裝置} 〇丨相對向配置。 一於光源裝置1〇1與第二光學元件22之間配置有二向分 光鏡Mil,且於光源裝置1〇2與1〇3之間配置有二向分光 鏡M12與M13。二向分光鏡M12係將光源裝置1〇2的射 出光束予以反射’並讓光源裝置1〇3的射出光束穿透,而 分別予以引導至二向反光鏡侧。二向反光鏡應3係將光 源衣置103的射出光束予以反射,並讓光源裝置⑽的射 籲出光束穿透,而分別予以引導至二向分光鏡題。二向分 光鏡Mil係讓光源裝置1〇1的射出光束穿透,並將二向分 光鏡纽2與MU的各射出光束相反射,而分別予以引 導至第二光學元件22 °穿透第二光學元件22的光束係射 入至光調變元件3(第16圖),並根據各色的影像資訊來進 行光調變,且藉由投射光學系統4(第16圖)來進行放大投 射。 在第20圖所示的影像投射裝置中,光源裝置101、 102、103係以彼此平行地射出光束之方式而排列配置成一 319830 30 200844631 ,行(column)。在光源裝置1〇1、1〇2、1〇3的射出侧分別配 ,置有第-光學元件211、212、213。第二光學元件22係與 元源裝置103相對向配置。 於光源衣置101、1〇2、103的射出侧分別配置有二向 刀光鏡Mil M12、M13。二向分光鏡Mil係將光源裝置 1〇1的射出光束予以反射而引導至二向分光鏡M12。二向 刀光鏡M12係將光源裝置1〇2的射出光束予以反射,並讓 二向分光鏡Mil的射^束穿透,而分別予以引導至二向 方=鏡Ml,3。二向分光鏡M13係讓光源裝置ι〇3的射出光 束牙透,亚將二向分光鏡M12的射出光束予以反射,而分 ❹Μ導至第二光學元件22。穿透第二光學元件η的 $束係射人至光5周艾元件3(第i 6圖)’並根據各色的影像 貝訊來進行光調變,且藉由投射光學系、统(第16圖)來進行 放大投射。 ___________在第21圖所不的影像投射裝置中,光源裝置101、 1—02、103係、讀此轉綠I—方—式韻—頭— 置成二 仃、,於光源衣置1〇1、1〇2、103的射出侧係分別配置有第 、、’予元件211 212、213。第二光學元件22係配置於光 '原衣置101 102、1〇3的排列方向的一端(光源裝置1〇3側)。 於光源裝置101、102、1〇3的射出侧係分別配置有二 =刀光鏡Mil、Μ12、Μ13。:向分光鏡M11係將光源裝 101的射出光奸以反射㈣導至二向分光鏡應2。二 向分光鏡奶2係將光源裝置1〇2的射出光束予以反射,並 讓-向分光鏡随的射出光束穿透,而分別予以引導至二 319830 31 200844631 峰 向分光鏡M13。二向分光鏡Mu係將光源裝置ι〇3的射出 .光束予以反射,並讓二向分光鏡M12的射出光束穿透, •分別予以引導至第二光學元件22。穿透第二光學元件U 的光束係射入至光調變元件3(第16圖),並根據各 像貢訊來進行光調變,且藉由投射光學系統4(第來 進行放大投射。 水 並且,第17圖至第21圖所示的變形例係僅為代表性 的構成例,可根據光源裝置的冷卻、與影像投射裝置的复 他構成構件的干涉、設計上的限制、成本、安裝性等之各 種條件而適當地變更配置。 、 依據上述所說明的實施形態三的照明裝置,無須進行 顏色分離或使用微透鏡陣列等光均句化手段(整形手 =可藉由使來自用以射出紅色、綠色、以及藍色等各色波 長帶的光束之面發-光光源的光束直接成像於光調變元件之 臣品界型照明系統,以簡單 & ’早的構成在各色中效率佳且均勻地 •==調變元件。此外’藉由投射光學系統將已經由光調 如τ先調變過的各色的影像光投射至螢幕等,而能 獲传均勻之良好的影像。 I且在貝鉍形怨二及各變形例中,雖設置三個用以 射出不同波長帶的光束四 ,, 不又九/原衣1,但並未限定於此。例 ^:可設置複數個用以射出相同波長帶的光束之光源裝 ''可、加用以射出其他波長帶的光束之光源裝置等, 而使用更多的光源裝置。 【圖式簡單說a月】 319830 32 200844631 第1圖係顯示本發明實施形態一的照明裝置的構成及 •光路徑之圖。 . 第2圖係顯示從完全擴散面所放射出的光的光束分佈 之圖。 第3圖係顯示從本發明實施形態一的光源裝置所放射 出的光的光束分佈之圖。 第4圖係顯示比較例的構成及光路徑之圖。 _ 第5圖係顯示比較例的構成及光路徑之圖。 第6圖係顯示比較例的構成及光路徑之圖。 第7圖係顯示比較例的構成及光路徑之圖。 第8圖係顯示使用本發明實施形態一的照明装置之影 像才又射裝置的構成及光路徑之圖。 第9圖係顯示照明光學系統的第一光學元件具有負的 功率,而第二光學元件具有正的功率之照明光學裝置之圖。 一第10圖係顯示本發明實施形態一的照明裝置中的發 •光=的形狀(第1〇圖(A))與亮度分佈(第1〇圖⑽、以及光 调Mtl件的有效面的形狀(第1〇圖(c))與亮度分佈(第⑺ 圖(D))之圖。 第11圖係顯示本發明實施形態一的照明裝置的變形 1歹!J之圖。 變形^之 12圖圖係顯示本發明實施形態—的照明裝置的另一 ^ u圖係顯示本發明實施形態—的 一树 形例中之在發氺丄 衣直又、交 4面的免度分佈(第13圖⑷)、在擴散面的 319830 33 200844631 穿透率分佈(第13圖(B))、以及在光調變元件的有效面的 亮度分佈(第13圖(C))之圖。 第14圖係顯示本發明實施形態二的昭明奘 …、η衣罝的構成 及光路徑之圖。 第15圖係顯示本發明實施形態二的照明裝置的構、 及光路徑之圖。 、成 明裝置 第16圖係顯示包含有本發明實施形態三的兵召 之影像投射裝置的構成及光路徑之圖。 弟17圖係頦不本發明實施形態三的昭明駐 …、β衣1的構成 例之圖。 例之圖 第18圖係顯*本發明實施形態三的照明裝置的構成 弟19圖係頻示本發明實施形態三的昭明駐 …、勹衣置的構成 例之圖。, ' Χ 的構成 第20圖係顯示本發明實施形態三的照明裝置 例之圖。 明裝置的構成 第21圖係顯示本發明實施形態三的照 例之圖。 【主要元件符號說明】 1、1R、1G、1Β、101、1〇2、103 光源裝置 2 照明光學系統 3 光調變元件 4 投射光學系統 5 光擴散元件 11 電路基板 12 固體光源(面發光光源) 319830 34 200844631 13 發光面 14 光子結晶體 21、21R 、2iG、21B、23、 211 、212、213第一光學元件 22、24 第二光學元件 31 有效面 PI 光瞳位置 P2 射出光瞳 CRl、CR2、CR3、CR4、CR5、CR6、CR7 主光線 Ml、M2、Mil、Ml2、Ml3 二向分光鏡 LR、LG、LB 光線Mil and Μ12, and the other Π 九 镜 光源 = = = ==::, Μ 12 series arranged in the normal direction of the front face. The dichroic mirror Mil transmits the emitted light beam of the hitting device and the clothing unit 101, and inverts the emission 3 of the light source device 102 to be guided to the dichroic beam splitter Mi2. The dichroic mirror M12 is 謓-a 八, and the μ source is placed at a wavelength of 1 〇3, and the outgoing beam is penetrated, and the beam is reflected and guided to the 319830 29 200844631 two optical element 22, respectively. The light beam penetrating the second optical element 22 is incident on the lens 4 (the 16th light is tuned according to the image information of each color: owing, and is enlarged and projected by the projection optical system 4 (Fig. 16). In the video projection device shown in the nineteenth aspect, in the light source devices 101, 1 and 2, and 103 t, the two light source devices 1 and 1, 2 are arranged in parallel so that the light beams are emitted in parallel, and the remaining One light source is mounted on the source device 102. The first optical elements 211, 212, and 213 are disposed on the emission side of the light source device 1 (n, ι 2, and (10), respectively. The second optical element 22 is provided. A light source device is disposed opposite to the light source device. A dichroic beam splitter Mil is disposed between the light source device 1〇1 and the second optical element 22, and a dichroism is disposed between the light source devices 1〇2 and 1〇3. The dichroic mirrors M12 and M13. The dichroic mirror M12 reflects the emitted light beam of the light source device 1〇2 and transmits the emitted light beams of the light source device 1〇3 to the dichroic mirror side. The mirror should reflect the emitted light beam of the light source garment 103 and let the light source device (10) shoot. The beam is penetrated and guided to the dichroic mirror. The dichroic mirror Mil penetrates the exit beam of the light source device 1〇1 and reflects the two beams of the dichroic mirror 2 and the MU. The light beams that are respectively guided to the second optical element 22 and penetrate the second optical element 22 are incident on the light modulation element 3 (Fig. 16), and are modulated according to the image information of the respective colors, and borrowed. The projection projection system 4 (Fig. 16) performs enlargement projection. In the image projection apparatus shown in Fig. 20, the light source devices 101, 102, and 103 are arranged in such a manner as to emit light beams in parallel with each other to form a 319830 30 200844631. The column is disposed on the emission side of the light source devices 1〇1, 1〇2, and 1〇3, and the first optical elements 211, 212, and 213 are disposed. The second optical element 22 is opposite to the source device 103. The dichroic mirrors Mil M12 and M13 are disposed on the emission sides of the light source garments 101, 1 and 2, respectively. The dichroic mirrors Mil reflect the emitted light beams of the light source device 1〇1 and are guided to Two-way beam splitter M12. Two-way knife mirror M12 is a light source device The emission beam of 1〇2 is reflected, and the beam of the dichroic beam splitting beam is penetrated and guided to the two-way square mirror Ml, 3. The dichroic beam splitter M13 is used to make the light source device ι〇3 The beam is emitted, the emitted beam of the dichroic beam splitter M12 is reflected, and the branch is guided to the second optical element 22. The beam that penetrates the second optical element η is incident on the light 5 weeks (3) Figure i6)' and the light modulation is performed according to the image of each color, and the projection is performed by the projection optical system (Fig. 16). ___________ In the image projection device shown in Fig. 21, the light source device 101, 1-02, 103 series, read the turn green I-square-style rhyme-head - set into two, and the light source is set to 1〇 The first and second elements of the first, second, and third sides are respectively disposed with the elements 211, 212 and 213. The second optical element 22 is disposed at one end (on the side of the light source device 1〇3) in the arrangement direction of the light original devices 101 102 and 1〇3. Two light-emitting mirrors Mil, Μ12, and Μ13 are disposed on the emission side of the light source devices 101, 102, and I3, respectively. : The light source M11 is used to illuminate the light source 101 to reflect (4) to the dichroic mirror 2. The dichroic mirror milk 2 system reflects the emitted light beam of the light source device 1〇2, and transmits the beam to the split beam, and guides it to the second 319830 31 200844631 peak beam splitter M13. The dichroic mirror Mu emits the light source device ι〇3. The light beam is reflected and transmitted by the outgoing beam of the dichroic mirror M12, and is guided to the second optical element 22, respectively. The light beam penetrating the second optical element U is incident on the light modulation element 3 (Fig. 16), and is optically modulated according to the image information, and is projected by the projection optical system 4 (firstly, the projection is performed. The water and the modifications shown in Figs. 17 to 21 are merely representative examples, and can be based on the cooling of the light source device, the interference with the constituent members of the image projecting device, the design constraints, the cost, The lighting device according to the third embodiment described above is not required to perform color separation or use a light-sequence means such as a microlens array (analog hand = can be used by the lighting device according to the third embodiment described above). The light beam of the light-emitting source of the light beams of the respective wavelength bands of red, green, and blue is directly imaged in the optical illumination system of the optical modulation component, and the efficiency of each of the colors is simple & Good and evenly === modulating components. In addition, by projecting optical systems, the image light of each color that has been modulated by the light modulation, such as τ, is projected onto the screen, and a uniform and good image can be obtained. And In the case of the Bellows and the variants, although three light beams for emitting different wavelength bands are provided, and not nine or original clothes 1, the present invention is not limited thereto. Example: Multiple numbers can be set A light source device that emits a light beam of the same wavelength band can be used, a light source device for emitting a light beam of another wavelength band, and the like, and more light source devices are used. [Simplified drawing a month] 319830 32 200844631 Fig. 1 The configuration of the illumination device according to the first embodiment of the present invention and the optical path are shown. Fig. 2 is a view showing a light beam distribution of light emitted from the completely diffused surface. Fig. 3 is a view showing an embodiment of the present invention. A diagram showing a distribution of light beams of light emitted by a light source device. Fig. 4 is a view showing a configuration of a comparative example and a light path. _ Fig. 5 is a view showing a configuration of a comparative example and a light path. A diagram showing a configuration of a comparative example and a light path is shown in Fig. 7. Fig. 7 is a view showing a configuration of a comparative example and a light path. Fig. 8 is a view showing the configuration and light of an image reproduction apparatus using the illumination device according to the first embodiment of the present invention. Figure of the path. Figure 9 shows the picture The first optical component of the optical system has a negative power, and the second optical component has a positive power illumination optical device. Figure 10 shows the shape of the light source in the illumination device of the first embodiment of the present invention. (1st (A)) and luminance distribution (1st (10), and the shape of the effective surface of the optical Mt (the first figure (c)) and the brightness distribution (the (7) (D)) Fig. 11 is a view showing a modification of the lighting device according to the first embodiment of the present invention. Fig. 12 is a view showing another embodiment of the lighting device according to the embodiment of the present invention. In the case of a tree-like example, the distribution of the hairline is straight and the four sides are exempted (Fig. 13 (4)), and the diffusion surface is 319830 33 200844631. The penetration distribution (Fig. 13 (B) And a graph of the luminance distribution (Fig. 13(C)) of the effective surface of the light modulation element. Fig. 14 is a view showing the configuration and optical path of the Zhaoming 、 ..., η 罝 实施 according to the second embodiment of the present invention. Fig. 15 is a view showing the configuration and optical path of the illumination device according to the second embodiment of the present invention. Fig. 16 is a view showing the configuration and optical path of a video projection device including the corps of the third embodiment of the present invention. Fig. 17 is a diagram showing a configuration example of the Zhaoming station and the β clothing 1 according to the third embodiment of the present invention. (Embodiment) Fig. 18 is a view showing a configuration example of a lighting device according to a third embodiment of the present invention. [FIG. 20] FIG. 20 is a view showing an example of a lighting device according to a third embodiment of the present invention. EMBODIMENT OF THE EMBODIMENT Fig. 21 is a view showing an example of the third embodiment of the present invention. [Description of main component symbols] 1. 1R, 1G, 1Β, 101, 1〇2, 103 Light source device 2 Illumination optical system 3 Light modulation element 4 Projection optical system 5 Light diffusion element 11 Circuit substrate 12 Solid light source (surface light source 319830 34 200844631 13 Light-emitting surface 14 Photonic crystals 21, 21R, 2iG, 21B, 23, 211, 212, 213 First optical element 22, 24 Second optical element 31 Effective surface PI Optical position P2 Exit pupil CR1, CR2 , CR3, CR4, CR5, CR6, CR7 main light Ml, M2, Mil, Ml2, Ml3 dichroic beam splitter LR, LG, LB light

35 31983035 319830

Claims (1)

200844631 十、申請專利範圍·· 1 · 種知、明裝置,係對光調變元件進行照明,該光調變元 件係對射入至有效面的照明光進行光調變,該照明裝置 之特徵為具備有: 光源裝置’係包含有面發光光源;以及 照明光學系統,係具有至少兩個光學元件,該等光 學兀件係藉由從前述面發光光源的發光面所射出的光 束來照明前述光調變元件;其中, …前述照明光學系統係將前述面發光光源的前述發 2面的衫像可以放大,並使其成像至前述光調變元件的 前述有效面。 2.如申請專利範圍第j項之照明裝置,其中,前述光源 f係具有呈平面狀之光子結晶體,該光子結晶體係以. 則述發光面大致平行且接近之方式相對於前述發光 配置在光射出之側。 3·如申明專利範圍第i項或第2項之照明裝置,盆中 述面發光光源的前述發光面係具有遍 大致I 之亮度分佈。 囬入致均· 4. :申請專利範圍p項或第2項之照明裝置,盆中… ::=1原的前述發光面係為與前述光調變元件: 月J述有效面大致相似的形狀。 白 5. 如申請專利範圍第i項或第2項之照置 二照明光學系統係具備具有正的功率:第:光中^ 以及具有正的功率之第二光學元件。 +$ 3ί983ο 36 200844631 6 I 、,申明專々彳範圍第1項或第2項之照明裝置,其中,前 =第疋學元件係用以將從前述面發光光源的前述發 *光面所射出的光束予以大致準直化。 7. 如:請專利範圍第1項或第2項之照明裝置,其中,前 二光學元件及前述第二光學元件係大致遠心性地 照明前述光調變元件的前述有效面。 8. :申請專利範圍第1項或第2項之照明裝置,其中,從 • 别述面發光光源的前述發光面以與該發光面垂直之方 式2出的主光線係經由前述第一光學元件及前述第二 光學元件,而在聚焦狀態下射人至前述光調變元 述有效面。 9. ί申:專利範圍第1項或第2項之照明裝置,其中,在 則述r-光學元件與前述第二光學元件之間設置有光 瞳。 申請專利範圍第i項或第2項之照明裝置,其中,在 • W述光源裝置的前述面發光光源附近配置有具備擴散 面之70件,該擴散面之穿透特性係依據面㈣位置而不 同。 11.如申4專利範圍第i項或第2項之照明裝置,1中 對於藉由前述照明光學系統所致之前述發光面的影像 的成像位置’將前述光調變S件的前述有效面予以錯開 配置。 曰用 319830 37 1 2‘如申請專利範圍第1項或第2項之照明裝置,其中, 2 復具備有射出不同波長帶的光束之複數個前述光 200844631 源裝置; 前述照明光學系統係具備有: 複數個第一光學元件,係依各個光源裝置設置; 合成元件,係將從前述複數個第一光學元件所射出 的光束予以合成;以及 第二光學元件,係射入藉由前述合成元件所合成的 光束;其中, 藉由前述複數個第一光學元件的各者與前述第二 光學元件來形成前述照明光學系統。 13·—種影像投射裝置,係具備有·· 申請專利範圍第1項或第2項所記載之照明裴置; 以及 1 , 投射光學系統,係將藉由前述光調變元件的光調變 而產生的影像光予以放大並投影。 38200844631 X. Patent application scope · · · · A known device that illuminates a light-modulating component that modulates the illumination light incident on the effective surface. The characteristics of the illumination device In order to provide: the light source device includes a surface light source; and the illumination optical system has at least two optical elements that illuminate the light beam emitted from the light emitting surface of the surface light source The light modulation device, wherein the illumination optical system is capable of magnifying the second-faced shirt image of the surface light-emitting source and imaging the surface of the light-modulating element. 2. The illuminating device of claim j, wherein the light source f has a planar photon crystal body, wherein the photonic crystal system is disposed in a manner that the light emitting surface is substantially parallel and close to the light emitting surface. The side of the shot. 3. The illuminating device according to item i or item 2 of the patent scope, wherein said illuminating surface of said surface illuminating light source has a luminance distribution of substantially one radii. Into the averaging 4. 4. Applying for the illuminating device of the p range or the second item of the patent range, the above-mentioned illuminating surface of the following: ::=1 is substantially similar to the above-mentioned optical modulation element: shape. White 5. If the application of the scope of the patent range i or 2, the illumination optical system is equipped with positive power: the first: the light and the second optical element with positive power. The illumination device of the first or the second item of The beam is roughly collimated. 7. The illuminating device of claim 1 or 2, wherein the first optical element and the second optical element illuminate the effective surface of the optical modulation element substantially telecentrically. 8. The illumination device of claim 1 or 2, wherein the principal light emitted from the light-emitting surface of the light-emitting source is perpendicular to the light-emitting surface via the first optical element And the second optical element, and in the focused state, the human light is applied to the active surface of the optical modulation unit. 9. The illumination device of claim 1 or 2, wherein the aperture between the r-optical element and the second optical element is disposed. The illuminating device of claim i or 2, wherein 70 of the diffusing surface is disposed in the vicinity of the surface emitting light source of the light source device, and the diffusing surface has a penetration characteristic according to the surface (four) position. different. 11. The illuminating device of item i or item 2 of claim 4, wherein the aforementioned effective surface of the light is modulated by the image forming position of the image of the light emitting surface by the illumination optical system Staggered configuration. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 a plurality of first optical elements disposed in accordance with each of the light source devices; a composite element that combines light beams emitted from the plurality of first optical elements; and a second optical element that is incident on the composite element a combined light beam; wherein the illumination optical system is formed by each of the plurality of first optical elements and the second optical element. 13. The image projection device includes an illumination device described in the first or second aspect of the patent application; and a projection optical system that is modulated by the optical modulation component. The resulting image light is magnified and projected. 38
TW096148871A 2007-03-09 2007-12-20 Illumination device and image-projecting device TWI375109B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007059334 2007-03-09
PCT/JP2007/074097 WO2008111275A1 (en) 2007-03-09 2007-12-14 Illuminator and image projector

Publications (2)

Publication Number Publication Date
TW200844631A true TW200844631A (en) 2008-11-16
TWI375109B TWI375109B (en) 2012-10-21

Family

ID=39759219

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148871A TWI375109B (en) 2007-03-09 2007-12-20 Illumination device and image-projecting device

Country Status (3)

Country Link
JP (1) JPWO2008111275A1 (en)
TW (1) TWI375109B (en)
WO (1) WO2008111275A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200238A (en) * 2016-09-14 2016-12-07 海信集团有限公司 Imaging optical path system
TWI716834B (en) * 2019-03-14 2021-01-21 中強光電股份有限公司 Projection apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633138B2 (en) * 2008-12-24 2014-12-03 セイコーエプソン株式会社 Lighting device and projector
JP6183582B2 (en) * 2013-02-14 2017-08-23 セイコーエプソン株式会社 Lighting device and projector
JP2018006250A (en) * 2016-07-06 2018-01-11 リコーインダストリアルソリューションズ株式会社 Luminaire
JP2019128581A (en) * 2018-07-13 2019-08-01 セジン オント インクSEJIN ONT Inc. Light source device and exposure apparatus including the same
JP7001974B2 (en) * 2019-09-03 2022-02-04 カシオ計算機株式会社 Light source device and projection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165098A (en) * 1991-12-12 1993-06-29 Nippon Telegr & Teleph Corp <Ntt> Projection type display device and optical guide plate
JP2000231079A (en) * 1999-02-10 2000-08-22 Toshiba Corp Reflection type projection device
JP2002268001A (en) * 2001-03-13 2002-09-18 Ricoh Co Ltd Lighting device
US7012279B2 (en) * 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
JP2006030535A (en) * 2004-07-15 2006-02-02 Seiko Epson Corp Lighting device and projector
JP2006126394A (en) * 2004-10-28 2006-05-18 Seiko Epson Corp Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200238A (en) * 2016-09-14 2016-12-07 海信集团有限公司 Imaging optical path system
CN106200238B (en) * 2016-09-14 2019-03-12 海信集团有限公司 Imaging optical path system
TWI716834B (en) * 2019-03-14 2021-01-21 中強光電股份有限公司 Projection apparatus
US11789282B2 (en) 2019-03-14 2023-10-17 Coretronic Corporation Projection apparatus

Also Published As

Publication number Publication date
WO2008111275A1 (en) 2008-09-18
TWI375109B (en) 2012-10-21
JPWO2008111275A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP7350338B2 (en) image projector
US10819961B2 (en) Light source apparatus for use in projection three-dimensional display apparatus, with dynamic diffusion plate
KR101888702B1 (en) System and method for efficiently delivering rays from a light source to create an image
JP7065273B2 (en) Light source device and projection type display device
US8172404B2 (en) Projection with lenslet arrangement on speckle reduction element
US7255448B2 (en) Pixelated color management display
US10678061B2 (en) Low etendue illumination
JP6413498B2 (en) Lighting device and projector
US7330314B1 (en) Color combiner for solid-state light sources
TW200844631A (en) Illumination device and image-projecting device
CN102483523A (en) Optical laser projection system with speckle reduction element configured for out-of-plane motion
US20100296061A1 (en) Projection with curved speckle reduction element surface
JP2011128205A (en) Image display device
JP2012078537A (en) Light source device and projection type video display device
JP2000292740A (en) Lighting optical system and projection type display device
JP2002268001A (en) Lighting device
JP7113172B2 (en) Light source device and projection display device
JP2021047363A (en) projector
US20100296533A1 (en) Projection with slow relay and fast projection subsystems
TW201128289A (en) High efficiency pico projector apparatus
JP2003233032A (en) Projection liquid crystal display device
JPH1090791A (en) Optical projection system
JP5515200B2 (en) Illumination optical system and projector apparatus
JP2019184947A (en) Light source device and projection type display device
JP2015167077A (en) Light source device and projector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees