TW200424805A - Inorganic nanoporous membranes and methods to form same - Google Patents
Inorganic nanoporous membranes and methods to form same Download PDFInfo
- Publication number
- TW200424805A TW200424805A TW092130335A TW92130335A TW200424805A TW 200424805 A TW200424805 A TW 200424805A TW 092130335 A TW092130335 A TW 092130335A TW 92130335 A TW92130335 A TW 92130335A TW 200424805 A TW200424805 A TW 200424805A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- polymerizing
- self
- manufacturing
- porous
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000012528 membrane Substances 0.000 title abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000059 patterning Methods 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims description 41
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 16
- 239000002105 nanoparticle Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 14
- 238000007743 anodising Methods 0.000 claims description 5
- 229920001400 block copolymer Polymers 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 238000002048 anodisation reaction Methods 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 230000002194 synthesizing effect Effects 0.000 claims 2
- 239000002699 waste material Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 71
- 239000010409 thin film Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 15
- 229920000359 diblock copolymer Polymers 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000012822 chemical development Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920006030 multiblock copolymer Polymers 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005553 polystyrene-acrylate Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0053—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/006—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0062—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Micromachines (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
200424805 玖、發明說明: 【發明所屬之技術領域】 本發明一般係關於多孔性無機薄膜,且詳言之係關於— 種用於製造無機薄膜的被改良之方法,該方法利用自聚合 材料作爲在該製造過程中的犧牲樣板材料。 【先前技術】 對大約爲5-1 〇〇奈米大小之物體(例如,分子、蛋白質、奈 米晶體(nan〇crystal)、病毒)的過濾是生物感應器及生物醫 冬應用以及其他領域所需要的。目前有數種不同類型的多 孔性薄膜用於不同類型的應用,包括聚合薄膜、矽微電機 化薄膜(silicon micromachined membrane)、離子執道蝕刻薄 膜(ion-track etched membrane)、及陽極蝕刻薄膜。 有幾個因素會影響一種類型的薄膜之技術適用性。例 如,因爲多孔性薄膜係藉由允許具有一特定大小的物體透 過’同時將任何較大的物體排除在外而工作,因此一與外 形相關的優點係薄膜之孔的大小均一性。此外,在薄膜製 造過私中可控制並調整孔的大小之能力實現了可選擇薄膜 應用的靈活性。較高的孔密度會增加薄膜過濾器之通過 量。該多孔性薄膜材料本身對於其與所透過的材料的相容 性’及其與該薄膜被使用之環境的相容性都很重要。此問 題尤其與生物應用松關。理想上,該等類型的薄膜過濾器 可以最小的複雜度且以最低的成本製造出製得,允許將彼 等用作拋棄式裝置。 【發明内容】200424805 发明 Description of the invention: [Technical field to which the invention belongs] The present invention generally relates to porous inorganic thin films, and more specifically, to an improved method for manufacturing inorganic thin films, which uses self-polymerizing materials as Sacrifice template material during the manufacturing process. [Prior art] Filtration of objects (e.g., molecules, proteins, nanocrystals, viruses) with a size of about 5-1000 nanometers is a biosensor, biomedical winter application, and other fields. needs. There are currently several different types of porous membranes for different types of applications, including polymeric films, silicon micromachined membranes, ion-track etched membranes, and anodically etched films. Several factors affect the technical applicability of a type of film. For example, because a porous film works by allowing an object of a particular size to pass through 'while excluding any larger objects, an advantage associated with the shape is the uniformity of the pore size of the film. In addition, the ability to control and adjust the size of the pores in a thin film manufacturing process allows flexibility in the choice of thin film applications. Higher pore density increases the throughput of the membrane filter. The porous thin film material itself is important both for its compatibility with the transmitted material 'and its compatibility with the environment in which the film is used. This issue is particularly relevant to biological applications. Ideally, these types of membrane filters can be manufactured with minimal complexity and at the lowest cost, allowing them to be used as disposable devices. [Summary of the Invention]
O:\88\88956.DOC 本發明提供一種奈米多孔性薄膜結構,其利用自聚合材 料作爲一犧牲層,以定義該薄膜之孔大小及孔密度。如下 文更詳細之描述,自聚合材料之性質係以組織成大小均— 的域(domain)之緻密排列,且本發明將此材料特性用於無機 多孔性薄膜。如上所述,孔密度及均一性兩者均會改良薄 膜過濾器操作。 更具體言之,本發明提供一種用於製造無機多孔性薄膜 之方法,其包括:在一基材上製造一種無機薄膜材料;在 該無機薄膜材料上製造一種多孔性自聚合材料;及使用該 多孔性自聚合材料作爲遮罩來圖案化該薄膜材料。 在-實施例中,爲製造該遮罩,本發明在該薄膜材料上 製造第-材料(該第-材料包括自聚合粒子),並移除該等粒 子以在該第一材料留下多個孔。該薄膜遮罩基本上包含被 改質過的多後段共聚物層,其中該被改質之多丧段共聚物 層被改質以使-類型的嵌段共聚物被移除。位於該類型的 後段共聚物先前所在之位置的開口組成該遮罩中的該等 孔、。,本發明在移除該等粒子之前,將其定向至該第-材料 :面在此實轭例中,該等粒子可包含多嵌段共聚物, 該等多丧段共聚物藉由施加溶劑或施加輻射而被移除。 在替代實施例中,該多$ ώ 自承5材料包含陽極氧化|呂 膜或化學合成奈米粒子層(該等奈米粒子間之空隙 ㈣em山es)形成該多孔性自聚合材料中的多個孔)。 所生成之該無機多孔性薄膜包含具有間隙(㈣的基材支 架。該無機膜懸浮於該基材的間隙中。該無機膜包含孔排O: \ 88 \ 88956.DOC The invention provides a nanoporous film structure, which uses a self-polymerizing material as a sacrificial layer to define the pore size and pore density of the film. As described in more detail below, the properties of self-polymerizing materials are densely arranged in domains of uniform size, and the present invention applies this material property to inorganic porous films. As mentioned above, both pore density and uniformity improve film filter operation. More specifically, the present invention provides a method for manufacturing an inorganic porous film, comprising: manufacturing an inorganic film material on a substrate; manufacturing a porous self-polymerizing material on the inorganic film material; and using the same A porous self-polymerizing material is used as a mask to pattern the film material. In an embodiment, in order to manufacture the mask, the present invention manufactures a first material on the film material (the first material includes self-polymerizing particles), and removes the particles to leave a plurality of particles on the first material. hole. The film mask basically comprises a modified multi-stage copolymer layer, wherein the modified multi-stage copolymer layer is modified such that the -type block copolymer is removed. The openings at the previous position of this type of back-stage copolymer make up the holes in the mask. In the present invention, before removing the particles, they are oriented to the -material: face. In this example, the particles can include multi-block copolymers, and the multi-block copolymers can be processed by applying a solvent. Or removed by applying radiation. In alternative embodiments, the self-supporting 5 material includes anodizing | Lu film or chemically synthesized nano particle layer (the gap between the nano particles ㈣em mountaines) to form a multi-layer in the porous self-polymerizing material. Holes). The generated inorganic porous film includes a substrate support having a gap (㈣). The inorganic film is suspended in the gap of the substrate. The inorganic film includes a row of pores.
O:\88\88956.DOC 2004248 05 列,其中該等孔具有小於30奈米的孔直徑,且具有小於2〇% 的孔直徑分佈。該等孔的密度大於iow。 藉由使用自聚合材料以定義孔的尺寸,本發明教示:可 具有密集的直徑小於30奈米的孔(具有大約觀的孔大小分 佈)之規則排列。此外,因爲該自聚合材料本身可能不適合 用於薄膜應用,本發明教示:將該自聚合材料用作-樣板 以圖案化底層薄膜材料。以此方式,可製造許多種材料的 _’每㈣型都具有該自聚合(樣板)材料之特徵尺寸。本 發明亦提供-種製造奈米多孔性薄膜之方法,其使用自聚 -材料作爲樣板以將該奈米級(nan〇mete卜“❿)圖案轉移 至該底層材料。 【實施方式】 在本發明中,自聚合材料被用作在製造奈米多孔性無機 薄膜中的犧牲層,該奈米多孔性無機薄膜尤其可被用於分 子過濾或分子感應。圖丨八-⑴顯示用於此功能之奈米多孔性 薄膜150(被製造於基材154上)之示意圖,例示其用於分離兩 種不同大小之粒子151、152(圖中顯示成球體,其可代表具 有不同大小之分子)的用途。更具體言之,圖1B例示粒^ 15卜152—起位於該多孔性薄膜15〇之一側上。圖⑴例示該 薄膜過濾器150僅允許較小粒子152通過而將該等較大粒子 151隔離在一側上。此外,薄膜153之該等孔可經過化學作 用(fUnCti〇naHzed),以基於化學成份來容許或拒絕粒子 151、152之通過。 如下面之更詳細的描述,在本發明中使用自聚合材料作O: \ 88 \ 88956.DOC 2004248 05 column, where the pores have a pore diameter of less than 30 nm and a pore diameter distribution of less than 20%. The pores have a density greater than iow. By using self-polymerizing materials to define the size of the pores, the present invention teaches that there may be a regular arrangement of dense pores with a diameter of less than 30 nanometers (having an approximate pore size distribution). In addition, because the self-polymerizing material may not be suitable for thin-film applications per se, the present invention teaches that the self-polymerizing material is used as a template to pattern the underlying thin-film material. In this way, many types of materials can be manufactured, each of which has the characteristic dimensions of the self-polymerizing (model) material. The present invention also provides a method for manufacturing a nanoporous film, which uses a self-polymerizing material as a template to transfer the nanoscale pattern to the underlying material. [Embodiment] In the present In the invention, a self-polymerizing material is used as a sacrificial layer in the production of a nanoporous inorganic thin film, and the nanoporous inorganic thin film can be particularly used for molecular filtration or molecular sensing. Figure 丨 Eight-⑴ shows this function Schematic diagram of nano-porous film 150 (manufactured on substrate 154), illustrating its use to separate two different-sized particles 151, 152 (shown as spheres in the figure, which can represent molecules with different sizes) Purpose. More specifically, FIG. 1B illustrates particles ^ 15 and 152—located on one side of the porous membrane 150. FIG. ⑴ illustrates that the membrane filter 150 allows only smaller particles 152 to pass through and the larger The particles 151 are isolated on one side. In addition, the pores of the film 153 may be chemically reacted (fUnCnOHz) to allow or deny the passage of the particles 151, 152 based on the chemical composition. this Ming from polymeric materials for use
O:\88\88956.DOC 2004248 05 爲犧牲層以在基材上芻捽太 _ . 孔,絲材可切或其他村 /製成。精由將該自聚合材料作爲樣板以圖案化該基材, 本發明由事前並非爲多孔性的材料來製造奈米 膜。 /导 该缚膜孔之大小、均—性及密度取決於自聚合材料的特 徵尺寸。爲本發明之目的,術語,,自聚合材料”係指特定類 型的材料’其在適當的條件下將組織成具有略微大範圍排 列(々adegreeoflonger_range〇rder)的均一奈米級域。通常, 忒等自聚合域會將本身排列成六角柵格,然而亦有多個特 定系統會組合成斜狀或方形栅格。通常的域尺寸係小㈣ 不米且在適當的材料系統中可被向下調節至僅幾奈米。 在該等材料中’因爲「域尺寸」係該材料之基本特性,因 此域的大小均_性可具有小於1〇%的誤差(自平均值)。自聚 合,料(其在本申請案中之用途將被進-步描述)之實例係 雙,段共聚物、均-大小的奈米晶體、陽極氧化銘膜、及 、·田囷細胞表面層(S-層)、及其他系統。自聚合爲製造具有「低 於由習知技術可達成的分解極限的尺寸」之奈米結構,提 供一種精確、有效、且吉士 ^ 直接的方法,且使該等奈米結構成 爲薄膜應用之車乂有吸引力的選擇。藉由使用自聚合材料可 ,成之域尺寸’本發明提供_途徑,以達成超過並 高達1 〇 12/cm2的均一的薄膜孔大小密度。 在本号H 一較佳實施例+,一雙散段聚合材料被用 以生成包含奈米級域緻密排列的遮罩。雙嵌段共聚材料之 可能的選擇之-係「聚笨乙稀_聚甲基丙烯酸甲醋」 O:\88\88956.doc 200424805 (polystyrene-polymethylmethacrylate,PS..PMMA)。藉由合 適選擇聚合物分子量及聚合物嵌段分子量的比率,可使雙 嵌段共聚物膜自聚合成在聚苯乙烯基質中的PMMa圓柱體 的六角壓縮排列。藉由(除其他已知方法之外)將稀釋的聚合 物溶液(聚合物被稀釋於曱苯或其他合適的溶劑中)旋塗於 基材上’並退火該所得之膜,可使該等PMma圓柱體被定 向成垂直於该膜之平面。接著,藉由曝露於電子束或紫外 線輕射,及在乙酸或其他有效溶劑中溶解,該等PMma圓 柱體可視情況被移除。依據所選擇之聚合物分子量,所生 成之薄膜通常具有被六角地壓縮的直徑約爲2〇奈米的孔。 藉由控制分子量及該等兩個聚合物嵌段之比率,吾人可將 洞的大小範圍控制在自約2奈米至高達約1〇〇奈米(例如自 約10至約50奈米)’將洞的間距控制在自約2奈米至高達約 100奈米(例如自約10至約50奈米)。此自聚合過程簡單、便 宜且迅速。該等孔/域的尺寸亦可被調整(在約1〇至>1〇〇奈米 的範圍),利用取決於基本的分子長度級(m〇lecular length scale)(該聚合物分子量)的孔的大小的緊密分佈。 儘管本發明之上述實施例使用由聚苯乙烯及聚曱基丙烯 酸甲酯組成的雙嵌段共聚物,但是還可使用許多其他類型 的之雙嵌段共聚物。其他雙嵌段共聚物之一些實例包括: 聚環氧乙烷-聚異戊二烯 '聚環氧乙烷_聚丁二烯、聚環氧乙 烷-聚苯乙烯、聚環氧乙烷-聚曱基丙烯酸曱酯、聚苯乙烯_ 聚乙烯基。比啶、聚苯乙烯_聚異戊二烯、聚苯乙烯_聚丁二 烯來丁一烯-聚乙烯基°比°定、及聚異戊二烯-聚甲基丙浠酸O: \ 88 \ 88956.DOC 2004248 05 is a sacrificial layer to rude _. Holes on the substrate, wire can be cut or made by other villages /. The self-polymerizing material is used as a template to pattern the substrate. In the present invention, a nano-film is manufactured from a material that is not porous beforehand. The size, homogeneity, and density of the film binding holes depend on the characteristic size of the self-polymerizing material. For the purposes of the present invention, the term, self-polymerizing material "refers to a specific type of material 'which, under appropriate conditions, will be organized into a uniform nanometer-scale domain with a slightly wide range arrangement (々adegreeoflonger_range_rder). Generally, 忒The self-aggregating domain will arrange itself into a hexagonal grid, but there are also several specific systems that combine into an oblique or square grid. The usual domain size is small and can be down in the appropriate material system. Adjusted to only a few nanometers. In these materials, 'the "domain size" is the basic characteristic of the material, so the size uniformity of the domain may have an error (self-average) of less than 10%. Examples of self-polymerizing materials (the use of which in this application will be further described) are bi-segmented copolymers, homo-sized nanocrystals, anodized film, and, · field surface layer (S-layer), and other systems. Self-polymerization provides a precise, effective, and straightforward method for making nanostructures with a size "below the decomposition limit achievable by conventional techniques", and makes such nanostructures suitable for thin film applications. Attractive choice of cowl. By using a self-polymerizing material, the field size of the present invention provides a way to achieve a uniform film pore size density exceeding and as high as 10 12 / cm2. In a preferred embodiment of this issue H +, a double-segment polymer material is used to generate a mask comprising a dense array of nanoscale domains. A possible choice of diblock copolymer material is "polystyrene-polymethylmethacrylate" O: \ 88 \ 88956.doc 200424805 (polystyrene-polymethylmethacrylate, PS..PMMA). By appropriately selecting the ratio of the molecular weight of the polymer to the molecular weight of the polymer block, the diblock copolymer film can be self-polymerized into a hexagonal compression arrangement of PMMa cylinders in a polystyrene matrix. By diluting (in addition to other known methods) the diluted polymer solution (the polymer is diluted in toluene or other suitable solvents) onto the substrate 'and annealing the resulting film, the The PMma cylinder is oriented perpendicular to the plane of the film. These PMma cylinders can then be removed, as appropriate, by exposure to electron beam or UV light, and dissolution in acetic acid or other effective solvents. Depending on the molecular weight of the polymer selected, the resulting film typically has pores of about 20 nanometers in diameter that are compressed hexagonally. By controlling the molecular weight and the ratio of these two polymer blocks, we can control the hole size range from about 2 nm to up to about 100 nm (for example, from about 10 to about 50 nm) ' The spacing of the holes is controlled from about 2 nanometers up to about 100 nanometers (for example, from about 10 to about 50 nanometers). This self-polymerization process is simple, cheap and fast. The size of the pores / domains can also be adjusted (in the range of about 10 to > 100 nanometers) using a molecular weight scale (the molecular weight of the polymer) that depends on the basic molecular length scale. The size of the holes is tightly distributed. Although the above embodiment of the present invention uses a diblock copolymer composed of polystyrene and polymethyl methacrylate, many other types of diblock copolymers can be used. Some examples of other diblock copolymers include: polyethylene oxide-polyisoprene 'polyethylene oxide_polybutadiene, polyethylene oxide-polystyrene, polyethylene oxide- Polyfluorenyl acrylate, polystyrene_polyvinyl. Pyridine, polystyrene_polyisoprene, polystyrene_polybutadiene, butadiene-polyvinyl ° ratio, and polyisoprene-polymethylpropionate
O:\88\88956.DOC -10- 200424805 "曰。此外’自聚合膜可由包含多於兩個嵌段的嵌段共聚 物(例如,三嵌段或多嵌段共聚物)而製成。最後,藉由 組成該雙嵌段共聚物之兩個聚合物嵌段之相對分子量比 率,該自聚合雙嵌段共聚物薄膜之形態可被調節。對於大 於約80 : 20的比率,該雙嵌段共聚物組合成球體狀態。對 於在約60 : 40與80 : 20之間的比率,該雙嵌段共聚物組合 成一圓柱體狀態。對於在約50 ·· 5〇與6(^ 4〇之間的比率, 該膜呈現出薄層狀態。 在本發明之第二實施例中,該自聚合材料被用作一遮罩 材料·,以生成包含陽極氧化鋁的薄膜孔。衆所週知,在適 當條件下的鋁膜之陽極氧化會生成氧化鋁膜,其包含均一 大小的、密集的整齊的孔排列。藉由陽極氧化的條件(例如 陽極氧化電壓及電解質),孔大小及密度可被控制在自約5 奈米至約300奈米。如在上述之實施例中的雙嵌段共聚材 料’該氧化銘膜可被用以當作底層基材材料的樣板,且然 後被移除。藉由下文概述之方法,該被樣板化之底層材料 將最終成爲多孔薄膜結構。 在本發明之另一實施例中,被用以當作該底層基材樣板 之自聚合材料係由單一層的「被化學合成之奈米粒子」製 成。現有各種化學方法,可用於製造「具有約2奈米至約20 奈求的直徑、具有小於5%的直徑分佈」之(多種材料的)奈 米粒子。藉由使用大小足夠均一的奈米粒子,可使彼等在 該基材上組合成整齊的六角排列。藉由將奈米粒子排列之 空隙作爲孔’該單一奈米粒子層接著可被用於當作一表面O: \ 88 \ 88956.DOC -10- 200424805 " In addition, the 'self-polymerizing film may be made of a block copolymer (for example, a triblock or multiblock copolymer) containing more than two blocks. Finally, the morphology of the self-polymerizing diblock copolymer film can be adjusted by the relative molecular weight ratio of the two polymer blocks constituting the diblock copolymer. For a ratio greater than about 80:20, the diblock copolymer is combined into a sphere state. For a ratio between about 60:40 and 80:20, the diblock copolymer is combined into a cylindrical state. For a ratio between about 50 ·· 50 and 6 (^ 40), the film exhibits a thin layer state. In a second embodiment of the present invention, the self-polymerizing material is used as a masking material, To produce thin film pores containing anodized aluminum. It is well known that anodization of an aluminum film under appropriate conditions will produce an aluminum oxide film that contains a uniform, dense, and neat array of pores. By anodizing conditions (Such as anodizing voltage and electrolyte), the pore size and density can be controlled from about 5 nm to about 300 nm. As in the above-mentioned embodiment of the diblock copolymerized material, the oxide film can be used Used as a template for the underlying substrate material, and then removed. By the method outlined below, the templated underlying material will eventually become a porous film structure. In another embodiment of the invention, it is used as The self-polymerizing material used as the base substrate template is made of a single layer of "chemically synthesized nano particles." Various existing chemical methods can be used to produce "having a diameter of about 2 nanometers to about 20 nanometers, having Less than 5% of diameter points "Nano particles (of a variety of materials). By using nano particles with a sufficiently uniform size, they can be assembled into a neat hexagonal arrangement on the substrate. By using the voids of the nano particle array as holes' The single nanoparticle layer can then be used as a surface
O:\88\88956.DOC -11 - 2004248 05 之樣板。在此實施例中,藉由選擇奈米粒子的大小 制該自聚合遮罩的孔的大小及間隔。 二 儘管上文描述了自聚合材料之三個實施例,該等自聚人 ㈣可被用作犧牲料層,以將底層基材圖案化成多= 薄膜、U冓’但疋存在可以柄同方式被使用的其他許多材料。 現芬考圖2A-2C,顯示將自聚合材料用作樣板,以圖案化 底層無機基材(其最終將成爲一薄膜)之過程。更具體言/之, 圖2A例不基材20及包含均—大小的孔22的奈米多孔性自聚 合材料21。應注意,該材料21可爲上述之清單中的任何2 種’或可生成均-大小、處於低於⑽奈米之尺寸的密集之 孔排列的其他自聚合材料。在圖2Bf,藉由㈣製程叫例 如’反應性離子蝕刻、化學蝕刻、或離子束蝕刻)以移除該 基材20僅在該自聚合材料21之多孔性區域的多個部分。在/ 圖2C中’該自聚合材料21被移除24,留下被複製於基材 中的該奈米多孔性圖案。 圖3例示該無機奈米多孔性薄膜製造過程之流程圖。在項 目300中,於基材上製造自聚合材料。應注意,此步驟包括 製造該自聚合材料所必要之整個程序。在雙後段共聚物的 ,況中,此包括任何共聚物退火步驟、及化學顯影。至於 陽極氧化鋁的情況,此包括鋁膜沈積及適當的鋁陽極氧 化。對於奈米粒子層,此包括溶液沈積及溶劑蒸發。接下 來’在項目302中’本發明將該自聚合材料之奈米級圖案轉 移至該底層基材(其最終將形成無機薄膜)中。在項目 中本發明移除該犧牲自聚合材料。在項目306中,本發明O: \ 88 \ 88956.DOC -11-2004248 05. In this embodiment, the size and spacing of the holes in the self-polymerizing mask are made by selecting the size of the nanoparticle. 2. Although three embodiments of self-polymerizing materials are described above, the self-polymerizing human puppets can be used as a sacrificial material layer to pattern the underlying substrate into a multi-film, film, but the existence of plutonium can be handled in the same way. Many other materials used. Figure 2A-2C shows the process of using a self-polymerizing material as a template to pattern the underlying inorganic substrate, which will eventually become a thin film. More specifically, FIG. 2A illustrates a substrate 20 and a nanoporous self-polymerizing material 21 including pores 22 of uniform size. It should be noted that the material 21 may be any two of the above-mentioned list 'or other self-polymerizing materials that can produce a uniform-sized, densely arranged array of pores below the size of a nanometer. In FIG. 2Bf, a portion of the substrate 20 only in the porous region of the self-polymerizing material 21 is removed by a process called, for example, 'reactive ion etching, chemical etching, or ion beam etching.' In Fig. 2C ', the self-polymerizing material 21 is removed 24, leaving the nanoporous pattern reproduced in the substrate. FIG. 3 illustrates a flowchart of a manufacturing process of the inorganic nanoporous film. In item 300, a self-polymerizing material is manufactured on a substrate. It should be noted that this step includes the entire procedure necessary to manufacture the self-polymerizing material. In the case of double-stage copolymers, this includes any copolymer annealing step and chemical development. In the case of anodized aluminum, this includes aluminum film deposition and proper aluminum anodic oxidation. For nanoparticle layers, this includes solution deposition and solvent evaporation. Next, 'in item 302', the present invention transfers the nanoscale pattern of the self-polymerizing material to the underlying substrate (which will eventually form an inorganic thin film). The present invention removes the sacrificial self-polymerizing material in the project. In item 306, the invention
O:\88\88956.DOC -12- 2004248 05 使用微電機技術(下文所述)來圖案化該薄膜結構。最後在項 目則中,㈣膜賴開且(在項目31时)該㈣膜孔視情況 經過化學作用以用於特定應用。 該最後薄膜結構之製造及斷開係藉由使用來自微電機或 微電子機械系統(MEMS)的技術而完成的。下面的實例(圖 4A-4H及Μ,顯示可能的薄膜製造料,然』熟悉此項 技術者應瞭解可同樣使用其他自聚合材料。在該第一實例 (顯示於圖4A-4H中)中,該最後薄膜材料將爲氮化矽(§ίΝ)。 該製程在圖4A中,藉由在矽基材6〇4上的犧牲氧化物6〇2之 頂部上沈積氮化矽膜600而開始。該雙嵌段共聚物自聚合製 程(早先所述的)在該頂部氮化物膜6〇〇上進行,結果在氮化 矽600之頂部上生成奈米多孔性聚合物膜6〇6(圖4b)。舉例 而《,藉由反應性離子姓刻6〇8(圖4C),該多孔性聚合物樣 板圖案被轉移到全部的氮化物膜。接著,剩餘的聚合物被 剝離。接下來,在圖4D中,該晶圓之頂部受到保護6丨2(例 如藉由聚合物抗钱劑、二氧化石夕或其他材料),且藉由微 衫蝕刻或其他方法,該晶圓之背部被圖案化6丨4(圖4E)以定 義薄膜尺寸(可一次圖案化多個薄膜)。如圖4]F及所示, 藉由(舉例而言)使用KOH或TMAH濕式蝕刻或電漿蝕刻進 行飯刻61 6 ’該基材石夕自該等薄膜開口被移除。最後,如圖 4H所示’藉由移除該前側保護並移除該犧牲氧化層61 8(例 如’使用HF),該薄膜被斷開。所得之結構由懸浮的氮化物 薄膜組成,該氮化物薄膜包含具有奈米級的洞/孔(由該自聚 合材料定義)的緻密排列。該懸浮的無機膜可具有小於3〇奈O: \ 88 \ 88956.DOC -12- 2004248 05 Use micro-motor technology (described below) to pattern the thin film structure. Finally, in the project, the diaphragm was opened and (at item 31) the diaphragm hole was chemically used for specific applications as appropriate. The fabrication and disconnection of the final thin film structure is accomplished by using technology from a micro-motor or micro-electro-mechanical system (MEMS). The following example (Figures 4A-4H and M, shows possible thin film manufacturing materials, but those skilled in the art should understand that other self-polymerizing materials can also be used. In this first example (shown in Figures 4A-4H) The final thin film material will be silicon nitride (§ίΝ). The process starts in FIG. 4A by depositing a silicon nitride film 600 on top of a sacrificial oxide 600 on a silicon substrate 600. The diblock copolymer self-polymerization process (described earlier) was performed on the top nitride film 600. As a result, a nanoporous polymer film 606 was formed on top of the silicon nitride 600 (Fig. 4b). By way of example, the pattern of the porous polymer template is transferred to the entire nitride film by the reactive ion engraving 608 (Figure 4C). Then, the remaining polymer is peeled off. Next, In FIG. 4D, the top of the wafer is protected 6 (for example, by polymer anti-money, stone dioxide or other materials), and the back of the wafer is etched by micro-shirt etching or other methods. Pattern 6 丨 4 (Figure 4E) to define the film size (multiple films can be patterned at once). See Figure 4] F and all As shown in FIG. 4H, the substrate stone is removed from the film openings by, for example, using KOH or TMAH wet etching or plasma etching. Finally, as shown in FIG. 4H, The front side protection is removed and the sacrificial oxide layer 618 is removed (eg, 'using HF'), and the film is broken. The resulting structure consists of a suspended nitride film containing a nanoscale hole / A dense arrangement of pores (defined by the self-polymerizing material). The suspended inorganic membrane may have less than 30 nanometers
O:\88\88956.DOC -13- 2004248 05 米的孔直徑,在該懸浮的無機膜中的該等孔可具有小於 20%的孔直徑分佈。在該懸浮的無機膜中之孔的密度可大 於109/cm2(或甚至大於l〇u/cm2)。 在第二實施例(圖5A.5H)中,該起始基材切披絕緣體 (SOI)晶圓,其在矽基材(704)上之二氧化矽(7〇2)的頂部上 具有矽膜(700),如圖5 A所示。該雙嵌段共聚物自聚合製程 (早先所述的)在該矽膜700之頂部進行,結果在該矽7〇〇之頂 部生成奈米多孔性聚合物膜706(圖5]3)。舉例而言,藉由反 應性離子姓刻708(圖5C),該多錄聚合物樣板圖案^轉移 到全部的石夕膜。接著,剩餘的聚合物被剝離。於圖5d_5h 中所示之剩餘的薄膜製程(意即前側保護712、晶圓背部圖 案化714、透晶圓姓刻(thr〇ugh_wafer价此幻7【6、及薄膜 斷開718)與上述實例中所述的相同。此過程生成—懸浮的 石夕薄膜,其包含具有奈米級孔之緻密排列。 或者,可颠倒該製造程序。可首先進行該背部薄膜之圖 案化及蝕刻,之後再接著可(爲SiN及s〇I薄膜之製造兩者) 完成該雙嵌段共聚物之自聚合及將圖案轉移至該薄膜材料 内的過程。上文所示之本發明之使用該自聚合的雙喪段丘 ㈣《而製得的奈米多孔性薄膜,其具有可作爲奈米過 遽β的貫用性,以詩生物技術學/生物醫學/生物感應器的 應用。 ^ 藉由使用自聚合材料以定義孔的尺寸,本發明教示·可 能具有直徑小於3〇奈米的緊密壓縮之孔(孔大小分佈爲大 为10%)的規則排列。此外,因爲該自聚合材料本身可能不O: \ 88 \ 88956.DOC -13- 2004248 05 m pore diameter, the pores in the suspended inorganic film may have a pore diameter distribution of less than 20%. The density of pores in the suspended inorganic film may be greater than 109 / cm2 (or even greater than 10u / cm2). In a second embodiment (FIG. 5A.5H), the starting substrate is cut over an insulator (SOI) wafer, which has silicon on top of silicon dioxide (702) on a silicon substrate (704). The membrane (700) is shown in Figure 5A. The diblock copolymer self-polymerization process (described earlier) is performed on top of the silicon film 700, and as a result, a nanoporous polymer film 706 is formed on the top of the silicon film 700 (Fig. 5) 3). For example, with the reactive ion surname 708 (FIG. 5C), the multi-record polymer sample pattern ^ is transferred to the entire Shi Xi film. Then, the remaining polymer is peeled off. The remaining thin film processes shown in Figures 5d_5h (meaning front side protection 712, wafer back patterning 714, transparent wafer engraving (through_wafer price 7 [6, and film break 718)) and the above examples It is the same as described in this process. This process produces a suspended Shixi film that contains a dense array of nano-sized holes. Alternatively, the manufacturing process can be reversed. The back film can be patterned and etched first, and then continued The process of self-polymerization of the diblock copolymer and the transfer of the pattern into the film material can be completed (for both the manufacture of SiN and SOC films). The self-polymerized bismuth of the present invention shown above is used. Meng Duan Qiu Qiong, "The nano-porous film prepared has a consistent use as a nanometer β, in the application of poetic biotechnology / biomedicine / biosensor. ^ By using self-polymerizing materials To define the size of the pores, the teachings of the present invention may have a regular arrangement of tightly compressed pores with a diameter of less than 30 nanometers (the pore size distribution is as large as 10%). In addition, since the self-polymerizing material itself may not
O:\88\88956.DOC -14- 2004248 05 適合用作薄膜,因此本發明教示··將該自聚合材料用作樣 板’以圖案化底層薄膜材料。以此方式,可製造許多種材 料的薄膜,每種類型具有該自聚合(樣板)材料之特徵尺寸。 本發明亦提供一種用於製造奈米多孔性薄膜之方法,其將 自聚合材料用作樣板,以將奈米級圖案轉移至該底層材料 中。 儘官本發明已描述多個較佳實施例,但是熟悉此項技術 者應明白可在隨附申請專利範圍的精神及範圍之内,對本 發明進行修改。 【圖式簡單說明】 參考該等圖4,自了面的詳細描述可更好的理解本發 明,在該等圖式中: 圖1A-1C係使用自聚合材料以圖案化該底層薄膜材料,所 製得的奈米多孔性_結構之示意圖; 圖2A-2C例示將自聚合材料用於圖案化底層材料層之使 圖3係一流程圖 圖4A-4H係一系列示意圖 圖5A-5H係一系列示意圖 【圖式代表符號說明】 20 基材 例示本發明之一較佳方法; ’例示本發明之一較佳方法;及 ’例示本發明之一較佳方法。 1 自聚合材料 22 孔 23 姓刻製程O: \ 88 \ 88956.DOC -14- 2004248 05 is suitable for use as a thin film, so the present invention teaches that the self-polymerizing material is used as a template 'to pattern the underlying thin film material. In this way, films of many materials can be made, each type having the characteristic dimensions of the self-polymerizing (model) material. The present invention also provides a method for manufacturing a nanoporous film, which uses a self-polymerizing material as a template to transfer a nanoscale pattern into the underlying material. Although the present invention has been described with several preferred embodiments, those skilled in the art should understand that the present invention can be modified within the spirit and scope of the scope of the accompanying patent application. [Brief description of the drawings] With reference to these Figures 4, a detailed description of the invention can better understand the present invention. In the drawings: Figures 1A-1C use a self-polymerizing material to pattern the underlying film material. Schematic diagram of the prepared nano-porous structure. Figures 2A-2C illustrate the use of self-polymerizing materials for patterning the underlying material layer. Figure 3 is a flowchart. Figures 4A-4H are a series of diagrams. Figures 5A-5H are A series of schematic diagrams [illustration of the representative symbols] 20 The substrate illustrates a preferred method of the present invention; 'illustrates a preferred method of the present invention; and' illustrates a preferred method of the present invention. 1 Self-polymerizing materials 22 holes 23 Last name engraving process
O:\88\88956.DOC 15- 200424805 24 該自聚合材料21被移除 150 奈米多孔性薄膜 152 較小粒子 151 較大粒子 153 薄膜 300 在合適的基材上製造自聚合材料 302 圖案轉移至基材中 304 移除自聚合材料 306 圖案化薄膜結構 308 薄膜斷開 310 經過化學作用的薄膜孔 604 $夕基材 602 氧化物 600 氮化碎膜 606 奈米多孔性聚合物膜 608 圖案被轉移到全部的氮化物膜 612 晶圓之頂部受到保護 614 晶圓之背部被圖案化 616 名虫刻 618 移除該犧牲的氧化層 700 矽膜 702 二氧化矽 704 碎基材 706 奈米多孔性聚合物膜 O:\88\88956.DOC -16- 708 圖案被轉移到全部的矽膜 712 前側保護 714 晶圓背部圖案化 716 透晶圓蝕刻 718 薄膜斷開 O:\88\88956.DOC -17-O: \ 88 \ 88956.DOC 15- 200424805 24 The self-polymerizing material 21 is removed 150 nanometer porous film 152 smaller particles 151 larger particles 153 film 300 making self-polymerizing material on a suitable substrate 302 pattern transfer Into the substrate 304 Remove the self-polymerizing material 306 Patterned film structure 308 Thin film disconnection 310 The chemically applied film hole 604 $ 夕 substrate 602 Oxide 600 Nitrided shatter film 606 Nanoporous polymer film 608 Pattern quilt Transfer to all nitride films 612 The top of the wafer is protected 614 The back of the wafer is patterned 616 Insects 618 Remove the sacrificial oxide layer 700 Silicon film 702 Silicon dioxide 704 Broken substrate 706 Nanoporosity Polymer film O: \ 88 \ 88956.DOC -16- 708 The pattern is transferred to all silicon films 712 Front side protection 714 Wafer back patterning 716 Through wafer etching 718 Thin film disconnection O: \ 88 \ 88956.DOC- 17-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/331,908 US20040124092A1 (en) | 2002-12-30 | 2002-12-30 | Inorganic nanoporous membranes and methods to form same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200424805A true TW200424805A (en) | 2004-11-16 |
Family
ID=32654858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092130335A TW200424805A (en) | 2002-12-30 | 2003-10-30 | Inorganic nanoporous membranes and methods to form same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040124092A1 (en) |
JP (1) | JP2004209632A (en) |
CN (1) | CN1511625A (en) |
TW (1) | TW200424805A (en) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5082224B2 (en) * | 2004-10-29 | 2012-11-28 | ブラザー工業株式会社 | Filter manufacturing method |
KR100721430B1 (en) | 2005-10-12 | 2007-05-23 | 학교법인 포항공과대학교 | Nanoporous membrane and process for fabrication of the same |
US8394483B2 (en) | 2007-01-24 | 2013-03-12 | Micron Technology, Inc. | Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly |
US7964107B2 (en) | 2007-02-08 | 2011-06-21 | Micron Technology, Inc. | Methods using block copolymer self-assembly for sub-lithographic patterning |
US8083953B2 (en) | 2007-03-06 | 2011-12-27 | Micron Technology, Inc. | Registered structure formation via the application of directed thermal energy to diblock copolymer films |
WO2008108663A1 (en) * | 2007-03-07 | 2008-09-12 | Lifecare As | Fabrication of reinforced nanoporous membranes |
US8361337B2 (en) | 2007-03-19 | 2013-01-29 | The University Of Massachusetts | Method of producing nanopatterned templates |
US8557128B2 (en) * | 2007-03-22 | 2013-10-15 | Micron Technology, Inc. | Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers |
US7959975B2 (en) * | 2007-04-18 | 2011-06-14 | Micron Technology, Inc. | Methods of patterning a substrate |
US8097175B2 (en) | 2008-10-28 | 2012-01-17 | Micron Technology, Inc. | Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure |
US8294139B2 (en) * | 2007-06-21 | 2012-10-23 | Micron Technology, Inc. | Multilayer antireflection coatings, structures and devices including the same and methods of making the same |
US8372295B2 (en) | 2007-04-20 | 2013-02-12 | Micron Technology, Inc. | Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method |
DE102007024199B4 (en) * | 2007-05-24 | 2015-06-25 | Robert Bosch Gmbh | Manufacturing method of a micromechanical device with a porous membrane |
US8404124B2 (en) * | 2007-06-12 | 2013-03-26 | Micron Technology, Inc. | Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces |
US8080615B2 (en) | 2007-06-19 | 2011-12-20 | Micron Technology, Inc. | Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide |
US20090001045A1 (en) * | 2007-06-27 | 2009-01-01 | International Business Machines Corporation | Methods of patterning self-assembly nano-structure and forming porous dielectric |
US8283258B2 (en) * | 2007-08-16 | 2012-10-09 | Micron Technology, Inc. | Selective wet etching of hafnium aluminum oxide films |
US7732533B2 (en) * | 2007-08-31 | 2010-06-08 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US8999492B2 (en) | 2008-02-05 | 2015-04-07 | Micron Technology, Inc. | Method to produce nanometer-sized features with directed assembly of block copolymers |
US8101261B2 (en) | 2008-02-13 | 2012-01-24 | Micron Technology, Inc. | One-dimensional arrays of block copolymer cylinders and applications thereof |
KR100964504B1 (en) * | 2008-02-14 | 2010-06-21 | 포항공과대학교 산학협력단 | A nanoporous membrane, a process for fabrication of the same and a device for a controlled release of biopharmaceuticals comprising the same |
US8426313B2 (en) | 2008-03-21 | 2013-04-23 | Micron Technology, Inc. | Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference |
US8425982B2 (en) | 2008-03-21 | 2013-04-23 | Micron Technology, Inc. | Methods of improving long range order in self-assembly of block copolymer films with ionic liquids |
US8114300B2 (en) | 2008-04-21 | 2012-02-14 | Micron Technology, Inc. | Multi-layer method for formation of registered arrays of cylindrical pores in polymer films |
US8114301B2 (en) | 2008-05-02 | 2012-02-14 | Micron Technology, Inc. | Graphoepitaxial self-assembly of arrays of downward facing half-cylinders |
TWI407491B (en) * | 2008-05-09 | 2013-09-01 | Advanced Optoelectronic Tech | Method for separating semiconductor and substrate |
US8114468B2 (en) * | 2008-06-18 | 2012-02-14 | Boise Technology, Inc. | Methods of forming a non-volatile resistive oxide memory array |
US8211737B2 (en) | 2008-09-19 | 2012-07-03 | The University Of Massachusetts | Method of producing nanopatterned articles, and articles produced thereby |
US8247033B2 (en) | 2008-09-19 | 2012-08-21 | The University Of Massachusetts | Self-assembly of block copolymers on topographically patterned polymeric substrates |
US8518837B2 (en) | 2008-09-25 | 2013-08-27 | The University Of Massachusetts | Method of producing nanopatterned articles using surface-reconstructed block copolymer films |
US8877073B2 (en) * | 2008-10-27 | 2014-11-04 | Canon Nanotechnologies, Inc. | Imprint lithography template |
US20100300882A1 (en) * | 2009-05-26 | 2010-12-02 | General Electric Company | Devices and methods for in-line sample preparation of materials |
US8304493B2 (en) | 2010-08-20 | 2012-11-06 | Micron Technology, Inc. | Methods of forming block copolymers |
KR101923376B1 (en) * | 2011-05-25 | 2019-02-22 | 한국전자통신연구원 | Nano porous membrane and manufacturing thereof |
US9156682B2 (en) | 2011-05-25 | 2015-10-13 | The University Of Massachusetts | Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles |
KR101344340B1 (en) * | 2011-08-12 | 2013-12-24 | 포항공과대학교 산학협력단 | Membrane and method of fabricating the same |
US8900963B2 (en) | 2011-11-02 | 2014-12-02 | Micron Technology, Inc. | Methods of forming semiconductor device structures, and related structures |
EP2642341A2 (en) * | 2012-03-22 | 2013-09-25 | Koninklijke Philips N.V. | Manufacturing method of an apparatus for the processing of single molecules |
JP2013202559A (en) * | 2012-03-29 | 2013-10-07 | Tokyo Electron Ltd | Method for producing filter for filtration |
CA2873638C (en) * | 2012-05-16 | 2021-08-24 | Regents Of The University Of California | Low resistance microfabricated filter |
JP2014057934A (en) * | 2012-09-19 | 2014-04-03 | Tokyo Electron Ltd | Method for manufacturing filter for filtration |
US9153477B2 (en) | 2012-09-28 | 2015-10-06 | Intel Corporation | Directed self assembly of block copolymers to form vias aligned with interconnects |
US9087699B2 (en) | 2012-10-05 | 2015-07-21 | Micron Technology, Inc. | Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure |
US9229328B2 (en) | 2013-05-02 | 2016-01-05 | Micron Technology, Inc. | Methods of forming semiconductor device structures, and related semiconductor device structures |
US9789239B2 (en) | 2013-08-16 | 2017-10-17 | Simpore, Inc. | Nanoporous silicon nitride membranes, and methods for making and using such membranes |
US9177795B2 (en) | 2013-09-27 | 2015-11-03 | Micron Technology, Inc. | Methods of forming nanostructures including metal oxides |
EP3365096A4 (en) * | 2015-10-20 | 2019-12-04 | National Research Council of Canada | Polymer membranes having open through holes, and method of fabrication thereof |
JP6678238B2 (en) * | 2015-10-30 | 2020-04-08 | シンポアー インコーポレイテッド | Method of making a fluid cavity by transmembrane etching through a porous membrane and structures produced thereby and uses of such structures |
CN106000125B (en) * | 2016-07-19 | 2021-02-26 | 重庆理工大学 | Bionic preparation method of inorganic composite nanofiltration membrane |
KR20180039349A (en) * | 2016-10-10 | 2018-04-18 | (주)포인트엔지니어링 | Micro sensor package |
CN108529554A (en) * | 2017-03-02 | 2018-09-14 | 中芯国际集成电路制造(上海)有限公司 | A kind of MEMS device and preparation method thereof |
US10576430B2 (en) * | 2017-12-11 | 2020-03-03 | General Electric Company | System and method for manufacturing a membrane filter |
CN108854590A (en) * | 2018-08-09 | 2018-11-23 | 常州费曼生物科技有限公司 | Infusion apparatus filter membrane and preparation method, infusion apparatus filter membrane structure and preparation process and filter, infusion apparatus |
JP2022541784A (en) * | 2019-07-25 | 2022-09-27 | ナショナル ユニバーシティ オブ シンガポール | Inorganic porous membrane |
JP7382869B2 (en) * | 2020-03-18 | 2023-11-17 | シチズンファインデバイス株式会社 | Manufacturing method for through-hole board |
EP4389268A1 (en) * | 2022-12-22 | 2024-06-26 | Imec VZW | A method for producing a blood filter and a blood filter |
EP4389267A1 (en) * | 2022-12-22 | 2024-06-26 | Imec VZW | A method for producing a filter and a filter |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4045302A (en) * | 1976-07-08 | 1977-08-30 | Burroughs Corporation | Multilevel metallization process |
WO1998009005A1 (en) * | 1996-08-26 | 1998-03-05 | Nippon Telegraph And Telephone Corporation | Method of manufacturing porous anodized alumina film |
US5849215A (en) * | 1997-01-08 | 1998-12-15 | The Regents Of The University Of California | Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach |
US5948470A (en) * | 1997-04-28 | 1999-09-07 | Harrison; Christopher | Method of nanoscale patterning and products made thereby |
US6313185B1 (en) * | 1998-09-24 | 2001-11-06 | Honeywell International Inc. | Polymers having backbones with reactive groups employed in crosslinking as precursors to nanoporous thin film structures |
US6705152B2 (en) * | 2000-10-24 | 2004-03-16 | Nanoproducts Corporation | Nanostructured ceramic platform for micromachined devices and device arrays |
US6214746B1 (en) * | 1999-05-07 | 2001-04-10 | Honeywell International Inc. | Nanoporous material fabricated using a dissolvable reagent |
US6536604B1 (en) * | 1999-06-25 | 2003-03-25 | C. Jeffrey Brinker | Inorganic dual-layer microporous supported membranes |
US6171687B1 (en) * | 1999-10-18 | 2001-01-09 | Honeywell International Inc. | Infiltrated nanoporous materials and methods of producing same |
US6271273B1 (en) * | 2000-07-14 | 2001-08-07 | Shipley Company, L.L.C. | Porous materials |
US6589629B1 (en) * | 2000-09-11 | 2003-07-08 | Lucent Technologies Inc. | Process for fabricating patterned, functionalized particles and article formed from particles |
US6709513B2 (en) * | 2001-07-04 | 2004-03-23 | Fuji Photo Film Co., Ltd. | Substrate including wide low-defect region for use in semiconductor element |
EP1445601A3 (en) * | 2003-01-30 | 2004-09-22 | Fuji Photo Film Co., Ltd. | Localized surface plasmon sensor chips, processes for producing the same, and sensors using the same |
-
2002
- 2002-12-30 US US10/331,908 patent/US20040124092A1/en not_active Abandoned
-
2003
- 2003-10-30 TW TW092130335A patent/TW200424805A/en unknown
- 2003-12-11 JP JP2003413990A patent/JP2004209632A/en active Pending
- 2003-12-18 CN CNA2003101223102A patent/CN1511625A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2004209632A (en) | 2004-07-29 |
CN1511625A (en) | 2004-07-14 |
US20040124092A1 (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200424805A (en) | Inorganic nanoporous membranes and methods to form same | |
JP5136999B2 (en) | Pattern substrate manufacturing method, pattern transfer body, pattern medium for magnetic recording, and polymer thin film | |
Li et al. | Block copolymer patterns and templates | |
JP4654280B2 (en) | Manufacturing method of fine structure | |
US8431034B2 (en) | Manufacturing of nanopores | |
JP2008231233A (en) | Thin polymer film, patterned substrate, patterned medium for magnetic recording and their manufacturing methods | |
JP5281386B2 (en) | Polymer thin film, patterned medium, and production method thereof | |
JP5178401B2 (en) | Production method of polymer thin film having fine structure and patterned substrate | |
Li et al. | Patternable block copolymers | |
JP5950310B2 (en) | Method for producing porous thin film having pores and method for producing thin film having pores | |
TWI359106B (en) | Two-dimensional arrays of holes with sub-lithograp | |
US8168101B2 (en) | Inorganic membrane devices and methods of making and using the same | |
JP4665720B2 (en) | Pattern substrate, pattern substrate manufacturing method, fine mold, and magnetic recording pattern medium | |
JP4654279B2 (en) | Production method of polymer thin film having fine structure and patterned substrate | |
KR101630390B1 (en) | Method for Preparing Graphene Nano Structures Using Self-Assembling Material | |
US20090239381A1 (en) | Porous film | |
JP2009255497A (en) | Micro phase separation structure on flexible substrate and its method for manufacturing | |
KR20090028246A (en) | Blockcopolymer nonostructures formed on a pattern whose shape is not coincide with that of the blockcopolymer nonostructures and method for preparing thereof | |
US7713753B2 (en) | Dual-level self-assembled patterning method and apparatus fabricated using the method | |
TW200921786A (en) | Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces | |
JP2011243655A (en) | High polymer thin film, pattern media and their manufacturing methods, and surface modifying material | |
JP5640099B2 (en) | Production method of polymer thin film having fine structure and patterned substrate | |
CN105776126B (en) | Method for producing a columnar or layered structure of organic molecules arranged in a large-area single domain | |
KR20130055413A (en) | Method for micro patterning of polymer films on different substrates | |
KR100527409B1 (en) | Fabrication Method of High Resolution Nanopatterns and Metal Dot Arrays with Sub-100nm Feature Size |