200405069 玖、發明說明: 【發明所屬—之技術領域】 本發明係與一液晶顯示器及其面板有關,明確言之,係 與一種四色液晶顯示器有關。 【先前技術】 概言之,任一液晶顯示器(LCD)包括一液晶面板組合件, 内含兩片面板,分別設有兩種電場產生電極(例如··多個像* 素呢極,以及一晋通電極),和一層嵌入在前述兩種電極之' · 間並具有不同介質多向異性反應特性之液晶層。在各電場 鲁 產生電極之間電壓差的變化,亦即··由各電極所產生用以 改變穿透該LCD之光線傳送量以及理想影像之電場強度的 變化作用,是以控制各該電極之間的電壓差之方式達成之。 該LCD包括配有像素電極及紅(R),綠(G)及藍(B)三種彩 色過濾器之許多像素。各該像素被驅動後,即可藉由顯示 信號線路施加在各該像素上的信號執行顯示操作。各條信 唬線路包括用以載送掃描信號之閘極線路(或稱掃描信號 線路,以及用以載送資料信號之資料線路。每一像素均含 _ 有一薄膜電晶體(TFT),連接至某一相關閘極線路和某一相 關資料線路,用以控制施加至該像素電極上的資料信號。 常用之LCD係由紅綠燈(RGB)彩色像素來呈現一個像素 1 顯示點,但是其光學效果甚差。明確言之,與該等RGB像 素相對應之各相關彩色過濾器僅能將入射至該過濾器上的 光線中二分之一光線傳送出去,因此,其全部光學效果就 降低甚多。 85288.doc 200405069 同時,紅(R),綠(G),藍(B)三原色過濾器的排列方式有 三種,其一_,為長條式排列法,係將相同彩色之各相關彩色 過滤器排列在相同像素縱列中,為鑲嵌式(瑪赛克式) 排列法,係紅,綠,藍彩色過遽器沿著像素橫行及縱列方 向輪流依序排列;其三為三角形(△)式排列法,係將各像素 沿著縱列及橫行方向按錯線(或鋸齒)式排列,並將紅,綠, 藍彩色過濾器依序輪流排列。其中之三角形排列法可正確 地呈現出一圓圈或一對角線。200405069 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a liquid crystal display and a panel thereof. Specifically, it relates to a four-color liquid crystal display. [Prior art] In summary, any liquid crystal display (LCD) includes a liquid crystal panel assembly, which contains two panels, each of which is provided with two kinds of electric field generating electrodes (for example, a plurality of pixels * a pixel electrode, and a Jintong electrode), and a liquid crystal layer embedded between the two types of electrodes and having different anisotropic reaction characteristics of different media. The voltage difference between the electrodes is generated in each electric field, that is, the change in the electric field intensity generated by each electrode to change the amount of light transmitted through the LCD and the ideal image is to control the voltage of each electrode. This is achieved by means of a voltage difference between the two. The LCD includes many pixels equipped with pixel electrodes and three color filters of red (R), green (G), and blue (B). After each pixel is driven, a display operation can be performed by a signal applied to each pixel by a display signal line. Each signal line includes a gate line for carrying a scanning signal (or a scanning signal line and a data line for carrying a data signal. Each pixel contains a thin film transistor (TFT), which is connected to A related gate line and a related data line are used to control the data signal applied to the pixel electrode. Common LCDs use a traffic light (RGB) color pixel to present a pixel 1 display point, but its optical effect is very To be clear, the relevant color filters corresponding to the RGB pixels can only transmit one-half of the light incident on the filter, so its overall optical effect is greatly reduced. 85288.doc 200405069 At the same time, there are three ways to arrange the red (R), green (G), and blue (B) three primary color filters. One is _, which is a strip arrangement method, which associates the related color filters of the same color. Arranged in the same pixel column, it is a mosaic (Masike) arrangement method. The red, green, and blue color filters are arranged in turn along the pixel row and column direction; the third is a triangle ( ) Arrangement method, which arranges each pixel in the wrong direction (or zigzag) along the vertical and horizontal directions, and sequentially arranges the red, green, and blue color filters in turn. The triangular arrangement method can correctly present Make a circle or diagonal line.
ClairVoyante Laborat〇ries 曾提出一種名之為"❿ Matnx《-種像素排列方法,其優點乃係能以低廉設計 成本顯示高解析度影像。在該種像素排列法中,藍色信號 之單位像素可供兩個顯示點共用,且兩個相鄰接之藍色像 素於受到兩個不同的閘極驅動積體電路(IC)之驅動時,可從 一個資料驅動1(:處接收資料信號。利用,,PenTile Μ^ίχ,,式 像素結構’可由-種超高解析度圖形卩車列(svga)級之顯示 裝置顯示超高擴充式圖料列(UXGA)級之影像解析度圖 y此外由杰$種像素結構設計所使用之廉價閘極驅動 的數目i曰加而鬲成本資料驅動ICs之使用數相對減少 ,乃可降低顯示裝置之生產成本。 惟’於使用PenTile Matrix式像素結構時,由於藍色像素 《大小與紅色及綠色像素之大小不同,乃必須變更資料儲 存容量,%能因應液晶電荷率之變化。再者,由於兩個相 鄰藍色相素係被-條信號線路所驅動,因而造成像素極性 不均稱(一致)之現象。 85288.doc 200405069 、特別疋’由於各藍色像素係被排列成—長條形狀,而易 於看到日㊉等監色像素所引起但解析度不足之垂直線條, 而降低整體影像之顯示品質。 , 【發明内容】 本發明係提供-種液晶顯示裝置,包括:一個含有許多 、色、表色,監色及白色像素區之液晶面板組合件;以及配 置在咸)夜晶面板組合件一側之一個背光單元,纟中由該背 ::元放射出來的光線有一彩色座標(X,y),其中之χ軸座 心範圍約的〇.31至〇34,而y座標範圍約自m至之間。 *液:面板組合件包括:一個第一絕緣基體;在該第一絕 、’彖基f豆上形成之多個薄膜電晶體;在該第—絕緣基體上形 成並連接至#等薄膜電晶體之多個像素電極;與該第一絕 緣基體相對之—塊第二絕緣基體;在該第二絕緣基體上形 成並界定各該像素區範圍之—個黑矩陣,·大致上分別在上 述各紅色,綠色及藍色像素區内所形成之多個紅色,綠色 π色過濾為,在各該彩色過濾器上形成之一個共同電極 ’以及嵌裝在第一和第二絕緣基體之間的一層液晶層。 -色像素區或白色像素區的面積小於紅色像素區及綠色 像區的面積。 理想的設計是使藍色像素區和白色像素區之總面積與任 一紅色及任一綠色像素區的面積相同。 上述黑矩陣鄰近白色像素區_份之面積最好大於鄰近其 他像素區部份之面積。 本發明也提供-個液晶顯示器用之彩色過濾器陣列面板 85288.doc 200405069 g括:一絕緣基體;在該絕緣基體上形成之一個黑矩陣 ’界定若干—紅色,綠色,藍色及白色像素區;在各該紅色 ’綠色’及藍色像素區内所形成且含有紅色,綠色及藍色 素之紅色,綠色及藍色有機過濾器;一個大致上在白色像 素區内形成之一個透明有機過濾器;以及在該等有機過濾 斋上所形成之一個共用電極。 4卷色過濾器列陣面板,另亦包括位於該等有機過滤器 和孩共用電極之間之一外罩。 3透明有機過濾器之外罩可利用與該過濾器之相同材料 形成之。 茲外罩之一側表面的高度大體上應在一相同之高度上。 本發明所提供之液晶顯示器,包括:一第一絕緣基體; 在孩第一絕緣基體上形成之多個薄膜式電晶體;在該等薄 膜私日口恤形成且有一伸出邵份之一層保護層;在該保護層 上形成並分別連接至各該薄膜電晶體之多個像素電極;與 该第一絕緣基體相面對之一個第二絕緣基體;在該第二絕 彖基版上形成並界疋各該紅色,綠色,藍色及白色像素區 之個黑矩陣,大體上係分別在各該紅色,綠色,及藍色 像素區上所形成之紅色,綠色及藍色過濾器;在該等彩色 過滤器形成之-個共同電極;以及鑲欲在上述第—及第二 絕緣基體之間的一層液晶層,其中位於白色像素區上之部 份共用電極的高度低於紅色,綠色及藍色上之共同電極部 份’且該保護層上的伸出部份應面對該白色像素區。 自S /、用兒極至该保護一側表面之間的距離,最好實質 85288.doc 200405069 上保持一致不變。 在各該像素電極和該共用電極之間可裝有斷流器。 本發明所提供之液晶顯示器,包括:多組像素構成之一 個陣列,每組應包括彼此相鄰接之藍色及白色像辛,有一 ί斜面相對之綠色像素越過上述藍色與白色像素,並與該 Γ:色像素鄰接,每一像素各包括-像素電極及-薄膜電 S ^排的延展万向上之區域内有許多閘極線路, 2以將—閘控信號傳送至各像素上;另有沿著縱列方向延 上,多條資料線路,用以將資料信號分別傳送到各該像素 在任-㈣或任—橫行方向上兩㈣接像 素和白色像素間的相對位置,最好相反配置。義色像 1據本發明某一具體實施例之設計,各像素的形狀為矩 列:以形成^分_: 請縱列方向排 :據本發明另一具體實施例之設計,藍色像素及白色像 界緩:狀::矩形,並且藍色像素和白色像素之間的-條 |、、’系猶著橫行方向或縱列方向延伸。 最理想之設計乃是’將兩個鄰接縱列中之紅色像 在不同的橫行中,並將兩個鄰 μ :::縱列中;並將兩個縱…色像 ;此外,將其中4= 不同的縱列中 色或白色㈣ 組相鄭接之像素中之藍 象素配置在不同的橫行中,並將其中沿著縱列方 85288.doc 326 -10. 向之兩組相鄰接之傻去φ > π ΑΛ 素中滅色像素或白色像素配置在不 冋的縱列中―。 履晶顯示器之驅動方式’可利用描繪法為之。 【實施方式】 *、特多閱本說明書纟附圖中所示本發明各種可選用具 體實施例,提供本發明之詳細說明。 、 、在各附圖中,為於說明起見,已將各結構層及區域之厚 Υ、力―以擴大。各附圖中之相同數碼代號均係分別標示相 同〈讀。應提請注意者乃係,在說明中如果述及某一元 件例如一結構層,區域或基體係位於另一元件”之上,,時 ’可能係指直接配置在該另一元件之上方,或係在兩個元 件《間可能尚有其他介入元件。相反地,如果述及某一元 件係”直接配置在另—元件之上’’時,即係表示在兩個元件 之間並無任何介入元件 兹參閲各附圖對本發明之—些具體實施範例提供詳細說 明如後。 圖1所示係依本發明所設計之一種LCD具體實施例的剖 面圖而圖2至圖5所示乃係本發明所設計各種LCD具體實 施例中彩色過濾器之各種配置圖。 如圖1所示,該LCD包括一下層面板1〇〇,一個與該下層 面板對面而設置之上層面板200,以及鑲嵌在下層面板和上 層面板之間的一層液晶層3,該液晶層3含有沿著一預定方 向設置 < 許多液晶分子。該LCD另亦包括上下兩層極化劑 12及22,上下兩層補償薄膜13及23,以及一背光單元35〇。 85288.doc -11 - 200405069 孩等液晶分子於施加電場時,其各分子之對準方向即發生 變化。而光:線的傳送,也隨著該等液晶分子對準方向之變 化而發生變化。 下層面板100包括一層最好是以一種透明絕緣材料(例如 玻璃)製成之下層基體110,在該下層基體110上形成之許多 薄膜黾曰曰體(TFTs),以及最好是以一種透明導電材料,例 如,銦錫氧化物(ITO)及錮鋅氧化物(IZ0)製成,並分別連接 至各孩TFTs上之許多像素電極190。每一TFT係以開關操作 方式轉換施加予各相關像素電極i 9〇上之電壓。 下層補償薄膜13和下層極化劑12係附加在下層基體j j 〇 之外側表面上。該下層補償薄膜13具有兩軸性或單軸性特 性。下層補償薄膜13可省略不用。 上層面板200包括一上層基體21〇,最好是以一種透明絕 緣材料,例如玻璃製成,一個黑矩陣22〇,用以界定按一種 矩陣方式排列而成之許多像素區,形成在由黑矩陣22〇界定 <琢等像素區内之許多紅色,綠色及藍色過濾器23〇R, 230G和230B,以及一個最好以一種透明導電材料(例如·· ITO及IZO)製成之一個共用電極270。 紅色,綠色及藍色過濾器23〇R,230G及230B係依序輪流 排列。凡屬未配置紅色,綠色及藍色過濾器23〇r,23〇g及 230B之各像素區即為白色像素區w,白色像素區也可攔截 或通過入射光線之全部。因為白色像素區w並未配置彩色 過滤器’故而’位於白色像素區…上之該彩色過濾器面板 200惑内側表面的高度低於位於其他像素區R、〇及6上之内 85288.doc -12- 200405069 侧表面高度,而且白色像素區w之格位間隙大於其他各種 像素區内之格位間隙。 在本說明書中,”像素,,一詞係指用以顯示影像之一個基 本功能元件,包括一像素電極190,與該像素電極19〇相對 設置之共用電極270之—部份,設置於像素電極19〇和其相 對應 < 邵份共用電極27〇之間的液晶層3之一部份,一個TFT 和個彩色過濾态230R,230G或230B。此外,"像素區" 一詞係指被任-像素佔有之區域。但為便於說明起見,在 本規格說明書中將不特別區分"像素"及"像素區"這兩個名 詞° 參閱圖2,其中之紅色,綠色,藍色與白色像素(R,G, 肢W)之數目相同。紅色,綠色,藍色及白色各像素區汉, Gm係依序沿著橫行方向排列配置。每—藍色像素區 B及每-白色像素區W之面積大小大約為每—紅色像素區& 積大小之—半。因此,—個白色像素區w 和-個監色像素區B的面積和係與一個紅色像素Μ或一 個綠色像素區G的面積相等。 參閱圖3,含有相同像素之—個2χ3像 代 表影像基本元件之像素點。其成:代 序排列之紅,藍,綠像素;而第1辛^仏丁,包括依 排列之綠色,白色及紅色像素。素包括依序 圖4所示各像素之排列’除其中之藍色像素Β被擴大,且白 色=被ΓΓ,其餘各像素係與圖3所示者幾乎相同。 圖5所不各像素之排列,幾乎與圖3所示者相同,但其中 85288.doc -13- 200405069 環繞在白色像素區W外圍之黑色矩陣3^1部份已被擴大,其 寬度大於其他部份,以遮掩因高度差而產生之偏差線。 上方之補償薄膜23和上方之極化層22係附著在上層基體 的外部表面210上。該上方補償薄膜層23具有雙軸向特性或 單軸向特性。且该上方補償薄膜23可省卻不須裝設。 背光單元350係位於下方極化層12的背面。該背光單元 350内含有一光源351,包括一冷陰極管,及一導光板352。 在本具體實施例中,因為每一個圖像顯示點都含有紅, 綠,藍及白色像素,故而已可改善圖像顯示之光學效果, 且無須擴增每一顯示點的總面積。 假設,通過下方極化層12的光線總量為一。 就一含有三種彩色(亦即,紅,綠,藍三色)像素的任一圖 像顯示點而言,其中每一像素的面積為該顯示點總面積之三 分之一。由於彩色濾光器本身之透光度為三分之一,因而 ’該圖像顯示點之透光總量等於1/3χ1/3+1/3χ1/3+ 1/3χ1/3=1/3»33·3%。 就圖2所示之任一顯示點而言,每一紅色像素及每一綠色 像素之面積’各為該顯示點總面積之三分之一,而每一藍 色像素及每一白色像素之面積則各為該總面積之六分之一 。由於白色像素之透光度為1,而其他各種彩色像素的透光 度均為三分之一,因而,該圖像顯示點之總透光度等於 1/3χ1/3 + 1/3χ1/3 + 1/6χ1/3 + 1/6χ1=4/9»44·4%。因此,與傳統 方式二色LCD相較,本發明所提供之LCD之圖像顯示明亮 度約可提高1.5倍。 85288.doc -14- 200405069 雖然,藍色像素的面積比紅色像素或綠色像素的面積小 ,但是,對人類觀視效果的靈敏度之影響而言,藍色光線 的笑化f不若紅色及綠色光線變化量那麼顯著,因此,藍 色像素面積之縮小對影像品質的影響也很小。 不過,監色像素面積縮小會導致影像發生輕微的變形效 應’亦即,會使所顯示之影像有發黃的現象。 為解上述問題,光源351乃在其放射的光線中增加藍色光 線的含量以防止影像發黃的效應 自光源351放射出來的光線,其彩色光線的座標(χ,幻特 性乃係X座標之範圍約在〇.31至〇34之間,而y座標之範圍約 在〇·32至G.35之間。該種光線中所含有的藍色光線成份大於 由一傳統式LCD背光光源所放射光線中含有之藍色成份。 為獲彳于此種光源,應按一預定比例增加光源35丨内所含有之 藍色光放射材料的含量。 圖6所示係依據本發明某一具體實施例所採用之光源可 放射光線之光譜曲線圖。與該圖中以"Mue p代表所標示之 傳統光源所放射光線之光譜曲線相較,圖中以"Mue 1〇9,, 和blue 1.18兩係光瑨曲線在波長大約在奈米範圍 以内之部份出現增強之尖♦曲線,此乃表示藍色光線已加 強之情形,而且在波長大約為62〇至65〇奈米範圍以内,則 出現曲線尖輋降低之現象,此乃表示紅色光線強度降低之 情形。 同時,由於白色像素w部並無彩色遽光器,自光源351所 放射出來之白色像素w光線,看起來可能有些發藍之現象。 85288.doc -15- 200405069 圖7及圖8所示乃係依據本發明原理所設計之其他具體實 施例中LCD所採用彩色濾光器陣列板之剖面圖。 、 參閱圖7,其中之彩色濾光器陣列板200包括:一透明絕 緣基體210, 一個在該絕緣基體21〇上所形成之一個黑矩陣 220’含有用以劃定各像素區域之許多孔隙,在各該像素區 内形成<許多紅色,綠色,藍色及透明彩色濾光器230R, 230G,230B及230W,分別在該等彩色濾光#23〇r,23〇g ,230B,及230W上形成之一個外罩25〇,以及在該外罩25〇 上形成之一個共用電極27〇。其中之透明彩色濾光器23〇界 最好是包括一種感光且無色素之材料製成之透明有機材 料。 圖8所示之一種彩色濾光陣列板2〇〇並不包括透明彩色濾 光益。而係將各白色像素區w的一個外罩25〇上若干部份區 域(厚度加厚,使該等部份和其他部份之間的厚度差等於 或低於0.2微米(microns)。因而可使所有像素單元之間的間 隙幾乎變為一致,而且,由於省略形成一個透明彩色濾光 器230W之製造步驟,乃使該片彩色濾光器陣列板2〇〇的製 程比圖7所7F之彩色濾光器陣列板的製程更為簡易。 圖7及圖8所示彩色濾光器陣列板2〇〇,係以提供透明彩色 濾光器230W之方式或以增加該等白色像素區w外罩25〇厚 度之方式降低該等白色像素區W和其他各種彩色像素區R 、G、及B之間的高度差距 上述高度差距之降低以及像素單元間隙之一致性,可防 止白色像素區W光線發黃和因高度差距而產生之偏差線。 85288.doc 200405069 =的設計是,液晶層之像素單元間隙或厚度大約等於 、·私未,而各種彩色遽光器之厚度在約在15至16微米為 罝0 圖9所示係代表一 時間的曲線圖。 LCD各像素單元間 隙變化函數之反應 在圖9中以on ^《曲線部份係指”接通”時的反應時間 點而以off標曲線部份係指"關斷”時的反應時間點。 如圖9所示,當單元間隙增大時,反應時間就變低了。當 單元間隙到達3.7微米時,反應時降低至最低值。而當單元 間隙自3.7微米向下降低時,反應時間㈣度提高。 圖10所示係本發明另一LCD具體實施例之剖面圖。 參閱圖10 ’孩LCD具體實施例包括一 TFT陣列板1〇〇,一 彩色濾光器陣列板200,以及一鑲鉗在該兩片陣列板之間的 一層液晶層3。 4彩色濾光器陣列板2〇〇包括一片最好以一種例如玻璃 之透明絕緣材料製成之上層基板21〇,在該基板21〇上所形 成並用以劃定許多按矩陣方式排列之像素區之一個黑矩陣 220,大致上佈設在該等像素區内之許多紅色,綠色及藍色 彩色滤光器230R,230G,及230B,在該等彩色濾光器230R ,320G及230B上方所形成之一層外罩250,一個最好以一 種例如為IT0(錮錫氧化物)及IZ0(銦鋅氧化物)之透明導電 材料製成之共用電極270,且其上設有許多切口 271。 紅色,綠色及藍色濾光器230R,230G及230B係依序排列 佈設。凡未佈設任紅色,綠色及藍色濾光器230R,230G及 85288.doc -17- 200405069 23卿色滤光器之像素區之各像素區乃係白色像素區w, 此等白色像素區同樣地會攔截或通過人射光線中之所有各 種光線成份。由於各白色像素區内均未佈設任何彩色遽光 器,因而,在各該白色像素區w範圍内上方之上述彩色濾 光器基板200之内侧表面上乃形成一塊盆地區。 孫TFT陣列基板100上包括:在一絕緣基板工1〇上所形成之 許多閘極123 ’在各該閘極123上所形成之—層閘極絕緣層 140,在該閘極絕緣層14〇上面對該等閘極123之部份,且最 好以非結晶形矽為材料製成之許多半導體154,在該等半導 體154上所形成之許多電阻性接觸點163及165,在各電阻性 該接觸點163及165上所形成之許多源極及吸極173及175, 覆蓋在該等源極173及吸極175上之一層保護層18〇,且設有 許多佈設於該等吸極175對面之許多連接洞孔181,以及穿 過該等連接洞孔1 8 1與各該吸極175連接且設有許多切口 191之許多像素電極。另外,在該TFT陣列板丨〇〇也提供許多 與各該閘極123連接用以傳送掃描信號之閘極連線(圖中未 綠出)’以及許多連接至各該源極173用以傳送資料信號給兮 等源極之資料連線(圖中未繪出)。 保護層1 80之表面係伸展在白色像素區w處,形成一塊高 台區。 彩色濾光器陣列板上之盆地區和上述TFT陣列板上之^ 台區彼此面對面設置,因而,該等白色像素區w内的像素 單元間隙幾乎與其他彩色像素區内之像素單元間隙相同。 上述保護層18 0係利用一種含有一半透明區,一透明區及 85288.doc -18- 200405069 不透明區之光罩’以照相石版印刷術所形成。於殿積處 理形成該保護層1 80並在其上塗敷一層抗光薄膜之後,該光 罩上之透明區和不透明區即可對準連接洞孔181以及白色 像素區W,並使半透明區面對其餘區域。經曝光與沖洗處 理後’在連接洞孔1 8 1上方之抗光薄膜部份乃被除去,以使 位於下方部位之保護層180曝露在外,在白色像素區W上方 之抗光薄膜邵份則保留在原位不須移除,而其他各部份的 厚度則已降低。連接洞孔181是利用該抗光薄膜為一蝕刻遮 罩’並以触刻處理將前述抗光罩上厚度降低之部份蝕除以 曝露出位於下方部份之保護層丨8〇。之後,僅在白色像素區 w之上方才留有抗光薄膜。保護層18〇是利用抗光薄膜為蝕 刻遮罩對保護層180施以蝕刻處理,使保護層18〇曝露在外 之部份變薄,從而乃在白色像素區w上形成一高台區。 同時,也利用多次照相石版印刷術處理步驟進行上述TFT 陣列板100之製造,而且利用上述含有半透明區,透明區以 及不透明區之光罩,則有助於減少照相石版印刷術處理步 驟之次數。利用上述以光罩作成預定位置厚度之一種抗光 薄腠可製作含有不同圖型之多層式半導體結構。例如,利 用上述這種抗光薄膜形成各該半導體154,各該電阻性連接 點163及165,以及源極與吸極,即可利用比利用僅含有透 明區及不透明區之光罩更少的光罩完成該TFT陣列板1〇〇之 製迻。在此種情況下,各源極及各吸極丨63及丨65,以及各電阻 性連接點均有大致上相同的平坦形狀,而各半導體154 (在 通迢區之半導體除外)大致上也會有和各源極及吸極丨63及 85288.doc -19- 200405069 165相同之平坦外形。 將TFT陣列1〇〇和彩色濾光器陣列板2〇〇對準相關位置後 即可加以組合。之外,再將一種液晶材料3注入該tft陣列 板1〇〇和該彩色濾光器陣列板2〇〇二者之間的間隙内。有一 個像素區(代表在一像素内含有液晶層3之部份)被像素電極 190上之右干切口 191及271以及上述共用電極分隔成多 個特定區域。按照該等陣列板於施加電場後液晶分子之不 同傾斜方向,可將該等特^區域分為四類。該等特定區域 中有數類特定區域可提供寬度之視角。 圖11至圖13所示係本發明其他不同具體實施例2LCD内 的像素排列情形。 ”參閱圖11至圖13所示本發明之LCD具體實施例,包括按 照一種類似PenTile Matrix矩陣排列法佈設之紅色,藍色及 綠色像素R、B及G’以及設於各藍色像素B附近之白色像素 、”更万;說明起見’本範例特以一組相鄰接之藍色像素 和白色像素W,一對位於該組藍色像素B與白色像素W㈣ 斜=相對設置㈣該等紅色像素區R之綠色像素區G,為』 拯供下列說明。然後,將前述各組像素之排列方式重| =合後即可獲圖U至圖13所示各種像麵列圖型。應❹ :者乃。係’在任一縱列方向内相鄭兩組藍色像素B和白色傳 '、W,或在任—橫排方向内相鄰兩組藍色像 以__位置係以相反㈣之方式設置。 圖11中之藍色像素B和白色像素w之形狀與紅色及綠色 85288.doc -20- 200405069 像素R及G,均為長方(矩)形, 之縱列。— 並沿循縱列方向形成一分離 圖13中所示藍色像素B和白色像素w之間的任—分界係與 各像素縱行中之分界線相吻合。 η 參閱圖11及圖12,其中在橫排方向上兩組相鄰藍色像素^ 和白色像素W《間的相對位置係按相反關係排列設置。但 疋,在圖13中,在縱行方向上兩組相鄰藍色像素師白色像 素W之間的相對位置則係按相反關係位置排列。 ^圖12和圖13所示之藍色像素B和白色像素W均係等腰矩 形<形狀,而且任-對藍色及白色像素B&w係以底部彼此 相對設置而形成一菱形外形。圖12所示藍色及白色像素B 及w係沿循縱列方向排列’ @圖13所示,則係沿循橫排方 向排列。因而’在圖12中所示藍色像素B和白色像素W之間 的任-分界線係與各像素橫排中之分界線相吻合;而且, 在上述排列方式中,在相鄰兩個縱行中的各紅色像素& 係分別位於不同之橫排内,而設於相鄰兩個橫排中的各綠 色像素則係分別位於不同之縱行内。同樣地,在相鄰兩個 縱行中的各綠色像素〇係位於不同之橫排内,而在相鄰兩個 柄排内 < 各綠色像素則係分別位於不同之橫排内。此外, 在橫排方向排列之相鄰兩組藍色像素3和白色像素w中之 藍色像素B或白色像素W係分別位於如_及圖12所示之 不同橫排内;或係,在縱列方向排列之相鄰兩組藍色及白 色像素中(各監色像素B或各白色像素霄係位於不同之縱 行内,如圖13所示。因而 同一種彩色像素,特別是藍色 85288.doc -21 - 200405069 像素,在縱列方向或橫排方向上都是排列成錄齒形 依據此等-具體實施例製成之LCD係由—外部資料源,例 如圖像控制器接收RGB影像資料,並摘取白色像素%需 要之影像資料,以驅動四種彩色像素。 一個影像顯示點最好包括上述之一組含有一對該色及白 色像素B及W,一對紅色像素R,以及一對綠色像素g。 但是,當採用描繪法操作時,一個顯示器包括一對藍色 及白色像素B及W,以及一對在縱列中之紅色及綠色像素。 在任何情況下,此等像素排列方式均可在相同彩色像素 ,例如各藍色像素係被排列在縱列方向,而且解析度不夠 高時防止在一傳統式LCD内產生垂直線圖型。因此,一種 含有一種PenTile Matrix矩陣像排列之;lCD即可改善影像之 顯示品質。 圖14所示圖案係說明含有圖U所示像素排列方式之一種 < LCD之能見度。如圖14所示,圖案中並未見列任何垂直 線圖型。 以下將參閱圖15至圖18來說明含有圖u及圖12所示像素 排列方式之一種LCD所裝用之TFT陣列板之範例。 圖15及圖17所示係依據本發明各種具體實施例所設計之 一種LCD中各TFT陣列板之佈設位置圖,而圖16及圖18則係 圖I5及圖17所示各TFT陣列板中分別以XVI—χνι,和 χνιπ-χνιΐΓ所劃定部份之剖面板。 參閱圖12’依據這些具體實施例製成之各種lcd,包括 排列在橫排方向及縱列方向内之許多紅色,綠色,藍色及 85288.doc -22- 200405069 白色像素R,G,B及W。 如各附圖—所示,在一透明絕緣基體110上形成一條閘極接 、、泉 S閘極接線包括大致上沿循橫排方向延伸之多條閘極 線路121,以及連接至該等閘極線路丨2丨之許多閘極丨23。在 每條閘極線路121之末端部份125已被拓寬,俾可用以於任 一外部電路連接。 閘極接線最好以一種低電阻性金屬,例如鋁,銀等金屬 製成。 在整塊基體的表面(包括該閘極接線部份)上應形成一閘 極絕緣層140。 在該閘極絕緣層140上形成多個最好以非結晶狀矽作成 之半導體島154,並在該等半導體島154上形成多個最好以 矽化物或非晶狀矽摻雜濃厚之雜質之電阻性接觸點i 63 及 165 〇 在4等笔阻性接觸點163及165以及前述閘極絕緣層14〇 上最好以低電阻性金屬,例如··鋁或銀金屬作成一條資料 接線。 该條資料接線包括大致上沿著縱列方向延伸並與各條閘 極線路121交又後劃定多個像素區之多條資料線路i7i ;構 成該等資料線路171分枝線路且延伸至各歐姆(電阻性)接觸 點163上之多個源極173 ;以及與各該源極173分離並在各該 歐姆接觸點165上以各該閘極123為準在相對位置上佈設之 多個吸極175。每條資料線路171的末端部份179均被加寬, 以便易於與一外部電路連接。 85288.doc -23- 200405069 在上述資料連接線以及該等半導體島154未被該資料連 接線覆盍之各曝露邵份上形成一鈍態層丨8〇,該鈍態層i 8〇 汉有多個接觸洞孔185和189,分別使各吸極丨75和各資料線 路171未端邵份179曝露在外。該鈍態層18〇和該閘極絕緣層 140上均設有多個接觸洞孔182,使各條閘極線路121之末端 部份125曝露在外。 在該鈍態層180上另亦形成像素電極19〇以及多個接觸輔 助點95及97。該等像素電極190分別經各該接觸洞孔185及 187連接至各吸極175,以及各儲存電極177,而各該接觸輔 助點95及97則係分別經由各該接觸洞孔i 82及i 89連接至各 條閘極線路12 1曝露在外之末端部份125以及各條資料線路 171曝露在外之末端部份179。上述各像素電極19〇以及各接 觸輔助點95及97最好是以透明材料,例如·· IT〇(錮錫氧化 物)或ΙΖΟ(銦鋅氧化物)作成。 上述該等閘極123,該等源極173,該等吸極175,以及該 等半導體島154共同構成各該TFT。 參閱圖15及圖16,每一像素r,g,B及W均為相同之長 方(矩)形外形,如圖Π所示;而且各條閘極線路121,各閘 極123,各條資料線路171,以及各該源極及吸極173及 (排列配置也都相同。前述資料接線另亦包括多個儲存導 體177與各閘極線路丨21延伸部份相重疊,且上述鈍態層i 8〇 另亦設有多個接觸洞孔1 87可供各像素電極i 90與各儲存電 容器177。每條閘極線路121各多條延伸線與各該儲存電極 177重疊’以形成各該儲存電容器。 85288.doc -24- 200405069 參閱圖17及圖18,久私& μ 士 Α色像素R,G,Β及W之像素電極 190的形狀與圖12中所示各像素之形狀相同。在基體110上 ’也形成多條與各閘極線路121平行延伸,並利用各該間極 接線相同材料作成之儲存線路131。各條閑極線路i2i和各 條儲存線路131係位於各像素橫排之邊線附近,且各像素電 極190及各TFT則分別以各條儲存線i 3【為準以相對關係位 置(万式排列佈設。各條儲存線路i3i係分別和其鄰近之各ClairVoyante Laboratories has proposed a method called "❿ Matnx"-a kind of pixel arrangement method, which has the advantage of being able to display high-resolution images at a low design cost. In this pixel arrangement method, a unit pixel of a blue signal can be shared by two display points, and two adjacent blue pixels are driven by two different gate drive integrated circuits (ICs). , Can receive data signals from a data-driven 1 (:). Using, PenTile Μ ^ ί ,, the pixel structure can be used to display ultra-high-definition type of ultra-high-resolution graphics 卩 svga-level display device UXGA-level image resolution map. In addition, the number of inexpensive gate drivers used in the design of pixel structures is added. The number of cost data driver ICs is relatively reduced, which can reduce the display device. Production cost. However, when using the PenTile Matrix type pixel structure, since the size of the blue pixel is different from the size of the red and green pixels, the data storage capacity must be changed, and% can respond to changes in the charge rate of the liquid crystal. Furthermore, because Two adjacent blue pixels are driven by a signal line, which causes the phenomenon of pixel polarity unevenness (uniformity). 85288.doc 200405069, especially because each blue pixel system is Arranged into a long shape, and it is easy to see the vertical lines caused by the monitor color pixels such as the sundial but with insufficient resolution, which reduces the overall image display quality. [Summary of the Invention] The present invention provides a liquid crystal display device, Including: a liquid crystal panel assembly containing a plurality of color, surface color, monitor color and white pixel area; and a backlight unit arranged on the side of the night crystal panel assembly, which is emitted from the back :: yuan The light rays have a color coordinate (X, y), where the x-axis coordinate range is about 0.31 to 0.34, and the y coordinate range is from m to. * Liquid: The panel assembly includes: a first insulating substrate; a plurality of thin-film transistors formed on the first insulating substrate; and a thin-film transistor formed on the first insulating substrate and connected to # A plurality of pixel electrodes; opposite to the first insulating substrate-a second insulating substrate; a black matrix formed on the second insulating substrate and defining a range of each pixel region; The multiple red and green π colors formed in the green and blue pixel regions are a common electrode formed on each of the color filters and a layer of liquid crystal embedded between the first and second insulating substrates. Floor. -The area of the color pixel area or the white pixel area is smaller than that of the red pixel area and the green image area. The ideal design is to make the total area of the blue pixel area and the white pixel area the same as the area of any red and any green pixel area. The area of the black matrix adjacent to the white pixel area is preferably larger than the area adjacent to other pixel areas. The invention also provides a color filter array panel 85288.doc 200405069 for a liquid crystal display, including: an insulating substrate; a black matrix formed on the insulating substrate defines a number of red, green, blue and white pixel areas ; Red, green, and blue organic filters formed in each of the red 'green' and blue pixel regions and containing red, green, and blue pigments; a transparent organic filter formed generally in the white pixel region ; And a common electrode formed on the organic filter. The 4-roll color filter array panel also includes a cover between the organic filters and the common electrode. 3 The outer cover of the transparent organic filter can be formed using the same material as the filter. The height of one side surface of the cover should be substantially the same. The liquid crystal display provided by the present invention includes: a first insulating substrate; a plurality of film-type transistors formed on the first insulating substrate; formed on the thin-film personal shirts and has a layer of protection to extend A plurality of pixel electrodes formed on the protective layer and respectively connected to the thin film transistors; a second insulating substrate facing the first insulating substrate; and a second insulating substrate formed on the second insulating substrate The black matrix of each of the red, green, blue, and white pixel regions is generally a red, green, and blue filter formed on each of the red, green, and blue pixel regions; A common electrode formed by equal color filters; and a layer of liquid crystal layer to be interposed between the above-mentioned first and second insulating substrates, where the height of the common electrode on the white pixel area is lower than that of red, green and blue The common electrode portion on the color 'and the protruding portion on the protective layer should face the white pixel area. The distance from the S /, the pole to the surface on the side of the protection should preferably be the same as in the original 85288.doc 200405069. A current interrupter may be installed between each of the pixel electrodes and the common electrode. The liquid crystal display provided by the present invention includes: an array composed of a plurality of groups of pixels, each group shall include blue and white pixels adjacent to each other, a green pixel with a slanted surface opposite the blue and white pixels, and Adjacent to the Γ: color pixel, each pixel includes a plurality of gate lines in an extending range of a pixel electrode and a thin film electrode S2, 2 to transmit a gate control signal to each pixel; another There are multiple data lines extending along the direction of the column to transmit the data signals to the relative positions of the two pixels and the white pixels in the ren-㈣ or ren-horizontal direction of each pixel, preferably the opposite configuration. . Meaning color image 1 According to the design of a specific embodiment of the present invention, the shape of each pixel is a rectangular sequence: to form ^ points _: please arrange in the column direction: according to the design of another specific embodiment of the present invention, the blue pixels and The white image boundary is slow: shape:: rectangular, and the-bars |,, 'between blue pixels and white pixels extend in the horizontal or vertical direction. The ideal design is to 'red images in two adjacent columns in different rows, and two adjacent μ ::: columns; and two vertical ... color images; in addition, 4 of them = The blue pixels in the pixels in different columns in the color or white group are arranged in different rows, and they are arranged along the column 85288.doc 326 -10. The idiot goes to φ > π ΑΛ prime, the fading pixels or the white pixels are arranged in the column that is not awkward. The driving method of a crystal display can be described as a drawing method. [Embodiment] * Please read this specification and the accompanying drawings for various optional appliance embodiments of the present invention, and provide a detailed description of the present invention. In the drawings, for the sake of explanation, the thickness and force of each structural layer and area have been enlarged. The same numerals in the drawings indicate the same reading respectively. It should be noted that if in the description it refers to an element such as a structural layer, a region or a base system on top of another element ", then 'may refer to a configuration directly above the other element, or There may be other intervening elements between the two elements. Conversely, if it is mentioned that an element is "directly disposed on another element", it means that there is no intervention between the two elements. The components are referred to the accompanying drawings to provide detailed descriptions of some specific implementation examples of the present invention as follows. FIG. 1 is a cross-sectional view of a specific embodiment of an LCD designed according to the present invention, and FIGS. 2 to 5 are various configuration diagrams of color filters in various embodiments of the LCD designed by the present invention. As shown in FIG. 1, the LCD includes a lower-layer panel 100, an upper-layer panel 200 opposite to the lower-layer panel, and a liquid crystal layer 3 embedded between the lower-layer panel and the upper-layer panel. The liquid-crystal layer 3 contains ≪ Many liquid crystal molecules are arranged along a predetermined direction. The LCD also includes two layers of polarizers 12 and 22, two layers of compensation films 13 and 23, and a backlight unit 350. 85288.doc -11-200405069 When a liquid crystal molecule is applied with an electric field, the alignment direction of each molecule changes. The light: line transmission also changes with the alignment direction of the liquid crystal molecules. The lower panel 100 includes a lower substrate 110 preferably made of a transparent insulating material (such as glass), a plurality of thin films (TFTs) formed on the lower substrate 110, and preferably a transparent conductive material. The material is made of, for example, indium tin oxide (ITO) and osmium zinc oxide (IZ0), and is connected to a plurality of pixel electrodes 190 on each of the TFTs. Each TFT switches the voltage applied to each relevant pixel electrode i 90 in a switching manner. The lower compensation film 13 and the lower polarizer 12 are attached to the outer surface of the lower substrate j j 〇. This lower compensation film 13 has a biaxial or uniaxial property. The lower compensation film 13 can be omitted. The upper panel 200 includes an upper substrate 21, preferably made of a transparent insulating material, such as glass, and a black matrix 22, used to define a plurality of pixel regions arranged in a matrix manner, and formed in a black matrix. 22〇 Defines a number of red, green, and blue filters 230R, 230G, and 230B in a pixel area, and a common one preferably made of a transparent conductive material (such as ITO and IZO) Electrode 270. The red, green and blue filters 230R, 230G and 230B are arranged in turn. Each pixel area without red, green, and blue filters 23r, 23g, and 230B is the white pixel area w, and the white pixel area can also intercept or pass all the incident light. Because the white pixel area w is not provided with a color filter 'so', the height of the inner surface of the color filter panel 200 located on the white pixel area is lower than that of the other pixel areas R, 0, and 6 85288.doc- 12- 200405069 The height of the side surface, and the lattice gap of the white pixel region w is larger than the lattice gap of other various pixel regions. In this specification, the term “pixel” refers to a basic functional element used to display an image, including a pixel electrode 190, a portion of a common electrode 270 disposed opposite the pixel electrode 19, and disposed on the pixel electrode. A portion of the liquid crystal layer 3 between 19 ° and its corresponding < Shaofen common electrode 27 °, a TFT and a color filter state 230R, 230G or 230B. In addition, the term "pixel area" refers to The area occupied by any pixel. However, for convenience of explanation, the terms “pixel” and “pixel area” are not specifically distinguished in this specification. See Figure 2. Among them, red and green The number of blue and white pixels (R, G, limb W) is the same. The pixel areas of red, green, blue and white, Gm are arranged along the horizontal direction in sequence. Each-blue pixel area B and The area size of each-white pixel area W is approximately one-half the size of each-red pixel area & product. Therefore, the area of one white pixel area w and one monitor color pixel area B is related to one red pixel M or The areas of one green pixel area G are equal. Referring to Figure 3, a 2 × 3 image containing the same pixels represents the pixels of the basic elements of the image. Its composition: the red, blue, and green pixels arranged in order; and the first one, including the green, white, and red arranged in order. The pixel includes the arrangement of the pixels shown in FIG. 4 in sequence, except that the blue pixel B is enlarged and white = by ΓΓ, and the remaining pixels are almost the same as those shown in FIG. 3. Each pixel shown in FIG. 5 The arrangement is almost the same as that shown in FIG. 3, but the part of the black matrix 3 ^ 1 surrounding 85288.doc -13- 200405069 surrounding the white pixel area W has been enlarged, and its width is larger than other parts to hide the cause. The deviation line caused by the height difference. The upper compensation film 23 and the upper polarization layer 22 are attached to the outer surface 210 of the upper substrate. The upper compensation film layer 23 has a biaxial characteristic or a uniaxial characteristic. The upper compensation film 23 can be omitted without installation. The backlight unit 350 is located on the back of the lower polarizing layer 12. The backlight unit 350 contains a light source 351, including a cold cathode tube, and a light guide plate 352. The specific implementation Example, because An image display point contains red, green, blue, and white pixels, so the optical effect of the image display can be improved, and the total area of each display point need not be enlarged. Assume that the total amount of light passing through the polarizing layer 12 below The quantity is 1. As for an image display point containing three color (ie, red, green, and blue) pixels, the area of each pixel is one third of the total area of the display point. Since the color filter has a light transmittance of one-third, the total light transmittance of the image display point is equal to 1 / 3χ1 / 3 + 1 / 3χ1 / 3 + 1 / 3χ1 / 3 = 1/3 »33 · 3%. For any display point shown in Figure 2, the area of each red pixel and each green pixel is each one-third of the total area of the display point, and each blue pixel And the area of each white pixel is one sixth of the total area. Since the transmittance of the white pixel is 1, and the transmittance of other various color pixels are one-third, the total transmittance of the image display point is equal to 1 / 3χ1 / 3 + 1 / 3χ1 / 3 + 1 / 6χ1 / 3 + 1 / 6χ1 = 4/9 »44 · 4%. Therefore, compared with the traditional two-color LCD, the image display brightness of the LCD provided by the present invention can be improved by about 1.5 times. 85288.doc -14- 200405069 Although the area of blue pixels is smaller than the area of red pixels or green pixels, the effect of blue light on the sensitivity of human viewing effects is not as good as red and green. The amount of light change is so significant that the reduction in blue pixel area has little effect on image quality. However, the reduction in the pixel area of the monitor color will cause a slight deformation effect of the image, that is, the yellowed image will be displayed. In order to solve the above problem, the light source 351 increases the content of blue light in the light emitted by the light source 351 to prevent the effect of yellowing of the image. The range is about 0.31 to 0.34, and the range of the y-coordinate is about 0.32 to G.35. The blue light component in this light is greater than that emitted by a conventional LCD backlight source The blue component contained in the light. In order to obtain such a light source, the content of the blue light emitting material contained in the light source 35 丨 should be increased by a predetermined ratio. Figure 6 shows the structure according to a specific embodiment of the present invention. The spectral curve of the light emitted by the light source used. Compared with the spectral curve of the light emitted by the traditional light source marked with "Mue p" in the figure, "Mue 1109," and blue 1.18 are used in the figure. The sharpening curve appears in the part where the wavelength is about within the nanometer range. This curve indicates that the blue light has been strengthened, and it appears in the wavelength range of about 62 to 65 nanometers. Sharp curve drop The low phenomenon indicates that the intensity of the red light is reduced. At the same time, since the white pixel w does not have a color calender, the white pixel w light emitted from the light source 351 may look blue. .doc -15- 200405069 Figures 7 and 8 are cross-sectional views of color filter array plates used in LCDs in other specific embodiments designed in accordance with the principles of the present invention. See FIG. 7 for the color filters. The device array board 200 includes: a transparent insulating substrate 210, a black matrix 220 'formed on the insulating substrate 21, containing a plurality of pores for delineating each pixel region, and forming a plurality of < Red, green, blue, and transparent color filters 230R, 230G, 230B, and 230W are respectively formed with an outer cover 250 on the color filters # 23〇r, 230O, 230B, and 230W, and A common electrode 27 is formed on the cover 25. The transparent color filter 23 is preferably a transparent organic material made of a photosensitive and non-pigmented material. A color filter shown in FIG. 8 Array The column plate 200 does not include a transparent color filter. Instead, it is to cover a part of the outer pixel 25 of each white pixel area w (thickness is increased, so that the thickness between these parts and other parts) The difference is equal to or lower than 0.2 microns. Therefore, the gaps between all the pixel units can be made almost uniform, and because the manufacturing steps of forming a transparent color filter 230W are omitted, the color filter is made. The manufacturing process of the array board 200 is simpler than the manufacturing process of the color filter array board shown in FIG. 7F. The color filter array board 200 shown in FIGS. 7 and 8 is provided to provide a transparent color filter. 230W or reducing the height difference between the white pixel area W and other various color pixel areas R, G, and B by increasing the thickness of the white pixel area w by 25. The consistency of the gap can prevent the yellow light in the white pixel area from yellowing and the deviation line caused by the height difference. 85288.doc 200405069 = The design is such that the gap or thickness of the pixel unit of the liquid crystal layer is approximately equal to, and the thickness of various color calenders is about 15 to 16 microns as 罝 0. Figure 9 represents a time Graph. The response of the change function of the gap between the pixel units of the LCD is shown in FIG. 9 as the response time point when the curve part is “on” and the response time point when the curve part is off. As shown in Figure 9, when the cell gap increases, the reaction time becomes lower. When the cell gap reaches 3.7 microns, the reaction time decreases to the lowest value. When the cell gap decreases from 3.7 microns, the reaction time decreases. The degree of improvement is shown in FIG. 10. FIG. 10 is a cross-sectional view of another embodiment of the LCD of the present invention. Referring to FIG. 10, the embodiment of the LCD includes a TFT array board 100, a color filter array board 200, and A layer of liquid crystal 3 clamped between the two array plates. 4 The color filter array plate 200 includes an upper substrate 21, preferably made of a transparent insulating material such as glass. A black matrix 220 formed on 〇 and used to delineate a plurality of pixel regions arranged in a matrix, and a plurality of red, green and blue color filters 230R, 230G, and 230B arranged roughly in these pixel regions, In the color filter 230R A layer of cover 250 formed over 320G and 230B. A common electrode 270 preferably made of a transparent conductive material such as IT0 (rhenium tin oxide) and IZ0 (indium zinc oxide), and there are many Notch 271. The red, green and blue filters 230R, 230G and 230B are arranged in sequence. Where no red, green and blue filters 230R, 230G and 85288.doc are arranged, 17-200405069 23 Each pixel area of the pixel area of the filter is a white pixel area w. These white pixel areas will similarly intercept or pass all kinds of light components in the human light rays. Because no color is arranged in each white pixel area. Therefore, a basin area is formed on the inner surface of the above-mentioned color filter substrate 200 above each of the white pixel regions w. The TFT array substrate 100 includes: an insulating substrate substrate 10; A plurality of gate electrodes 123 'formed on each of the gate electrodes 123-a layer of gate insulating layer 140, and a portion of the gate electrodes 123 on the gate insulating layer 14 is preferably not Crystalline silicon is made of many materials A conductor 154, a plurality of resistive contact points 163 and 165 formed on the semiconductors 154, a plurality of source and sink electrodes 173 and 175 formed on each of the resistive contact points 163 and 165, covering the sources A protective layer 18 is formed on the pole 173 and the suction electrode 175, and there are a plurality of connection holes 181 arranged opposite the suction electrodes 175, and through the connection holes 1 8 1 and each of the suction electrodes 175. Many pixel electrodes are connected and provided with a plurality of cutouts 191. In addition, a plurality of gate connections (not shown in green in the figure) connected to the gates 123 for transmitting a scanning signal are also provided on the TFT array board. And a number of data connections (not shown) connected to each of the source electrodes 173 for transmitting data signals to other sources. The surface of the protective layer 180 is extended at the white pixel region w to form a plateau region. The basin area on the color filter array board and the terrace area on the TFT array board are disposed face to face with each other. Therefore, the pixel unit gaps in the white pixel regions w are almost the same as the pixel unit gaps in other color pixel regions. The above protective layer 180 is formed by photolithography using a mask including a semi-transparent region, a transparent region, and an opaque region 85288.doc -18-200405069. After the protective layer 1 80 is formed by Dianji processing and a light-resistant film is coated thereon, the transparent and opaque areas on the photomask can be aligned with the connection holes 181 and the white pixel area W, and the translucent area can be made Facing the rest of the area. After exposure and processing, the light-resistant film portion above the connection hole 1 8 1 is removed, so that the protective layer 180 located at the lower portion is exposed, and the light-resistant film above the white pixel area W is It remains in place and does not need to be removed, while the thickness of the other parts has been reduced. The connection hole 181 is made by using the light-resistant film as an etch mask 'and etching the part with a reduced thickness on the aforementioned light-shield with an etching process to expose the protective layer located on the lower part. After that, a light-resistant film remains only above the white pixel area w. The protective layer 180 is etched to the protective layer 180 by using a light-resistant film as an etch mask, so that the exposed portion of the protective layer 180 is thinned, thereby forming a plateau region on the white pixel region w. At the same time, multiple photolithography processing steps are also used to manufacture the TFT array board 100, and the use of the photomask containing translucent areas, transparent areas, and opaque areas can help reduce the number of photolithography processing steps. frequency. By using the above-mentioned photomask to make a light-resistant thin film of a predetermined position thickness, a multilayer semiconductor structure containing different patterns can be fabricated. For example, each of the semiconductors 154, each of the resistive connection points 163 and 165, and the source and sink electrodes can be formed by using the light-resistant film as described above, which can be used less than a photomask containing only transparent and opaque regions. The photomask completes the shifting of the TFT array board 100. In this case, each of the source and sink electrodes 63 and 65, and the resistive connection points have substantially the same flat shape, and each semiconductor 154 (except the semiconductor in the passivation region) is also roughly It will have the same flat shape as each source and sink 丨 63 and 85288.doc -19- 200405069 165. After aligning the TFT array 100 and the color filter array board 200 at the relevant positions, they can be combined. In addition, a liquid crystal material 3 is injected into a gap between the tft array board 100 and the color filter array board 200. One pixel region (representing a portion containing the liquid crystal layer 3 in one pixel) is divided into a plurality of specific regions by the right dry cuts 191 and 271 on the pixel electrode 190 and the above-mentioned common electrode. According to different tilt directions of the liquid crystal molecules of the array plates after an electric field is applied, the special regions can be divided into four categories. There are several types of specific areas in these specific areas that provide a wide viewing angle. Figures 11 to 13 show the arrangement of pixels in an LCD according to another embodiment 2 of the present invention. “Refer to the specific embodiments of the LCD of the present invention shown in FIG. 11 to FIG. 13, which include red, blue and green pixels R, B, and G ′ arranged in a manner similar to the PenTile Matrix matrix arrangement method and disposed near each blue pixel B. White pixels, "more ten thousand; for the sake of explanation," this example uses a set of adjacent blue pixels and white pixels W, a pair of blue pixels B and white pixels W in the group. Slanting = relative settings. The green pixel region G of the red pixel region R is provided for the following explanation. Then, by re-arranging the arrangement of the pixels in the foregoing groups, the various image plane array patterns shown in Figures U to 13 can be obtained. Should be ❹: person is. The two groups of blue pixels B and white are aligned in any column direction, or the two adjacent blue images are arranged in opposite directions in the arranging direction. The shapes of the blue pixel B and the white pixel w and the red and green colors in FIG. 85288.doc -20- 200405069 The pixels R and G are both rectangular (rectangular) columns. — And form a separation along the column direction. The arbitrary-demarcation line between the blue pixel B and the white pixel w shown in FIG. 13 coincides with the dividing line in the vertical row of each pixel. η Referring to FIG. 11 and FIG. 12, the relative positions between two sets of adjacent blue pixels ^ and white pixels W in the horizontal direction are arranged in an opposite relationship. However, in FIG. 13, the relative positions of the two sets of adjacent blue pixels W white pixels W in the vertical direction are arranged in the opposite relationship. ^ The blue pixels B and the white pixels W shown in Figs. 12 and 13 are both isosceles < shapes, and the pair of blue and white pixels B & w are arranged opposite each other at the bottom to form a rhombus shape. The blue and white pixels B and w shown in FIG. 12 are arranged in the column direction. @ FIG. 13 is arranged in the horizontal direction. Therefore, the arbitrary-demarcation line between the blue pixel B and the white pixel W shown in FIG. 12 coincides with the demarcation line in the horizontal row of each pixel; moreover, in the above-mentioned arrangement, two adjacent vertical lines Each red pixel & in a row is located in a different horizontal row, and each green pixel located in two adjacent horizontal rows is located in a different vertical row. Similarly, the green pixels 0 in two adjacent vertical rows are located in different horizontal rows, and the green pixels in two adjacent handle rows are respectively located in different horizontal rows. In addition, the blue pixels B or white pixels W of the two adjacent sets of blue pixels 3 and white pixels w arranged in the horizontal direction are respectively located in different horizontal rows as shown in FIG. 12 and FIG. 12; or Among the two adjacent sets of blue and white pixels arranged in the column direction (each monitor color pixel B or each white pixel is located in a different vertical row, as shown in Figure 13. Therefore, the same color pixel, especially blue 85288 .doc -21-200405069 The pixels are arranged in the vertical or horizontal direction in the form of recording teeth. According to these-specific embodiments, the LCD is made by-external data sources, such as image controllers to receive RGB images Data, and extract the image data required for white pixels% to drive four color pixels. An image display point preferably includes one of the above-mentioned group containing a pair of the color and white pixels B and W, a pair of red pixels R, and A pair of green pixels g. However, when operated in rendering, a display includes a pair of blue and white pixels B and W, and a pair of red and green pixels in a column. In any case, these pixels Can be arranged in The same color pixels, for example, the blue pixels are arranged in the column direction, and the vertical line pattern is prevented from being generated in a conventional LCD when the resolution is not high enough. Therefore, a kind of PenTile Matrix matrix image is arranged; lCD is It can improve the display quality of the image. The pattern shown in Figure 14 illustrates the visibility of an LCD with a pixel arrangement shown in Figure U. As shown in Figure 14, no vertical line pattern is listed in the pattern. An example of a TFT array board used in an LCD including the pixel arrangement shown in Fig. U and Fig. 12 will be described with reference to Figs. 15 to 18. Figs. 15 and 17 are designed according to various embodiments of the present invention. A layout position of each TFT array board in an LCD, and FIG. 16 and FIG. 18 are cross-section boards of the TFT array boards shown in FIG. I5 and FIG. 17 with XVI-χνι and χνιπ-χνιΐΓ respectively. Refer to Figure 12 'various LCDs made according to these specific embodiments, including many red, green, blue and 85288.doc -22- 200405069 white pixels R, G, B arranged in horizontal and vertical directions. And W. such as Drawings—shown, a gate connection is formed on a transparent insulating substrate 110, and the spring S gate connection includes a plurality of gate lines 121 extending substantially in a horizontal direction, and connected to the gate lines丨 2 丨 Many gates 丨 23. The end portion 125 of each gate line 121 has been widened and can be used for any external circuit connection. The gate wiring is preferably made of a low-resistance metal such as aluminum Made of metal such as silver. A gate insulating layer 140 should be formed on the surface of the entire substrate (including the gate wiring part). A plurality of amorphous silicon is preferably formed on the gate insulating layer 140. The semiconductor islands 154 are formed, and a plurality of resistive contact points i 63 and 165, which are preferably doped with thick impurities doped with silicide or amorphous silicon, are formed on the semiconductor islands 154. Pen resistive contact points such as 4 163 and 165 and the aforementioned gate insulating layer 14 are preferably made of a low-resistance metal such as aluminum or silver metal as a data connection. The data wiring includes a plurality of data lines i7i extending substantially along the column direction and intersecting with each gate line 121, and then delimiting a plurality of pixel areas; these data lines 171 branch lines and extend to each Multiple source electrodes 173 on ohmic (resistive) contact points 163; and multiple source electrodes 173 separated from each of the source electrodes 173 and arranged at opposite positions on each of the ohmic contact points 165 with respect to each of the gate electrodes 123 Pole 175. The end portion 179 of each data line 171 is widened to facilitate connection with an external circuit. 85288.doc -23- 200405069 A passivation layer is formed on each of the above data connection lines and the semiconductor islands 154 that are not covered by the data connection line. The passivation layer i 80 The multiple contact holes 185 and 189 expose the respective suction electrodes 75 and the end 179 of each data line 171 to the outside. The passivation layer 18 and the gate insulating layer 140 are each provided with a plurality of contact holes 182, so that the end portion 125 of each gate line 121 is exposed. A pixel electrode 19 and a plurality of contact auxiliary points 95 and 97 are also formed on the passivation layer 180. The pixel electrodes 190 are connected to the suction electrodes 175 and the storage electrodes 177 via the contact holes 185 and 187, respectively, and the contact auxiliary points 95 and 97 are respectively passed through the contact holes i 82 and i 89 is connected to each of the gate lines 121 and the exposed end portion 125 and each of the data lines 171 is exposed to the end portion 179. Each of the pixel electrodes 19 and the contact auxiliary points 95 and 97 is preferably made of a transparent material, for example, IT0 (锢 tin oxide) or IZO (indium zinc oxide). The gate electrodes 123, the source electrodes 173, the sink electrodes 175, and the semiconductor islands 154 described above constitute each of the TFTs. Referring to FIG. 15 and FIG. 16, each pixel r, g, B, and W have the same rectangular (rectangular) shape, as shown in Figure Π; and each gate line 121, each gate 123, each The data line 171, and each of the source and sink electrodes 173 and (the arrangement is also the same. The aforementioned data wiring also includes a plurality of storage conductors 177 overlapping each extension of the gate line 21, and the above-mentioned passive layer i 80 is also provided with multiple contact holes 1 87 for each pixel electrode i 90 and each storage capacitor 177. Each extension line of each gate line 121 overlaps with each of the storage electrodes 177 to form each Storage capacitor 85288.doc -24- 200405069 Referring to FIG. 17 and FIG. 18, the shape of the pixel electrode 190 of the pixel A, R, G, B, and W of the color A pixel is the same as that of each pixel shown in FIG. 12 On the substrate 110, a plurality of storage lines 131 extending parallel to each gate line 121 and made of the same material of each of the inter-pole lines are also formed. Each idle-pole line i2i and each storage line 131 are located at each pixel Near the edge of the horizontal row, and each pixel electrode 190 and each TFT are stored separately Line i 3 [is subject to relative relationship (arranged in a million-type arrangement. Each storage line i3i is separately from its adjacent
像素電極1 90重疊辞署,,、/ ^ A " 以形成多個儲存電容器。 參閱圖15至圖18,各像音恭 爆京私極190係與各條閘極線路121 ’以及各條資料線路1 7 1書晶α @ 、 宜叹置,以提供較大之孔徑比率。 雖然以上已就本發明某生 、 一 心具月豆貫施例提供詳細說明 ’但謂者應明確瞭解曰二 者之椹田斟*饮 一可依據热諳本發明技術領域 者 < 構心對本發明之基本 片1 心進仃各種不同的變更及(或) |多改,且仍應歸屬本說蚩 彿企r㈤1 曰附舉列明〈申請專利範圍之精 神與靶圍以内之事项。 间 【圖式簡單說明】 >閱本說明書各附目針對本㈣ 提供詳細說日、β⑯了取具fa實施靶例 ,該等附圖包括: …占獲件更深入之瞭解 圖I所示係依本發明某一The pixel electrodes 190 are overlapped and resigned, to form a plurality of storage capacitors. Referring to Fig. 15 to Fig. 18, each audio and video signal explodes the Beijing Private Pole 190 Series and each gate line 121 ′ and each data line 1 71 1 crystal α @, should be set to provide a larger aperture ratio. Although the above has provided a detailed description of a certain embodiment of the present invention, with a focus on the embodiment of the moon bean, the applicant should clearly understand that the two can be used in accordance with the technical field of the present invention < The basic film of the invention 1 Various changes and / or changes made at the heart of the invention, and should still be attributed to this article, "Buddha Enterprise R1", which encloses the matters listed within the spirit and scope of the scope of the patent application. [Simplified description of the drawings] > Read the appendixes of this manual to provide detailed explanations for this book, β and the examples of the implementation of the target. These drawings include:… According to the invention
的剖面圖。 月木具…例所設計之一種LCD 圖2至圖5所示係依本發明各種Section view. A kind of LCD designed by Moonwood ... Examples shown in Figs. 2 to 5 are according to the present invention.
中各彩色滹光τ j具姐貫施例各種LCD 把尤态 < 不同排列方式。 圖6所示係依本 „ 1明某一具體貫施例所設計之一種光源 85288.doc •25- 所放射光之光譜範例圖。 圖7及圖8—所示係依本 具肢貫施例所設計之兩種 <濾光器陣列板之剖面範例圖。 圖9所示係說明盥傻去留 .^ ^素早几間隙變化有關之LCD操作反 應時間曲線圖。 圖1〇所示係依本發明另一且麵舍、aEach of the colored light beams τ j has a variety of LCD implementation examples < different arrangements. Figure 6 shows a sample of a light source 85288.doc • 25- designed according to a specific embodiment of the present invention. Figure 25 and Figure 8 show examples of the spectrum of emitted light. Examples of cross-sections of two kinds of <filter array boards designed by the example. Figure 9 shows the LCD operation response time curve related to the change of the early gaps. Figure 10 shows the system According to another aspect of the present invention, a
八月丘男她例所設計之一種LCD 之剖面圖。 圖土圖13所不係依本發明不同具體實例所設計之各種 像素排列圖。 圖14所示係說明採用圖11所示像素排列法之一種LCD之 可見像素圖形。 圖15及圖17所示係依本發明某些具體實施例所設計之一 種LCD之右干tFT陣列板佈置圖。而圖μ及圖18所示係圖η 及圖17所不各片TFT陣列板佈置圖中以標示線χνι_χνι,及 χνιπ-χνιΐΓ所標示部份之各該TFT陣列板之剖面圖。 圖15所π係依本發明某一具體實施例採用圖丨丨所示像素 排列方式之一種LCD中TFT陣列板之佈置圖。 - 圖16所示係圖15所示TFT陣列板中以標示線χνι_χνι,所 標示邵份之剖面圖。 圖Π所示係圖12中所示依本發明某一具體實施例像素排 列法設計之一種LCD中某一 TFT陣列板之佈置圖。 圖18所示係圖17所示TFT陣列板中以XVIII-XVIII,標示 線所標示部份之剖面圖。 【圖式代表符號說明】 85288.doc -26- 200405069 3 液晶層 12 - 下層極化劑 13 下層補償薄膜 22 上層極化劑 23 上層補償薄膜 95, 97 接觸輔助點 100 下層面板 110 下層基體 121 閘極線路 123 閘極 125 末端部份 131 儲存線路 140 閘極絕緣層 154 半導體島 163, 165 電阻性接點 171 資料線路 173 源極 175 吸極 177 儲存電極,儲 179 末端部份 180 鈍態層 181, 182, 185, 187, 189 接觸洞孔 190 像素電極 27- 儲存電容器 85288.doc 200405069 191, 271 切口 200 一 上層面板 210 上層基體 220 黑色矩陣 230R 紅色濾光器 230B 藍色滤光器 230G 綠色濾光器 230W 透明(白)色滤光器 250 外罩 350 背光單元 351 光源 352 導光板 270 共用電極 W 白色像素區 TFT 薄膜電晶體 85288.doc -28-A cross-sectional view of an LCD designed by Yaoqiu Nan. Figures 13 and 13 are not pixel maps designed according to different embodiments of the present invention. FIG. 14 shows a visible pixel pattern of an LCD using the pixel arrangement method shown in FIG. 15 and 17 are layout diagrams of a right dry tFT array board of an LCD designed according to some embodiments of the present invention. And FIG. 18 and FIG. 18 are cross-sectional views of each of the TFT array boards indicated by the lines χνι_χνι and χνιπ-χνιΐΓ in the layout diagrams of the TFT array boards shown in FIGS. Η and 17. FIG. 15 is a layout diagram of a TFT array board in an LCD using the pixel arrangement shown in FIG. 丨 according to a specific embodiment of the present invention. -FIG. 16 is a cross-sectional view of the TFT array panel shown in FIG. 15 with a line χνι_χνι. Figure Π is a layout diagram of a TFT array board in an LCD designed according to the pixel arrangement method of a specific embodiment of the present invention shown in Figure 12. FIG. 18 is a cross-sectional view of a portion indicated by XVIII-XVIII in the TFT array panel shown in FIG. 17. [Illustration of Symbols] 85288.doc -26- 200405069 3 Liquid crystal layer 12-lower polarizer 13 lower compensation film 22 upper polarizer 23 upper compensation film 95, 97 contact auxiliary point 100 lower panel 110 lower substrate 121 gate Electrode line 123 gate 125 end portion 131 storage line 140 gate insulation layer 154 semiconductor island 163, 165 resistive contact 171 data line 173 source 175 sink 177 storage electrode, storage 179 end portion 180 passivation layer 181 , 182, 185, 187, 189 contact hole 190 pixel electrode 27- storage capacitor 85288.doc 200405069 191, 271 cutout 200 an upper panel 210 upper substrate 220 black matrix 230R red filter 230B blue filter 230G green filter 230W transparent (white) color filter 250 housing 350 backlight unit 351 light source 352 light guide plate 270 common electrode W white pixel area TFT thin film transistor 85288.doc -28-