TARIFNAME SODYUM IYON PILLER IÇIN HAVADA KARARLI YENI O3-NAXM02 TIPI TABAKALI METAL OKSITLERIN GELISTIRILMESI Bulusun Ilgili Oldugu Teknik Alan Bulus, sodyum (lityum, potasyum) iyon pillerde katot aktif madde olarak kullan Tan metal katkîlt yeni nikel, demir ve mangan içeren tabakali Sodyum (lityum, potasyum) metal oksitler, bunlari yeni bir metotla sentezi, karakterizasyonu ve elektrokimyasal performansüiii incelenmesi ile ilgilidir. TabakalEodyum metal oksitler, sarj edilebilir piller ve süperkapasitör elektrotlarda katot aktif madde olarak kullan Jhbilme potansiyeline sahiptir. Bulusla Ilgili Teknigin Bilinen Durumu (Önceki Teknik) Sodyum iyon piller anot (negatif elektrot), katot (pozitif elektrot) ve elektrolitten olusan sarj edilebilir piller olup birçok açdan yaygn olarak kullanLlan lityum iyon pillere benzerdir. Sodyum iyon pillerde (veya lityum iyon pillerde) sarj slrtaslnda Na+ (veya Li+) katottan ayr larak anoda yerlesmekte ve katottan ayrilan elektronlar ise dis devre üzerinden anoda göç etmektedir. Desarj sîlas Eda ayn jsürecin tersi gerçeklesmektedir. Lityum iyon piller tüketici elektroniginde yaygm olarak kullanllnasEia karsîi pahalüve az bulunan lityum kaynagünedeniyle elektrikli araçlar, ulusal elektrik sebekesi ve yenilenebilir enerjinin depolanmas îida yaygîi olarak kullanEIInamaktadE. Lityum iyon piller, ayrßa yanma ve patlama gibi güvenlik riskine sahiptir ve çalßma s Eaklk aralfgjdüsüktür. Ticari boyutta henüz gelistirilmemis olan sodyum iyon piller ise, sodyumun yer kabugunda her yerde bol miktarda bulunmasj ucuz olmasÇ çalgma sBaklk aralfgiîl genis olmasü (propilen karbonat gibi çözücülerin kullanilabilmesi nedeniyle) ve tasLma ve depolamada güvenli (0.0V degerine kadar desarj edilebilmesi) olmasl baklmtndan lityum iyon pillere göre daha avantajltdtr ve büyük ölçekli uygulamalar için uygundur. Ancak sodyum iyon pillerin ticarilesmesi yogun çal Emayrgerektirmektedir. Genel formülü NaXMûg olan tabakal Elyapgta sahip geçis metal oksitler, sodyum iyon pillerde katot aktif madde olarak kullan [[an maddelerden biridir. Bu yap Iar, kenarlar :brtak olan M06 sekizyüzlülerin olusturdugu tabakalar arasEia sodyum iyonlarîiîl yerlesmesi ile olusan yapIardi ve sodyumun konumuna göre 03 ve P2 olmak üzere iki gruba ayrüînaktadî Sodyum iyonlaanLn oksijenin olusturdugu sekizyüzlü konumda bulundugu yap dar 03 (veya 02) ve prizmatik konumda bulundugu yap lar ise PZ (veya PS) tipi yap lar olarak adland 11.1rnaktadn. Burada 2 ve 3, tabakalara dik dogrultuda tekrarlanan sodyum tabakalar it ?1 say d It îgöstermektedir. Oksit iyonlarlnlrl olusturdugu tabakalar A, B ve C olmak üzere üç farkli l sekilde istiflenmektedir. Oksit tabakalarîiîi ABCABC seklinde istiflenmesi ile olusan 03 tipi yathrda sodyum iyonlarEsekizyüzlü konumda bulunmakta ve sodyum tabakalarElEi sayEE 37dir; ABAC seklindeki istiflenme ile olusan 02 tipi yapilarda sodyum iyonlarjsekizyüzlü konumda bulunmakta ve sodyum tabakalarmm say3D2"dir; ABBA seklinde istiIlenmeyle olusan P2 yap [[armda sodyum iyonlarEprizmatik konumda bulunmakta ve sodyum tabakasE sayED2adir; ABBCCA istiflenmesi ile olusan P3 yapilarEida sodyum iyonlarjprizmatik konumda bulunmakta ve sodyum iyonu tabaka sayßDTdir. TabakalEmetal oksitlerin çogu havada karars adlii NaM02 + X H20 -› NalýxHxMûg + XNaOH NaMOz + XÜZ -› NaHxMOg + 2xNa20 NaMOZ + x H20 -› NaHxMûg + x NaZO + x Hz Na20 + H20 a 2NaOH Olusan NaOH, akin tasSIEEAl folyoyu pasland Ilmakta, karbon anotta baglayEE olarak kullan Ian PVDF ile etkileserek amorf karbon ve NaF olusturmakta ve bunlar& sonucu olarak kapasite kayb Ela neden olmaktad E. Tabakalj oksitlerin havada kararllgîij art &mak ve kapasite kaybEiDazaltmak için metal katk [lhma, yüzey kaplama ve kaplama çamurundaki alkali metal iyonlar Il :absorplayabilen katk Emaddesi ekleme gibi yöntemler kullan [[maktad E. Tabakald metal oksitlers aerca düsük iletkenlige sahiptir ve sarj/desarj sLijas Lada O3-›P3-›Os3-›P,3 ve P2-O2 seklinde faz dönüsümüne ugramaktad ular. Sarj/desarj s Itas nda gerçeklesen faz dönüsümü kapasite kayblria ve düsük iletkenlik ise sarj/desarj aklm yogunlugunun düsük olmasma neden olmaktadlî. Kapasite kaybimazaltmak ve sarj/desarj akil yogunlugunu artmmak için elementlerden birini baska bir element ile yer degistirme: karbon gibi iletken bir madde ile kaplama ve tanecik boyutunu küçültme gibi yöntemler uygulanmaktadi YapElaki elementlerin bir kßmßi metal-oksijen bag kuvveti ve iyonik yargap jdaha büyük olan bir element ile yer degistirmesi, kristal yap @Esaglamlastmmakta ve sodyum iyonunun yerlestigi tabakalar arasD mesafeyi art imaktad E. Kristal yapEiEi saglamlasmasjkapasite kaybiîldüsürmekte ve tabakalar aras Emesafenin artmas Eise sodyum diûizyonunu kolaylast narak sarj/ desarj akbh yogunlugunu art nmaktad Lr. Son yillarda 03 tipi tabaka] lmetal oksitlerin elektrokimyasal özellikleri ilgili çok sayida çal slma yapilmlstlr. 03 tipi tabakall yapya sahip olan O3-NaC002, sodyum içerme tepkimesi bakîhmdan ilk incelenen metal oksittir (C. Delmas ve Ark., Solid State lon. 3(l981) 165- 169). Kobalt Il pahal lolmasî lnedeniyle bu maddenin ticari sodyum iyon pillerde katot aktif madde olarak kullan lh'ia ihtimali azd m. S. Johnson ve ark. (Electrochemistry yogunlugunda l.5-4.0V aralgßda 120 mAh g'1 tersinir kapasiteye sahip oldugunu kimiij (XRD) ve geçirgen X-@Ilj mikroskopu (TXM) metotlarßE kullanarak O3-›P3-›O'3-›P"3 seklinde faz dönüsümüne ugradEgEiDbulmuslardE. Naoaki Yabuuchi ve hücresinin 2.0-3.8V arallg nda 130 mAh g`1 tersinir kapasiteye sahip oldugunu bulmuslardlrt ve akEn yogunlugunun artttgîlübulmuslard E. MU Linqin ve ark. (Energy Storage Science 4.0V aralEgElda sarj/desarj kapasite kaybîiîi azaldEgEtEbulmuslardE. Yong-Sheng Hu ve ark. 2.5-4.05V voltaj arallgüve 0.1C (lOmA/g) akEn yogunlugunda 96 mAh/g spesifik kapasiteye sahip ve 100 sarj/desarj sonras :kapasite kaybiîi az (%3) oldugunu bulmuslard E. Teknigin bilinen durumunda spesifik sarj/desarj kapasitesi, sarj/desarj döngü kararlülgd güç yogunlugu, safl k ve havada kararllllk bakimindan ticari uygulamalar için yeterli düzeyde olan O3-NaXM02 tipi katot aktif madde(ler) henüz bilinmemektedirTabakall yapiya sahip 03- NaxM02 tipi katot aktif maddeler büyük oranda katHhal metodu ile sentezlenmektedir. KatT hal metodu ile yap [Dan sentezlerde baslangg maddelerinden homojen karßEhEi elde edilememesi nedeniyle olusan ürünün az veya çok miktarda safs ilk içerdigi bilinmektedir. Sodyum iyon piller, birçok yönden lityum iyon pillere benzemektedir ve yak& gelecekte ticari hale gelmesi beklenmektedir. Sodyum iyon pillerde katot aktif madde olarak kullanJlabileeek en önemli maddelerden biri tabakalîlyap Sia sahip sodyum metal oksitlerdir (NaxM02 M=Ti, Cr, Ni, Mn, Co, Fe,; x=0.67-1.0). TabakalEyapgIa sahip sodyum metal oksitler, genelde metal oksitler (metal karbonatlar) ve sodyum karbonatEi stokiyometrik oranda karLStmLhtp disk haline getirilmesi ve diskin yüksek shiaklüstta havada LsLtLlmasLlile haz rflanmaktad I`I. Katot aktif madde olarak kullanilabileeek tabakall yaplya sahip sodyum Metal oksitler (metal karbonatlar) ve sodyum karbonatlîi stokiyometrik oranda karFstlîFlî) disk haline getirilmesi ve diskin yüksek sßaklülta havada EEÜÜInasEile hazilanan tabakalE yapgl'a sahip sodyum metal oksitler; baslangg maddelerinin homojen sekilde karEtIJhmamasÜnedeniy/le az ya da çok miktarda safsâlüg içermekte, havada kararsü, iletkenligi ve güç yogunlugu düsük ve yüksek kapasite kayb Ela ugramaktad mlar. Bu nedenle havada kararlE iletkenligi ve güç yogunlugu yüksek sodyum metal oksitlerlere ve bu metal oksitlerin katot aktif madde olarak kullanldg3sodyum (lityum, potasyum) iyon pillerine ihtiyaç duyulmaktad n. Bulusun K Ea Aç klamas Eve Amaçlar D Mevcut bulus, sodyum iyon pilleri için katot aktif madde ile ilgili olup katot aktif madde formül (1)"e sahip bilesigi içermektedir. NaxMylMZZMk3Mi4Mm5Mn M1 yükseltgenme basamag 3+3 ve/veya +4 olan metal iyonu (Mn3+ ve/veya Mn4+) M2 yükseltgenme basamag 3+2 ve/veya +3 olan metal iyonu (Fe2+ ve/veya Fe3+) M3 yükseltgenme basamag 3+2 ve/veya +3 olan metal iyonu (Ni2+ ve/veya Ni3+) M4 yükseltgenme basamag 3+2 olan metal iyonu (Cu2+) M5 yükseltgenme basamag 3+2 olan metal iyonu (Ca2+) M6 yükseltgenme basamag +I-4 olan metal iyonu (Ti4+) 0.9 0<1$0. 16 y+z+k+l+m+nz l Bulus kapsamEida gelistirilen tabakaljsodyum metal oksitler, ilk defa basit ve kolay bir yöntem olan ardgll çöktürme (metal hidroksi karbonat) metodu ile sentezlendi. Bulus kapsammda sentezlenen ve az miktar baki, titanyum ve kalsiyum elementlerini içeren tabakal :Sodyum metal oksitler safti ve havada kararl]]]1 gösterir. Bulus kapsam Elda sentezlenen sodyum metal oksitler, sodyum (lityum, potasyum) iyon piller, sodyum (lityum, potasyum) metal piller ve süperkapasitörlerde katot aktif madde olarak kullanilabilmektedir. Bulus kapsamnda gelistirilen ve az miktar baklrl, titanyum ve kalsiyum elementlerini içeren sodyum metal oksitler; sodyum iyon pillerde katot aktif madde olarak kullanltllgrlda yüksek spesifik kapasite ve sarj/desarj aklin yogunluguna sahip ve sarj/desarj s ras nda kapasite kaybl düsüktür. Bulus ile elde edilen katot aktif maddeleri içeren elektrot ve bu elektrotlarjiçeren enerji depolama cihaz :elde edilebilmektedir. Bulus ile elde edilen katot aktif maddeleri içeren elektrotlarjiçeren enerji depolama cihaz: elde edilebilmektedir. Bu enerji depolama cihazEiEiçeren elekrokimyasal cihaz veya sarj edilebilir pil de elde edilebilmektedir. Bulusu Aç klayan Sekillerin Tan îiilarü Sekil 1(A): 1) Katl hal yöntemle sentezlenen NaMns/i 2F Sentezlendikten 01-073-2048) katot aktif maddelerinin XRD toz desenlerini göstermektedir. Sekil 1(B): 1) Çözeltiden ardßEk çöktürme metodu ile sentezlenen NaMn NaCrOz (PDF dosya no 01-073-2048) katot aktif maddelerinin XRD toz desenlerini göstermektedir. Sekil 1(C): Na/ lM NaPFö, agEHkça yarüiücre potansiyelinin oda smakltgt, 1.5-4.05V potansiyel aralLgLve sabit akmda (0.1C:16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. Sekil 1(D): Na/ lM NaPFÖ, agtrllkça 95:5 PC-EC/NaMnsngFegn;Ni5/1202(çözeltiden ardlstk çöktürme) yathücre potansiyelinin oda sFcaklfgE l.5-4.05V potansiyel aralfgîlve sabit aklinda (0.1C:16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. Sekil 1(E): 1) Na/lM NaPF(h aglîlfkça Na/ lM NaPF(h agEIEkça yarjiücrelerin spesifik desarj kapasitesinin oda sBaklg] l.5-4.05V potansiyel aralEgEve sabit akiida (0.5Cî80 mA/g) döngü sayßü ile degisimini göstermektedir. Separatör olarak Whatman GF/C cam filtre kagîîîkullanîldj Sekil 2(A): 1) Çözeltiden ardglî çöktürme metodu ile sentezlenen bekletilen NaMn Referans NaCr02 katot aktif maddelerinin XRD toz desenlerini göstermektedir. (çözeltiden ardßk Çöktürme) yarThücre potansiyelinin oda sßaklfgü l.5-4.05V potansiyel aralgjve sabit akiida (0.1C:16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. (çözeltiden çöktürme)yarj hücre spesifik desarj kapasitesinin oda sßaklfgü 1.5-4.05V potansiyel aralIg'j ve sabit akEhda (0.5C=80 mA/g) döngü sayßE ile degisimini göstermektedir. Separatör olarak Whatman GF/ C cam filtre kagEiEkullanEdE Sekil 2(D): Sert karbon (C)/ 1 M NaPFÖ, ag Lnl üfça 95 : 5 PC-EC/ geriliminin oda stdakllgm l.5-4.05V potansiyel araltgt .ve sabit ak mda (0.1C:16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. Sekil 2(E): Sert karbon(C)/ 1 M NaPFÖ, ag El fkça 95 : 5 PC-EC/ kapasitesinin oda sßaklfgü 1.5-4.05V gerilim aralEgDve sabit akßida (0.5C:80 mA/g) döngü sayîüile degisimini göstermektedir. Separatör olarak Whatman GF/C cam filtre kagElE kullanjîdü Sekil 3(A): 1) Çözeltiden ardEÜ& çöktürme metodu ile sentezlenen 03- NaMn4,12Fe4/1ZNIZMgCumzCaOÂ/lgûg ve 3) Referans NaCrOz katot aktif maddelerinin XRD toz desenlerini göstermektedir. (çözeltiden ardßk çöktürme) yarThücre potansiyelinin oda sßaklfgü l.5-4.05V potansiyel aralîgî lve sabit ak mda (0.1C:16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. (çözeltiden çöktürme) yar: hücre spesifik desarj kapasitesinin oda sßaklfgü 1.5-4.05V potansiyel aralg3 ve sabit aküida (0. döngü say/EE ile degisimini göstermektedir. Separatör olarak Whatman GF/ C cam filtre kagElEkullanEdE Sekil 3(B): Sert karbon (C)/1M NaPFÖ, agmlüîça 95:5 PC-EC/ 03- NaMn4/lzFem;Ni2_5/1gCui/lzCaoj/mOg (çözeltiden ardßtk çöktürme) tam hücre geriliminin oda söaklghl 1.5-4.05V potansiyel aralLgUve sabit akLihda (0.1C=16 mA/g) spesifik sarj/desarj kapasitesine göre degisimini göstermektedir. Sekil 3(E): Sert karbon(C)/1M NaPFö, aglrl kça 95:5 PC-EC/ 03- kapasitesinin oda sßaklEgü 1.5-4.05V gerilim arallgüve sabit akßida (0.5C:80 mA/g) döngü sayEDile degisimini göstermektedir. Separatör olarak Whatman GF/C cam filtre kagElE kullanJJdD Bulusun Ayr ntllH l/&çlklamas l Mevcut bulus kapsamEida sodyum iyon pilleri için formül (1)`e sahip bilesigi içeren katot aktif maddeler gelistirildi. NaxMylMzsz3Mi4Mm5Mn602 olan ( Formül 1) M1 yükseltgenme basamag ++3 ve/veya +4 olan metal iyonu (Mn3+ ve/veya Mn4+) M2 yükseltgenme basamag 3+2 ve/Veya +3 olan metal iyonu (Fe2+ ve/Veya Fe3+) M3 yükseltgenme basamag 3+2 ve/veya +3 olan metal iyonu (Ni2+ ve/Veya Ni3+) M4 yükseltgenme basamag 3+2 olan metal iyonu (Cu2+) M5 yükseltgenme basamag 3+2 olan metal iyonu (Caß) M6 yükseltgenme basamag 3+4 olan metal iyonu (Ti4+) 0.9 0<1S0. 16 y+z+k+l+m+n= 1 Mevcut bulus kapsamlnda baslang çi maddelerinin homojen olarak karlsmasl lve bunun sonucu saf sodyum metal oksit elde etmek için çözeltide çöktürme (metal hidroksi karbonat) metodu kullan Id D Sentezlenen katot aktif maddelerin havada kararl 01111, akin yogunlugu ve sarj/desarj döngü kararl IllIg îtîart Emak için baki, titanyum ve kalsiyum katk [[amas Eyap [[dE Mevcut bulusta O3-NaXM02 katot aktif maddesindeki Mn ve Ni iyonunun bir kßmßm Cu (havada kararllllg :art Etmaktad E), Ca (iyonik yarßap Eve metal-oksij en bag enerjisi büyük) ve Ti (metal-oksijen bag enerjisi büyük) elementleri ile yer degistirmesi sonucu elde edilen maddenin saf, havada kararl] 1.5-4.2 V Ü\la/Na+ elektroda göre) gerilim araligîida ölçülen sarj/desarj döngü kararllllgl .ve sarj/desarj güç yogunlugunun daha büyük oldugu bulundu. Sarj/desarj döngü kapasite kayblnn düsük olmasl lve güç yogunlugunun yüksek olmasll nedeniyle Cu, Ca ve Ti katk lanmls O3-NaXM02 maddesi ticari sodyum iyon pillerde katot aktif madde olarak kullan Jhia potansiyeline sahiptir. olana kadar 0.5M sodyum karbonat çözeltisi ile titre edildi. Olusan çökelek süzülüp saf su ile ylgtandlltan sonra 100°C sßaklügta kurutulup stokiyometrik miktardaki susuz sodyum 03-NaMnmzFem2Ni4/12Cu1;izCaus/IZTIOÃ/izoz katot aktif maddesini çözeltiden ardßlk çöktürme metodu ile sentezlemek için stokiyometrik miktardaki MnSO4.H20 (2.5347 g), FeSO, CaC03 (0.1878 9.9 olana kadar 0.5M sodyum karbonat çözeltisi ile titre edildi. Olusan çökelek süzülüp saf su ile ylkandlktan sonra 100°C sldakllkta kurutulup stokiyometrik miktardaki sodyum karbonat sülfatlardan hazElanan 0.37M sulu çözelti ( pH 9.9 olana kadar 0.5M sodyum karbonat çözeltisi ile titre edildi. Olusan çökelek süzülüp saf su ile ykand Rtan sonra 100°C sBaklEta kurutulup stokiyometrik miktardaki sodyum karbonat (2.3848 g) ile karßtîarak 850°C snaklkta kül fnhinda havada 12 saat amina Kars llast Itma yapmak için tabakall sodyum metal oksitler ayr da katl lhal yöntemiyle de sentezlendi. (1.3940 g) agat havanda karîsltîlllarak 5 ton/cm2 basiçta palet haline getirilip kül fîmßda 850°C sßakllkta ve havada 12 saat EEIHRtan sonra oda sßaklgma kadar sogutuldu. Sogutulan madde agat havanda ögütülerek toz haline getirildi. havanda karlstlrllarak 5 ton/cm2 bas nçta palet haline getirilip kül flrlnlnda 850°C s dakl kta ve havada 12 saat 51 tl 1d ktan sonra oda slcakllglna kadar sogutuldu. Sogutulan madde agat havanda ögütülerek toz haline getirildi. NaxMûg maddelerinin kimyasal bilesimini bulmak için Perkin Elmer marka 3110 model atomik absorpsiyon spektrometresi (AAS) ve Jenway marka PFP7 model alev fotometresi (FP) cihazlarükullanüldü Numune hazElamak için katjmaddeden yaklasl 50 mg al Eiarak üzerine 2 mL HCl/HNOg kargßilhacimce 123 oran Ilda) eklendi. Çözünene kadar manyetik karStEIÜlElile karßt EBE Eiühüve son hacim saf su ile 250 mL-'ye tamamlandü Her element için haz Elanan uygun standart çözeltiler kullan Iarak ömeklerdeki Mn, Fe, Ni, Cu ve Ti derisimi AAS, Na ve Ca derisimi FP ile ölçüldü. Sentezlenen maddelerin safll glnl kontrol etmek ve birim hücre parametrelerini belirlemek için X- sular ltoz klrlnlm (XRD) deseni ölçüldü. Ölçümlerde bak 11 X-lslnlarl tüpü, Nal tipi sintilasyon saydîdedektörü ve grafit monokromatör içeren X-Tsmlarrtoz kîîiünlîcihazî 40 kV ve 40 mA degerlerinde yapFldî XRD cihaziiii programlarFkullanTarak XRD toz deseni indislendi ve birim hücre parametreleri hesaplandü Sentezlenen maddelerin havada kararlllgmübelirlemek için toz haline getirilmis madde 24 saat aç 1 havada bekletildikten sonra XRD toz deseni ölçüldü. Sentezlenen katot aktif maddelerin elektrokimyasal performans ölçümü, dügme tipi 2032 yarii ve tam hücreler ile gerçeklestirildi. Katot elektrotu hazmlamak için agEltkça %80 elektroaktif madde (NaXMOZ), %10 asetilen siyah Llve %10 polivinilidenflorür (PVDF) den olusan karshn agat havanda karLstLrLldetan sonra üzerine N-metil-Z-pirrolidon (NMP) eklenerek çamur haline getirildi. Burada asetilen siyahl lelektronik iletken, PVDF baglaylcl ve NMP ise çözücü olarak kullan 1ldl.| Elde edilen çamur, serit döküm makinesinde Dr Blade yardünîile alüminyum folyo üzerine kaplanarak 110°C sBaklkta 10 saat kurutulduktan sonra delikli zEhba ile 15 mm çap mda disk haline getirildi ve 2 ton/cm2 olacak sekilde preslendi. Diskteki katot aktif madde miktarEIS ila 20 mg cm'2 aras mda ölçüldü. Haz Elanan disk, içinde bulunabilecek nem ve havay Euzaklastimak amac @la tekrar yag banyosunda dinamik vakum altEida 120°C`de 1 saat bekletildikten sonra hava ile temas ettinneden eldivenli argon kabinine (glove box) almdü Anot elektrotu haz @lamak için ag Elüîça %89 sert karbon (anot aktif madde), %5 asetilen SiyahLlve %6 polivinilidentlorür (PVDF) den olusan karLsLm agat `havanda karLstLrLldetan sonra üzerine N-metil-2-pirrolidon (NMP) eklenerek çamur haline getirildi. Burada asetilen siyahl lelektronik iletken, PVDF baglaylcl .ve NMP ise çözücü olarak kullan 1lîll.| Elde edilen çamur, serit döküm makinesinde Dr Blade yardeTile alüminyum folyo üzerine kaplanarak 110°C sBaklkta 10 saat kurutulduktan sonra delikli zEnba ile 15 mm çap Eida disk haline getirildi ve 2 ton/cm2 olacak sekilde preslendi. Diskteki anot aktif madde miktarEÜ ila 10 mg cm'2 arasmda ölçüldü. Hazßlanan disk, içinde bulunabilecek nem ve havayüuzaklastîmak amac @la tekrar yag banyosunda dinamik vakum altEida 1200C'de 1 saat bekletildikten sonra hava ile temas ettinneden eldivenli argon kabinine (glove box) alüidü Dügme tipi 2032 yarEh hücresinin hazElanmasüiçin katot olarak tabakaljsodyum metal oksitten haz nlanan disk: anot olarak 15 mm çap Lndaki metalik sodyum disk (Merck), ayttaç olarak 17 mm çapindaki cam elyaf filtre kag d (Whatman GF/C) ve elektrolit olarak NaPFE. (Sigma-Aldrich) tuzunun PC:EC (ag nl 1 Dügme tipi 2032 tam hücrelerin haz lnlanmas Hçin katot olarak tabakalHsodyum metal oksitten haz itlanan disk, anot olarak sert karbondan haztnlanan disk, aylraç olarak 17 mm çaplndaki cam elyaf filtre kagdTWhatman GF/C) ve elektrolit olarak NaPF(i (Sigma-Aldrich) tuzunun PC:EC (agilkça 9525) çözücü kargîhîidaki çözeltisi kullanIdJ Elektrokimyasal hücrelerin kurulumu eldivenli gaz kabininde gerçeklestirildi. Anot, katot ve elektrolitin yerlestirilmesinden sonra elektrokimyasal hücrelerin dengeye ulasmas :için 5 saat bekletildi. Dengeye gelmis olan hücreler, MTI Corporation marka BST8-MA model çok kanallJgalvanostat/potansiyostat cihazüile l.5-4.05V potansiyel aralgîtda ve 0.1C ve 0.5C (IC : akin yogunlugu degerlerinde sarj/desarj edildi. Spesifik kapasitenin sarj/desarj çevrim sayLstLile degisimini bulmak için yarm ve tam hücreler 0.5C akun yogunlugunda 50-100 defa sarj/desarj edildi. Elde edilen verilerden kapasite/potansiyel (voltaj) grafigi ve sarj/desarj döngü saylslna karsl kapasite grafikleri çizildi. Bu grafiklerden yararlanarak elektrokimyasal kapasite kaybTve bu kaybîi türü (tersinir veya tersinmez) incelendi. Tüm elektrokimyasal ölçümler oda sßakltgîida gerçeklestirildi. Elementel analiz sonucu bulunan forrnülün teorik formül ile uyumlu oldugu bulundu. Sekil 1 (A) katEhal yöntemi ile sentezlenen ve sentezlendikten sonra 24 saat açlî havada göstermektedir. XRD toz desenleri bu maddenin az miktar NiO safs Elfgüçerdigi, tabakalEDS tipi yap ya sahip ve havada kararsz oldugunu göstermektedir. Sekil l(B) çözeltiden ard sl k çöktürme metodu ile sentezlenen ve sentezlendikten sonra 24 desenlerini göstermektedir. XRD toz desenleri bu maddenin saf, tabakalTOB› tipi yap @ta sahip ve havada kararsî oldugunu göstermektedir. (çözeltiden ard E [R çöktürme) yar :hücrelerinin oda s Bakl :g D 1.5-4.05 potansiyel aral [g :ve sabit akßida (0.1C=16 mA/g ve 0.5C=80mA/g) sarj/desarj edilmesi ile elde edilen verilerden türetilmistir. Elektrolit olarak agElEErça 95:5 oranEida olan PC-EC karSEnEidaki 1MNaPF6 çözeltisi kullanltld Sarj s lias nda katottan ayrllan sodyum iyonlarl metalik sodyum anot üzerinde birikmekte, desarj sraslnda ise metalik sodyumdan ayrllan sodyum iyonlarl lkatot aktif maddeye yerlesmektedir. Sekil 1(C), Na/ lM NaPFö, agîiil kça yar hücre potansiyelinin, 0.1C akîn yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. Potansiyel-spesifik kapasite egrisi, sarj-desarj aras Edaki potansiyel farkülß küçük ve bunun sonucu sodyum içerme tepkimesinin kinetik olarak tersinir oldugunu göstermektedir. Ayrßa sarj ve desarj potansiyel egrilerinin simetrik olmas: içerme tepkimesinin tersinir oldugunu göstermektedir. çöktürme) yarEhücre potansiyelinin, 0.1C akEh yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. Potansiyel-spesifik kapasite egrisi, sarj-desarj aras Lndaki potansiyel farklnln küçük ve bunun sonucu sodyum içerme tepkimesinin kinetik olarak tersinir oldugunu göstermektedir. Ayrlca sarj ve desarj potansiyel egrilerinin simetrik olmasl içerme tepkimesinin tersinir oldugunu göstermektedir. ardgk çöktürme) yarjhücrelerin spesifik desarj kapasitesinin sabit akmida döngü sayEEile degisimini göstermektedir. Ilk üç ve son üç sarj/desarj döngüsü 0.1C akEn yogunlugunda(0.1C=16 mA/g) ve aradaki 100 sarj/desarj döngüsü ise 0.5C akin yogunlugunda (80 mA/g) gerçeklestirilmistir. Kat: hal metodu ile sentezlenen edilmistir. Buna göre 106 döngü sonucu %103 veya sarj/desarj döngü bas na 0.12 mAh/g kapasite kaybi gerçeklesmistir. Yapllan ölçüm NaMns/lgFez/izNls/lzoz (kat hal metodu) katot aktif maddesinin döngü kararlflfgmm yüksek ancak aklîh yogunlugu kapasitesinin düsük oldugunu göstermektedir. Çözeltiden ardIslE Çöktürme metodu ile sentezlenen NaMnmzF e2/12Ni511202 katot aktif madde yüksek aki'ida (0.5C=80 mA/g) ortalama 75 mAh/g elde edilmistir. Buna göre 106 döngü sonucu %19 veya sarj/desarj döngü basEia 0.26 mAh/g kapasite kaybügerçeklesmistir. Yap Ian ölçüm NaMn katot aktif maddesinin döngü kararlhgnn ve akan yogunlugu kapasitesinin iyi oldugunu göstermektedir. Elementel analiz sonucu bulunan formülün hedeflenen formül ile uyumlu oldugu bulundu. Sekil 2(A) çözeltiden ardTsfk çöktürme yöntemi ile sentezlenen ve sentezlendikten sonra 24 maddesinin XRD toz desenlerini göstermektedir. XRD toz desenleri bu maddenin saf, tabaka1303 tipi yapjl'a sahip ve havada kararlEoldugunu göstermektedir. Ayrßa katEhal saf ve havada kararl :oldugu bulundu. çöktürme) yarEhüeresinin oda sßaklfgg 1.5-4.05 potansiyel aralEgEve sabit akEnda (0.1C=16 mA/g ve 0.5C=80mA/g) sarj/desarj edilmesi ile elde edilen verilerden türetilmistir. Elektrolit olarak agrlkça 95:5 oranLnda olan PC-EC karLsJandaki lMNaPFG çözeltisi kullanLldLJ Sarj s Itas nda katottan ayrllan sodyum iyonlarl metalik sodyum anot üzerinde birikmekte, desarj sraslnda ise metalik sodyumdan ayrilan sodyum iyonlarl lkatot aktif maddeye yerlesmektedir. (çözeltiden ardßlk çöktürme) yarJiücre potansiyelinin, 0.1C akin yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. Potansiyel-spesifik kapasite egrisi, sarj-desarj aras &daki potansiyel farkmm küçük ve bunun sonucu sodyum içerrne tepkimesinin kinetik tersinirliginin yüksek oldugunu göstermektedir. Ayrßa sarj ve desarj potansiyel egrilerinin simetrik olmas jçerme tepkimesinin oldukça tersinir oldugunu göstermektedir. (çözeltiden ard slk çöktürme) yarl lhücre spesifik desarj kapasitesinin sabit aklinda döngü say sll lile degisimini göstermektedir. Ilk üç ve son üç sarj/desarj döngüsü 0.1C akim yogunlugunda(0.lC:16 mA/g) ve aradaki 100 sarj/desarj döngüsü ise 0.5C akTrh yogunlugunda (80 mA/g) gerçeklestirilmistir. Spesifik desarj kapasitesi birinci döngüde ortalama 110 mAh/g olarak elde edilmistir. Buna göre 106 döngü sonucu %12 veya sarj/desarj döngü bas ila 0. 15 mAh/g kapasite kayb E gerçeklesmistir. Yap Jhn ölçüm maddesinin döngü kararlmgii ve akîn yogunlugu kapasitesinin oldukça iyi oldugunu göstermektedir. ardsk çöktürme) tam hücresinin oda 5 dakl g ,l l.5-4.05 gerilim arallgl lve sabit aklmda (0.lC:16 mA/g ve 0.5CZ80mA/g) sarj/desarj edilmesi ile elde edilen verilerden türetilmistir. Elektrolit olarak aglrîllkça 95:5 oranlnda olan PC-EC karsmlridaki 1MNaPF6 çözeltisi kullanTdÜ Sarj smas Eda katottan ayrJhn sodyum iyonlarjsert karbon anot üzerinde birikmekte, desarj sîas Ilda ise sert karbon anottan ayr Ian sodyum iyonlarEkatot aktif maddeye yerlesmektedir. Sekil 2(D), Sert karbon (C)/ 1 M NaPFg, ag m1 [Ilça 95 : 5 PC-EC/ geriliminin, 0.1C akEh yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. BaslangEi sarj kapasitesinin büyük olmas Jilk sarj sEas @da kat Eelektrolit ara yüz filminin olustugunu göstermektedir. Gerilim-spesifik kapasite egrisi, sarj-desarj arasindaki gerilim farkliilri küçük ve bunun sonucu sodyum içerme tepkimesinin kinetik tersinirliginin yüksek oldugunu göstermektedir. Ayrlda sarj ve desarj gerilimin egrilerinin simetrik olmas îçerme tepkimesinin oldukça tersinir oldugunu göstermektedir. Sekil 2(E), Sert karbon (C)/1M NaPFÖ, ag Il] ilîça 95:5 PC- EC/NaMnmzFemzNi4/12CumzCa05/iJim/1202 (çözeltiden ardßflî çöktürme) tam hücre spesifik desarj kapasitesinin sabit akînda döngü sayßjile degisimini göstermektedir. Ilk üç ve son üç sarj/desarj döngüsü 0.lC akEn yogunlugunda(0.1C=16 mA/g) ve aradaki 50 sarj/desarj döngüsü ise 0.5C akil yogunlugunda (80 mA/g) gerçeklestirilmistir. Spesifik desarj kapasitesi birinci döngüde 98 mAh/g, 56 döngü sonrasü87 mAh/g ve yüksek akEhda veya sarj/desarj döngü baslna 0.20 mAh/g kapasite kaybl lgerçeklesmistir. Yapilan ölçüm maddesinin döngü kararlfh'gîiîi ve akin yogunlugu kapasitesinin oldukça iyi oldugunu göstermektedir. Elementel analiz sonucu bulunan formülün hedeflenen formül ile uyumlu oldugu bulundu. Sekil 3(A) birlikte çöktürrne yöntemi ile sentezlenen ve sentezlendikten sonra 24 saat açik desenlerini göstermektedir. XRD toz desenleri bu maddenin saf, tabakalLOB tipi yap gta sahip ve havada kararl bldugunu göstermektedir. edilmesi ile elde edilen verilerden türetilmistir. Elektrolit olarak agliillkça 95:5 oranlnda olan PC-EC karsîhîidaki 1MNaPF6 çözeltisi kullan tüm yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. Potansiyel-spesifik kapasite egrisi, sarj-desarj arasidaki potansiyel farkmi küçük ve bunun sonucu sodyum içerme tepkimesinin kinetik olarak tersinir oldugunu göstermektedir. AyrEa sarj ve desarj potansiyel egrilerinin simetrik olmas jçerme tepkimesinin tersinir oldugunu göstermektedir. kapasitesinin sabit akmda döngü sayLsLlile degisimini göstermektedir. Ilk üç ve son üç sarj/desarj döngüsü 0.1C akm yogunlugunda (0.1C=16 mA/g) ve aradaki 50 sarj/desarj döngüsü ise 0.5C aklm yogunlugunda (80 mA/g) gerçeklestirilmistir. 03- döngüde 104 mAh/g elde edilmistir. Buna göre 56 döngü sonucu %67 veya sarj/desarj döngü bas Ela 0.14 mAh/ g kapasite kayb D gerçeklesmistir. Yap [lan ölçüm 03- yogunlugu kapasitesinin yüksek oldugunu göstermektedir. ardsk çöktürme) tam `hücresinin oda söaklgjl 1.5-4.05 gerilim aralLgUve sabit aktmda (0.1C:16 mA/g ve 0.5CZ80mA/g) sarj/desarj edilmesi ile elde edilen verilerden türetilmistir. Elektrolit olarak aglrllkça 95:5 oranlnda olan PC-EC karsmlndaki 1MNaPF6 çözeltisi kullanTdÜ akil yogunlugunda (16 mA/g), spesifik kapasite ile degisimini göstermektedir. Gerilim- spesifik kapasite egrisi, sarj-desarj arasEidaki gerilim farkîli küçük ve bunun sonucu sodyum içerme tepkimesinin kinetik olarak tersinir oldugunu göstermektedir. Ayrßa sarj ve desarj voltaj egrilerinin simetrik olmasü içerme tepkimesinin tersinir oldugunu göstermektedir. desarj kapasitesinin sabit akEnda döngü sayIstile degisimini göstermektedir. Ilk üç ve son üç sarj/desarj döngüsü 0.1C akm yogunlugunda (0.1C:16 mA/g) ve aradaki 50 sarj/desarj döngüsü ise 0.5C akim yogunlugunda (80 mA/g) gerçeklestirilmistir. Sert karbon//O3- mAh/ g elde edilmistir. Buna göre 56 döngü sonucu kapasite kaybl blmam stlr. Yapllan ölçüm akil yogunlugu kapasitesinin yüksek oldugunu göstermektedir. TR TR TR TR TR DESCRIPTION DEVELOPMENT OF NEW AIR STABLE O3-NAXM02 TYPE LAYERED METAL OXIDES FOR SODIUM ION BATTERIES Technical Field to which the Invention Concerns The invention is used as cathode active material in sodium (lithium, potassium) ion batteries. Tan metal additive is a new layered Sodium (lithium) containing nickel, iron and manganese. , potassium) metal oxides, their synthesis with a new method, their characterization and examination of their electrochemical performance. Layered Eodium metal oxides have the potential to be used as cathode active material in rechargeable batteries and supercapacitor electrodes. State of the Art Related to the Invention (Prior Art) Sodium ion batteries are rechargeable batteries consisting of an anode (negative electrode), cathode (positive electrode) and electrolyte, and are similar to the commonly used lithium ion batteries in many respects. In sodium ion batteries (or lithium ion batteries), Na+ (or Li+) separates from the cathode and settles in the anode during the charging pad, and the electrons leaving the cathode migrate to the anode through the external circuit. The opposite of the same process occurs during discharge. Although lithium-ion batteries are widely used in consumer electronics, they cannot be widely used in electric vehicles, the national electricity grid and the storage of renewable energy due to the expensive and scarce lithium resource. Lithium-ion batteries also have safety risks such as combustion and explosion, and their operating temperature range is low. Sodium ion batteries, which have not yet been developed on a commercial scale, are lithium ion batteries because sodium is abundant everywhere in the earth's crust, is cheap, has a wide operating range (due to the use of solvents such as propylene carbonate) and is safe in transportation and storage (can be discharged down to 0.0V). It has more advantages than batteries and is suitable for large-scale applications. However, commercialization of sodium ion batteries requires intensive work. Transition metal oxides with layered fibers with the general formula NaXMug are one of the materials used as cathode active materials in sodium ion batteries. These structures were formed by the settlement of sodium ions between the layers formed by M06 octahedrons with common edges, and were divided into two groups, 03 and P2, according to the position of sodium. The structure in which sodium ions are in the octahedral position formed by oxygen is in a narrow 03 (or 02) and prismatic position. These are called PZ (or PS) type structures. Here 2 and 3 are sodium layers repeated perpendicular to the layers it ? It shows 1 count. The layers formed by oxide ions are stacked in three different ways: A, B and C. In the 03 type deposit formed by stacking the oxide layers in the form of ABCABC, the sodium ions are in the octahedral position and the number of sodium layers is 37; In the 02 type structures formed by stacking in the form of ABAC, sodium ions are in an octahedral position and the number of sodium layers is 3D2; in the P2 structure formed by stacking in the form of ABBA, the sodium ions are in an esprismatic position and the sodium layer is sayED2; in the P3 structures formed by stacking in the form of ABBCCA, the sodium ions are in a prismatic position and the sodium ion is in a prismatic position. The number of layers is DT. Most of the layered metal oxides are stable in air. NaM02 + sSIEEAl foil When heated, carbon interacts with PVDF used as a binder in the anode to form amorphous carbon and NaF, and as a result, capacity loss is caused. Use methods such as adding additives that can absorb ions II. The phase transformation that occurs during the charge/discharge phase causes capacity losses and low conductivity causes the charge/discharge current density to be low. In order to reduce capacity loss and increase charge/discharge density, methods such as replacing one of the elements with another element, coating it with a conductive substance such as carbon, and reducing the particle size are applied. The displacement of the crystal structure is not stabilized and the distance between the layers in which the sodium ion is settled increases. In recent years, many studies have been carried out on the electrochemical properties of 03 type metal oxides. O3-NaCO2, which has an O3-type layered structure, is the first metal oxide studied in terms of sodium inclusion reaction (C. Delmas et al., Solid State lon. 3(1981) 165-169). Since cobalt is expensive, it is unlikely to be used as the cathode active material in commercial sodium ion batteries. S. Johnson et al. (It has been determined that it has a reversible capacity of 120 mAh g'1 in the range of 1.5-4.0V at the electrochemistry density, as O3-›P3-›O'3-›P"3 by using some methods (XRD) and transmission X-@Ilj microscopy (TXM) methods. Naoaki Yabuuchi and found that the cell has a reversible capacity of 130 mAh g in the range of 2.0-3.8V and found that the current density increased. E. MU Linqin et al. (Energy Storage Science) found that the charge/discharge capacity in the range of 4.0V Yong decreased. -Sheng Hu et al. found that the moth with a voltage range of 2.5-4.05V has a specific capacity of 96 mAh/g at a current density of 0.1C (10mA/g) and has a low capacity loss (3%) after 100 charges/discharges. E. In the state of the art, the specific O3-NaXM02 type cathode active substance(s) that are sufficient for commercial applications in terms of charge/discharge capacity, charge/discharge cycle stability, power density, purity and stability in air are not yet known. O3-NaXM02 type cathode active substances with a layered structure are largely produced by the solid state method. It is synthesized with . It is known that due to the inability to obtain a homogeneous mixture from the starting materials in syntheses made by the solid state method, the resulting product contains more or less pure pure substances. Sodium-ion batteries are similar to lithium-ion batteries in many ways and are expected to become commercial in the near future. One of the most important substances that can be used as cathode active materials in sodium ion batteries is sodium metal oxides with layered Sia (NaxMO2 M = Ti, Cr, Ni, Mn, Co, Fe,; x = 0.67-1.0). Sodium metal oxides with a layered structure are prepared by mixing metal oxides (metal carbonates) and sodium carbonate in a stoichiometric ratio and turning the disk into a disk and letting the disk dissolve in air at high temperatures. Sodium metal oxides with a layered structure (metal carbonates) and sodium carbonates, which can be used as a cathode active material, are formed into a disk (mixed in a stoichiometric ratio) and the disk is prepared by melting the disk in air at high temperature; Since the starting materials are not mixed homogeneously, they contain more or less impurities, are unstable in air, have low conductivity and power density, and suffer from high capacity loss. For this reason, there is a need for sodium metal oxides with high conductivity and power density that are stable in air, and for sodium (lithium, potassium) ion batteries in which these metal oxides are used as cathode active materials. K Ea Description of the Invention Eve Purposes D The present invention is about the cathode active material for sodium ion batteries and the cathode active substance includes the compound with formula (1). NaxMylMZZMk3Mi4Mm5Mn M1 is a metal ion with oxidation state 3+3 and/or +4 Mn3+ and/or Mn4+) M2 metal ion with oxidation state 3+2 and/or +3 (Fe2+ and/or Fe3+) M3 metal ion with oxidation state 3+2 and/or +3 (Ni2+ and/or Ni3+) M4 oxidation Metal ion with oxidation state 3+2 (Cu2+) M5 Metal ion with oxidation state 3+2 (Ca2+) M6 Metal ion with oxidation state +I-4 (Ti4+) 0.9 0<1$0. m+nz l The layered sodium metal oxides developed within the scope of the invention were synthesized for the first time by the successive precipitation (metal hydroxy carbonate) method, which is a simple and easy method. The layered sodium metal oxides synthesized within the scope of the invention and containing small amounts of copper, titanium and calcium elements were pure and pure. It is stable in air]]]1. Scope of the invention: Sodium metal oxides synthesized by hand can be used as cathode active materials in sodium (lithium, potassium) ion batteries, sodium (lithium, potassium) metal batteries and supercapacitors. Sodium metal oxides developed within the scope of the invention and containing small amounts of copper, titanium and calcium elements; It is used as cathode active material in sodium ion batteries. It has high specific capacity and charge/discharge density, and capacity loss during charge/discharge is low. With the invention, the electrode containing cathode active materials and the energy storage device containing these electrodes can be obtained. Energy storage device containing electrodes containing cathode active materials obtained with the invention can be obtained. Electrochemical devices or rechargeable batteries containing this energy storage device can also be obtained. Definitions of the Figures Explaining the Invention Figure 1(A): 1) Shows the XRD powder patterns of the cathode active substances (NaMns/i 2F Synthesized 01-073-2048) synthesized by the solid state method. Figure 1(B): 1) Shows the XRD powder patterns of NaMn NaCrOz (PDF file number 01-073-2048) cathode active substances synthesized from solution by the post-precipitation method. Figure 1(C): Na/lM NaPF6 shows the variation of half-cell potential according to room temperature, 1.5-4.05V potential range and specific charge/discharge capacity at constant current (0.1C:16 mA/g). Figure 1(D): Na/lM NaPFÖ, by weight 95:5 PC-EC/NaMnsngFegn;Ni5/1202 (sequential precipitation from solution) at room temperature 1.5-4.05V potential range and constant mind (0.1C:16 mA/ g) shows its variation according to specific charge/discharge capacity. Figure 1(E): 1) Na/lM NaPF(h agEIEca yarjispecific discharge capacity of cells in room sBaklg] l.5-4.05V potential rangeEgE and variation with the number of cycles at constant flux (0.5Cî80 mA/g) Whatman GF/C glass filter paper was used as the separator. Figure 2(A): 1) Shows the XRD powder patterns of the suspended NaMn Reference NaCrO2 cathode active substances synthesized from the solution by the successive precipitation method (subsequent precipitation from the solution) at room temperature. It shows the change of the specific charge/discharge capacity of the charge cell (precipitation from solution) at 4.05V potential range and constant current (0.1C:16 mA/g) at room temperature, 1.5-4.05V potential range and constant current (0.5C=). 80 mA/g) shows the change with the number of cycles. Whatman GF/ C glass filter paper is used as a separator. Figure 2(D): Hard carbon (C) / 1 M NaPFÖ, ag Lnl fly 95 : 5 PC-EC/ voltage at room temperature. It shows the potential range of .5-4.05V and its change according to the specific charge/discharge capacity at constant current (0.1C:16 mA/g). Figure 2(E): Shows the variation of hard carbon(C)/ 1 M NaPFÖ, mesh el fca 95 : 5 PC-EC/ capacity with the number of cycles at room temperature, 1.5-4.05V voltage range and constant flux (0.5C:80 mA/g). . Whatman GF/C glass filter paper was used as a separator. Figure 3(A): 1) Shows the XRD powder patterns of 03-NaMn4,12Fe4/1ZNIZMgCumzCaOÂ/lgûg and 3) Reference NaCrOz cathode active substances synthesized from the solution by the afterEÜ & precipitation method. (Subsequent precipitation from solution) shows the change of cell potential according to room temperature, 1.5-4.05V potential range and specific charge/discharge capacity at constant current (0.1C:16 mA/g). (precipitation from solution) half: shows the change of cell specific discharge capacity with room temperature, 1.5-4.05V potential range and constant battery (0. cycle count/EE. Use Whatman GF/ C glass filter paper as a separator. Figure 3(B): Hard carbon ( C)/1M NaPFÖ, agmluîça 95:5 PC-EC/ 03- NaMn4/lzFem;Ni2_5/1gCui/lzCaoj/mOg (subsequent precipitation from solution) full cell voltage at room temperature 1.5-4.05V potential range and constant flow (0.1C=16 mA/g) shows its variation according to specific charge/discharge capacity. Figure 3(E): Hard carbon(C)/1M NaPFö, weight 95:5 PC-EC/03- capacity at room temperature and constant flux with voltage range of 1.5-4.05V. (0.5C:80 mA/g) shows the change with the number of cycles. Use Whatman GF/C glass filter paper as a separator. Detailed description of the invention. Cathode active materials containing the compound of formula (1) for Eida sodium ion batteries are within the scope of the present invention. was developed, which is NaxMylMzsz3Mi4Mm5Mn602 (Formula 1) M1 is the metal ion (Mn3+ and/or Mn4+) with oxidation state ++3 and/or +4. M3 metal ion with oxidation state 3+2 and/or +3 (Ni2+ and/or Ni3+) M4 metal ion with oxidation state 3+2 (Cu2+) M5 metal ion with oxidation state 3+2 (Caß) M6 oxidation state 3+ The metal ion of 4 (Ti4+) is 0.9 0<1S0. 16 y+z+k+l+m+n= 1 Within the scope of the present invention, the starting materials must be mixed homogeneously and as a result, solution precipitation (metal hydroxy carbonate) method is used to obtain pure sodium metal oxide. Id D The synthesized cathode active substances are stable in air. 01111, current density and charge/discharge cycle stability IlIg İtîart Baku, titanium and calcium additive for Emak [[amas Eyap [[dE In the present invention, a part of the Mn and Ni ion in the O3-NaXM02 cathode active material is Cu (stability in air: increased Etktad E) , Pure, air-stable substance obtained by replacing the elements Ca (ionic radius and metal-oxygen bond energy with high) and Ti (metal-oxygen bond energy with high) 1.5-4.2 V Ü\la/Na+ according to the electrode) voltage It was found that the charge/discharge cycle stability and charge/discharge power density measured in the range were greater. Due to its low charge/discharge cycle capacity loss and high power density, Cu, Ca and Ti doped O3-NaXMO2 material has the potential to be used as cathode active material in commercial sodium ion batteries. Titrated with 0.5M sodium carbonate solution until The precipitate formed was filtered and dried at 100°C, then a stoichiometric amount of MnSO4.H20 (2.5347 g) was used to synthesize the stoichiometric amount of anhydrous sodium 03-NaMnmzFem2Ni4/12Cu1;izCaus/IZTIOÃ/isose cathode active substance from the solution by the post-precipitation method. ), FeSO, CaCO3 (0.1878 was titrated with 0.5M sodium carbonate solution until 9.9. After the precipitate formed was filtered and washed with pure water, it was dried at 100°C humidity and titrated with 0.37M aqueous solution prepared from stoichiometric amount of sodium carbonate sulfates (titrated with 0.5M sodium carbonate solution until pH 9.9). The resulting precipitate was filtered and washed with pure water. Then, it was dried at 100°C and mixed with a stoichiometric amount of sodium carbonate (2.3848 g) for 12 hours in air in ash oven at 850°C. In order to heat the mixture, layered sodium metal oxides were also added separately. (1.3940 g) of agate was mixed in a mortar and turned into a pallet at 5 tons/cm2 pressure and cooled to room temperature after 12 hours in air at 850°C. The cooled substance was ground into powder in an agate mortar. It was mixed in a mortar and turned into a pallet at 5 tons/cm2 pressure and cooled to room temperature after 12 hours at 51 °C in air at 850°C in an ash oven. The cooled substance was ground into powder in an agate mortar. To find the chemical composition of NaxMûg substances, Perkin Elmer brand 3110 model atomic absorption spectrometer (AAS) and Jenway brand PFP7 model flame photometer (FP) devices were used. To prepare the sample, approximately 50 mg of the additive was taken and 2 mL of HCl/HNOg (123 ratio by volume Ilda) was added to it. Magnetically stirred until dissolved, and the final volume was made up to 250 mL with pure water. Mn, Fe, Ni, Cu and Ti concentrations in the samples were measured with AAS, Na and Ca concentrations were measured with FP, using appropriate standard solutions prepared for each element. To check the purity of the synthesized substances and to determine the unit cell parameters, the X-water lithose fractionation (XRD) pattern was measured. In the measurements, X-Tsmlarrt powder device containing 11 item brought 24 hours After being kept in air for 1 hour, the XRD powder pattern was measured. Electrochemical performance measurement of the synthesized cathode active materials was carried out with button type 2032 half and full cells. To digest the cathode electrode, the mixture consisting of 80% electroactive material (NaXMOZ), 10% acetylene black L and 10% polyvinylidenefluoride (PVDF) was mixed in an agate mortar and then N-methyl-Z-pyrrolidone (NMP) was added and turned into slurry. Here, acetylene was used as the black electronic conductor, PVDF as the binder and NMP as the solvent. | The resulting sludge was coated on aluminum foil with a Dr Blade aid in a strip casting machine and dried at 110°C for 10 hours. Then it was turned into a 15 mm diameter disk with a perforated zehba and pressed to 2 tons/cm2. The amount of cathode active material in the disk was measured between EIS and 20 mg cm'2. Preparation The prepared disk was kept in the oil bath under dynamic vacuum for 1 hour at 120°C in order to remove any moisture and air that may be present in it, and then it was taken into the glove box (glove box) without coming into contact with air. To prepare the anode electrode, the network elution was 89%. The mixture consisting of hard carbon (anode active material), 5% acetylene BlackL and 6% polyvinyl chloride (PVDF) was mixed in an agate mortar and turned into slurry by adding N-methyl-2-pyrrolidone (NMP). Here, acetylene is used as the black electronic conductor, PVDF as the connector and NMP as the solvent. | The resulting sludge was coated on aluminum foil with Dr Blade yardeTile in the strip casting machine and dried at 110°C for 10 hours. Then it was turned into a 15 mm diameter Eida disk with perforated zEnba and pressed to 2 tons/cm2. The amount of anode active substance in the disc was measured between EU and 10 mg cm'2. The prepared disc was kept in an oil bath under dynamic vacuum again for 1 hour at 1200C in order to remove any moisture and air that may be present in it, and then it was placed in a glove box without coming into contact with air. The disc prepared from sodium metal oxide was layered as the cathode for the preparation of the button type 2032 semicircular cell. : metallic sodium disk (Merck) with a diameter of 15 mm as the anode, glass fiber filter paper (Whatman GF/C) with a diameter of 17 mm as the carrier and NaPFE as the electrolyte. (Sigma-Aldrich) salt for preparation of PC:EC (weighted 1 Button type 2032 full cells, disc prepared from stratified sodium metal oxide as cathode, disc prepared from hard carbon as anode, 17 mm diameter glass fiber filter paper as separator TWhatman GF/C) and the solution of NaPF(i (Sigma-Aldrich) salt in PC:EC (clearly 9525) solvent was used as the electrolyte. The installation of the electrochemical cells was carried out in a gas cabin with gloves. After the anode, cathode and electrolyte were placed, the electrochemical cells were kept for 5 hours to reach equilibrium. Equilibrium was reached. The cells were charged/discharged with MTI Corporation brand BST8-MA model multi-channel galvanostat/potentiostat device in the potential range of 1.5-4.05V and at 0.1C and 0.5C (IC: current density values). To find the change of specific capacity with the number of charge/discharge cycles. Half and full cells were charged/discharged 50-100 times at 0.5C current density. Capacity/potential (voltage) graphs and capacity graphs against the number of charge/discharge cycles were drawn from the obtained data. Using these graphs, electrochemical capacity loss and the type of this loss (reversible or irreversible) were examined. All electrochemical measurements were carried out at room temperature. It was found that the formula found as a result of elemental analysis was compatible with the theoretical formula. Figure 1 (A) shows the mixture synthesized by the katEhal method and in starved air for 24 hours after synthesis. XRD powder patterns show that this material contains small amounts of pure NiO, has a layered EDS type structure, and is unstable in air. Figure 1(B) shows the 24 patterns synthesized from solution by the sequential precipitation method and after synthesis. XRD powder patterns show that this material is pure, has a layered TOB› type structure and is stable in air. (after E [R precipitation from solution) half: Obtained by charging/discharging the cells at room s Bakl : g D 1.5-4.05 potential range [ g : and constant flux (0.1C=16 mA/g and 0.5C=80mA/g) derived from the data obtained. The following 1MNaPF6 solution was used as the electrolyte, PC-EC with a ratio of 95:5. Sodium ions separated from the cathode during the charging liquid accumulate on the metallic sodium anode, and during discharge, sodium ions separated from the metallic sodium settle in the cathode active substance. Figure 1(C) shows the variation of Na/1M NaPF6 half-cell potential with specific capacity at 0.1C current density (16 mA/g). The potential-specific capacity curve shows that the potential difference E between charge and discharge is small and, as a result, the sodium inclusion reaction is kinetically reversible. Moreover, the symmetrical nature of the charge and discharge potential curves indicates that the inclusion reaction is reversible. precipitation) shows the change of yarEcell potential with specific capacity at 0.1C akEh density (16 mA/g). The potential-specific capacity curve shows that the potential difference between charge and discharge is small and, as a result, the sodium inclusion reaction is kinetically reversible. Additionally, the fact that the charge and discharge potential curves are symmetrical shows that the inclusion reaction is reversible. successive precipitation) shows the change of the specific discharge capacity of half-cells with cycles at constant current. The first three and last three charge/discharge cycles were performed at 0.1C current density (0.1C=16 mA/g) and the 100 charge/discharge cycles in between were performed at 0.5C current density (80 mA/g). It has been synthesized by the solid:state method. Accordingly, as a result of 106 cycles, a capacity loss of 103% or 0.12 mAh/g per charge/discharge cycle occurred. The measurement carried out NaMns/lgFez/izNls/lsoz (solid state method) shows that the cycle stability of the cathode active material is high but the mental density capacity is low. NaMnmzF e2/12Ni511202 cathode active substance synthesized from solution by sequential precipitation method was obtained at an average of 75 mAh/g at high flux (0.5C=80 mA/g). Accordingly, as a result of 106 cycles, a capacity loss of 19% or 0.26 mAh/g per charge/discharge cycle occurred. The measurement shows that the NaMn cathode active material has good cycling stability and flowing density capacity. It was found that the formula found as a result of elemental analysis was compatible with the targeted formula. Figure 2(A) shows the XRD powder patterns of substance 24 synthesized from solution by the post-precipitation method and after synthesis. XRD powder patterns show that this material is pure, has a sheet1303 type structure and is stable in air. It was also found to be pure and stable in air. precipitation) is derived from the data obtained by charging/discharging the semicell at room temperature in the potential range of 1.5-4.05 and constant current (0.1C=16 mA/g and 0.5C=80mA/g). The 1MNaPFG solution in PC-EC mixture with a ratio of 95:5 by weight was used as the electrolyte. Sodium ions separated from the cathode during the charging process accumulate on the metallic sodium anode, and during discharge, the sodium ions separated from the metallic sodium settle in the cathode active substance. (subsequent precipitation from solution) shows the change of semi-cell potential with specific capacity at 0.1C current density (16 mA/g). The potential-specific capacity curve shows that the potential difference between charge and discharge is small and, as a result, the kinetic reversibility of the sodium inclusion reaction is high. Moreover, the symmetrical nature of the charge and discharge potential curves shows that the inclusion reaction is highly reversible. (sequential precipitation from solution) shows the gradual change in the number of cycles at a constant rate of the cell specific discharge capacity. The first three and last three charge/discharge cycles were carried out at 0.1C current density (0.1C:16 mA/g) and the 100 charge/discharge cycles in between were carried out at 0.5C current density (80 mA/g). The specific discharge capacity was obtained as 110 mAh/g on average in the first cycle. Accordingly, as a result of 106 cycles, a capacity loss of 12% or 0.15 mAh/g per charge/discharge cycle occurred. Yap Jhn shows that the cycle stabilization and flow density capacity of the measuring material is quite good. It was derived from the data obtained by charging/discharging the full cell (consecutive precipitation) at room 5 min g, with a voltage range of 1.5-4.05 and constant current (0.1C:16 mA/g and 0.5CZ80mA/g). 1MNaPF6 solution in PC-EC mixtures with a weight ratio of 95:5 was used as the electrolyte. During the charging process, sodium ions separated from the cathode accumulate on the hard carbon anode, and during the discharge phase, sodium ions separated from the hard carbon anode settle on the active substance Ekatode. Figure 2(D) shows the variation of Hard carbon (C)/ 1 M NaPFg, ag m1 [Ilca 95 : 5 PC-EC/ voltage with specific capacity at 0.1C akEh density (16 mA/g). The fact that the initial charging capacity is large indicates that the electrolyte interface film is formed during the Jilk charging time. The voltage-specific capacity curve shows that the voltage differences between charge and discharge are small and, as a result, the kinetic reversibility of the sodium inclusion reaction is high. Additionally, the symmetrical nature of the charge and discharge voltage curves indicates that the inclusion reaction is highly reversible. Figure 2(E) shows the variation of the full cell specific discharge capacity with cycle number at constant flow of Hard carbon (C)/1M NaPFÖ, wt IL] iliça 95:5 PC- EC/NaMnmzFemzNi4/12CumzCa05/iJim/1202 (subsequent precipitation from solution). The first three and last three charge/discharge cycles were carried out at 0.1C current density (0.1C=16 mA/g) and the 50 charge/discharge cycles in between were carried out at 0.5C current density (80 mA/g). The specific discharge capacity was 98 mAh/g in the first cycle, 87 mAh/g after 56 cycles, and a capacity loss of 0.20 mAh/g at high current or per charge/discharge cycle. The measurement shows that the cycle stability and flow density capacity of the material is quite good. It was found that the formula found as a result of elemental analysis was compatible with the targeted formula. Figure 3(A) shows the patterns synthesized by coprecipitation method and open 24 hours after synthesis. XRD powder patterns show that this material is pure, has a layered LOB type structure and is stable in air. It was derived from the data obtained by . The use of 1MNaPF6 solution opposite PC-EC, which has a weight ratio of 95:5 as an electrolyte, shows its change with specific capacity at its full density (16 mA/g). The potential-specific capacity curve shows that the potential difference between charge and discharge is small and, as a result, the sodium inclusion reaction is kinetically reversible. Moreover, the symmetrical nature of the charge and discharge potential curves shows that the inclusion reaction is reversible. It shows the change of capacity with the number of cycles at constant current. The first three and last three charge/discharge cycles were carried out at 0.1C current density (0.1C=16 mA/g) and the 50 charge/discharge cycles in between were carried out at 0.5C current density (80 mA/g). 104 mAh/g was obtained in 03 cycles. Accordingly, as a result of 56 cycles, a capacity loss of 67% or 0.14 mAh/g per charge/discharge cycle occurred. The measurement shows that the 03-density capacity is high. It is derived from the data obtained by charging/discharging the full cell (consecutive sedimentation) at room temperature, voltage range of 1.5-4.05 and constant current (0.1C:16 mA/g and 0.5CZ80mA/g). The use of 1MNaPF6 solution in a PC-EC mixture with a weight ratio of 95:5 as an electrolyte shows its variation with the specific capacity in the current density (16 mA/g). The voltage-specific capacity curve shows that the voltage difference between charge and discharge is small and, as a result, the sodium inclusion reaction is kinetically reversible. Moreover, the symmetrical nature of the charge and discharge voltage curves indicates that the inclusion reaction is reversible. It shows the change of discharge capacity with the number of cycles at constant current. The first three and last three charge/discharge cycles were carried out at 0.1C current density (0.1C:16 mA/g) and the 50 charge/discharge cycles in between were carried out at 0.5C current density (80 mA/g). Hard carbon//O3- mAh/ g was obtained. Accordingly, there is no loss of capacity after 56 cycles. The measurements made show that the mental density capacity is high.TR TR TR TR TR