SU797089A1 - Method of bombarding objects by accelerated charged particle beam - Google Patents
Method of bombarding objects by accelerated charged particle beam Download PDFInfo
- Publication number
- SU797089A1 SU797089A1 SU782591616A SU2591616A SU797089A1 SU 797089 A1 SU797089 A1 SU 797089A1 SU 782591616 A SU782591616 A SU 782591616A SU 2591616 A SU2591616 A SU 2591616A SU 797089 A1 SU797089 A1 SU 797089A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- electromagnetic field
- irradiated object
- objects
- irradiated
- accelerated charged
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 17
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 2
- 239000004698 Polyethylene Substances 0.000 abstract 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 229920003023 plastic Polymers 0.000 abstract 1
- 239000004033 plastic Substances 0.000 abstract 1
- 229920000728 polyester Polymers 0.000 abstract 1
- -1 polyethylene Polymers 0.000 abstract 1
- 229920000573 polyethylene Polymers 0.000 abstract 1
- 230000001954 sterilising effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/04—Irradiation devices with beam-forming means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Radiation-Therapy Devices (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Изобретение относится к ускорительной технике, а конкретно - к способам облучения объектов пучком ускоренных зараженных частиц и может _ использоваться в радиационной тех- 9 нологии на базе электронных ускорителей.The invention relates to accelerator technology, namely - to methods for irradiating objects contaminated beam of accelerated particles can be used in radiation _ 9 tech- nology based electronic accelerators.
Известен способ облучения объектов пучком ускоренных заряженных частиц ЮA known method of irradiating objects with a beam of accelerated charged particles Yu
Недостаток; этого способа состоитв том, что его осуществление требует больших габаритов сканирующего устройства. Например,, для отключения 15 пучка ускоренных зараженных частиц на ширину 1 м переменное электромагнитное поле, сканирующее пучок, должно быть расположено на расстоянии около 3 м, причем это расстоя- 20 ние значительно увеличивается при увеличении ширины облучаемого материала. При увеличении амплитуды углового отклонения, при сохранении выбранного расстояния от электромаг- 25 нитного поля, сканирующего пучок, до облучаемого объекта увеличивается предельный угол падения пучка ускоренных заряженных частиц на облучаемый объект в результате чего возни- 3Q кает неоднородность облучения по ширине и глубине облучаемого объекта. Известен также способ облучения · объектов пучком ускоренных заряженных частиц путем формирования пучка, создания на его пути поперечного направлению движения пучка электромагнитного поля для обеспечения падения пучка на облучаемый объект, например, под углом 90° и сканирования пучка в электромагнитном поле [2]. Недостатком данного способа является то, что методы сканирования пучка в переменном электромагнитном поле, местоположение которого неизменно, требуют значительных расстояний от этого поля до облучаемого объекта (несколько метров) и соответственно больших габаритов сканирующего устройства. Резко увеличиваются габариты и вес локальной биологической защиты, которой снабжаются облучающие установки с электронными ускорителями.Disadvantage; This method consists in the fact that its implementation requires large dimensions of the scanning device. For example, to turn off 15 beams of accelerated infected particles to a width of 1 m, the alternating electromagnetic field scanning the beam should be located at a distance of about 3 m, and this distance will increase significantly with increasing width of the irradiated material. As the amplitude of the angular deviation increases, while maintaining the selected distance from the electromagnetic field that scans the beam to the irradiated object, the limiting angle of incidence of the beam of accelerated charged particles on the irradiated object increases, resulting in a 3Q irregularity of the irradiation across the width and depth of the irradiated object. There is also known a method of irradiating · objects with a beam of accelerated charged particles by forming a beam, creating in its path transverse to the direction of movement of the electromagnetic field beam to ensure that the beam falls on the irradiated object, for example, at an angle of 90 ° and scanning the beam in an electromagnetic field [2]. The disadvantage of this method is that the methods of scanning the beam in an alternating electromagnetic field, the location of which is constant, require significant distances from this field to the irradiated object (several meters) and, accordingly, large dimensions of the scanning device. The dimensions and weight of the local biological protection, which are supplied with irradiating installations with electronic accelerators, are sharply increasing.
Цель изобретения - обеспечение равномерности облучения поверхности обрабатываемых объектов любых, встрег дающихся на практике ширины и профиля .The purpose of the invention is to ensure uniform irradiation of the surface of the processed objects of any width and profile encountered in practice.
797089.797089.
Цель достигается тем, что сканирование пучка осуществляется путем пере· мещения электромагнитного поля в направлении линии, эквидистантной поверхности облучаемого объекта.The goal is achieved in that the beam is scanned by moving the electromagnetic field in the direction of the line equidistant to the surface of the irradiated object.
Предлагаемый способ обеспечивает одинаковую конфигурацию магнитного поля независимо от зоны действия магнитного поля, а следовательно, и то, что траектории отклонения пучка частиц всегда подобны в реэультатесканирования пучка путем переоснащения'! электромагнитного поля. Одинаковое возмущение пучка независимое от координат, в которых начинается действие возмущения упомянутого электромагнитного поля, способствует отклонению пучка частиц на один й тот же угол. Движение пучка частиц в направлении линии, эквидистантной поверхности облучаемого объекта, и поворот пучка в перемещаемом электромагнитном поле на один и тот же заданный угол преимущественно 90° обеспечивают однородность облучения вдоль поверхности облучаемого объекта и проникновение пуЧка ускоренных частиц на одинаковую глубину по всейThe proposed method provides the same configuration of the magnetic field regardless of the magnetic field, and therefore the fact that the deflection paths of the particle beam are always similar in re-scanning the beam by re-equipment '! electromagnetic field. The same perturbation of the beam, independent of the coordinates at which the action of the perturbation of the electromagnetic field begins, contributes to the deflection of the particle beam by the same angle. The movement of the particle beam in the direction of the line, the equidistant surface of the irradiated object, and the rotation of the beam in a moving electromagnetic field by the same given angle, mainly 90 °, ensure uniformity of irradiation along the surface of the irradiated object and the penetration of the beam of accelerated particles to the same depth throughout
При обработке объектов их протягивают в направлении перпендикулярном плоскости отклоненного в электромагнитном поле 3 пучка 2 (перпендикулярно плоскости чертежа).When processing objects, they are pulled in the direction perpendicular to the plane of the beam 2 deflected in the electromagnetic field 3 (perpendicular to the plane of the drawing).
Аналогичным путем можно добиться однородного облучения объектов самой разнообразной формы, например, имеющих эллипсоидальное сечение по-> ' верхностей, параболлическйй, гипёрбо|q лический или любой другой профиль. Предлагаемый способ облучения обеспечивает более однородное распределение ’поглощенной дозы излучения по всей поверхности й глубине облучаемых объектов самого раз15 личного профиля. Этот способ позволяет создать компактные облучающие устройства, кроме того, в несколько раз снижается вес биологической защиты для облучающих установок на базе электронных ускорителей.In a similar way, it is possible to achieve uniform irradiation of objects of various shapes, for example, having an ellipsoidal section of surfaces> parabolic, hyperbolic | q or any other profile. The proposed irradiation method provides a more uniform distribution of the absorbed radiation dose over the entire surface and depth of the irradiated objects of a very different profile. This method allows you to create compact irradiating devices, in addition, several times reduces the weight of biological protection for irradiating installations based on electronic accelerators.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU782591616A SU797089A1 (en) | 1978-03-30 | 1978-03-30 | Method of bombarding objects by accelerated charged particle beam |
DE19792901056 DE2901056A1 (en) | 1978-03-30 | 1979-01-12 | METHOD OF IRRADIATING OBJECTS WITH A BUNCH OF ACCELERATED CHARGED PARTICLES AND DEVICE FOR CARRYING OUT THIS PROCEDURE |
FR7907670A FR2421462A1 (en) | 1978-03-30 | 1979-03-27 | Modifying polymers by irradiating with rays of high energy particles - by generating electromagnetic field effective across path of rays and diverting them after impact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU782591616A SU797089A1 (en) | 1978-03-30 | 1978-03-30 | Method of bombarding objects by accelerated charged particle beam |
Publications (1)
Publication Number | Publication Date |
---|---|
SU797089A1 true SU797089A1 (en) | 1981-01-15 |
Family
ID=20754022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU782591616A SU797089A1 (en) | 1978-03-30 | 1978-03-30 | Method of bombarding objects by accelerated charged particle beam |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE2901056A1 (en) |
FR (1) | FR2421462A1 (en) |
SU (1) | SU797089A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4492873A (en) * | 1980-04-25 | 1985-01-08 | Dmitriev Stanislav P | Apparatus for electron beam irradiation of objects |
FR2495878A1 (en) * | 1980-12-09 | 1982-06-11 | Dmitriev Stanislav | Electron irradiation appts. - using electron beam with rectangular cross=section, esp. for the chemical treatment of objects such as polymer foil or textiles |
GB8601420D0 (en) * | 1986-01-21 | 1986-02-26 | Welding Inst | Controlling charged particle beams |
KR900701016A (en) * | 1988-01-22 | 1990-08-17 | 롤프 쉬텐바카 | Metal and ceramic surface treatment method and apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB789456A (en) * | 1955-02-28 | 1958-01-22 | British Dielectric Res Ltd | Improved method of treating materials with high energy particles |
US2897365A (en) * | 1956-09-28 | 1959-07-28 | High Voltage Engineering Corp | Irradiation method and apparatus |
US3104321A (en) * | 1960-06-09 | 1963-09-17 | Temescal Metallurgical Corp | Apparatus for irradiating plastic tubular members with electrons deflected by a non-uniform magnetic field |
FR1421596A (en) * | 1964-11-06 | 1965-12-17 | Western Electric Co | Magnetic methods and devices for manipulating a charged particle beam |
DE1808719C3 (en) * | 1968-11-13 | 1974-04-25 | Steigerwald Strahltechnik Gmbh, 8000 Muenchen | Method and device for treating surfaces, in particular for hardening paint layers, by irradiation with charge carrier beams |
FR2396392A1 (en) * | 1977-07-01 | 1979-01-26 | Cgr Mev | BI-SIDED IRRADIATION DEVICE OF A TARGET BY MEANS OF A CHARGED PARTICULATE ACCELERATOR |
-
1978
- 1978-03-30 SU SU782591616A patent/SU797089A1/en active
-
1979
- 1979-01-12 DE DE19792901056 patent/DE2901056A1/en not_active Ceased
- 1979-03-27 FR FR7907670A patent/FR2421462A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE2901056A1 (en) | 1979-10-11 |
FR2421462A1 (en) | 1979-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108335777A (en) | Irradiation processing device | |
SE9401300D0 (en) | Rotating cylinder collimator for collimation of ionizing, electromagnetic radiation | |
CN1331902A (en) | Method for treating target volume with particle beam and device implementing same | |
ATE227884T1 (en) | ION BEAM SCANNING METHOD AND APPARATUS | |
SU797089A1 (en) | Method of bombarding objects by accelerated charged particle beam | |
SE7904360L (en) | SWITCHING SYSTEM FOR CHARGED AND NEUTRAL PARTICLES | |
US4201920A (en) | Apparatus for irradiating a target on two opposite faces by means of an accelerated charged particle beam | |
Ozer | Electron beam irradiation processing for industrial and medical applications | |
US3942017A (en) | Apparatus for irradiation with electron beam | |
Shochet et al. | Measurement of the decay rate for the process K L 0→ μ+ μ− | |
CN102511457B (en) | Method and device which utilize X-rays to carry out log quarantine irradiation | |
US3714416A (en) | Method and apparatus for irradiation treatment of elongate materials | |
CN207742944U (en) | irradiation processing device | |
RU1797392C (en) | Device for irradiating by beam of particles | |
RU2093188C1 (en) | Electronic sterilization device | |
Laizier et al. | 1st International meeting on radiation processing Use of the CTA dosimetric film for minute investigation of absorbed doses in complex materials | |
EP0237165A3 (en) | Treating work pieces with electro-magnetically scanned ion beams | |
SU1156705A1 (en) | Method of acting on biological objects | |
Marinello et al. | The study of a swept electron beam in order to apply Boag's theory for calculation of the collection efficiency: I. Beam and swept area characteristics | |
SU1267489A1 (en) | Method of exposing materials to radiation | |
Kim et al. | Modeling and simulation of the electron beam cured polyester using Geant4 | |
CN101441184A (en) | Method and device for performing crude wood quarantine irradiation by X ray | |
RU94043454A (en) | Method and device for emitting electron beam into the atmosphere | |
Rohdjeß et al. | Status of the Siemens particle therapy accelerators | |
Schraube et al. | Fast and high-energy neutron detection with nuclear track detectors: Results of the European Joint Experiments 1992/93 |