SE501249C2 - Methods and apparatus for the thermal gasification of solid biofuels in two stages - Google Patents
Methods and apparatus for the thermal gasification of solid biofuels in two stagesInfo
- Publication number
- SE501249C2 SE501249C2 SE9301620A SE9301620A SE501249C2 SE 501249 C2 SE501249 C2 SE 501249C2 SE 9301620 A SE9301620 A SE 9301620A SE 9301620 A SE9301620 A SE 9301620A SE 501249 C2 SE501249 C2 SE 501249C2
- Authority
- SE
- Sweden
- Prior art keywords
- gasification
- current
- gas
- carburettor
- counter
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/22—Arrangements or dispositions of valves or flues
- C10J3/24—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
- C10J3/26—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Processing Of Solid Wastes (AREA)
- Industrial Gases (AREA)
Abstract
Description
15 20 25 30 IN.) 501 249 Ett tredje syfte är att skapa förutsättningar för en högre total systemverkningsgrad genom möjlighet till samspel mellan förgasaren och de övriga komponenterna i det kompletta processystemet. 15 20 25 30 IN.) 501 249 A third purpose is to create conditions for a higher total system efficiency through the possibility of interaction between the carburettor and the other components in the complete process system.
Uppfinningen avser sätt och anordning for termisk förgasning av fasta biobränslen i atminstone tvä steg kännetecknad av att ett steg utgöres av förpyrolys med koldioxidavgang i motström och att ett andra steg utgöres av slutförgasning vid hög temperatur i medströmi Uppfinningen ska nu beskrivas närmare med hjälp av ritningen, Figur 1 och Figur 2. Figur l beskriver principen. Figur 2 anvisar en specifik utföringsform.The invention relates to a method and device for thermal gasification of solid biofuels in at least two stages, characterized in that one stage consists of prepyrolysis with carbon dioxide evolution in countercurrent and that a second stage consists of final gasification at high temperature in cocurrent. The invention will now be described in more detail with the drawing. Figure 1 and Figure 2. Figure 1 describes the principle. Figure 2 indicates a specific embodiment.
Den nya förgasaren kan beskrivas som en tvástegsför- gasare, eller i vissa utföringsformer som en flerstegsförgasare, alternativt som en motströms- medströmsforgasare. Den senare beteckningen tydliggör uppfinningstanken. Förpyrolysen med preferentiell avgång av koldioxid sker i motström medan slutförgasningen genomföres i medström ungefär som i en vanlig medströmsförgasare av Imbert~typ.The new carburettor can be described as a two-stage carburettor, or in some embodiments as a multi-stage carburettor, alternatively as a countercurrent co-current carburettor. The latter designation clarifies the inventive concept. The prepyrolysis with preferential emission of carbon dioxide takes place in countercurrent, while the final gasification is carried out in cocurrent, much like in an ordinary cocurrent carburettor of the Imbert type.
Det sönderdelade fasta biobranslet föres frän förrädsbehallaren (1) via inmatningsanordningen (2) till motströmsdelen (3). Efter genomförd förpyrolys matas bränslet vidare via överföringsdelen (4) till medströmsdelen (5). Askáterstoden tas emot av asksamlaren (6) och matas sedan ut via askutmataren (7).The decomposed solid biofuel is fed from the storage tank (1) via the feed device (2) to the countercurrent part (3). After the pre-pyrolysis has been completed, the fuel is fed on via the transfer part (4) to the co-current part (5). The ashtray stand is received by the ash collector (6) and then discharged via the ash dispenser (7).
Förpyrolysen genomföres företrädesvis med hjälp av heta rökgaser med hög koldioxidhalt och lag syrgashalt som matas in via ledningen (8). Avgående pyrolysgas innehàllande koldioxid, vattenånga, lätta föreningar som metanol, aceton, etc.The prepyrolysis is preferably carried out by means of hot flue gases with a high carbon dioxide content and a low oxygen content which is fed in via the line (8). Exiting pyrolysis gas containing carbon dioxide, water vapor, light compounds such as methanol, acetone, etc.
(“Holzgeist“) samt spar av tjärföreningar avledes via ledningen (9). Förvärmd förgasningsluft tillfores förgasningsdelen via ledningen (10). Bildad bränslegas avgàr slutligen via ledningen (11). 10 15 20 25 30 501 249 Motströms-medströmsförgasaren kombinerar fördelarna hos de kanda motströmsförgasarna och medströmsförgasarna. Tack vare den preferentiella avgången av koldioxid i förpyrolyssteget höjs bränslegasens bränslevärde avsevärt. Tjärhalten i bränslegasen blir ännu lägre än vid en konventionell medströmsförgasare genom avgången av tjära i förpyrolyssteget.("Holzgeist") and traces of tar compounds are diverted via the line (9). Preheated gasification air is supplied to the gasification section via the line (10). Formed fuel gas is finally discharged via the line (11). 10 15 20 25 30 501 249 The countercurrent cocurrent carburettor combines the advantages of the known countercurrent carburetors and cocurrent carburetors. Thanks to the preferential release of carbon dioxide in the pre-pyrolysis stage, the fuel value of the fuel gas is significantly increased. The tar content of the fuel gas becomes even lower than with a conventional co-current carburettor due to the departure of tar in the pre-pyrolysis step.
Flerstegsprincipen ger stor frihet för processkombinationer med olika förbrukare av bränslegasen, t.ex. ett bränslecellkraft- verk, gasturbiner eller en dieselmotor, genom de möjligheter som fyra processgasflöden ger istället för två som vid de konventionella förgasarna. Avgas från en dieselmotor kan t.ex. användas för forpyrolyssteget. Med hjälp av s.k. pinch-teknologi kan processystemen optimeras till maximal totalverkningsgrad.The multi-step principle provides great freedom for process combinations with different consumers of the fuel gas, e.g. a fuel cell power plant, gas turbines or a diesel engine, through the possibilities that four process gas flows provide instead of two as with the conventional carburetors. Exhaust from a diesel engine can e.g. be used for the prepyrolysis step. With the help of so-called pinch technology, process systems can be optimized for maximum overall efficiency.
Det tekniska utförandet av motströms- medströmsförgasaren innebär inga svårigheter för fackmannen. Konstruktiva grepp som tillämpas i dagens medströms- och motströmsförgasare kan direkt utnyttjas. Teknikens nuvarande ståndpunkt är väl dokumenterad i bl.a.den svenska s.k. gengasboken ("Gengas“, publicerad av IVA, 1950)- Överföringsdelen (4) kan utformas på många olika sätt beroende pä det aktuella bränslets art. Denna del kan också undvaras enligt exemplet nedan. Tack vare den förhållandevis låga temperaturen kan kända slusskonstruktioner, matarskruvar, sektormatare, m.m. utnyttjas. Gastrycket i tillförselledningarna (8) och (10) regleras så att tryckskillnaden mellan de båda ingående gasströmmarna minimeras för att undvika gasläckage mellan medströms- och motströmsdelarna.The technical design of the countercurrent cocurrent carburettor does not present any difficulties for those skilled in the art. Constructive grips applied in today's co-current and counter-current carburetors can be used directly. The current state of the art is well documented in, among other things, the Swedish so-called gengasboken ("Gengas", published by IVA, 1950) - The transfer part (4) can be designed in many different ways depending on the nature of the fuel in question.This part can also be dispensed with according to the example below.Thanks to the relatively low temperature, known lock constructions, feed screws The gas pressure in the supply lines (8) and (10) is regulated so that the pressure difference between the two input gas streams is minimized to avoid gas leakage between the co-current and counter-current parts.
Reaktionsbetingelserna kan varieras iom rått vida gränser beroende på biobränslets art och andra faktorer. Förpyrolys- steget genomföras till en sluttemperatur inom området 250 C till 400 C, företrädesvis 270-300 C. Vid 300 C initieras vid många biobränslen, särskilt trädbränslen, exoterma pyrolysreaktioner, så att temperaturen under adiabatiska förhållanden stiger till omkring 400 C. Temperaturprofilen i slutsteget visar ett maximum 501 249 UI 10 15 20 25 30 pa upp mot 900 C beroende pa detaljutformningen av reduktionszonen (se gengasboken).The reaction conditions can be varied within raw limits depending on the nature of the biofuel and other factors. The pre-pyrolysis step is carried out to a final temperature in the range 250 ° C to 400 ° C, preferably 270-300 ° C. At 300 ° C, many biofuels, especially wood fuels, initiate exothermic pyrolysis reactions, so that the temperature rises to about 400 ° C under adiabatic conditions. shows a maximum of 501 249 UI 10 15 20 25 30 pa up to 900 C depending on the detailed design of the reduction zone (see gengas book).
I vissa fall kan bada stegen uppdelas i ytterligare steg, t.ex. genom tillförsel av anga i den hetaste delen av nedstromssteget eller tillforsel av olika slag av tillganglig avgas pa lämpliga nivaer i motstromssteget, t.ex. for fortorkning.In some cases, both steps can be divided into additional steps, e.g. by supplying steam in the hottest part of the downstream stage or supplying various kinds of available exhaust gas at suitable levels in the countercurrent stage, e.g. for pre-drying.
Figur 2 visar en specifik utforingsform av den nya forgasaren avsedd for tradbransleflis och termiska effekter pa nagra MW.Figure 2 shows a specific embodiment of the new carburettor intended for wire fuel chips and thermal effects on some MW.
Tvarsnittet ar rektangulart med matten 600 x 1200 utom i den nagot fortrangda forgasningszonen. Höjden ar ungefär 6 meter.The cross section is rectangular with the mat 600 x 1200 except in the slightly displaced gasification zone. The height is about 6 meters.
Beteckningarna ar samma som i Figur 1. Denna utforingsform har ingen sarskild overforingsdel (4) visad i Figur 1. Gas- flödena styrs i stallet med flaktarna (13) och (15) som ar anordnade i, eller efter, respektive gasprocessystem (12) och (14) för vidarebehandling av förpyrolysgas, respektive branslegas. Valvbildningar i branslepelaren elimineras av en rörare (16) med armar (17). Roraren (16) drivs runt intermittent med motorn (18).The designations are the same as in Figure 1. This embodiment has no special transfer part (4) shown in Figure 1. The gas flows are controlled in the stable with the floats (13) and (15) which are arranged in, or after, the respective gas process system (12). and (14) for further treatment of prepyrolysis gas and industry gas, respectively. Arch formations in the industry column are eliminated by a stirrer (16) with arms (17). The rudder (16) is driven around intermittently with the motor (18).
Forgasaren i Figur 2 ar som synes lika uppbyggd som en med- stromsförgasare enligt teknikens nuvarande standpunkt - om det inte vore for anslutningarna (8) och (9), som forvandlar for- gasaren till en motstroms-medstromsforgasare enligt upp- finningen.The carburettor in Figure 2 is apparently as structured as a co-current carburettor according to the current state of the art - if it were not for the connections (8) and (9), which transform the carburettor into a counter-current co-current carburetor according to the invention.
Den tekniska verkan av uppfinningen kan latt verifieras genom att forgasaren ocksa kan koras som en renodlad medstroms- förgasare eller motstromsforgasare. Laboratorieexperiment har visat den för uppfinningen karaktäristiska höjningen av branslevardet med ett tiotal procentenheter genom reducerad koldioxidhalt och reducerad kvavgashalt tack vare minskat behov av forgasningsluft.The technical effect of the invention can be easily verified by the fact that the carburettor can also be run as a pure co-current carburettor or counter-current carburetor. Laboratory experiments have shown the characteristic increase of the industry value by the invention by about ten percentage points through reduced carbon dioxide content and reduced nitrogen gas content due to reduced need for gasification air.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9301620A SE501249C2 (en) | 1993-05-11 | 1993-05-11 | Methods and apparatus for the thermal gasification of solid biofuels in two stages |
PCT/SE1994/000420 WO1994026849A1 (en) | 1993-05-11 | 1994-05-06 | Gasifier |
AU67633/94A AU6763394A (en) | 1993-05-11 | 1994-05-06 | Gasifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9301620A SE501249C2 (en) | 1993-05-11 | 1993-05-11 | Methods and apparatus for the thermal gasification of solid biofuels in two stages |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9301620D0 SE9301620D0 (en) | 1993-05-11 |
SE9301620L SE9301620L (en) | 1994-11-12 |
SE501249C2 true SE501249C2 (en) | 1994-12-19 |
Family
ID=20389904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9301620A SE501249C2 (en) | 1993-05-11 | 1993-05-11 | Methods and apparatus for the thermal gasification of solid biofuels in two stages |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU6763394A (en) |
SE (1) | SE501249C2 (en) |
WO (1) | WO1994026849A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007012452B4 (en) | 2007-03-15 | 2014-01-16 | SynCraft Enegineering GmbH | carburettor |
FI126357B (en) | 2014-11-14 | 2016-10-31 | Teknologian Tutkimuskeskus Vtt Oy | Method and apparatus for gasification of raw material and gaseous product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5940184B2 (en) * | 1978-09-12 | 1984-09-28 | 日立造船株式会社 | Combustible waste processing furnace |
-
1993
- 1993-05-11 SE SE9301620A patent/SE501249C2/en unknown
-
1994
- 1994-05-06 WO PCT/SE1994/000420 patent/WO1994026849A1/en active Application Filing
- 1994-05-06 AU AU67633/94A patent/AU6763394A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU6763394A (en) | 1994-12-12 |
WO1994026849A1 (en) | 1994-11-24 |
SE9301620L (en) | 1994-11-12 |
SE9301620D0 (en) | 1993-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4590760A (en) | Medium-load power generating station with an integrated coal gasification plant | |
US4663931A (en) | Power generating station with an integrated coal gasification plant | |
US5688296A (en) | Control system for IGCC's | |
US8105403B2 (en) | Integration of an integrated gasification combined cycle power plant and coal to liquid facility | |
JPS60243305A (en) | Gas turbine/steam turbine composite power plant | |
WO2005124232A1 (en) | Method for energy conversion minimizing oxygen consumption | |
US10538712B2 (en) | Micro-gasifier array networking | |
SE503064C2 (en) | Ways to extract energy by gasification, and therefore the intended reactor | |
US20230020698A1 (en) | Apparatus and method for utilizing off-gases from a power-to-x system | |
SE501249C2 (en) | Methods and apparatus for the thermal gasification of solid biofuels in two stages | |
US20050109010A1 (en) | Pulse detonation power system and plant with fuel preconditioning | |
US9957888B2 (en) | System for generating syngas and an associated method thereof | |
BR112019011989A2 (en) | method and device for producing organic compounds from biogas | |
Matveev et al. | Efficiency of a hybrid-type plasma-assisted fuel reformation system | |
US20230114999A1 (en) | Method and apparatus for production of hydrogen using rotary generated thermal energy | |
WO2010128886A2 (en) | Method for producing hydrocarbons from gaseous products of the plasma treatment of solid wastes (variants) | |
SE1001004A1 (en) | Production of carbon in indirect heated gasification | |
GB2134601A (en) | Electric power generating plant with energy storage | |
BG62008B1 (en) | Method for hydrocarbons combustion | |
RU2679770C1 (en) | Thermal-chemical generator | |
RU64210U1 (en) | TECHNOLOGICAL LINE FOR PROCESSING AQUEO-CARBON MIXTURE IN SYNTHETIC MOTOR FUELS | |
US10486968B2 (en) | Plant for production of hydrogen and method for operating this plant | |
US3476535A (en) | Hydrogen generator including desulfurization with diffused hydrogen feedback | |
CN205151763U (en) | Accurate control steam flow's natural gas steam hydrogen production system | |
CN104152200A (en) | Water-saving type compressed natural gas production system and production method thereof |