SE127240C1 - - Google Patents
Info
- Publication number
- SE127240C1 SE127240C1 SE127240DA SE127240C1 SE 127240 C1 SE127240 C1 SE 127240C1 SE 127240D A SE127240D A SE 127240DA SE 127240 C1 SE127240 C1 SE 127240C1
- Authority
- SE
- Sweden
- Prior art keywords
- methanol
- catalyst
- tetrahydropyran
- dehydration
- hydrogenation
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Uppfinnare: R. R. Whetstone. Inventor: R. R. Whetstone.
Prioritet begard frdn den 11 april 1947 (Amerikas ftirenta stater). Priority was given on April 11, 1947 (United States States).
Uppfinningen avser ett satt att framstalla cyklopentankarboxaidehyder och derivat darav. Narinare bestamt avser uppfinningen ett satt att framstalla cyklopentan-karboxaldehyder och derivat daray, vilket innefattar katalytisk dehydratisering av en tetrahydropyran-2-metanol i angfas till bildning av en cyklopentan-karboxaldehyd, innehallande samma antal kolatomer som tetrahydropyran-2-metanolen. Den salunda framstallda cyklopentan-karboxaklehyden kan pa kant satt omvandlas till olika derivat av densamma eller ock kan enligt en utforingsform av uppfinningen omvandlingen, t. ex. genom hydrering, alminstone delvis ske samtidigt med dehydratiseringssteget i processen. The invention relates to a process for producing cyclopentanecarboxamide hydrides and derivatives thereof. More particularly, the invention relates to a process for the preparation of cyclopentane-carboxaldehydes and derivatives thereof, which comprises catalytic dehydration of a tetrahydropyran-2-methanol in the off-phase to form a cyclopentane-carboxaldehyde containing the same number of carbon atoms as the tetrahydropyran-2-methanol. The cyclopentane-carboxacyl hydride thus prepared can be optionally converted into various derivatives thereof or, according to an embodiment of the invention, the conversion, e.g. by hydrogenation, at least in part simultaneously with the dehydration step of the process.
Processen enligt uppfinningen dr generellt anvandbar pa omvandlingen av tetrahydropyran2-metanoler, som kunna bringas till angfas under de for processen gallande villkoren, till cyklopentan-karboxaldehyder, som have samma antal kolatomer som den anyanda tetrahydropyran-2-metanolen. Da har de allmanna termerna Rrt tetrahydropyran.-2-metanob och »tetrahydropyran-2-metanoler# anvandas, avses darmed sadana derivat av tetrahydropyran, som hava en metanolgrupp (t. ex. en hydroximetylgrupp) direkt forenad med en kolatom, som dr bunden till den heteroeykliska syreatomen i tetrahydropyranringen. The process according to the invention is generally applicable to the conversion of tetrahydropyran-2-methanols, which can be brought about under the conditions prevailing in the process, into cyclopentanecarboxaldehydes, which have the same number of carbon atoms as the other tetrahydropyran-2-methanol. Thus, the general terms Rrt tetrahydropyran-2-methanob and tetrahydropyran-2-methanols are used, by which are meant derivatives of tetrahydropyran which have a methanol group (eg a hydroxymethyl group) directly attached to a carbon atom which is attached thereto. to the heterocyclic oxygen atom in the tetrahydropyran ring.
Tetrahydropyranringen kan hava ansluten till sig blott metanol-substituentgruppen, sasom f al-let är vid den specifika fOreningen tetrahydropyran-2-metanol, eller ock kan den innehalla substituentgrupper forutom metanolgruppen. Sa.- dana substituentgrupper kunna exempelvis vara alkyl, aryl, alkaryl, aralkyl, cykloalkyl, alkeny1, cykloalkenyl, alkenaryl, aralkenyl, eller dylikt. Processen enligt uppfinningen anvandes med for-del for omvandling av tetrahydropyran-2-metanoler, som innehalla blott relativt joke reaktiva substituentgrupper eller inga sadana grupper utOver metanolgruppen. Uppfinningen anvandes darftir lampligen till omvandling av sadana tetrahydropyran-2-metanoler, som innehalla blott mattade och/eller aromatiska bindningar av kol vid kol, med andra ord, till omvandling av tetrahydropyran-2-metanol och dess i karnan alkyl- och/eller arylsubstituerade produkter. Bland de omvandlingar, som falla mom ramen for uppfinningen, ma exempelvis namnas tetrahydropyran-2-metanoI till cyklopentan-karboxaldehyd; 2,6-dimetyltetrahydropyran-2-metanol till dimetylcyklopentan-karboxaldehyd; 3,4-dimetyltetrahydropyran-2-metano1 till dimetylcyklopentan - karboxaldehyd; 5-metyltetra- hydropyran-2- metanol till metylcyklopentan-karboxaldehyd; 2,5-dietyltetrahydropyran-2-metanol till dietylcyklopentan-karboxaldehyd; 3,4-dipropyitetrahydropyran-2-metanol till dipropyl-cyklopentankarboxaldehyd; 2-mety1-5-etylLetrapyran-2-metanol till metyletylcyklopentan-karboxaldehyd; fenyltetrahydropyran-2-metanol till fenykyklapentan-karboxaldehyd; 3-cyklohexyltetrahydropyran-2-meLanol till cyklohexyleyklopentan-karboxaldehyd; 3-feny1-4-metyI-tetrahydropyran-2- metano1 till metylfenykyklopentan-karboxaidehyd, samt omvandlingar av analoga och homologa substituerade tetrahydropyran-2-metanoler till substituerade cyklopentan-karboxaldehyder. The tetrahydropyran ring may have attached to it only the methanol substituent group, as is the case with the specific compound tetrahydropyran-2-methanol, or it may contain substituent groups in addition to the methanol group. Such substituent groups may be, for example, alkyl, aryl, alkaryl, aralkyl, cycloalkyl, alkenyl, cycloalkenyl, alkenaryl, aralkenyl, or the like. The process of the invention is used to advantage for the conversion of tetrahydropyran-2-methanols, which contain only relatively joke reactive substituent groups or no such groups beyond the methanol group. The invention was subsequently used aptly for the conversion of such tetrahydropyran-2-methanols, which contain only matte and / or aromatic bonds of carbon to carbon, in other words, to the conversion of tetrahydropyran-2-methanol and its carnally alkyl- and / or aryl-substituted products. Among the conversions which fall within the scope of the invention are, for example, tetrahydropyran-2-methanol to cyclopentanecarboxaldehyde; 2,6-dimethyltetrahydropyran-2-methanol to dimethylcyclopentanecarboxaldehyde; 3,4-dimethyltetrahydropyran-2-methanol to dimethylcyclopentane - carboxaldehyde; 5-methyltetrahydropyran-2-methanol to methylcyclopentanecarboxaldehyde; 2,5-diethyltetrahydropyran-2-methanol to diethylcyclopentanecarboxaldehyde; 3,4-dipropylethetrahydropyran-2-methanol to dipropyl-cyclopentanecarboxaldehyde; 2-methyl-5-ethylLetrapyran-2-methanol to methylethylcyclopentanecarboxaldehyde; phenyltetrahydropyran-2-methanol to phenycyclapentanecarboxaldehyde; 3-cyclohexyltetrahydropyran-2-methanol to cyclohexylcyclopentanecarboxaldehyde; 3-phenyl-4-methyl-tetrahydropyran-2-methanol to methylphenycyclopentanecarboxamide, and conversions of analogous and homologous substituted tetrahydropyran-2-methanols to substituted cyclopentanecarboxaldehydes.
Ett lampligt satt att framstalla tetrahydropyran-2-metanoler, som kunna omvandlas enligt uppfinningen till motsvarande cyklopentan-karboxaldehyder, t. ex. tetrahydropyran-2-metanol och i karnan alkylsubstituerade produkter darav, bestar i att utsatta en a43-olefiniskt omattad aldehyd sasom akrolein eller en av dess home-lager, lampligen en av dess /3-metylen-homologer, for en forhojd temperatur i narvaro av ett polymerisering forhindrande amne for att astadkomma kondensering eller »dimerisering» av aldehyden till en forening i 3-4-dihydro-1,2- dihydro-1,2-pyran-2-karboxakiehydserien. Exempelvis kan en lOsning av akrolein eller av art homolog a,i3-omattad aldehyd i ungefar lika vikt bensol, innehallande c:a 1 % hydrokinon, raknat pit aIdehydvikten, upphettas till c:a 170°C under flora timmar och under ett tryck, som är Lillrdekligt for att halla blandningen i vatskeform. Vid slutet av denna tidsperiod kan man ur blandningen ntvinna, t. ex. genom fraktionerad 2— — destination dihydropyran-karboxaldehyden, som bildats genom den omattade aldehydens kondensering. Dihydro-pyran-karboxaldehyden kan flarpa omvandlas genom hydrering till motsvarande tetrahydropyran-2-metanol. Hydreringen kan utforas s, att dihydropyranringen mattas och formylgruppen reduceras till en hydroximetylgrupp i ett och samma steg. En Raneynickelkatalysator är bland andra lamplig som katalysator vid hydreringen. Relativt stranga hydreringsvillkor maste anvandas, t. ex. ternperaturer under hydreringen overstigande ° C och vatetryck over c:a kg/cm'. Narvaron av ett losningsmedel, &Isom metanol, under behandlingen med vate her aven en gynnsam inverkan pa omvandlingen till tetrahydropyran2-metanol. Efter hydreringens avslutning ock katalysatorns och losningsmedlets avlagsnande kan tetrahydropyran-2-metanolen renas, t. ex. genom fraktionerad destillation, innan den anvandes i processen enligt uppfinningen eller ock kan, cm sa_ onskas, den mindre rena blandningen I sin helhet behandlas enligt uppfinningen. Det torde utan vidare inses, att aven andra metoder kunna anvandas for framstallning av tetrahydropyran-2-metanolerna, pa vilka metoden enligt uppfinningen tillampas, och att uppfinningen dãr- Törfar tolkas sã, att den är begransad till de speciella representanter for den har definierade klassen av tetrahydropyran-2-metanoler, som kunna framstallas av a,f3-olefiniskt omattade aldehyder i enlighet med vad som ovan beskrivits. It is convenient to prepare tetrahydropyran-2-methanols which can be converted according to the invention into the corresponding cyclopentanecarboxaldehydes, e.g. tetrahydropyran-2-methanol and in carnan alkyl-substituted products thereof, consists in subjecting an α43-olefinically unsaturated aldehyde such as acrolein or one of its home layers, preferably one of its β-methylene homologues, to an elevated temperature in the presence of a polymerization preventing agent to effect condensation or "dimerization" of the aldehyde to a compound in the 3-4-dihydro-1,2-dihydro-1,2-pyran-2-carboxyhydrogen series. For example, a solution of acrolein or of homologous α, β-unsaturated aldehyde in approximately equal weight of benzene, containing about 1% hydroquinone, shaved pit the aldehyde weight, can be heated to about 170 ° C for several hours and under a pressure, which is Lillrdekligt to keep the mixture in liquid form. At the end of this time period, one can recover from the mixture, e.g. by fractional 2 - - destination dihydropyran-carboxaldehyde formed by the condensation of the unsaturated aldehyde. The dihydro-pyran-carboxaldehyde can be rapidly converted by hydrogenation to the corresponding tetrahydropyran-2-methanol. The hydrogenation can be carried out so that the dihydropyran ring is matted and the formyl group is reduced to a hydroxymethyl group in one and the same step. A Raney nickel catalyst is, among other things, suitable as a catalyst during hydrogenation. Relatively strict hydrogenation conditions must be used, e.g. temperatures during the hydrogenation exceeding ° C and water pressure above about kg / cm '. The presence of a solvent, & Isom methanol, during the treatment with water here also has a beneficial effect on the conversion to tetrahydropyran2-methanol. After completion of the hydrogenation and removal of the catalyst and solvent, the tetrahydropyran-2-methanol can be purified, e.g. by fractional distillation, before it is used in the process according to the invention or, if desired, the less pure mixture can be treated in its entirety according to the invention. It will be readily appreciated that other methods may be used for the preparation of the tetrahydropyran-2-methanol to which the method of the invention is applied, and that the invention therefor be construed as being limited to the particular representatives of the class defined herein. of tetrahydropyran-2-methanols, which can be prepared from α, β-olefinically unsaturated aldehydes as described above.
Sasom katalysator vid foreliggande process kan man anvanda ett eller flera av de material, som i tekniken arc kanda och vanligen benamnas ,dehydratiseringskatalysatorer, d. v. S. amnen, som hava formaga att katalytiskt beframja dehydratisering av organiska fOreningar genom avspaltning av vatten frau den organiska molekylen med eller utan samtidig omlagring av molekylens kolskelett. Katalysatorn, som kan anvandas vid foreliggande process, är en fast dehydratiseringskatalysator av oorganisk natur. En grupp aV amnen, som tillhUra dylika katalysatorer, omfattar oxiderna av flervarda me-taller, tillhorande grupperna II, III, och. IV i det periodiska systemet. Till derma grupp hOra exempelvis de tvavarda metalloxiderna, sasom zinkoxid, magnesiumoxid och kalciumoxid, och oxider av metaller, som kunna hava hogre valenstal an 2, sasom aluminiumoxid, toriumoxid, blywdd, kiselwdd, dtanoxid och ceroxid. Amnen, som under de vid processen radande forhallandena kunna omvandlas, t. ex. genom dehydratisering, till katalytiskt aktiv metalloxid eller blandning av oxider, sa.som hydrat av de namnda oxiderna, falla aven Mom namnda grupp av anvandbara katalysatorer. As catalyst in the present process, one or more of the materials commonly known in the art may be used, dehydration catalysts, i.e., the substances which have been capable of catalytically promoting dehydration of organic compounds by cleavage of water from the organic molecule with or without simultaneous rearrangement of the molecular skeleton of the molecule. The catalyst which can be used in the present process is a solid dehydration catalyst of an inorganic nature. One group of the substances belonging to such catalysts comprises the oxides of polyvalent metals, belonging to groups II, III, and. IV in the periodic table. This group includes, for example, the divalent metal oxides, such as zinc oxide, magnesium oxide and calcium oxide, and oxides of metals, which may have higher valence numbers than 2, such as alumina, thorium oxide, lead, silica, dtan oxide and ceroxide. The substances that can be transformed during the conditions prevailing during the process, e.g. by dehydration, to catalytically active metal oxide or mixture of oxides, such as hydrates of the said oxides, the said group of useful catalysts also fall.
Oorganiska salter, som kunna verka som dehydratiseringskatalysatorer, kunna aven anvandas vid processen enligt uppfinningen. Sadana salter kunna vara sura, neutrala eller basiska. Oorganiska salter, som aro aktiva som dehydra tiseringskatalysatorer, innefatta fosfater, silikater halogenider, aluminater och andra aktiva salter av de flervarda metallerna i grupperna II, III och IV av det periodiska systemet. I uttrycket dosfater» innefattas Avg ortofosfater som metafosfater. Bland fosfater av flervarda metaller ma namnas kalciumfosfater, basiskt aluminiumfosfat, magnesiumfosfat, blyfosfat, kalciummagnesiumfosfat etc. Komplexa sura fosfater, exempelvis den fosforsyrekatalysator, som bildas genom kalcinering av en blandning av fosforsyra och kiselhaltigt material, sasom diatomacejord, och som saljes under benamningen »fast fosforsyrekatalysator» kan aven anvandas som katalysator. (I den vanliga kommersiella formen kan den fasta fosforsyrekatalysatorn giva upphov till starka sidoreaktioner, cm den anvandes utan foregaende modifierande behandling. I dylika fall kan dess anvandbarhet for processen forbattras genom en, ftiregaende behandling med overhettad anga for att minska eller modifiera dess katalysatiska aktivitet). Andra salter, som arc aktiva som dehydratiseringskatalysatorer, och som kunna anvandas vid processen enligt uppfinningen, aro exempelvis kalciumsulfat, zinksulfat, aluminiumsulfat, toriumsulfat, blysulfat, zinkklorid, jarnklorid, nickelsulfat och dylikt. Inorganic salts, which can act as dehydration catalysts, can also be used in the process according to the invention. Such salts may be acidic, neutral or basic. Inorganic salts, which are active as dehydration catalysts, include phosphates, silicates, halides, aluminates and other active salts of the polyvalent metals in groups II, III and IV of the Periodic Table. The term dosages »includes Avg orthophosphates as metaphosphates. Among the phosphates of polyvalent metals are calcium phosphates, basic aluminum phosphate, magnesium phosphate, lead phosphate, calcium magnesium phosphate, etc. Complex acid phosphates, for example the phosphoric acid catalyst formed by calcination of a mixture of phosphoric acid and silica phosphoric acid catalyst »can also be used as a catalyst. (In the usual commercial form, the solid phosphoric acid catalyst may give rise to strong side reactions, if used without prior modifying treatment. In such cases, its usefulness to the process may be improved by a prior treatment with superheated effect to reduce or modify its catalytic activity) . Other salts which are active as dehydration catalysts and which can be used in the process of the invention are, for example, calcium sulphate, zinc sulphate, aluminum sulphate, thorium sulphate, lead sulphate, zinc chloride, iron chloride, nickel sulphate and the like.
De katalytiskt aktiva komplexa oorganiska polysyrorna, sasom kiselvolfrainsyra, kiselvanadinsyra, titanmolybdensyra, manganmolyb densyra och dylikt, kunna aven anvandas som dehydratiseringskatalysatorer. The catalytically active complex inorganic polyacids, such as silicon tungstic acid, silicon vanadic acid, titanium molybdic acid, manganese molybdic acid and the like, can also be used as dehydration catalysts.
Dehydratiseringskatalysatorn kan bestá uteslutande av en katalytiskt aktiv fOrening eller ock kan den vara en blandning av tva eller flera sadana fOreningar. Blandningar av odder, girdl mekaniska som kemiskt forenade blandningar av metalloxider, blandningar av salter eller blandningar av en metalloxid med ett katalytiskt aktivt metallsalt kunna ocksa anvandas. Exempelvis kan en metalloxid, sasom aluminiumoxid, vara blandad med en oxid av en annan metall eller ett salt av cii metall, varvid den andra komponenten kan i och for sig vara katalytiskt aktiv eller eventuellt tj dna till att Oka eller modifiera den primara katalysatorns aktivitet vid den ftireliggande processen. The dehydration catalyst may consist exclusively of a catalytically active compound or it may be a mixture of two or more such compounds. Mixtures of tips, mechanical or chemically combined mixtures of metal oxides, mixtures of salts or mixtures of a metal oxide with a catalytically active metal salt can also be used. For example, a metal oxide, such as alumina, may be mixed with an oxide of another metal or a salt of cii metal, the second component per se being catalytically active or optionally serving to increase or modify the activity of the primary catalyst in the underlying process.
Ehurn en stor mangd amnen, som aro aktiva som dehydratiseringskatalysatorer, kunna anvandas vid processen enligt uppfinningen, Or det i alhnanhet lampligast att anvanda en av de ovannamnda metallwdderna. Med harisyn till kostnad och effektivitet Or det sarskilt lampligt att som dehydratiseringskatalysator anvanda en aluminiumoxid, som har de for aktiverad aluminiumoxid utmarkande egenskaperna, d. v. s. en adsorptiv aluminiumoxid, som till Overvagande del bestar av a-monohydrat av aluminiumoxid och/eller y-aluminiumoxid. Dylika aktiverade eller adsorptiva aluminiumoxider kunna karakteriseras som varande i huvudsak losliga i utspadda mineralsyror till skillnad frail icke adsorptiva aluminiumoxider, som är relativt olosliga i dylika syror. De aktiverade alumi- — —3 niumoxider, som lampa sig for foreliggande process, kunna antingen vara syntetiska aktiverade aluminiumoxider eller vara framstalida av naturligt forekommande aluminiumoxider eller mineral, som aro rika pa aluminiumhydrat, t. ex. bauxit, diaspor eller hydrargillit. Aktiverade aluminiumoxider, som aro lampliga for utforandet av fOreliggande uppfinning, kunna aven framstallas genom behandling av syntetiska aluminiumoxidgeler, genom behandling av ett kristalliniskt material, sasom kristelliniskt (fraluminiumtrihydrat, som utkristalliserats fran alkaliska alnminatiosningar, eller enligt andra processer, som Om via bekanta for en fackman, for framstallfling av aktiverade eller adsorptiva aluminiumoxider. Although a large number of substances which are active as dehydration catalysts can be used in the process according to the invention, it is generally most convenient to use one of the above-mentioned metal values. With regard to cost and efficiency, it is particularly appropriate to use an alumina as a dehydration catalyst which has the properties which characterize activated alumina, i.e. an adsorptive alumina, which predominantly consists of α-monohydrate of alumina and / or γ-alumina. Such activated or adsorptive aluminas can be characterized as being substantially soluble in dilute mineral acids as opposed to non-adsorptive aluminas, which are relatively insoluble in such acids. The activated aluminas which are suitable for the present process can either be synthetically activated aluminas or be produced from naturally occurring aluminas or minerals which are rich in aluminum hydrate, e.g. bauxite, diaspora or hydrargillite. Activated aluminas, which are suitable for the practice of the present invention, may also be prepared by treating synthetic alumina gels, by treating a crystalline material, such as crystalline (aluminum trihydrate, which crystallized from alkaline aluminates, or by other processes, such as via skilled in the art, for the preparation of activated or adsorptive aluminas.
Enligt en utforingsform av uppfinningen kan katalysatorn innehalla, forutom den komponent, som ar aktiv som dehydratiseringskatalysator, en andra komponent, som kan vara aktiv som hydreringskatalysator. Processen, som leder till dehydratisering av tetrahydropyran-2-metanolen kan salunda utforas i narvaro av fdtt vate och en hydreringskatalysator, varigenom en particll eller fullstandig reduktion av cyklopentan-karboxaldehyden till motsvarande cyklopentanmetanol astadkommes samtidigt med dess bildning I samma reaktionssystem, som anvandes flir dehydratiseringen. Beroende pa den sarskilda dehydratiseringskatalysator, som anvandes, kan hydreringskatalysatorn mekaniskt blandas med dehydratiseringskatalysatorn eller den senare kan overdragas, impregneras eller pa annat satt kombineras med hydreringskatalysatorn fiir ernaende av en intim katalysatorblandning, som dr katalytiskt aktiv saval for dehydratisering som hydrering. Dehydratiscringskatalysatorn kan innehalla forutom en eller fiera av de namnda dehydratiseringskatalysatorema vilken som helst av de hydreringskatalysatorer, som anvandas i tekniken for katalytisk reduktion av organiska f oreningar, sasom en av fri metall bestaende hydreringskatalysator eller en aktiv metaliforening. I vissa fall kan en och samma metalloxid vara aktiv bade som dehydratiseringskatalysator och som hydreringskatalysator. Bland hydreringskatalysatorer, som kunna anvandas pa detta satt, ma namnas de fria metallerna Pt, Ni, Pd, Au, Co, Fe, Cu, Ag, Mo, Cr, W, Mn och blandningar av dessa avensom foreningar av dessa metaller, sasom deras oxider och. sulfider. En effektiv dehydratiserings - hydreringskatalysator kan framstalias exempelvis genom impregnering av aktiverad aluminiumoxid med utspadd kromsyra och torkning av den resulterande massan. Andra lampliga dehydratiserings-hydreringskatalysatorer kunna framstallas pa liknande satt. According to one embodiment of the invention, the catalyst may contain, in addition to the component which is active as a dehydration catalyst, a second component which may be active as a hydrogenation catalyst. The process leading to the dehydration of the tetrahydropyran-2-methanol can thus be carried out in the presence of hydrogen chloride and a hydrogenation catalyst, whereby a partial or complete reduction of the cyclopentanecarboxaldehyde to the corresponding cyclopentanemethanol is effected simultaneously with its formation in the same reaction system. . Depending on the particular dehydration catalyst used, the hydrogenation catalyst may be mechanically mixed with the dehydration catalyst or the latter may be coated, impregnated or otherwise combined with the hydrogenation catalyst to obtain an intimate catalyst mixture which catalytically activates dehydration for dehydration. The dehydration catalyst may contain, in addition to one or more of the said dehydration catalysts, any of the hydrogenation catalysts used in the catalytic reduction technique of organic compounds, such as a free metal hydrogenation catalyst or an active metal compound. In some cases, one and the same metal oxide may be active both as a dehydration catalyst and as a hydrogenation catalyst. Among the hydrogenation catalysts which can be used in this way are mentioned the free metals Pt, Ni, Pd, Au, Co, Fe, Cu, Ag, Mo, Cr, W, Mn and mixtures thereof as well as compounds of these metals, as their oxides and. sulfides. An efficient dehydration-hydration catalyst can be prepared, for example, by impregnating activated alumina with dilute chromic acid and drying the resulting pulp. Other suitable dehydration-hydration catalysts can be prepared in a similar manner.
Dehydratiseringen av tetrahydropvran-2-metanolen kan astadkommas genom att den i angform bringas i kontakt med dehydratiseringskatalysatorn vid forhojd temperatur och under lamplig tidslangd. Vilken som heist lamplig apparat kan anvandas for processens utforande, ,ehuru processen heist bor utforas i en apparat, som Tamper sig fiir kontinuerligt arbete. En strom av tetrahydropyran -2- metanolen lades salunda i kontakt med dehydratiseringskatalysatorn, som dr anbragt i ett lampligt, upphettat reaktionsror, vid en temperatur ()eh med en tillfOrselhastighet, som aro gynsamma for den onskade dehydratiseringsreaktionen. Dehydratiseringsreaktionen gynnas av reaktionstemperaturer av c:a 250°C eller hogre och lampligen minst c:a 270°C. Avsevart hogre temperaturer kunna anvandas, upp till temperaturer, som orsaka en kraftig termisk sonderdelning av det anvanda organiska materialet. Temperaturer upp till 550°C kunna ofta anvandas. Det lampligaste temperaturomradet Jigger mellan. c:a 300°C och c:a 450°C. The dehydration of the tetrahydropyran-2-methanol can be accomplished by contacting it in angular form with the dehydration catalyst at elevated temperature and for an appropriate period of time. Any suitable apparatus can be used for carrying out the process, although the process should be carried out in an apparatus which tampers itself for continuous work. A stream of the tetrahydropyran-2-methanol was thus placed in contact with the dehydration catalyst, which is placed in a suitable, heated reaction tube, at a temperature () eh at a feed rate which is favorable for the desired dehydration reaction. The dehydration reaction is favored by reaction temperatures of about 250 ° C or higher and preferably at least about 270 ° C. Significantly higher temperatures can be used, up to temperatures which cause a strong thermal probe division of the organic material used. Temperatures up to 550 ° C can often be used. The lightest temperature range Jigger between. about 300 ° C and about 450 ° C.
Tetrahydrapyran-2-metanolens tillforselhastighet kan varieras inorn vida granser, beroende pa den speciella katalysator, som anvandes, reaktionstemperaturen och den for varje genomledning onskade omvandlingen Tillforselhastigheten kan lampligen uttryckas genom det antal volymsenheter vatska av tetrahydropyran-2- metanolen, som pr timme ledes i kontakt med en volymsenhet av katalysatorn. Uttryckt i dessa enheter arc tillforselhastigheter av fran 0,1 till c:a 1,5 i allmanhet tillfredsstallande, men det lampligaste hastighetsomradet torde ligga mellan c:a 0,5 och c:a 1,0. Dessa varden arc dock icke sarskilt fixa, utan alit efter omstandigheterna kunna eventuellt hogre eller lagre hastigheter komma i fraga. The feed rate of the tetrahydrapyran-2-methanol can be varied within wide limits, depending on the particular catalyst used, the reaction temperature and the conversion desired for each passage. contact with a volume unit of the catalyst. Expressed in these units, supply rates of from 0.1 to about 1.5 are generally satisfactory, but the most suitable speed range should be between about 0.5 and about 1.0. These values, however, are not particularly fixed, but alit depending on the circumstances, possibly higher or lower speeds may come into question.
Tetrahydropyran-2-metanolen kan inforas i reaktionszonen och/eller i kontakt med katalysatorn antingen i flytande eller i gasformigt till-stand. Den kan forangas i en forvarmare och en strinn av angorna locks i kontakt med katalysatorn, eller ock den kan infOras som vatska direkt i reaktionskarlet eller reaktionsroret, varvid for-angling intrader vid letrahydropyran-2-meta.- n.olens beroring med den upphettade katalysasatorn oeh/eller reaktionsrummets vaggar. Processen kan utforas antingen vid atmosfartryck eller vid tryck Over eller under atmosfartrycket. Eventuellt kan en neutral gas, sasom kvave, kolsyra eller metan, blandas med angorna av tetrahydropyran-2-metanolen, som bringas i kontakt med katalysatorn, eller ock karma outspadda angor av tetrahydropyran-2-metanolen bringas I beroring med katalysatorn. Urn man onskar astadkomma en samtidig dehydratisering av tetrahydropyran-2-metanolen och reduktion av dehydratiseringsprodukterna, kan en gasblandning, bestaende av tetrahydropyran-2-metanol och vale, bringas i kontakt med en dehydratiserings-hydreringskatalysator av ovan angivet slag. Mangden narvarande vate i gasblandningen kan vara storre eller mindre an den teoretiskt erforderliga mangden for reducering av dehydratiseringspro dukterna, ehuru en stone effekt av processen uppnas genom narvaron av ett mattligt Overskott av vate over den teoretiskt erforderliga mangden. Baknat pa mangden tetrahydropyran-2-metanol, kan c:a 0,5 mol vate 4 — — eller mera med fOrdel anvandas pr mol av tetrahydropyran - 2 -metanolen. Oyertryck p4 valet kan anvandas. The tetrahydropyran-2-methanol can be introduced into the reaction zone and / or in contact with the catalyst either in the liquid or in gaseous state. It can be evaporated in a preheater and a step of the vapor is locked in contact with the catalyst, or it can be introduced as a liquid directly into the reaction vessel or the reaction tube, the pre-angling entering at the contact of letrahydropyran-2-methanol with the heated the catalyst oeh / or the rocks of the reaction chamber. The process can be performed either at atmospheric pressure or at pressure Over or below atmospheric pressure. Optionally, a neutral gas, such as nitrogen, carbon dioxide or methane, may be mixed with the fumes of the tetrahydropyran-2-methanol which is contacted with the catalyst, or karma undiluted fumes of the tetrahydropyran-2-methanol may be brought into contact with the catalyst. If it is desired to achieve a simultaneous dehydration of the tetrahydropyran-2-methanol and reduction of the dehydration products, a gas mixture consisting of tetrahydropyran-2-methanol and vale can be contacted with a dehydration-hydrogenation catalyst of the above kind. The amount of hydrogen present in the gas mixture may be greater or less than the theoretically required amount to reduce the dehydration products, although a stone effect of the process is achieved by the presence of a moderate excess of hydrogen over the theoretically required amount. Based on the amount of tetrahydropyran-2-methanol, about 0.5 moles of hydrogen 4- or more can be advantageously used per mole of the tetrahydropyran-2-methanol. Oyer pressure p4 selection can be used.
De produkter, som bildas yid den foreliggande processen, kunna utvinnas p4 godtyckligt satt frau den gasblandning, som lamnar reaktionsroret. Forutom cyklopentan-karboxaldehyden, som bildas genom dehydratiseringen och isomerisering av tetrahydropyran-2-metanolen, kunna andra pro dukter vara narvarande, vilka kunna hava uppstatt genom sidoreaktioner eller partiella reaktioner under processen. Sa.clana andra produkter, som kunna besta av karboaylprodukter, da dehydratiseringen utfores i franvaro av fritt vate, synas innefatta acykliska hydrox.ialdehyder, omattade karbonylfOreningar, heterocykliska karbonylforeningar och dylikt. Exempelvis har dehydratiseringen av tetrahydropyran-2-metanol i narvaro av aluminiumfosfat eller andra dehydratiseringskatalysatorer och katalytisk reduktion av den resulterande blandningen visat sig leda till bildning av sma mangder hexametylenglykol. Denna och andra produkter, som bildas vid processen enligt uppfinningen, utgora vardefulla produkter, som med fordel karma tillvaratagas och renas pa lampligt satt. The products formed by the present process can be recovered at any time from the gas mixture leaving the reaction tube. In addition to the cyclopentane carboxaldehyde formed by the dehydration and isomerization of the tetrahydropyran-2-methanol, other products may be present which may have arisen by side reactions or partial reactions during the process. Other products which may consist of carbonyl products, since the dehydration is carried out in the absence of free hydrogen, appear to include acyclic hydroxyaldehydes, unsaturated carbonyl compounds, heterocyclic carbonyl compounds and the like. For example, the dehydration of tetrahydropyran-2-methanol in the presence of aluminum phosphate or other dehydration catalysts and catalytic reduction of the resulting mixture have been found to lead to the formation of small amounts of hexamethylene glycol. This and other products formed in the process according to the invention constitute valuable products which are advantageously utilized and purified in a suitable manner.
Gasblandningen, som lamnar reaktionskarlet, kan kondenseras och produkterna separeras genom franktionerad destination, genom behandling med selektiva losningsmedel, genom kemiska hjalpmedel eller pa annat satt. Blandningen av produkter, som erhallas genom dehydratiseringen av en tetrahydropyran-2-metanol av den foreliggan.de klassen, kan understundom vara mindre Iatt att separera i dess bestandsdelar, t. ex. genom fraktionerad destination an exempelvis den motsvarande blandningen av hydrerade dehydratiserade produkter. Om man Onskar att som slutprodukter erhalla hydrerade produkter, d. v. s. cyklopentanmetanoler, ar det darfor fOrdelaktigt att uppskjuta den fullstandiga separeringen av reaktionsblandningen i dess komponenter, tills hydreringen fullstandigt genomforts. The gas mixture leaving the reaction vessel can be condensed and the products separated by franked distillation, by treatment with selective solvents, by chemical aids or otherwise. The mixture of products obtained by the dehydration of a tetrahydropyran-2-methanol of the present class may sometimes be less likely to separate into its constituents, e.g. by fractional distillation to, for example, the corresponding mixture of hydrogenated dehydrated products. If it is desired to obtain hydrogenated products as final products, i.e. cyclopentane methanol, it is therefore advantageous to postpone the complete separation of the reaction mixture into its components until the hydrogenation is completely carried out.
Foljande exempel tjana till att fortydliga vissa av talrika molliga utforingsformer av uppfinningen. I det forsta exemplet beskrives processens anvandning for framstallning av cyklopentankarboxaldehyd och dess utvinning i praktiskt ren form genom dehydratisering av tetrahydropyran-2-metanol. I vissa av de Ovriga exemplen befanns det mera lampligt att hydrera den raa blandningen av dehydratiseringsprodukter och separera de resulterande hydroxylforeningarna. Del torde inses, att den efterfoljande hydreringen i dessa exempel skulle kunna utelamnas och cyklopentan-karboxaldehyden utvinnas ur dehydratiseringsblandningen genom metoder, liknande den, som anvandes i det fbrsta exemplet. The following examples serve to illustrate some of the numerous embodiments of the invention. The first example describes the use of the process for the preparation of cyclopentanecarboxaldehyde and its recovery in practically pure form by dehydration of tetrahydropyran-2-methanol. In some of the other examples, it was found more convenient to hydrate the crude mixture of dehydration products and separate the resulting hydroxyl compounds. It will be appreciated that the subsequent hydrogenation in these examples could be omitted and the cyclopentanecarboxaldehyde recovered from the dehydration mixture by methods similar to that used in the first example.
Exempel I. 165 cma aktiverad aluminiumoxid av typ A frau Aluminium Ore Company of America anbragtes i ett reaktionsror av rostfritt stal, som hade en langd av 101 cm och en diameter av 1,7 cm. Tetrahydropyran-2-metanol i gasform leddes genom roret under atmosfartryck vid 430 till 4°C och med en tillforselhastighet, motsvarande 0,88 vatskevolymer pr timme och pr volymsenhet av katalysatorn. Blandningen, som nade roret, leddes genom en vattenkyld kondensor. Den kondenserade delen delade sig i tva faser, en vattenfas och organisk fas. Av 348 g tetrahydropyran-2-metanol erholls 237 g av den organiska fasen och 101 g av vattenfasen. En ringa mangd gas, som icke kondenserades vid kylvattentemperaturen, bildades. Example I. 165 cma activated type A alumina from the Aluminum Ore Company of America was placed in a stainless steel reaction tube which was 101 cm long and 1.7 cm in diameter. Gaseous tetrahydropyran-2-methanol was passed through the tube under atmospheric pressure at 430 to 4 ° C and at a feed rate corresponding to 0.88 liquid volumes per hour and per unit volume of the catalyst. The mixture, which reached the rudder, was passed through a water-cooled condenser. The condensed part was divided into two phases, an aqueous phase and an organic phase. Of 348 g of tetrahydropyran-2-methanol, 237 g of the organic phase and 101 g of the aqueous phase are obtained. A small amount of gas, which did not condense at the cooling water temperature, was formed.
Den organiska basen avskildes Fri frail vatten och destillerades. Den fraktion, som avgick vid en temperatur upp till 1°C under atmosfartryck, avlagsnades och den fraktion, som darefter avdestillerade upp till 68°C under ett tryck av 15 mm kvicksilver och som uppgick tin 128 g, uppsamlades. Yid omdestillering av denna sistnamnda fraktion erh011s 63 g cyklopentankarboxaldehyd, som avdestillerade yid 135,9 till 138°C (destillationstemperatur enligt litteraturen 136°C), hade en brytningsindex (n 20/D) av 1,4423 och bildade en semikarbazon, som smalte yid 120 till 122°C (litteratursiffra 123 till 124°C). Ytterligare 40 g mindre ren cyklopentankarboxaldehyd utvanns som fraktioner, vilka destillerade Over mellan 127 och 135,9°C samt mellan 138 och 1°C. The organic base was separated into free frail water and distilled. The fraction which evaporated at a temperature up to 1 ° C under atmospheric pressure was precipitated and the fraction which then distilled off to 68 ° C under a pressure of 15 mm Hg and 128 g was collected. Yid redistillation of this latter fraction yields 63 g of cyclopentanecarboxaldehyde, which distilled yid 135.9 to 138 ° C (distillation temperature according to the literature 136 ° C), had a refractive index (n 20 / D) of 1.4423 and formed a semicarbazone, which melted yid 120 to 122 ° C (literature number 123 to 124 ° C). An additional 40 g of less pure cyclopentanecarboxaldehyde was recovered as fractions, which distilled Over between 127 and 135.9 ° C and between 138 and 1 ° C.
Exempel II. 500 delar tetrahydropyran-2-metanol leddes genom reaktionsroret enligt exempel I, vilket inneholl farsk, aktiverad aluminiumoxid av samma slag som i exempel I, under atmosfartryck yid 320 till 340°C och med en tinforselhastighet, motsvarande 0,7 vatskevolymer pr timme och pr volymsenhet katalysator. Den kondenserade blandningen av produkter separerades i 76 delar vatten och 422 delar organiska amnen. Efter avlagsnande av 42 delar genom destination fran 42 till 114°C under atmosfartryck behandlades atersto den av det organiska materialet med vate under ett tryck av 70 kg/cm2 i narvaro av en Raney-nickelhydreringskatalysator yid 1°C tills vateabsorptionen upphorde. Efter katalysatorns avlagsnande underkastades blandningen fraktionerad destination. Foljande fraktioner uppsamlades: Destillationstryck (mm Tag, minimum, vid maximitempe- tur) 1 83,0 2 164 89,0 3 94 98,0 1-2 4 98,2 1 2. bottensats Fraktion 2 destillerades med anga (for avlagsnande av opaverkad tetrahydropyran-2-metanol). torkades och omdestillerades. Darvid erhalls 103 delar cyklopentanrnetanol, som des-. Example II. 500 parts of tetrahydropyran-2-methanol were passed through the reaction tube of Example I, which contained fresh, activated alumina of the same kind as in Example I, at atmospheric pressure yid 320 to 340 ° C and at a tin feed rate corresponding to 0.7 liquid volumes per hour and per catalyst volume unit. The condensed mixture of products was separated into 76 parts of water and 422 parts of organic substances. After depositing 42 parts by distillation from 42 to 114 ° C under atmospheric pressure, the residue of the organic material was treated with water under a pressure of 70 kg / cm 2 in the presence of a Raney nickel hydration catalyst at 1 ° C until the water absorption ceased. After removal of the catalyst, the mixture was subjected to fractional distillation. The following fractions were collected: Distillation pressure (mm Tag, minimum, at maximum temperature) 1 83.0 2 164 89.0 3 94 98.0 1-2 4 98.2 1 2. bottom batch Fraction 2 was distilled with anga (for removal of unaffected tetrahydropyran-2-methanol). dried and redistilled. This gives 103 parts of cyclopentanemethanol, which des-.
Destillations- temperatur ('C, maximum) No. Distillation temperature ('C, maximum) No.
Mangd (delar) — — tillerade Over vid 162,2 till 164,9°C (litteratursiffra 162,5 till 163,5°C) och ytterligare 31 delar, som destillerade Over upp till 167°C. Fraktion 4 kristalliserade vid lagring. Kristallerna identifierades som kristaller av hexametylenglykol. Efter tvattning med eter smalte kristallerna vid 39,5 till 40,°C saval for sig som i bland-fling med ett autentiskt prov av hexametylenglykol, som hade smaltpunkten 39 till 40°C. Mangd (parts) - - added Over at 162.2 to 164.9 ° C (literature figure 162.5 to 163.5 ° C) and a further 31 parts, which distilled Over up to 167 ° C. Fraction 4 crystallized on storage. The crystals were identified as crystals of hexamethylene glycol. After washing with ether, the crystals melted at 39.5 to 40 ° C on their own as in a mixture with an authentic sample of hexamethylene glycol having a melting point of 39 to 40 ° C.
Exempel III. Example III.
En katalysator framstalldes genom impregnering av aktiverad aluminiumoxid av samma slag som i exempel I med en vattenlosning av kromsyra och torkning av den impregnerade aluminiumoxiden. Katalysatorn inneholl 15 viktprocent krom. A catalyst was prepared by impregnating activated alumina of the same kind as in Example I with an aqueous solution of chromic acid and drying the impregnated alumina. The catalyst contained 15% by weight of chromium.
En blandning av gasformig tetrahydropyran2-metanol och vate i molforhallandet 2: 1 leddes I kontakt med denna katalysator i det upphettade reaktionsroret, som anvandes i exempel I, vid en katalysatortemperatur av 37°C och med en tillforselhastighet av 0,33 vatskevolymer av tetrahydropyran-2-metanolen pr timme och volymsenhet av katalysatorn. De partiellt hydrerade organiska produkterna fran dehydratiseringen separerades fran vattnet, som bildades vid reaktionen, och hydrerades ytterligare i narvaro av en Raney-nickelhydreringskatalysator vid 125°C och ett vatetryck av c:a kg/ cm,, tills vateabsorptionen upphorde, och avdestillerad cyklopentanmetanol tillvaratogs som en fraktion, som avdestillerade Indian 73,4°C till 78°C vid ett tryck av 20 mm kvicksilver, i en mangd motsvarande 59 viktsprocent av den blandning, som underkastades destillation. A mixture of gaseous tetrahydropyran 2-methanol and hydrogen in the 2: 1 molar ratio was contacted with this catalyst in the heated reaction tube used in Example 1 at a catalyst temperature of 37 ° C and with a feed rate of 0.33 liquid volumes of tetrahydropyran. 2-methanol per hour and unit volume of the catalyst. The partially hydrogenated organic products from the dehydration were separated from the water formed in the reaction, and further hydrogenated in the presence of a Raney nickel hydrogenation catalyst at 125 ° C and an aqueous pressure of about kg / cm as a fraction which distilled Indian 73.4 ° C to 78 ° C at a pressure of 20 mm Hg, in an amount corresponding to 59% by weight of the mixture which was subjected to distillation.
Exempel IV. Example IV
Dimetyltetrahydropyran-2-metanol, som framstalks av metakrolein, leddes i en gasstrom i kontakt med aktiverad aluminiumoxid av samma slag som i exempel I i det i exempel I anvanda reaktionsroret vid en temperatur av 350°C och en tillforselhastighet, motsvarande 0,67 vatskevolymer pr timme och volymsenhet av katalysatorn. Blandningen, som lanmade reaktionsroret, uppsamlades. Av 227 delar dimetyltetrahydropyran-2-metanol erholls efter avlagsnande av vattnet 149 delar raa produkter. Vid destillering av dessa rha produkter erholls 25 delar dimetylcyklopentankarboxaldehyd, som avdestillerade mellan 63,2° och 66,6°C vid ett tryck av 15 mm kvicksilver och hade en brytningsindex (n20/D) av 1,4520. Den shlunda framstallda climetylcyklopentankarboxaldehyden befanns innehalla 75,87 procent kol, och 10,88 procent vate (beraknade mangder for C81-114 0: 76,05 procent och 11,17 procent respektive). Den bcfanns hava ett karbonylvarde av 0,715 ekvivalenter pr 100 g mot ett beraknat varde av 0,793 ekvivalenter pr 100 g. Dimethyltetrahydropyran-2-methanol, which is produced from methacrolein, was passed in a gas stream in contact with activated alumina of the same kind as in Example I in the reaction tube used in Example I at a temperature of 350 ° C and a feed rate corresponding to 0.67 liquid volumes per hour and unit of volume of the catalyst. The mixture, which leached the reaction tube, was collected. Of 227 parts of dimethyltetrahydropyran-2-methanol, 149 parts of crude products are obtained after removal of the water. Upon distillation of these crude products, 25 parts of dimethylcyclopentanecarboxaldehyde were obtained, which distilled off between 63.2 ° and 66.6 ° C at a pressure of 15 mm Hg and had a refractive index (n20 / D) of 1.4520. The climethylcyclopentanecarboxaldehyde thus prepared was found to contain 75.87 percent carbon, and 10.88 percent vate (calculated amounts for C81-114 0: 76.05 percent and 11.17 percent, respectively). It was found to have a carbonyl value of 0.715 equivalents per 100 g against a calculated value of 0.793 equivalents per 100 g.
Exempel V. Example V.
Tetrahydropyran-2-metanol leddes i kontakt med vattenfritt kalciumsulfat i det i exempel I anvanda reaktionsrOret vid en temperatur av 4°C och en tillforselhastighet av 0,5 vatskevolymer tetrahydropyran-2-metanol pr thnme och volymsenhet av katalysatorn. Produkterna, som lamnade reaktionsroret, uppsamlades och hydrerades i narvaro av en Raney-nickelkatalysator vid 1°C och ett vatetryck av c:a 105 kg/ cm°, tills vateabsorptionen upphorde. Destillation av den hydrerade pro dukten gay ett utbyte av cyklopentanmetanol, motsvarande en omvandling av 37 procent, raknat pa den tillfOrda mangden tetrahydropyran-2-metanol och ett utbyte av 42 procent, raknat ph den fOrbrukade mangden tetrahydropyran-2-metanol. 11 procent av tetrahydropyran-2-metanolen atervanns i of orandrad form. Tetrahydropyran-2-methanol was contacted with anhydrous calcium sulfate in the reaction tube used in Example 1 at a temperature of 4 ° C and a feed rate of 0.5 liquid volumes of tetrahydropyran-2-methanol per unit volume of catalyst. The products which left the reaction tube were collected and hydrogenated in the presence of a Raney nickel catalyst at 1 ° C and a water pressure of about 105 kg / cm 2 until the water absorption ceased. Distillation of the hydrogenated product gives a yield of cyclopentane methanol, corresponding to a conversion of 37%, based on the amount of tetrahydropyran-2-methanol supplied and a yield of 42%, based on the amount of tetrahydropyran-2-methanol consumed. 11 percent of the tetrahydropyran-2-methanol was recovered in unchanged form.
Exempel VI. Example VI.
En av basiskt aluminiumfosfat besthende katalysator, som hade framstallts pa det i amerikanska patentskriften 2 365 623 beskrivna sattet, placerades i det i exempel I anvanda reaktionsroret. Tetrahydropyran-2-metanol leddes i gasformigt tillstand i kontakt med katalysatorn vid en temperatur av 325°C och en tillfOrselhastighet av 0,55 vatskevolymer tetrahydropyran-2-metanol pr timme och volymsenhet av katalysatorn. Den resulterande blandningen uppsamlades och hydrerades pa samma sat som i foreghende exempel. Vid destillering av de hydrerade produkterna utvanns cyklopentanmetanol, motsvarande en omvandling av 30 procent och ett utbyte av 38 procent. Dessutom erholls hexametylenglykol i en mangd, motsvarande en omvandling av 10 procent. Ofordndrad tetrahydropyran2-metanol atervanns i en mangd motsvarande 20 procent av den tillfOrda mangden. A catalyst consisting of basic aluminum phosphate, which had been prepared in the manner described in U.S. Pat. No. 2,365,623, was placed in the reaction tube used in Example I. Tetrahydropyran-2-methanol was passed in gaseous state into contact with the catalyst at a temperature of 325 ° C and a feed rate of 0.55 liquid volumes of tetrahydropyran-2-methanol per hour and unit volume of the catalyst. The resulting mixture was collected and hydrogenated in the same manner as in the previous example. Upon distillation of the hydrogenated products, cyclopentane methanol was recovered, corresponding to a conversion of 30 percent and a yield of 38 percent. In addition, hexamethylene glycol was obtained in an amount corresponding to a conversion of 10 percent. Unchanged tetrahydropyran-2-methanol was recovered in an amount corresponding to 20 percent of the amount supplied.
Exempel VII. Example VII.
En katalysator framstalldes genom fanning av kiselsyra pa aktiverad aluminiumwdd av samma slag som i exempel I med en kornstorlek motsvarande 10 till 14 maskor ur en vatten%suing av natriumsilikat genom tillsattning av syra. Katalysatorn inneh011 5 procent kiselsyra (raknat som torrvikt) och bestod av porosa kern, som hade en specifik yta ay fran 309 till 340 in pr gram. Tetrahydropyran-2-metanol leddes i kontakt med katalysatorn i det i exempel I angivna reaktionsroret vid en katalysatortemperatur av 300°C och med en tillfOrselhastighet av 0,59 vatskevolymer tetrahydropyran-2-metanol pr timme och volymsenhet av katalysatorn. Den resulterande blandningen av produkter hydrerades enligt den i exempel V anvanda metoden och destillerades. Cyklopentanmetanol utvanns i en mangd, motsvarande en omvandling av 42 procent, raknat ph den tillfOrda mangden tetrahydropyran-2,metanol. Ax den tillfOrda mangden tetrahydropyran-2-metanol atervanns 42 procent i oforandrad form. .6'1272(0 — A catalyst was prepared by forming silica on activated aluminum of the same kind as in Example I with a grain size corresponding to 10 to 14 meshes from a water% suction of sodium silicate by adding acid. The catalyst contained 5 percent silicic acid (shaved as dry weight) and consisted of porous nuclei, which had a specific surface area of from 309 to 340 in per gram. Tetrahydropyran-2-methanol was contacted with the catalyst in the reaction tube of Example 1 at a catalyst temperature of 300 ° C and at a feed rate of 0.59 liquid volumes of tetrahydropyran-2-methanol per hour and unit volume of the catalyst. The resulting mixture of products was hydrogenated according to the method used in Example V and distilled. Cyclopentane methanol was recovered in an amount corresponding to a conversion of 42 percent, shaved off the added amount of tetrahydropyran-2, methanol. If the amount of tetrahydropyran-2-methanol added was recovered, 42 percent was recovered in unchanged form. .6'1272 (0 -
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE127240T |
Publications (1)
Publication Number | Publication Date |
---|---|
SE127240C1 true SE127240C1 (en) | 1949-01-01 |
Family
ID=41925537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE127240D SE127240C1 (en) |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE127240C1 (en) |
-
0
- SE SE127240D patent/SE127240C1/sv unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5905159A (en) | Method of producing 1,4-butanediol and tetrahydrofuran from furan | |
JPS6344131B2 (en) | ||
CN103906726A (en) | Method for producing high-purity 1,5-pentanediol | |
CN101903368A (en) | Process for preparing e-caprolactone | |
JPH0357905B2 (en) | ||
CN112390712B (en) | Method for preparing 1, 3-butanediol by adopting fixed bed continuous reaction | |
WO2018182450A1 (en) | Single-stage method of butadiene production | |
TWI418542B (en) | Process for preparation of n-methyl pyrrolidone | |
CN113956142B (en) | Preparation method of pinacolone | |
CN108976183B (en) | Method for preparing gamma-valerolactone by furfural gas phase hydrogenation | |
JP3095293B2 (en) | Method for producing gamma-butyrolactone | |
SE127240C1 (en) | ||
JPH11152245A (en) | Production of unsaturated ketone | |
JP2002060367A (en) | Method for producing 2-vinylcyclododecanone | |
JP6815594B2 (en) | Method for producing diene compound | |
JP6089037B2 (en) | Method for producing cis-rose oxide | |
US3923695A (en) | Catalyst for manufacturing highly purified 2-hydroxy-diphenyl catalyst and method of preparing catalyst | |
JP2585737B2 (en) | Method for producing terpene alcohol | |
US2480990A (en) | Preparation of cyclopentane carboxaldehydes and derivatives thereof | |
JP2017014133A (en) | Manufacturing method of homoallyl alcohol | |
US4806679A (en) | Isomerization of diacyloxybutenes | |
JPS6254788B2 (en) | ||
KR101419058B1 (en) | Process of the selective production of 1-butene through positional isomerization from 2-butenes | |
JPH08127577A (en) | Production of 4-methylenetetrahydropyran | |
SU789472A1 (en) | Method of producing 1-vinylanamantine or its substituted derivatives |